1
|
Jiao S, Li N, Cao T, Wang L, Chen H, Lin C, Cai H. Differential impact of intermittent versus continuous treatment with clozapine on fatty acid metabolism in the brain of an MK-801-induced mouse model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111011. [PMID: 38642730 DOI: 10.1016/j.pnpbp.2024.111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Continuous antipsychotic treatment is often recommended to prevent relapse in schizophrenia. However, the efficacy of antipsychotic treatment appears to diminish in patients with relapsed schizophrenia and the underlying mechanisms are still unknown. Moreover, though the findings are inconclusive, several recent studies suggest that intermittent versus continuous treatment may not significantly differ in recurrence risk and therapeutic efficacy but potentially reduce the drug dose and side effects. Notably, disturbances in fatty acid (FA) metabolism are linked to the onset/relapse of schizophrenia, and patients with multi-episode schizophrenia have been reported to have reduced FA biosynthesis. We thus utilized an MK-801-induced animal model of schizophrenia to evaluate whether two treatment strategies of clozapine would affect drug response and FA metabolism differently in the brain. Schizophrenia-related behaviors were assessed through open field test (OFT) and prepulse inhibition (PPI) test, and FA profiles of prefrontal cortex (PFC) and hippocampus were analyzed by gas chromatography-mass spectrometry. Additionally, we measured gene expression levels of enzymes involved in FA synthesis. Both intermittent and continuous clozapine treatment reversed hypermotion and deficits in PPI in mice. Continuous treatment decreased total polyunsaturated fatty acids (PUFAs), saturated fatty acids (SFAs) and FAs in the PFC, whereas the intermittent administration increased n-6 PUFAs, SFAs and FAs compared to continuous administration. Meanwhile, continuous treatment reduced the expression of Fads1 and Elovl2, while intermittent treatment significantly upregulated them. This study discloses the novel findings that there was no significant difference in clozapine efficacy between continuous and intermittent administration, but intermittent treatment showed certain protective effects on phospholipid metabolism in the PFC.
Collapse
Affiliation(s)
- Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Nana Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Liwei Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China; National Clinical Research Center on Mental Disorders, Changsha, China.
| |
Collapse
|
2
|
Liu L, Tang L, Luo JM, Chen SY, Yi CY, Liu XM, Hu CH. Activation of the PERK-CHOP signaling pathway during endoplasmic reticulum stress contributes to olanzapine-induced dyslipidemia. Acta Pharmacol Sin 2024; 45:502-516. [PMID: 37880338 PMCID: PMC10834998 DOI: 10.1038/s41401-023-01180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Olanzapine (OLZ) is a widely prescribed antipsychotic drug with a relatively ideal effect in the treatment of schizophrenia (SCZ). However, its severe metabolic side effects often deteriorate clinical therapeutic compliance and mental rehabilitation. The peripheral mechanism of OLZ-induced metabolic disorders remains abstruse for its muti-target activities. Endoplasmic reticulum (ER) stress is implicated in cellular energy metabolism and the progression of psychiatric disorders. In this study, we investigated the role of ER stress in the development of OLZ-induced dyslipidemia. A cohort of 146 SCZ patients receiving OLZ monotherapy was recruited, and blood samples and clinical data were collected at baseline, and in the 4th week, 12th week, and 24th week of the treatment. This case-control study revealed that OLZ treatment significantly elevated serum levels of endoplasmic reticulum (ER) stress markers GRP78, ATF4, and CHOP in SCZ patients with dyslipidemia. In HepG2 cells, treatment with OLZ (25, 50 μM) dose-dependently enhanced hepatic de novo lipogenesis accompanied by SREBPs activation, and simultaneously triggered ER stress. Inhibition of ER stress by tauroursodeoxycholate (TUDCA) and 4-phenyl butyric acid (4-PBA) attenuated OLZ-induced lipid dysregulation in vitro and in vivo. Moreover, we demonstrated that activation of PERK-CHOP signaling during ER stress was a major contributor to OLZ-triggered abnormal lipid metabolism in the liver, suggesting that PERK could be a potential target for ameliorating the development of OLZ-mediated lipid dysfunction. Taken together, ER stress inhibitors could be a potentially effective intervention against OLZ-induced dyslipidemia in SCZ.
Collapse
Affiliation(s)
- Lu Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing, 400715, China
- School of Mental Health, North Sichuan Medical College, Nanchong, 637100, China
| | - Lei Tang
- School of Mental Health, North Sichuan Medical College, Nanchong, 637100, China
- Mental Health Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Jia-Ming Luo
- School of Mental Health, North Sichuan Medical College, Nanchong, 637100, China
- Mental Health Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Si-Yu Chen
- Affiliated Nanchong Psychosomatic Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Chun-Yan Yi
- Affiliated Nanchong Psychosomatic Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Xue-Mei Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing, 400715, China
| | - Chang-Hua Hu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing, 400715, China.
| |
Collapse
|
3
|
Pozzi M, Vantaggiato C, Brivio F, Orso G, Bassi MT. Olanzapine, risperidone and ziprasidone differently affect lysosomal function and autophagy, reflecting their different metabolic risk in patients. Transl Psychiatry 2024; 14:13. [PMID: 38191558 PMCID: PMC10774340 DOI: 10.1038/s41398-023-02686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
The metabolic effects induced by antipsychotics in vitro depend on their action on the trafficking and biosynthesis of sterols and lipids. Previous research showed that antipsychotics with different adverse effects in patients cause similar alterations in vitro, suggesting the low clinical usefulness of cellular studies. Moreover, the inhibition of peripheral AMPK was suggested as potential aetiopathogenic mechanisms of olanzapine, and different effects on autophagy were reported for several antipsychotics. We thus assessed, in clinically-relevant culture conditions, the aetiopathogenic mechanisms of olanzapine, risperidone and ziprasidone, antipsychotics with respectively high, medium, low metabolic risk in patients, finding relevant differences among them. We highlighted that: olanzapine impairs lysosomal function affecting autophagy and autophagosome clearance, and increasing intracellular lipids and sterols; ziprasidone activates AMPK increasing the autophagic flux and reducing intracellular lipids; risperidone increases lipid accumulation, while it does not affect lysosomal function. These in vitro differences align with their different impact on patients. We also provided evidence that metformin add-on improved autophagy in olanzapine-treated cells and reduced lipid accumulation induced by both risperidone and olanzapine in an AMPK-dependent way; metformin also increased the production of bile acids to eliminate cholesterol accumulations caused by olanzapine. These results have different clinical implications. We demonstrated that antipsychotics with different metabolic impacts on patients actually have different mechanisms of action, thus supporting the possibility of a personalised antipsychotic treatment. Moreover, we found that metformin can fully revert the phenotype caused by risperidone but not the one caused by olanzapine, that still activates SREBP2.
Collapse
Affiliation(s)
- Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy.
| | - Chiara Vantaggiato
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy
| | - Francesca Brivio
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy
| | - Maria Teresa Bassi
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy
| |
Collapse
|
4
|
Nadalin S, Zatković L, Peitl V, Karlović D, Vilibić M, Silić A, Dević Pavlić S, Buretić-Tomljanović A. An association between PPARα-L162V polymorphism and increased plasma LDL cholesterol levels after risperidone treatment. Prostaglandins Leukot Essent Fatty Acids 2024; 200:102604. [PMID: 38113727 DOI: 10.1016/j.plefa.2023.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) and antipsychotic medications both influence polyunsaturated fatty acids (PUFA) homeostasis, and thus PPARα polymorphism may be linked to antipsychotic treatment response. Here we investigated whether the functional leucine 162 valine (L162V) polymorphism in PPARα influenced antipsychotic treatment in a group of psychosis patients (N = 186), as well as in a patient subgroup with risperidone, paliperidone, or combination treatment (N = 65). Antipsychotic-naïve first-episode patients and nonadherent chronic individuals were genotyped by polymerase chain reaction analysis. At baseline, and after 8 weeks of treatment with various antipsychotic medications, we assessed the patients' Positive and Negative Syndrome Scale (PANSS) scores; PANSS factors; and metabolic syndrome-related parameters, including fasting plasma lipid and glucose levels, and body mass index. In the total patient group, PPARα polymorphism did not affect PANSS psychopathology or metabolic parameters. However, in the subgroup of patients with risperidone, paliperidone, or combination treatment, PPARα polymorphism influenced changes in plasma LDL cholesterol. Specifically, compared to PPARα-L162L homozygous patients, PPARα-L162V heterozygous individuals exhibited significantly higher increases of LDL cholesterol levels after antipsychotic treatment. The PPARα polymorphism had a strong effect size, but a relatively weak contribution to LDL cholesterol level variations (∼12.8 %).
Collapse
Affiliation(s)
- Sergej Nadalin
- Department of Psychiatry, General Hospital "Dr. Josip Benčević", Slavonski Brod, Croatia; School of Medicine, Catholic University of Croatia, Zagreb, Croatia.
| | - Lena Zatković
- Hospital Pharmacy, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Maja Vilibić
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ante Silić
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Sanja Dević Pavlić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Alena Buretić-Tomljanović
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
5
|
Feuer KL, Peng X, Yovo CK, Avramopoulos D. DPYSL2/CRMP2 isoform B knockout in human iPSC-derived glutamatergic neurons confirms its role in mTOR signaling and neurodevelopmental disorders. Mol Psychiatry 2023; 28:4353-4362. [PMID: 37479784 PMCID: PMC11138811 DOI: 10.1038/s41380-023-02186-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
The DPYSL2/CRMP2 gene encodes a microtubule-stabilizing protein crucial for neurogenesis and is associated with numerous psychiatric and neurodegenerative disorders including schizophrenia, bipolar disorder, and Alzheimer's disease. DPYSL2 generates multiple RNA and protein isoforms, but few studies have differentiated between them. We previously reported an association of a functional variant in the DPYSL2-B isoform with schizophrenia (SCZ) and demonstrated in HEK293 cells that this variant reduced the length of cellular projections and created transcriptomic changes that captured schizophrenia etiology by disrupting mTOR signaling-mediated regulation. In the present study, we follow up on these results by creating, to our knowledge, the first models of endogenous DPYSL2-B knockout in human induced pluripotent stem cells (iPSCs) and neurons. CRISPR/Cas9-faciliated knockout of DPYSL2-B in iPSCs followed by Ngn2-induced differentiation to glutamatergic neurons showed a reduction in DPYSL2-B/CRMP2-B RNA and protein with no observable impact on DPYSL2-A/CRMP2-A. The average length of dendrites in knockout neurons was reduced up to 58% compared to controls. Transcriptome analysis revealed disruptions in pathways highly relevant to psychiatric disease including mTOR signaling, cytoskeletal dynamics, immune function, calcium signaling, and cholesterol biosynthesis. We also observed a significant enrichment of the differentially expressed genes in SCZ-associated loci from genome-wide association studies (GWAS). Our findings expand our previous results to neuronal cells, clarify the functions of the human DPYSL2-B isoform and confirm its involvement in molecular pathologies shared between many psychiatric diseases.
