1
|
Tandberg AD, Dahl A, Norbom LB, Westlye LT, Ystrom E, Tamnes CK, Eilertsen EM. Individual differences in internalizing symptoms in late childhood: A variance decomposition into cortical thickness, genetic and environmental differences. Dev Sci 2024; 27:e13537. [PMID: 38874007 DOI: 10.1111/desc.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/29/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
The brain undergoes extensive development during late childhood and early adolescence. Cortical thinning is a prominent feature of this development, and some researchers have suggested that differences in cortical thickness may be related to internalizing symptoms, which typically increase during the same period. However, research has yielded inconclusive results. We utilized a new method that estimates the combined effect of individual differences in vertex-wise cortical thickness on internalizing symptoms. This approach allows for many small effects to be distributed across the cortex and avoids the necessity of correcting for multiple tests. Using a sample of 8763 children aged 8.9 to 11.1 from the ABCD study, we decomposed the total variation in caregiver-reported internalizing symptoms into differences in cortical thickness, additive genetics, and shared family environmental factors and unique environmental factors. Our results indicated that individual differences in cortical thickness accounted for less than 0.5% of the variation in internalizing symptoms. In contrast, the analysis revealed a substantial effect of additive genetics and family environmental factors on the different components of internalizing symptoms, ranging from 06% to 48% and from 0% to 34%, respectively. Overall, while this study found a minimal association between cortical thickness and internalizing symptoms, additive genetics, and familial environmental factors appear to be of importance for describing differences in internalizing symptoms in late childhood. RESEARCH HIGHLIGHTS: We utilized a new method for modelling the total contribution of vertex-wise individual differences in cortical thickness to internalizing symptoms in late childhood. The total contribution of individual differences in cortical thickness accounted for <0.5% of the variance in internalizing symptoms. Additive genetics and shared family environmental variation accounted for 17% and 34% of the variance in internalizing symptoms, respectively. Our results suggest that cortical thickness is not an important indicator for internalizing symptoms in childhood, whereas genetic and environmental differences have a substantial impact.
Collapse
Affiliation(s)
- Anneli D Tandberg
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - Andreas Dahl
- Department of Psychology, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Center for Precision Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Linn B Norbom
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Center for Precision Psychiatry, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Eivind Ystrom
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
- PsychGen Centre for Genetic Epidemiology and Mental Health, Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian K Tamnes
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Espen M Eilertsen
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Thijssen S, Xerxa Y, Norbom LB, Cima M, Tiemeier H, Tamnes CK, Muetzel RL. Early childhood family threat and longitudinal amygdala-mPFC circuit development: Examining cortical thickness and gray matter-white matter contrast. Dev Cogn Neurosci 2024; 70:101462. [PMID: 39418759 PMCID: PMC11532282 DOI: 10.1016/j.dcn.2024.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Early threat-associated cortical thinning may be interpreted as accelerated cortical development. However, non-adaptive processes may show similar macrostructural changes. Examining cortical thickness (CT) together with grey/white-matter contrast (GWC), a proxy for intracortical myelination, may enhance the interpretation of CT findings. In this prospective study, we examined associations between early life family-related threat (harsh parenting, family conflict, and neighborhood safety) and CT and GWC development from late childhood to middle adolescence. MRI was acquired from 4200 children (2069 boys) from the Generation R study at ages 8, 10 and 14 years (in total 6114 scans), of whom 1697 children had >1 scans. Linear mixed effect models were used to examine family factor-by-age interactions on amygdala volume, caudal and rostral anterior cingulate (ACC) and medial orbitofrontal cortex (mOFC) CT and GWC. A neighborhood safety-by-age-interaction was found for rostral ACC GWC, suggesting less developmental change in children from unsafe neighborhoods. Moreover, after more stringent correction for motion, family conflict was associated with greater developmental change in CT but less developmental change in GWC. Results suggest that early threat may blunt ACC GWC development. Our results, therefore, do not provide evidence for accelerated threat-associated structural development of the amygdala-mPFC circuit between ages 8-14 years.
Collapse
Affiliation(s)
- Sandra Thijssen
- Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Yllza Xerxa
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Linn B Norbom
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Maaike Cima
- Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Christian K Tamnes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Schmitt JE, Alexander-Bloch A, Seidlitz J, Raznahan A, Neale MC. The genetics of spatiotemporal variation in cortical thickness in youth. Commun Biol 2024; 7:1301. [PMID: 39390064 PMCID: PMC11467331 DOI: 10.1038/s42003-024-06956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Prior studies have shown strong genetic effects on cortical thickness (CT), structural covariance, and neurodevelopmental trajectories in childhood and adolescence. However, the importance of genetic factors on the induction of spatiotemporal variation during neurodevelopment remains poorly understood. Here, we explore the genetics of maturational coupling by examining 308 MRI-derived regional CT measures in a longitudinal sample of 677 twins and family members. We find dynamic inter-regional genetic covariation in youth, with the emergence of regional subnetworks in late childhood and early adolescence. Three critical neurodevelopmental epochs in genetically-mediated maturational coupling were identified, with dramatic network strengthening near eleven years of age. These changes are associated with statistically-significant (empirical p-value <0.0001) increases in network strength as measured by average clustering coefficient and assortativity. We then identify genes from the Allen Human Brain Atlas with similar co-expression patterns to genetically-mediated structural covariation in children. This set was enriched for genes involved in potassium transport and dendrite formation. Genetically-mediated CT-CT covariance was also strongly correlated with expression patterns for genes located in cells of neuronal origin.
Collapse
Affiliation(s)
- J Eric Schmitt
- Departments of Psychiatry and Radiology, Division of Neuroradiology, Brain Behavior Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Aaron Alexander-Bloch
- Department of Psychiatry, CHOP-Penn Brain-Gene-Development Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jakob Seidlitz
- Department of Psychiatry, CHOP-Penn Brain-Gene-Development Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Armin Raznahan
- Developmental Neurogenomics Unit, National Institutes of Mental Health, Building 10, Room 4C110, 10 Center Drive, Bethesda, MD, USA
| | - Michael C Neale
- Departments of Psychiatry and Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
4
|
Nakua H, Propp L, Bedard ACV, Sanches M, Ameis SH, Andrade BF. Investigating cross-sectional and longitudinal relationships between brain structure and distinct dimensions of externalizing psychopathology in the ABCD sample. Neuropsychopharmacology 2024:10.1038/s41386-024-02000-3. [PMID: 39384894 DOI: 10.1038/s41386-024-02000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/30/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
Externalizing psychopathology in childhood is a predictor of poor outcomes across the lifespan. Children exhibiting elevated externalizing symptoms also commonly show emotion dysregulation and callous-unemotional (CU) traits. Examining cross-sectional and longitudinal neural correlates across dimensions linked to externalizing psychopathology during childhood may clarify shared or distinct neurobiological vulnerability for psychopathological impairment later in life. We used tabulated brain structure and behavioural data from baseline, year 1, and year 2 timepoints of the Adolescent Brain Cognitive Development Study (ABCD; baseline n = 10,534). We fit separate linear mixed effect models to examine whether baseline brain structures in frontolimbic and striatal regions (cortical thickness or subcortical volume) were associated with externalizing symptoms, emotion dysregulation, and/or CU traits at baseline and over a two-year period. The most robust relationships found at the cross-sectional level was between cortical thickness in the right rostral middle frontal gyrus and bilateral pars orbitalis was positively associated with CU traits (β = |0.027-0.033|, pcorrected = 0.009-0.03). Over the two-year follow-up period, higher baseline cortical thickness in the left pars triangularis and rostral middle frontal gyrus predicted greater decreases in externalizing symptoms ((F = 6.33-6.94, pcorrected = 0.014). The results of the current study suggest that unique regions within frontolimbic and striatal networks may be more strongly associated with different dimensions of externalizing psychopathology. The longitudinal findings indicate that brain structure in early childhood may provide insight into structural features that influence behaviour over time.
Collapse
Affiliation(s)
- Hajer Nakua
- Margaret and Wallace McCain Centre for Child Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Lee Propp
- Margaret and Wallace McCain Centre for Child Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Applied Psychology and Human Development, Ontario Institute for Studies in Education, University of Toronto, Toronto, ON, Canada
| | - Anne-Claude V Bedard
- Department of Applied Psychology and Human Development, Ontario Institute for Studies in Education, University of Toronto, Toronto, ON, Canada
| | - Marcos Sanches
- Biostatistics Core, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Stephanie H Ameis
- Margaret and Wallace McCain Centre for Child Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Brendan F Andrade
- Margaret and Wallace McCain Centre for Child Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Ferschmann L, Grydeland H, MacSweeney N, Beck D, Bos MGN, Norbom LB, Aksnes ER, Bekkhus M, Havdahl A, Crone EA, von Soest T, Tamnes CK. The importance of timing of socioeconomic disadvantage throughout development for depressive symptoms and brain structure. Dev Cogn Neurosci 2024; 69:101449. [PMID: 39303431 PMCID: PMC11439534 DOI: 10.1016/j.dcn.2024.101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Prior studies have reported associations between socioeconomic disadvantage, brain structure and mental health outcomes, but the timing of these relations is not well understood. Using prospective longitudinal data from the Avon Longitudinal Study of Parents and Children (ALSPAC), this preregistered study examined whether socioeconomic disadvantage related differentially to depressive symptoms (n=3012-3530) and cortical and subcortical structures (n=460-733) in emerging adults, depending on the timing of exposure to socioeconomic disadvantage. Family income in early childhood and own income measured concurrently were both significantly related to depressive symptoms in emerging adulthood. Similar results were observed for perceived financial strain. In contrast, only family income in early childhood was associated with brain structure in emerging adulthood, with positive associations with intracranial volume and total and regional cortical surface area. The findings suggest that both objective and subjective aspects of one's financial standing throughout development relate to depressive symptoms in adulthood, but that specifically early life family income is related to brain structural features in emerging adulthood. This suggests that associations between socioeconomic disadvantage and brain structure originate early in neurodevelopment, highlighting the role of timing of socioeconomic disadvantage.
Collapse
Affiliation(s)
- Lia Ferschmann
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway.
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Niamh MacSweeney
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Dani Beck
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Marieke G N Bos
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands; Institute of Psychology, Leiden University, Leiden, the Netherlands, Leiden University, Leiden, the Netherlands
| | - Linn B Norbom
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Eira R Aksnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Mona Bekkhus
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Alexandra Havdahl
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway; Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Eveline A Crone
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Tilmann von Soest
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
6
|
Vandewouw MM, Sato J, Safar K, Rhodes N, Taylor MJ. The development of aperiodic and periodic resting-state power between early childhood and adulthood: New insights from optically pumped magnetometers. Dev Cogn Neurosci 2024; 69:101433. [PMID: 39126820 PMCID: PMC11350249 DOI: 10.1016/j.dcn.2024.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Neurophysiological signals, comprised of both periodic (e.g., oscillatory) and aperiodic (e.g., non-oscillatory) activity, undergo complex developmental changes between childhood and adulthood. With much of the existing literature primarily focused on the periodic features of brain function, our understanding of aperiodic signals is still in its infancy. Here, we are the first to examine age-related changes in periodic (peak frequency and power) and aperiodic (slope and offset) activity using optically pumped magnetometers (OPMs), a new, wearable magnetoencephalography (MEG) technology that is particularly well-suited for studying development. We examined age-related changes in these spectral features in a sample (N=65) of toddlers (1-3 years), children (4-5 years), young adults (20-26 years), and adults (27-38 years). Consistent with the extant literature, we found significant age-related decreases in the aperiodic slope and offset, and changes in peak frequency and power that were frequency-specific; we are the first to show that the effect sizes of these changes also varied across brain regions. This work not only adds to the growing body of work highlighting the advantages of using OPMs, especially for studying development, but also contributes novel information regarding the variation of neurophysiological changes with age across the brain.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
| | - Julie Sato
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Kristina Safar
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Natalie Rhodes
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Margot J Taylor
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Vandewouw MM, Ye Y(J, Crosbie J, Schachar RJ, Iaboni A, Georgiades S, Nicolson R, Kelley E, Ayub M, Jones J, Arnold PD, Taylor MJ, Lerch JP, Anagnostou E, Kushki A. Dataset factors associated with age-related changes in brain structure and function in neurodevelopmental conditions. Hum Brain Mapp 2024; 45:e26815. [PMID: 39254138 PMCID: PMC11386318 DOI: 10.1002/hbm.26815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024] Open
Abstract
With brain structure and function undergoing complex changes throughout childhood and adolescence, age is a critical consideration in neuroimaging studies, particularly for those of individuals with neurodevelopmental conditions. However, despite the increasing use of large, consortium-based datasets to examine brain structure and function in neurotypical and neurodivergent populations, it is unclear whether age-related changes are consistent between datasets and whether inconsistencies related to differences in sample characteristics, such as demographics and phenotypic features, exist. To address this, we built models of age-related changes of brain structure (regional cortical thickness and regional surface area; N = 1218) and function (resting-state functional connectivity strength; N = 1254) in two neurodiverse datasets: the Province of Ontario Neurodevelopmental Network and the Healthy Brain Network. We examined whether deviations from these models differed between the datasets, and explored whether these deviations were associated with demographic and clinical variables. We found significant differences between the two datasets for measures of cortical surface area and functional connectivity strength throughout the brain. For regional measures of cortical surface area, the patterns of differences were associated with race/ethnicity, while for functional connectivity strength, positive associations were observed with head motion. Our findings highlight that patterns of age-related changes in the brain may be influenced by demographic and phenotypic characteristics, and thus future studies should consider these when examining or controlling for age effects in analyses.
