1
|
Hashioka S. Glia as a New Target for Therapeutic Actions of Electroconvulsive Therapy. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:2-6. [PMID: 39005123 DOI: 10.2174/0118715273319405240707164638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
Although electroconvulsive therapy (ECT) has immediate and profound effects on severe psychiatric disorders compared to pharmacotherapy, the mechanisms underlying its therapeutic effects remain elusive. Increasing evidence indicates that glial activation is a common pathogenetic factor in both major depression and schizophrenia, raising the question of whether ECT can inhibit glial activation. This article summarizes the findings from both clinical and experimental studies addressing this key question. Based on the findings, it is proposed that the suppression of glial activation associated with neuroinflammation may be involved in the mechanism by which ECT restores brain homeostasis and exerts its therapeutic effects.
Collapse
Affiliation(s)
- Sadayuki Hashioka
- Department of Psychiatry, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
2
|
Sigström R, Göteson A, Joas E, Pålsson E, Liberg B, Nordenskjöld A, Blennow K, Zetterberg H, Landén M. Blood biomarkers of neuronal injury and astrocytic reactivity in electroconvulsive therapy. Mol Psychiatry 2024:10.1038/s41380-024-02774-4. [PMID: 39363047 DOI: 10.1038/s41380-024-02774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Despite electroconvulsive therapy (ECT) being recognized as an effective treatment for major depressive episodes (MDE), its application is subject to controversy due to concerns over cognitive side effects. The pathophysiology of these side effects is not well understood. Here, we examined the effects of ECT on blood-based biomarkers of neuronal injury and astrocytic reactivity. Participants with a major depressive episode (N = 99) underwent acute ECT. Blood was sampled just before (T0) and 30 min after (T1) the first ECT session, as well as just before the sixth session (T2; 48-72 h after the fifth session). Age- and sex-matched controls (N = 99) were recruited from the general population. Serum concentrations of neurofilament light chain (NfL), total tau protein, and glial fibrillary acidic protein (GFAP) were measured with ultrasensitive single-molecule array assays. Utilizing generalized least squares regression, we compared baseline (T0) biomarker concentrations against those of our control group, and calculated the shifts in serum biomarker concentrations from baseline to immediately post-first ECT session (T1), and prior to the sixth session (T2). Baseline analysis revealed that serum levels of NfL (p < 0.001) and tau (p = 0.036) were significantly elevated in ECT recipients compared with controls, whereas GFAP levels showed no significant difference. Relative to T0, serum NfL concentration neither changed at T1 (mean change 3.1%, 95%CI -0.5% to 6.7%, p = 0.088) nor at T2 (mean change -3.2%, 95%CI -7.6% to 1.5%, p = 0.18). Similarly, no change in total tau was observed (mean change 3.7%, 95%CI -11.6% to 21.7%, p = 0.65). GFAP increased from T0 to T1 (mean change 20.3%, 95%CI 14.6 to 26.3%, p < 0.001), but not from T0 to T2 (mean change -0.7%, 95%CI -5.8% to 4.8%, p = 0.82). In conclusion, our findings suggest that ECT induces a temporary increase in serum GFAP, possibly reflecting transient astrocytic activation. Importantly, we observed no indicators of neuronal damage or long-term elevation in any assessed biomarker.
Collapse
Affiliation(s)
- Robert Sigström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Affective Disorders, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Andreas Göteson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Joas
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Pålsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Axel Nordenskjöld
- University Health Care Research Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
He P, Lu X, Zhong M, Weng H, Wang J, Zhang X, Jiang C, Geng F, Shi Y, Zhang G. Plasma alpha-trypsin inhibitor heavy chain 4 as an age-specific biomarker in the diagnosis and treatment of major depressive disorder. Front Psychiatry 2024; 15:1449202. [PMID: 39323962 PMCID: PMC11422199 DOI: 10.3389/fpsyt.2024.1449202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background The diagnosis of major depressive disorder (MDD) mainly depends on subjective clinical symptoms, without an acceptable objective biomarker for the clinical application of MDD. Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) showed a high specificity as biomarker for the diagnosis and treatment of MDD. The present study aimed to investigate differences in plasma ITIH4 in two different aged MDD patients and underlying pathological mechanisms of plasma ITIH4 in the occurrence and development of MDD. Methods Sixty-five adult MDD patients, 51 adolescent MDD patients, and 64 healthy controls (HCs) were included in the present study. A 14-days' antidepressive treatment was conducted in all MDD patients. Psychological assessments were performed and plasma ITIH4 and astrocyte-related markers were detected for all participants. Results (1) Plasma levels of ITIH4 in adult MDD patients were significantly higher than adolescent MDD patients and HCs, and significantly increased plasma ITIH4 levels was observed in adolescent MDD patients compared with HCs (2). There were positive correlations between plasma ITIH4 levels and 24-item Hamilton Depression Scale (HAMD-24) scores and plasma glial fibrillary acidic protein (GFAP) levels in MDD patients, however, plasma ITIH4 levels were significantly correlated with age just in adult MDD patients (3). Plasma ITIH4 showed area under the curve values of 0.824 and 0.729 to differentiate adult MDD patients and adolescent MDD patients from HCs, respectively (4). There was significant decrease in plasma levels of ITIH4 between before and after antidepressive treatment in adult MDD patients, but not in adolescent MDD patients (5). Changed value of ITIH4 levels were correlated with the changed value of GFAP levels and changed rate of HAMD-24 scores in adult MDD patients following antidepressive treatment. Conclusion Plasma ITIH4 may be potential plasma biomarkers of MDD with age-related specificity, which was associated with depressive symptoms astrocyte-related pathologic changes, and antidepressive treatment efficacy.
Collapse
Affiliation(s)
- Ping He
- Department of Neurosurgery Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xuefang Lu
- Department of Rehabilitation Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Mengmeng Zhong
- Department of Functional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Hui Weng
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jialu Wang
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiaoxuan Zhang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Chen Jiang
- Department of Neurosurgery Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Feng Geng
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yachen Shi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Gaojia Zhang
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Sun H, Bai T, Zhang X, Fan X, Zhang K, Zhang J, Hu Q, Xu J, Tian Y, Wang K. Molecular mechanisms underlying structural plasticity of electroconvulsive therapy in major depressive disorder. Brain Imaging Behav 2024; 18:930-941. [PMID: 38664360 DOI: 10.1007/s11682-024-00884-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 08/31/2024]
Abstract
Although previous studies reported structural changes associated with electroconvulsive therapy (ECT) in major depressive disorder (MDD), the underlying molecular basis of ECT remains largely unknown. Here, we combined two independent structural MRI datasets of MDD patients receiving ECT and transcriptomic gene expression data from Allen Human Brain Atlas to reveal the molecular basis of ECT for MDD. We performed partial least square regression to explore whether/how gray matter volume (GMV) alterations were associated with gene expression level. Functional enrichment analysis was conducted using Metascape to explore ontological pathways of the associated genes. Finally, these genes were further assigned to seven cell types to determine which cell types contribute most to the structural changes in MDD patients after ECT. We found significantly increased GMV in bilateral hippocampus in MDD patients after ECT. Transcriptome-neuroimaging association analyses showed that expression levels of 726 genes were positively correlated with the increased GMV in MDD after ECT. These genes were mainly involved in synaptic signaling, calcium ion binding and cell-cell signaling, and mostly belonged to excitatory and inhibitory neurons. Moreover, we found that the MDD risk genes of CNR1, HTR1A, MAOA, PDE1A, and SST as well as ECT related genes of BDNF, DRD2, APOE, P2RX7, and TBC1D14 showed significantly positive associations with increased GMV. Overall, our findings provide biological and molecular mechanisms underlying structural plasticity induced by ECT in MDD and the identified genes may facilitate future therapy for MDD.
Collapse
Affiliation(s)
- Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Tongjian Bai
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaodong Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xinxin Fan
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kai Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yanghua Tian
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei, 230022, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230022, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230022, China.
- Department of Neurology, the Second Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Kai Wang
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China
- Anhui Province clinical research center for neurological disease, Hefei, 230022, China
| |
Collapse
|
5
|
Valentim WL, Tylee DS, Polimanti R. A perspective on translating genomic discoveries into targets for brain-machine interface and deep brain stimulation devices. WIREs Mech Dis 2024; 16:e1635. [PMID: 38059513 PMCID: PMC11163995 DOI: 10.1002/wsbm.1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/22/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
Mental illnesses have a huge impact on individuals, families, and society, so there is a growing need for more efficient treatments. In this context, brain-computer interface (BCI) technology has the potential to revolutionize the options for neuropsychiatric therapies. However, the development of BCI-based therapies faces enormous challenges, such as power dissipation constraints, lack of credible feedback mechanisms, uncertainty of which brain areas and frequencies to target, and even which patients to treat. Some of these setbacks are due to the large gap in our understanding of brain function. In recent years, large-scale genomic analyses uncovered an unprecedented amount of information regarding the biology of the altered brain function observed across the psychopathology spectrum. We believe findings from genetic studies can be useful to refine BCI technology to develop novel treatment options for mental illnesses. Here, we assess the latest advancements in both fields, the possibilities that can be generated from their intersection, and the challenges that these research areas will need to address to ensure that translational efforts can lead to effective and reliable interventions. Specifically, starting from highlighting the overlap between mechanisms uncovered by large-scale genetic studies and the current targets of deep brain stimulation treatments, we describe the steps that could help to translate genomic discoveries into BCI targets. Because these two research areas have not been previously presented together, the present article can provide a novel perspective for scientists with different research backgrounds. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Wander L. Valentim
- Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Daniel S. Tylee
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- VA CT Healthcare Center, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- VA CT Healthcare Center, West Haven, CT, USA
| |
Collapse
|
6
|
Wang Y, Zhang X. The role of immune inflammation in electroconvulsive therapy for schizophrenia: Treatment mechanism, and relationship with clinical efficacy: Immune-inflammation in ECT for schizophrenia. Psychiatry Res 2024; 332:115708. [PMID: 38171169 DOI: 10.1016/j.psychres.2023.115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Schizophrenia is a devastating psychiatric disorder that has detrimental effects on a significant portion of the global population. Electroconvulsive therapy (ECT), as a safe and effective physical therapy for schizophrenia, has demonstrated the ability to rapidly improve both positive and negative symptoms. Despite being used to treat schizophrenia for over 80 years, the therapeutic mechanisms of ECT are still in the early stages of exploration. Evidence has suggested that immune inflammation contributes to the pathogenesis of schizophrenia by interacting with neurotransmitters, neurodevelopment, and neurodegeneration. Given the importance of ECT as a fast-acting physical therapy for schizophrenia, gaining a deeper understanding of the role of immune inflammation may lead to developing innovative therapeutic approaches. This review summarized existing research that examined changes in peripheral inflammation following ECT in schizophrenia patients, and the effects of electroconvulsive stimulation (ECS) on neuroinflammation in animal studies.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Xu SX, Xie XH, Yao L, Wang W, Zhang H, Chen MM, Sun S, Nie ZW, Nagy C, Liu Z. Human in vivo evidence of reduced astrocyte activation and neuroinflammation in patients with treatment-resistant depression following electroconvulsive therapy. Psychiatry Clin Neurosci 2023; 77:653-664. [PMID: 37675893 DOI: 10.1111/pcn.13596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
AIM The current study aimed to investigate the neuroinflammatory hypothesis of depression and the potential anti-inflammatory effect of electroconvulsive therapy (ECT) in vivo, utilizing astrocyte-derived extracellular vesicles (ADEVs) isolated from plasma. METHODS A total of 40 patients with treatment-resistant depression (TRD) and 35 matched healthy controls were recruited at baseline, and 34 patients with TRD completed the post-ECT visits. Blood samples were collected at baseline and post-ECT. Plasma ADEVs were isolated and confirmed, and the concentrations of two astrocyte markers (glial fibrillary acidic protein [GFAP] and S100β), an extracellular vesicle marker cluster of differentiation 81 (CD81), and nine inflammatory markers in ADEVs were measured as main analyses. In addition, correlation analysis was conducted between clinical features and ADEV protein levels as exploratory analysis. RESULTS At baseline, the TRD group exhibited significantly higher levels of two astrocyte markers GFAP and S100β, as well as CD81 compared with the healthy controls. Inflammatory markers interferon γ (IFN-γ), interleukin (IL) 1β, IL-4, IL-6, tumor necrosis factor α, IL-10, and IL-17A were also significantly higher in the TRD group. After ECT, there was a significant reduction in the levels of GFAP, S100β, and CD81, along with a significant decrease in the levels of IFN-γ and IL-4. Furthermore, higher levels of GFAP, S100β, CD81, and inflammatory cytokines were associated with more severe depressive symptoms and poorer cognitive function. CONCLUSION This study provides direct insight supporting the astrocyte activation and neuroinflammatory hypothesis of depression using ADEVs. ECT may exert an anti-inflammatory effect through inhibition of such activation of astrocytes.