Collapse
Affiliation(s)
- Kyra L Feuer
- Predoctoral Training Program in Human Genetics, McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xi Peng
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Christian K Yovo
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Błaszczyk M, Kozioł A, Palko-Łabuz A, Środa-Pomianek K, Wesołowska O. Modulators of cellular cholesterol homeostasis as antiproliferative and model membranes perturbing agents. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184163. [PMID: 37172710 DOI: 10.1016/j.bbamem.2023.184163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Cholesterol is an important component of mammalian cell membranes affecting their fluidity and permeability. Together with sphingomyelin, cholesterol forms microdomains, called lipid rafts. They play important role in signal transduction forming platforms for interaction of signal proteins. Altered levels of cholesterol are known to be strongly associated with the development of various pathologies (e.g., cancer, atherosclerosis and cardiovascular diseases). In the present work, the group of compounds that share the property of affecting cellular homeostasis of cholesterol was studied. It contained antipsychotic and antidepressant drugs, as well as the inhibitors of cholesterol biosynthesis, simvastatin, betulin, and its derivatives. All compounds were demonstrated to be cytotoxic to colon cancer cells but not to non-cancerous cells. Moreover, the most active compounds decreased the level of free cellular cholesterol. The interaction of drugs with raft-mimicking model membranes was visualized. All compounds reduced the size of lipid domains, however, only some affected their number and shape. Membrane interactions of betulin and its novel derivatives were characterized in detail. Molecular modeling indicated that high dipole moment and significant lipophilicity were characteristic for the most potent antiproliferative agents. The importance of membrane interactions of cholesterol homeostasis-affecting compounds, especially betulin derivatives, for their anticancer potency was suggested.
Collapse
Affiliation(s)
- Maria Błaszczyk
- Department of Biophysics and Neuroscience, Wroclaw Medical University, ul. Chalubinskiego 3a, 50-368 Wroclaw, Poland.
| | - Agata Kozioł
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Sklodowskiej-Curie 48/50, 50-369 Wroclaw, Poland.
| | - Anna Palko-Łabuz
- Department of Biophysics and Neuroscience, Wroclaw Medical University, ul. Chalubinskiego 3a, 50-368 Wroclaw, Poland.
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Wroclaw Medical University, ul. Chalubinskiego 3a, 50-368 Wroclaw, Poland.
| | - Olga Wesołowska
- Department of Biophysics and Neuroscience, Wroclaw Medical University, ul. Chalubinskiego 3a, 50-368 Wroclaw, Poland.
| |
Collapse
|
7
|
Horska K, Ruda-Kucerova J, Skrede S. GLP-1 agonists: superior for mind and body in antipsychotic-treated patients? Trends Endocrinol Metab 2022; 33:628-638. [PMID: 35902330 DOI: 10.1016/j.tem.2022.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
Antipsychotics (APDs) represent a core treatment for severe mental disorders (SMEs). Providing symptomatic relief, APDs do not exert therapeutic effects on another clinically significant domain of serious mental disorders, cognitive impairment. Moreover, adverse metabolic effects (diabetes, weight gain, dyslipidemia, and increased cardiovascular risk) are common during treatment with APDs. Among pharmacological candidates reversing APD-induced metabolic adverse effects, glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), approved for both diabetes and recently for obesity treatment, stand out due to their favorable effects on peripheral metabolic parameters. Interestingly, GLP-1 RAs are also proposed to have pro-cognitive effects. Particularly in terms of dual therapeutic mechanisms potentially improving both central nervous system (CNS) deficits and metabolic burden, GLP-1 RAs open a new perspective and assume a clinically advantageous position.
Collapse
Affiliation(s)
- Katerina Horska
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic; Department of Clinical Pharmacy, Hospital Pharmacy, University Hospital Brno, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Silje Skrede
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway; Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
8
|
Brown JS. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci Biobehav Rev 2022; 141:104809. [PMID: 35970416 DOI: 10.1016/j.neubiorev.2022.104809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Over a century ago, the phenothiazine dye, methylene blue, was discovered to have both antipsychotic and anti-cancer effects. In the 20th-century, the first phenothiazine antipsychotic, chlorpromazine, was found to inhibit cancer. During the years of elucidating the pharmacology of the phenothiazines, reserpine, an antipsychotic with a long historical background, was likewise discovered to have anti-cancer properties. Research on the effects of antipsychotics on cancer continued slowly until the 21st century when efforts to repurpose antipsychotics for cancer treatment accelerated. This review examines the history of these developments, and identifies which antipsychotics might treat cancer, and which cancers might be treated by antipsychotics. The review also describes the molecular mechanisms through which antipsychotics may inhibit cancer. Although the overlap of molecular pathways between schizophrenia and cancer have been known or suspected for many years, no comprehensive review of the subject has appeared in the psychiatric literature to assess the significance of these similarities. This review fills that gap and discusses what, if any, significance the similarities have regarding the etiology of schizophrenia.
Collapse
|
9
|
Wang X, Xiu M, Wang K, Su X, Li X, Wu F. Plasma linoelaidyl carnitine levels positively correlated with symptom improvement in olanzapine-treated first-episode drug-naïve schizophrenia. Metabolomics 2022; 18:50. [PMID: 35819637 DOI: 10.1007/s11306-022-01909-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Olanzapine (OLA) is one of the most commonly used second-generation antipsychotics for the treatment of schizophrenia. However, the heterogeneity of therapeutic response to OLA among schizophrenia patients deserves further exploration. The role of carnitine in the clinical response to OLA monotherapy remains unclear. OBJECTIVES The current study was designed to investigate whether carnitine and its derivatives are linked to the response to OLA treatment. Drug-naïve first-episode patients with schizophrenia were recruited and treated with OLA for 4 weeks. Psychiatric symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) in pre and post treatment. RESULTS After treatment, we found a significant decrease in 2-Octenoylcarnitine levels and a significant increase in linoelaidyl carnitine, 11Z-Octadecenylcarnitine and 9-Decenoylcarnitine levels. Furthermore, baseline linoelaidyl carnitine levels were correlated with the reduction of PANSS positive symptom subscore. Linear regression and logistic regression analyses found that the baseline linoelaidyl carnitine level was a predictive marker for the therapeutic response to OLA monotherapy for 4 weeks. CONCLUSION Our pilot study suggests that linoelaidyl carnitine levels at baseline may have a predictive role for the improvement of positive symptoms after OLA monotherapy in the patients with schizophrenia.
Collapse
Affiliation(s)
- Xuan Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Keqiang Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Xiuru Su
- Hebei Province Veterans Hospital, Baoding, China
| | - Xirong Li
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Liwan District, Guangzhou, 510370, China.
- Department of Biomedical Engineering, Guangzhou Medical University, Liwan District, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Liwan District, Guangzhou, 510370, China.
| |
Collapse
|
10
|
Androvičová R, Pfaus JG, Ovsepian SV. Estrogen pendulum in schizophrenia and Alzheimer's disease: Review of therapeutic benefits and outstanding questions. Neurosci Lett 2021; 759:136038. [PMID: 34116197 DOI: 10.1016/j.neulet.2021.136038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
Although produced largely in the periphery, gonadal steroids play a key role in regulating the development and functions of the central nervous system and have been implicated in several chronic neuropsychiatric disorders, with schizophrenia and Alzheimer's disease (AD) most prominent. Despite major differences in pathobiology and clinical manifestations, in both conditions, estrogen transpires primarily with protective effects, buffering the onset and progression of diseases at various levels. As a result, estrogen replacement therapy (ERT) emerges as one of the most widely discussed adjuvant interventions. In this review, we revisit evidence supporting the protective role of estrogen in schizophrenia and AD and consider putative cellular and molecular mechanisms. We explore the underlying functional processes relevant to the manifestation of these devastating conditions, with a focus on synaptic transmission and plasticity mechanisms. We discuss specific effects of estrogen deficit on neurotransmitter systems such as cholinergic, dopaminergic, serotoninergic, and glutamatergic. While the evidence from both, preclinical and clinical reports, in general, are supportive of the protective effects of estrogen from cognitive decline to synaptic pathology, numerous questions remain, calling for further research.
Collapse
Affiliation(s)
- Renáta Androvičová
- Department of Applied Neuroscience and Neuroimaging (RA) and Department of Experimental Neuroscience (SVO), National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic.
| | - James G Pfaus
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | - Saak V Ovsepian
- Department of Applied Neuroscience and Neuroimaging (RA) and Department of Experimental Neuroscience (SVO), National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
11
|
Das D, Peng X, Lam AT, Bader JS, Avramopoulos D. Transcriptome analysis of human induced excitatory neurons supports a strong effect of clozapine on cholesterol biosynthesis. Schizophr Res 2021; 228:324-326. [PMID: 33497908 PMCID: PMC7987755 DOI: 10.1016/j.schres.2020.12.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022]
Abstract
Antipsychotics are known to modulate dopamine and other neurotransmitters which is often thought to be the mechanism underlying their therapeutic effects. Nevertheless, other less studied consequences of antipsychotics on neuronal function may contribute to their efficacy. Revealing the complete picture behind their action is of paramount importance for precision medicine and accurate drug selection. Progress in cell engineering allows the generation of induced pluripotent stem cells (iPSCs) and their differentiation to a variety of neuronal types, providing new tools to study antipsychotics. Here we use excitatory cortical neurons derived from iPSCs to explore their response to therapeutic levels of Clozapine as measured by their transcriptomic output, a proxy for neuronal homeostasis. To our surprise, but in agreement with the results of many investigators studying glial-like cells, Clozapine had a very strong effect on cholesterol metabolism. More than a quarter (12) of all annotated cholesterol genes (46) in the genome were significantly changed at FDR < 0.1, all upregulated. This is a 35-fold enrichment with an adjusted p = 8 × 10-11. Notably no other functional category showed evidence of enrichment. Cholesterol is a major component of the neuronal membrane and myelin but it does not cross the blood brain barrier, it is produced locally mostly by glia but also by neurons. By singling out increased expression of cholesterol metabolism genes as the main response of cortical excitatory neurons to antipsychotics, our work supports the hypothesis that cholesterol metabolism may be a contributing mechanism to the beneficial effects of Clozapine and possibly other antipsychotics.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
| | - Xi Peng
- Department of Biomedical Engineering, Whiting School of Engineering and School of Medicine, Johns Hopkins University
| | - Anh-Thu Lam
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
| | - Joel S. Bader
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
| | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, United States of America; Department of Psychiatry, Johns Hopkins University School of Medicine, United States of America.
| |
Collapse
|
12
|
Zhang Q, He H, Bai X, Jiang L, Chen W, Zeng X, Li Y, Teixeira AL, Dai J. Unveiling the Metabolic Profile of First-Episode Drug-Naïve Schizophrenia Patients: Baseline Characteristics of a Longitudinal Study Among Han Chinese. Front Psychiatry 2021; 12:702720. [PMID: 34305687 PMCID: PMC8298856 DOI: 10.3389/fpsyt.2021.702720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: Metabolic and other medical conditions are frequently comorbid with schizophrenia. As they might be the side-effects of antipsychotic treatment, studying first-episode drug-naïve schizophrenia (FDSZ) provides a unique opportunity to investigate a direct pathogenic link between metabolic changes and schizophrenia. Here, we presented the methods and baseline unique metabolic profile of FDSZ patients without medical comorbidities unveiling subthreshold indices of metabolic disturbances. Method: Drug-naïve individuals diagnosed with schizophrenia but without any previous medical conditions were invited to participate in the study. Participants were submitted to structured psychiatric and cognitive assessments, laboratory and neuroimaging tests. Subjects will be followed after antipsychotic treatment at 6, 24 and 48 weeks. Results: During an 8-month-period, out of 103 patients presenting with first episode psychosis, 67 subjects (43.3% men, 56.7% women) were enrolled in the study. They had a mean ± SD age of 32.1 ± 8.7 years, with a mean BMI of 21.1 kg/m2 and 11.3 ± 3.6 years of schooling. Less than 1/3 reported a family history of mental illness. Upon laboratory assessment, 10.4%, 7.5%, and 11.9% of patients were identified with hyperhomocysteinemia, hypertriglyceridemia and hyperprolactinemia, respectively, with percentages of women relatively higher than men except for hypertriglyceridemia. Conclusions: First episode schizophrenia patients, especially women, present subclinical metabolic abnormalities, independent of antipsychotic treatment.
