1
|
Lephalala M, Vives SS, Bisetty K. Chaotic neural network algorithm with competitive learning integrated with partial Least Square models for the prediction of the toxicity of fragrances in sanitizers and disinfectants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173754. [PMID: 38844215 DOI: 10.1016/j.scitotenv.2024.173754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
This study addresses the need for accurate structural data regarding the toxicity of fragrances in sanitizers and disinfectants. We compare the predictive and descriptive (model stability) potential of multiple linear regression (MLR) and partial least squares (PLS) models optimized through variable selection (VS). A novel hybrid chaotic neural network algorithm with competitive learning (CCLNNA)-PLS modeling strategy can offer specific optimization with satisfactory results, even for a limited dataset. While also exploring the preliminary comparative analysis, the goal is to introduce an adapted novel CCLNNA optimization strategy for VS, inspired by neural networks, along with exploring the influence of the percentage of significant descriptors in the optimization function to enhance the final model's capabilities. We analyzed an available dataset of 24 molecules, incorporating ADMET and PaDEL descriptors as predictor variables, to explore the relationship between the response/target variable (pLC50) and the meticulously optimized set of descriptors. The suitability of the selected PLS models (cross- and external-validated accuracy combined with percentage of significant descriptors at a level equal to or >80 %) underscores the importance of expanding the dataset to amplify the validation protocols, thus enhancing future model reliability and environmental impact.
Collapse
Affiliation(s)
- Matshidiso Lephalala
- Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Salvador Sagrado Vives
- Departamento de Química Analítica, Facultad de Farmacia. Universitat de València, E-46100 Burjassot, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
| |
Collapse
|
2
|
Ashraf M, Guleria A, Ahammad SZ, Chakma S. Implementation of temporal moments to elucidate the reactive transport of metformin and erythromycin in the saturated porous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47801-47817. [PMID: 39007974 DOI: 10.1007/s11356-024-34357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
This study investigates the fate and transport dynamics of metformin (MTN) and erythromycin (ETM), both classified as pharmaceutical and personal care products (PPCPs), in a saturated sandy soil column using temporal moment analysis (TMA). The key flow and transport parameters, including Darcy velocity, longitudinal dispersivity, adsorption, and degradation coefficients, were analyzed. The results reveal that MTN, a highly mobile contaminant, is eliminated from the column in approximately 40 days, while ETM shows significant adsorption due to its hydrophobic and adsorptive nature. Darcy velocity significantly affects PPCP transport; a one-order magnitude change alters contaminant mass recovery at the column outlet by 88% for MTN and 39-fold for ETM. Longitudinal dispersivity has minimal impact on the transport of PPCPs. However adsorption primarily governs the fate of PPCPs with high adsorption coefficients (Kd), and degradation rates control the fate of low-sorbing PPCPs. A one-order magnitude change in Kd results in a 55% change in the zeroth temporal moment (ZTM) of MTN and a 30-fold change in the case of ETM. Additionally, a one-order magnitude change in the degradation coefficient leads to a 60% variation in MTN's ZTM and a 5% variation in ETM's ZTM. Thus, TMA is a valuable tool for understanding PPCP dynamics in subsurface environments, providing critical insights for managing their increasing concentrations.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, India.
| | - Abhay Guleria
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India
| |
Collapse
|
3
|
Ahmad S, Ahmad N, Islam MS, Ahmad MA, Ercisli S, Ullah R, Bari A, Munir I. Rice seeds biofortification using biogenic ıron oxide nanoparticles synthesized by using Glycyrrhiza glabra: a study on growth and yield ımprovement. Sci Rep 2024; 14:12368. [PMID: 38811671 PMCID: PMC11137158 DOI: 10.1038/s41598-024-62907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Iron, a crucial micronutrient, is an integral element of biotic vitality. The scarcity of iron in the soil creates agronomic challenges and has a detrimental impact on crop vigour and chlorophyll formation. Utilizing iron oxide nanoparticles (IONPs) via nanopriming emerges as an innovative method to enhance agricultural efficiency and crop health. The objective of this study was to synthesize biogenic IONPs from Glycyrrhiza glabra (G. glabra) plant extract using green chemistry and to evaluate their nanopriming effects on rice seed iron levels and growth. The synthesized IONPs were analyzed using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDX) techniques. The UV-Vis peak at 280 nm revealed the formation of IONPs. SEM and TEM showed that the nanoparticles were spherical and had an average diameter of 23.8 nm. Nanopriming resulted in a substantial enhancement in growth, as seen by a 9.25% and 22.8% increase in shoot lengths for the 50 ppm and 100 ppm treatments, respectively. The yield metrics showed a positive correlation with the concentrations of IONPs. The 1000-grain weight and spike length observed a maximum increase of 193.75% and 97.73%, respectively, at the highest concentration of IONPs. The study indicates that G. glabra synthesized IONPs as a nanopriming agent significantly increased rice seeds' growth and iron content. This suggests that there is a relationship between the dosage of IONPs and their potential for improving agricultural biofortification.
Collapse
Affiliation(s)
- Sidra Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| | - Nayab Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
- Department of Textile Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Mian Afaq Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iqbal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
4
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
5
|
Spurgeon D, Wilkinson H, Civil W, Hutt L, Armenise E, Kieboom N, Sims K, Besien T. Worst-case ranking of organic chemicals detected in groundwaters and surface waters in England. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155101. [PMID: 35461935 DOI: 10.1016/j.scitotenv.2022.155101] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The Environment Agency has been using Gas Chromatography-Mass Spectrometry (GC-MS) and Accurate-mass Quadrupole Time-of-Flight (Q-TOF) / Liquid Chromatography-Mass Spectrometry (LC-MS) target screen analysis to semi-quantitatively measure organic substances in groundwater and surface water since 2009 for GC-MS and 2014 for LC-MS. Here we use this data to generate a worst-case "risk" ranking of the detected substances. Three sets of hazard values relating to effects on aquatic organisms, namely Water Framework Directive EQSs, NORMAN Network PNECs (hereafter NORMAN PNEC) and chronic Species Sensitivity Distribution (SSD) HC50s from Posthuma et al., (2019) were used for the assessment. These hazard values were compared to the highest measured concentration for each chemical to generate a worst-case hazard quotient (HQ). Calculated HQs for each metric were ranked, averaged and multiplied by rank for detection frequency to generate an overall ordering based on HQ and occurrence. This worst-case approach was then used to generate ranking lists for GC-MS and LC-MS detected substances in groundwater and surface water. Pesticides in the top 30 overall ranked list included more legacy pesticides in groundwater and more current use actives in surface water. Specific uses were linked to some high rankings (e.g. rotenone for invasive species control). A number of industrial and plastics associated chemicals were ranked highly in the groundwater dataset, while more personal care products and pharmaceuticals were highly ranked in surface waters. Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) compounds were commonly highly ranked in both environmental compartments. The approach confirmed high rankings for some substance (e.g. selected pesticides) from previous prioritization exercises, but also identified novel substance for consideration (e.g. some PFAS compounds and pharmaceuticals). Overall our approach provided a simple approach using readily accessible data to identify substances for further and more detailed assessment.
Collapse
Affiliation(s)
- David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB, UK.
| | - Helen Wilkinson
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK.
| | - Wayne Civil
- Environment Agency, Starcross Laboratory, Staplake Mount, Starcross, Devon EX6 8FD, UK.
| | - Lorraine Hutt
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK.
| | - Elena Armenise
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK; Environment Agency, Starcross Laboratory, Staplake Mount, Starcross, Devon EX6 8FD, UK
| | - Natalie Kieboom
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK.
| | - Kerry Sims
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK.
| | - Tim Besien
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK.
| |
Collapse
|
6
|
Korkmaz NE, Savun-Hekimoğlu B, Aksu A, Burak S, Caglar NB. Occurrence, sources and environmental risk assessment of pharmaceuticals in the Sea of Marmara, Turkey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152996. [PMID: 35031378 DOI: 10.1016/j.scitotenv.2022.152996] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
In the present study, the occurrence and spatial distribution of selected eleven pharmaceuticals were investigated in the Sea of Marmara, Turkey. Samples were collected from different depths of the nine stations in April and October 2019. Pharmaceuticals were analyzed using liquid-liquid and solid-phase extraction (SPE) methods followed by high-performance liquid chromatography (HPLC). All target pharmaceutical compounds were detected at least once in the study area. Gemfibrozil, which belongs to the lipid regulatory group, was the most frequently detected in seawater at high concentrations (<0.016-9.71 μg/L). Ibuprofen (<0.015-2.13 μg/L) and 17α-ethynylestradiol (<0.010-3.55 μg/L) were identified as the other frequently detected pharmaceuticals. In addition, the presence of these selected compounds in April was higher than in October. According to the risk assessment results, naproxen, diclofenac, clofibric acid, gemfibrozil, 17β-estradiol, and 17α-ethynylestradiol represent a high risk to aquatic organisms in the Sea of Marmara. These findings underline the importance of continued monitoring of these compounds as relevant organic contaminants in the study area to take appropriate measures to protect the ecosystem and, ultimately, human health.
Collapse
Affiliation(s)
- Nagihan E Korkmaz
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Başak Savun-Hekimoğlu
- Istanbul University, Institute of Marine Sciences and Management, Department of Marine Environment, Istanbul, Turkey
| | - Abdullah Aksu
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Selmin Burak
- Istanbul University, Institute of Marine Sciences and Management, Department of Marine Environment, Istanbul, Turkey
| | - Nuray Balkis Caglar
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey.
| |
Collapse
|
7
|
Hu J, Qi D, Chen Q, Sun W. Comparison and prioritization of antibiotics in a reservoir and its inflow rivers of Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25209-25221. [PMID: 34837609 DOI: 10.1007/s11356-021-17723-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of antibiotics in drinking water resources, like reservoirs, is of considerable concern due to their potential risks to ecosystem, human health, and antimicrobial resistance development. Here, we quantified 83 antibiotics in water and sediments of wet and dry seasons from the Miyun reservoir and its inflow rivers in Beijing, China. Twenty-four antibiotics were detected in water with concentrations of ND-11.6 ng/L and 19 antibiotics were observed in sediments with concentrations of ND-6.50 ng/g. Sulfonamides (SAs) were the dominated antibiotics in water in two seasons. SAs and quinolones (QNs) in wet season and macrolides (MLs) and QNs in dry season predominated in sediments. The reservoir and inflow rivers showed significant differences in antibiotic concentrations and compositions in water and sediments. As an important input source of reservoir, the river water showed significantly higher total antibiotic concentrations than those in the reservoir. In contrast, the reservoir sediments are the sink of antibiotics, and had higher total antibiotic concentrations compared with rivers. A prioritization approach based on the overall risk scores and detection frequencies of antibiotics was developed, and 3 (sulfaguanidine, anhydroerythromycin, and sulfamethoxazole) and 5 (doxycycline, sulfadiazine, clarithromycin, roxithromycin, and flumequine) antibiotics with high and moderate priority, respectively, were screened. The study provides a comprehensive insight of antibiotics in the Miyun Reservoir and its inflow rivers, and is significant for future monitoring and pollution mitigation of antibiotics.
Collapse
Affiliation(s)
- Jingrun Hu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Dianqing Qi
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China.
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
8
|
Yang Y, Zhang X, Jiang J, Han J, Li W, Li X, Yee Leung KM, Snyder SA, Alvarez PJJ. Which Micropollutants in Water Environments Deserve More Attention Globally? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13-29. [PMID: 34932308 DOI: 10.1021/acs.est.1c04250] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Increasing chemical pollution of aquatic environments is a growing concern with global relevance. A large number of organic chemicals are termed as "micropollutants" due to their low concentrations, and long-term exposure to micropollutants may pose considerable risks to aquatic organisms and human health. In recent decades, numerous treatment methods and technologies have been proposed to remove micropollutants in water, and typically several micropollutants were chosen as target pollutants to evaluate removal efficiencies. However, it is often unclear whether their toxicity and occurrence levels and frequencies enable them to contribute significantly to the overall chemical pollution in global aquatic environments. This review intends to answer an important lingering question: Which micropollutants or class of micropollutants deserve more attention globally and should be removed with higher priority? Different risk-based prioritization approaches were used to address this question. The risk quotient (RQ) method was found to be a feasible approach to prioritize micropollutants in a large scale due to its relatively simple assessment procedure and extensive use. A total of 83 prioritization case studies using the RQ method in the past decade were compiled, and 473 compounds that were selected by screening 3466 compounds of three broad classes (pharmaceuticals and personal care products (PPCPs), pesticides, and industrial chemicals) were found to have risks (RQ > 0.01). To determine the micropollutants of global importance, we propose an overall risk surrogate, that is, the weighted average risk quotient (WARQ). The WARQ integrates the risk intensity and frequency of micropollutants in global aquatic environments to achieve a more comprehensive priority determination. Through metadata analysis, we recommend a ranked list of 53 micropollutants, including 36 PPCPs (e.g., sulfamethoxazole and ibuprofen), seven pesticides (e.g., heptachlor and diazinon), and 10 industrial chemicals (e.g., perfluorooctanesulfonic acid and 4-nonylphenol) for risk management and remediation efforts. One caveat is that the ranked list of global importance does not consider transformation products of micropollutants (including disinfection byproducts) and new forms of pollutants (including antibiotic resistance genes and microplastics), and this list of global importance may not be directly applicable to a specific region or country. Also, it needs mentioning that there might be no best answer toward this question, and hopefully this review can act as a small step toward a better answer.