Collapse
Affiliation(s)
- Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mian-Mian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhao-Wen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Corina Nagy
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Loef D, Tendolkar I, van Eijndhoven PFP, Hoozemans JJM, Oudega ML, Rozemuller AJM, Lucassen PJ, Dols A, Dijkstra AA. Electroconvulsive therapy is associated with increased immunoreactivity of neuroplasticity markers in the hippocampus of depressed patients. Transl Psychiatry 2023; 13:355. [PMID: 37981649 PMCID: PMC10658169 DOI: 10.1038/s41398-023-02658-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023] Open
Abstract
Electroconvulsive therapy (ECT) is an effective therapy for depression, but its cellular effects on the human brain remain elusive. In rodents, electroconvulsive shocks increase proliferation and the expression of plasticity markers in the hippocampal dentate gyrus (DG), suggesting increased neurogenesis. Furthermore, MRI studies in depressed patients have demonstrated increases in DG volume after ECT, that were notably paralleled by a decrease in depressive mood scores. Whether ECT also triggers cellular plasticity, inflammation or possibly injury in the human hippocampus, was unknown. We here performed a first explorative, anatomical study on the human post-mortem hippocampus of a unique, well-documented cohort of bipolar or unipolar depressed patients, who had received ECT in the 5 years prior to their death. They were compared to age-matched patients with a depressive disorder who had not received ECT and to matched healthy controls. Upon histopathological examination, no indications were observed for major hippocampal cell loss, overt cytoarchitectural changes or classic neuropathology in these 3 groups, nor were obvious differences present in inflammatory markers for astrocytes or microglia. Whereas the numbers of proliferating cells expressing Ki-67 was not different, we found a significantly higher percentage of cells positive for Doublecortin, a marker commonly used for young neurons and cellular plasticity, in the subgranular zone and CA4 / hilus of the hippocampus of ECT patients. Also, the percentage of positive Stathmin 1 cells was significantly higher in the subgranular zone of ECT patients, indicating neuroplasticity. These first post-mortem observations suggest that ECT has no damaging effects but may rather have induced neuroplasticity in the DG of depressed patients.
Collapse
Affiliation(s)
- Dore Loef
- Amsterdam UMC, location VUmc, Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands.
- GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands.
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
- Department of Psychiatry and Psychotherapy, University Hospital Essen, Essen, Germany
| | - Philip F P van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Mardien L Oudega
- Amsterdam UMC, location VUmc, Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
- GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Annemiek Dols
- Amsterdam UMC, location VUmc, Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Anke A Dijkstra
- Molecular Neuroscience Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Nelson ED, Maynard KR, Nicholas KR, Tran MN, Divecha HR, Collado-Torres L, Hicks SC, Martinowich K. Activity-regulated gene expression across cell types of the mouse hippocampus. Hippocampus 2023; 33:1009-1027. [PMID: 37226416 PMCID: PMC11129873 DOI: 10.1002/hipo.23548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 05/26/2023]
Abstract
Activity-regulated gene (ARG) expression patterns in the hippocampus (HPC) regulate synaptic plasticity, learning, and memory, and are linked to both risk and treatment responses for many neuropsychiatric disorders. The HPC contains discrete classes of neurons with specialized functions, but cell type-specific activity-regulated transcriptional programs are not well characterized. Here, we used single-nucleus RNA-sequencing (snRNA-seq) in a mouse model of acute electroconvulsive seizures (ECS) to identify cell type-specific molecular signatures associated with induced activity in HPC neurons. We used unsupervised clustering and a priori marker genes to computationally annotate 15,990 high-quality HPC neuronal nuclei from N = 4 mice across all major HPC subregions and neuron types. Activity-induced transcriptomic responses were divergent across neuron populations, with dentate granule cells being particularly responsive to activity. Differential expression analysis identified both upregulated and downregulated cell type-specific gene sets in neurons following ECS. Within these gene sets, we identified enrichment of pathways associated with varying biological processes such as synapse organization, cellular signaling, and transcriptional regulation. Finally, we used matrix factorization to reveal continuous gene expression patterns differentially associated with cell type, ECS, and biological processes. This work provides a rich resource for interrogating activity-regulated transcriptional responses in HPC neurons at single-nuclei resolution in the context of ECS, which can provide biological insight into the roles of defined neuronal subtypes in HPC function.
Collapse
Affiliation(s)
- Erik D. Nelson
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kyndall R. Nicholas
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Matthew N Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Heena R. Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205
| |
Collapse
|
10
|
Chen X, Yang H, Cui LB, Li X. Neuroimaging study of electroconvulsive therapy for depression. Front Psychiatry 2023; 14:1170625. [PMID: 37363178 PMCID: PMC10289201 DOI: 10.3389/fpsyt.2023.1170625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Electroconvulsive therapy (ECT) is an important treatment for depression. Although it is known as the most effective acute treatment for severe mood disorders, its therapeutic mechanism is still unclear. With the rapid development of neuroimaging technology, various neuroimaging techniques have been available to explore the alterations of the brain by ECT, such as structural magnetic resonance imaging, functional magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography, single photon emission computed tomography, arterial spin labeling, etc. This article reviews studies in neuroimaging on ECT for depression. These findings suggest that the neurobiological mechanism of ECT may regulate the brain functional activity, and neural structural plasticity, as well as balance the brain's neurotransmitters, which finally achieves a therapeutic effect.
Collapse
Affiliation(s)
- Xiaolu Chen
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanjie Yang
- Department of Neurology, The Thirteenth People’s Hospital of Chongqing, Chongqing, China
| | - Long-Biao Cui
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi’an, China
| | - Xiao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Wang YB, Song NN, Ding YQ, Zhang L. Neural plasticity and depression treatment. IBRO Neurosci Rep 2023; 14:160-184. [PMID: 37388497 PMCID: PMC10300479 DOI: 10.1016/j.ibneur.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 12/08/2022] Open
Abstract
Depression is one of the most common mental disorders, which can lead to a variety of emotional problems and even suicide at its worst. As this neuropsychiatric disorder causes the patients to suffer a lot and function poorly in everyday life, it is imposing a heavy burden on the affected families and the whole society. Several hypotheses have been proposed to elucidate the pathogenesis of depression, such as the genetic mutations, the monoamine hypothesis, the hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, the inflammation and the neural plasticity changes. Among these models, neural plasticity can occur at multiple levels from brain regions, cells to synapses structurally and functionally during development and in adulthood. In this review, we summarize the recent progresses (especially in the last five years) on the neural plasticity changes in depression under different organizational levels and elaborate different treatments for depression by changing the neural plasticity. We hope that this review would shed light on the etiological studies for depression and on the development of novel treatments.
Collapse
Affiliation(s)
- Yu-Bing Wang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
12
|
Rizzello E, Pimpinella D, Pignataro A, Titta G, Merenda E, Saviana M, Porcheddu G, Paolantoni C, Malerba F, Giorgi C, Curia G, Middei S, Marchetti C. Lamotrigine rescues neuronal alterations and prevents seizure-induced memory decline in an Alzheimer's disease mouse model. Neurobiol Dis 2023; 181:106106. [PMID: 37001613 DOI: 10.1016/j.nbd.2023.106106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Epilepsy is a comorbidity associated with Alzheimer's disease (AD), often starting many years earlier than memory decline. Investigating this association in the early pre-symptomatic stages of AD can unveil new mechanisms of the pathology as well as guide the use of antiepileptic drugs to prevent or delay hyperexcitability-related pathological effects of AD. We investigated the impact of repeated seizures on hippocampal memory and amyloid-β (Aβ) load in pre-symptomatic Tg2576 mice, a transgenic model of AD. Seizure induction caused memory deficits and an increase in oligomeric Aβ42 and fibrillary species selectively in pre-symptomatic transgenic mice, and not in their wildtype littermates. Electrophysiological patch-clamp recordings in ex vivo CA1 pyramidal neurons and immunoblots were carried out to investigate the neuronal alterations associated with the behavioral outcomes of Tg2576 mice. CA1 pyramidal neurons exhibited increased intrinsic excitability and lower hyperpolarization-activated Ih current. CA1 also displayed lower expression of the hyperpolarization-activated cyclic nucleotide-gated HCN1 subunit, a protein already identified as downregulated in the AD human proteome. The antiepileptic drug lamotrigine restored electrophysiological alterations and prevented both memory deficits and the increase in extracellular Aβ induced by seizures. Thus our study provides evidence of pre-symptomatic hippocampal neuronal alterations leading to hyperexcitability and associated with both higher susceptibility to seizures and to AD-specific seizure-induced memory impairment. Our findings also provide a basis for the use of the antiepileptic drug lamotrigine as a way to counteract acceleration of AD induced by seizures in the early phases of the pathology.
Collapse
|
13
|
Chen L, Lv F, Min S, Yang Y, Liu D. Roles of prokineticin 2 in electroconvulsive shock-induced memory impairment via regulation of phenotype polarization in astrocytes. Behav Brain Res 2023; 446:114350. [PMID: 36804440 DOI: 10.1016/j.bbr.2023.114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Electroconvulsive shock (ECT) is the most effective treatment for depression but can impair learning and memory. ECT is increasingly being shown to activate astrocytes and induce neuroinflammation, resulting in cognitive decline. Activated astrocytes can differentiate into two subtypes, A1-type astrocytes and A2-type astrocytes. Regarding cognitive function, neurotoxic A1 astrocytes and neuroprotective A2 astrocytes may exhibit opposite effects. Specifically, prokineticin 2 (PK2) functions as an essential mediator of inflammation and induces a selective A2-protective phenotype in astrocytes. This study aimed to clarify how PK2 promotes improved learning memory following electroconvulsive shock (ECS). As part of the study, rats were modeled using chronic unpredictable mild stress. Behavioral experiments were conducted to assess their cognitive abilities and depression-like behaviors. Western blot was used to determine the expression of PK2. Immunohistochemical and electron microscopy analyses of the hippocampal CA1 region were conducted to study the activation of astrocyte subtypes and synaptic ultrastructure, respectively. In this study, rats' spatial learning and memory impairment began to improve as activated A1-subtype astrocytes gradually decreased, and PK2 and A2 phenotype activation peaked on the third day after ECS. PKRA7 (PK2 antagonist) inhibits A2-type astrocyte activation partially and suppresses spatial learning and memory improvement. Collectively, our findings support that PK2 may induce a selective modulation of astrocytic polarization to a protective phenotype to promote learning and memory improvement after ECS.
Collapse
Affiliation(s)
- Lihao Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Feng Lv
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - You Yang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Di Liu
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
14
|
Narvaiz DA, Sullens DG, Santana-Coelho D, Lugo JN. Neuronal subset-specific phosphatase and tensin homolog knockout mice exhibit age and brain region-associated alterations in microglia/macrophage activation. Neuroreport 2022; 33:476-480. [PMID: 35775322 PMCID: PMC9479702 DOI: 10.1097/wnr.0000000000001808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Seizures induce brain region-dependent enhancements in microglia/macrophage activation. Neuronal subset-specific phosphatase and tensin homolog (PTEN) knockout (KO) mice display hyperactive mammalian target of rapamycin (mTOR) signaling in the hippocampus, cerebellum, and cortex followed by seizures that increase in severity with age. To determine if KO mice also exhibit alterations in the spatiotemporal activation pattern of microglia, we used flow cytometry to compare the percentage of major histocompatibility complex-II activated microglia/macrophages between KO and wildtype (WT) mice at 5, 10, and 15 weeks of age. At 5 weeks, microglia/macrophage activation was greater in the cortex, P < 0.001, cerebellum, P < 0.001, and hippocampus, P < 0.001, of KO compared to WT mice. At 10 weeks, activation was greatest in the cortex of KO mice, P < 0.001, in the cerebellum of WT mice, P < 0.001, but similar in the hippocampus, P > 0.05. By 15 weeks, activation in the hippocampus was more than 25 times greater in KO mice compared to WT mice, P < 0.001. We show that hyperactive mTOR signaling is associated with an altered spatiotemporal pattern of microglia/macrophage activation in the brain and induces an enhanced neuroimmune response in the hippocampus.
Collapse
Affiliation(s)
- David A. Narvaiz
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798 USA
| | - D. Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798 USA
| | | | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798 USA
- Department of Biology, Baylor University, Waco, TX, 76798 USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798 USA
| |
Collapse
|
15
|
Rimmerman N, Verdiger H, Goldenberg H, Naggan L, Robinson E, Kozela E, Gelb S, Reshef R, Ryan KM, Ayoun L, Refaeli R, Ashkenazi E, Schottlender N, Ben Hemo-Cohen L, Pienica C, Aharonian M, Dinur E, Lazar K, McLoughlin DM, Zvi AB, Yirmiya R. Microglia and their LAG3 checkpoint underlie the antidepressant and neurogenesis-enhancing effects of electroconvulsive stimulation. Mol Psychiatry 2022; 27:1120-1135. [PMID: 34650207 DOI: 10.1038/s41380-021-01338-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 12/21/2022]
Abstract
Despite evidence implicating microglia in the etiology and pathophysiology of major depression, there is paucity of information regarding the contribution of microglia-dependent molecular pathways to antidepressant procedures. In this study, we investigated the role of microglia in a mouse model of depression (chronic unpredictable stress-CUS) and its reversal by electroconvulsive stimulation (ECS), by examining the effects of microglia depletion with the colony stimulating factor-1 antagonist PLX5622. Microglia depletion did not change basal behavioral measures or the responsiveness to CUS, but it completely abrogated the therapeutic effects of ECS on depressive-like behavior and neurogenesis impairment. Treatment with the microglia inhibitor minocycline concurrently with ECS also diminished the antidepressant and pro-neurogenesis effects of ECS. Hippocampal RNA-Seq analysis revealed that ECS significantly increased the expression of genes related to neurogenesis and dopamine signaling, while reducing the expression of several immune checkpoint genes, particularly lymphocyte-activating gene-3 (Lag3), which was the only microglial transcript significantly altered by ECS. None of these molecular changes occurred in microglia-depleted mice. Immunohistochemical analyses showed that ECS reversed the CUS-induced changes in microglial morphology and elevation in microglial LAG3 receptor expression. Consistently, either acute or chronic systemic administration of a LAG3 monoclonal antibody, which readily penetrated into the brain parenchyma and was found to serve as a direct checkpoint blocker in BV2 microglia cultures, rapidly rescued the CUS-induced microglial alterations, depressive-like symptoms, and neurogenesis impairment. These findings suggest that brain microglial LAG3 represents a promising target for novel antidepressant therapeutics.