Collapse
Affiliation(s)
- Qi Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Forth People' s Hospital, Chengdu Mental Health Center, Chengdu, China
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Forth People' s Hospital, Chengdu Mental Health Center, Chengdu, China
| | - Xia Bai
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Forth People' s Hospital, Chengdu Mental Health Center, Chengdu, China
| | - Liping Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Forth People' s Hospital, Chengdu Mental Health Center, Chengdu, China
| | - Wei Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Forth People' s Hospital, Chengdu Mental Health Center, Chengdu, China
| | - Xiaoying Zeng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Forth People' s Hospital, Chengdu Mental Health Center, Chengdu, China.,Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yanjia Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Forth People' s Hospital, Chengdu Mental Health Center, Chengdu, China.,Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Jing Dai
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Forth People' s Hospital, Chengdu Mental Health Center, Chengdu, China
| |
Collapse
|
13
|
Cao B, Chen Y, McIntyre RS, Yan L. Acyl-Carnitine plasma levels and their association with metabolic syndrome in individuals with schizophrenia. Psychiatry Res 2020; 293:113458. [PMID: 32977055 DOI: 10.1016/j.psychres.2020.113458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023]
Abstract
The metabolic syndrome (MetS) affects individuals with schizophrenia at a higher rate when compared to individuals in the general population. Accumulating evidence indicated that subjects with MetS generally manifest elevated levels of acyl-carnitines, which are important carriers for transporting fatty acyl group. Abnormalities of acyl-carnitines in individuals with schizophrenia with or without MetS had not been sufficiently characterized. We conducted this post-hoc analysis with our published data to further evaluate the differences of 29 acyl-carnitines in 46 individuals with schizophrenia with MetS and 123 without MetS. The rate of MetS was 27.2% (46/169) in the individuals with schizophrenia. After FDR correction, the individuals with schizophrenia and MetS showed significantly higher levels of 17 plasma acyl-carnitines, compared to individuals without MetS. Eight acyl-carnitines (i.e., C3, C4, C5, C6: 1, C10: 1, C10: 2, C14: 2-OH, C16: 2-OH) were significantly different between two groups after adjusting for age and sex. The correlation analysis reported that acyl-carnitine concentrations have potential correlations with certain metabolic parameters. Our findings provide valuable new clues for exploring the roles of acyl-carnitines in the diagnosis and treatment of schizophrenia. More data and molecular biology evidences are needed to replicate our findings and elucidate relevant mechanisms.
Collapse
Affiliation(s)
- Bing Cao
- School of Psychology and Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Psychology Education, Southwest University, Chongqing 400715, China.
| | - Yan Chen
- Dalla Lana School of Public Health, University of Toronto. 155 College St., Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, P. R. China; Medical and Health Analysis Center, Peking University, Beijing 100191, P. R. China; Vaccine Research Center, School of Public Health, Peking University, Beijing 100191, P. R. China.
| |
Collapse
|
14
|
Effects of olanzapine treatment on lipid profiles in patients with schizophrenia: a systematic review and meta-analysis. Sci Rep 2020; 10:17028. [PMID: 33046806 PMCID: PMC7552389 DOI: 10.1038/s41598-020-73983-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Olanzapine-induced dyslipidemia significantly increases the risk of cardiovascular disease in patients with schizophrenia. However, the clinical features of olanzapine-induced dyslipidemia remain hitherto unclear because of inconsistencies in the literature. This meta-analysis thus investigated the effects of olanzapine treatment on lipid profiles among patients with schizophrenia. Studies of the effects of olanzapine on lipids were obtained through the PubMed, Web of science, The Cochrane Library and Embase databases (up to January 1, 2020). Twenty-one studies and 1790 schizophrenia patients who received olanzapine therapy were included in our analysis. An olanzapine-induced increase was observed in plasma triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels in patients with schizophrenia (all P < 0.05). Moreover, the time points analyzed included the following: baseline, 4 weeks, 6 weeks, 8 weeks, 12 weeks, and ≥ 24 weeks (data of ≥ 24 weeks were integrated). The significant elevation of TG, TC, and LDL-C was observed in patients with schizophrenia already by 4 weeks of olanzapine therapy (all P < 0.05), with no obvious changes observed in high-density lipoprotein cholesterol (HDL-C) (P > 0.05). In conclusion, olanzapine-induced dyslipidemia, characterized by increased TG, TC, and LDL-C levels, was observed in patients with schizophrenia already by 4 weeks of olanzapine treatment.
Collapse
|
15
|
Horska K, Kotolova H, Karpisek M, Babinska Z, Hammer T, Prochazka J, Stark T, Micale V, Ruda-Kucerova J. Metabolic profile of methylazoxymethanol model of schizophrenia in rats and effects of three antipsychotics in long-acting formulation. Toxicol Appl Pharmacol 2020; 406:115214. [PMID: 32866524 DOI: 10.1016/j.taap.2020.115214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022]
Abstract
Mortality in psychiatric patients with severe mental illnesses reaches a 2-3 times higher mortality rate compared to the general population, primarily due to somatic comorbidities. A high prevalence of cardiovascular morbidity can be attributed to the adverse metabolic effects of atypical antipsychotics (atypical APs), but also to metabolic dysregulation present in drug-naïve patients. The metabolic aspects of neurodevelopmental schizophrenia-like models are understudied. This study evaluated the metabolic phenotype of a methylazoxymethanol (MAM) schizophrenia-like model together with the metabolic effects of three APs [olanzapine (OLA), risperidone (RIS) and haloperidol (HAL)] administered via long-acting formulations for 8 weeks in female rats. Body weight, feed efficiency, serum lipid profile, gastrointestinal and adipose tissue-derived hormones (leptin, ghrelin, glucagon and glucagon-like peptide 1) were determined. The lipid profile was assessed in APs-naïve MAM and control cohorts of both sexes. Body weight was not altered by the MAM model, though cumulative food intake and feed efficiency was lowered in the MAM compared to CTR animals. The effect of the APs was also present; body weight gain was increased by OLA and RIS, while OLA induced lower weight gain in the MAM rats. Further, the MAM model showed lower abdominal adiposity, while OLA increased it. Serum lipid profile revealed MAM model-induced alterations in both sexes; total, HDL and LDL cholesterol levels were increased. The MAM model did not exert significant alterations in hormonal parameters except for elevation in leptin level. The results support intrinsic metabolic dysregulation in the MAM model in both sexes, but the MAM model did not manifest higher sensitivity to metabolic effects induced by antipsychotic treatment.
Collapse
Affiliation(s)
- Katerina Horska
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho trida 1946/1, 612 00 Brno, Czech Republic; Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 612 00 Brno, Czech Republic
| | - Hana Kotolova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho trida 1946/1, 612 00 Brno, Czech Republic; Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 612 00 Brno, Czech Republic
| | - Michal Karpisek
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho trida 1946/1, 612 00 Brno, Czech Republic; Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 612 00 Brno, Czech Republic; R&D Department, Biovendor - Laboratorni Medicina, Karasek 1, 621 00 Brno, Czech Republic
| | - Zuzana Babinska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Tomas Hammer
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho trida 1946/1, 612 00 Brno, Czech Republic; Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 612 00 Brno, Czech Republic
| | - Jiri Prochazka
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho trida 1946/1, 612 00 Brno, Czech Republic; Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 612 00 Brno, Czech Republic
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Department of Stress Neurobiology and Neurogenetics, Neuronal Plasticity Group, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, I-95123 Catania, Italy; National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
16
|
Seabra G, de Almeida V, Reis-de-Oliveira G, Crunfli F, Antunes ASLM, Martins-de-Souza D. Ubiquitin-proteasome system, lipid metabolism and DNA damage repair are triggered by antipsychotic medication in human oligodendrocytes: implications in schizophrenia. Sci Rep 2020; 10:12655. [PMID: 32724114 PMCID: PMC7387551 DOI: 10.1038/s41598-020-69543-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a chronic, severe and disabling psychiatric disorder, whose treatment is based on psychosocial interventions and the use of antipsychotic drugs. While the effects of these drugs are well elucidated in neuronal cells, they are still not so clear in oligodendrocytes, which play a vital role in schizophrenia. Thus, we aimed to characterize biochemical profiles by proteomic analyses of human oligodendrocytes (MO3.13) which were matured using a protocol we developed and treated with either haloperidol (a typical antipsychotic), clozapine (an atypical antipsychotic) or a clozapine + D-serine co-treatment, which has emerged lately as an alternative type of treatment. This was accomplished by employing shotgun proteomics, using nanoESI-LC-MS/MS label-free quantitation. Proteomic analysis revealed biochemical pathways commonly affected by all tested antipsychotics were mainly associated to ubiquitination, proteasome degradation, lipid metabolism and DNA damage repair. Clozapine and haloperidol treatments also affected proteins involved with the actin cytoskeleton and with EIF2 signaling. In turn, metabolic processes, especially the metabolism of nitrogenous compounds, were a predominant target of modulation of clozapine + D-serine treatment. In this context, we seek to contribute to the understanding of the biochemical and molecular mechanisms involved in the action of antipsychotics on oligodendrocytes, along with their possible implications in schizophrenia.
Collapse
Affiliation(s)
- Gabriela Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - André Saraiva Leão Marcelo Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
17
|
Smieszek SP, Przychodzen BP, Polymeropoulos MH. Amantadine disrupts lysosomal gene expression: A hypothesis for COVID19 treatment. Int J Antimicrob Agents 2020; 55:106004. [PMID: 32361028 PMCID: PMC7191300 DOI: 10.1016/j.ijantimicag.2020.106004] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
SARS-coronavirus 2 is the causal agent of the COVID-19 outbreak. SARS-Cov-2 entry into a cell is dependent upon binding of the viral spike (S) protein to cellular receptor and on cleavage of the spike protein by the host cell proteases such as Cathepsin L and Cathepsin B. CTSL/B are crucial elements of lysosomal pathway and both enzymes are almost exclusively located in the lysosomes. CTSL disruption offers potential for CoVID-19 therapies. The mechanisms of disruption include: decreasing expression of CTSL, direct inhibition of CTSL activity and affecting the conditions of CTSL environment (increase pH in the lysosomes). We have conducted a high throughput drug screen gene expression analysis to identify compounds that would downregulate the expression of CTSL/CTSB. One of the top significant results shown to downregulate the expression of the CTSL gene is amantadine (10uM). Amantadine was approved by the US Food and Drug Administration in 1968 as a prophylactic agent for influenza and later for Parkinson's disease. It is available as a generic drug. Amantadine in addition to downregulating CTSL appears to further disrupt lysosomal pathway, hence, interfering with the capacity of the virus to replicate. It acts as a lysosomotropic agent altering the CTSL functional environment. We hypothesize that amantadine could decrease the viral load in SARS-CoV-2 positive patients and as such it may serve as a potent therapeutic decreasing the replication and infectivity of the virus likely leading to better clinical outcomes. Clinical studies will be needed to examine the therapeutic utility of amantadine in COVID-19 infection.