Collapse
Affiliation(s)
- Marlee M. Vandewouw
- Autism Research Centre, Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Yifan (Julia) Ye
- Autism Research Centre, Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Division of Engineering ScienceUniversity of TorontoTorontoCanada
| | - Jennifer Crosbie
- Department of PsychiatryUniversity of TorontoTorontoCanada
- Department of PsychiatryThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Russell J. Schachar
- Department of PsychiatryUniversity of TorontoTorontoCanada
- Department of PsychiatryThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonCanada
| | | | - Elizabeth Kelley
- Department of PsychologyQueen's UniversityKingstonCanada
- Centre for Neuroscience StudiesQueen's UniversityKingstonCanada
- Department of PsychiatryQueen's UniversityKingstonCanada
| | - Muhammad Ayub
- Department of PsychiatryQueen's UniversityKingstonCanada
- Division of PsychiatryUniversity of College LondonLondonUK
| | - Jessica Jones
- Department of PsychologyQueen's UniversityKingstonCanada
- Centre for Neuroscience StudiesQueen's UniversityKingstonCanada
- Department of PsychiatryQueen's UniversityKingstonCanada
| | - Paul D. Arnold
- The Mathison Centre for Mental Health Research & Education, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
| | - Margot J. Taylor
- Department of Diagnostic and Interventional RadiologyThe Hospital for Sick ChildrenTorontoCanada
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Department of PsychologyUniversity of TorontoTorontoCanada
- Department of Medical ImagingUniversity of TorontoTorontoCanada
| | - Jason P. Lerch
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Institute of Medical ScienceUniversity of TorontoTorontoCanada
| | - Azadeh Kushki
- Autism Research Centre, Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoCanada
| |
Collapse
|
8
|
Lei T, Liao X, Liang X, Sun L, Xia M, Xia Y, Zhao T, Chen X, Men W, Wang Y, Ma L, Liu N, Lu J, Zhao G, Ding Y, Deng Y, Wang J, Chen R, Zhang H, Tan S, Gao JH, Qin S, Tao S, Dong Q, He Y. Functional network modules overlap and are linked to interindividual connectome differences during human brain development. PLoS Biol 2024; 22:e3002653. [PMID: 39292711 PMCID: PMC11441662 DOI: 10.1371/journal.pbio.3002653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/30/2024] [Accepted: 08/29/2024] [Indexed: 09/20/2024] Open
Abstract
The modular structure of functional connectomes in the human brain undergoes substantial reorganization during development. However, previous studies have implicitly assumed that each region participates in one single module, ignoring the potential spatial overlap between modules. How the overlapping functional modules develop and whether this development is related to gray and white matter features remain unknown. Using longitudinal multimodal structural, functional, and diffusion MRI data from 305 children (aged 6 to 14 years), we investigated the maturation of overlapping modules of functional networks and further revealed their structural associations. An edge-centric network model was used to identify the overlapping modules, and the nodal overlap in module affiliations was quantified using the entropy measure. We showed a regionally heterogeneous spatial topography of the overlapping extent of brain nodes in module affiliations in children, with higher entropy (i.e., more module involvement) in the ventral attention, somatomotor, and subcortical regions and lower entropy (i.e., less module involvement) in the visual and default-mode regions. The overlapping modules developed in a linear, spatially dissociable manner, with decreased entropy (i.e., decreased module involvement) in the dorsomedial prefrontal cortex, ventral prefrontal cortex, and putamen and increased entropy (i.e., increased module involvement) in the parietal lobules and lateral prefrontal cortex. The overlapping modular patterns captured individual brain maturity as characterized by chronological age and were predicted by integrating gray matter morphology and white matter microstructural properties. Our findings highlight the maturation of overlapping functional modules and their structural substrates, thereby advancing our understanding of the principles of connectome development.
Collapse
Affiliation(s)
- Tianyuan Lei
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Xinyuan Liang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Lianglong Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yunman Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaodan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Ningyu Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jing Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Gai Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yuyin Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yao Deng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jiali Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Rui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Haibo Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical College, Beijing, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
9
|
Hostalet N, González A, Salgado-Pineda P, Gonzàlez-Colom R, Canales-Rodríguez EJ, Aguirre C, Guerrero-Pedraza A, Llanos-Torres M, Salvador R, Pomarol-Clotet E, Sevillano X, Martínez-Abadías N, Fatjó-Vilas M. Face-brain correlates as potential sex-specific biomarkers for schizophrenia and bipolar disorder. Psychiatry Res 2024; 339:116027. [PMID: 38954892 DOI: 10.1016/j.psychres.2024.116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Given the shared ectodermal origin and integrated development of the face and the brain, facial biomarkers emerge as potential candidates to assess vulnerability for disorders in which neurodevelopment is compromised, such as schizophrenia (SZ) and bipolar disorder (BD). The sample comprised 188 individuals (67 SZ patients, 46 BD patients and 75 healthy controls (HC)). Using a landmark-based approach on 3D facial reconstructions, we quantified global and local facial shape differences between SZ/BD patients and HC using geometric morphometrics. We also assessed correlations between facial and brain cortical measures. All analyses were performed separately by sex. Diagnosis explained 4.1 % - 5.9 % of global facial shape variance in males and females with SZ, and 4.5 % - 4.1 % in BD. Regarding local facial shape, we detected 43.2 % of significantly different distances in males and 47.4 % in females with SZ as compared to HC, whereas in BD the percentages decreased to 35.8 % and 26.8 %, respectively. We detected that brain area and volume significantly explained 2.2 % and 2 % of facial shape variance in the male SZ - HC sample. Our results support facial shape as a neurodevelopmental marker for SZ and BD and reveal sex-specific pathophysiological mechanisms modulating the interplay between the brain and the face.
Collapse
Affiliation(s)
- Noemí Hostalet
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro González
- HER - Human-Environment Research Group, La Salle, Universitat Ramon Llull, Spain
| | - Pilar Salgado-Pineda
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Rubèn Gonzàlez-Colom
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), Spain
| | - Erick J Canales-Rodríguez
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Candibel Aguirre
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; Consorci Sanitari de Terrassa (CST). Hospital de Dia de Salut Mental de Terrassa, Spain
| | - Amalia Guerrero-Pedraza
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; Hospital Benito Menni CASM, Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain
| | - María Llanos-Torres
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; Hospital Mare de Déu de la Mercè, Germanes Hospitalàries, Barcelona, Spain
| | - Raymond Salvador
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Edith Pomarol-Clotet
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Sevillano
- HER - Human-Environment Research Group, La Salle, Universitat Ramon Llull, Spain
| | - Neus Martínez-Abadías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), Spain.
| | - Mar Fatjó-Vilas
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Zhang S, Jiang L, Hu Z, Liu W, Yu H, Chu Y, Wang J, Chen Y. T1w/T2w ratio maps identify children with autism spectrum disorder and the relationships between myelin-related changes and symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111040. [PMID: 38806093 DOI: 10.1016/j.pnpbp.2024.111040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Modern neuroimaging methods have revealed that autistic symptoms are associated with abnormalities in brain morphology, connectivity, and activity patterns. However, the changes in brain microstructure underlying the neurobiological and behavioral deficits of autism remain largely unknown. METHODS we characterized the associated abnormalities in intracortical myelination pattern by constructing cortical T1-weighted/T2-weighted ratio maps. Voxel-wise comparisons of cortical myelination were conducted between 150 children with autism spectrum disorder (ASD) and 139 typically developing (TD) children. Group differences in cortical T1-weighted/T2-weighted ratio and gray matter volume were then examined for associations with autistic symptoms. A convolutional neural network (CNN) model was also constructed to examine the utility of these regional abnormalities in cortical myelination for ASD diagnosis. RESULTS Compared to TD children, the ASD group exhibited widespread reductions in cortical myelination within regions related to default mode, salience, and executive control networks such as the inferior frontal gyrus, bilateral insula, left fusiform gyrus, bilateral hippocampus, right calcarine sulcus, bilateral precentral, and left posterior cingulate gyrus. Moreover, greater myelination deficits in most of these regions were associated with more severe autistic symptoms. In addition, children with ASD exhibited reduced myelination in regions with greater gray matter volume, including left insula, left cerebellum_4_5, left posterior cingulate gyrus, and right calcarine sulcus. Notably, the CNN model based on brain regions with abnormal myelination demonstrated high diagnostic efficacy for ASD. CONCLUSIONS Our findings suggest that microstructural abnormalities in myelination contribute to autistic symptoms and so are potentially promising therapeutic targets as well as biomarkers for ASD diagnosis.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Liping Jiang
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Zhe Hu
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Wenjing Liu
- Children Rehabilitation Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Hao Yu
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Yao Chu
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Jiehuan Wang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China.
| | - Yueqin Chen
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China.
| |
Collapse
|
11
|
Lotter LD, Saberi A, Hansen JY, Misic B, Paquola C, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Paillère ML, Artiges E, Orfanos DP, Paus T, Poustka L, Hohmann S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Nees F, Banaschewski T, Eickhoff SB, Dukart J. Regional patterns of human cortex development correlate with underlying neurobiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.05.539537. [PMID: 37205539 PMCID: PMC10187287 DOI: 10.1101/2023.05.05.539537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Human brain morphology undergoes complex changes over the lifespan. Despite recent progress in tracking brain development via normative models, current knowledge of underlying biological mechanisms is highly limited. We demonstrate that human cortical thickness development and aging trajectories unfold along patterns of molecular and cellular brain organization, traceable from population-level to individual developmental trajectories. During childhood and adolescence, cortex-wide spatial distributions of dopaminergic receptors, inhibitory neurons, glial cell populations, and brain-metabolic features explain up to 50% of variance associated with a lifespan model of regional cortical thickness trajectories. In contrast, modeled cortical thickness change patterns during adulthood are best explained by cholinergic and glutamatergic neurotransmitter receptor and transporter distributions. These relationships are supported by developmental gene expression trajectories and translate to individual longitudinal data from over 8,000 adolescents, explaining up to 59% of developmental change at cohort- and 18% at single-subject level. Integrating neurobiological brain atlases with normative modeling and population neuroimaging provides a biologically meaningful path to understand brain development and aging in living humans.
Collapse
Affiliation(s)
- Leon D. Lotter
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich; Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University; Düsseldorf, Germany
- Max Planck School of Cognition; Stephanstrasse 1A, 04103 Leipzig, Germany
| | - Amin Saberi
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich; Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University; Düsseldorf, Germany
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences; Leipzig, Germany
| | - Justine Y. Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University; Montréal, QC, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University; Montréal, QC, Canada
| | - Casey Paquola
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich; Jülich, Germany
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London; London, United Kingdom
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin; Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London; London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University; Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim; 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay; F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont; 05405 Burlington, Vermont, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham; University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB); Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 “Trajectoires Développementales & Psychiatrie”; Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
| | - Marie-Laure Paillère
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 “Trajectoires Développementales & Psychiatrie”; Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
- AP-HP Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital; Paris, France
| | - Eric Artiges
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 “Trajectoires Développementales & Psychiatrie”; Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
- Department of Psychiatry, EPS Barthélémy Durand; Etampes, France
| | | | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Montréal, Quebec, Canada
- Department of Psychiatry, McGill University; Montreal, Quebec, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen; von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University; Square J5, 68159 Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden; Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden; Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin; Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin; Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin; Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University; Shanghai, China
| | | | - Frauke Nees
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University; Square J5, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University; Square J5, 68159 Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University; Kiel, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University; Square J5, 68159 Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim-Heidelberg-Ulm; Heidelberg, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich; Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University; Düsseldorf, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich; Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University; Düsseldorf, Germany
| |
Collapse
|
12
|
Cao Z, Zhan G, Qin J, Cupertino RB, Ottino-Gonzalez J, Murphy A, Pancholi D, Hahn S, Yuan D, Callas P, Mackey S, Garavan H. Unraveling the molecular relevance of brain phenotypes: A comparative analysis of null models and test statistics. Neuroimage 2024; 293:120622. [PMID: 38648869 PMCID: PMC11132826 DOI: 10.1016/j.neuroimage.2024.120622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Correlating transcriptional profiles with imaging-derived phenotypes has the potential to reveal possible molecular architectures associated with cognitive functions, brain development and disorders. Competitive null models built by resampling genes and self-contained null models built by spinning brain regions, along with varying test statistics, have been used to determine the significance of transcriptional associations. However, there has been no systematic evaluation of their performance in imaging transcriptomics analyses. Here, we evaluated the performance of eight different test statistics (mean, mean absolute value, mean squared value, max mean, median, Kolmogorov-Smirnov (KS), Weighted KS and the number of significant correlations) in both competitive null models and self-contained null models. Simulated brain maps (n = 1,000) and gene sets (n = 500) were used to calculate the probability of significance (Psig) for each statistical test. Our results suggested that competitive null models may result in false positive results driven by co-expression within gene sets. Furthermore, we demonstrated that the self-contained null models may fail to account for distribution characteristics (e.g., bimodality) of correlations between all available genes and brain phenotypes, leading to false positives. These two confounding factors interacted differently with test statistics, resulting in varying outcomes. Specifically, the sign-sensitive test statistics (i.e., mean, median, KS, Weighted KS) were influenced by co-expression bias in the competitive null models, while median and sign-insensitive test statistics were sensitive to the bimodality bias in the self-contained null models. Additionally, KS-based statistics produced conservative results in the self-contained null models, which increased the risk of false negatives. Comprehensive supplementary analyses with various configurations, including realistic scenarios, supported the results. These findings suggest utilizing sign-insensitive test statistics such as mean absolute value, max mean in the competitive null models and the mean as the test statistic for the self-contained null models. Additionally, adopting the confounder-matched (e.g., coexpression-matched) null models as an alternative to standard null models can be a viable strategy. Overall, the present study offers insights into the selection of statistical tests for imaging transcriptomics studies, highlighting areas for further investigation and refinement in the evaluation of novel and commonly used tests.