Collapse
Affiliation(s)
- Neta Rimmerman
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hodaya Verdiger
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagar Goldenberg
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Naggan
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Robinson
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ewa Kozela
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sivan Gelb
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronen Reshef
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, Ireland
| | - Lily Ayoun
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Refaeli
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einat Ashkenazi
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nofar Schottlender
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Claudia Pienica
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maayan Aharonian
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Dinur
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Koby Lazar
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, Ireland
| | - Ayal Ben Zvi
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
16
|
Argyelan M, Lencz T, Kang S, Ali S, Masi PJ, Moyett E, Joanlanne A, Watson P, Sanghani S, Petrides G, Malhotra AK. ECT-induced cognitive side effects are associated with hippocampal enlargement. Transl Psychiatry 2021; 11:516. [PMID: 34625534 PMCID: PMC8501017 DOI: 10.1038/s41398-021-01641-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/16/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Electroconvulsive therapy (ECT) is of the most effective treatments available for treatment-resistant depression, yet it is underutilized in part due to its reputation of causing cognitive side effects in a significant number of patients. Despite intensive neuroimaging research on ECT in the past two decades, the underlying neurobiological correlates of cognitive side effects remain elusive. Because the primary ECT-related cognitive deficit is memory impairment, it has been suggested that the hippocampus may play a crucial role. In the current study, we investigated 29 subjects with longitudinal MRI and detailed neuropsychological testing in two independent cohorts (N = 15/14) to test if volume changes were associated with cognitive side effects. The two cohorts underwent somewhat different ECT study protocols reflected in electrode placements and the number of treatments. We used longitudinal freesurfer algorithms (6.0) to obtain a bias-free estimate of volume changes in the hippocampus and tested its relationship with neurocognitive score changes. As an exploratory analysis and to evaluate how specific the effects were to the hippocampus, we also calculated this relationship in 41 other areas. In addition, we also analyzed cognitive data from a group of healthy volunteers (N = 29) to assess practice effects. Our results supported the hypothesis that hippocampus enlargement was associated with worse cognitive outcomes, and this result was generalizable across two independent cohorts with different diagnoses, different electrode placements, and a different number of ECT sessions. We found, in both cohorts, that treatment robustly increased the volume size of the hippocampus (Cohort 1: t = 5.07, Cohort 2: t = 4.82; p < 0.001), and the volume increase correlated with the neurocognitive T-score change. (Cohort 1: r = -0.68, p = 0.005; Cohort 2: r = -0.58; p = 0.04). Overall, our research indicates that novel treatment methods serving to avoid hippocampal volume increase may result in a better side effect profile.
Collapse
Affiliation(s)
- Miklos Argyelan
- Psychiatry Research, The Zucker Hillside Hospital, Glen Cove, NY, USA.
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Todd Lencz
- Psychiatry Research, The Zucker Hillside Hospital, Glen Cove, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Simran Kang
- Psychiatry Research, The Zucker Hillside Hospital, Glen Cove, NY, USA
| | - Sana Ali
- Psychiatry Research, The Zucker Hillside Hospital, Glen Cove, NY, USA
| | - Paul J Masi
- Psychiatry Research, The Zucker Hillside Hospital, Glen Cove, NY, USA
| | - Emily Moyett
- Psychiatry Research, The Zucker Hillside Hospital, Glen Cove, NY, USA
| | - Andrea Joanlanne
- Psychiatry Research, The Zucker Hillside Hospital, Glen Cove, NY, USA
| | - Philip Watson
- Psychiatry Research, The Zucker Hillside Hospital, Glen Cove, NY, USA
| | - Sohag Sanghani
- Psychiatry Research, The Zucker Hillside Hospital, Glen Cove, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Georgios Petrides
- Psychiatry Research, The Zucker Hillside Hospital, Glen Cove, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Anil K Malhotra
- Psychiatry Research, The Zucker Hillside Hospital, Glen Cove, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
17
|
Shao LL, Gao MM, Gong JX, Yang LY. DUSP1 regulates hippocampal damage in epilepsy rats via ERK1/2 pathway. J Chem Neuroanat 2021; 118:102032. [PMID: 34562585 DOI: 10.1016/j.jchemneu.2021.102032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the effects of DUSP1 on the hippocampal injury of young rats with epilepsy (EP) through mediating ERK1/2 signaling pathway. METHODS Young SD rats were selected and divided into Control, EP, EP + LV-GFP, EP + LV-DUSP1, EP + LV-siDUSP1, and EP + LV-siDUSP1 + U0126 groups. Morris Water Maze Test was used to detect the spatial learning and memory. Nissl staining and TUNEL staining were conducted and the inflammatory factors and oxidative stress-related indicators were also measured. Western blotting was utilized to detect the expression of DUSP1 and ERK1/2 pathway. EP cell model was constructed in vitro to verify the in vivo results. RESULTS Compared with Control group, young rats in EP group had decreased spatial learning and memory abilities and increased apoptotic rate and decreased number of Nissl positive cells. Besides, the up-regulated levels in inflammatory factors (IL-1β, IL-6), MDA content, and p-ERK1/2/ERK1/2 protein expression, as well as the down-regulated levels in DUSP1 protein expression and SOD content were also observed in EP rats. The EP rats treated with LV-DUSP1 showed obvious improvements regarding the above indicators, while those treated with LV-siDUSP1 had aggravated injury. But the effect of LV-siDUSP1 can be reversed by the treatment with ERK1/2 pathway inhibitor U0126. Further in vitro investigation verified the in vivo results. CONCLUSION DUSP1 may ameliorate the oxidative stress and inflammatory injury, as well as improve spatial learning and memory abilities via inhibiting ERK1/2 pathway, eventually playing protective roles in hippocampal injury of young rats with EP.
Collapse
Affiliation(s)
- Li-Li Shao
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou 061000, PR China.
| | - Miao-Miao Gao
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou 061000, PR China
| | - Jing-Xin Gong
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou 061000, PR China
| | - Li-Yong Yang
- Department of Diagnostic CT, Cangzhou Central Hospital Yanshan Branch, Cangzhou 061399, PR China
| |
Collapse
|
18
|
Brancati GE, Brekke N, Bartsch H, Evjenth Sørhaug OJ, Ousdal OT, Hammar Å, Schuster PM, Oedegaard KJ, Kessler U, Oltedal L. Short and long-term effects of single and multiple sessions of electroconvulsive therapy on brain gray matter volumes. Brain Stimul 2021; 14:1330-1339. [PMID: 34464746 DOI: 10.1016/j.brs.2021.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) has been shown to induce broadly distributed cortical and subcortical volume increases, more prominently in the amygdala and the hippocampus. Structural changes after one ECT session and in the long-term have been understudied. OBJECTIVE The aim of this study was to describe short-term and long-term volume changes induced in cortical and subcortical regions by ECT. METHODS Structural brain data were acquired from depressed patients before and 2 h after their first ECT session, 7-14 days after the end of the ECT series and at 6 months follow up (N = 34). Healthy, age and gender matched volunteers were scanned according to the same schedule (N = 18) and patients affected by atrial fibrillation were scanned 1-2 h before and after undergoing electrical cardioversion (N = 16). Images were parcelled using FreeSurfer and estimates of cortical gray matter volume and subcortical volume changes were obtained using Quarc. RESULTS Volume increase was observable in most of gray matter regions after 2 h from the first ECT session, with significant results in brain stem, bilateral hippocampi, right putamen and left thalamus, temporal and occipital regions in the right hemisphere. At the end of treatment series, widespread significant volume changes were observed. After six months, the right amygdala volume was still significantly increased. No significant changes were observed in the comparison groups. CONCLUSIONS Volume increases in gray matter areas can be detected 2 h after a single ECT session. Further studies are warranted to explore the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Njål Brekke
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Hauke Bartsch
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | | | - Olga Therese Ousdal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Centre for Crisis Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Åsa Hammar
- NORMENT, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Biological and Medical Psychology, University of Bergen, Norway
| | - Peter Moritz Schuster
- Department of Clinical Science, University of Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Ketil Joachim Oedegaard
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; NORMENT, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; NORMENT, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
19
|
Maffioletti E, Carvalho Silva R, Bortolomasi M, Baune BT, Gennarelli M, Minelli A. Molecular Biomarkers of Electroconvulsive Therapy Effects and Clinical Response: Understanding the Present to Shape the Future. Brain Sci 2021; 11:brainsci11091120. [PMID: 34573142 PMCID: PMC8471796 DOI: 10.3390/brainsci11091120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022] Open
Abstract
Electroconvulsive therapy (ECT) represents an effective intervention for treatment-resistant depression (TRD). One priority of this research field is the clarification of ECT response mechanisms and the identification of biomarkers predicting its outcomes. We propose an overview of the molecular studies on ECT, concerning its course and outcome prediction, including also animal studies on electroconvulsive seizures (ECS), an experimental analogue of ECT. Most of these investigations underlie biological systems related to major depressive disorder (MDD), such as the neurotrophic and inflammatory/immune ones, indicating effects of ECT on these processes. Studies about neurotrophins, like the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF), have shown evidence concerning ECT neurotrophic effects. The inflammatory/immune system has also been studied, suggesting an acute stress reaction following an ECT session. However, at the end of the treatment, ECT produces a reduction in inflammatory-associated biomarkers such as cortisol, TNF-alpha and interleukin 6. Other biological systems, including the monoaminergic and the endocrine, have been sparsely investigated. Despite some promising results, limitations exist. Most of the studies are concentrated on one or few markers and many studies are relatively old, with small sample sizes and methodological biases. Expression studies on gene transcripts and microRNAs are rare and genetic studies are sparse. To date, no conclusive evidence regarding ECT molecular markers has been reached; however, the future may be just around the corner.
Collapse
Affiliation(s)
- Elisabetta Maffioletti
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
| | - Rosana Carvalho Silva
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
| | | | - Bernhard T. Baune
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany;
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Parkville, VIC 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717255; Fax: +39-030-3701157
| |
Collapse
|
20
|
Takamiya A, Bouckaert F, Laroy M, Blommaert J, Radwan A, Khatoun A, Deng ZD, Mc Laughlin M, Van Paesschen W, De Winter FL, Van den Stock J, Sunaert S, Sienaert P, Vandenbulcke M, Emsell L. Biophysical mechanisms of electroconvulsive therapy-induced volume expansion in the medial temporal lobe: A longitudinal in vivo human imaging study. Brain Stimul 2021; 14:1038-1047. [PMID: 34182182 PMCID: PMC8474653 DOI: 10.1016/j.brs.2021.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Electroconvulsive therapy (ECT) applies electric currents to the brain to induce seizures for therapeutic purposes. ECT increases gray matter (GM) volume, predominantly in the medial temporal lobe (MTL). The contribution of induced seizures to this volume change remains unclear. Methods: T1-weighted structural MRI was acquired from thirty patients with late-life depression (mean age 72.5 ± 7.9 years, 19 female), before and one week after one course of right unilateral ECT. Whole brain voxel-/deformation-/surface-based morphometry analyses were conducted to identify tissue-specific (GM, white matter: WM), and cerebrospinal fluid (CSF) and cerebral morphometry changes following ECT. Whole-brain voxel-wise electric field (EF) strength was estimated to investigate the association of EF distribution and regional brain volume change. The association between percentage volume change in the right MTL and ECT-related parameters (seizure duration, EF, and number of ECT sessions) was investigated using multiple regression. Results: ECT induced widespread GM volume expansion with corresponding contraction in adjacent CSF compartments, and limited WM change. The regional EF was strongly correlated with the distance from the electrodes, but not with regional volume change. The largest volume expansion was identified in the right MTL, and this was correlated with the total seizure duration. Conclusions: Right unilateral ECT induces widespread, bilateral regional volume expansion and contraction, with the largest change in the right MTL. This dynamic volume change cannot be explained by the effect of electrical stimulation alone and is related to the cumulative effect of ECT-induced seizures.