Collapse
Affiliation(s)
- Sandra P Smieszek
- Vanda Pharmaceuticals, 2200 Pennsylvania NW, Suite 300-E, Washington, DC 20037, United States.
| | - Bart P Przychodzen
- Vanda Pharmaceuticals, 2200 Pennsylvania NW, Suite 300-E, Washington, DC 20037, United States
| | - Mihael H Polymeropoulos
- Vanda Pharmaceuticals, 2200 Pennsylvania NW, Suite 300-E, Washington, DC 20037, United States
| |
Collapse
|
18
|
Nadalin S, Jonovska S, Šendula Jengić V, Buretić-Tomljanović A. An association between niacin skin flush response and plasma triglyceride levels in patients with schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2020; 155:102084. [PMID: 32126479 DOI: 10.1016/j.plefa.2020.102084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/03/2020] [Accepted: 02/18/2020] [Indexed: 01/31/2023]
Abstract
The available data suggest that abnormalities of arachidonic acid-related signaling may be of relevance in attenuated niacin-induced flush responses and lipid and glucose metabolism disturbances, which are all common among individuals with schizophrenia. We previously demonstrated attenuated skin flush responses to niacin in patients with schizophrenia. Here we investigated whether these niacin responses might be associated with elevated plasma lipid and glucose concentrations in this patient group. We found that higher plasma triglyceride levels were associated with higher total volumetric niacin response (VNR) values and that the VNR accounted for ~14.2% of the variability in triglyceride levels. Triglyceride levels were significantly higher in patients with a positive niacin skin flush response compared to those with absent niacin skin flushing at the 5-minute interval with niacin concentrations of 0.1 and 0.01 M, and at the 10- and 15-minute intervals with a niacin concentration of 0.001 M.
Collapse
Affiliation(s)
- Sergej Nadalin
- Department of Medical Biology and Genetics, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.
| | | | | | - Alena Buretić-Tomljanović
- Department of Medical Biology and Genetics, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
19
|
Vantaggiato C, Panzeri E, Citterio A, Orso G, Pozzi M. Antipsychotics Promote Metabolic Disorders Disrupting Cellular Lipid Metabolism and Trafficking. Trends Endocrinol Metab 2019; 30:189-210. [PMID: 30718115 DOI: 10.1016/j.tem.2019.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
Antipsychotics frequently cause obesity and related metabolic disorders that current psychopharmacological/endocrinological theories do not explain consistently. An integrative/alternative theory implies metabolic alterations happening at the cellular level. Many observations in vitro and in vivo, and pivotal observations in humans, point towards chemical properties of antipsychotics, independent of receptor binding characteristics. Being amphiphilic weak bases, antipsychotics can disrupt lysosomal function, affecting cholesterol trafficking; moreover, by chemical mimicry, antipsychotics can inhibit cholesterol biosynthesis. These two molecular adverse effects may trigger a cascade of transcriptional and biochemical events, ultimately reducing available cholesterol while increasing cholesterol precursors and fatty acids. The macroscopic manifestation of these molecular alterations includes decreased high-density lipoprotein and increased very low-density lipoprotein and triglycerides that may translate into obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Elena Panzeri
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Andrea Citterio
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Genny Orso
- Department of Pharmacological Sciences, University of Padova (PD), 35131, Italy
| | - Marco Pozzi
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy.
| |
Collapse
|
20
|
Abstract
Background Impulsive aggression (IA) is considered a maladaptive form of aggression that is reactive and overt and occurs outside of the acceptable social context. Many children and adolescents with attention-deficit/hyperactivity disorder (ADHD) display clinically significant aggression, with the predominant subtype being IA. However, there is currently no Food and Drug Administration-approved medication specifically to treat IA. The pathophysiology of IA is not fully understood, although it has been suggested to include the dopamine, norepinephrine, and serotonin systems. Methods SPN-810 (extended-release molindone) is being developed for the novel indication of IA and is currently being studied in patients treated for ADHD. Molindone is an indole derivative and a dopamine D2 receptor antagonist. Results The in vitro pharmacological studies described in the current manuscript demonstrate that the active substance molindone (SPN-810M) is a potent antagonist for the dopamine receptors, D2S and D2L, and the serotonin receptor, 5-HT2B, at therapeutic concentrations. The in vitro studies further demonstrate that the antagonist effect of SPN-810M is due to the parent drug and not the metabolites, and that the antagonism is not affected by the presence of norepinephrine or dopamine neurotransmitters. In addition, studies investigating the potential differential effects of the enantiomers of SPN-810M have demonstrated that the R(−) enantiomer is more potent than S(+), showing greater regulatory effect on D2S and D2L receptors. Conclusion Overall, the results of the in vitro SPN-810M pharmacological studies provide some insight into how SPN-810M modulates the serotonin and dopamine pathways that play a role in IA.
Collapse
Affiliation(s)
- Chungping Yu
- Preclinical DMPK and Pharmacology, Supernus Pharmaceuticals, Inc., Rockville, MD, USA,
| | | |
Collapse
|
21
|
Huang J, Zhao D, Liu Z, Liu F. Repurposing psychiatric drugs as anti-cancer agents. Cancer Lett 2018; 419:257-265. [PMID: 29414306 DOI: 10.1016/j.canlet.2018.01.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/11/2023]
Abstract
Cancer is a major public health problem and one of the leading contributors to the global disease burden. The high cost of development of new drugs and the increasingly severe burden of cancer globally have led to increased interest in the search and development of novel, affordable anti-neoplastic medications. Antipsychotic drugs have a long history of clinical use and tolerable safety; they have been used as good targets for drug repurposing. Being used for various psychiatric diseases for decades, antipsychotic drugs are now reported to have potent anti-cancer properties against a wide variety of malignancies in addition to their antipsychotic effects. In this review, an overview of repurposing various psychiatric drugs for cancer treatment is presented, and the putative mechanisms for the anti-neoplastic actions of these antipsychotic drugs are reviewed.
Collapse
Affiliation(s)
- Jing Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China; Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, 410011, China; Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, 410011, China
| | - Danwei Zhao
- Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China.
| |
Collapse
|
22
|
Ghosh S, Dyer RA, Beasley CL. Evidence for altered cell membrane lipid composition in postmortem prefrontal white matter in bipolar disorder and schizophrenia. J Psychiatr Res 2017; 95:135-142. [PMID: 28843843 DOI: 10.1016/j.jpsychires.2017.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/24/2017] [Accepted: 08/09/2017] [Indexed: 11/30/2022]
Abstract
Brain imaging suggests that white matter abnormalities, including compromised white matter integrity in the frontal lobe, are shared across bipolar disorder (BD) and schizophrenia (SCZ). However, the precise molecular and cellular correlates remain to be elucidated. Given evidence for widespread alterations in cell membrane lipid composition in both disorders, we sought to investigate whether lipid composition is disturbed in frontal white matter in SCZ and BD. The phospholipids phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were quantified in white matter adjacent to the dorsolateral prefrontal cortex in subjects with BD (n = 34), SCZ (n = 35), and non-psychiatric controls (n = 35) using high-pressure liquid chromatography. Individual fatty acid species and plasmalogens were then quantified separately in PE and PC fractions by gas liquid chromatography. PC was significantly lower in the BD group, compared to controls. The fatty acids PE22:0, PE24:1 and PE20:2n6 were higher, and PC20:4n6, PE22:5n6 and PC22:5n6 lower in the BD group, relative to the control group. PE22:1 was higher and PC20:3n6, PE22:5n6 and PC22:5n6 lower in the SCZ group, compared to the control group. These data provide evidence for altered lipid composition in white matter in both BD and SCZ. Changes in white matter lipid composition could ultimately contribute to dysfunction of frontal white matter circuits in SCZ and BD.
Collapse
Affiliation(s)
- Sanjoy Ghosh
- Department of Biology, Irving K. Barber School of Arts & Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Roger A Dyer
- Nutrition and Metabolism Research Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
23
|
Chung YC, Cui Y, Sumiyoshi T, Kim MG, Lee KH. Associations of fatty acids with cognition, psychopathology, and brain-derived neurotrophic factor levels in patients with first-episode schizophrenia and related disorders treated with paliperidone extended release. J Psychopharmacol 2017; 31:1556-1563. [PMID: 28946784 DOI: 10.1177/0269881117731169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study assessed fatty acid and brain-derived neurotrophic factor levels in patients with first-episode schizophrenia and related disorders. The levels of erythrocyte fatty acids and plasma brain-derived neurotrophic factor were measured at baseline and week 8 after treatment with paliperidone extended release. Cognitive function was evaluated using the Cognitive Assessment Interview and the cognition subscale of the Neuroleptic-Induced Deficit Syndrome Scale. There were significant decreases in stearic acid and nervonic acid levels and a significant increase in eicosapentaenoic acid levels after eight weeks. At week 8, cognition was positively associated with dihomo-γ-linolenic acid, linoleic acid, and eicosapentaenoic acid levels, and negatively associated with nervonic acid levels. Psychopathology was positively correlated with polyunsaturated fatty acid levels, and negatively correlated with saturated fatty acid levels at week 8. At both baseline and week 8, brain-derived neurotrophic factor level had a negative association with polyunsaturated fatty acids and a positive association with saturated fatty acids and monounsaturated fatty acids. The present study demonstrated that fatty acids have significant associations with cognition and psychopathology at week 8, and with brain-derived neurotrophic factor levels at both baseline and week 8.