Collapse
Affiliation(s)
- Zhipeng Cao
- Shanghai Xuhui Mental Health Center, Shanghai 200232, China; Department of Psychiatry, University of Vermont College of Medicine, Burlington VT, 05401, USA.
| | - Guilai Zhan
- Shanghai Xuhui Mental Health Center, Shanghai 200232, China
| | - Jinmei Qin
- Shanghai Xuhui Mental Health Center, Shanghai 200232, China
| | - Renata B Cupertino
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jonatan Ottino-Gonzalez
- Division of Endocrinology, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Alistair Murphy
- Department of Psychiatry, University of Vermont College of Medicine, Burlington VT, 05401, USA
| | - Devarshi Pancholi
- Department of Psychiatry, University of Vermont College of Medicine, Burlington VT, 05401, USA
| | - Sage Hahn
- Department of Psychiatry, University of Vermont College of Medicine, Burlington VT, 05401, USA
| | - Dekang Yuan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington VT, 05401, USA
| | - Peter Callas
- Department of Mathematics and Statistics, University of Vermont College of Engineering and Mathematical Sciences, Burlington VT, 05401, USA
| | - Scott Mackey
- Department of Psychiatry, University of Vermont College of Medicine, Burlington VT, 05401, USA
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington VT, 05401, USA
| |
Collapse
|
13
|
Rojas CFN, Pio DAM, Nonato AC. Understanding child development and care integrality: Primary Health Care doctors and nurses' view. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2024; 42:e2023127. [PMID: 38695417 PMCID: PMC11059932 DOI: 10.1590/1984-0462/2024/42/2023127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/25/2023] [Indexed: 05/05/2024]
Abstract
OBJECTIVE To identify perceptions of primary care health professionals regarding the conceptual aspects of child development and propose strategies to address difficulties. METHODS This descriptive-analytical study was conducted in a small municipality in the countryside of the State of São Paulo, Brazil. The primary health care in this region is comprised of Family Health Units and Basic Health Units. The sample included 52 participants, consisting of doctors and primary care nurses. A questionnaire with open and closed questions was utilized, covering knowledge and practices related to child development. For this study, the first question of the questionnaire, which asked for a descriptive response about participants' understanding of child development, was employed. The responses were transcribed, and content analysis using the thematic approach was conducted. RESULTS Among the participants, 54% were nurses, and the average duration of working with the pediatric population was ten years. 80% reported never having undergone training in child development. The analysis of the responses revealed heterogeneity in the professionals' understanding of the conceptual dimension of child development. Additionally, there was an insufficient grasp of the theoretical and practical aspects and a scarcity of resources to support comprehensive care for children. A predominant biomedical model focusing on disease and biological aspects of child health was evident in defining the understanding of the subject. CONCLUSIONS The findings underscore the necessity of implementing health education initiatives and service projects in primary care settings. It is crucial to strengthen a comprehensive perspective of child health within the biopsychosocial model of the health-disease process.
Collapse
|
14
|
Kelly CE, Thompson DK, Adamson CL, Ball G, Dhollander T, Beare R, Matthews LG, Alexander B, Cheong JLY, Doyle LW, Anderson PJ, Inder TE. Cortical growth from infancy to adolescence in preterm and term-born children. Brain 2024; 147:1526-1538. [PMID: 37816305 PMCID: PMC10994536 DOI: 10.1093/brain/awad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023] Open
Abstract
Early life experiences can exert a significant influence on cortical and cognitive development. Very preterm birth exposes infants to several adverse environmental factors during hospital admission, which affect cortical architecture. However, the subsequent consequence of very preterm birth on cortical growth from infancy to adolescence has never been defined; despite knowledge of critical periods during childhood for establishment of cortical networks. Our aims were to: chart typical longitudinal cortical development and sex differences in cortical development from birth to adolescence in healthy term-born children; estimate differences in cortical development between children born at term and very preterm; and estimate differences in cortical development between children with normal and impaired cognition in adolescence. This longitudinal cohort study included children born at term (≥37 weeks' gestation) and very preterm (<30 weeks' gestation) with MRI scans at ages 0, 7 and 13 years (n = 66 term-born participants comprising 34 with one scan, 18 with two scans and 14 with three scans; n = 201 very preterm participants comprising 56 with one scan, 88 with two scans and 57 with three scans). Cognitive assessments were performed at age 13 years. Cortical surface reconstruction and parcellation were performed with state-of-the-art, equivalent MRI analysis pipelines for all time points, resulting in longitudinal cortical volume, surface area and thickness measurements for 62 cortical regions. Developmental trajectories for each region were modelled in term-born children, contrasted between children born at term and very preterm, and contrasted between all children with normal and impaired cognition. In typically developing term-born children, we documented anticipated patterns of rapidly increasing cortical volume, area and thickness in early childhood, followed by more subtle changes in later childhood, with smaller cortical size in females than males. In contrast, children born very preterm exhibited increasingly reduced cortical volumes, relative to term-born children, particularly during ages 0-7 years in temporal cortical regions. This reduction in cortical volume in children born very preterm was largely driven by increasingly reduced cortical thickness rather than area. This resulted in amplified cortical volume and thickness reductions by age 13 years in individuals born very preterm. Alterations in cortical thickness development were found in children with impaired language and memory. This study shows that the neurobiological impact of very preterm birth on cortical growth is amplified from infancy to adolescence. These data further inform the long-lasting impact on cortical development from very preterm birth, providing broader insights into neurodevelopmental consequences of early life experiences.
Collapse
Affiliation(s)
- Claire E Kelly
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia
- Victorian Infant Brain Studies (VIBeS), Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Deanne K Thompson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia
- Victorian Infant Brain Studies (VIBeS), Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Chris L Adamson
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Gareth Ball
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Richard Beare
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- National Centre for Healthy Ageing and Peninsula Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3199, Australia
| | - Lillian G Matthews
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia
- Victorian Infant Brain Studies (VIBeS), Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bonnie Alexander
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Department of Neurosurgery, The Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Jeanie L Y Cheong
- Victorian Infant Brain Studies (VIBeS), Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
- Newborn Research, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies (VIBeS), Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Newborn Research, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia
- Victorian Infant Brain Studies (VIBeS), Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Terrie E Inder
- Center for Neonatal Research, Children's Hospital of Orange County, Orange, CA 92868, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Xue Z, Ling X, Zhao X, Geng L. Neural Mechanisms of Nonauditory Effects of Noise Exposure on Special Populations. Noise Health 2024; 26:70-81. [PMID: 38904804 PMCID: PMC11530112 DOI: 10.4103/nah.nah_78_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 06/22/2024] Open
Abstract
Due to the abnormal structure and function of brain neural networks in special populations, such as children, elderly individuals, and individuals with mental disorders, noise exposure is more likely to have negative psychological and cognitive nonauditory effects on these individuals. There are unique and complex neural mechanisms underlying this phenomenon. For individuals with mental disorders, there are anomalies such as structural atrophy and decreased functional activation in brain regions involved in emotion and cognitive processing, such as the prefrontal cortex (PFC). Noise exposure can worsen these abnormalities in relevant brain regions, further damaging neural plasticity and disrupting normal connections and the transmission of information between the PFC and other brain areas by causing neurotransmitter imbalances. In the case of children, in a noisy environment, brain regions such as the left inferior frontal gyrus and PFC, which are involved in growth and development, are more susceptible to structural and functional changes, leading to neurodegenerative alterations. Furthermore, noise exposure can interrupt auditory processing neural pathways or impair inhibitory functions, thus hindering children's ability to map sound to meaning in neural processes. For elderly people, age-related shrinkage of brain regions such as the PFC, as well as deficiencies in hormone, neurotransmitter, and nutrient levels, weakens their ability to cope with noise. Currently, it is feasible to propose and apply coping strategies to improve the nonauditory effects of noise exposure on special populations based on the plasticity of the human brain.
Collapse
Affiliation(s)
- Zixuan Xue
- School of Chinese Language and Literature, Shaanxi Normal University, Xi’an, 710119, China
| | - Xinran Ling
- School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou, 221009, China
- Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou, 221009, China
| | - Xinru Zhao
- School of Information Science and Engineering, Shandong Agriculture and Engineering University, Zibo, 255314, China
| | - Libo Geng
- School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou, 221009, China
- Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou, 221009, China
| |
Collapse
|
16
|
Zhang M, Li W, Ye Y, Hu Z, Zhou Y, Ning Y. Efficacy and safety of intermittent theta burst stimulation on adolescents and young adults with major depressive disorder: A randomized, double blinded, controlled trial. J Affect Disord 2024; 350:214-221. [PMID: 38199406 DOI: 10.1016/j.jad.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/02/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) is a newer form of Repetitive Transcranial Magnetic Stimulation (rTMS) for depression. However, its efficacy and safety in adolescents and young adults with major depressive disorder (AYA-MDD) have not been well studied, especially when applied with a strategy that combines neuronavigation targeting and accelerated iTBS. METHODS In this study, ninety patients were randomly assigned to twice-daily (two 600-pulse sessions spaced out by 10 min, n = 31), once-daily (one 600-pulse session, n = 29) or sham iTBS (no pulses, n = 30) groups for 10 treatment days. The primary outcome measure was the change in depression scores on the Hamilton Rating Scale for Depression (HAMD-17). Other clinical symptoms, such as anxiety, were also evaluated. RESULTS Linear mixed model analysis found that scores on the HAMD-17 and its factors improved in all three groups, but these improvements did not significantly differ among groups. Other clinical symptoms such as anxiety also improved. Response and remission rates were relatively low and did not differ among groups at any time point. The most common adverse event was headache, and the proportion of participants who reported headache in the twice-daily and once-daily groups was significantly higher than that in the sham group. CONCLUSIONS The current results indicated that twice-daily and once-daily iTBS under neuronavigation are safe and well tolerated in AYA-MDD, but the overall efficacy was not superior to that of sham treatment. We speculated several possible reasons such as the high placebo response of the young population, inadequate iTBS pulses and so on.
Collapse
Affiliation(s)
- Min Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weicheng Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanxiang Ye
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhibo Hu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Norbom LB, Rokicki J, Eilertsen EM, Wiker T, Hanson J, Dahl A, Alnæs D, Fernández‐Cabello S, Beck D, Agartz I, Andreassen OA, Westlye LT, Tamnes CK. Parental education and income are linked to offspring cortical brain structure and psychopathology at 9-11 years. JCPP ADVANCES 2024; 4:e12220. [PMID: 38486948 PMCID: PMC10933599 DOI: 10.1002/jcv2.12220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/21/2023] [Indexed: 03/17/2024] Open
Abstract
Background A child's socioeconomic environment can shape central aspects of their life, including vulnerability to mental disorders. Negative environmental influences in youth may interfere with the extensive and dynamic brain development occurring at this time. Indeed, there are numerous yet diverging reports of associations between parental socioeconomic status (SES) and child cortical brain morphometry. Most of these studies have used single metric- or unimodal analyses of standard cortical morphometry that downplay the probable scenario where numerous biological pathways in sum account for SES-related cortical differences in youth. Methods To comprehensively capture such variability, using data from 9758 children aged 8.9-11.1 years from the ABCD Study®, we employed linked independent component analysis (LICA) and fused vertex-wise cortical thickness, surface area, curvature and grey-/white-matter contrast (GWC). LICA revealed 70 uni- and multimodal components. We then assessed the linear relationships between parental education, parental income and each of the cortical components, controlling for age, sex, genetic ancestry, and family relatedness. We also assessed whether cortical structure moderated the negative relationships between parental SES and child general psychopathology. Results Parental education and income were both associated with larger surface area and higher GWC globally, in addition to local increases in surface area and to a lesser extent bidirectional GWC and cortical thickness patterns. The negative relation between parental income and child psychopathology were attenuated in children with a multimodal pattern of larger frontal- and smaller occipital surface area, and lower medial occipital thickness and GWC. Conclusion Structural brain MRI is sensitive to SES diversity in childhood, with GWC emerging as a particularly relevant marker together with surface area. In low-income families, having a more developed cortex across MRI metrics, appears beneficial for mental health.