Collapse
Affiliation(s)
- Yun Yang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong China
| | - Shane A Snyder
- Nanyang Technological University, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
9
|
Gustavsson M, Molander S, Backhaus T, Kristiansson E. Estimating the release of chemical substances from consumer products, textiles and pharmaceuticals to wastewater. CHEMOSPHERE 2022; 287:131854. [PMID: 34461333 DOI: 10.1016/j.chemosphere.2021.131854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/16/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Chemical emissions from households originate from a wide range of sources and results in highly diverse mixtures. This makes traditional monitoring based on analytical chemistry challenging, especially for compounds that appear in low concentrations. We therefore developed a method for predicting emissions of chemicals from households into wastewater, relying on consumption patterns from multiple data sources. The method was then used to predict the emissions of chemical preparations, chemicals leaching from textiles and prescription pharmaceuticals in Sweden. In total we predicted emissions of 2007 chemicals with a combined emission of 62,659 tonnes per year - or 18 g/person and day. Of the emitted chemicals, 2.0% (w/w) were either classified as hazardous to the environment or were both persistent and mobile. We also show that chemical emissions come from a wide range of uses and that the total emission of any individual chemical is determined primarily by its use pattern, not by the total amount used. This emphasizes the need for continuous updates and additional knowledge generation both on emission factors and excretion rates as well as a need for improved reporting on the intended use of individual chemicals. Finally, we scrutinize the model and its uncertainty and suggest areas that need improvement to increase the accuracy of future emission modelling. We conclude that emission modelling can help guide environmental monitoring and provide input into management strategies aimed at reducing the environmental effect caused by hazardous chemicals.
Collapse
Affiliation(s)
- M Gustavsson
- Department of Mathematical Sciences, Chalmers University of Technology, University of Gothenburg, Gothenburg, Sweden.
| | - S Molander
- Division of Environmental Systems Analysis, Department of Technology Management and Economics, Chalmers University of Technology, Gothenburg, Sweden.
| | - T Backhaus
- Department of Biology and Environment Science, University of Gothenburg, Gothenburg, Sweden.
| | - E Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
10
|
Mathur P, Sanyal D, Callahan DL, Conlan XA, Pfeffer FM. Treatment technologies to mitigate the harmful effects of recalcitrant fluoroquinolone antibiotics on the environ- ment and human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118233. [PMID: 34582925 DOI: 10.1016/j.envpol.2021.118233] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic proliferation in the environment and their persistent nature is an issue of global concern as they induce antibiotic resistance threatening both human health and the ecosystem. Antibiotics have therefore been categorized as emerging pollutants. Fluoroquinolone (FQs) antibiotics are an emerging class of contaminants that are used extensively in human and veterinary medicine. The recalcitrant nature of fluoroquinolones has led to their presence in wastewater, effluents and water bodies. Even at a low concentration, FQs can stimulate antibacterial resistance. The main sources of FQ contamination include waste from pharmaceutical manufacturing industries, hospitals and households that ultimately reaches the wastewater treatment plants (WWTPs). The conventional WWTPs are unable to completely remove FQs due to their chemical stability. Therefore, the development and implementation of more efficient, economical, convenient treatment and removal technologies are needed to adequately address the issue. This review provides an overview of the technologies available for the removal of fluoroquinolone antibiotics from wastewater including adsorptive removal, advanced oxidation processes, removal using non-carbon based nanomaterials, microbial degradation and enzymatic degradation. Each treatment technology is discussed on its merits and limitations and a comparative view is presented on the choice of an advanced treatment process for future studies and implementation. A discussion on the commercialization potential and eco-friendliness of each technology is also included in the review. The importance of metabolite identification and their residual toxicity determination has been emphasized. The last section of the review provides an overview of the policy interventions and regulatory frameworks that aid in retrofitting antibiotics as a central key focus contaminant and thereby defining the discharge limits for antibiotics and establishing safe manufacturing practices.
Collapse
Affiliation(s)
- Purvi Mathur
- TERI-Deakin NanoBiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, 110003, India; Deakin University, School of Life and Environmental Sciences (Burwood Campus), 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Doyeli Sanyal
- TERI-Deakin NanoBiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, 110003, India; Amity University Punjab, IT City, Sector 82A, Mohali, 140308, India.
| | - Damien L Callahan
- Deakin University, School of Life and Environmental Sciences (Burwood Campus), 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Xavier A Conlan
- Deakin University, School of Life and Environmental Sciences, (Waurn Ponds Campus), 75 Pigdons Road, Locked Bag 20000, Geelong, VIC, 3220, Australia
| | - Frederick M Pfeffer
- Deakin University, School of Life and Environmental Sciences, (Waurn Ponds Campus), 75 Pigdons Road, Locked Bag 20000, Geelong, VIC, 3220, Australia
| |
Collapse
|
11
|
Alvarado-Flores C, Encina-Montoya F, Tucca F, Vega-Aguayo R, Nimptsch J, Oberti C, Carmona ER, Lüders C. Assessing the ecological risk of active principles used currently by freshwater fish farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:144716. [PMID: 33631559 DOI: 10.1016/j.scitotenv.2020.144716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The global aquaculture industry has grown exponentially in recent years using to control of infections and diseases, a variety of veterinary drugs (VMP) are used, including antibiotics, antifungals and antiparasitics, which have different routes of emission, environmental persistence and side effects to aquatic organisms, becoming one of the main concerns in its use of veterinary drugs (VMP) and its potential toxicological impact on the environment, in this context, Chile is considered one of the main salmon producers. Ecological risk assessment of active principles used infreshwater fish farms worldwide and in Chile were investigated. We recollect a physical - chemical properties of active principles used by fish farms and we could estimate the relative hazard a priori. Later active principles grouped as antibiotics (n = 6), antiparasitics (n = 5), anesthetics (n = 3), and disinfectants (n = 7) were assessed using a mass balance model based on fugacity was developed for each active principle under treatments via immersion and food administration in fish, while a volumetric model for disinfectants and sodium chloride was used for estimating the predicted environmental concentration (PEC), under a real smolt farming scenario in fish farms. Ecotoxicological data were collected from open literature to predict the no-effect concentration (PNEC). The ecological risk assessment was characterized using a risk quotient (RQ = PEC/PNEC) based in two assessment tiers. Results revealed that 12 active ingredients showed a high risk (RQ ≥ 1), thus indicating that adverse effects could occur and further investigation with measured concentrations in the field are required to reduce exposure in surface waters.
Collapse
Affiliation(s)
- Claudia Alvarado-Flores
- Department of Agricultural, Livestock and Aquiculture Sciences, Faculty of Natural Resources, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Doctoral Program of Agricultural and Livestock Sciences, Faculty of Natural Resources, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Francisco Encina-Montoya
- Nucleus of Environmental Sciences (NEA), Universidad Católica de Temuco, Temuco, Chile; Department of Environmental Sciences, Faculty of Natural Resources, Universidad Católica de Temuco, Temuco, Chile.
| | - Felipe Tucca
- Norwegian Institute for Water Research (NIVA), Puerto Varas, Chile
| | - Rolando Vega-Aguayo
- Department of Agricultural, Livestock and Aquiculture Sciences, Faculty of Natural Resources, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Nucleus of Food Production (NIPA) Universidad Católica de Temuco, Temuco, Chile
| | - Jorge Nimptsch
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Edificio Emilio Pugin, Campus Isla Teja, Valdivia, Chile
| | - Carlos Oberti
- Department of Environmental Sciences, Faculty of Natural Resources, Universidad Católica de Temuco, Temuco, Chile
| | - Erico R Carmona
- Faculty of Natural Resources, Universidad Arturo Prat, Av. Arturo Prat s/n Campus Huayquique, Iquique, Chile
| | - Carlos Lüders
- Department of Veterinary Sciences, Faculty of Natural Resources, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| |
Collapse
|
12
|
Rogers ER, Zalesny RS, Lin CH. A systematic approach for prioritizing landfill pollutants based on toxicity: Applications and opportunities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112031. [PMID: 33540203 DOI: 10.1016/j.jenvman.2021.112031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Landfills in the United States are a significant source of pollution to ground and surface water. Current environmental regulations require detection and/or monitoring assessments of landfill leachate for contaminants that have been deemed particularly harmful. However, the lists of contaminants to be monitored are not comprehensive. Further, landfill leachate composition varies over space and time, and thus the contaminants, and their corresponding toxicity, are not consistent across or within landfills. One of the main objectives of this study was to prioritize contaminants found in landfill leachate using a systematic, toxicity-based prioritization scheme. A literature review was conducted, and from it, 484 landfill leachate contaminants with available CAS numbers were identified. In vitro, in vivo, and predicted human toxicity data were collected from ToxCast, ECOTOX, and CTV Predictor, respectively. These data were integrated using the Toxicological Priority Index (ToxPi) for the 322 contaminants which had available toxicity data from at least two of the databases. Four modifications to this general prioritization scheme were developed to demonstrate the flexibility of this scheme for addressing varied research and applied objectives. The general scheme served as a basis for comparison of the results from the modified schemes, and allowed for identification of contaminants uniquely prioritized in each of the schemes. The schemes outlined here can be used to identify the most harmful contaminants in environmental media in order to design the most relevant mitigation strategies and monitoring plans. Finally, future research directions involving the combination of these prioritization schemes and non-target global metabolomic profiling are discussed.
Collapse
Affiliation(s)
- Elizabeth R Rogers
- Center for Agroforestry, University of Missouri - Columbia, 203 Anheuser-Busch Natural Resources Bldg., Columbia, MO, USA; School of Natural Resources, University of Missouri -Columbia, MO, USA; Institute for Applied Ecosystem Studies, USDA Forest Service, Northern Research Station, 5985, Highway K, Rhinelander, WI, USA
| | - Ronald S Zalesny
- Institute for Applied Ecosystem Studies, USDA Forest Service, Northern Research Station, 5985, Highway K, Rhinelander, WI, USA
| | - Chung-Ho Lin
- Center for Agroforestry, University of Missouri - Columbia, 203 Anheuser-Busch Natural Resources Bldg., Columbia, MO, USA; School of Natural Resources, University of Missouri -Columbia, MO, USA.
| |
Collapse
|
13
|
Moldovan R, Iacob BC, Farcău C, Bodoki E, Oprean R. Strategies for SERS Detection of Organochlorine Pesticides. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:304. [PMID: 33503937 PMCID: PMC7911634 DOI: 10.3390/nano11020304] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 02/02/2023]
Abstract
Organochlorine pesticides (OCPs) embody highly lipophilic hazardous chemicals that are being phased out globally. Due to their persistent nature, they are still contaminating the environment, being classified as persistent organic pollutants (POPs). They bioaccumulate through bioconcentration and biomagnification, leading to elevated concentrations at higher trophic levels. Studies show that human long-term exposure to OCPs is correlated with a large panel of common chronic diseases. Due to toxicity concerns, most OCPs are listed as persistent organic pollutants (POPs). Conventionally, separation techniques such as gas chromatography are used to analyze OCPs (e.g., gas chromatography coupled with mass spectrometry (GC/MS)) or electron capture detection (GC/ECD). These are accurate, but expensive and time-consuming methods, which can only be performed in centralized lab environments after extensive pretreatment of the collected samples. Thus, researchers are continuously fueling the need to pursue new faster and less expensive alternatives for their detection and quantification that can be used in the field, possibly in miniaturized lab-on-a-chip systems. In this context, surface enhanced Raman spectroscopy (SERS) represents an exceptional analytical tool for the trace detection of pollutants, offering molecular fingerprint-type data and high sensitivity. For maximum signal amplification, two conditions are imposed: an efficient substrate and a high affinity toward the analyte. Unfortunately, due to the highly hydrophobic nature of these pollutants (OCPs,) they usually have a low affinity toward SERS substrates, increasing the challenge in their SERS detection. In order to overcome this limitation and take advantage of on-site Raman analysis of pollutants, researchers are devising ingenious strategies that are synthetically discussed in this review paper. Aiming to maximize the weak Raman signal of organochlorine pesticides, current practices of increasing the substrate's performance, along with efforts in improving the selectivity by SERS substrate functionalization meant to adsorb the OCPs in close proximity (via covalent, electrostatic or hydrophobic bonds), are both discussed. Moreover, the prospects of multiplex analysis are also approached. Finally, other perspectives for capturing such hydrophobic molecules (MIPs-molecularly imprinted polymers, immunoassays) and SERS coupled techniques (microfluidics-SERS, electrochemistry-SERS) to overcome some of the restraints are presented.
Collapse
Affiliation(s)
- Rebeca Moldovan
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (R.M.); (B.-C.I.); (R.O.)