Collapse
Affiliation(s)
- Young-Chul Chung
- 1 Department of Psychiatry, Chonbuk National University Hospital, Jeonju, Korea.,4 Department of Psychiatry, Chonbuk National University Medical School, Jeonju, Korea
| | - Yin Cui
- 2 Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Korea.,4 Department of Psychiatry, Chonbuk National University Medical School, Jeonju, Korea
| | - Tomiki Sumiyoshi
- 5 Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Min-Gul Kim
- 6 Clinical Pharmacology Unit, Chonbuk National University Hospital, Jeonju, Korea.,7 Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Korea
| | - Keon-Hak Lee
- 8 Department of Psychiatry, Maeumsarang Hospital, Wanju, Korea
| |
Collapse
|
24
|
Snopov SA, Teryukova NP, Sakhenberg EI, Teplyashina VV, Nasyrova RF. Use of HepG2 cell line for evaluation of toxic and metabolic antipsychotic action. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s1990519x17050078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Korade Z, Genaro-Mattos TC, Tallman KA, Liu W, Garbett KA, Koczok K, Balogh I, Mirnics K, Porter NA. Vulnerability of DHCR7+/- mutation carriers to aripiprazole and trazodone exposure. J Lipid Res 2017; 58:2139-2146. [PMID: 28972118 DOI: 10.1194/jlr.m079475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Indexed: 12/20/2022] Open
Abstract
Smith-Lemli-Opitz syndrome is a recessive disorder caused by mutations in 7-dehydrocholesterol reductase (DHCR)7 with a heterozygous (HET) carrier frequency of 1-3%. A defective DHCR7 causes accumulation of 7-dehydrocholesterol (DHC), which is a highly oxidizable and toxic compound. Recent studies suggest that several antipsychotics, including the highly prescribed pharmaceuticals, aripiprazole (ARI) and trazodone (TRZ), increase 7-DHC levels in vitro and in humans. Our investigation was designed to compare the effects of ARI and TRZ on cholesterol (Chol) synthesis in fibroblasts from DHCR7+/- human carriers and controls (CTRs). Six matched pairs of fibroblasts were treated and their sterol profile analyzed by LC-MS. Significantly, upon treatment with ARI and TRZ, the total accumulation of 7-DHC was higher in DHCR7-HET cells than in CTR fibroblasts. The same set of experiments was repeated in the presence of 13C-lanosterol to determine residual Chol synthesis, revealing that ARI and TRZ strongly inhibit de novo Chol biosynthesis. The results suggest that DHCR7 carriers have increased vulnerability to both ARI and TRZ exposure compared with CTRs. Thus, the 1-3% of the population who are DHCR7 carriers may be more likely to sustain deleterious health consequences on exposure to compounds like ARI and TRZ that increase levels of 7-DHC, especially during brain development.
Collapse
Affiliation(s)
- Zeljka Korade
- Departments of Pediatrics and Biochemistry and Molecular Biology University of Nebraska Medical Center, Omaha, NE 68198
| | - Thiago C Genaro-Mattos
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| | - Keri A Tallman
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| | - Wei Liu
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| | | | - Katalin Koczok
- Department of Laboratory Medicine, Division of Clinical Genetics, University of Debrecen, Debrecen 4032, Hungary
| | - Istvan Balogh
- Department of Laboratory Medicine, Division of Clinical Genetics, University of Debrecen, Debrecen 4032, Hungary
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
26
|
Kriisa K, Leppik L, Balõtšev R, Ottas A, Soomets U, Koido K, Volke V, Innos J, Haring L, Vasar E, Zilmer M. Profiling of Acylcarnitines in First Episode Psychosis before and after Antipsychotic Treatment. J Proteome Res 2017; 16:3558-3566. [PMID: 28786289 DOI: 10.1021/acs.jproteome.7b00279] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acylcarnitines (ACs) have been shown to have a potential to activate pro-inflammatory signaling pathways and to foster the development of insulin resistance. The first task of the current study was to study the full list of ACs (from C2 to C18) in first episode psychosis (FEP) patients before and after antipsychotic treatment. The second task was to relate ACs to inflammatory and metabolic biomarkers established in the same patient cohort as in our previous studies. Serum levels of ACs were determined with the AbsoluteIDQ p180 kit (BIOCRATES Life Sciences AG, Innsbruck, Austria) using the flow injection analysis tandem mass spectrometry ([FIA]-MS/MS) as well as liquid chromatography ([LC]-MS/MS) technique. Identification and quantification of the metabolites was achieved using multiple reactions monitoring along with internal standards. The comparison of ACs in antipsychotic-naïve first-episode psychosis (FEP) patients (N = 38) and control subjects (CSs, N = 37) revealed significantly increased levels of long-chain ACs (LCACs) C14:1 (p = 0.0001), C16 (p = 0.00002), and C18:1 (p = 0.000001) in the patient group. These changes of LCACs were associated with augmented levels of CARN palmitoyltransferase 1 (CPT-1) (p = 0.006). By contrast, the level of short-chain AC (SCAC) C3 was significantly reduced (p = 0.00003) in FEP patients. Seven months of antipsychotic drug treatment ameliorated clinical symptoms in patients (N = 36) but increased significantly their body mass index (BMI, p = 0.001). These changes were accompanied by significantly reduced levels of C18:1 (p = 0.00003) and C18:2 (p = 0.0008) as well as increased level of C3 (p = 0.01). General linear model revealed the relation of LCACs (C16, C16:1, and C18:1) to the inflammatory markers (epidermal growth factor, IL-2, IL-4, IL-6), whereas SCAC C3 was linked to the metabolic markers (leptin, C-peptide) and BMI. FEP was associated with an imbalance of ACs in patients because the levels of several LCACs were significantly higher and the levels of several SCACs were significantly reduced compared with CSs. This imbalance was modified by 7 months of antipsychotic drug treatment, reversing the levels of both LCACs and SCACs to that established for CSs. This study supports the view that ACs have an impact on both inflammatory and metabolic alterations inherent for FEP.
Collapse
Affiliation(s)
- Kärt Kriisa
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| | - Liisa Leppik
- Psychiatry Clinic of Tartu University Hospital , 31 Raja Street, Tartu 50417, Estonia
| | - Roman Balõtšev
- Psychiatry Clinic of Tartu University Hospital , 31 Raja Street, Tartu 50417, Estonia
| | - Aigar Ottas
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| | - Ursel Soomets
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| | - Kati Koido
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| | - Vallo Volke
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| | - Jürgen Innos
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| | - Liina Haring
- Psychiatry Clinic of Tartu University Hospital , 31 Raja Street, Tartu 50417, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| | - Mihkel Zilmer
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| |
Collapse
|
27
|
Lack of association of SNPs from the FADS1-FADS2 gene cluster with major depression or suicidal behavior. Psychiatr Genet 2016; 26:81-6. [PMID: 26513616 DOI: 10.1097/ypg.0000000000000111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Fatty acid desaturase genes (FADS1-FADS2) encode desaturases participating in the biosynthesis of long-chain polyunsaturated fatty acids. As long-chain polyunsaturated fatty acids are implicated in major depressive disorder (MDD) and suicide risk, and as both are partly heritable, we studied the association of FADS1-FADS2 polymorphisms with MDD (635 cases, 480 controls) and suicide attempt status (291 attempters, 344 MDD nonattempters). Eighteen FADS-related single-nucleotide polymorphisms were genotyped from Caucasians enrolled in Madrid (n=791) or New York City (n=324) and entered as predictors into logistic regression analyses with diagnostic group or suicide attempt history as outcomes and location and sex as covariates. No associations were observed between any single-nucleotide polymorphisms and diagnosis or attempt status. As statistical power was adequate, we conclude that FADS1-FADS2 genetic variants may not be a common determinant of MDD.
Collapse
|
28
|
Korade Z, Kim HYH, Tallman KA, Liu W, Koczok K, Balogh I, Xu L, Mirnics K, Porter NA. The Effect of Small Molecules on Sterol Homeostasis: Measuring 7-Dehydrocholesterol in Dhcr7-Deficient Neuro2a Cells and Human Fibroblasts. J Med Chem 2016; 59:1102-15. [PMID: 26789657 DOI: 10.1021/acs.jmedchem.5b01696] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Well-established cell culture models were combined with new analytical methods to assess the effects of small molecules on the cholesterol biosynthesis pathway. The analytical protocol, which is based on sterol derivation with the dienolphile PTAD, was found to be reliable for the analysis of 7-DHC and desmosterol. The PTAD method was applied to the screening of a small library of pharmacologically active substances, and the effect of compounds on the cholesterol pathway was determined. Of some 727 compounds, over 30 compounds decreased 7-DHC in Dhcr7-deficient Neuro2a cells. The examination of chemical structures of active molecules in the screen grouped the compounds into distinct categories. In addition to statins, our screen found that SERMs, antifungals, and several antipsychotic medications reduced levels of 7-DHC. The activities of selected compounds were verified in human fibroblasts derived from Smith-Lemli-Opitz syndrome (SLOS) patients and linked to specific transformations in the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Zeljka Korade
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University , Nashville, Tennessee 37235, United States
| | | | | | | | - Katalin Koczok
- Department of Laboratory Medicine, Division of Clinical Genetics, University of Debrecen , Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Istvan Balogh
- Department of Laboratory Medicine, Division of Clinical Genetics, University of Debrecen , Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | | | - Karoly Mirnics
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Ned A Porter
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
29
|
Keinänen J, Mantere O, Kieseppä T, Mäntylä T, Torniainen M, Lindgren M, Sundvall J, Suvisaari J. Early insulin resistance predicts weight gain and waist circumference increase in first-episode psychosis--A one year follow-up study. Schizophr Res 2015; 169:458-463. [PMID: 26589392 DOI: 10.1016/j.schres.2015.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/03/2015] [Accepted: 11/02/2015] [Indexed: 01/13/2023]
Abstract
First-episode psychosis (FEP) is associated with weight gain during the first year of treatment, and risk of abdominal obesity is particularly increased. To identify early risk markers of weight gain and abdominal obesity, we investigated baseline metabolic differences in 60 FEP patients and 27 controls, and longitudinal changes during the first year of treatment in patients. Compared to controls at baseline, patients had higher low-density lipoprotein, triglyceride and apolipoprotein B levels, and lower levels of high-density lipoprotein and apolipoprotein A-I but no difference in body mass index or waist circumference. At 12-month follow-up, 60.6% of patients were overweight or obese and 58.8% had abdominal obesity. No significant increase during follow-up was seen in markers of glucose and lipid metabolism or blood pressure, but increase in C-reactive protein between baseline and 12-month follow-up was statistically significant. Weight increase was predicted by baseline insulin resistance and olanzapine use, while increase in waist circumference was predicted by baseline insulin resistance only. In conclusion, insulin resistance may be an early marker of increased vulnerability to weight gain and abdominal obesity in young adults with FEP. Olanzapine should be avoided as a first-line treatment in FEP due to the substantial weight increase it causes. In addition, the increase in the prevalence of overweight and abdominal obesity was accompanied by the emergence of low-grade systemic inflammation.