Collapse
Affiliation(s)
- Linn B. Norbom
- PROMENTA Research CenterDepartment of PsychologyUniversity of OsloOsloNorway
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
| | - Jaroslav Rokicki
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Centre of Research and Education in Forensic PsychiatryOslo University HospitalOsloNorway
| | - Espen M. Eilertsen
- PROMENTA Research CenterDepartment of PsychologyUniversity of OsloOsloNorway
| | - Thea Wiker
- PROMENTA Research CenterDepartment of PsychologyUniversity of OsloOsloNorway
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Jamie Hanson
- Learning Research and Development Center University of PittsburghPennsylvaniaPittsburghUSA
- Department of PsychologyUniversity of PittsburghPennsylvaniaPittsburghUSA
| | - Andreas Dahl
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Dag Alnæs
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of PsychologyPedagogy and LawKristiania University CollegeOsloNorway
| | | | - Dani Beck
- PROMENTA Research CenterDepartment of PsychologyUniversity of OsloOsloNorway
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Ingrid Agartz
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- K.G Jebsen Center for Neurodevelopmental DisordersUniversity of OsloOsloNorway
- Centre for Psychiatry ResearchDepartment of Clinical NeuroscienceKarolinska Institutet & Stockholm Health Care ServicesStockholmSweden
| | - Ole A. Andreassen
- K.G Jebsen Center for Neurodevelopmental DisordersUniversity of OsloOsloNorway
- NORMENTDivision of Mental Health and AddictionOslo University Hospital & Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Lars T. Westlye
- Department of PsychologyUniversity of OsloOsloNorway
- K.G Jebsen Center for Neurodevelopmental DisordersUniversity of OsloOsloNorway
- NORMENTDivision of Mental Health and AddictionOslo University Hospital & Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Christian K. Tamnes
- PROMENTA Research CenterDepartment of PsychologyUniversity of OsloOsloNorway
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| |
Collapse
|
18
|
Cooper R, Hayes RA, Corcoran M, Sheth KN, Arnold TC, Stein JM, Glahn DC, Jalbrzikowski M. Bridging the gap: improving correspondence between low-field and high-field magnetic resonance images in young people. Front Neurol 2024; 15:1339223. [PMID: 38585353 PMCID: PMC10995930 DOI: 10.3389/fneur.2024.1339223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/19/2024] [Indexed: 04/09/2024] Open
Abstract
Background Portable low-field-strength magnetic resonance imaging (MRI) systems represent a promising alternative to traditional high-field-strength systems with the potential to make MR technology available at scale in low-resource settings. However, lower image quality and resolution may limit the research and clinical potential of these devices. We tested two super-resolution methods to enhance image quality in a low-field MR system and compared their correspondence with images acquired from a high-field system in a sample of young people. Methods T1- and T2-weighted structural MR images were obtained from a low-field (64mT) Hyperfine and high-field (3T) Siemens system in N = 70 individuals (mean age = 20.39 years, range 9-26 years). We tested two super-resolution approaches to improve image correspondence between images acquired at high- and low-field: (1) processing via a convolutional neural network ('SynthSR'), and (2) multi-orientation image averaging. We extracted brain region volumes, cortical thickness, and cortical surface area estimates. We used Pearson correlations to test the correspondence between these measures, and Steiger Z tests to compare the difference in correspondence between standard imaging and super-resolution approaches. Results Single pairs of T1- and T2-weighted images acquired at low field showed high correspondence to high-field-strength images for estimates of total intracranial volume, surface area cortical volume, subcortical volume, and total brain volume (r range = 0.60-0.88). Correspondence was lower for cerebral white matter volume (r = 0.32, p = 0.007, q = 0.009) and non-significant for mean cortical thickness (r = -0.05, p = 0.664, q = 0.664). Processing images with SynthSR yielded significant improvements in correspondence for total brain volume, white matter volume, total surface area, subcortical volume, cortical volume, and total intracranial volume (r range = 0.85-0.97), with the exception of global mean cortical thickness (r = 0.14). An alternative multi-orientation image averaging approach improved correspondence for cerebral white matter and total brain volume. Processing with SynthSR also significantly improved correspondence across widespread regions for estimates of cortical volume, surface area and subcortical volume, as well as within isolated prefrontal and temporal regions for estimates of cortical thickness. Conclusion Applying super-resolution approaches to low-field imaging improves regional brain volume and surface area accuracy in young people. Finer-scale brain measurements, such as cortical thickness, remain challenging with the limited resolution of low-field systems.
Collapse
Affiliation(s)
- Rebecca Cooper
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Rebecca A. Hayes
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States
| | - Mary Corcoran
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States
| | - Kevin N. Sheth
- Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT, United States
| | - Thomas Campbell Arnold
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Joel M. Stein
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David C. Glahn
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, United States
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Liang X, Sun L, Liao X, Lei T, Xia M, Duan D, Zeng Z, Li Q, Xu Z, Men W, Wang Y, Tan S, Gao JH, Qin S, Tao S, Dong Q, Zhao T, He Y. Structural connectome architecture shapes the maturation of cortical morphology from childhood to adolescence. Nat Commun 2024; 15:784. [PMID: 38278807 PMCID: PMC10817914 DOI: 10.1038/s41467-024-44863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
Cortical thinning is an important hallmark of the maturation of brain morphology during childhood and adolescence. However, the connectome-based wiring mechanism that underlies cortical maturation remains unclear. Here, we show cortical thinning patterns primarily located in the lateral frontal and parietal heteromodal nodes during childhood and adolescence, which are structurally constrained by white matter network architecture and are particularly represented using a network-based diffusion model. Furthermore, connectome-based constraints are regionally heterogeneous, with the largest constraints residing in frontoparietal nodes, and are associated with gene expression signatures of microstructural neurodevelopmental events. These results are highly reproducible in another independent dataset. These findings advance our understanding of network-level mechanisms and the associated genetic basis that underlies the maturational process of cortical morphology during childhood and adolescence.
Collapse
Affiliation(s)
- Xinyuan Liang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Lianglong Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Tianyuan Lei
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Dingna Duan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zilong Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qiongling Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zhilei Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, 100096, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
20
|
Li L, Wang T, Li F, Yue Y, Yin Y, Chen S, Hou Z, Xu Z, Kong Y, Yuan Y. Negative association between DNA methylation in brain-derived neurotrophic factor exon VI and left superior parietal gyrification in major depressive disorder. Behav Brain Res 2024; 456:114684. [PMID: 37769873 DOI: 10.1016/j.bbr.2023.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE We have recently reported significantly higher DNA methylation in brain-derived neurotrophic factor (BDNF) exon VI in major depressive disorder (MDD). This study aimed to investigated cortical changes and their associations with DNA methylations in BDNF exon VI in MDD. METHODS Data of 93 patients with MDD and 59 controls were involved in statistics. General linear regressions (GLM) were performed to analyze thickness and gyrification changes in MDD and their association with DNA methylation in BDNF exon VI in patients with MDD and controls. RESULTS Significantly decreased cortical thickness (CT) in left lateral orbitofrontal cortex (LOFC), left superior temporal lobe (ST) and right frontal pole (FP) and decreased local gyrification index (lGI) in left superior parietal lobe (SP) were found in MDD. The associations between DNA methylation in 3 CpG sites in BDNF exon VI and lGI in left SP were significantly different in patients and controls. DNA methylations in BDNF132 (β = -0.359, P < 0.001), BDNF137 (β = -0.214, P = 0.032), and BDNF151 (β = -0.223, P = 0.025) were significantly negatively associated with lGI in left SP in MDD. CONCLUSION The negative association between BDNF exon VI methylation and lGI in left SP might imply a potential epigenetic marker associated with cortical gyrification reduction in patients with MDD.
Collapse
Affiliation(s)
- Lei Li
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Department of Depression and Sleep Medicine, The Fourth People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Tianyu Wang
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, China
| | - Fan Li
- Lab of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing 210000, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, China
| | - Suzhen Chen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Youyong Kong
- Lab of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing 210000, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
21
|
Walther S, Nadesalingam N, Nuoffer M, Kyrou A, Wüthrich F, Lefebvre S. Structural alterations of the motor cortex and higher order cortical areas suggest early neurodevelopmental origin of catatonia in schizophrenia. Schizophr Res 2024; 263:131-138. [PMID: 36272843 DOI: 10.1016/j.schres.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
The neurobiology of catatonia is still poorly understood. Particularly structural MRI studies yielded conflicting results. Heterogeneity of findings was suggested to stem from specifics of different rating scales. This study sought to test grey matter differences between patients with catatonia, patients without catatonia, and healthy controls using the two main instruments of catatonia rating. We included 98 patients with schizophrenia spectrum disorders and 42 healthy controls. Catatonia was measured using the Bush Francis Catatonia Rating Scale and the Northoff Catatonia Rating Scale. According to these scales, patients were classified into those with and those without catatonia. We tested whole brain grey matter volume, cortical thickness, and local gyrification across groups. Both catatonia rating scales correlated at tau = 0.65 but failed to classify identical subjects as catatonia patients. However, group differences in grey matter parameters were broadly similar with either rating scale to identify catatonia cases. Catatonia patients had reduced grey matter volume compared to controls in a large network including orbitofrontal cortex, cingulate, thalamus, and amygdala. While there was no group difference in cortical thickness, catatonia patients had increased local gyrification in premotor, motor, and parietal cortices compared to controls. Hypergyrification of the motor cortex and higher order cortical areas was found in catatonia patients compared to patients without catatonia. Both catatonia rating scales find similar symptom severity and group differences in grey matter indices. Catatonia is linked to reduced grey matter volume and increased local gyrification, suggesting some impact of early neurodevelopmental insults.
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Switzerland
| | - Melanie Nuoffer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Switzerland
| | - Alexandra Kyrou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Switzerland
| | - Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
22
|
Shen Q, Liao H, Cai S, Liu Q, Wang M, Song C, Zhou F, Liu Y, Yuan J, Tang Y, Li X, Liu J, Tan C. Cortical gyrification pattern of depression in Parkinson's disease: a neuroimaging marker for disease severity? Front Aging Neurosci 2023; 15:1241516. [PMID: 38035271 PMCID: PMC10682087 DOI: 10.3389/fnagi.2023.1241516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background Although the study of the neuroanatomical correlates of depression in Parkinson's Disease (PD) is gaining increasing interest, up to now the cortical gyrification pattern of PD-related depression has not been reported. This study was conducted to investigate the local gyrification index (LGI) in PD patients with depression, and its associations with the severity of depression. Methods LGI values, as measured using FreeSurfer software, were compared between 59 depressed PD (dPD), 27 non-depressed PD (ndPD) patients and 43 healthy controls. The values were also compared between ndPD and mild-depressed PD (mi-dPD), moderate-depressed PD (mo-dPD) and severe-depressed PD (se-dPD) patients as sub-group analyses. Furthermore, we evaluated the correlation between LGI values and depressive symptom scores within dPD group. Results Compared to ndPD, the dPD patients exhibited decreased LGI in the left parietal, the right superior-frontal, posterior cingulate and paracentral regions, and the LGI values within these areas negatively correlated with the severity of depression. Specially, reduced gyrification was observed in mo-dPD and involving a larger region in se-dPD, but not in mi-dPD group. Conclusion The present study demonstrated that cortical gyrification is decreased within specific brain regions among PD patients with versus without depression, and those changes were associated with the severity of depression. Our findings suggested that cortical gyrification might be a potential neuroimaging marker for the severity of depression in patients with PD.
Collapse
|
23
|
Omlor W, Rabe F, Fuchs S, Cecere G, Homan S, Surbeck W, Kallen N, Georgiadis F, Spiller T, Seifritz E, Weickert T, Bruggemann J, Weickert C, Potkin S, Hashimoto R, Sim K, Rootes-Murdy K, Quide Y, Houenou J, Banaj N, Vecchio D, Piras F, Piras F, Spalletta G, Salvador R, Karuk A, Pomarol-Clotet E, Rodrigue A, Pearlson G, Glahn D, Tomecek D, Spaniel F, Skoch A, Kirschner M, Kaiser S, Kochunov P, Fan FM, Andreassen OA, Westlye LT, Berthet P, Calhoun VD, Howells F, Uhlmann A, Scheffler F, Stein D, Iasevoli F, Cairns MJ, Carr VJ, Catts SV, Di Biase MA, Jablensky A, Green MJ, Henskens FA, Klauser P, Loughland C, Michie PT, Mowry B, Pantelis C, Rasser PE, Schall U, Scott R, Zalesky A, de Bartolomeis A, Barone A, Ciccarelli M, Brunetti A, Cocozza S, Pontillo G, Tranfa M, Di Giorgio A, Thomopoulos SI, Jahanshad N, Thompson PM, van Erp T, Turner J, Homan P. Estimating multimodal brain variability in schizophrenia spectrum disorders: A worldwide ENIGMA study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559032. [PMID: 37961617 PMCID: PMC10634976 DOI: 10.1101/2023.09.22.559032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Objective Schizophrenia is a multifaceted disorder associated with structural brain heterogeneity. Despite its relevance for identifying illness subtypes and informative biomarkers, structural brain heterogeneity in schizophrenia remains incompletely understood. Therefore, the objective of this study was to provide a comprehensive insight into the structural brain heterogeneity associated with schizophrenia. Methods This meta- and mega-analysis investigated the variability of multimodal structural brain measures of white and gray matter in individuals with schizophrenia versus healthy controls. Using the ENIGMA dataset of MRI-based brain measures from 22 international sites with up to 6139 individuals for a given brain measure, we examined variability in cortical thickness, surface area, folding index, subcortical volume and fractional anisotropy. Results We found that individuals with schizophrenia are distinguished by higher heterogeneity in the frontotemporal network with regard to multimodal structural measures. Moreover, individuals with schizophrenia showed higher homogeneity of the folding index, especially in the left parahippocampal region. Conclusions Higher multimodal heterogeneity in frontotemporal regions potentially implies different subtypes of schizophrenia that converge on impaired frontotemporal interaction as a core feature of the disorder. Conversely, more homogeneous folding patterns in the left parahippocampal region might signify a consistent characteristic of schizophrenia shared across subtypes. These findings underscore the importance of structural brain variability in advancing our neurobiological understanding of schizophrenia, and aid in identifying illness subtypes as well as informative biomarkers.