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (R.M.); (B.-C.I.); (R.O.)
| | - Cosmin Farcău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67–103 Donat, 400293 Cluj-Napoca, Romania;
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (R.M.); (B.-C.I.); (R.O.)
| | - Radu Oprean
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (R.M.); (B.-C.I.); (R.O.)
| |
Collapse
|
14
|
Narita K, Matsui Y, Matsushita T, Shirasaki N. Selection of priority pesticides in Japanese drinking water quality regulation: Validity, limitations, and evolution of a risk prediction method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141636. [PMID: 32882551 DOI: 10.1016/j.scitotenv.2020.141636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Several risk scoring and ranking methods have been applied for the prioritization of micropollutants, including pesticides, and in the selection of pesticides to be regulated regionally and nationally. However, the effectiveness of these methods has not been evaluated in Japan. We developed a risk prediction method to select pesticides that have a high probability of being detected in drinking water sources where no monitoring data is available. The risk prediction method was used to select new pesticides for the 2013 Primary List in the Japanese Drinking Water Quality Guidelines. Here, we examined the effectiveness of the method on the basis of the results of water quality examinations conducted by water supply authorities across Japan, and studied ways to improve the risk prediction method. Of the 120 pesticides in the 2013 Primary List, 80 were detected in drinking water sources (raw water entering water treatment plants). The rates of detection of the newly selected pesticides and previously listed pesticides were not significantly different: 64% and 68%, respectively. When the risk predictor was revised to incorporate degradability of dry-field pesticides and current pesticide sales data, the rate of detection of pesticides selected as having a high risk of detection improved from 72% to 88%. We prepared regional versions of the Primary List using the revised risk predictors and verified their utility. The number of listed pesticides varied greatly by region, ranging from 32 to 73; all regional lists were much shorter than the national Primary List. In addition, 55% to 100% of the pesticides detected in each region were included in a Regional Primary List. This work verifies the ability of the risk prediction method to screen pesticides and select those with a high risk of detection.
Collapse
Affiliation(s)
- Kentaro Narita
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Yoshihiko Matsui
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan.
| | - Taku Matsushita
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Nobutaka Shirasaki
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| |
Collapse
|
15
|
Durak J, Rokoszak T, Skiba A, Furman P, Styszko K. Environmental risk assessment of priority biocidal substances on Polish surface water sample. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1254-1266. [PMID: 33222066 PMCID: PMC7782384 DOI: 10.1007/s11356-020-11581-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
The EU directive 2013/39/EU has incorporated four biocidal compounds as priority substances: diuron, isoproturon, cybutryne, and terbutryn. The research was undertaken to determine the concentration of biocides in surface waters in three locations in southern Poland: the Wisła River in Kraków, the Wisłoka River in Mielec, and the drainage ditch draining water from arable fields located near Mielec. Environmental samples were taken in two series: winter (February) and spring (May and June). The analyses were carried out using gas chromatography with mass spectrometry. The seasonality of biocides in surface waters was observed. In winter samples, the concentrations were below MQL, while in spring, they ranged from a few to several dozen nanograms per liter. The highest concentrations of all analyzed compounds were recorded in water taken from the Wisła River. According to directive 2013/39/EU, the maximum allowable concentration was exceeded only in the case of cybutryne in water from the Wisła, both in May and in June. The assessment of the toxicity with the tested compounds was defined based on the Environmental Risk Assessment method. Low risk was estimated for diuron and isoproturon, while moderate risk for terbutryn and cybutryne.
Collapse
Affiliation(s)
- Justyna Durak
- Faculty of Energy and Fuels, Department of Coal Chemistry and Environmental Sciences, AGH University of Science and Technology, Krakow, Poland
| | - Tomasz Rokoszak
- Faculty of Energy and Fuels, Department of Coal Chemistry and Environmental Sciences, AGH University of Science and Technology, Krakow, Poland
| | - Alicja Skiba
- Faculty of Physics and Applied Computer Science, Department of Applied Nuclear Physics, AGH University of Science and Technology, Krakow, Poland
| | - Przemysław Furman
- Faculty of Physics and Applied Computer Science, Department of Applied Nuclear Physics, AGH University of Science and Technology, Krakow, Poland
| | - Katarzyna Styszko
- Faculty of Energy and Fuels, Department of Coal Chemistry and Environmental Sciences, AGH University of Science and Technology, Krakow, Poland.
| |
Collapse
|
16
|
Melin J, Guillon A, Enault J, Esperanza M, Dauchy X, Bouchonnet S. How to select relevant metabolites based on available data for parent molecules: Case of neonicotinoids, carbamates, phenylpyrazoles and organophosphorus compounds in French water resources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114992. [PMID: 32563121 DOI: 10.1016/j.envpol.2020.114992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
The presence of pesticide in water resources is a topical issue in France as in many other countries. Resources can be contaminated by current-used pesticides and their metabolites but also by molecules banned 50 years ago. The number of reported studies on the impact of these substances on human health and environment increases every day. Currently, pesticides and their relevant degradation products are subjected to the European regulation for water intended for human consumption. It sets an individual quality limit of 0.1 μg/L, and another of 0.5 μg/L for the sum of their concentrations. The constant improvement of analytical methods allows laboratories to detect pesticides, at lower and lower concentrations but also more and more metabolites. However, regulation does not provide a national indicative metabolites list to be monitored. Each regional health agency offers their own list based on local agricultural practices and quantities of pesticides sold. This article reports a prioritization method allowing to identify new metabolites to be monitored in water resources, along drinking water treatment plants and in treated water; it describes its application in France in order to anticipate possible non-compliance with raw water and treated water and to provide solutions upstream of changes in sanitary control. This methodology has been developed to rank pesticides and to select the corresponding metabolites by combining three main criteria: use (sale and type of use), toxicity, and environmental fate (based on physical and chemical properties). Prioritization method was applied to four families of pesticides: carbamates, organophosphorus compounds, phenylpyrazoles and neonicotinoids, for which there is a real lack of knowledge as regards the occurrence of their metabolites in metropolitan France. 146 pesticides have been prioritized. The first 50 molecules were considered allowing the identification of 72 metabolites to be monitored in water resources and along drinking water treatment plants.
Collapse
Affiliation(s)
- Jodie Melin
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128, Palaiseau, France; SUEZ - CIRSEE, 38 Rue Du Président Wilson, 78230, Le Pecq, France; ANSES, Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, 54000, Nancy, France
| | - Amélie Guillon
- SUEZ - CIRSEE, 38 Rue Du Président Wilson, 78230, Le Pecq, France
| | - Jérôme Enault
- SUEZ - CIRSEE, 38 Rue Du Président Wilson, 78230, Le Pecq, France
| | - Mar Esperanza
- SUEZ - CIRSEE, 38 Rue Du Président Wilson, 78230, Le Pecq, France
| | - Xavier Dauchy
- ANSES, Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, 54000, Nancy, France
| | - Stéphane Bouchonnet
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128, Palaiseau, France.
| |
Collapse
|
17
|
Gameiro PH, Assis KH, Hasenack H, Arenzon A, Dias Silva KU, Torres de Lemos C, Ferrão Vargas VM. Evaluation of effect of hazardous contaminants in areas for the abstraction of drinking water. ENVIRONMENTAL RESEARCH 2020; 188:109862. [PMID: 32846646 DOI: 10.1016/j.envres.2020.109862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The lower portion of Taquari River is influenced by compounds from anthropic activities causing concern about the drinking water supplied to cities in the region. The study objective was to investigate the presence of contaminants at drinking water abstraction sites, defining the mutagenic effects of these stressors as an ecosystem quality parameter and its possible effects on human health. Geographic Information System techniques were used to investigate sources of contamination and it was found that agricultural activities predominated with a few medium and high potential pollutant agricultural activities, besides a soil area that was contaminated and undergoing an intervention process. Mutagenic effects were evaluated by Salmonella/microsome assay using TA98, TA97a, TA100, YG1041 and YG1042 strains in the presence and absence of metabolic activation (S9). Mutagenesis found in organic sediment extracts and surface water samples showed the prevalence of direct-acting mutagens at the drinking water abstraction sites. Taquari (Ta032, the sampling points were named according to the initial letters of the river (Ta), followed by the number of kilometers from the mouth) showed the highest mutagenic potency in sediment, while Ta063, at Bom Retiro do Sul, presented it in the water sample. In the Triunfo region (Ta011) there were significant responses in sediment and in water samples. The samples at General Câmara (Ta006) showed the least presence of contaminants. The Allium cepa test applied to sediments in natura showed significant micronucleus induction in Ta032 in accordance with the Salmonella/microssome assay. The test performed on Danio rerio embryos (FET) in the in natura water samples did not present significant responses. Chemical analyses of polycyclic aromatic hydrocarbons and metals already identified as chemical markers in the area indicated a small contribution to the mutagenic potency, calling attention to the fact that other direct-acting pollutants may be present at the drinking water abstraction sites.
Collapse
Affiliation(s)
- Paula Hauber Gameiro
- Programa de Pós-graduação Em Ecologia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, 9500, 91501-970, Cx Postal 15007, Porto Alegre, RS, Brazil
| | - Kauê Hohn Assis
- Divisão de Laboratórios, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler (FEPAM), Rua Aurélio Porto, 37, 90620-090, Porto Alegre, RS, Brazil
| | - Heinrich Hasenack
- Centro de Ecologia (UFRGS), Av. Bento Gonçalves, 9500. Setor 4, Prédio 43411, 91.501-970, Campus Do Vale, Porto Alegre, RS, Brazil
| | - Alexandre Arenzon
- Centro de Ecologia (UFRGS), Av. Bento Gonçalves, 9500. Setor 4, Prédio 43411, 91.501-970, Campus Do Vale, Porto Alegre, RS, Brazil
| | - Kewen Ubirajara Dias Silva
- Divisão de Laboratórios, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler (FEPAM), Rua Aurélio Porto, 37, 90620-090, Porto Alegre, RS, Brazil
| | - Clarice Torres de Lemos
- Divisão de Laboratórios, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler (FEPAM), Rua Aurélio Porto, 37, 90620-090, Porto Alegre, RS, Brazil
| | - Vera Maria Ferrão Vargas
- Divisão de Laboratórios, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler (FEPAM), Rua Aurélio Porto, 37, 90620-090, Porto Alegre, RS, Brazil; Centro de Ecologia (UFRGS), Av. Bento Gonçalves, 9500. Setor 4, Prédio 43411, 91.501-970, Campus Do Vale, Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Castaño-Sánchez A, Hose GC, Reboleira ASPS. Ecotoxicological effects of anthropogenic stressors in subterranean organisms: A review. CHEMOSPHERE 2020; 244:125422. [PMID: 31805461 DOI: 10.1016/j.chemosphere.2019.125422] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
How anthropogenic stressors affect biodiversity is a central question in a changing world. Subterranean ecosystems and their biodiversity are particularly vulnerable to change, yet, these species are frequently neglected in analyses of global biodiversity and assessments of ecological status and risk. Are these hidden species affected by anthropogenic stressors? Do they survive outside of the current thermal limits of their ecosystems? These and other important questions can be addressed with ecotoxicological testing, relating contaminants and temperature resistance of species with measured environmental concentrations and climatic data. Ecotoxicological knowledge specific to subterranean ecosystems is crucial for establishing thresholds for their protection, but such data are both scarce and scattered. Here, we review the existing ecotoxicological studies of these impacts to subterranean-adapted species. An effort that includes 167 measured endpoints and presents a database containing experimentally derived species' tolerance data for 28 contaminants and temperature, for 46 terrestrial and groundwater species, including fungi and animals. The lack of standard data among the studies is currently the major impediment to evaluate how stressors affect subterranean-adapted species and how differently they respond from their relatives at surface. Improving understanding of ecotoxicological effects on subterranean-adapted species will require extensive analysis of physiological responses to a wide range of untested stressors, standardization of testing protocols and evaluation of exposures under realistic scenarios.
Collapse
Affiliation(s)
- Andrea Castaño-Sánchez
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Grant C Hose
- Department of Biological Sciences, Macquarie University, NSW, 2109, Sydney, Australia
| | - Ana Sofia P S Reboleira
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
19
|
Bai Y, Henry J, Wlodkowic D. Chemosensory avoidance behaviors of marine amphipods Allorchestes compressa revealed using a millifluidic perfusion technology. BIOMICROFLUIDICS 2020; 14:014110. [PMID: 32002108 PMCID: PMC6976339 DOI: 10.1063/1.5131187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Chemosensory avoidance behaviors of aquatic invertebrates provide a functional link between early responses to pollutants at the infraorganismal and ecologically relevant supraorganismal levels. Despite significant importance, there is, however, a notable lack of user-friendly laboratory techniques. Here, we demonstrate a scalable millifluidic platform for higher throughput quantitative chemobehavioral studies. With a proof-of-concept application of this technology, we discovered that native Australian marine amphipods Allorchestes compressa exhibit rapid avoidance behaviors against a panel of environmental stressors. This work provides a novel avenue for the development of quantitative neurobehavioral systems applicable in diverse environmental risk assessment studies.