Collapse
Affiliation(s)
- Akihiro Takamiya
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Belgium; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Filip Bouckaert
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Belgium
| | - Maarten Laroy
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium
| | - Jeroen Blommaert
- KU Leuven, Department of Oncology, Gynaecological Oncology, Leuven, Belgium
| | - Ahmed Radwan
- KU Leuven, Department of Imaging & Pathology, Translational MRI, Leuven, Belgium
| | - Ahmad Khatoun
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Research Group Experimental Oto-rhino-laryngology, Leuven, Belgium
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Myles Mc Laughlin
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Research Group Experimental Oto-rhino-laryngology, Leuven, Belgium
| | - Wim Van Paesschen
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Research Group Experimental Neurology, Leuven, Belgium
| | - François-Laurent De Winter
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Belgium
| | - Jan Van den Stock
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven, Department of Imaging & Pathology, Translational MRI, Leuven, Belgium; Department of Radiology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - Pascal Sienaert
- Academic Center for ECT and Neuromodulation (AcCENT), University Psychiatric Center, KU Leuven, Kortenberg, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Belgium
| | - Louise Emsell
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Belgium; KU Leuven, Department of Imaging & Pathology, Translational MRI, Leuven, Belgium.
| |
Collapse
|
21
|
Gay F, Romeo B, Martelli C, Benyamina A, Hamdani N. Cytokines changes associated with electroconvulsive therapy in patients with treatment-resistant depression: a Meta-analysis. Psychiatry Res 2021; 297:113735. [PMID: 33497973 DOI: 10.1016/j.psychres.2021.113735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
One third of depressive patients do not achieve remission after several steps of treatment and are considered as treatment resistant. Electroconvulsive therapy (ECT) improves symptoms in 70 to 90% of such cases. Resistant depression is associated with a dysregulation of the immune system with a dysbalance between the pro- and the anti-inflammatory cytokines. Therefore, we aimed to measure the kinetic of cytokines levels before, during and at the end of ECT. To test this hypothesis, we performed a meta-analysis assessing cytokines plasma levels before, during and after ECT in patients with major depressive disorders. After a systematic database search, means and standard deviations were extracted to calculate standardized mean differences. We found that IL-6 levels increased after 1 or 2 ECT session (p = 0.01) then decrease after 4 ECT sessions (p < 0.01) with no difference at the end of ECT (p = 0.94). A small number of studies were included and there was heterogeneity across them. The present meta-analysis reveals that ECT induces an initial increase of IL-6 levels and a potential decrease of TNF-α levels. No changes on IL-4 and IL-10 levels were found. Further work is necessary to clarify the impact of ECT on peripheral cytokines.
Collapse
Affiliation(s)
- F Gay
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800 Villejuif, France
| | - B Romeo
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800 Villejuif, France; Unité de recherche Psychiatrie-Comorbidités-Addictions - PSYCOMADD 4872 - Université Paris-Sud - AP-HP - Université Paris Saclay.
| | - C Martelli
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800 Villejuif, France; Unité de recherche Psychiatrie-Comorbidités-Addictions - PSYCOMADD 4872 - Université Paris-Sud - AP-HP - Université Paris Saclay; Institut National de la Santé et de la Recherche Médicale U1000, Research unit, NeuroImaging and Psychiatry, Paris Sud University, Paris Saclay University, Paris Descartes University, Digiteo Labs, Bâtiment 660, Gif-sur-Yvette, France
| | - A Benyamina
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800 Villejuif, France; Unité de recherche Psychiatrie-Comorbidités-Addictions - PSYCOMADD 4872 - Université Paris-Sud - AP-HP - Université Paris Saclay
| | - N Hamdani
- Unité de recherche Psychiatrie-Comorbidités-Addictions - PSYCOMADD 4872 - Université Paris-Sud - AP-HP - Université Paris Saclay; Cédiapsy, 1 avenue Jean Moulin 75014 Paris
| |
Collapse
|
22
|
The effect of electroconvulsive therapy on neuroinflammation, behavior and amyloid plaques in the 5xFAD mouse model of Alzheimer's disease. Sci Rep 2021; 11:4910. [PMID: 33649346 PMCID: PMC7921388 DOI: 10.1038/s41598-021-83998-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Microglial cells are affected in Alzheimer’s disease (AD) and interact with amyloid-beta (Aβ) plaques. Apart from memory loss, depression is common in patients with AD. Electroconvulsive therapy (ECT) is an anti-depressive treatment that may stimulate microglia, induce neuroinflammation and alter the levels of soluble Aβ, but the effects of ECT on microglia and Aβ aggregation in AD are not known. We investigated the short- and long-term effects of ECT on neuroinflammation and Aβ accumulation. 5xFAD mice received either electroconvulsive stimulation (ECS n = 26) or sham treatment (n = 25) for 3 weeks. Microglia and Aβ were analyzed in samples collected 24 h, 5 weeks, or 9 weeks after the last treatment. Aβ plaques and microglia were quantified using immunohistochemistry. The concentration of soluble Aβ and cytokines was quantified using ELISA and levels of Aβ aggregates were measured with Western Blot. Microglial phagocytosis of Aβ in the hippocampus was evaluated by flow cytometry in Methoxy-X04 injected mice 24 h following the last ECS treatment. Y-maze and Elevated plus maze were performed to study behavior after 5 weeks. We could not detect any significant short- or long-term effects of ECS on Aβ pathology or neuroinflammation, but ECS reduced abnormal behavior in the Elevated Plus maze.
Collapse
|
23
|
Gbyl K, Støttrup MM, Mitta Raghava J, Xue Jie S, Videbech P. Hippocampal volume and memory impairment after electroconvulsive therapy in patients with depression. Acta Psychiatr Scand 2021; 143:238-252. [PMID: 33251575 DOI: 10.1111/acps.13259] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Patients hesitate to consent to electroconvulsive therapy (ECT) because of the fear of memory impairment. The mechanisms underlying this impairment are unclear, but several observations suggest hippocampal alterations may be involved. We investigated whether ECT-induced change in hippocampal volume correlates with memory impairment. METHODS Using a 3 T MRI scanner, we acquired brain images and assessed cognitive performance in 22 severely depressed patients at three time points: (1) before ECT series, (2) within one week after the series, and (3) at six-month follow-up. The hippocampus was segmented into subregions using FreeSurfer. The dentate gyri (DG) were the primary regions of interest (ROIs) and major hippocampal subregions secondary ROIs. Cognitive performance was assessed using the Screen for Cognitive Impairment in Psychiatry and verbal memory using the Verbal Learning subtest. The linear mixed model and the repeated-measures correlation were used for statistical analyses. RESULTS ECT induced an increase in the right and left DG volume with co-occurring worsening in verbal memory, and these changes were within-patients negatively correlated (right DG, rrm = -0.85, df = 18, p = 0.0000002; left DG, rrm = -0.58, df = 18, p = 0.008). At a six-month follow-up, the volume of both DG decreased with a co-occurring improvement in verbal memory, and these changes were negatively correlated in the right DG (rrm = -0.64, df = 15, p = 0.005). Volume increases in 14 secondary ROIs were also negatively correlated with memory impairment. CONCLUSION ECT-related transient increases in the volume of major hippocampal subregions within-patients are associated with memory impairment. Hippocampal alterations following ECT should be the focus in searching for causes of the cognitive side effects.
Collapse
Affiliation(s)
- Krzysztof Gbyl
- Center for Neuropsychiatric Depression Research, Psychiatric Center Glostrup, Glostrup, Denmark
| | - Mette Marie Støttrup
- Center for Neuropsychiatric Depression Research, Psychiatric Center Glostrup, Glostrup, Denmark
| | - Jayachandra Mitta Raghava
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Psychiatric Center Glostrup, Glostrup, Denmark.,Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Song Xue Jie
- Department of Clinical Psychiatry, Psychiatric Center Glostrup, Glostrup, Denmark
| | - Poul Videbech
- Center for Neuropsychiatric Depression Research, Psychiatric Center Glostrup, Glostrup, Denmark
| |
Collapse
|
24
|
Schurgers G, Arts BMG, Postma AA, de Kort A. Successful electroconvulsive therapy for depression in a man with cerebral amyloid angiopathy. BMJ Case Rep 2021; 14:14/2/e238922. [PMID: 33547125 PMCID: PMC7871242 DOI: 10.1136/bcr-2020-238922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a condition characterised by accumulation of amyloid beta protein (Aβ) in the wall of cerebral blood vessels which increases the risk of intracranial haemorrhage and contributes to cognitive impairment. We describe the case of a man around the age of 70 with ‘probable’ CAA according to the modified Boston criteria and severe depression whose depression was treated successfully with electroconvulsive therapy (ECT). To the best of our knowledge, there are no earlier published reports of ECT in a patient with CAA. We briefly discuss possible safety measures for these patients, the impact of ECT on cognition in CAA and a possible influence of ECT on Aβ clearance.
Collapse
Affiliation(s)
- Geert Schurgers
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Baer M G Arts
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Maastricht University School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Alida A Postma
- Maastricht University School for Mental Health and Neuroscience, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Anna de Kort
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud University Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Gbyl K, Rostrup E, Raghava JM, Andersen C, Rosenberg R, Larsson HBW, Videbech P. Volume of hippocampal subregions and clinical improvement following electroconvulsive therapy in patients with depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110048. [PMID: 32730916 DOI: 10.1016/j.pnpbp.2020.110048] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
It is thought that the hippocampal neurogenesis is an important mediator of the antidepressant effect of electroconvulsive therapy (ECT). However, most previous studies failed to demonstrate the relationship between the increase in the hippocampal volume and the antidepressant effect. We reinvestigated this relationship by looking at distinct hippocampal subregions and applying repeated measures correlation. Using a 3 Tesla MRI-scanner, we scanned 22 severely depressed in-patients at three time points: before the ECT series, after the series, and at six-month follow-up. The depression severity was assessed by the 17-item Hamilton Rating Scale for Depression (HAMD-17). The hippocampus was segmented into subregions using Freesurfer software. The dentate gyrus (DG) was the primary region of interest (ROI), due to the role of this region in neurogenesis. The other major hippocampal subregions were the secondary ROIs (n = 20). The general linear mixed model and the repeated measures correlation were used for statistical analyses. Immediately after the ECT series, a significant volume increase was present in the right DG (Cohen's d = 1.7) and the left DG (Cohen's d = 1.5), as well as 15 out of 20 secondary ROIs. The clinical improvement, i.e., the decrease in HAMD-17 score, was correlated to the increase in the right DG volume (rrm = -0.77, df = 20, p < .001), and the left DG volume (rrm = -0.75, df = 20, p < .001). Similar correlations were observed in 14 out of 20 secondary ROIs. Thus, ECT induces an increase not only in the volume of the DG, but also in the volume of other major hippocampal subregions. The volumetric increases may reflect a neurobiological process that may be related to the ECT's antidepressant effect. Further investigation of the relationship between hippocampal subregions and the antidepressant effect is warranted. A statistical approach taking the repeated measurements into account should be preferred in the analyses.
Collapse
Affiliation(s)
- Krzysztof Gbyl
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, The University of Copenhagen, Copenhagen, Denmark.
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark
| | - Jayachandra Mitta Raghava
- Center for Neuropsychiatric Schizophrenia Research, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, Glostrup, Denmark
| | | | | | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, The University of Copenhagen, Copenhagen, Denmark
| | - Poul Videbech
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, The University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Giacobbe J, Pariante CM, Borsini A. The innate immune system and neurogenesis as modulating mechanisms of electroconvulsive therapy in pre-clinical studies. J Psychopharmacol 2020; 34:1086-1097. [PMID: 32648795 PMCID: PMC7672674 DOI: 10.1177/0269881120936538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is a powerful and fast-acting anti-depressant strategy, often used in treatment-resistant patients. In turn, patients with treatment-resistant depression often present an increased inflammatory response. The impact of ECT on several pathophysiological mechanisms of depression has been investigated, with a focus which has largely been on cellular and synaptic plasticity. Although changes in the immune system are known to influence neurogenesis, these processes have principally been explored independently from each other in the context of ECT. OBJECTIVE The aim of this review was to compare the time-dependent consequences of acute and chronic ECT on concomitant innate immune system and neurogenesis-related outcomes measured in the central nervous system in pre-clinical studies. RESULTS During the few hours following acute electroconvulsive shock (ECS), the expression of the astrocytic reactivity marker glial fibrillary acidic protein (GFAP) and inflammatory genes, such as cyclooxygenase-2 (COX2), were significantly increased together with the neurogenic brain-derived neurotrophic factor (BDNF) and cell proliferation. Similarly, chronic ECS caused an initial upregulation of the same astrocytic marker, immune genes, and neurogenic factors. Interestingly, over time, inflammation appeared to be dampened, while glial activation and neurogenesis were maintained, after either acute or chronic ECS. CONCLUSION Regardless of treatment duration ECS would seemingly trigger a rapid increase in inflammatory molecules, dampened over time, as well as a long-lasting activation of astrocytes and production of growth and neurotrophic factors, leading to cell proliferation. This suggests that both innate immune system response and neurogenesis might contribute to the efficacy of ECT.
Collapse
Affiliation(s)
| | | | - Alessandra Borsini
- Alessandra Borsini, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Division of Psychological Medicine, Stress, Psychiatry and Immunology Lab & Perinatal Psychiatry, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London SE5 9RT, UK.
| |
Collapse
|
27
|
An X, Shi X. Effects of electroconvulsive shock on neuro-immune responses: Does neuro-damage occur? Psychiatry Res 2020; 292:113289. [PMID: 32702550 DOI: 10.1016/j.psychres.2020.113289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression. However, this treatment may produce memory impairment. The mechanisms of the cognitive adverse effects are not known. Neuroimmune response is related to the cognitive deficits. By reviewing the available animal literature, we examined the glia activation, inflammatory cytokines, neuron oxidative stress responses, and neural morphological changes following electroconvulsive shock (ECS) treatment. The studies showed that ECS activates microglia, upregulates neuro-inflammatory cytokines, and increases oxidative stress responses. But these effects are rapid and may be transient. They normalize as ECS treatment continues, suggesting endogenous neuroprotection may be mobilized. The transient changes are well in line with the clinical observations that ECT usually does not cause significant long-lasting retrograde amnesia. The longitudinal studies will be particularly important to explore the dynamic changes of neuroplasticity following ECT (Jonckheere et al., 2018). Investigating the neuroplasticity changes in animals that suffered chronic stress may also be crucial to giving support to the translation of preclinical research.