Collapse
|
24
|
Gilardone G, Viganò M, Cassinelli D, Fumagalli FM, Calvo I, Gilardone M, Sozzi M, Corbo M. [Formula: see text] Post-stroke acquired childhood aphasia. A scoping review. Child Neuropsychol 2023; 29:1268-1293. [PMID: 36548197 DOI: 10.1080/09297049.2022.2156992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Aphasia has a great impact on children's lives, with stroke being its most common and studied etiology. However, our knowledge about this disorder is limited, the studies on this topic are sparse, and a consensus regarding its definition is lacking. In particular, the interpretation of this condition varied over time: from the rigid description of the so-called "standard doctrine" to the adoption of adult models for post-stroke aphasia. Therefore, this review provides a critical overview of childhood aphasia after stroke, focusing on its epidemiology, definition, diagnosis, and clinical manifestation. The scoping review approach was adopted, following PRISMA-ScR guidelines. PubMed, Web of Science, and PsycInfo databases were searched for related peer-review papers in English. Forty-six records were identified; the majority were single cases and case series, only a few were reviews and observational studies. Epidemiologic data are scarce; a few studies report that aphasia affects about one-third of children post-stroke. Despite terminological differences, there is an overall agreement on the definition of post-stroke aphasia in children as a language disorder acquired after the age of two. Approaches for the diagnosis and evaluation vary widely, including both assessments for developmental language disorders and tests for aphasia in adults. The clinical manifestations described in children are numerous and varied, similar to those found in adults, in contrast with the "standard doctrine." This review highlights the need for further studies to improve the knowledge of this condition, develop validated and specific assessment tools, and standardize clinical management.
Collapse
Affiliation(s)
- Giulia Gilardone
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| | - Mauro Viganò
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
- UMR 7023 Structures Formelles du Langage, CNRS & Université de Paris 8, Paris, France
| | - Dario Cassinelli
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| | | | - Irene Calvo
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| | - Marco Gilardone
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| | - Matteo Sozzi
- Neurology Unit, Neuroscience Department ASST "A. Manzoni", Lecco, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| |
Collapse
|
25
|
Yang S, Ma X, Xia X, Qiao Z, Huang M, Wang N, Hu X, Zhang X, Deng W, Kang L, Li X, Hao G, Xi J, Meng H, Li T, Hou X, Fu Y. A Bivariate Twin Study of Cortical Surface Area and Verbal and Nonverbal Intellectual Skills in Adolescence. Neuroscience 2023; 530:173-180. [PMID: 37085008 DOI: 10.1016/j.neuroscience.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
Understanding the biological basis of cognitive differences between individuals is the goal in human intelligence research. The surface area of the cortex is considered to be a key determinant of human intelligence. Adolescence is a period of development characterized by physiological, emotional, behavioral, and psychosocial changes, which is related to the recombination and optimization of the cerebral cortex, and cognitive ability changes significantly in children and adolescents. This study examined the effects of common genetic and environmental factors between the surface area of the cerebral cortex and intelligence in typical developing adolescents (twins, n = 114, age 12-18 years old). Cortical surface area data were parsed into subregions (i.e., frontal, parietal, occipital, and temporal areas) and intelligence into verbal and nonverbal skills. We found a phenotypic correlation between regional surface areas and verbal intelligence. No correlation was observed between regional surface areas and nonverbal intelligence, except for the occipital lobe and the right hemisphere. In the bivariate twin analyses, the differences in phenotypic correlation between regional surface areas and verbal intelligence were not due to unshared environmental effects or measurement error, but to genetic effects. In summary, the current study has broadened the previous genetic investigations of cognitive ability and cortical surface area.
Collapse
Affiliation(s)
- Shu Yang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xingshun Ma
- Department of Neurology, The First Hospital of Yulin, Yulin, Shanxi 719000, China
| | - Xiaodi Xia
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zimei Qiao
- Department of Neurology, The First Hospital of Yulin, Yulin, Shanxi 719000, China
| | - Miao Huang
- Department of Neurology, The First Hospital of Yulin, Yulin, Shanxi 719000, China
| | - Na Wang
- Department of Neurology, The First Hospital of Yulin, Yulin, Shanxi 719000, China
| | - Xiaomei Hu
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, China
| | | | - Wei Deng
- Hangzhou Seventh People's Hospital, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hang Zhou, Zhejiang, China
| | - Line Kang
- Department of Neurology, The First Hospital of Yulin, Yulin, Shanxi 719000, China
| | - Xiao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guangjun Hao
- Department of Neurology, The First Hospital of Yulin, Yulin, Shanxi 719000, China
| | - Junfeng Xi
- Department of Neurology, The First Hospital of Yulin, Yulin, Shanxi 719000, China
| | - Huaqing Meng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tao Li
- Hangzhou Seventh People's Hospital, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hang Zhou, Zhejiang, China.
| | - Xiao Hou
- Chongqing Medical and Pharmaceutical College, Chongqing 400016, China.
| | - Yixiao Fu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
26
|
Conte S, Richards JE, Fox NA, Valadez EA, McSweeney M, Tan E, Pine DS, Winkler AM, Liuzzi L, Cardinale EM, White LK, Buzzell GA. Multimodal study of the neural sources of error monitoring in adolescents and adults. Psychophysiology 2023; 60:e14336. [PMID: 37212619 PMCID: PMC10524909 DOI: 10.1111/psyp.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/16/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023]
Abstract
The ability to monitor performance during a goal-directed behavior differs among children and adults in ways that can be measured with several tasks and techniques. As well, recent work has shown that individual differences in error monitoring moderate temperamental risk for anxiety and that this moderation changes with age. We investigated age differences in neural responses linked to performance monitoring using a multimodal approach. The approach combined functional MRI and source localization of event-related potentials (ERPs) in 12-year-old, 15-year-old, and adult participants. Neural generators of two components related to performance and error monitoring, the N2 and ERN, lay within specific areas of fMRI clusters. Whereas correlates of the N2 component appeared similar across age groups, age-related differences manifested in the location of the generators of the ERN component. The dorsal anterior cingulate cortex (dACC) was the predominant source location for the 12-year-old group; this area manifested posteriorly for the 15-year-old and adult groups. A fMRI-based ROI analysis confirmed this pattern of activity. These results suggest that changes in the underlying neural mechanisms are related to developmental changes in performance monitoring.
Collapse
Affiliation(s)
- Stefania Conte
- Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | - John E Richards
- Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland, USA
| | - Emilio A Valadez
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland, USA
| | - Marco McSweeney
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland, USA
| | - Enda Tan
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland, USA
| | - Daniel S Pine
- National Institute of Mental Health, Emotion and Development Branch, Bethesda, Maryland, USA
| | - Anderson M Winkler
- National Institute of Mental Health, Emotion and Development Branch, Bethesda, Maryland, USA
| | - Lucrezia Liuzzi
- National Institute of Mental Health, Emotion and Development Branch, Bethesda, Maryland, USA
| | - Elise M Cardinale
- National Institute of Mental Health, Emotion and Development Branch, Bethesda, Maryland, USA
| | - Lauren K White
- Lifespan Brain Institute of the Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
| | - George A Buzzell
- Florida International University and the Center for Children and Families, Miami, Florida, USA
| |
Collapse
|
27
|
Larsen B, Sydnor VJ, Keller AS, Yeo BTT, Satterthwaite TD. A critical period plasticity framework for the sensorimotor-association axis of cortical neurodevelopment. Trends Neurosci 2023; 46:847-862. [PMID: 37643932 PMCID: PMC10530452 DOI: 10.1016/j.tins.2023.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
To understand human brain development it is necessary to describe not only the spatiotemporal patterns of neurodevelopment but also the neurobiological mechanisms that underlie them. Human neuroimaging studies have provided evidence for a hierarchical sensorimotor-to-association (S-A) axis of cortical neurodevelopment. Understanding the biological mechanisms that underlie this program of development using traditional neuroimaging approaches has been challenging. Animal models have been used to identify periods of enhanced experience-dependent plasticity - 'critical periods' - that progress along cortical hierarchies and are governed by a conserved set of neurobiological mechanisms that promote and then restrict plasticity. In this review we hypothesize that the S-A axis of cortical development in humans is partly driven by the cascading maturation of critical period plasticity mechanisms. We then describe how recent advances in in vivo neuroimaging approaches provide a promising path toward testing this hypothesis by linking signals derived from non-invasive imaging to critical period mechanisms.
Collapse
Affiliation(s)
- Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arielle S Keller
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B T Thomas Yeo
- Centre for Sleep and Cognition (CSC), and Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Rakesh D, Whittle S, Sheridan MA, McLaughlin KA. Childhood socioeconomic status and the pace of structural neurodevelopment: accelerated, delayed, or simply different? Trends Cogn Sci 2023; 27:833-851. [PMID: 37179140 PMCID: PMC10524122 DOI: 10.1016/j.tics.2023.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023]
Abstract
Socioeconomic status (SES) is associated with children's brain and behavioral development. Several theories propose that early experiences of adversity or low SES can alter the pace of neurodevelopment during childhood and adolescence. These theories make contrasting predictions about whether adverse experiences and low SES are associated with accelerated or delayed neurodevelopment. We contextualize these predictions within the context of normative development of cortical and subcortical structure and review existing evidence on SES and structural brain development to adjudicate between competing hypotheses. Although none of these theories are fully consistent with observed SES-related differences in brain development, existing evidence suggests that low SES is associated with brain structure trajectories more consistent with a delayed or simply different developmental pattern than an acceleration in neurodevelopment.
Collapse
Affiliation(s)
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - Margaret A Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
29
|
Nishat E, Stojanovski S, Scratch SE, Ameis SH, Wheeler AL. Premature white matter microstructure in female children with a history of concussion. Dev Cogn Neurosci 2023; 62:101275. [PMID: 37441978 PMCID: PMC10439504 DOI: 10.1016/j.dcn.2023.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Childhood concussion may interfere with neurodevelopment and influence cognition. Females are more likely to experience persistent symptoms after concussion, yet the sex-specific impact of concussion on brain microstructure in children is understudied. This study examined white matter and cortical microstructure, based on neurite density (ND) from diffusion-weighted MRI, in 9-to-10-year-old children in the Adolescent Brain Cognitive Development Study with (n = 336) and without (n = 7368) a history of concussion, and its relationship with cognitive performance. Multivariate regression was used to investigate relationships between ND and group, sex, and age in deep and superficial white matter, subcortical structures, and cortex. Partial least square correlation was performed to identify associations between ND and performance on NIH Toolbox tasks in children with concussion. All tissue types demonstrated higher ND with age, reflecting brain maturation. Group comparisons revealed higher ND in deep and superficial white matter in females with concussion. In female but not male children with concussion, there were significant associations between ND and performance on cognitive tests. These results demonstrate a greater long-term impact of childhood concussion on white matter microstructure in females compared to males that is associated with cognitive function. The increase in ND in females may reflect premature white matter maturation.
Collapse
Affiliation(s)
- Eman Nishat
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Sonja Stojanovski
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Shannon E Scratch
- Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1V7, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada
| | - Stephanie H Ameis
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada
| | - Anne L Wheeler
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.
| |
Collapse
|
30
|
Wiker T, Norbom LB, Beck D, Agartz I, Andreassen OA, Alnæs D, Dahl A, Eilertsen EM, Moberget T, Ystrøm E, Westlye LT, Lebel C, Huster RJ, Tamnes CK. Reaction Time Variability in Children Is Specifically Associated With Attention Problems and Regional White Matter Microstructure. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:832-840. [PMID: 37003411 DOI: 10.1016/j.bpsc.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Increased intraindividual variability (IIV) in reaction times (RTs) has been suggested as a key cognitive and behavioral marker of attention problems, but findings for other dimensions of psychopathology are less consistent. Moreover, while studies have linked IIV to brain white matter microstructure, large studies testing the robustness of these associations are needed. METHODS We used data from the Adolescent Brain Cognitive Development (ABCD) Study baseline assessment to test the associations between IIV and psychopathology (n = 8622, age = 8.9-11.1 years) and IIV and white matter microstructure (n = 7958, age = 8.9-11.1 years). IIV was investigated using an ex-Gaussian distribution analysis of RTs in correct response go trials in the stop signal task. Psychopathology was measured by the Child Behavior Checklist and a bifactor structural equation model was performed to extract a general p factor and specific factors reflecting internalizing, externalizing, and attention problems. To investigate white matter microstructure, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were examined in 23 atlas-based tracts. RESULTS Increased IIV in both short and long RTs was positively associated with the specific attention problems factor (Cohen's d = 0.13 and d = 0.15, respectively). Increased IIV in long RTs was also positively associated with radial diffusivity in the left and right corticospinal tract (both tracts, d = 0.12). CONCLUSIONS Using a large sample and a data-driven dimensional approach to psychopathology, the results provide novel evidence for a small but specific association between IIV and attention problems in children and support previous findings on the relevance of white matter microstructure for IIV.
Collapse
Affiliation(s)
- Thea Wiker
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health, Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
| | - Linn B Norbom
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health, Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dani Beck
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health, Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden & Stockholm Health Care Services, Stockholm Region, Sweden
| | - Ole A Andreassen
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, Pedagogy and Law, School of Health Sciences, Kristiania University College, Oslo, Norway
| | - Andreas Dahl
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Espen M Eilertsen
- Research Center for Developmental Processes and Gradients in Mental Health, Department of Psychology, University of Oslo, Oslo, Norway
| | - Torgeir Moberget
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eivind Ystrøm
- Research Center for Developmental Processes and Gradients in Mental Health, Department of Psychology, University of Oslo, Oslo, Norway; Department of Mental Disorders, Norwegian Institute of Public Heath, Oslo, Norway
| | - Lars T Westlye
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Alberta, Canada
| | - Rene J Huster
- Multimodal Imaging and Cognitive Control Laboratory, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Norway; Sleep Unit, Department of Otorhinolaryngology/Head and Neck Surgery, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health, Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
31
|
Boroshok AL, McDermott CL, Fotiadis P, Park AT, Tooley UA, Gataviņš MM, Tisdall MD, Bassett DS, Mackey AP. Individual differences in T1w/T2w ratio development during childhood. Dev Cogn Neurosci 2023; 62:101270. [PMID: 37348147 PMCID: PMC10439503 DOI: 10.1016/j.dcn.2023.101270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Myelination is a key developmental process that promotes rapid and efficient information transfer. Myelin also stabilizes existing brain networks and thus may constrain neuroplasticity, defined here as the brain's potential to change in response to experiences rather than the canonical definition as the process of change. Characterizing individual differences in neuroplasticity may shed light on mechanisms by which early experiences shape learning, brain and body development, and response to interventions. The T1-weighted/T2-weighted (T1w/T2w) MRI signal ratio is a proxy measure of cortical microstructure and thus neuroplasticity. Here, in pre-registered analyses, we investigated individual differences in T1w/T2w ratios in children (ages 4-10, n = 157). T1w/T2w ratios were positively associated with age within early-developing sensorimotor and attention regions. We also tested whether socioeconomic status, cognition (crystallized knowledge or fluid reasoning), and biological age (as measured with molar eruption) were related to T1w/T2w signal but found no significant effects. Associations among T1w/T2w ratios, early experiences, and cognition may emerge later in adolescence and may not be strong enough to detect in moderate sample sizes.