Collapse
|
20
|
Rede D, Santos LHMLM, Ramos S, Oliva-Teles F, Antão C, Sousa SR, Delerue-Matos C. Individual and mixture toxicity evaluation of three pharmaceuticals to the germination and growth of Lactuca sativa seeds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:102-109. [PMID: 30986672 DOI: 10.1016/j.scitotenv.2019.03.432] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
This work aims to assess, individually and in mixtures, possible phytotoxic effects of three pharmaceuticals (paracetamol, ibuprofen and amoxicillin) on germination and early growth of Lactuca sativa seeds. Pharmaceuticals are an important group of emerging contaminants, whose presence has been described in several environmental compartments, including soils. However, knowledge on their possible impact in terrestrial organisms is still sparse and even more when mixtures are considered. Germination tests are important to evaluate the quality of soil and the toxic effects that contaminants can pose to plants. The acute effects of individual pharmaceuticals as well as binary and ternary mixtures were assessed using different endpoints, namely: percentage of seed germination, root elongation, shoot and leaf length, after an exposure time of five days. Overall, in the exposure of L. sativa seeds to individual pharmaceuticals there are indications of acute toxicity in the early plant growth. However, this inhibitory effect tends to be cancelled in the acute exposure to mixtures. This study shows the importance of evaluating the toxicity of mixtures of pharmaceuticals, since they might have distinct toxic effects when compared to the single compounds, and also because, probably, it is the closest scenario to the reality that can be found in the environment.
Collapse
Affiliation(s)
- Diana Rede
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Lúcia H M L M Santos
- ICRA - Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain
| | - Sandra Ramos
- ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; CEAUL - Centro de Estatística e Aplicações da Universidade de Lisboa, Faculdade de Ciências, Universidade de Lisboa, Bloco C6 - Piso 4, Campo Grande, 1749-016 Lisboa, Portugal; LEMA, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Filipe Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169 - 007 Porto, Portugal; CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Cristina Antão
- Equilibrium, Laboratório de Controlo de Qualidade e de Processo, Lda., Praceta João Villaret, n.° 183, 4460-337 Senhora da Hora, Portugal
| | - Susana R Sousa
- ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, U. Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica (INEB), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| |
Collapse
|
21
|
Gaston L, Lapworth DJ, Stuart M, Arnscheidt J. Prioritization Approaches for Substances of Emerging Concern in Groundwater: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6107-6122. [PMID: 31063369 DOI: 10.1021/acs.est.8b04490] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Risks from emerging contaminants (ECs) in groundwater to human health and aquatic ecology remain difficult to quantify. The number of ECs potentially found in groundwater presents challenges for regulators and water managers regarding selection for monitoring. This study is the first systematic review of prioritization approaches for selecting ECs that may pose a risk in groundwater. Online databases were searched for prioritization approaches relating to ECs in the aquatic environment using standardized key word search combinations. From a total of 672, 33 studies met the eligibility criteria based primarily on the relevance to prioritizing ECs in groundwater. The review revealed the lack of a groundwater specific contaminant prioritization methodology in spite of widely recognized differences between groundwater and surface water environments with regard to pathways to receptors. The findings highlight a lack of adequate evaluation of methodologies for predicting the likelihood of an EC entering groundwater and knowledge gaps regarding the occurrence and fate of ECs in this environment. The review concludes with a proposal for a prioritization framework for ECs in groundwater monitoring that enables priority lists to be updated as new information becomes available for substances with regard to their usage, physicochemical properties, and hazards.
Collapse
Affiliation(s)
- Lorraine Gaston
- Environmental Sciences Research Institute , Ulster University , Coleraine Campus, Cromore Road , Coleraine , County Londonderry BT52 1SA , United Kingdom
| | - Dan J Lapworth
- British Geological Survey , Maclean Building, Crowmarsh Gifford , Wallingford , Oxfordshire OX10 8BB , United Kingdom
| | - Marianne Stuart
- British Geological Survey , Maclean Building, Crowmarsh Gifford , Wallingford , Oxfordshire OX10 8BB , United Kingdom
| | - Joerg Arnscheidt
- Environmental Sciences Research Institute , Ulster University , Coleraine Campus, Cromore Road , Coleraine , County Londonderry BT52 1SA , United Kingdom
| |
Collapse
|
22
|
Hernández F, Bakker J, Bijlsma L, de Boer J, Botero-Coy AM, Bruinen de Bruin Y, Fischer S, Hollender J, Kasprzyk-Hordern B, Lamoree M, López FJ, Laak TLT, van Leerdam JA, Sancho JV, Schymanski EL, de Voogt P, Hogendoorn EA. The role of analytical chemistry in exposure science: Focus on the aquatic environment. CHEMOSPHERE 2019; 222:564-583. [PMID: 30726704 DOI: 10.1016/j.chemosphere.2019.01.118] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Exposure science, in its broadest sense, studies the interactions between stressors (chemical, biological, and physical agents) and receptors (e.g. humans and other living organisms, and non-living items like buildings), together with the associated pathways and processes potentially leading to negative effects on human health and the environment. The aquatic environment may contain thousands of compounds, many of them still unknown, that can pose a risk to ecosystems and human health. Due to the unquestionable importance of the aquatic environment, one of the main challenges in the field of exposure science is the comprehensive characterization and evaluation of complex environmental mixtures beyond the classical/priority contaminants to new emerging contaminants. The role of advanced analytical chemistry to identify and quantify potential chemical risks, that might cause adverse effects to the aquatic environment, is essential. In this paper, we present the strategies and tools that analytical chemistry has nowadays, focused on chromatography hyphenated to (high-resolution) mass spectrometry because of its relevance in this field. Key issues, such as the application of effect direct analysis to reduce the complexity of the sample, the investigation of the huge number of transformation/degradation products that may be present in the aquatic environment, the analysis of urban wastewater as a source of valuable information on our lifestyle and substances we consumed and/or are exposed to, or the monitoring of drinking water, are discussed in this article. The trends and perspectives for the next few years are also highlighted, when it is expected that new developments and tools will allow a better knowledge of chemical composition in the aquatic environment. This will help regulatory authorities to protect water bodies and to advance towards improved regulations that enable practical and efficient abatements for environmental and public health protection.
Collapse
Affiliation(s)
- F Hernández
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain.
| | - J Bakker
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, P.O. Box 1, 3720, BA Bilthoven, the Netherlands
| | - L Bijlsma
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - J de Boer
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1087, 1081, HV Amsterdam, the Netherlands
| | - A M Botero-Coy
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - Y Bruinen de Bruin
- European Commission Joint Research Centre, Directorate E - Space, Security and Migration, Italy
| | - S Fischer
- Swedish Chemicals Agency (KEMI), P.O. Box 2, SE-172 13, Sundbyberg, Sweden
| | - J Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zürich, Switzerland
| | - B Kasprzyk-Hordern
- University of Bath, Department of Chemistry, Faculty of Science, Bath, BA2 7AY, United Kingdom
| | - M Lamoree
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1087, 1081, HV Amsterdam, the Netherlands
| | - F J López
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - T L Ter Laak
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430, BB Nieuwegein, the Netherlands
| | - J A van Leerdam
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430, BB Nieuwegein, the Netherlands
| | - J V Sancho
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - E L Schymanski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - P de Voogt
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430, BB Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090, GE Amsterdam, the Netherlands
| | - E A Hogendoorn
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, P.O. Box 1, 3720, BA Bilthoven, the Netherlands
| |
Collapse
|
23
|
Kim YR, Lee M, Jung JY, Kim TW, Kim D. Initial environmental risk assessment of hazardous and noxious substances (HNS) spill accidents to mitigate its damages. MARINE POLLUTION BULLETIN 2019; 139:205-213. [PMID: 30686420 DOI: 10.1016/j.marpolbul.2018.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/26/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
In this study, a system was established to perform an initial environmental risk assessment of hazardous and noxious substances (HNS) spill accidents. Initial environmental risk assessment was performed using exposure and hazard assessments. An integrated hydrodynamic and chemical fate model was used to predict HNS concentrations at harbors, taking into account local environmental conditions. To consider the worst case HNS spill accident, the spill amount of 10,000 tonnages, was used for this study. The results show that highly soluble HNS are fatal to marine organisms during the neap tide. The results were based on a hypothetical worst case HNS spill accident and, not any specific actual HNS spill accident. Nevertheless, the method and system developed in this study, which includes the physical/chemical properties of 158 priority HNS, can be readily used to perform an initial environmental risk assessment for future HNS spill accidents.
Collapse
Affiliation(s)
- Young-Ryun Kim
- Marine Eco-Technology Institute, Busan 48520, Republic of Korea
| | - Moonjin Lee
- Marine Safety and Environmental Research Division, Korea Research Institute of Ships and Ocean Engineering, KIOST, Daejeon 34103, Republic of Korea
| | - Jung-Yeul Jung
- Marine Safety and Environmental Research Division, Korea Research Institute of Ships and Ocean Engineering, KIOST, Daejeon 34103, Republic of Korea.
| | - Tae-Won Kim
- Marine Eco-Technology Institute, Busan 48520, Republic of Korea
| | - Daejoong Kim
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
24
|
Uncapped Silver Nanoclusters as Potential Catalyst for Enhanced Direct-Electrochemical Oxidation of 4-Nitrophenol. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01499-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Song X, Luo W, McDonald J, Khan SJ, Hai FI, Price WE, Nghiem LD. An anaerobic membrane bioreactor - membrane distillation hybrid system for energy recovery and water reuse: Removal performance of organic carbon, nutrients, and trace organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:358-365. [PMID: 29448020 DOI: 10.1016/j.scitotenv.2018.02.057] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
In this study, a direct contact membrane distillation (MD) unit was integrated with an anaerobic membrane bioreactor (AnMBR) to simultaneously recover energy and produce high quality water for reuse from wastewater. Results show that AnMBR could produce 0.3-0.5L/g CODadded biogas with a stable methane content of approximately 65%. By integrating MD with AnMBR, bulk organic matter and phosphate were almost completely removed. The removal of the 26 selected trace organic contaminants by AnMBR was compound specific, but the MD process could complement AnMBR removal, leading to an overall efficiency from 76% to complete removal by the integrated system. The results also show that, due to complete retention, organic matter (such as humic-like and protein-like substances) and inorganic salts accumulated in the MD feed solution and therefore resulted in significant fouling of the MD unit. As a result, the water flux of the MD process decreased continuously. Nevertheless, membrane pore wetting was not observed throughout the operation.
Collapse
Affiliation(s)
- Xiaoye Song
- Strategic Water Infrastructure Laboratory, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - James McDonald
- School of Civil & Environmental Engineering, University of New South Wales, NSW 2052, Australia
| | - Stuart J Khan
- School of Civil & Environmental Engineering, University of New South Wales, NSW 2052, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, University of Wollongong, Wollongong, NSW 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
26
|
Pieke EN, Granby K, Teste B, Smedsgaard J, Rivière G. Prioritization before risk assessment: The viability of uncertain data on food contact materials. Regul Toxicol Pharmacol 2018; 97:134-143. [PMID: 29932981 DOI: 10.1016/j.yrtph.2018.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 11/17/2022]
Abstract
The shortage of data on non-intentionally added substances (NIAS) present in food contact material (FCM) limits the ability to ensure food safety. Recent strategies in analytical method development permit NIAS investigation by using chemical exploration, but this has not been sufficiently investigated in risk assessment context. Here, exploration is utilized and followed by risk prioritization on chemical compounds that can potentially migrate to food from two paperboard FCM samples. Concentration estimates from exploration are converted to tentative exposure assessment, while predicted chemical structures are assessed using quantitative structure-activity relationships (QSAR) models for carcinogenicity, mutagenicity, and reproductive toxicity. A selection of 60 chemical compounds from two FCMs is assessed by four risk assessors to classify compounds based on probable risk. For almost 60% of cases, the assessors classified compounds as either high priority or low priority. Unclassified compounds are due to disagreements between experts (18%) or due to a perceived lack of data (23%). Among the high priority substances are high-concentration compounds, benzophenone derivatives, and dyes. The low priority compounds contained e.g. oligomers from plasticizers and linear alkane amides. The classification scheme provides valuable information based on tentative data and is able to prioritize discovered chemical compounds for pending risk assessment.
Collapse
Affiliation(s)
- Eelco N Pieke
- Technical University of Denmark, National Food Institute, Research Group for Analytical Food Chemistry, Kemitorvet Building 202, 2800, Kgs. Lyngby, Denmark.
| | - Kit Granby
- Technical University of Denmark, National Food Institute, Research Group for Analytical Food Chemistry, Kemitorvet Building 202, 2800, Kgs. Lyngby, Denmark.
| | - Bruno Teste
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France.
| | - Jørn Smedsgaard
- Technical University of Denmark, National Food Institute, Research Group for Analytical Food Chemistry, Kemitorvet Building 202, 2800, Kgs. Lyngby, Denmark.
| | - Gilles Rivière
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France.
| |
Collapse
|
27
|
Gago-Ferrero P, Krettek A, Fischer S, Wiberg K, Ahrens L. Suspect Screening and Regulatory Databases: A Powerful Combination To Identify Emerging Micropollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6881-6894. [PMID: 29782800 DOI: 10.1021/acs.est.7b06598] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This study demonstrates that regulatory databases combined with the latest advances in high resolution mass spectrometry (HRMS) can be efficiently used to prioritize and identify new, potentially hazardous pollutants being discharged into the aquatic environment. Of the approximately 23000 chemicals registered in the database of the National Swedish Product Register, 160 potential organic micropollutants were prioritized through quantitative knowledge of market availability, quantity used, extent of use on the market, and predicted compartment-specific environmental exposure during usage. Advanced liquid chromatography (LC)-HRMS-based suspect screening strategies were used to search for the selected compounds in 24 h composite samples collected from the effluent of three major wastewater treatment plants (WWTPs) in Sweden. In total, 36 tentative identifications were successfully achieved, mostly for substances not previously considered by environmental scientists. Of these substances, 23 were further confirmed with reference standards, showing the efficiency of combining a systematic prioritization strategy based on a regulatory database and a suspect-screening approach. These findings show that close collaboration between scientists and regulatory authorities is a promising way forward for enhancing identification rates of emerging pollutants and expanding knowledge on the occurrence of potentially hazardous substances in the environment.