Collapse
Affiliation(s)
- Xianli An
- School of Educational Science, Yangzhou University, Yangzhou, JiangSu Province, China.
| | - Xiujian Shi
- School of Educational Science, Yangzhou University, Yangzhou, JiangSu Province, China
| |
Collapse
|
28
|
Ousdal OT, Argyelan M, Narr KL, Abbott C, Wade B, Vandenbulcke M, Urretavizcaya M, Tendolkar I, Takamiya A, Stek ML, Soriano-Mas C, Redlich R, Paulson OB, Oudega ML, Opel N, Nordanskog P, Kishimoto T, Kampe R, Jorgensen A, Hanson LG, Hamilton JP, Espinoza R, Emsell L, van Eijndhoven P, Dols A, Dannlowski U, Cardoner N, Bouckaert F, Anand A, Bartsch H, Kessler U, Oedegaard KJ, Dale AM, Oltedal L. Brain Changes Induced by Electroconvulsive Therapy Are Broadly Distributed. Biol Psychiatry 2020; 87:451-461. [PMID: 31561859 DOI: 10.1016/j.biopsych.2019.07.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is associated with volumetric enlargements of corticolimbic brain regions. However, the pattern of whole-brain structural alterations following ECT remains unresolved. Here, we examined the longitudinal effects of ECT on global and local variations in gray matter, white matter, and ventricle volumes in patients with major depressive disorder as well as predictors of ECT-related clinical response. METHODS Longitudinal magnetic resonance imaging and clinical data from the Global ECT-MRI Research Collaboration (GEMRIC) were used to investigate changes in white matter, gray matter, and ventricle volumes before and after ECT in 328 patients experiencing a major depressive episode. In addition, 95 nondepressed control subjects were scanned twice. We performed a mega-analysis of single subject data from 14 independent GEMRIC sites. RESULTS Volumetric increases occurred in 79 of 84 gray matter regions of interest. In total, the cortical volume increased by mean ± SD of 1.04 ± 1.03% (Cohen's d = 1.01, p < .001) and the subcortical gray matter volume increased by 1.47 ± 1.05% (d = 1.40, p < .001) in patients. The subcortical gray matter increase was negatively associated with total ventricle volume (Spearman's rank correlation ρ = -.44, p < .001), while total white matter volume remained unchanged (d = -0.05, p = .41). The changes were modulated by number of ECTs and mode of electrode placements. However, the gray matter volumetric enlargements were not associated with clinical outcome. CONCLUSIONS The findings suggest that ECT induces gray matter volumetric increases that are broadly distributed. However, gross volumetric increases of specific anatomically defined regions may not serve as feasible biomarkers of clinical response.
Collapse
Affiliation(s)
| | - Miklos Argyelan
- Center for Psychiatric Neuroscience at the Feinstein Institute for Medical Research, New York, New York
| | - Katherine L Narr
- Departments of Neurology, Psychiatry, and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Benjamin Wade
- Departments of Neurology, Psychiatry, and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles
| | - Mathieu Vandenbulcke
- Department of Geriatric Psychiatry, University Psychiatric Center Katholieke Universiteit Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mikel Urretavizcaya
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Biomedical Research Institute; Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Madrid, Spain
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Faculty of Medicine and Landschaftsverband Rheinland Clinic for Psychiatry and Psychotherapy, University of Duisburg-Essen, Duisburg-Essen, Germany
| | - Akihiro Takamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Center for Psychiatry and Behavioral Science, Komagino Hospital, Tokyo, Japan
| | - Max L Stek
- Geestelijke GezondheidsZorg inGeest Specialized Mental Health Care, Amsterdam, The Netherlands; Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Biomedical Research Institute; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Madrid, Spain
| | - Ronny Redlich
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mardien L Oudega
- Geestelijke GezondheidsZorg inGeest Specialized Mental Health Care, Amsterdam, The Netherlands; Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany; Interdisciplinary Centre for Clinical Research (IZKF), University of Muenster, Muenster, Germany
| | - Pia Nordanskog
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Taishiro Kishimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Robin Kampe
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anders Jorgensen
- Psychiatric Center Copenhagen (Rigshospitalet), Mental Health Services of the Capital Region of Denmark, Copenhagen, Denmark
| | - Lars G Hanson
- Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| | - J Paul Hamilton
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Randall Espinoza
- Departments of Neurology, Psychiatry, and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles
| | - Louise Emsell
- Department of Geriatric Psychiatry, University Psychiatric Center Katholieke Universiteit Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Annemieke Dols
- Geestelijke GezondheidsZorg inGeest Specialized Mental Health Care, Amsterdam, The Netherlands; Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Narcis Cardoner
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Madrid, Spain; Department of Mental Health, University Hospital Parc Taulí-I3PT, Sabadell, Spain
| | - Filip Bouckaert
- Department of Geriatric Psychiatry, University Psychiatric Center Katholieke Universiteit Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Amit Anand
- Cleveland Clinic, Center for Behavioral Health, Cleveland, Ohio
| | - Hauke Bartsch
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, California; Department of Radiology, University of California, San Diego, La Jolla, California
| | - Ute Kessler
- Norwegian Centre for Mental Disorders Research, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ketil J Oedegaard
- Norwegian Centre for Mental Disorders Research, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, California; Department of Radiology, University of California, San Diego, La Jolla, California; Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
29
|
Argyelan M, Oltedal L, Deng ZD, Wade B, Bikson M, Joanlanne A, Sanghani S, Bartsch H, Cano M, Dale AM, Dannlowski U, Dols A, Enneking V, Espinoza R, Kessler U, Narr KL, Oedegaard KJ, Oudega ML, Redlich R, Stek ML, Takamiya A, Emsell L, Bouckaert F, Sienaert P, Pujol J, Tendolkar I, van Eijndhoven P, Petrides G, Malhotra AK, Abbott C. Electric field causes volumetric changes in the human brain. eLife 2019; 8:49115. [PMID: 31644424 PMCID: PMC6874416 DOI: 10.7554/elife.49115] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Recent longitudinal neuroimaging studies in patients with electroconvulsive therapy (ECT) suggest local effects of electric stimulation (lateralized) occur in tandem with global seizure activity (generalized). We used electric field (EF) modeling in 151 ECT treated patients with depression to determine the regional relationships between EF, unbiased longitudinal volume change, and antidepressant response across 85 brain regions. The majority of regional volumes increased significantly, and volumetric changes correlated with regional electric field (t = 3.77, df = 83, r = 0.38, p=0.0003). After controlling for nuisance variables (age, treatment number, and study site), we identified two regions (left amygdala and left hippocampus) with a strong relationship between EF and volume change (FDR corrected p<0.01). However, neither structural volume changes nor electric field was associated with antidepressant response. In summary, we showed that high electrical fields are strongly associated with robust volume changes in a dose-dependent fashion. Electroconvulsive therapy, or ECT for short, can be an effective treatment for severe depression. Many patients who do not respond to medication find that their symptoms improve after ECT. During an ECT session, the patient is placed under general anesthesia and two electrodes are attached to the scalp to produce an electric field that generates currents within the brain. These currents activate neurons and make them fire, causing a seizure, but it remains unclear how this reduces symptoms of depression. For many years, researchers thought that the induced seizure must be key to the beneficial effects of ECT, but recent studies have cast doubt on this idea. They show that increasing the strength of the electric field alters the clinical effects of ECT, without affecting the seizure. This suggests that the benefits of ECT depend on the electric field itself. Argyelan et al. now show that electric fields affect the brain by making a part of the brain known as the gray matter expand. In a large multinational study, 151 patients with severe depression underwent brain scans before and after a course of ECT. The scans revealed that the gray matter of the patients’ brains expanded during the treatment. The patients who experienced the strongest electric fields showed the largest increase in brain volume, and individual brain areas expanded if the electric field within them exceeded a certain threshold. This effect was particularly striking in two areas, the hippocampus and the amygdala. Both of these areas are critical for mood and memory. Further studies are needed to determine why the brain expands after ECT, and how long the effect lasts. Another puzzle is why the improvements in depression that the patients reported after their treatment did not correlate with changes in brain volume. Disentangling the relationships between ECT, brain volume and depression will ultimately help develop more robust treatments for this disabling condition.
Collapse
Affiliation(s)
- Miklos Argyelan
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, United States.,Center for Neuroscience, Feinstein Institute for Medical Research, Manhasset, United States.,Department of Psychiatry, Zucker School of Medicine, Hempstead, United States
| | - Leif Oltedal
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Mohn Medical Imaging and Visualization Centre, Bergen, Norway
| | - Zhi-De Deng
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, United States
| | - Benjamin Wade
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, United States
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, New York, United States
| | - Andrea Joanlanne
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, United States
| | - Sohag Sanghani
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, United States
| | - Hauke Bartsch
- Department of Radiology, Haukeland University Hospital, Mohn Medical Imaging and Visualization Centre, Bergen, Norway.,Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, United States
| | - Marta Cano
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain.,CIBERSAM, Carlos III Health Institute, Barcelona, Spain
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, United States.,Department of Radiology, University of California, San Diego, San Diego, United States.,Department of Neurosciences, University of California, San Diego, San Diego, United States
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Annemiek Dols
- Department of Psychiatry, Amsterdam UMC, location VUmc, GGZinGeest, Old Age Psychiatry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Verena Enneking
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Randall Espinoza
- Department of Neurology, University of California, Los Angeles, Los Angeles, United States.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, United States
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Katherine L Narr
- Department of Neurology, University of California, Los Angeles, Los Angeles, United States.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, United States
| | - Ketil J Oedegaard
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Mardien L Oudega
- Department of Psychiatry, Amsterdam UMC, location VUmc, GGZinGeest, Old Age Psychiatry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Ronny Redlich
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Max L Stek
- Department of Psychiatry, Amsterdam UMC, location VUmc, GGZinGeest, Old Age Psychiatry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Akihiro Takamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Center for Psychiatry and Behavioral Science, Komagino Hospital, Tokyo, Japan
| | - Louise Emsell
- Department of Geriatric Psychiatry, University Psychiatric Center, KU Leuven, Leuven, Belgium
| | - Filip Bouckaert
- Department of Geriatric Psychiatry, University Psychiatric Center, KU Leuven, Leuven, Belgium.,Academic center for ECT and Neurostimulation (AcCENT), University Psychiatric Center, KU Leuven, Kortenberg, Belgium
| | - Pascal Sienaert
- Academic center for ECT and Neurostimulation (AcCENT), University Psychiatric Center, KU Leuven, Kortenberg, Belgium
| | - Jesus Pujol
- CIBERSAM, Carlos III Health Institute, Barcelona, Spain.,MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands.,Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, Netherlands.,Faculty of Medicine and LVR Clinic for Psychiatry and Psychotherapy, University of Duisburg-Essen, Essen, Germany
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands.,Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, Netherlands
| | - Georgios Petrides
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, United States.,Center for Neuroscience, Feinstein Institute for Medical Research, Manhasset, United States.,Department of Psychiatry, Zucker School of Medicine, Hempstead, United States
| | - Anil K Malhotra
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, United States.,Center for Neuroscience, Feinstein Institute for Medical Research, Manhasset, United States.,Department of Psychiatry, Zucker School of Medicine, Hempstead, United States
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, United States
| |
Collapse
|
30
|
Wang A, Si Z, Li X, Lu L, Pan Y, Liu J. FK506 Attenuated Pilocarpine-Induced Epilepsy by Reducing Inflammation in Rats. Front Neurol 2019; 10:971. [PMID: 31572289 PMCID: PMC6751399 DOI: 10.3389/fneur.2019.00971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Background: The status epilepticus (SE) is accompanied by a local inflammatory response and many oxygen free radicals. FK506 is an effective immunosuppressive agent with neuroprotective and neurotrophic effects, however, whether it can inhibit the inflammatory response and attenuate epilepsy remains unclear. Objective: This study aims to clarify the effect of FK506 on inflammatory response in rats with epilepsy. Methods: A total of 180 rats were randomly and equally divided into the control group, epilepsy group, and FK506 group. The rat SE model in the epilepsy group and FK506 group was induced by lithium chloride combined with pilocarpine. In the FK506 group, FK506 was given before the injection of pilocarpine. The control group was given the same volume of saline. Then the effect of FK506 on epilepsy in rats and the changes of inflammatory factors and free radicals in hippocampus were examined using hematoxylin and eosin (HE) staining, immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting. Results: FK506 ameliorated the course of pilocarpine-induced epilepsy and the neuronal loss in the rat hippocampus after SE. FK506 reduced the increased content of nitric oxide (NO), superoxide dismutase (SOD), and malondialdehyde (MDA) in the hippocampus after SE. Besides, FK506 also significantly reduced the levels of factors involved in inflammatory response such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), and Protein Kinase C δ (PKCδ) that rise after epilepsy. Conclusion: FK506 ameliorated the course of pilocarpine-induced epilepsy, significantly reduced free radical content, and inhibited the expression of inflammatory factors, which provided a theoretical basis for the application of FK506 in the treatment of epilepsy.