Collapse
Affiliation(s)
- Austin L Boroshok
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Panagiotis Fotiadis
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne T Park
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ursula A Tooley
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Washington University in St. Louis, USA; Department of Neurology, Washington University in St. Louis, USA
| | - Mārtiņš M Gataviņš
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Dylan Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Electrical & Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Physics & Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Santa Fe Institute, Santa Fe, NM, USA
| | - Allyson P Mackey
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Slapø NB, Jørgensen KN, Elvsåshagen T, Nerland S, Roelfs D, Valstad M, Timpe CMF, Richard G, Beck D, Sæther LS, Frogner Werner MC, Lagerberg TV, Andreassen OA, Melle I, Agartz I, Westlye LT, Moberget T, Jönsson EG. Relationship between function and structure in the visual cortex in healthy individuals and in patients with severe mental disorders. Psychiatry Res Neuroimaging 2023; 332:111633. [PMID: 37028226 DOI: 10.1016/j.pscychresns.2023.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023]
Abstract
Patients with schizophrenia spectrum disorders (SCZspect) and bipolar disorders (BD) show impaired function in the primary visual cortex (V1), indicated by altered visual evoked potential (VEP). While the neural substrate for altered VEP in these patients remains elusive, altered V1 structure may play a role. One previous study found a positive relationship between the amplitude of the P100 component of the VEP and V1 surface area, but not V1 thickness, in a small sample of healthy individuals. Here, we aimed to replicate these findings in a larger healthy control (HC) sample (n = 307) and to examine the same relationship in patients with SCZspect (n = 30) or BD (n = 45). We also compared the mean P100 amplitude, V1 surface area and V1 thickness between controls and patients and found no significant group differences. In HC only, we found a significant positive P100-V1 surface area association, while there were no significant P100-V1 thickness relationships in HC, SCZspect or BD. Together, our results confirm previous findings of a positive P100-V1 surface area association in HC, whereas larger patient samples are needed to further clarify the function-structure relationship in V1 in SCZspect and BD.
Collapse
Affiliation(s)
- Nora Berz Slapø
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway.
| | - Kjetil Nordbø Jørgensen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Norway
| | - Stener Nerland
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Daniel Roelfs
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Mathias Valstad
- Department of Mental Disorders, Norwegian Institute of Public Health, Norway
| | - Clara M F Timpe
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | | | - Dani Beck
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | | | | | - Trine Vik Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway
| | - Ingrid Melle
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Lars T Westlye
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Torgeir Moberget
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Behavioral Sciences, Faculty of Health Sciences, Oslo Metropolitan University, OsloMet, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
33
|
Vargas TG, Mittal VA. Brain morphometry points to emerging patterns of psychosis, depression, and anxiety vulnerability over a 2-year period in childhood. Psychol Med 2023; 53:3322-3334. [PMID: 37323064 PMCID: PMC10276191 DOI: 10.1017/s0033291721005304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gray matter morphometry studies have lent seminal insights into the etiology of mental illness. Existing research has primarily focused on adults and then, typically on a single disorder. Examining brain characteristics in late childhood, when the brain is preparing to undergo significant adolescent reorganization and various forms of serious psychopathology are just first emerging, may allow for a unique and highly important perspective of overlapping and unique pathogenesis. METHODS A total of 8645 youth were recruited as part of the Adolescent Brain and Cognitive Development study. Magnetic resonance imaging scans were collected, and psychotic-like experiences (PLEs), depressive, and anxiety symptoms were assessed three times over a 2-year period. Cortical thickness, surface area, and subcortical volume were used to predict baseline symptomatology and symptom progression over time. RESULTS Some features could possibly signal common vulnerability, predicting progression across forms of psychopathology (e.g. superior frontal and middle temporal regions). However, there was a specific predictive value for emerging PLEs (lateral occipital and precentral thickness), anxiety (parietal thickness/area and cingulate), and depression (e.g. parahippocampal and inferior temporal). CONCLUSION Findings indicate common and distinct patterns of vulnerability for varying forms of psychopathology are present during late childhood, before the adolescent reorganization, and have direct relevance for informing novel conceptual models along with early prevention and intervention efforts.
Collapse
Affiliation(s)
- Teresa G Vargas
- Northwestern University, Swift Hall 102, 2029 Sheridan Road, Evanston, IL 60201, USA
| | - Vijay A Mittal
- Northwestern University, Swift Hall 102, 2029 Sheridan Road, Evanston, IL 60201, USA
| |
Collapse
|
34
|
Howes OD, Onwordi EC. The synaptic hypothesis of schizophrenia version III: a master mechanism. Mol Psychiatry 2023; 28:1843-1856. [PMID: 37041418 PMCID: PMC10575788 DOI: 10.1038/s41380-023-02043-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
The synaptic hypothesis of schizophrenia has been highly influential. However, new approaches mean there has been a step-change in the evidence available, and some tenets of earlier versions are not supported by recent findings. Here, we review normal synaptic development and evidence from structural and functional imaging and post-mortem studies that this is abnormal in people at risk and with schizophrenia. We then consider the mechanism that could underlie synaptic changes and update the hypothesis. Genome-wide association studies have identified a number of schizophrenia risk variants converging on pathways regulating synaptic elimination, formation and plasticity, including complement factors and microglial-mediated synaptic pruning. Induced pluripotent stem cell studies have demonstrated that patient-derived neurons show pre- and post-synaptic deficits, synaptic signalling alterations, and elevated, complement-dependent elimination of synaptic structures compared to control-derived lines. Preclinical data show that environmental risk factors linked to schizophrenia, such as stress and immune activation, can lead to synapse loss. Longitudinal MRI studies in patients, including in the prodrome, show divergent trajectories in grey matter volume and cortical thickness compared to controls, and PET imaging shows in vivo evidence for lower synaptic density in patients with schizophrenia. Based on this evidence, we propose version III of the synaptic hypothesis. This is a multi-hit model, whereby genetic and/or environmental risk factors render synapses vulnerable to excessive glia-mediated elimination triggered by stress during later neurodevelopment. We propose the loss of synapses disrupts pyramidal neuron function in the cortex to contribute to negative and cognitive symptoms and disinhibits projections to mesostriatal regions to contribute to dopamine overactivity and psychosis. It accounts for the typical onset of schizophrenia in adolescence/early adulthood, its major risk factors, and symptoms, and identifies potential synaptic, microglial and immune targets for treatment.
Collapse
Affiliation(s)
- Oliver D Howes
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Ellis Chika Onwordi
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, E1 2AB, UK.
| |
Collapse
|
35
|
Perdue MV, DeMayo MM, Bell TK, Boudes E, Bagshawe M, Harris AD, Lebel C. Changes in brain metabolite levels across childhood. Neuroimage 2023; 274:120087. [PMID: 37080345 DOI: 10.1016/j.neuroimage.2023.120087] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Metabolites play important roles in brain development and their levels change rapidly in the prenatal period and during infancy. Metabolite levels are thought to stabilize during childhood, but the development of neurochemistry across early-middle childhood remains understudied. We examined the developmental changes of key metabolites (total N-acetylaspartate, tNAA; total choline, tCho; total creatine, tCr; glutamate+glutamine, Glx; and myo-inositol, mI) using short echo-time magnetic resonance spectroscopy (MRS) in the anterior cingulate cortex (ACC) and the left temporo-parietal cortex (LTP) using a mixed cross-sectional/longitudinal design in children aged 2-11 years (ACC: N=101 children, 112 observations; LTP: N=95 children, 318 observations). We found age-related effects for all metabolites. tNAA increased with age in both regions, while tCho decreased with age in both regions. tCr increased with age in the LTP only, and mI decreased with age in the ACC only. Glx did not show linear age effects in either region, but a follow-up analysis in only participants with ≥3 datapoints in the LTP revealed a quadratic effect of age following an inverted U-shape. These substantial changes in neurochemistry throughout childhood likely underlie various processes of structural and functional brain development.
Collapse
Affiliation(s)
- Meaghan V Perdue
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary
| | - Marilena M DeMayo
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary; Mathison Centre for Mental Health Research and Education; Department of Psychiatry, University of Calgary
| | - Tiffany K Bell
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary
| | | | - Mercedes Bagshawe
- Alberta Children's Hospital Research Institute; Werklund School of Education, University of Calgary
| | - Ashley D Harris
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary
| | - Catherine Lebel
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary.
| |
Collapse
|
36
|
Willbrand EH, Ferrer E, Bunge SA, Weiner KS. Development of Human Lateral Prefrontal Sulcal Morphology and Its Relation to Reasoning Performance. J Neurosci 2023; 43:2552-2567. [PMID: 36828638 PMCID: PMC10082454 DOI: 10.1523/jneurosci.1745-22.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Previous findings show that the morphology of folds (sulci) of the human cerebral cortex flatten during postnatal development. However, previous studies did not consider the relationship between sulcal morphology and cognitive development in individual participants. Here, we fill this gap in knowledge by leveraging cross-sectional morphologic neuroimaging data in the lateral PFC (LPFC) from individual human participants (6-36 years old, males and females; N = 108; 3672 sulci), as well as longitudinal morphologic and behavioral data from a subset of child and adolescent participants scanned at two time points (6-18 years old; N = 44; 2992 sulci). Manually defining thousands of sulci revealed that LPFC sulcal morphology (depth, surface area, and gray matter thickness) differed between children (6-11 years old)/adolescents (11-18 years old) and young adults (22-36 years old) cross-sectionally, but only cortical thickness showed differences across childhood and adolescence and presented longitudinal changes during childhood and adolescence. Furthermore, a data-driven approach relating morphology and cognition identified that longitudinal changes in cortical thickness of four left-hemisphere LPFC sulci predicted longitudinal changes in reasoning performance, a higher-level cognitive ability that relies on LPFC. Contrary to previous findings, these results suggest that sulci may flatten either after this time frame or over a longer longitudinal period of time than previously presented. Crucially, these results also suggest that longitudinal changes in the cortex within specific LPFC sulci are behaviorally meaningful, providing targeted structures, and areas of the cortex, for future neuroimaging studies examining the development of cognitive abilities.SIGNIFICANCE STATEMENT Recent work has shown that individual differences in neuroanatomical structures (indentations, or sulci) within the lateral PFC are behaviorally meaningful during childhood and adolescence. Here, we describe how specific lateral PFC sulci develop at the level of individual participants for the first time: from both cross-sectional and longitudinal perspectives. Further, we show, also for the first time, that the longitudinal morphologic changes in these structures are behaviorally relevant. These findings lay the foundation for a future avenue to precisely study the development of the cortex and highlight the importance of studying the development of sulci in other cortical expanses and charting how these changes relate to the cognitive abilities those areas support at the level of individual participants.
Collapse
Affiliation(s)
- Ethan H Willbrand
- Department of Psychology
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Emilio Ferrer
- Department of Psychology
- Center for Mind and Brain, University of California-Davis, Davis, California 95616
| | - Silvia A Bunge
- Department of Psychology
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Kevin S Weiner
- Department of Psychology
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
37
|
Kelly CE, Shaul M, Thompson DK, Mainzer RM, Yang JY, Dhollander T, Cheong JL, Inder TE, Doyle LW, Anderson PJ. Long-lasting effects of very preterm birth on brain structure in adulthood: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 147:105082. [PMID: 36775083 DOI: 10.1016/j.neubiorev.2023.105082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/01/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Early life experiences, such as very preterm (VP) birth, can affect brain and cognitive development. Several prior studies investigated brain structure in adults born VP; synthesising these studies may help to provide a clearer understanding of long-term effects of VP birth on the brain. We systematically searched Medline and Embase for articles that investigated brain structure using MRI in adulthood in individuals born VP (<32 weeks' gestation) or with very low birth weight (VLBW; <1500 g), and controls born at term or with normal birth weight. In total, 77 studies met the review inclusion criteria, of which 28 studies were eligible for meta-analyses, including data from up to 797 VP/VLBW participants and 518 controls, aged 18-33 years. VP/VLBW adults exhibited volumetric, morphologic and microstructural alterations in subcortical and temporal cortical regions compared with controls, with pooled standardised mean differences up to - 1.0 (95% confidence interval: -1.2, -0.8). This study suggests there is a persisting neurological impact of VP birth, which may provide developmental neurobiological insights for adult cognition in high-risk populations.