Collapse
Affiliation(s)
- Pablo Gago-Ferrero
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
| | - Agnes Krettek
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
- Institute of Soil Science and Land Evaluation, Soil Chemistry and Pedology , University of Hohenheim , Emil-Wolff-Straße 27 , 70599 Stuttgart , Germany
| | - Stellan Fischer
- The Swedish Chemicals Agency (KemI) , SE-172 67 Stockholm , Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
| |
Collapse
|
28
|
Schulze S, Sättler D, Neumann M, Arp HPH, Reemtsma T, Berger U. Using REACH registration data to rank the environmental emission potential of persistent and mobile organic chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1122-1128. [PMID: 29996409 DOI: 10.1016/j.scitotenv.2017.12.305] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/26/2017] [Accepted: 12/26/2017] [Indexed: 06/08/2023]
Abstract
Organic chemicals that are persistent and mobile in the aquatic environment exhibit a hazard to contaminate drinking water resources. In this study an emission score model was developed to rank the potential of substances registered under the REACH legislation to be emitted into the environment. It was applied to a list of 2167 REACH registered substances that were previously identified to be persistent and mobile organic chemicals (PMOCs) in groundwater or to be hydrolyzed to form transformation products fulfilling the PMOC criteria. The emission score model is based on the tonnage placed on the European market and on seven emission-related use characteristics (high release to environment, wide dispersive use, intermediate use, closed system use, professional use, consumer use, and substance in article), reported in the companies' registrations under REACH. Applying the model resulted in a list of 1110 substances (936 PMOCs and 174 precursors to PMOCs) that were estimated to be released into the environment, while 1054 substances had indicators of negligible environmental emissions and 3 substances could not be evaluated due to severe data gaps. The 936 PMOCs and the 174 precursors were ranked in two lists with regard to their emission potential. The model was shown to be fit for purpose in terms of suggesting and prioritizing substances for scientific investigations with a focus on environmental water quality. Though targeted for PMOCs, the presented scoring system is illustrative of how REACH registration data can be used to assess the emission potential of various substances.
Collapse
Affiliation(s)
- Stefanie Schulze
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Daniel Sättler
- Section IV 2.3 Chemicals, German Environment Agency - UBA, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Michael Neumann
- Section IV 2.3 Chemicals, German Environment Agency - UBA, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute - NGI, Postboks 3930 Ullevål Stadion, 0806 Oslo, Norway
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Urs Berger
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
| |
Collapse
|
29
|
Posthuma L, Brown CD, de Zwart D, Diamond J, Dyer SD, Holmes CM, Marshall S, Burton GA. Prospective mixture risk assessment and management prioritizations for river catchments with diverse land uses. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:715-728. [PMID: 28845901 PMCID: PMC5873277 DOI: 10.1002/etc.3960] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/23/2017] [Indexed: 05/10/2023]
Abstract
Ecological risk assessment increasingly focuses on risks from chemical mixtures and multiple stressors because ecosystems are commonly exposed to a plethora of contaminants and nonchemical stressors. To simplify the task of assessing potential mixture effects, we explored 3 land use-related chemical emission scenarios. We applied a tiered methodology to judge the implications of the emissions of chemicals from agricultural practices, domestic discharges, and urban runoff in a quantitative model. The results showed land use-dependent mixture exposures, clearly discriminating downstream effects of land uses, with unique chemical "signatures" regarding composition, concentration, and temporal patterns. Associated risks were characterized in relation to the land-use scenarios. Comparisons to measured environmental concentrations and predicted impacts showed relatively good similarity. The results suggest that the land uses imply exceedances of regulatory protective environmental quality standards, varying over time in relation to rain events and associated flow and dilution variation. Higher-tier analyses using ecotoxicological effect criteria confirmed that species assemblages may be affected by exposures exceeding no-effect levels and that mixture exposure could be associated with predicted species loss under certain situations. The model outcomes can inform various types of prioritization to support risk management, including a ranking across land uses as a whole, a ranking on characteristics of exposure times and frequencies, and various rankings of the relative role of individual chemicals. Though all results are based on in silico assessments, the prospective land use-based approach applied in the present study yields useful insights for simplifying and assessing potential ecological risks of chemical mixtures and can therefore be useful for catchment-management decisions. Environ Toxicol Chem 2018;37:715-728. © 2017 The Authors. Environmental Toxicology Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leo Posthuma
- National Institute for Public Health and the Environment (RIVM)Centre for SustainabilityEnvironment and HealthBilthovenThe Netherlands
- Department of Environmental ScienceInstitute for Wetland and Water ResearchFaculty of ScienceRadboud UniversityNijmegenThe Netherlands
| | - Colin D. Brown
- Environment DepartmentUniversity of YorkHeslingtonYorkUK
| | | | | | | | | | - Stuart Marshall
- Safety and Environmental Assurance CentreUnileverSharnbrookBedfordUnited Kingdom
| | - G. Allen Burton
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
30
|
Tahar A, Tiedeken EJ, Rowan NJ. Occurrence and geodatabase mapping of three contaminants of emerging concern in receiving water and at effluent from waste water treatment plants - A first overview of the situation in the Republic of Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:187-197. [PMID: 29112842 DOI: 10.1016/j.scitotenv.2017.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
This constitutes the first study to address occurrence and geodatabase mapping of the anti-inflammatory drug diclofenac (DCL) and the natural (17-beta-estradiol or E2) and synthetic (17-alpha-ethynylestradiol or EE2) estrogenic hormones in Republic of Ireland receiving waters over the period 1999 to 2015. Among these data, 317 samples came from concentration studies, while 205 were from effect-based studies. Monitoring data came from 16 waste water treatment plants (WWTPs), 23 water bodies (including rivers, lakes, marine and transitional waters) and 7 from domestic locations. Out of approximately 1000 WWPTs in the Republic of Ireland, only 16 have been monitored for at least one of these compounds of emerging concern (CECs). Diclofenac is found in treated effluents from 5 WWTPs at levels at least as high as other European WWPTs, and sometime higher. Measurements of E2 and EE2 in WWPT effluents were rare and effluents were more often evaluated for total estrogens; these CECs were generally not detected using conventional analytical methods because of limits of detection being too high compared to environmental concentrations and WFD environmental quality standards. There was good agreement between occurrence of these CEC and regional drug dispensing data in Ireland. Mapping the aforementioned data onto appropriate river basin catchment management tools will inform predictive and simulated risk determinations to inform investment in infrastructure that is necessary to protect rivers and beaches and economic activities that rely on clean water. There is a pressing commensurate need to refine/develop new analytical methods with low levels of detection for future CEC intervention.
Collapse
Affiliation(s)
- Alexandre Tahar
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| | - Erin Jo Tiedeken
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland; School of Science, National College of New Jersey, Pennington Road Ewing, NJ 08628-0718, USA
| | - Neil J Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland.
| |
Collapse
|
31
|
Zhao X, Wang H, Tang Z, Zhao T, Qin N, Li H, Wu F, Giesy JP. Amendment of water quality standards in China: viewpoint on strategic considerations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3078-3092. [PMID: 27535149 DOI: 10.1007/s11356-016-7357-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Water quality standards (WQS) are the most important tool for protection of quality of aquatic environments in China and play a decisive role in the management of China's aquatic environments. Due to limited scientific information available previously, WQS were developed largely based on water quality criteria (WQC) or WQS recommended by developed countries, which may not be suitable for current circumstances in China. The Chinese government recently initiated the revision of Environmental Quality Standards for Surface Water (EQSSW) (GB3838-2002) to meet the challenge of environmental protection. This review analyzed how the WQS developed and applied in China differ from those of more developed countries and pointed out that the lack of strong scientific bases for China's WQC pose major limitations of current WQS. We focus on discussing the six aspects that require high attention on how to establish a national WQC system to support the revision of WQS (Table 1) such as development of methodology, refining water function zoning, establish priority pollutants list, improving protection drinking water sources, development of site-specific water quality criteria, and field toxicity test. It is essential that China and other developing countries established a relatively mature system for promulgating, applying, and enforcing WQC and to implement a dynamic system to incorporate most recent research results into periodically updated WQS.
Collapse
Affiliation(s)
- Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Hao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Tianhui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ning Qin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huixian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - John P Giesy
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
32
|
Rivera-Jaimes JA, Postigo C, Melgoza-Alemán RM, Aceña J, Barceló D, López de Alda M. Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:1263-1274. [PMID: 28962074 DOI: 10.1016/j.scitotenv.2017.09.134] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
The present work describes the first known study to date on the occurrence of pharmaceuticals in surface water and wastewater of Cuernavaca, the capital of the state of Morelos (México). Selected pharmaceuticals (a total of 35) were extracted from the collected water samples with a generic solid phase extraction (SPE) protocol and determined in the sample extracts by means of high-performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS). A screening level risk assessment combining the measured environmental concentrations (MECs) with dose-response data based on predicted no-effect concentrations (PNECs) was also applied to estimate Hazard Quotients (HQs) for the pharmaceuticals detected in the investigated area. A total of twelve pharmaceuticals were found in the water samples analyzed, with detection frequencies above 78% and in most cases of 100%. Overall, the most abundant pharmaceuticals in surface water were the analgesic and anti-inflammatory drugs naproxen (732-4880ng/L), acetaminophen (354-4460ng/L), and diclofenac (258-1398ng/L), and the lipid regulator bezafibrate (286-2100ng/L). On the contrary, other compounds like the β-blocker atenolol and the psychiatric drug carbamazepine were found at only a few ng or tens of ng per liter in the Apatlaco River. Despite the fact that some of the most abundant compounds showed good removal (>97%) during wastewater treatment, concentrations downstream the WWTP were only slightly lower than upstream. This indicates the existence of additional inputs of untreated wastewater into the river. Based on the obtained HQ-values, the concentrations of ibuprofen, sulfamethoxazole, diclofenac and naproxen present in the river could pose a high toxicity risk for the aquatic ecosystem. These findings highlight these pharmaceuticals as relevant organic contaminants in the area of study and the need to further monitor them in order to adopt appropriate measures to safeguard the ecosystem, and eventually human health.
Collapse
Affiliation(s)
- José Abraham Rivera-Jaimes
- Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAP), Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| | - Cristina Postigo
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08434 Barcelona, Spain.
| | - Rosa María Melgoza-Alemán
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| | - Jaume Aceña
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08434 Barcelona, Spain
| | - Damia Barceló
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08434 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Edifici H2O, Parc Científic i Tecnològic de la Universitat de Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Miren López de Alda
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08434 Barcelona, Spain
| |
Collapse
|
33
|
Ortiz de García S, García-Encina PA, Irusta-Mata R. The potential ecotoxicological impact of pharmaceutical and personal care products on humans and freshwater, based on USEtox™ characterization factors. A Spanish case study of toxicity impact scores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:429-445. [PMID: 28755593 DOI: 10.1016/j.scitotenv.2017.07.148] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) are being increasingly included in Life Cycle Assessment studies (LCAs) since they have brought into evidence both human and ecological adverse effects due to their presence in different environmental compartments, wastewater facilities and industry. Therefore, the main goal of this research was to estimate the characterization factors (CFs) of 27 PPCPs widely used worldwide in order to incorporate their values into Life Cycle Impact Assessment studies (LCIA) or to generate a toxicity impact score ranking. Physicochemical properties, degradation rates, bioaccumulation, ecotoxicity and human health effects were collected from experimental data, recognized databases or estimated using EPI Suite™ and the USEtox™ software, and were subsequently used for estimating CFs. In addition, a Spanish toxicity impact score ranking was carried out for 49 PPCPs using the 27 newly calculated CFs, and 22 CFs already available in the literature, besides the data related to the occurrence of PPCPs in the environment in Spain. It has been highlighted that emissions into the continental freshwater compartment showed the highest CFs values for human effects (ranging from 10-9 to 10-3Cases·kg-1), followed by emissions into the air (10-9 to 10-5Cases·kg-1), soil (10-11 to 105Cases·kg-1) and seawater (10-12 to 10-4Cases·kg-1). CFs regarding the affectation of freshwater aquatic environments were the highest of those proceeding from emissions into continental freshwater (between 1 to 104PAF·m3·day·kgemission-1) due to the direct contact between the source of emission and the compartment affected, followed by soil (among 10-1 to 104PAF·m3·day·kgemission-1), and air (among 10-2 to 104PAF·m3·day·kgemission-1) while the lowest were the CFs of continental seawater (among 10-28 to 10-3PAF·m3·day·kgemission-1). Freshwater aquatic ecotoxicological CFs are much higher than human toxicity CFs, demonstrating that the ecological impact of PPCPs in aquatic environments must be a matter of urgent attention. According to the Spanish toxicity impact score calculated, the PPCPs with the highest impact are hormones, antidepressants, fragrances, antibiotics, angiotensin receptor blockers and blood lipid regulators, which have already been found in other kinds of score rankings. These results, which were not available until now, will be useful in order to perform better LCIA studies, incorporating the micro-pollutants whose CFs have been estimated, or in order to carry out single hazard/risk environmental impact assessments.