Collapse
Affiliation(s)
- Jaakko Keinänen
- Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland.
| | - Outi Mantere
- Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland; University of Helsinki and Helsinki University Hospital, Psychiatry, P.O. Box 590, FIN-00029, HUS, Helsinki, Finland.
| | - Tuula Kieseppä
- Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland; University of Helsinki and Helsinki University Hospital, Psychiatry, P.O. Box 590, FIN-00029, HUS, Helsinki, Finland.
| | - Teemu Mäntylä
- Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland; Department of Neuroscience and Biomedical Engineering and Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University School of Science; Institute of Behavioural Sciences, University of Helsinki, P.O. Box 9, FI-00014, University of Helsinki, Helsinki, Finland.
| | - Minna Torniainen
- Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland.
| | - Maija Lindgren
- Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland.
| | - Jouko Sundvall
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland.
| | - Jaana Suvisaari
- Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland.
| |
Collapse
|
30
|
A potential mechanism underlying atypical antipsychotics-induced lipid disturbances. Transl Psychiatry 2015; 5:e661. [PMID: 26485545 PMCID: PMC4930135 DOI: 10.1038/tp.2015.161] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/25/2015] [Accepted: 09/14/2015] [Indexed: 11/09/2022] Open
Abstract
Previous findings suggested that a four-protein complex, including sterol-regulatory element-binding protein (SREBP), SREBP-cleavage-activating protein (SCAP), insulin-induced gene (INSIG) and progesterone receptor membrane component 1 (PGRMC1), within the endoplasmic reticulum appears to be an important regulator responsible for atypical antipsychotic drug (AAPD)-induced lipid disturbances. In the present study, effects of typical antipsychotic drug and AAPDs as well as treatment outcome of steroid antagonist mifepristone (MIF) on the PGRMC1/INSIG/SCAP/SREBP pathway were investigated in rat liver using real-time quantitative polymerase chain reaction (qPCR) and western blot analysis. In addition, serum triacylglycerol, total cholesterol, free fatty acids and various hormones including progesterone, corticosterone and insulin were measured simultaneously. Following treatment with clozapine or risperidone, both lipogenesis and cholesterogenesis were enhanced via inhibition of PGRMC1/INSIG-2 and activation of SCAP/SREBP expressions. Such metabolic disturbances, however, were not demonstrated in rats treated with aripiprazole (ARI) or haloperidol (HAL). Moreover, the add-on treatment of MIF was effective in reversing the AAPD-induced lipid disturbances by upregulating the expression of PGRMC1/INSIG-2 and subsequent downregulation of SCAP/SREBP. Taken together, our findings suggest that disturbances in lipid metabolism can occur at an early stage of AAPD treatment before the presence of weight gain. Such metabolic defects can be modified by an add-on treatment of steroid antagonist MIF enhancing the PGRMC1 pathway. Thus, it is likely that PGRMC1/INSIG-2 signaling may be a therapeutic target for AAPD-induced weight gain.
Collapse
|
31
|
Gogos A, Sbisa AM, Sun J, Gibbons A, Udawela M, Dean B. A Role for Estrogen in Schizophrenia: Clinical and Preclinical Findings. Int J Endocrinol 2015; 2015:615356. [PMID: 26491441 PMCID: PMC4600562 DOI: 10.1155/2015/615356] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 12/30/2022] Open
Abstract
Gender differences in schizophrenia have been extensively researched and it is being increasingly accepted that gonadal steroids are strongly attributed to this phenomenon. Of the various hormones implicated, the estrogen hypothesis has been the most widely researched one and it postulates that estrogen exerts a protective effect by buffering females against the development and severity of the illness. In this review, we comprehensively analyse studies that have investigated the effects of estrogen, in particular 17β-estradiol, in clinical, animal, and molecular research with relevance to schizophrenia. Specifically, we discuss the current evidence on estrogen dysfunction in schizophrenia patients and review the clinical findings on the use of estradiol as an adjunctive treatment in schizophrenia patients. Preclinical research that has used animal models and molecular probes to investigate estradiol's underlying protective mechanisms is also substantially discussed, with particular focus on estradiol's impact on the major neurotransmitter systems implicated in schizophrenia, namely, the dopamine, serotonin, and glutamate systems.
Collapse
Affiliation(s)
- Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alyssa M. Sbisa
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jeehae Sun
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Andrew Gibbons
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Madhara Udawela
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Brian Dean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
32
|
Emsley R, Asmal L, Chiliza B, du Plessis S, Carr J, Kidd M, Malhotra AK, Vink M, Kahn RS. Changes in brain regions associated with food-intake regulation, body mass and metabolic profiles during acute antipsychotic treatment in first-episode schizophrenia. Psychiatry Res 2015; 233:186-93. [PMID: 26184461 DOI: 10.1016/j.pscychresns.2015.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/30/2014] [Accepted: 06/27/2015] [Indexed: 11/15/2022]
Abstract
We investigated whether morphological brain changes occurred in brain regions associated with body-weight homeostasis during acute antipsychotic treatment, and if so, whether they were related to changes in body mass and metabolic profile. Twenty-two antipsychotic-naive patients with first-episode schizophrenia received either risperidone long acting injection or flupenthixol decanoate over 13 weeks and were compared by structural MRI with 23 matched healthy volunteers at weeks 0, 4 and 13. Images were reconstructed using freesurfer fully-automated whole brain segmentation. The ventral diencephalon and prefrontal cortex were selected to represent the homeostatic and hedonic food intake regulatory systems respectively. Body mass was measured at weeks 0, 7 and 13 and fasting glucose and lipid profiles at weeks 0 and 13. Linear mixed effect models indicated significant group(⁎)time interactions for the ventral diencephalon volumes bilaterally. Ventral diencephalon volume reduction was strongly correlated bilaterally with body mass increase and HDL-cholesterol reductions, and unilaterally with blood glucose elevation. There were no significant changes in prefrontal cortical thickness. These findings implicate the ventral diencephalon, of which the hypothalamus is the main component, in the acute adipogenic and dyslipidaemic effects of antipsychotic medication.
Collapse
Affiliation(s)
- Robin Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, Cape Town, South Africa
| | - Laila Asmal
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, Cape Town, South Africa
| | - Bonginkosi Chiliza
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, Cape Town, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, Cape Town, South Africa
| | - Jonathan Carr
- Division of Neurology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Martin Kidd
- Centre for Statistical Consultation, Stellenbosch University, South Africa
| | - Anil K Malhotra
- Division of Psychiatric Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Matthijs Vink
- Department of Psychiatry, University Medical Centre Utrecht, The Netherlands
| | - Rene S Kahn
- Department of Psychiatry, University Medical Centre Utrecht, The Netherlands
| |
Collapse
|
33
|
Gonçalves P, Araújo JR, Martel F. Antipsychotics-induced metabolic alterations: focus on adipose tissue and molecular mechanisms. Eur Neuropsychopharmacol 2015; 25:1-16. [PMID: 25523882 DOI: 10.1016/j.euroneuro.2014.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/14/2014] [Accepted: 11/13/2014] [Indexed: 12/19/2022]
Abstract
The use of antipsychotic drugs for the treatment of mood disorders and psychosis has increased dramatically over the last decade. Despite its consumption being associated with beneficial neuropsychiatric effects in patients, atypical antipsychotics (which are the most frequently prescribed antipsychotics) use is accompanied by some secondary adverse metabolic effects such as weight gain, dyslipidemia and glucose intolerance. The molecular mechanisms underlying these adverse effects are not fully understood but have been suggested to involve a dysregulation of adipose tissue homeostasis. As such, the aim of this paper is to review and discuss the role of adipose tissue in the development of secondary adverse metabolic effects induced by atypical antipsychotics. Data analyzed in this article suggest that atypical antipsychotics may increase adipose tissue (particularly visceral adipose tissue) lipogenesis, differentiation/hyperplasia, pro-inflammatory mediator secretion and insulin resistance and decrease adipose tissue lipolysis. Consequently, patients receiving antipsychotic medication could be at risk of developing obesity, type 2 diabetes and cardiovascular disease. A better knowledge of the impact of these drugs on adipose tissue homeostasis may unveil strategies to develop novel antipsychotic drugs with less adverse metabolic effects and to develop adjuvant therapies (e.g. behavioral and nutritional therapies) to neuropsychiatric patients receiving antipsychotic medication.
Collapse
Affiliation(s)
- Pedro Gonçalves
- INSERM (French Institute of Health and Medical Research), Unit 1151, INEM (Research Center in Molecular Medicine), Faculty of Medicine of Paris Descartes University, Paris, France
| | - João Ricardo Araújo
- INSERM (French Institute of Health and Medical Research), Unit 786, Molecular Microbial Pathogenesis Unit, Institut Pasteur, Paris, France
| | - Fátima Martel
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
34
|
Nadalin S, Giacometti J, Buretić-Tomljanović A. PPARα-L162V polymorphism is not associated with schizophrenia risk in a Croatian population. Prostaglandins Leukot Essent Fatty Acids 2014; 91:221-5. [PMID: 25087592 DOI: 10.1016/j.plefa.2014.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/18/2014] [Accepted: 07/04/2014] [Indexed: 12/24/2022]
Abstract
Disturbances of lipid and glucose metabolism have been repeatedly reported in schizophrenia. A functional L162V polymorphism in peroxisome proliferator-activated receptor alpha (PPARα) gene has been extensively investigated in etiology of abnormal lipid and glucose metabolism, yet not in schizophrenia. We determined whether the schizophrenia risk was associated with L162V polymorphism and we examined the impact of L162V variant on age of onset, and data of psychopathology scores. We also hypothesized that plasma glucose and lipid concentrations in patients may be influenced by L162V polymorphism. Genotype and allele frequencies between 203 patients and 191 controls did not differ significantly. Females heterozygous for the PPARα genotype (L162V) manifested significantly lower negative symptom scores, tended toward an earlier onset, and had significantly greater triglyceride levels. The PPARα-L162V polymorphism is not associated with schizophrenia risk in Croatian population, but it impacts clinical expression of the illness and plasma lipid concentrations in female patients.
Collapse
Affiliation(s)
- S Nadalin
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - J Giacometti
- Department of Biotechnology, University of Rijeka, Slavka Krautzeka bb, 51000 Rijeka, Croatia
| | - A Buretić-Tomljanović
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.
| |
Collapse
|
35
|
Klemettilä JP, Kampman O, Seppälä N, Viikki M, Hämäläinen M, Moilanen E, Mononen N, Lehtimäki T, Leinonen E. Association study of the HTR2C, leptin and adiponectin genes and serum marker analyses in clozapine treated long-term patients with schizophrenia. Eur Psychiatry 2014; 30:296-302. [PMID: 25284335 DOI: 10.1016/j.eurpsy.2014.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/15/2014] [Accepted: 08/20/2014] [Indexed: 02/08/2023] Open
Abstract
Clozapine treatment is associated with weight gain and cardio-metabolic consequences among patients with schizophrenia. Polymorphisms of leptin, serotonin receptor HTR2C and adiponectin genes have been associated with antipsychotic-induced weight gain and metabolic comorbidity. However, the results of the studies so far are inconclusive. The aim of the present study was first to test for a possible role of serum leptin and adiponectin levels as a marker of weight gain in association with inflammatory cytokines/adipokines (IL-6, IL-1Ra, hs-CRP and adipsin), and second to study associations between SNPs LEP rs7799039 (-2548 A/G), ADIPOQ rs1501299 and HTR2C rs1414334 and weight gain and levels of leptin and adiponectin, in 190 patients with schizophrenia on clozapine treatment, with retrospectively assessed weight change and cross-sectionally measured cytokine levels. A strong association was found between serum levels of leptin and weight gain and cytokines/adipokines related to metabolic comorbidity, especially among female patients (in women leptin vs. weight gain, IL-6 and IL-1Ra, P<0.001; in men leptin vs. weight gain, P=0.026, leptin vs. IL-1Ra, P<0.001). In male patients low adiponectin level was a more specific marker of clozapine-induced weight gain (P=0.037). The results of the present study do not support a major role of SNPs LEP rs7799039, ADIPOQ rs1501299 and HTR2C rs1414334 in the regulation of weight gain or association of serum levels of leptin and adiponectin and corresponding studied SNPs in patients with schizophrenia on clozapine treatment.