Collapse
Affiliation(s)
- Claire E Kelly
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Michelle Shaul
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Deakin University, Melbourne, Australia
| | - Deanne K Thompson
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Rheanna M Mainzer
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Clinical Epidemiology and Biostatistics Unit, Population Health, Murdoch Children's Research Institute, Melbourne, Australia
| | - Joseph Ym Yang
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia; Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jeanie Ly Cheong
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Terrie E Inder
- Department of Pediatrics, Children's Hospital of Orange County, University of California Irvine, CA, USA
| | - Lex W Doyle
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
38
|
Yao JK, Voorhies WI, Miller JA, Bunge SA, Weiner KS. Sulcal depth in prefrontal cortex: a novel predictor of working memory performance. Cereb Cortex 2023; 33:1799-1813. [PMID: 35589102 PMCID: PMC9977365 DOI: 10.1093/cercor/bhac173] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
The neuroanatomical changes that underpin cognitive development are of major interest in neuroscience. Of the many aspects of neuroanatomy to consider, tertiary sulci are particularly attractive as they emerge last in gestation, show a protracted development after birth, and are either human- or hominoid-specific. Thus, they are ideal targets for exploring morphological-cognitive relationships with cognitive skills that also show protracted development such as working memory (WM). Yet, the relationship between sulcal morphology and WM is unknown-either in development or more generally. To fill this gap, we adopted a data-driven approach with cross-validation to examine the relationship between sulcal depth in lateral prefrontal cortex (LPFC) and verbal WM in 60 children and adolescents between ages 6 and 18. These analyses identified 9 left, and no right, LPFC sulci (of which 7 were tertiary) whose depth predicted verbal WM performance above and beyond the effect of age. Most of these sulci are located within and around contours of previously proposed functional parcellations of LPFC. This sulcal depth model outperformed models with age or cortical thickness. Together, these findings build empirical support for a classic theory that tertiary sulci serve as landmarks in association cortices that contribute to late-maturing human cognitive abilities.
Collapse
Affiliation(s)
- Jewelia K Yao
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ 08540, United States
| | - Willa I Voorhies
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, United States
| | - Jacob A Miller
- Helen Wills Neuroscience Institute, University of California, Berkeley, 175 Li Ka Shing Center, Berkeley, CA 94720, United States
| | - Silvia A Bunge
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, 175 Li Ka Shing Center, Berkeley, CA 94720, United States
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, 175 Li Ka Shing Center, Berkeley, CA 94720, United States
| |
Collapse
|
39
|
Gagnon A, Grenier G, Bocti C, Gillet V, Lepage JF, Baccarelli AA, Posner J, Descoteaux M, Takser L. White matter microstructural variability linked to differential attentional skills and impulsive behavior in a pediatric population. Cereb Cortex 2023; 33:1895-1912. [PMID: 35535719 PMCID: PMC9977366 DOI: 10.1093/cercor/bhac180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/14/2022] Open
Abstract
Structural and functional magnetic resonance imaging (MRI) studies have suggested a neuroanatomical basis that may underly attention-deficit-hyperactivity disorder (ADHD), but the anatomical ground truth remains unknown. In addition, the role of the white matter (WM) microstructure related to attention and impulsivity in a general pediatric population is still not well understood. Using a state-of-the-art structural connectivity pipeline based on the Brainnetome atlas extracting WM connections and its subsections, we applied dimensionality reduction techniques to obtain biologically interpretable WM measures. We selected the top 10 connections-of-interests (located in frontal, parietal, occipital, and basal ganglia regions) with robust anatomical and statistical criteria. We correlated WM measures with psychometric test metrics (Conner's Continuous Performance Test 3) in 171 children (27 Dx ADHD, 3Dx ASD, 9-13 years old) from the population-based GESTation and Environment cohort. We found that children with lower microstructural complexity and lower axonal density show a higher impulsive behavior on these connections. When segmenting each connection in subsections, we report WM alterations localized in one or both endpoints reflecting a specific localization of WM alterations along each connection. These results provide new insight in understanding the neurophysiology of attention and impulsivity in a general population.
Collapse
Affiliation(s)
- Anthony Gagnon
- Department of Pediatrics, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gabrielle Grenier
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christian Bocti
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Virginie Gillet
- Department of Pediatrics, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | | | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Imeka Solutions Inc, Sherbrooke, QC, Canada
| | - Larissa Takser
- Department of Pediatrics, University of Sherbrooke, Sherbrooke, Quebec, Canada
- Department of Psychiatry, University of Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
40
|
Luo Q, Chen J, Li Y, Lin X, Yu H, Lin X, Wu H, Peng H. Cortical thickness and curvature abnormalities in patients with major depressive disorder with childhood maltreatment: Neural markers of vulnerability? Asian J Psychiatr 2023; 80:103396. [PMID: 36508912 DOI: 10.1016/j.ajp.2022.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Childhood maltreatment has been related to various disadvantageous lifetime outcomes. However, the brain structural alterations that occur in major depressive disorder (MDD) patients with childhood maltreatment are incompletely investigated. METHODS We extensively explored the cortical abnormalities including cortical volume, surface area, thickness, sulcal depth, and curvature in maltreated MDD patients. Twoway ANOVA was performed to distinguish the effects of childhood maltreatment and depression on structural abnormalities. Partial correlation analysis was performed to explore the relationship between childhood maltreatment and cortical abnormalities. Moreover, we plotted the receiver operating characteristic curve to examine whether the observed cortical abnormalities could be used as neuro biomarkers to identify maltreated MDD patients. RESULTS We reach the following findings: (i) relative to MDD without childhood maltreatment, MDD patients with childhood maltreatment existed increased cortical curvature in inferior frontal gyrus; (ii) compared to HC without childhood maltreatment, decreased cortical thickness was observed in anterior cingulate cortex and medial prefrontal cortex in MDD patients with childhood maltreatment; (iii) we confirmed the inseparable relationship between cortical curvature alterations in inferior frontal gyrus as well as childhood maltreatment; (iv) cortical curvature abnormality in inferior frontal gyrus could be applied as neural biomarker for clinical identification of MDD patients with childhood maltreatment. CONCLUSIONS Childhood maltreatment have a significant effects on cortical thickness and curvature abnormalities involved in inferior frontal gyrus, anterior cingulate cortex and medial prefrontal cortex, constituting the vulnerability to depression.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Juran Chen
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yuhong Li
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Xinyi Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huiwen Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Xiaohui Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huawang Wu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| |
Collapse
|
41
|
Kjelkenes R, Wolfers T, Alnæs D, Norbom LB, Voldsbekk I, Holm M, Dahl A, Berthet P, Tamnes CK, Marquand AF, Westlye LT. Deviations from normative brain white and gray matter structure are associated with psychopathology in youth. Dev Cogn Neurosci 2022; 58:101173. [PMID: 36332329 PMCID: PMC9637865 DOI: 10.1016/j.dcn.2022.101173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022] Open
Abstract
Combining imaging modalities and metrics that are sensitive to various aspects of brain structure and maturation may help identify individuals that show deviations in relation to same-aged peers, and thus benefit early-risk-assessment for mental disorders. We used one timepoint multimodal brain imaging, cognitive, and questionnaire data from 1280 eight- to twenty-one-year-olds from the Philadelphia Neurodevelopmental Cohort. We estimated age-related gray and white matter properties and estimated individual deviation scores using normative modeling. Next, we tested for associations between the estimated deviation scores, and with psychopathology domain scores and cognition. More negative deviations in DTI-based fractional anisotropy (FA) and the first principal eigenvalue of the diffusion tensor (L1) were associated with higher scores on psychosis positive and prodromal symptoms and general psychopathology. A more negative deviation in cortical thickness (CT) was associated with a higher general psychopathology score. Negative deviations in global FA, surface area, L1 and CT were also associated with poorer cognitive performance. No robust associations were found between the deviation scores based on CT and DTI. The low correlations between the different multimodal magnetic resonance imaging-based deviation scores suggest that psychopathological burden in adolescence can be mapped onto partly distinct neurobiological features.
Collapse
Affiliation(s)
- Rikka Kjelkenes
- Department of Psychology, University of Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway.
| | - Thomas Wolfers
- Department of Psychology, University of Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway; Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway; Oslo New University College, Oslo, Norway
| | - Linn B Norbom
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Irene Voldsbekk
- Department of Psychology, University of Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway
| | - Madelene Holm
- Department of Psychology, University of Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway
| | - Andreas Dahl
- Department of Psychology, University of Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway
| | - Pierre Berthet
- Department of Psychology, University of Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Andre F Marquand
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway.
| |
Collapse
|
42
|
McIlvain G, Schneider JM, Matyi MA, McGarry MD, Qi Z, Spielberg JM, Johnson CL. Mapping brain mechanical property maturation from childhood to adulthood. Neuroimage 2022; 263:119590. [PMID: 36030061 PMCID: PMC9950297 DOI: 10.1016/j.neuroimage.2022.119590] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 02/07/2023] Open
Abstract
Magnetic resonance elastography (MRE) is a phase contrast MRI technique which uses external palpation to create maps of brain mechanical properties noninvasively and in vivo. These mechanical properties are sensitive to tissue microstructure and reflect tissue integrity. MRE has been used extensively to study aging and neurodegeneration, and to assess individual cognitive differences in adults, but little is known about mechanical properties of the pediatric brain. Here we use high-resolution MRE imaging in participants of ages ranging from childhood to adulthood to understand brain mechanical properties across brain maturation. We find that brain mechanical properties differ considerably between childhood and adulthood, and that neuroanatomical subregions have differing maturational trajectories. Overall, we observe lower brain stiffness and greater brain damping ratio with increasing age from 5 to 35 years. Gray and white matter change differently during maturation, with larger changes occurring in gray matter for both stiffness and damping ratio. We also found that subregions of cortical and subcortical gray matter change differently, with the caudate and thalamus changing the most with age in both stiffness and damping ratio, while cortical subregions have different relationships with age, even between neighboring regions. Understanding how brain mechanical properties mature using high-resolution MRE will allow for a deeper understanding of the neural substrates supporting brain function at this age and can inform future studies of atypical maturation.
Collapse
Affiliation(s)
- Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Julie M Schneider
- Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, United States
| | - Melanie A Matyi
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Matthew Dj McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Zhenghan Qi
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, United States
| | - Jeffrey M Spielberg
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States; Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
43
|
Hill SY, Wellman JL, Zezza N, Steinhauer SR, Sharma V, Holmes B. Epigenetic Effects in HPA Axis Genes Associated with Cortical Thickness, ERP Components and SUD Outcome. Behav Sci (Basel) 2022; 12:347. [PMID: 36285916 PMCID: PMC9598712 DOI: 10.3390/bs12100347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 09/09/2023] Open
Abstract
Association between familial loading for alcohol use disorders (AUD) and event-related potentials (ERPs) suggests a genetic basis for these oscillations though much less is known about epigenetic pathways influenced by environmental variation. Early life adversity (ELA) influences negative outcomes much later in life. The stress-activated neuropeptide corticotropin-releasing hormone (CRH) contributes to the deleterious effects of ELA on brain structure and function in animals. Accordingly, we hypothesized that ELA would be related to cortical thickness and electrophysiological characteristics through an epigenetic effect on CRH receptor type-1 (CRHR1) methylation. A total of 217 adolescent and young adult participants from either multiplex alcohol dependence or control families were scanned using magnetic resonance imaging (MRI) at 3T and cortical thickness was determined. Longitudinal follow-up across childhood, adolescence, and young adulthood provided developmental ERP data and measures of adversity. Blood samples for genetic and epigenetic analyses were obtained in childhood. Cortical thickness and visual ERP components were analyzed for their association and tested for familial risk group differences. Visual P300 amplitude at Pz and cortical thickness of the left lateral orbitofrontal region (LOFC), were significantly related to risk group status. LOFC cortical thickness showed a negative correlation with CRHR1 methylation status and with childhood total stress scores from the Life Stressors and Social Resources Inventory (LISRES). Stress scores were also significantly related to P300 amplitude recorded in childhood. The present results suggest that early life adversity reflected in greater total LISRES stress scores in childhood can impact the methylation of the CRHR1 gene with implications for brain development as seen in cortical thickness and electrophysiological signals emanating from particular brain regions.
Collapse
Affiliation(s)
- Shirley Y. Hill
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O’Hara St., Pittsburgh, PA 15213, USA
| | - Jeannette L. Wellman
- Department of Psychiatry and Magee Women’s Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Nicholas Zezza
- Department of Psychiatry and Shadyside Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | - Vinod Sharma
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O’Hara St., Pittsburgh, PA 15213, USA
| | - Brian Holmes
- UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave., Pittsburgh, PA 15224, USA
| |
Collapse
|
44
|
Associations between brain imaging and polygenic scores of mental health and educational attainment in children aged 9-11. Neuroimage 2022; 263:119611. [PMID: 36070838 DOI: 10.1016/j.neuroimage.2022.119611] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/03/2022] [Accepted: 09/03/2022] [Indexed: 12/25/2022] Open
Abstract
Psychiatric disorders are highly heritable and polygenic, and many have their peak onset in late childhood and adolescence, a period of tremendous changes. Although the neurodevelopmental antecedents of mental illness are widely acknowledged, research in youth population cohorts is still scarce, preventing our progress towards the early characterization of these disorders. We included 7,124 children (9-11 years old) from the Adolescent Brain and Cognitive Development Study to map the associations of structural and diffusion brain imaging with common genetic variants and polygenic scores for psychiatric disorders and educational attainment. We used principal component analysis to derive imaging components, and calculated their heritability. We then assessed the relationship of imaging components with genetic and clinical psychiatric risk with univariate models and Canonical correlation analysis (CCA). Most imaging components had moderate heritability. Univariate models showed limited evidence and small associations of polygenic scores with brain structure at this age. CCA revealed two significant modes of covariation. The first mode linked higher polygenic scores for educational attainment with less externalizing problems and larger surface area. The second mode related higher polygenic scores for schizophrenia, bipolar disorder, and autism spectrum disorder to higher global cortical thickness, smaller white matter volumes of the fornix and cingulum, larger medial occipital surface area and smaller surface area of lateral and medial temporal regions. While cross-validation suggested limited generalizability, our results highlight the potential of multivariate models to better understand the transdiagnostic and distributed relationships between mental health and brain structure in late childhood.