Collapse
Affiliation(s)
- Aihua Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated With Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zhihua Si
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated With Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xiaolin Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated With Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Lu Lu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated With Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yongli Pan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated With Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jinzhi Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated With Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
31
|
Gbyl K, Rostrup E, Raghava JM, Carlsen JF, Schmidt LS, Lindberg U, Ashraf A, Jørgensen MB, Larsson HBW, Rosenberg R, Videbech P. Cortical thickness following electroconvulsive therapy in patients with depression: a longitudinal MRI study. Acta Psychiatr Scand 2019; 140:205-216. [PMID: 31265120 DOI: 10.1111/acps.13068] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Several studies have found an increase in hippocampal volume following electroconvulsive therapy (ECT), but the effect on cortical thickness has been less investigated. We aimed to examine the effects of ECT on cortical thickness and their associations with clinical outcome. METHOD Using 3 Tesla MRI scanner, we obtained T1-weighted brain images of 18 severely depressed patients at three time points: before, right after and 6 months after a series of ECT. The thickness of 68 cortical regions was extracted using Free Surfer, and Linear Mixed Model was used to analyze the longitudinal changes. RESULTS We found significant increases in cortical thickness of 26 regions right after a series of ECT, mainly within the frontal, temporal and insular cortex. The thickness returned to the baseline values at 6-month follow-up. We detected no significant decreases in cortical thickness. The increase in the thickness of the right lateral orbitofrontal cortex was associated with a greater antidepressant effect, r = 0.75, P = 0.0005. None of the cortical regions showed any associations with cognitive side effects. CONCLUSION The increases in cortical thickness induced by ECT are transient. Further multimodal MRI studies should examine the neural correlates of these increases and their relationship with the antidepressant effect.
Collapse
Affiliation(s)
- K Gbyl
- Centre for Neuropsychiatric Depression Research, Mental Health Centre Glostrup, The University of Copenhagen, Glostrup, Denmark
| | - E Rostrup
- Centre for Neuropsychiatric Schizophrenia Research, Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, The University of Copenhagen, Glostrup, Denmark
| | - J M Raghava
- Centre for Neuropsychiatric Schizophrenia Research, Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, The University of Copenhagen, Glostrup, Denmark.,Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, The University of Copenhagen, Glostrup, Denmark
| | - J F Carlsen
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, The University of Copenhagen, Glostrup, Denmark
| | - L S Schmidt
- Copenhagen Affective Disorder Research Centre (CADIC), Mental Health Centre Copenhagen, Rigshospitalet, The University of Copenhagen, Copenhagen, Denmark
| | - U Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, The University of Copenhagen, Glostrup, Denmark
| | - A Ashraf
- Mental Health Centre Glostrup, The University of Copenhagen, Glostrup, Denmark
| | - M B Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Mental Health Centre Copenhagen, Rigshospitalet, The University of Copenhagen, Copenhagen, Denmark
| | - H B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, The University of Copenhagen, Glostrup, Denmark
| | - R Rosenberg
- Mental Health Centre Amager, The University of Copenhagen, Copenhagen, Denmark
| | - P Videbech
- Centre for Neuropsychiatric Depression Research, Mental Health Centre Glostrup, The University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
32
|
Hippocampal volume change following ECT is mediated by rs699947 in the promotor region of VEGF. Transl Psychiatry 2019; 9:191. [PMID: 31431610 PMCID: PMC6702208 DOI: 10.1038/s41398-019-0530-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Several studies have shown that electroconvulsive therapy (ECT) results in increased hippocampal volume. It is likely that a multitude of mechanisms including neurogenesis, gliogenesis, synaptogenesis, angiogenesis, and vasculogenesis contribute to this volume increase. Neurotrophins, like vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) seem to play a crucial mediating role in several of these mechanisms. We hypothesized that two regulatory SNPs in the VEGF and BDNF gene influence the changes in hippocampal volume following ECT. We combined genotyping and brain MRI assessment in a sample of older adults suffering from major depressive disorder to test this hypothesis. Our results show an effect of rs699947 (in the promotor region of VEGF) on hippocampal volume changes following ECT. However, we did not find a clear effect of rs6265 (in BDNF). To the best of our knowledge, this is the first study investigating possible genetic mechanisms involved in hippocampal volume change during ECT treatment.
Collapse
|
33
|
Sepulveda-Rodriguez A, Li P, Khan T, Ma JD, Carlone CA, Bozzelli PL, Conant KE, Forcelli PA, Vicini S. Electroconvulsive Shock Enhances Responsive Motility and Purinergic Currents in Microglia in the Mouse Hippocampus. eNeuro 2019; 6:ENEURO.0056-19.2019. [PMID: 31058213 PMCID: PMC6498419 DOI: 10.1523/eneuro.0056-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Microglia are in a privileged position to both affect and be affected by neuroinflammation, neuronal activity and injury, which are all hallmarks of seizures and the epilepsies. Hippocampal microglia become activated after prolonged, damaging seizures known as status epilepticus (SE). However, since SE causes both hyperactivity and injury of neurons, the mechanisms triggering this activation remain unclear, as does the relevance of the microglial activation to the ensuing epileptogenic processes. In this study, we use electroconvulsive shock (ECS) to study the effect of neuronal hyperactivity without neuronal degeneration on mouse hippocampal microglia. Unlike SE, ECS did not alter hippocampal CA1 microglial density, morphology, or baseline motility. In contrast, both ECS and SE produced a similar increase in ATP-directed microglial process motility in acute slices, and similarly upregulated expression of the chemokine C-C motif chemokine ligand 2 (CCL2). Whole-cell patch-clamp recordings of hippocampal CA1sr microglia showed that ECS enhanced purinergic currents mediated by P2X7 receptors in the absence of changes in passive properties or voltage-gated currents, or changes in receptor expression. This differs from previously described alterations in intrinsic characteristics which coincided with enhanced purinergic currents following SE. These ECS-induced effects point to a "seizure signature" in hippocampal microglia characterized by altered purinergic signaling. These data demonstrate that ictal activity per se can drive alterations in microglial physiology without neuronal injury. These physiological changes, which up until now have been associated with prolonged and damaging seizures, are of added interest as they may be relevant to electroconvulsive therapy (ECT), which remains a gold-standard treatment for depression.
Collapse
Affiliation(s)
- Alberto Sepulveda-Rodriguez
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
| | - Pinggan Li
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tahiyana Khan
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
| | - James D Ma
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
| | - Colby A Carlone
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
| | - P Lorenzo Bozzelli
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
- Department of Neuroscience, Georgetown University, Washington, DC 20007
| | - Katherine E Conant
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
- Department of Neuroscience, Georgetown University, Washington, DC 20007
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
| |
Collapse
|
34
|
Variations in Hippocampal White Matter Diffusivity Differentiate Response to Electroconvulsive Therapy in Major Depression. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:300-309. [PMID: 30658916 DOI: 10.1016/j.bpsc.2018.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/03/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is an effective treatment for severe depression and is shown to increase hippocampal volume and modulate hippocampal functional connectivity. Whether variations in hippocampal structural connectivity occur with ECT and relate to clinical response is unknown. METHODS Patients with major depression (n = 36, 20 women, age 41.49 ± 13.57 years) underwent diffusion magnetic resonance imaging at baseline and after ECT. Control subjects (n = 32, 17 women, age 39.34 ± 12.27 years) underwent scanning twice. Functionally defined seeds in the left and right anterior hippocampus and probabilistic tractography were used to extract tract volume and diffusion metrics (fractional anisotropy and axial, radial, and mean diffusivity). Statistical analyses determined effects of ECT and time-by-response group interactions (>50% change in symptoms before and after ECT defined response). Differences between baseline measures across diagnostic groups and in association with treatment outcome were also examined. RESULTS Significant effects of ECT (all p < .01) and time-by-response group interactions (all p < .04) were observed for axial, radial, and mean diffusivity for right, but not left, hippocampal pathways. Follow-up analyses showed that ECT-related changes occurred in responders only (all p < .01) as well as in relation to change in mood examined continuously (all p < .004). Baseline measures did not relate to symptom change or differ between patients and control subjects. All measures remained stable across time in control subjects. No significant effects were observed for fractional anisotropy and volume. CONCLUSIONS Structural connectivity of hippocampal neural circuits changed with ECT and distinguished treatment responders. The findings suggested neurotrophic, glial, or inflammatory response mechanisms affecting axonal integrity.
Collapse
|
35
|
Volume of the Human Hippocampus and Clinical Response Following Electroconvulsive Therapy. Biol Psychiatry 2018; 84:574-581. [PMID: 30006199 PMCID: PMC6697556 DOI: 10.1016/j.biopsych.2018.05.017] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/29/2018] [Accepted: 05/13/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Hippocampal enlargements are commonly reported after electroconvulsive therapy (ECT). To clarify mechanisms, we examined if ECT-induced hippocampal volume change relates to dose (number of ECT sessions and electrode placement) and acts as a biomarker of clinical outcome. METHODS Longitudinal neuroimaging and clinical data from 10 independent sites participating in the Global ECT-Magnetic Resonance Imaging Research Collaboration (GEMRIC) were obtained for mega-analysis. Hippocampal volumes were extracted from structural magnetic resonance images, acquired before and after patients (n = 281) experiencing a major depressive episode completed an ECT treatment series using right unilateral and bilateral stimulation. Untreated nondepressed control subjects (n = 95) were scanned twice. RESULTS The linear component of hippocampal volume change was 0.28% (SE 0.08) per ECT session (p < .001). Volume change varied by electrode placement in the left hippocampus (bilateral, 3.3 ± 2.2%, d = 1.5; right unilateral, 1.6 ± 2.1%, d = 0.8; p < .0001) but not the right hippocampus (bilateral, 3.0 ± 1.7%, d = 1.8; right unilateral, 2.7 ± 2.0%, d = 1.4; p = .36). Volume change for electrode placement per ECT session varied similarly by hemisphere. Individuals with greater treatment-related volume increases had poorer outcomes (Montgomery-Åsberg Depression Rating Scale change -1.0 [SE 0.35], per 1% volume increase, p = .005), although the effects were not significant after controlling for ECT number (slope -0.69 [SE 0.38], p = .069). CONCLUSIONS The number of ECT sessions and electrode placement impacts the extent and laterality of hippocampal enlargement, but volume change is not positively associated with clinical outcome. The results suggest that the high efficacy of ECT is not explained by hippocampal enlargement, which alone might not serve as a viable biomarker for treatment outcome.
Collapse
|
36
|
Kranaster L, Hoyer C, Aksay SS, Bumb JM, Müller N, Zill P, Schwarz MJ, Sartorius A. Antidepressant efficacy of electroconvulsive therapy is associated with a reduction of the innate cellular immune activity in the cerebrospinal fluid in patients with depression. World J Biol Psychiatry 2018; 19:379-389. [PMID: 28714751 DOI: 10.1080/15622975.2017.1355473] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES A bidirectional link between the antidepressant effects of electroconvulsive therapy (ECT) and the modulation of the immune system has been proposed. To elucidate the interplay between antidepressant treatment and macrophage/microglia activation in humans, we performed a study on the effects of the antidepressant treatment by ECT on markers of macrophage/microglia activation in patients with depression. METHODS We measured six different markers (IL-6, neopterin, sCD14, sCD163 MIF and MCP1) of macrophage/microglia activation in the cerebrospinal fluid (CSF) and blood of 12 patients with a severe, treatment-resistant depressive episode before and after a course of ECT. RESULTS Some markers in the CSF of remitters were reduced after the ECT course and differed from non-remitters, but no differences were found before and after ECT independently from the antidepressant efficacy. CSF baseline levels of some markers could predict the reduction of depressive psychopathology during ECT. Higher CSF levels indicating increased macrophage/microglia activation at baseline predicted a better treatment response to ECT. CONCLUSIONS Although the sample size was small, our data suggest that macrophages/microglia are involved in the pathophysiology of major depression and that antidepressant efficacy by ECT might be partly explained by the modulation of the innate immune system within the brain.
Collapse
Affiliation(s)
- Laura Kranaster
- a Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim , Heidelberg University , Mannheim , Germany
| | - Carolin Hoyer
- b Department of Neurology , University Medical Centre Mannheim , Mannheim , Germany
| | - Suna S Aksay
- a Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim , Heidelberg University , Mannheim , Germany
| | - Jan Malte Bumb
- c Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim , Heidelberg University , Mannheim , Germany
| | - Norbert Müller
- d Department of Psychiatry and Psychotherapy , Ludwig Maximilian University Munich , Munich , Germany
| | - Peter Zill
- d Department of Psychiatry and Psychotherapy , Ludwig Maximilian University Munich , Munich , Germany
| | - Markus J Schwarz
- e Department of Laboratory Medicine , Ludwig Maximilian University Munich , Munich , Germany
| | - Alexander Sartorius
- a Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim , Heidelberg University , Mannheim , Germany
| |
Collapse
|
37
|
Liu J, Si Z, Li S, Huang Z, He Y, Zhang T, Wang A. The Calcineurin Inhibitor FK506 Prevents Cognitive Impairment by Inhibiting Reactive Astrogliosis in Pilocarpine-Induced Status Epilepticus Rats. Front Cell Neurosci 2018; 11:428. [PMID: 29375315 PMCID: PMC5767224 DOI: 10.3389/fncel.2017.00428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022] Open
Abstract
Status epilepticus (SE) is a severe clinical manifestation of epilepsy accompanying with cognitive impairment and brain damage. Astrocyte activation occurs following seizures and plays an important role in epilepsy-induced pathological injury, including cognitive impairment. FK506, an immunosuppressant used in clinical settings to prevent allograft rejection, has been shown to exhibit neuroprotective effects in central nervous system diseases. The present study was designed to investigate the effect of FK506 on cognitive impairment in a lithium-pilocarpine-induced SE rat model. It's found that FK506 treatment significantly increased the latency period to seizures and decreased the maximal intensity of seizures. FK506 treatment also markedly increased the surviving cells and reduced the neuron apoptosis after seizures. Meanwhile, FK506 treatment reduced the escape latency and prolonged the swimming distance in the Morris water maze test. In addition, FK506 treatment down-regulated the expression level of GFAP, a specific marker of astrocytes. In conclusion, FK506 could prevent and recover cognitive impairment by inhibiting reactive astrogliosis in pilocarpine-induced status epilepticus rats, suggesting that FK506 may be a promising agent for the treatment of epilepsy.