Collapse
Affiliation(s)
- J-P Klemettilä
- Department of Psychiatry, Pitkäniemi Hospital, Tampere University Hospital, 33380 Pitkäniemi, Finland.
| | - O Kampman
- School of Medicine, University of Tampere, 33014 Tampere, Finland; Department of Psychiatry, Seinäjoki Hospital District, 60220 Seinäjoki, Finland
| | - N Seppälä
- Department of Psychiatry, Satakunta Hospital District, 28500 Pori, Finland
| | - M Viikki
- School of Medicine, University of Tampere, 33014 Tampere, Finland; Tampere Mental Health Centre, Hallituskatu 8B, 33200 Tampere, Finland
| | - M Hämäläinen
- The Immunopharmacology Research Group, School of Medicine, University of Tampere and Tampere University Hospital, 33014 Tampere, Finland
| | - E Moilanen
- The Immunopharmacology Research Group, School of Medicine, University of Tampere and Tampere University Hospital, 33014 Tampere, Finland
| | - N Mononen
- Fimlab Laboratories, Department of Clinical Chemistry, School of Medicine, University of Tampere, 33014 Tampere, Finland
| | - T Lehtimäki
- Fimlab Laboratories, Department of Clinical Chemistry, School of Medicine, University of Tampere, 33014 Tampere, Finland
| | - E Leinonen
- Department of Psychiatry, Pitkäniemi Hospital, Tampere University Hospital, 33380 Pitkäniemi, Finland; School of Medicine, University of Tampere, 33014 Tampere, Finland
| |
Collapse
|
36
|
Ravindranath AC, Perualila-Tan N, Kasim A, Drakakis G, Liggi S, Brewerton SC, Mason D, Bodkin MJ, Evans DA, Bhagwat A, Talloen W, Göhlmann HWH, Shkedy Z, Bender A. Connecting gene expression data from connectivity map and in silico target predictions for small molecule mechanism-of-action analysis. MOLECULAR BIOSYSTEMS 2014; 11:86-96. [PMID: 25254964 DOI: 10.1039/c4mb00328d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Integrating gene expression profiles with certain proteins can improve our understanding of the fundamental mechanisms in protein-ligand binding. This paper spotlights the integration of gene expression data and target prediction scores, providing insight into mechanism of action (MoA). Compounds are clustered based upon the similarity of their predicted protein targets and each cluster is linked to gene sets using Linear Models for Microarray Data. MLP analysis is used to generate gene sets based upon their biological processes and a qualitative search is performed on the homogeneous target-based compound clusters to identify pathways. Genes and proteins were linked through pathways for 6 of the 8 MCF7 and 6 of the 11 PC3 clusters. Three compound clusters are studied; (i) the target-driven cluster involving HSP90 inhibitors, geldanamycin and tanespimycin induces differential expression for HSP90-related genes and overlap with pathway response to unfolded protein. Gene expression results are in agreement with target prediction and pathway annotations add information to enable understanding of MoA. (ii) The antipsychotic cluster shows differential expression for genes LDLR and INSIG-1 and is predicted to target CYP2D6. Pathway steroid metabolic process links the protein and respective genes, hypothesizing the MoA for antipsychotics. A sub-cluster (verepamil and dexverepamil), although sharing similar protein targets with the antipsychotic drug cluster, has a lower intensity of expression profile on related genes, indicating that this method distinguishes close sub-clusters and suggests differences in their MoA. Lastly, (iii) the thiazolidinediones drug cluster predicted peroxisome proliferator activated receptor (PPAR) PPAR-alpha, PPAR-gamma, acyl CoA desaturase and significant differential expression of genes ANGPTL4, FABP4 and PRKCD. The targets and genes are linked via PPAR signalling pathway and induction of apoptosis, generating a hypothesis for the MoA of thiazolidinediones. Our analysis show one or more underlying MoA for compounds and were well-substantiated with literature.
Collapse
Affiliation(s)
- Aakash Chavan Ravindranath
- Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Systems biology strategies to study lipidomes in health and disease. Prog Lipid Res 2014; 55:43-60. [DOI: 10.1016/j.plipres.2014.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 12/14/2022]
|
38
|
Goudriaan A, de Leeuw C, Ripke S, Hultman CM, Sklar P, Sullivan PF, Smit AB, Posthuma D, Verheijen MHG. Specific glial functions contribute to schizophrenia susceptibility. Schizophr Bull 2014; 40:925-35. [PMID: 23956119 PMCID: PMC4059439 DOI: 10.1093/schbul/sbt109] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schizophrenia is a highly polygenic brain disorder. The main hypothesis for disease etiology in schizophrenia primarily focuses on the role of dysfunctional synaptic transmission. Previous studies have therefore directed their investigations toward the role of neuronal dysfunction. However, recent studies have shown that apart from neurons, glial cells also play a major role in synaptic transmission. Therefore, we investigated the potential causal involvement of the 3 principle glial cell lineages in risk to schizophrenia. We performed a functional gene set analysis to test for the combined effects of genetic variants in glial type-specific genes for association with schizophrenia. We used genome-wide association data from the largest schizophrenia sample to date, including 13 689 cases and 18 226 healthy controls. Our results show that astrocyte and oligodendrocyte gene sets, but not microglia gene sets, are associated with an increased risk for schizophrenia. The astrocyte and oligodendrocyte findings are related to astrocyte signaling at the synapse, myelin membrane integrity, glial development, and epigenetic control. Together, these results show that genetic alterations underlying specific glial cell type functions increase susceptibility to schizophrenia and provide evidence that the neuronal hypothesis of schizophrenia should be extended to include the role of glia.
Collapse
Affiliation(s)
- Andrea Goudriaan
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands;
| | - Christiaan de Leeuw
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands; Institute for Computing and Information Sciences, Radboud University, Nijmegen, the Netherlands
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Pamela Sklar
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Center for Psychiatric Genomics, Department of Genetics, University of North Carolina, Chapel Hill, NC
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands
| | - Danielle Posthuma
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands;
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands
| |
Collapse
|
39
|
Abstract
Antipsychotic drugs (APDs) can have a profound effect on the human body that extends well beyond our understanding of their neuropsychopharmacology. Some of these effects manifest themselves in peripheral blood lymphocytes, and in some cases, particularly in clozapine treatment, result in serious complications. To better understand the molecular biology of APD action in lymphocytes, we investigated the influence of chlorpromazine, haloperidol and clozapine in vitro, by microarray-based gene and microRNA (miRNA) expression analysis. JM-Jurkat T-lymphocytes were cultured in the presence of the APDs or vehicle alone over 2 wk to model the early effects of APDs on expression. Interestingly both haloperidol and clozapine appear to regulate the expression of a large number of genes. Functional analysis of APD-associated differential expression revealed changes in genes related to oxidative stress, metabolic disease and surprisingly also implicated pathways and biological processes associated with neurological disease consistent with current understanding of the activity of APDs. We also identified miRNA-mRNA interaction associated with metabolic pathways and cell death/survival, all which could have relevance to known side effects of APDs. These results indicate that APDs have a significant effect on expression in peripheral tissue that relate to both known mechanisms as well as poorly characterized side effects.
Collapse
|
40
|
Foley DL, Mackinnon A. A systematic review of antipsychotic drug effects on human gene expression related to risk factors for cardiovascular disease. THE PHARMACOGENOMICS JOURNAL 2014; 14:446-51. [DOI: 10.1038/tpj.2014.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/22/2014] [Accepted: 01/31/2014] [Indexed: 11/09/2022]
|
41
|
Baloyianni N, Tsangaris GT. The audacity of proteomics: a chance to overcome current challenges in schizophrenia research. Expert Rev Proteomics 2014; 6:661-74. [DOI: 10.1586/epr.09.85] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Foley DL. A hypothesized mechanism for the cardiovascular risk associated with antipsychotic drug exposure and a potential preventive treatment. Mol Psychiatry 2014; 19:12-3. [PMID: 23247075 DOI: 10.1038/mp.2012.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- D L Foley
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
43
|
Foley DL, Mackinnon A, Watts GF, Shaw JE, Magliano DJ, Castle DJ, McGrath JJ, Waterreus A, Morgan VA, Galletly CA. Cardiometabolic risk indicators that distinguish adults with psychosis from the general population, by age and gender. PLoS One 2013; 8:e82606. [PMID: 24367528 PMCID: PMC3867369 DOI: 10.1371/journal.pone.0082606] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/05/2013] [Indexed: 11/29/2022] Open
Abstract
Individuals with psychosis are more likely than the general community to develop obesity and to die prematurely from heart disease. Interventions to improve cardiovascular outcomes are best targeted at the earliest indicators of risk, at the age they first emerge. We investigated which cardiometabolic risk indicators distinguished those with psychosis from the general population, by age by gender, and whether obesity explained the pattern of observed differences. Data was analyzed from an epidemiologically representative sample of 1,642 Australians with psychosis aged 18–64 years and a national comparator sample of 8,866 controls aged 25–64 years from the general population. Cubic b-splines were used to compare cross sectional age trends by gender for mean waist circumference, body mass index [BMI], blood pressure, fasting blood glucose, triglycerides, LDL, HDL, and total cholesterol in our psychosis and control samples. At age 25 individuals with psychosis had a significantly higher mean BMI, waist circumference, triglycerides, glucose [women only], and diastolic blood pressure and significantly lower HDL-cholesterol than controls. With the exception of triglycerides at age 60+ in men, and glucose in women at various ages, these differences were present at every age. Differences in BMI and waist circumference between samples, although dramatic, could not explain all differences in diastolic blood pressure, HDL-cholesterol or triglycerides but did explain differences in glucose. Psychosis has the hallmarks of insulin resistance by at least age 25. The entire syndrome, not just weight, should be a focus of intervention to reduce mortality from cardiovascular disease.