Collapse
|
45
|
Norbom LB, Hanson J, van der Meer D, Ferschmann L, Røysamb E, von Soest T, Andreassen OA, Agartz I, Westlye LT, Tamnes CK. Parental socioeconomic status is linked to cortical microstructure and language abilities in children and adolescents. Dev Cogn Neurosci 2022; 56:101132. [PMID: 35816931 PMCID: PMC9284438 DOI: 10.1016/j.dcn.2022.101132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 06/30/2022] [Indexed: 12/17/2022] Open
Abstract
Gradients in parental socioeconomic status (SES) are closely linked to important life outcomes in children and adolescents, such as cognitive abilities, school achievement, and mental health. Parental SES may also influence brain development, with several magnetic resonance imaging (MRI) studies reporting associations with youth brain morphometry. However, MRI signal intensity metrics have not been assessed, but could offer a microstructural correlate, thereby increasing our understanding of SES influences on neurobiology. We computed a parental SES score from family income, parental education and parental occupation, and assessed relations with cortical microstructure as measured by T1w/T2w ratio (n = 504, age = 3-21 years). We found negative age-stabile relations between parental SES and T1w/T2w ratio, indicating that youths from lower SES families have higher ratio in widespread frontal, temporal, medial parietal and occipital regions, possibly indicating a more developed cortex. Effect sizes were small, but larger than for conventional morphometric properties i.e. cortical surface area and thickness, which were not significantly associated with parental SES. Youths from lower SES families had poorer language related abilities, but microstructural differences did not mediate these relations. T1w/T2w ratio appears to be a sensitive imaging marker for further exploring the association between parental SES and child brain development.
Collapse
Affiliation(s)
- Linn B Norbom
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Norwegian Institute of Public Health, Norway.
| | - Jamie Hanson
- Learning Research and Development Center University of Pittsburgh, USA; Department of Psychology, University of Pittsburgh, USA; Norwegian Institute of Public Health, Norway
| | - Dennis van der Meer
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands; Norwegian Institute of Public Health, Norway
| | - Lia Ferschmann
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Norwegian Institute of Public Health, Norway
| | - Espen Røysamb
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Norwegian Institute of Public Health, Norway
| | - Tilmann von Soest
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Norwegian Institute of Public Health, Norway
| | - Ole A Andreassen
- K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Norwegian Institute of Public Health, Norway
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway; Norwegian Institute of Public Health, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Lars T Westlye
- K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Norwegian Institute of Public Health, Norway
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Norwegian Institute of Public Health, Norway
| |
Collapse
|
46
|
Langensee L, Rumetshofer T, Behjat H, Novén M, Li P, Mårtensson J. T1w/T2w Ratio and Cognition in 9-to-11-Year-Old Children. Brain Sci 2022; 12:599. [PMID: 35624986 PMCID: PMC9139105 DOI: 10.3390/brainsci12050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
Childhood is a period of extensive cortical and neural development. Among other things, axons in the brain gradually become more myelinated, promoting the propagation of electrical signals between different parts of the brain, which in turn may facilitate skill development. Myelin is difficult to assess in vivo, and measurement techniques are only just beginning to make their way into standard imaging protocols in human cognitive neuroscience. An approach that has been proposed as an indirect measure of cortical myelin is the T1w/T2w ratio, a contrast that is based on the intensities of two standard structural magnetic resonance images. Although not initially intended as such, researchers have recently started to use the T1w/T2w contrast for between-subject comparisons of cortical data with various behavioral and cognitive indices. As a complement to these earlier findings, we computed individual cortical T1w/T2w maps using data from the Adolescent Brain Cognitive Development study (N = 960; 449 females; aged 8.9 to 11.0 years) and related the T1w/T2w maps to indices of cognitive ability; in contrast to previous work, we did not find significant relationships between T1w/T2w values and cognitive performance after correcting for multiple testing. These findings reinforce existent skepticism about the applicability of T1w/T2w ratio for inter-individual comparisons.
Collapse
Affiliation(s)
- Lara Langensee
- Faculty of Medicine, Department of Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, 22100 Lund, Sweden; (T.R.); (J.M.)
| | - Theodor Rumetshofer
- Faculty of Medicine, Department of Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, 22100 Lund, Sweden; (T.R.); (J.M.)
| | - Hamid Behjat
- Faculty of Engineering, Department of Biomedical Engineering, Lund University, 22100 Lund, Sweden;
| | - Mikael Novén
- Faculty of Science, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Ping Li
- Faculty of Humanities, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China;
| | - Johan Mårtensson
- Faculty of Medicine, Department of Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, 22100 Lund, Sweden; (T.R.); (J.M.)
| |
Collapse
|
47
|
Fan CC, Loughnan R, Makowski C, Pecheva D, Chen CH, Hagler DJ, Thompson WK, Parker N, van der Meer D, Frei O, Andreassen OA, Dale AM. Multivariate genome-wide association study on tissue-sensitive diffusion metrics highlights pathways that shape the human brain. Nat Commun 2022; 13:2423. [PMID: 35505052 PMCID: PMC9065144 DOI: 10.1038/s41467-022-30110-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/12/2022] [Indexed: 11/12/2022] Open
Abstract
The molecular determinants of tissue composition of the human brain remain largely unknown. Recent genome-wide association studies (GWAS) on this topic have had limited success due to methodological constraints. Here, we apply advanced whole-brain analyses on multi-shell diffusion imaging data and multivariate GWAS to two large scale imaging genetic datasets (UK Biobank and the Adolescent Brain Cognitive Development study) to identify and validate genetic association signals. We discover 503 unique genetic loci that have impact on multiple regions of human brain. Among them, more than 79% are validated in either of two large-scale independent imaging datasets. Key molecular pathways involved in axonal growth, astrocyte-mediated neuroinflammation, and synaptogenesis during development are found to significantly impact the measured variations in tissue-specific imaging features. Our results shed new light on the biological determinants of brain tissue composition and their potential overlap with the genetic basis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chun Chieh Fan
- Population Neuroscience and Genetics Lab, University of California, San Diego, La Jolla, CA, USA. .,Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA. .,Department of Radiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Robert Loughnan
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA.,Department of Radiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Diliana Pecheva
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA.,Department of Radiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chi-Hua Chen
- Department of Radiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA.,Department of Radiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wesley K Thompson
- Population Neuroscience and Genetics Lab, University of California, San Diego, La Jolla, CA, USA.,Department of Radiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nadine Parker
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Oleksandr Frei
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA.,Department of Radiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA.,Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
48
|
Cheon EJ, Bearden CE, Sun D, Ching CRK, Andreassen OA, Schmaal L, Veltman DJ, Thomopoulos SI, Kochunov P, Jahanshad N, Thompson PM, Turner JA, van Erp TG. Cross disorder comparisons of brain structure in schizophrenia, bipolar disorder, major depressive disorder, and 22q11.2 deletion syndrome: A review of ENIGMA findings. Psychiatry Clin Neurosci 2022; 76:140-161. [PMID: 35119167 PMCID: PMC9098675 DOI: 10.1111/pcn.13337] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/29/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022]
Abstract
This review compares the main brain abnormalities in schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD), and 22q11.2 Deletion Syndrome (22q11DS) determined by ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) consortium investigations. We obtained ranked effect sizes for subcortical volumes, regional cortical thickness, cortical surface area, and diffusion tensor imaging abnormalities, comparing each of these disorders relative to healthy controls. In addition, the studies report on significant associations between brain imaging metrics and disorder-related factors such as symptom severity and treatments. Visual comparison of effect size profiles shows that effect sizes are generally in the same direction and scale in severity with the disorders (in the order SZ > BD > MDD). The effect sizes for 22q11DS, a rare genetic syndrome that increases the risk for psychiatric disorders, appear to be much larger than for either of the complex psychiatric disorders. This is consistent with the idea of generally larger effects on the brain of rare compared to common genetic variants. Cortical thickness and surface area effect sizes for 22q11DS with psychosis compared to 22q11DS without psychosis are more similar to those of SZ and BD than those of MDD; a pattern not observed for subcortical brain structures and fractional anisotropy effect sizes. The observed similarities in effect size profiles for cortical measures across the psychiatric disorders mimic those observed for shared genetic variance between these disorders reported based on family and genetic studies and are consistent with shared genetic risk for SZ and BD and structural brain phenotypes.
Collapse
Affiliation(s)
- Eun-Jin Cheon
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, 5251 California Ave, Irvine, CA, 92617, USA
- Department of Psychiatry, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Carrie E. Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Daqiang Sun
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
- Department of Mental Health, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ole A. Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
- Orygen, Parkville, Australia
| | - Dick J. Veltman
- Department of Psychiatry, Amsterdam UMC, location VUMC, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica A. Turner
- Psychology Department and Neuroscience Institute, Georgia State University, Atlant, GA, USA
| | - Theo G.M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, 5251 California Ave, Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, 309 Qureshey Research Lab, Irvine, CA, 92697, USA
| |
Collapse
|
49
|
Vargas TG, Damme KSF, Mittal VA. Differentiating distinct and converging neural correlates of types of systemic environmental exposures. Hum Brain Mapp 2022; 43:2232-2248. [PMID: 35064714 PMCID: PMC8996350 DOI: 10.1002/hbm.25783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 11/12/2022] Open
Abstract
Systemic environmental disadvantage relates to a host of health and functional outcomes. Specific structural factors have seldom been linked to neural structure, however, clouding understanding of putative mechanisms. Examining relations during childhood/preadolescence, a dynamic period of neurodevelopment, could aid bridge this gap. A total of 10,213 youth were recruited from the Adolescent Brain and Cognitive Development study. Self-report and objective measures (Census and Federal bureau of investigation metrics extracted using geocoding) of environmental exposures were used, including stimulation indexing lack of safety and high attentional demands, discrepancy indexing social exclusion/lack of belonging, and deprivation indexing lack of environmental enrichment. Environmental measures were related to cortical thickness, surface area, and subcortical volume regions, controlling for other environmental exposures and accounting for other brain regions. Self-report (|β| = .04-.09) and objective (|β| = .02-.06) environmental domains related to area/thickness in overlapping (e.g., insula, caudal anterior cingulate), and unique regions (e.g., for discrepancy, rostral anterior and isthmus cingulate, implicated in socioemotional functions; for stimulation, precuneus, critical for cue reactivity and integration of environmental cues; and for deprivation, superior frontal, integral to executive functioning). For stimulation and discrepancy exposures, self-report and objective measures showed similarities in correlate regions, while deprivation exposures evidenced distinct correlates for self-report and objective measures. Results represent a necessary step toward broader work aimed at establishing mechanisms and correlates of structural disadvantage, highlighting the relevance of going beyond aggregate models by considering types of environmental factors, and the need to incorporate both subjective and objective measurements in these efforts.
Collapse
Affiliation(s)
- Teresa G. Vargas
- Department of PsychologyNorthwestern UniversityEvanstonIllinoisUSA
| | | | - Vijay A. Mittal
- Department of PsychologyNorthwestern UniversityEvanstonIllinoisUSA
- Department of PsychiatryNorthwestern UniversityEvanstonIllinoisUSA
- Department of Medical Social SciencesNorthwestern UniversityEvanstonIllinoisUSA
- Institute for Innovations in Developmental SciencesNorthwestern UniversityEvanstonIllinoisUSA
- Institute for Policy ResearchNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
50
|
Altered brain structure in preschool-aged children with tetralogy of Fallot. Pediatr Res 2022; 93:1321-1327. [PMID: 35194163 DOI: 10.1038/s41390-022-01987-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Neurodevelopmental abnormalities are prevalent in children with tetralogy of Fallot. Our aim was to investigate the structural brain alterations of preschool-aged children with tetralogy of Fallot and its correlation with neurodevelopmental outcome. METHODS T1-weighted structural images were obtained from 25 children with tetralogy of Fallot who had undergone cardiopulmonary bypass surgery and from 24 normal controls. Cortical morphological indices including gray matter volume, cortical thickness, sulcal depth, gyrification, and cortical surface complexity were compared between the two groups. Neurodevelopmental assessments of the children with tetralogy of Fallot were performed with the Wechsler Preschool and Primary Scale of Intelligence. RESULTS Cortical morphological differences between groups were distributed throughout the right caudal middle frontal gyrus, right fusiform gyrus, right lateral occipital gyrus, right precuneus, and left inferior parietal lobule. Among children with tetralogy of Fallot, altered cortical structures were correlated with the visual spatial index, working memory index, and perioperative variables. CONCLUSION Our results suggested that abnormal cortical structure in preschool-aged children with tetralogy of Fallot may be the persistent consequence of delayed cortical development in fetuses and cortical morphology can be used as an early potential biomarker to capture regional brain abnormalities that are relevant to neurodevelopmental outcomes. IMPACT Altered cortical structures in preschool-aged children with ToF were correlated with both neurodevelopmental outcomes and clinical risk factors. Cortical morphology can be used as an effective tool to evaluate neuroanatomical changes and detect underlying neural mechanisms in ToF patients. Abnormal cortical structure may be the continuous consequence of delayed fetal brain development in children with ToF.
Collapse
|