Collapse
Affiliation(s)
- Sheyla Ortiz de García
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemistry, Faculty of Sciences and Technology, University of Carabobo, Av. Salvador Allende, Campus Bárbula, Carabobo State, Bolivarian Republic of Venezuela.
| | - Pedro A García-Encina
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Dr. Mergelina s/n, 47011 Valladolid, Spain.
| | - Rubén Irusta-Mata
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain.
| |
Collapse
|
34
|
Tahar A, Tiedeken EJ, Clifford E, Cummins E, Rowan N. Development of a semi-quantitative risk assessment model for evaluating environmental threat posed by the three first EU watch-list pharmaceuticals to urban wastewater treatment plants: An Irish case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 603-604:627-638. [PMID: 28654878 DOI: 10.1016/j.scitotenv.2017.05.227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 06/07/2023]
Abstract
Contamination of receiving waters with pharmaceutical compounds is of pressing concern. This constitutes the first study to report on the development of a semi-quantitative risk assessment (RA) model for evaluating the environmental threat posed by three EU watch list pharmaceutical compounds namely, diclofenac, 17-beta-estradiol and 17-alpha-ethinylestradiol, to aquatic ecosystems using Irish data as a case study. This RA model adopts the Irish Environmental Protection Agency Source-Pathway-Receptor concept to define relevant parameters for calculating low, medium or high risk score for each agglomeration of wastewater treatment plant (WWTP), which include catchment, treatments, operational and management factors. This RA model may potentially be used on a national scale to (i) identify WWTPs that pose a particular risk as regards releasing disproportionally high levels of these pharmaceutical compounds, and (ii) help identify priority locations for introducing or upgrading control measures (e.g. tertiary treatment, source reduction). To assess risks for these substances of emerging concern, the model was applied to 16 urban WWTPs located in different regions in Ireland that were scored for the three different compounds and ranked as low, medium or high risk. As a validation proxy, this case study used limited monitoring data recorded at some these plants receiving waters. It is envisaged that this semi-quantitative RA approach may aid other EU countries investigate and screen for potential risks where limited measured or predicted environmental pollutant concentrations and/or hydrological data are available. This model is semi-quantitative, as other factors such as influence of climate change and drug usage or prescription data will need to be considered in a future point for estimating and predicting risks.
Collapse
Affiliation(s)
- Alexandre Tahar
- Bioscience Research Institute, Athlone Institute of Technology, Ireland.
| | - Erin Jo Tiedeken
- Bioscience Research Institute, Athlone Institute of Technology, Ireland; National Biodiversity Data Centre, Waterford, Ireland
| | - Eoghan Clifford
- College of Engineering and informatics, Department of Civil Engineering, National University of Ireland Galway, Ireland
| | - Enda Cummins
- School of Biosystems and Food Engineering, University College Dublin, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Ireland
| |
Collapse
|
35
|
Johnson AC, Donnachie RL, Sumpter JP, Jürgens MD, Moeckel C, Pereira MG. An alternative approach to risk rank chemicals on the threat they pose to the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1372-1381. [PMID: 28531948 DOI: 10.1016/j.scitotenv.2017.05.039] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
This work presents a new and unbiased method of risk ranking chemicals based on the threat they pose to the aquatic environment. The study ranked 12 metals, 23 pesticides, 11 other persistent organic pollutants (POPs), 13 pharmaceuticals, 10 surfactants and similar compounds and 2 nanoparticles (total of 71) of concern against one another by comparing their median UK river water and median ecotoxicity effect concentrations. To complement this, by giving an assessment on potential wildlife impacts, risk ranking was also carried out by comparing the lowest 10th percentile of the effects data with the highest 90th percentile of the exposure data. In other words, risk was pared down to just toxicity versus exposure. Further modifications included incorporating bioconcentration factors, using only recent water measurements and excluding either lethal or sub-lethal effects. The top ten chemicals, based on the medians, which emerged as having the highest risk to organisms in UK surface waters using all the ecotoxicity data were copper, aluminium, zinc, ethinylestradiol (EE2), linear alkylbenzene sulfonate (LAS), triclosan, manganese, iron, methomyl and chlorpyrifos. By way of contrast, using current UK environmental quality standards as the comparator to median UK river water concentrations would have selected 6 different chemicals in the top ten. This approach revealed big differences in relative risk; for example, zinc presented a million times greater risk then metoprolol and LAS 550 times greater risk than nanosilver. With the exception of EE2, most pharmaceuticals were ranked as having a relatively low risk.
Collapse
Affiliation(s)
- Andrew C Johnson
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, UK.
| | | | - John P Sumpter
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK
| | - Monika D Jürgens
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, UK
| | | | | |
Collapse
|
36
|
Diepens NJ, Koelmans AA, Baveco H, van den Brink PJ, van den Heuvel-Greve MJ, Brock TCM. Prospective Environmental Risk Assessment for Sediment-Bound Organic Chemicals: A Proposal for Tiered Effect Assessment. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 239:1-77. [PMID: 26684744 DOI: 10.1007/398_2015_5004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A broadly accepted framework for prospective environmental risk assessment (ERA) of sediment-bound organic chemicals is currently lacking. Such a framework requires clear protection goals, evidence-based concepts that link exposure to effects and a transparent tiered-effect assessment. In this paper, we provide a tiered prospective sediment ERA procedure for organic chemicals in sediment, with a focus on the applicable European regulations and the underlying data requirements. Using the ecosystem services concept, we derived specific protection goals for ecosystem service providing units: microorganisms, benthic algae, sediment-rooted macrophytes, benthic invertebrates and benthic vertebrates. Triggers for sediment toxicity testing are discussed.We recommend a tiered approach (Tier 0 through Tier 3). Tier-0 is a cost-effective screening based on chronic water-exposure toxicity data for pelagic species and equilibrium partitioning. Tier-1 is based on spiked sediment laboratory toxicity tests with standard benthic test species and standardised test methods. If comparable chronic toxicity data for both standard and additional benthic test species are available, the Species Sensitivity Distribution (SSD) approach is a more viable Tier-2 option than the geometric mean approach. This paper includes criteria for accepting results of sediment-spiked single species toxicity tests in prospective ERA, and for the application of the SSD approach. We propose micro/mesocosm experiments with spiked sediment, to study colonisation success by benthic organisms, as a Tier-3 option. Ecological effect models can be used to supplement the experimental tiers. A strategy for unifying information from various tiers by experimental work and exposure-and effect modelling is provided.
Collapse
Affiliation(s)
- Noël J Diepens
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, 47, 6700 AA, Wageningen, The Netherlands.
| | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, 47, 6700 AA, Wageningen, The Netherlands
- IMARES, Institute for Marine Resources & Ecosystem Studies, Wageningen UR, 68, 1970 AB, IJmuiden, The Netherlands
| | - Hans Baveco
- Environmental Risk Assessment Team, Alterra, 47, 6700 AA, Wageningen, The Netherlands
| | - Paul J van den Brink
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, 47, 6700 AA, Wageningen, The Netherlands
- Environmental Risk Assessment Team, Alterra, 47, 6700 AA, Wageningen, The Netherlands
| | | | - Theo C M Brock
- Environmental Risk Assessment Team, Alterra, 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
37
|
Munthe J, Brorström-Lundén E, Rahmberg M, Posthuma L, Altenburger R, Brack W, Bunke D, Engelen G, Gawlik BM, van Gils J, Herráez DL, Rydberg T, Slobodnik J, van Wezel A. An expanded conceptual framework for solution-focused management of chemical pollution in European waters. ENVIRONMENTAL SCIENCES EUROPE 2017; 29:13. [PMID: 28337403 PMCID: PMC5344934 DOI: 10.1186/s12302-017-0112-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/22/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND This paper describes a conceptual framework for solutions-focused management of chemical contaminants built on novel and systematic approaches for identifying, quantifying and reducing risks of these substances. METHODS The conceptual framework was developed in interaction with stakeholders representing relevant authorities and organisations responsible for managing environmental quality of water bodies. Stakeholder needs were compiled via a survey and dialogue. The content of the conceptual framework was thereafter developed with inputs from relevant scientific disciplines. RESULTS The conceptual framework consists of four access points: Chemicals, Environment, Abatement and Society, representing different aspects and approaches to engaging in the issue of chemical contamination of surface waters. It widens the scope for assessment and management of chemicals in comparison to a traditional (mostly) perchemical risk assessment approaches by including abatement- and societal approaches as optional solutions. The solution-focused approach implies an identification of abatement- and policy options upfront in the risk assessment process. The conceptual framework was designed for use in current and future chemical pollution assessments for the aquatic environment, including the specific challenges encountered in prioritising individual chemicals and mixtures, and is applicable for the development of approaches for safe chemical management in a broader sense. The four access points of the conceptual framework are interlinked by four key topics representing the main scientific challenges that need to be addressed, i.e.: identifying and prioritising hazardous chemicals at different scales; selecting relevant and efficient abatement options; providing regulatory support for chemicals management; predicting and prioritising future chemical risks. The conceptual framework aligns current challenges in the safe production and use of chemicals. The current state of knowledge and implementation of these challenges is described. CONCLUSIONS The use of the conceptual framework, and addressing the challenges, is intended to support: (1) forwarding sustainable use of chemicals, (2) identification of pollutants of priority concern for cost-effective management, (3) the selection of optimal abatement options and (4) the development and use of optimised legal and policy instruments.
Collapse
Affiliation(s)
- John Munthe
- IVL Swedish Environmental Research Institute, PO Box 53021, 40014 Gothenburg, Sweden
| | - Eva Brorström-Lundén
- IVL Swedish Environmental Research Institute, PO Box 53021, 40014 Gothenburg, Sweden
| | - Magnus Rahmberg
- IVL Swedish Environmental Research Institute, PO Box 53021, 40014 Gothenburg, Sweden
| | - Leo Posthuma
- RIVM-National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Rolf Altenburger
- UFZ-Helmholtz Centre for Environmental Research GmbH, Permoserstraße 15, 04318 Leipzig, Germany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany
| | - Werner Brack
- UFZ-Helmholtz Centre for Environmental Research GmbH, Permoserstraße 15, 04318 Leipzig, Germany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany
| | - Dirk Bunke
- OEKO-Institute for Applied Ecology, Postfach 17 71, 79017 Freiburg, Germany
| | - Guy Engelen
- VITO-Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
| | - Bernd Manfred Gawlik
- Unit H 01-Water Resources Unit, DG Joint Research Centre, Via Enrico Fermi 2749, 21027 Ispra, Italy
| | - Jos van Gils
- Deltares, Postbus 177, 2600 MH Delft, The Netherlands
| | - David López Herráez
- UFZ-Helmholtz Centre for Environmental Research GmbH, Permoserstraße 15, 04318 Leipzig, Germany
| | - Tomas Rydberg
- IVL Swedish Environmental Research Institute, PO Box 53021, 40014 Gothenburg, Sweden
| | | | - Annemarie van Wezel
- KWR-Watercycle Research Institute, Nieuwegein, The Netherlands
- Copernicus Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
38
|
Di Paolo C, Ottermanns R, Keiter S, Ait-Aissa S, Bluhm K, Brack W, Breitholtz M, Buchinger S, Carere M, Chalon C, Cousin X, Dulio V, Escher BI, Hamers T, Hilscherová K, Jarque S, Jonas A, Maillot-Marechal E, Marneffe Y, Nguyen MT, Pandard P, Schifferli A, Schulze T, Seidensticker S, Seiler TB, Tang J, van der Oost R, Vermeirssen E, Zounková R, Zwart N, Hollert H. Bioassay battery interlaboratory investigation of emerging contaminants in spiked water extracts - Towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring. WATER RESEARCH 2016; 104:473-484. [PMID: 27585427 DOI: 10.1016/j.watres.2016.08.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/30/2016] [Accepted: 08/09/2016] [Indexed: 05/18/2023]
Abstract
Bioassays are particularly useful tools to link the chemical and ecological assessments in water quality monitoring. Different methods cover a broad range of toxicity mechanisms in diverse organisms, and account for risks posed by non-target compounds and mixtures. Many tests are already applied in chemical and waste assessments, and stakeholders from the science-police interface have recommended their integration in regulatory water quality monitoring. Still, there is a need to address bioassay suitability to evaluate water samples containing emerging pollutants, which are a current priority in water quality monitoring. The presented interlaboratory study (ILS) verified whether a battery of miniaturized bioassays, conducted in 11 different laboratories following their own protocols, would produce comparable results when applied to evaluate blinded samples consisting of a pristine water extract spiked with four emerging pollutants as single chemicals or mixtures, i.e. triclosan, acridine, 17α-ethinylestradiol (EE2) and 3-nitrobenzanthrone (3-NBA). Assays evaluated effects on aquatic organisms from three different trophic levels (algae, daphnids, zebrafish embryos) and mechanism-specific effects using in vitro estrogenicity (ER-Luc, YES) and mutagenicity (Ames fluctuation) assays. The test battery presented complementary sensitivity and specificity to evaluate the different blinded water extract spikes. Aquatic organisms differed in terms of sensitivity to triclosan (algae > daphnids > fish) and acridine (fish > daphnids > algae) spikes, confirming the complementary role of the three taxa for water quality assessment. Estrogenicity and mutagenicity assays identified with high precision the respective mechanism-specific effects of spikes even when non-specific toxicity occurred in mixture. For estrogenicity, although differences were observed between assays and models, EE2 spike relative induction EC50 values were comparable to the literature, and E2/EE2 equivalency factors reliably reflected the sample content. In the Ames, strong revertant induction occurred following 3-NBA spike incubation with the TA98 strain, which was of lower magnitude after metabolic transformation and when compared to TA100. Differences in experimental protocols, model organisms, and data analysis can be sources of variation, indicating that respective harmonized standard procedures should be followed when implementing bioassays in water monitoring. Together with other ongoing activities for the validation of a basic bioassay battery, the present study is an important step towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring.