Collapse
Affiliation(s)
- Jinzhi Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong, China
| | - Zhihua Si
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong, China
| | - Shuqing Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong, China
| | - Zhan Huang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong, China
| | - Yan He
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong, China
| | - Tao Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong, China
| | - Aihua Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong, China
| |
Collapse
|
38
|
Liu J, Reeves C, Jacques T, McEvoy A, Miserocchi A, Thompson P, Sisodiya S, Thom M. Nestin-expressing cell types in the temporal lobe and hippocampus: Morphology, differentiation, and proliferative capacity. Glia 2018; 66:62-77. [PMID: 28925561 PMCID: PMC5724502 DOI: 10.1002/glia.23211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/30/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022]
Abstract
Nestin is expressed in immature neuroepithelial and progenitor cell types and transiently upregulated in proliferative neuroglial cells responding to acute brain injury, including following seizures. In 36 temporal lobe (TLobe) specimens from patients with TLobe epilepsy (age range 8-60 years) we studied the number, distribution and morphology of nestin-expressing cells (NEC) in the pes, hippocampus body, parahippocampal gyrus, amygdala, temporal cortex and pole compared with post mortem control tissues from 26 cases (age range 12 gestational weeks to 76 years). The proliferative fraction of NEC was evaluated in selected regions, including recognized niches, using MCM2. Their differentiation was explored with neuronal (DCX, mushashi, βIII tubulin, NeuN) and glial (GFAP, GFAPdelta, glutamine synthetase, aquaporin4, EAAT1) markers, both in sections or following culture. Findings were correlated with clinical parameters. A stereotypical pattern in the distribution and morphologies of NEC was observed, reminiscent of patterns in the developing brain, with increased densities in epilepsy than adult controls (p < .001). Findings included MCM2-positive radial glial-like cells in the periventricular white matter and rows of NEC in the hippocampal fimbria and sulcus. Nestin cells represented 29% of the hippocampal proliferative fraction in epilepsy cases; 20% co-expressed βIII tubulin in culture compared with 28% with GFAP. Significant correlations were noted between age at surgery, memory deficits and nestin populations. TLobe NEC with ongoing proliferative capacity likely represent vestiges of developmental migratory streams and resident reactive cell populations of potential relevance to hippocampal epileptogenesis, TLobe pathology, and co-morbidities, including memory decline.
Collapse
Affiliation(s)
- Joan Liu
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonWC1N 3BGUnited Kingdom
- Divisions of NeuropathologyNational Hospital for Neurology and Neurosurgery, Queen SquareLondonWCN1BGUK
- Department of Biomedical SciencesUniversity of WestminsterLondonW1W 6UWUnited Kingdom
| | - Cheryl Reeves
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonWC1N 3BGUnited Kingdom
- Divisions of NeuropathologyNational Hospital for Neurology and Neurosurgery, Queen SquareLondonWCN1BGUK
| | - Thomas Jacques
- Department of NeuropathologyUCL Institute of Child Health and Great Ormond Street Hospital for ChildrenLondonUnited Kingdom
| | - Andrew McEvoy
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonWC1N 3BGUnited Kingdom
- Neurosurgery at the National Hospital for Neurology and Neurosurgery, Queen SquareLondonWCN1BGUnited Kingdom
| | - Anna Miserocchi
- Neurosurgery at the National Hospital for Neurology and Neurosurgery, Queen SquareLondonWCN1BGUnited Kingdom
| | - Pamela Thompson
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonWC1N 3BGUnited Kingdom
- The Chalfont Centre for Epilepsy, Chesham Lane, Chalfont St PeterBuckinghamshireSL9 0RJUnited Kingdom
- Department of NeuropsychologyNational Hospital for Neurology and Neurosurgery, Queen SquareLondonWCN1BGUK
| | - Sanjay Sisodiya
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonWC1N 3BGUnited Kingdom
- The Chalfont Centre for Epilepsy, Chesham Lane, Chalfont St PeterBuckinghamshireSL9 0RJUnited Kingdom
- Department of NeurologyNational Hospital for Neurology and Neurosurgery, Queen SquareLondonWCN1BGUK
| | - Maria Thom
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonWC1N 3BGUnited Kingdom
- Divisions of NeuropathologyNational Hospital for Neurology and Neurosurgery, Queen SquareLondonWCN1BGUK
| |
Collapse
|
39
|
Takamiya A, Chung JK, Liang KC, Graff-Guerrero A, Mimura M, Kishimoto T. Effect of electroconvulsive therapy on hippocampal and amygdala volumes: systematic review and meta-analysis. Br J Psychiatry 2018; 212:19-26. [PMID: 29433612 DOI: 10.1192/bjp.2017.11] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is one of the most effective treatments for depression, although the underlying mechanisms remain unclear. Animal studies have shown that electroconvulsive shock induced neuroplastic changes in the hippocampus. Aims To summarise volumetric magnetic resonance imaging studies investigating the effects of ECT on limbic brain structures. METHOD A systematic review and meta-analysis was conducted to assess volumetric changes of each side of the hippocampus and amygdala before and after ECT. Standardised mean difference (SMD) was calculated. RESULTS A total of 8 studies (n = 193) were selected for our analyses. Both right and left hippocampal and amygdala volumes increased after ECT. Meta-regression analyses revealed that age, percentage of those responding and percentage of those in remission were negatively associated with volume increases in the left hippocampus. CONCLUSIONS ECT increased brain volume in the limbic structures. The clinical relevance of volume increase needs further investigation. Declaration of interest None.
Collapse
Affiliation(s)
- Akihiro Takamiya
- Department of Neuropsychiatry,Keio University School of Medicine and Komagino Hospital,Tokyo,Japan
| | - Jun Ku Chung
- Institute of Medical Science,Faculty of Medicine,University of Toronto, and Multimodal Imaging Group Research Imaging Centre, Centre for Addiction and Mental Health,Toronto,Canada
| | - Kuo-Ching Liang
- Department of Neuropsychiatry,Keio University School of Medicine,Tokyo,Japan
| | - Ariel Graff-Guerrero
- Institute of Medical Science,Faculty of Medicine,University of Toronto, Multimodal Imaging Group Research Imaging Centre, Centre for Addiction and Mental Health,Toronto,Department of Psychiatry,University of Toronto,and Geriatric Mental Health Division,Centre for Addiction and Mental Health,Toronto,Canada
| | - Masaru Mimura
- Department of Neuropsychiatry,Keio University School of Medicine,Tokyo,Japan
| | - Taishiro Kishimoto
- Department of Neuropsychiatry,Keio University School of Medicine,Tokyo, Japan, andHofstra Northwell School of Medicine, Hempstead, New York,USA
| |
Collapse
|
40
|
Sild M, Ruthazer ES, Booij L. Major depressive disorder and anxiety disorders from the glial perspective: Etiological mechanisms, intervention and monitoring. Neurosci Biobehav Rev 2017; 83:474-488. [DOI: 10.1016/j.neubiorev.2017.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
|
41
|
Yrondi A, Sporer M, Péran P, Schmitt L, Arbus C, Sauvaget A. Electroconvulsive therapy, depression, the immune system and inflammation: A systematic review. Brain Stimul 2017; 11:29-51. [PMID: 29111078 DOI: 10.1016/j.brs.2017.10.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The management and treatment of major depressive disorder are major public health challenges, the lifetime prevalence of this illness being 4.4%-20% in the general population. Major depressive disorder and treatment resistant depression appear to be, in part, related to a dysfunction of the immune response. Among the treatments for depression ECT occupies an important place. The underlying cerebral mechanisms of ECT remain unclear. OBJECTIVES/HYPOTHESIS The aim of this review is to survey the potential actions of ECT on the immuno-inflammatory cascade activated during depression. METHODS A systematic search of the literature was carried out, using the bibliographic search engines PubMed and Embase. The search covered articles published up until october 2017. The following MESH terms were used: Electroconvulsive therapy AND (inflammation OR immune OR immunology). RESULTS Our review shows that there is an acute immuno-inflammatory response immediately following an ECT session. There is an acute stress reaction. Studies show an increase in the plasma levels of cortisol and of interleukins 1 and 6. However, at the end of the course of treatment, ECT produces, in the long term, a fall in the plasma level of cortisol, a reduction in the levels of TNF alpha and interleukin 6. LIMITATIONS One of the limitations of this review is that a large number of studies are relatively old, with small sample sizes and methodological bias. CONCLUSION Advances in knowledge of the immuno-inflammatory component of depression seem to be paving the way towards models to explain the mechanism of action of ECT.
Collapse
Affiliation(s)
- Antoine Yrondi
- Psychiatric Department, CHU Toulouse-Purpan, 330 Avenue de Grande Bretagne, 31059 Toulouse, France; Toulouse NeuroImaging Center, ToNIC, University of Toulouse, Inserm, UPS, France.
| | - Marie Sporer
- Psychiatric Department, CHU Toulouse-Purpan, 330 Avenue de Grande Bretagne, 31059 Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, ToNIC, University of Toulouse, Inserm, UPS, France
| | - Laurent Schmitt
- Psychiatric Department, CHU Toulouse-Purpan, 330 Avenue de Grande Bretagne, 31059 Toulouse, France
| | - Christophe Arbus
- Psychiatric Department, CHU Toulouse-Purpan, 330 Avenue de Grande Bretagne, 31059 Toulouse, France; Toulouse NeuroImaging Center, ToNIC, University of Toulouse, Inserm, UPS, France
| | - Anne Sauvaget
- CHU Nantes, Addictology and Liaison Psychiatry Department, Neuromodulation Unit in Psychiatry, Nantes, France
| |
Collapse
|
42
|
van Buel EM, Sigrist H, Seifritz E, Fikse L, Bosker FJ, Schoevers RA, Klein HC, Pryce CR, Eisel ULM. Mouse repeated electroconvulsive seizure (ECS) does not reverse social stress effects but does induce behavioral and hippocampal changes relevant to electroconvulsive therapy (ECT) side-effects in the treatment of depression. PLoS One 2017; 12:e0184603. [PMID: 28910337 PMCID: PMC5598988 DOI: 10.1371/journal.pone.0184603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/28/2017] [Indexed: 01/21/2023] Open
Abstract
Electroconvulsive therapy (ECT) is an effective treatment for depression, but can have negative side effects including amnesia. The mechanisms of action underlying both the antidepressant and side effects of ECT are not well understood. An equivalent manipulation that is conducted in experimental animals is electroconvulsive seizure (ECS). Rodent studies have provided valuable insights into potential mechanisms underlying the antidepressant and side effects of ECT. However, relatively few studies have investigated the effects of ECS in animal models with a depression-relevant manipulation such as chronic stress. In the present study, mice were first exposed to chronic social stress (CSS) or a control procedure for 15 days followed by ECS or a sham procedure for 10 days. Behavioral effects were investigated using an auditory fear conditioning (learning) and expression (memory) test and a treadmill-running fatigue test. Thereafter, immunohistochemistry was conducted on brain material using the microglial marker Iba-1 and the cholinergic fibre marker ChAT. CSS did not increase fear learning and memory in the present experimental design; in both the control and CSS mice ECS reduced fear learning and fear memory expression. CSS induced the expected fatigue-like effect in the treadmill-running test; ECS induced increased fatigue in CSS and control mice. In CSS and control mice ECS induced inflammation in hippocampus in terms of increased expression of Iba-1 in radiatum of CA1 and CA3. CSS and ECS both reduced acetylcholine function in hippocampus as indicated by decreased expression of ChAT in several hippocampal sub-regions. Therefore, CSS increased fatigue and reduced hippocampal ChAT activity and, rather than reversing these effects, a repeated ECS regimen resulted in impaired fear learning-memory, increased fatigue, increased hippocampal Iba-1 expression, and decreased hippocampal ChAT expression. As such, the current model does not provide insights into the mechanism of ECT antidepressant function but does provide evidence for pathophysiological mechanisms that might contribute to important ECT side-effects.