Collapse
Affiliation(s)
- Debra L. Foley
- Orygen Youth Health Research Centre and Centre for Youth Mental Health, University of Melbourne, VIC Australia
- * E-mail:
| | - Andrew Mackinnon
- Orygen Youth Health Research Centre and Centre for Youth Mental Health, University of Melbourne, VIC Australia
| | - Gerald F. Watts
- Lipid Disorders Clinic, Metabolic Research Centre and Department of Internal Medicine, Royal Perth Hospital & School of Medicine and Pharmacology, University of Western Australia, WA Australia
| | - Jonathan E. Shaw
- Department of Clinical Diabetes and Epidemiology, Baker IDI Heart and Diabetes Institute, Melbourne, VIC Australia
| | - Dianna J. Magliano
- Department of Clinical Diabetes and Epidemiology, Baker IDI Heart and Diabetes Institute, Melbourne, VIC Australia
| | - David J. Castle
- St Vincent's Hospital, Melbourne & Department of Psychiatry, University of Melbourne, VIC Australia
| | - John J. McGrath
- Queensland Brain Institute, University of Queensland & Queensland Centre for Mental Health Research, The Park Centre for Mental Health, QLD Australia
| | - Anna Waterreus
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, WA Australia
| | - Vera A. Morgan
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, WA Australia
| | - Cherrie A. Galletly
- Discipline of Psychiatry, School of Medicine, University of Adelaide & Ramsay Health Care, Mental Health Services & Northern Adelaide Local Health Network, SA Australia
| |
Collapse
|
44
|
Canfrán-Duque A, Casado ME, Pastor O, Sánchez-Wandelmer J, de la Peña G, Lerma M, Mariscal P, Bracher F, Lasunción MA, Busto R. Atypical antipsychotics alter cholesterol and fatty acid metabolism in vitro. J Lipid Res 2012; 54:310-24. [PMID: 23175778 DOI: 10.1194/jlr.m026948] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Haloperidol, a typical antipsychotic, has been shown to inhibit cholesterol biosynthesis by affecting Δ(7)-reductase, Δ(8,7)-isomerase, and Δ(14)-reductase activities, which results in the accumulation of different sterol intermediates. In the present work, we investigated the effects of atypical or second-generation antipsychotics (SGA), such as clozapine, risperidone, and ziprasidone, on intracellular lipid metabolism in different cell lines. All the SGAs tested inhibited cholesterol biosynthesis. Ziprasidone and risperidone had the same targets as haloperidol at inhibiting cholesterol biosynthesis, although with different relative activities (ziprasidone > haloperidol > risperidone). In contrast, clozapine mainly affected Δ(24)-reductase and Δ(8,7)-isomerase activities. These amphiphilic drugs also interfered with the LDL-derived cholesterol egress from the endosome/lysosome compartment, thus further reducing the cholesterol content in the endoplasmic reticulum. This triggered a homeostatic response with the stimulation of sterol regulatory element-binding protein (SREBP)-regulated gene expression. Treatment with SGAs also increased the synthesis of complex lipids (phospholipids and triacylglycerides). Once the antipsychotics were removed from the medium, a rebound in the cholesterol biosynthesis rate was detected, and the complex-lipid synthesis further increased. In this condition, apolipoprotein B secretion was also stimulated as demonstrated in HepG2 cells. These effects of SGAs on lipid homeostasis may be relevant in the metabolic side effects of antipsychotics, especially hypertriglyceridemia.
Collapse
Affiliation(s)
- Alberto Canfrán-Duque
- Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
McNamara RK, Magrisso IJ, Hofacer R, Jandacek R, Rider T, Tso P, Benoit SC. Omega-3 fatty acid deficiency augments risperidone-induced hepatic steatosis in rats: positive association with stearoyl-CoA desaturase. Pharmacol Res 2012; 66:283-91. [PMID: 22750665 DOI: 10.1016/j.phrs.2012.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 01/22/2023]
Abstract
Psychiatric patients frequently exhibit long-chain n-3 (LCn-3) fatty acid deficits and elevated triglyceride (TAG) production following chronic exposure to second generation antipsychotics (SGAs). Emerging evidence suggests that SGAs and LCn-3 fatty acids have opposing effects on stearoyl-CoA desaturase-1 (SCD1), which plays a pivotal role in TAG biosynthesis. Here we evaluated whether low LCn-3 fatty acid status would augment elevations in rat liver and plasma TAG concentrations following chronic treatment with the SGA risperidone (RSP), and evaluated relationships with hepatic SCD1 expression and activity indices. In rats maintained on the n-3 fatty acid-fortified (control) diet, chronic RSP treatment significantly increased liver SCD1 mRNA and activity indices (18:1/18:0 and 16:1/16:0 ratios), and significantly increased liver, but not plasma, TAG concentrations. Rats maintained on the n-3 deficient diet exhibited significantly lower liver and erythrocyte LCn-3 fatty acid levels, and associated elevations in LCn-6/LCn-3 ratio. In n-3 deficient rats, RSP-induced elevations in liver SCD1 mRNA and activity indices (18:1/18:0 and 16:1/16:0 ratios) and liver and plasma TAG concentrations were significantly greater than those observed in RSP-treated controls. Plasma glucose levels were not altered by diet or RSP, and body weight was lower in RSP- and VEH-treated n-3 deficient rats. These preclinical data support the hypothesis that low n-3 fatty acid status exacerbates RSP-induced hepatic steatosis by augmenting SCD1 expression and activity.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Sun J, Xu H, Zhao Z. Network-Assisted Investigation of Antipsychotic Drugs and Their Targets. Chem Biodivers 2012; 9:900-10. [DOI: 10.1002/cbdv.201100356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Stocks JD, Taneja BK, Baroldi P, Findling RL. A phase 2a randomized, parallel group, dose-ranging study of molindone in children with attention-deficit/hyperactivity disorder and persistent, serious conduct problems. J Child Adolesc Psychopharmacol 2012; 22:102-11. [PMID: 22372512 DOI: 10.1089/cap.2011.0087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To evaluate safety and tolerability of four doses of immediate-release molindone hydrochloride in children with attention-deficit/hyperactivity disorder (ADHD) and serious conduct problems. METHODS This open-label, parallel-group, dose-ranging, multicenter trial randomized children, aged 6-12 years, with ADHD and persistent, serious conduct problems to receive oral molindone thrice daily for 9-12 weeks in four treatment groups: Group 1-10 mg (5 mg if weight <30 kg), group 2-20 mg (10 mg if <30 kg), group 3-30 mg (15 mg if <30 kg), and group 4-40 mg (20 mg if <30 kg). The primary outcome measure was to evaluate safety and tolerability of molindone in children with ADHD and serious conduct problems. Secondary outcome measures included change in Nisonger Child Behavior Rating Form-Typical Intelligence Quotient (NCBRF-TIQ) Conduct Problem subscale scores, change in Clinical Global Impressions-Severity (CGI-S) and -Improvement (CGI-I) subscale scores from baseline to end point, and Swanson, Nolan, and Pelham rating scale-revised (SNAP-IV) ADHD-related subscale scores. RESULTS The study randomized 78 children; 55 completed the study. Treatment with molindone was generally well tolerated, with no clinically meaningful changes in laboratory or physical examination findings. The most common treatment-related adverse events (AEs) included somnolence (n=9), weight increase (n=8), akathisia (n=4), sedation (n=4), and abdominal pain (n=4). Mean weight increased by 0.54 kg, and mean body mass index by 0.24 kg/m(2). The incidence of AEs and treatment-related AEs increased with increasing dose. NCBRF-TIQ subscale scores improved in all four treatment groups, with 34%, 34%, 32%, and 55% decreases from baseline in groups 1, 2, 3, and 4, respectively. CGI-S and SNAP-IV scores improved over time in all treatment groups, and CGI-I scores improved to the greatest degree in group 4. CONCLUSIONS Molindone at doses of 5-20 mg/day (children weighing <30 kg) and 20-40 mg (≥ 30 kg) was well tolerated, and preliminary efficacy results suggest that molindone produces dose-related behavioral improvements over 9-12 weeks. Additional double-blind, placebo-controlled trials are needed to further investigate molindone in this pediatric population.
Collapse
|
48
|
LICAMELE LOUIS, GETOOR LISE. A METHOD FOR THE DETECTION OF MEANINGFUL AND REPRODUCIBLE GROUP SIGNATURES FROM GENE EXPRESSION PROFILES. J Bioinform Comput Biol 2011; 9:431-51. [DOI: 10.1142/s0219720011005598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 11/18/2022]
Abstract
Gene expression microarrays are commonly used to detect the biological signature of a disease or to gain a better understanding of the underlying mechanism of how a group of drugs treat a specific disease. The outcome of such experiments, e.g. the signature, is a list of differentially expressed genes. Reproducibility across independent experiments remains a challenge. We are interested in creating a method that can detect the shared signature of a group of expression profiles, e.g. a group of samples from individuals with the same disease or a group of drugs that treat the same therapeutic indication. We have developed a novel Weighted Influence — Rank of Ranks (WIMRR) method, and we demonstrate its ability to produce both meaningful and reproducible group signatures.
Collapse
Affiliation(s)
- LOUIS LICAMELE
- Computer Science Department, University of Maryland, AV Williams Bldg, Rm 3228, College Park, Maryland 20742, USA
- Informatics Department, Vanda Pharmaceuticals Inc, 9605 Medical Center Drive, Suite 300, Rockville, Maryland 20850, USA
| | - LISE GETOOR
- Computer Science Department, University of Maryland, AV Williams Bldg, Rm 3228, College Park, Maryland 20742, USA
| |
Collapse
|
49
|
Xuan J, Pan G, Qiu Y, Yang L, Su M, Liu Y, Chen J, Feng G, Fang Y, Jia W, Xing Q, He L. Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J Proteome Res 2011; 10:5433-43. [PMID: 22007635 DOI: 10.1021/pr2006796] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite recent advances in understanding the pathophysiology of schizophrenia and the mechanisms of antipsychotic drug action, the development of biomarkers for diagnosis and therapeutic monitoring in schizophrenia remains challenging. Metabolomics provides a powerful approach to discover diagnostic and therapeutic biomarkers by analyzing global changes in an individual's metabolic profile in response to pathophysiological stimuli or drug intervention. In this study, we performed gas chromatography-mass spectrometry based metabolomic profiling in serum of unmedicated schizophrenic patients before and after an 8-week risperidone monotherapy, to detect potential biomarkers associated with schizophrenia and risperidone treatment. Twenty-two marker metabolites contributing to the complete separation of schizophrenic patients from matched healthy controls were identified, with citrate, palmitic acid, myo-inositol, and allantoin exhibiting the best combined classification performance. Twenty marker metabolites contributing to the complete separation between posttreatment and pretreatment patients were identified, with myo-inositol, uric acid, and tryptophan showing the maximum combined classification performance. Metabolic pathways including energy metabolism, antioxidant defense systems, neurotransmitter metabolism, fatty acid biosynthesis, and phospholipid metabolism were found to be disturbed in schizophrenic patients and partially normalized following risperidone therapy. Further study of these metabolites may facilitate the development of noninvasive biomarkers and more efficient therapeutic strategies for schizophrenia.
Collapse
Affiliation(s)
- Jiekun Xuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Schizophrenia is a common mental illness resulting from a complex interplay of genetic and environmental risk factors. Establishing its primary molecular and cellular aetiopathologies has proved difficult. However, this is a vital step towards the rational development of useful disease biomarkers and new therapeutic strategies. The advent and large-scale application of genomic, transcriptomic, proteomic and metabolomic technologies are generating data sets required to achieve this goal. This discovery phase, typified by its objective and hypothesis-free approach, is described in the first part of the review. The accumulating biological information, when viewed as a whole, reveals a number of biological process and subcellular locations that contribute to schizophrenia causation. The data also show that each technique targets different aspects of central nervous system function in the disease state. In the second part of the review, key schizophrenia candidate genes are discussed more fully. Two higher-order processes - adult neurogenesis and inflammation - that appear to have pathological relevance are also described in detail. Finally, three areas where progress would have a large impact on schizophrenia biology are discussed: deducing the causes of schizophrenia in the individual, explaining the phenomenon of cross-disorder risk factors, and distinguishing causative disease factors from those that are reactive or compensatory.
Collapse
|