Collapse
Affiliation(s)
- Carolina Di Paolo
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Richard Ottermanns
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Steffen Keiter
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany; Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | | | - Kerstin Bluhm
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Werner Brack
- UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Magnus Breitholtz
- Department of Applied Environmental Science - ITM, Stockholm University, Stockholm, Sweden
| | - Sebastian Buchinger
- Department Biochemistry and Ecotoxicology, Federal Institute of Hydrology, Koblenz, Germany
| | | | - Carole Chalon
- ISSeP (Scientific Institute of Public Service), Liège, Wallonia, Belgium
| | - Xavier Cousin
- Laboratoire d'Ecotoxicologie, Ifremer, L'Houmeau, France; Laboratoire de Physiologie et Génétique des Poissons, Inra, Rennes, France
| | | | - Beate I Escher
- UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany; National Research Centre for Environmental Toxicology - Entox, The University of Queensland, Brisbane, Australia; Centre for Applied Geosciences, Eberhard Karls University Tübingen, Germany
| | - Timo Hamers
- Institute for Environmental Studies -IVM, VU University Amsterdam, The Netherlands
| | - Klára Hilscherová
- Research Centre for Toxic Compounds in the Environment - RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sergio Jarque
- Research Centre for Toxic Compounds in the Environment - RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Adam Jonas
- Research Centre for Toxic Compounds in the Environment - RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Yves Marneffe
- ISSeP (Scientific Institute of Public Service), Liège, Wallonia, Belgium
| | | | | | - Andrea Schifferli
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Dübendorf, Switzerland
| | - Tobias Schulze
- UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Sven Seidensticker
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany; Centre for Applied Geosciences, Eberhard Karls University Tübingen, Germany
| | | | - Janet Tang
- National Research Centre for Environmental Toxicology - Entox, The University of Queensland, Brisbane, Australia
| | - Ron van der Oost
- WATERNET Institute for the Urban Water Cycle, Division of Technology Research & Engineering, Amsterdam, The Netherlands
| | | | - Radka Zounková
- Research Centre for Toxic Compounds in the Environment - RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nick Zwart
- Institute for Environmental Studies -IVM, VU University Amsterdam, The Netherlands
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
39
|
Albuquerque AF, Ribeiro JS, Kummrow F, Nogueira AJA, Montagner CC, Umbuzeiro GA. Pesticides in Brazilian freshwaters: a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:779-87. [PMID: 27367607 DOI: 10.1039/c6em00268d] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The widespread use of pesticides in agriculture can lead to water contamination and cause adverse effects on non-target organisms. Brazil has been the world's top pesticide market consumer since 2008, with 381 approved pesticides for crop use. This study provides a comprehensive literature review on the occurrence of pesticide residues in Brazilian freshwaters. We searched for information in official agency records and peer-reviewed scientific literature. Risk quotients were calculated to assess the potential risk posed to aquatic life by the individual pesticides based on their levels of water contamination. Studies about the occurrence of pesticides in freshwaters in Brazil are scarce and concentrated in few sampling sites in 5 of the 27 states. Herbicides (21) accounted for the majority of the substances investigated, followed by fungicides (11), insecticides (10) and plant growth regulators (1). Insecticides are the class of major concern. Brazil would benefit from the implementation of a nationwide pesticide freshwater monitoring program to support preventive, remediation and enforcement actions.
Collapse
Affiliation(s)
- A F Albuquerque
- School of Technology, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil.
| | - J S Ribeiro
- School of Technology, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil.
| | - F Kummrow
- School of Technology, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil. and Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, UNIFESP, Diadema, São Paulo, Brazil
| | - A J A Nogueira
- School of Technology, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil. and Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - C C Montagner
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - G A Umbuzeiro
- School of Technology, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil.
| |
Collapse
|
40
|
Mansour F, Al-Hindi M, Saad W, Salam D. Environmental risk analysis and prioritization of pharmaceuticals in a developing world context. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:31-43. [PMID: 26994791 DOI: 10.1016/j.scitotenv.2016.03.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 05/13/2023]
Abstract
The impact of residual pharmaceuticals on the aquatic environment has gained widespread attention over the past years. Various studies have established the occurrence of pharmaceutical compounds in different water bodies throughout the world. In view of the absence of occurrence data in a number of developing world countries, and given the limited availability of analytical resources in these countries, it is prudent to devise methodologies to prioritize pharmaceuticals for environmental monitoring purposes that are site specific. In this work, several prioritization approaches are used to rank the 88 most commonly consumed pharmaceuticals in Lebanon. A simultaneous multi-criteria decision analysis method utilizing the exposure, persistence, bioaccumulation, and toxicity (EPBT) approach is applied to a smaller subset of the original list (69 pharmaceuticals). Several base cases are investigated and sensitivity analysis is applied to one of these base case runs. The similarities and differences in the overall ranking of individual, and classes of, pharmaceuticals for the base cases and the sensitivity runs are elucidated. An environmental risk assessment (ERA), where predicted environmental concentrations (PEC) and risk quotients (RQ) are determined at different dilution factors, is performed as an alternative method of prioritization for a total of 84 pharmaceuticals. The ERA results indicate that metformin and amoxicillin have the highest PECs while 17β-estradiol, naftidrofuryl and dimenhydrinate have the highest RQs. The two approaches, EPBT prioritization and ERA, are compared and a priority list consisting of 26 pharmaceuticals of various classes is developed. Nervous system and alimentary tract and metabolism pharmaceuticals (9/26 and 5/26 respectively) constitute more than half of the numbers on the priority list with the balance consisting of anti-infective (4/26), musculo-skeletal (3/26), genito-urinary (2/26), respiratory (2/26) and cardiovascular (1/26) pharmaceuticals. This list will serve as a basis for the selection of candidate compounds to focus on for future monitoring campaigns.
Collapse
Affiliation(s)
- Fatima Mansour
- Department of Chemical and Petroleum Engineering, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
| | - Mahmoud Al-Hindi
- Department of Chemical and Petroleum Engineering, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Walid Saad
- Department of Chemical and Petroleum Engineering, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
| | - Darine Salam
- Department of Civil and Environmental Engineering, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
| |
Collapse
|
41
|
Tsaboula A, Papadakis EN, Vryzas Z, Kotopoulou A, Kintzikoglou K, Papadopoulou-Mourkidou E. Environmental and human risk hierarchy of pesticides: A prioritization method, based on monitoring, hazard assessment and environmental fate. ENVIRONMENT INTERNATIONAL 2016; 91:78-93. [PMID: 26915710 DOI: 10.1016/j.envint.2016.02.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 05/11/2023]
Abstract
A pesticide prioritization approach was developed and implemented in the Pinios River Basin of Central Greece. It takes under consideration the Level of Environmental Risk containing information on the frequency of occurrence of pesticides above environmental thresholds, the intensity of this occurrence and the spatial distribution as well as information about the fate and behavior of pesticides in the environment and the potential to have adverse impact on humans' health. Original 3-year monitoring data from 102 Stationary Sampling Sites located on rivers and their tributaries, reservoirs, streams and irrigation/drainage canals giving rise to a collection of 2382 water samples resulting in 7088 data sets, were included in this integrated prioritization study. Among 302 monitored active ingredients, 119 were detected at least once and the concentrations found in the aquatic systems for 41% of compounds were higher than the respective lowest Predicted Non-Effect Concentration (PNEC) values. Sixteen and 5 pesticides were found with risk ratios (MECmax/PNEC) above 10 (high concern) and 100 (very high concern), respectively. However, pesticides with maximum Measured Environmental Concentration (MECmax) values exceeding by 1000 times the respective lowest PNEC values were also found which were considered of extremely high concern; in the latter group were included prometryn, chlorpyrifos, diazinon, λ-cyhalothrin, cypermethrin, α-cypermethrin deltamethrin, ethalfluralin and phosmet. The sensitivity of the analytical methods used in the monitoring study was considered inadequate to meet the toxicological endpoints for 32 pesticides. The widest distribution of occurrence in the Stationary Sampling Sites of the monitoring program was found for the pesticides, prometryn, fluometuron, terbuthylazine, S-metolachlor, chlorpyrifos, diphenylamine, acetochlor, alachlor, 2,4-D, etridiazole, imidacloprid and lindane (γ-ΗCH). Among the 27 priority pesticides included in the Directive 2013/39/EU, in the present study 13 pesticides were considered as candidates for River Basin Specific Pollutants (RBSP) for the River Basin of Pinios. Among the 30 pesticide specific pollutants that were established by the Greek authorities, in the present study only 6 were considered as candidates for RBSP for the river basin of Pinios. As a result of the implementation of the prioritization approach developed in this study a total of 71 pesticides were identified as being RBSP for the river basin of Pinios. The higher Level of Environmental Risk was found to be exerted by the organophosphorus insecticide chlorpyrifos, followed by lindane and prometryn. The present study provides background information for important decisions to be made concerning the selection of pesticides which should be included in the target analyte list of new monitoring and screening programs of surface water quality in the Pinios River Basin. In addition, the prioritization approach proposed here can be useful for the development of River Basin Management Plans.
Collapse
Affiliation(s)
- Aggeliki Tsaboula
- Pesticide Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54126 Thessaloniki, Greece.
| | - Emmanouil-Nikolaos Papadakis
- Pesticide Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54126 Thessaloniki, Greece.
| | - Zisis Vryzas
- Laboratory of Agricultural Pharmacology and Ecotoxicology, Faculty of Agricultural Development, Democritus University of Thrace, 68200 Orestias, Greece.
| | - Athina Kotopoulou
- Pesticide Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54126 Thessaloniki, Greece.
| | - Katerina Kintzikoglou
- Pesticide Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54126 Thessaloniki, Greece.
| | | |
Collapse
|
42
|
Sjerps RMA, Vughs D, van Leerdam JA, Ter Laak TL, van Wezel AP. Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS. WATER RESEARCH 2016; 93:254-264. [PMID: 26921851 DOI: 10.1016/j.watres.2016.02.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/22/2016] [Accepted: 02/13/2016] [Indexed: 05/22/2023]
Abstract
For the prioritization of more than 5200 anthropogenic chemicals authorized on the European market, we use a large scale liquid chromatography-high resolution mass spectrometry (LC-HRMS) suspect screening study. The prioritization is based on occurrence in 151 water samples including effluent, surface water, ground water and drinking water. The suspect screening linked over 700 detected compounds with known accurate masses to one or multiple suspects. Using a prioritization threshold and removing false positives reduced this to 113 detected compounds linked to 174 suspects, 24 compounds reflect a confirmed structure by comparison with the pure reference standard. The prioritized compounds and suspects are relevant for detailed risk assessments after confirmation of their identity. Only one of the 174 prioritized compounds and suspects is mentioned in water quality regulations, and only 20% is mentioned on existing lists of potentially relevant chemicals. This shows the complementarity to commonly used target-based methods. The semi-quantitative total concentration, expressed as internal standard equivalents of detected compounds linked to suspects, in effluents is approximately 10 times higher than in surface waters, while ground waters and drinking waters show the lowest response. The average retention time, a measure for hydrophobicity, of the detected compounds per sample decreased from effluent to surface- and groundwater to drinking water, confirming the occurrence of more polar compounds in drinking water. The semi-quantitative total concentrations exceed the conservative and precautionary threshold of toxicological concern. Therefore, adverse effects of mixtures cannot be neglected without a more thorough risk assessment.