Collapse
Affiliation(s)
- Erin M. van Buel
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- University of Groningen, University Medical Centre Groningen, Dept of Nuclear Medicine & Molecular Imaging, Groningen, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders (PLaTRAD), Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Preclinical Laboratory for Translational Research into Affective Disorders (PLaTRAD), Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Lianne Fikse
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Fokko J. Bosker
- University of Groningen, University Medical Centre Groningen, Dept of Nuclear Medicine & Molecular Imaging, Groningen, Netherlands
- University of Groningen, University Medical Centre Groningen, Dept of Psychiatry, Groningen, Netherlands
| | - Robert A. Schoevers
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
- University of Groningen, University Medical Centre Groningen, Dept of Psychiatry, Groningen, Netherlands
| | - Hans C. Klein
- University of Groningen, University Medical Centre Groningen, Dept of Nuclear Medicine & Molecular Imaging, Groningen, Netherlands
- University of Groningen, University Medical Centre Groningen, Dept of Psychiatry, Groningen, Netherlands
| | - Christopher R. Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders (PLaTRAD), Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Ulrich LM Eisel
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
- University of Groningen, University Medical Centre Groningen, Dept of Psychiatry, Groningen, Netherlands
- * E-mail:
| |
Collapse
|
43
|
Singh A, Kar SK. How Electroconvulsive Therapy Works?: Understanding the Neurobiological Mechanisms. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2017; 15:210-221. [PMID: 28783929 PMCID: PMC5565084 DOI: 10.9758/cpn.2017.15.3.210] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/06/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022]
Abstract
Electroconvulsive therapy (ECT) is a time tested treatment modality for the management of various psychiatric disorders. There have been a lot of modifications in the techniques of delivering ECT over decades. Despite lots of criticisms encountered, ECT has still been used commonly in clinical practice due to its safety and efficacy. Research evidences found multiple neuro-biological mechanisms for the therapeutic effect of ECT. ECT brings about various neuro-physiological as well as neuro-chemical changes in the macro- and micro-environment of the brain. Diverse changes involving expression of genes, functional connectivity, neurochemicals, permeability of blood-brain-barrier, alteration in immune system has been suggested to be responsible for the therapeutic effects of ECT. This article reviews different neurobiological mechanisms responsible for the therapeutic efficacy of ECT.
Collapse
Affiliation(s)
- Amit Singh
- Department of Psychiatry, King George's Medical University, Lucknow, U.P, India
| | - Sujita Kumar Kar
- Department of Psychiatry, King George's Medical University, Lucknow, U.P, India
| |
Collapse
|
44
|
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is one of the most efficient treatments for severe major depression, but some patients suffer from retrograde memory loss after treatment. Electroconvulsive seizures (ECS), an animal model of ECT, have repeatedly been shown to increase hippocampal neurogenesis, and multiple ECS treatments cause retrograde amnesia in hippocampus-dependent memory tasks. Since recent studies propose that addition of newborn hippocampal neurons might degrade existing memories, we investigated whether the memory impairment after multiple ECS treatments is a cumulative effect of repeated treatments, or if it is the result of a delayed effect after a single ECS. METHODS We used the hippocampus-dependent memory task Morris water maze (MWM) to evaluate spatial memory. Rats were exposed to an 8-day training paradigm before receiving either a single ECS or sham treatment and tested in the MWM 24 h, 72 h, or 7 days after this treatment, or multiple (four) ECS or sham treatments and tested 7 days after the first treatment. RESULTS A single ECS treatment was not sufficient to cause retrograde amnesia whereas multiple ECS treatments strongly disrupted spatial memory in the MWM. CONCLUSION The retrograde amnesia after multiple ECS is a cumulative effect of repeated treatments rather than a delayed effect after a single ECS.
Collapse
|
45
|
Vandenbulcke M, Bouckaert F, De Winter FL, Koole M, Adamczuk K, Vandenberghe R, Emsell L, Van Laere K. Asymmetric Amyloid Deposition in the Brain Following Unilateral Electroconvulsive Therapy. Biol Psychiatry 2017; 81:e11-e13. [PMID: 26582587 DOI: 10.1016/j.biopsych.2015.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Mathieu Vandenbulcke
- Department of Old Age Psychiatry, University Psychiatric Centre, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Filip Bouckaert
- Department of Old Age Psychiatry, University Psychiatric Centre, Katholieke Universiteit Leuven, Leuven, Belgium
| | - François-Laurent De Winter
- Department of Old Age Psychiatry, University Psychiatric Centre, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Katarzyna Adamczuk
- Laboratory for Cognitive Neurology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Katholieke Universiteit Leuven, Leuven, Belgium; Neurology Department, University Hospitals Leuven, Leuven, Belgium; Translational MRI, Department of Imaging and Pathology, Katholieke Universiteit Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Louise Emsell
- Department of Old Age Psychiatry, University Psychiatric Centre, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven and University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Niraula A, Sheridan JF, Godbout JP. Microglia Priming with Aging and Stress. Neuropsychopharmacology 2017; 42:318-333. [PMID: 27604565 PMCID: PMC5143497 DOI: 10.1038/npp.2016.185] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 01/08/2023]
Abstract
The population of aged individuals is increasing worldwide and this has significant health and socio-economic implications. Clinical and experimental studies on aging have discovered myriad changes in the brain, including reduced neurogenesis, increased synaptic aberrations, higher metabolic stress, and augmented inflammation. In rodent models of aging, these alterations are associated with cognitive decline, neurobehavioral deficits, and increased reactivity to immune challenges. In rodents, caloric restriction and young blood-induced revitalization reverses the behavioral effects of aging. The increased inflammation in the aged brain is attributed, in part, to the resident population of microglia. For example, microglia of the aged brain are marked by dystrophic morphology, elevated expression of inflammatory markers, and diminished expression of neuroprotective factors. Importantly, the heightened inflammatory profile of microglia in aging is associated with a 'sensitized' or 'primed' phenotype. Mounting evidence points to a causal link between the primed profile of the aged brain and vulnerability to secondary insults, including infections and psychological stress. Conversely, psychological stress may also induce aging-like sensitization of microglia and increase reactivity to secondary challenges. This review delves into the characteristics of neuroinflammatory signaling and microglial sensitization in aging, its implications in psychological stress, and interventions that reverse aging-associated deficits.
Collapse
Affiliation(s)
- Anzela Niraula
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Division of Biosciences, The Ohio State University, College of Dentistry, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, 231 IBMR Bld, 460 Medical Center Drive Columbus, OH 43210, USA, Tel: +614 293 3456, Fax: +614 366 2097, E-mail:
| |
Collapse
|
47
|
Electroconvulsive shock attenuated microgliosis and astrogliosis in the hippocampus and ameliorated schizophrenia-like behavior of Gunn rat. J Neuroinflammation 2016; 13:230. [PMID: 27590010 PMCID: PMC5009533 DOI: 10.1186/s12974-016-0688-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/18/2016] [Indexed: 11/23/2022] Open
Abstract
Background Although electroconvulsive therapy (ECT) is regarded as one of the efficient treatments for intractable psychiatric disorders, the mechanism of therapeutic action remains unclear. Recently, many studies indicate that ECT affects the immune-related cells, such as microglia, astrocytes, and lymphocytes. Moreover, microglial activation and astrocytic activation have been implicated in the postmortem brains of schizophrenia patients. We previously demonstrated that Gunn rats showed schizophrenia-like behavior and microglial activation in their brains. The present study examined the effects of electroconvulsive shock (ECS), an animal counterpart of ECT, on schizophrenia-like behavior, microgliosis, and astrogliosis in the brain of Gunn rats. Methods The rats were divided into four groups, i.e., Wistar sham, Wistar ECS, Gunn sham, and Gunn ECS. ECS groups received ECS once daily for six consecutive days. Subsequently, prepulse inhibition (PPI) test was performed, and immunohistochemistry analysis was carried out to determine the activation degree of microglia and astrocytes in the hippocampus by using anti-CD11b and anti-glial fibrillary acidic protein (GFAP) antibody, respectively. Results We found PPI deficit in Gunn rats compared to Wistar rats, and it was significantly improved by ECS. Immunohistochemistry analysis revealed that immunoreactivity of CD11b and GFAP was significantly increased in Gunn rats compared to Wistar rats. ECS significantly attenuated the immunoreactivity of both CD11b and GFAP in Gunn rats. Conclusions ECS ameliorated schizophrenia-like behavior of Gunn rats and attenuated microgliosis and astrogliosis in the hippocampus of Gunn rats. Accordingly, therapeutic effects of ECT may be exerted, at least in part, by inhibition of glial activation. These results may provide crucial information to elucidate the role of activated glia in the pathogenesis of schizophrenia and to determine whether future therapeutic interventions should attempt to up-regulate or down-regulate glial functions. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0688-2) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Variations in myo-inositol in fronto-limbic regions and clinical response to electroconvulsive therapy in major depression. J Psychiatr Res 2016; 80:45-51. [PMID: 27285661 PMCID: PMC4980182 DOI: 10.1016/j.jpsychires.2016.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/03/2016] [Accepted: 05/26/2016] [Indexed: 11/22/2022]
Abstract
Though electroconvulsive therapy (ECT) is an established treatment for severe depression, the neurobiological factors accounting for the clinical effects of ECT are largely unknown. Myo-inositol, a neurometabolite linked with glial activity, is reported as reduced in fronto-limbic regions in patients with depression. Whether changes in myo-inositol relate to the antidepressant effects of ECT is unknown. Using magnetic resonance spectroscopy ((1)H-MRS), we measured dorsomedial anterior cingulate cortex (dmACC) and left and right hippocampal myo-inositol in 50 ECT patients (mean age: 43.78, 14 SD) and 33 controls (mean age: 39.33, 12 SD) to determine cross sectional effects of diagnosis and longitudinal effects of ECT. Patients were scanned prior to treatment, after the second ECT and at completion of the ECT index series. Controls were scanned twice at intervals corresponding to patients' baseline and end of treatment scans. Myo-inositol increased over the course of ECT in the dmACC (p = 0.042). A significant hemisphere by clinical response effect was observed for the hippocampus (p = 0.003) where decreased myo-inositol related to symptom improvement in the left hippocampus. Cross-sectional differences between patients and controls at baseline were not detected. Changes in myo-inositol observed in the dmACC in association with ECT and in the hippocampus in association with ECT-related clinical response suggest the mechanisms of ECT could include gliogenesis or a reversal of gliosis that differentially affect dorsal and ventral limbic regions. Change in dmACC myo-inositol diverged from control values with ECT suggesting compensation, while hippocampal change suggested normalization.
Collapse
|
49
|
Wade BSC, Joshi SH, Njau S, Leaver AM, Vasavada M, Woods RP, Gutman BA, Thompson PM, Espinoza R, Narr KL. Effect of Electroconvulsive Therapy on Striatal Morphometry in Major Depressive Disorder. Neuropsychopharmacology 2016; 41:2481-91. [PMID: 27067127 PMCID: PMC4987846 DOI: 10.1038/npp.2016.48] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/01/2016] [Accepted: 03/25/2016] [Indexed: 12/17/2022]
Abstract
Patients with major depression show reductions in striatal and paleostriatal volumes. The functional integrity and connectivity of these regions are also shown to change with antidepressant response. Electroconvulsive therapy (ECT) is a robust and rapidly acting treatment for severe depression. However, whether morphological changes in the dorsal and ventral striatum/pallidum relate to or predict therapeutic response to ECT is unknown. Using structural MRI, we assessed cross-sectional effects of diagnosis and longitudinal effects of ECT for volume and surface-based shape metrics of the caudate, putamen, pallidum, and nucleus accumbens in 53 depressed patients (mean age: 44.1 years, 13.8 SD; 52% female) and 33 healthy controls (mean age: 39.3 years, 12.4 SD; 57% female). Patients were assessed before ECT, after their second ECT, and after completing an ECT treatment index. Controls were evaluated at two time points. Support vector machines determined whether morphometric measures at baseline predicted ECT-related clinical response. Patients showed smaller baseline accumbens and pallidal volumes than controls (P<0.05). Increases in left putamen volume (P<0.03) occurred with ECT. Global increases in accumbens volume and local changes in pallidum and caudate volume occurred in patients defined as treatment responders. Morphometric changes were absent across time in controls. Baseline volume and shape metrics predicted overall response to ECT with up to 89% accuracy. Results support that ECT elicits structural plasticity in the dorsal and ventral striatum/pallidum. The morphometry of these structures, forming key components of limbic-cortical-striatal-pallidal-thalamic circuitry involved in mood and emotional regulation, may determine patients likely to benefit from treatment.
Collapse
Affiliation(s)
- Benjamin S C Wade
- Imaging Genetics Center, University of Southern California, Los Angeles, CA, USA
| | - Shantanu H Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Stephanie Njau
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Amber M Leaver
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Megha Vasavada
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Roger P Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Boris A Gutman
- Imaging Genetics Center, University of Southern California, Los Angeles, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, University of Southern California, Los Angeles, CA, USA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
50
|
Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci 2016; 38:637-658. [PMID: 26442697 DOI: 10.1016/j.tins.2015.08.001] [Citation(s) in RCA: 602] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/12/2022]
Abstract
Despite decades of intensive research, the biological mechanisms that causally underlie depression are still unclear, and therefore the development of novel effective antidepressant treatments is hindered. Recent studies indicate that impairment of the normal structure and function of microglia, caused by either intense inflammatory activation (e.g., following infections, trauma, stroke, short-term stress, autoimmune or neurodegenerative diseases) or by decline and senescence of these cells (e.g., during aging, Alzheimer's disease, or chronic unpredictable stress exposure), can lead to depression and associated impairments in neuroplasticity and neurogenesis. Accordingly, some forms of depression can be considered as a microglial disease (microgliopathy), which should be treated by a personalized medical approach using microglial inhibitors or stimulators depending on the microglial status of the depressed patient.
Collapse
Affiliation(s)
- Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 91905, Israel.
| | - Neta Rimmerman
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Ronen Reshef
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| |
Collapse
|