Collapse
Affiliation(s)
- Rosa M A Sjerps
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands.
| | - Dennis Vughs
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands.
| | - Jan A van Leerdam
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands.
| | - Thomas L Ter Laak
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands; Wageningen University, Sub-department Environmental Technology, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Annemarie P van Wezel
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands; Utrecht University, Copernicus Institute of Sustainable Development, P.O. Box 80.115, 3508 TC, Utrecht, The Netherlands.
| |
Collapse
|
43
|
Posada-Ureta O, Olivares M, Zatón L, Delgado A, Prieto A, Vallejo A, Paschke A, Etxebarria N. Uptake calibration of polymer-based passive samplers for monitoring priority and emerging organic non-polar pollutants in WWTP effluents. Anal Bioanal Chem 2016; 408:3165-75. [DOI: 10.1007/s00216-016-9381-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
|
44
|
López-Doval JC, Meirelles ST, Cardoso-Silva S, Moschini-Carlos V, Pompêo M. Ecological and toxicological responses in a multistressor scenario: Are monitoring programs showing the stressors or just showing stress? A case study in Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 540:466-476. [PMID: 26094799 DOI: 10.1016/j.scitotenv.2015.05.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
The Metropolitan Region of São Paulo (MRSP) is located in the Brazilian State of São Paulo and reservoirs in this region are vital for water supply and energy production. Changes in economic, social, and demographic trends produced pollution of water bodies, decreasing water quality for human uses and affecting freshwater populations. The presence of emerging pollutants, classical priority substances, nutrient excess and the interaction with tropical-climate conditions require periodic reviews of water policies and monitoring programs in order to detect and manage these threats in a global change scenario. The objective of this work is to determine whether the monitoring program of the São Paulo's Environmental Agency, is sufficient to explain the toxicological and biological responses observed in organisms in reservoirs of the MRSP, and whether it can identify the possible agents causing these responses. For that, we used publicly available data on water quality compiled by this agency in their routine monitoring program. A general overview of these data and a chemometric approach to analyze the responses of biotic indexes and toxicological bioassays, as a function of the physical and chemical parameters monitored, were performed. Data compiled showed temporal and geographical information gaps on variables measured. Toxicological responses have been observed in the reservoirs of the MRSP, together with a high incidence of impairments of the zooplankton community. This demonstrates the presence of stressors that affect the viability of organisms and populations. The statistical approach showed that the data compiled by the environmental agency are insufficient to identify and explain the factors causing the observed ecotoxicological responses and impairments in the zooplankton community, and are therefore insufficient to identify clear cause-effect relationships. Stressors different from those analyzed could be responsible for the observed responses.
Collapse
Affiliation(s)
- Julio C López-Doval
- Institute of Biosciences, Department of Ecology, University of São Paulo, do Matão Str., Travessa 14, 321, Butantã, 05508-090 São Paulo, SP, Brazil.
| | - Sergio Tadeu Meirelles
- Institute of Biosciences, Department of Ecology, University of São Paulo, do Matão Str., Travessa 14, 321, Butantã, 05508-090 São Paulo, SP, Brazil
| | - Sheila Cardoso-Silva
- São Paulo State University - UNESP "Júlio de Mesquita Filho", Environmental Sciences Program, 3 de Março Avenue n. 511, PO Box: 18087-180, Sorocaba, SP, Brazil
| | - Viviane Moschini-Carlos
- São Paulo State University - UNESP "Júlio de Mesquita Filho", Environmental Sciences Program, 3 de Março Avenue n. 511, PO Box: 18087-180, Sorocaba, SP, Brazil
| | - Marcelo Pompêo
- Institute of Biosciences, Department of Ecology, University of São Paulo, do Matão Str., Travessa 14, 321, Butantã, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
45
|
Papadakis EN, Tsaboula A, Kotopoulou A, Kintzikoglou K, Vryzas Z, Papadopoulou-Mourkidou E. Pesticides in the surface waters of Lake Vistonis Basin, Greece: Occurrence and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 536:793-802. [PMID: 26254079 DOI: 10.1016/j.scitotenv.2015.07.099] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/21/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
A study was undertaken for the evaluation of the pesticide pollution caused by the agricultural activities in the basin of Lake Vistonis, Greece during the years 2010-2012. Water samples were collected from Lake Vistonis, four major rivers and various small streams and agriculture drainage canals. The concentration of 302 compounds was determined after solid-phase extraction of the water samples and subsequent LC-MS/MS and GC-MS/MS analysis of the extracts. Overall, herbicides were the most frequently detected pesticides (57%), followed by insecticides (28%) and fungicides (14%). In Lake Vistonis 11 pesticides were detected. Specifically, fluometuron was detected in the 75% of the samples (maximum concentration 0.088 μg/L) whereas lambda-cyhalothrin was detected in all the samples of spring 2011 and alphamethrin in all the samples of spring 2012 (maximum concentration 0.041 and 0.168 μg/L, respectively). In the rivers and drainage canals 68 pesticides were detected. Specifically, fluometuron was detected in the 53% of the samples (maximum concentration 317.6 μg/L) followed by chlorpyrifos and prometryn (16 and 13% of the samples respectively). An environmental risk assessment was performed by employing the Risk Quotient (RQ) method. The risk assessment revealed that at least one pesticide concentration led to a RQ>1 in 20% of the samples. In Lake Vistonis, alphamethrin and lambda-cyhalothrin concentrations resulted in RQ>1, whereas in the other water bodies this was mainly the result of chlorpyrifos-methyl and alphamethrin exposure. In contrast, herbicide and fungicide concentrations contributed substantially less to environmental risks.
Collapse
Affiliation(s)
- Emmanouil-Nikolaos Papadakis
- Pesticide Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54126 Thessaloniki, Greece.
| | - Aggeliki Tsaboula
- Pesticide Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54126 Thessaloniki, Greece.
| | - Athina Kotopoulou
- Pesticide Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54126 Thessaloniki, Greece.
| | - Katerina Kintzikoglou
- Pesticide Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54126 Thessaloniki, Greece.
| | - Zisis Vryzas
- Laboratory of Agricultural Pharmacology and Ecotoxicology, Faculty of Agricultural Development, Democritus University of Thrace, 68200 Orestias, Greece.
| | | |
Collapse
|
46
|
Dulio V, Slobodnik J. In Response: The NORMAN perspectives on prioritization of emerging pollutants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2183-2185. [PMID: 26414542 DOI: 10.1002/etc.3048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 03/29/2015] [Accepted: 04/28/2015] [Indexed: 06/05/2023]
|
47
|
Esperanza M, Cid Á, Herrero C, Rioboo C. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:210-221. [PMID: 26117094 DOI: 10.1016/j.aquatox.2015.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
Since recent evidence has demonstrated that many types of chemicals exhibit oxidative and/or genotoxic potential on living organisms, reactive oxygen species (ROS) formation and DNA damage are currently the best accepted paradigms to assess the potential hazardous biological effects of a wide range of contaminants. The goal of this study was to evaluate the sensitivity of different cytotoxicity and genotoxicity responses on the model microalga Chlamydomonas reinhardtii exposed to the prooxidant herbicide paraquat. In addition to the growth endpoint, cell viability, mitochondrial membrane potential and presence of reactive oxygen species (ROS) were assayed as potential markers of cytotoxicity using flow cytometry (FCM). To study the effects of paraquat on C. reinhardtii DNA, several genotoxicity approaches were implemented for the first time in an ecotoxicological study on microalgae. Oxidative DNA base damage was analysed by measuring the oxidative DNA lesion 8-OHdG by FCM. DNA fragmentation was analysed by different methods: comet assay, and cell cycle analysis by FCM, with a particular focus on the presence of subG1-nuclei. Finally, effects on morphology of nuclei were monitored through DAPI staining. The evaluation of these endpoints showed that several physiological and biochemical parameters reacted to oxidative stress disturbances with greater sensitivity than integrative parameters such as growth rates or cell viability. The experiments revealed concentration-dependent cytotoxicity (ROS formation, depolarization of mitochondrial membrane), genotoxicity (oxidative DNA damage, DNA strand breakage, alterations in nuclear morphology), and cell cycle disturbances (subG1-nuclei, decrease of 4N population) in paraquat-treated cells. Overall, the genotoxicity results indicate that the production of ROS caused by exposure to paraquat induces oxidative DNA damage followed by DNA single- and double-strand breaks and cell cycle alterations, possibly leading to apoptosis in C. reinhardtii cells. This is supported by the observation of typical hallmarks of apoptosis, such as mitochondrial membrane depolarization, alterations in nuclear morphology and subG1 nuclei in cells exposed to the highest assayed concentrations. To our knowledge, this is the first study that provides a comprehensive analysis of oxidative DNA base damage in unicellular algal cells exposed to a prooxidant pollutant, as well as of its possible relation with other physiological effects. These results reinforce the need for additional studies on the genotoxicity of environmental pollutants on ecologically relevant organisms such as microalgae that can provide a promising basis for the characterization of potential pollutant hazards in the aquatic environment.
Collapse
Affiliation(s)
- Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain.
| |
Collapse
|
48
|
Ribeiro C, Ribeiro AR, Maia AS, Gonçalves VMF, Tiritan ME. New trends in sample preparation techniques for environmental analysis. Crit Rev Anal Chem 2015; 44:142-85. [PMID: 25391434 DOI: 10.1080/10408347.2013.833850] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Environmental samples include a wide variety of complex matrices, with low concentrations of analytes and presence of several interferences. Sample preparation is a critical step and the main source of uncertainties in the analysis of environmental samples, and it is usually laborious, high cost, time consuming, and polluting. In this context, there is increasing interest in developing faster, cost-effective, and environmentally friendly sample preparation techniques. Recently, new methods have been developed and optimized in order to miniaturize extraction steps, to reduce solvent consumption or become solventless, and to automate systems. This review attempts to present an overview of the fundamentals, procedure, and application of the most recently developed sample preparation techniques for the extraction, cleanup, and concentration of organic pollutants from environmental samples. These techniques include: solid phase microextraction, on-line solid phase extraction, microextraction by packed sorbent, dispersive liquid-liquid microextraction, and QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe).
Collapse
Affiliation(s)
- Cláudia Ribeiro
- a CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Gandra , Portugal
| | | | | | | | | |
Collapse
|
49
|
Mazzeo DEC, Marin-Morales MA. Genotoxicity evaluation of environmental pollutants using analysis of nucleolar alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9796-9806. [PMID: 25639248 DOI: 10.1007/s11356-015-4134-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
Nucleolar alterations resulting from the action of either chemical or physical agents can serve as important genotoxicity biomarkers. In this study, the efficiency of AgNOR banding technique to identify the presence of nucleoli in micronucleus and assess nucleolar alterations in aberrant cells of Allium cepa was evaluated. Seeds of this plant were exposed to both water samples from a river that receives untreated urban effluent and to the trifluralin herbicide (0.84 mg/L concentration), both analyzed in two different seasons (summer and winter seasons). Samples induced significant frequencies of chromosomal and nuclear aberrations and micronuclei, as observed in cells submitted to conventional chromosomal staining. The herbicide caused a significant increase in the number of nucleoli and micronuclei, interpreted as due to the elimination of excessive nucleolar material resulting from polyploidization. The use of the AgNOR technique enabled the identification of both the presence of the nucleolus in some micronuclei and the nucleolar organizer region (NOR) behavior of aberrant cells. The NOR-banding technique showed to be an efficient tool for studying the genotoxic effects caused by a xenobiotics and a complex environmental sample.
Collapse
|
50
|
Banjac Z, Ginebreda A, Kuzmanovic M, Marcé R, Nadal M, Riera JM, Barceló D. Emission factor estimation of ca. 160 emerging organic microcontaminants by inverse modeling in a Mediterranean river basin (Llobregat, NE Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 520:241-252. [PMID: 25817761 DOI: 10.1016/j.scitotenv.2015.03.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/23/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
Starting from measured river concentrations, emission factors of 158 organic compounds out of 199 analyzed belonging to different groups of priority and emerging contaminants [pesticides (25), pharmaceuticals and hormones (81), perfluoroalkyl substances (PFASs) (18), industrial compounds (12), drugs of abuse (8) and personal care products (14)] have been estimated by inverse modeling. The Llobregat river was taken as case study representative of Mediterranean rivers. Industrial compounds and pharmaceuticals are the dominant groups (range of 10(4) mg·1000 inhab(-1)·d(-1)). Personal care products, pesticides, PFASs and illegal drugs showed a load approximately one order of magnitude smaller. Considered on a single compound basis industrial compounds still dominate (range of ca. 10(3) mg·1000 inhab(-1)·d(-1)) over other classes. Generally, the results are within the range when compared to previously published estimations for other river basins. River attenuation expressed as the percentage fraction of microcontaminants eliminated was quantified. On average they were around 60-70% of the amount discharged for all classes, except for PFASs, that are poorly eliminated (ca. 20% on average). Uncertainties associated with the calculated emissions have been estimated by Monte-Carlo methods (15,000 runs) and typically show coefficients of variation of ca. 120%. Sensitivities associated with the various variables involved in the calculations (river discharge, river length, concentration, elimination constant, hydraulic travel time and river velocity) have been assessed as well. For the intervals chosen for the different variables, all show sensitivities exceeding unity (1.14 to 3.43), tending to amplify the variation of the emission. River velocity and basin length showed the highest sensitivity value. Even considering the limitations of the approach used, inverse modeling can provide a useful tool for management purposes facilitating the quantification of release rates of chemicals into the aquatic environment.
Collapse
Affiliation(s)
- Zoran Banjac
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Antoni Ginebreda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Maja Kuzmanovic
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Rafael Marcé
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Josep M Riera
- Organización, Calidad y Proyectos, S.L. Mare de Déu de Montserrat, 218, 08041 Barcelona, Spain
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|