1
|
Freitas BLS, Fava NMDN, Melo-Neto MGD, Dalkiranis GG, Tonetti AL, Byrne JA, Fernandez-Ibañez P, Sabogal-Paz LP. Efficacy of UVC-LED radiation in bacterial, viral, and protozoan inactivation: an assessment of the influence of exposure doses and water quality. WATER RESEARCH 2024; 266:122322. [PMID: 39213680 DOI: 10.1016/j.watres.2024.122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Ultraviolet light-emitting diodes (UV-LEDs) have demonstrated the ability to inactivate microorganisms in water, offering an environmentally safer alternative to the conventional mercury lamp, in UV applications. While several studies have explored the microbiological effect of UVC-LEDs (200nm-280nm), limited information exists regarding their effects on waters with critical qualities. These critical qualities encompass bacteria, viruses, and protozoa - drinking water quality indicators defined by the World Health Organization for small water systems. For the first time, this work reports on the Escherichia coli, PhiX-174, MS2, and Cryptosporidium oocysts inactivation using a bench-scale UVC-LED (280 nm) water disinfection system. UV doses at a wavelength of 280 nm (UV280) of up to 143.4 mJ/cm2 were delivered under two quality-critical water conditions: filtered water (UV transmittance at 280 nm - UVT280 90.2 %) and WHO challenge water (UVT 15.7 %). Results revealed microbiological reductions dependent on exposure time and UVT. For UV280 dose of 16.1 mJ/cm2, 2.93-3.70 log E. coli reductions were observed in UVT 90.2 % and 15.7 %, 3.49-4.21 log for PhiX-174, 0.63-0.78 log for MS2, and 0.02-0.04 log for Cryptosporidium oocysts. Significantly higher UV280 doses of 143.4 mJ/cm2 led to reductions of 3.94-5.35 log for MS2 and 0.42-0.46 log for Cryptosporidium oocysts. Statistical analysis revealed that the sensitivity among the organisms to UV280 exposure was E. coli = PhiX-174 > MS2 >> Cryptosporidium oocysts. Although experiments with WHO challenge water posed greater challenges for achieving 1 log reduction compared to filtered water, this difference only proved statistically significant for PhiX-174 and MS2 reductions. Overall, UVC-LED technology demonstrated notable efficacy in microbiological inactivation, achieving significant reductions based on WHO scheme of evaluation for POU technologies in both bacteria and viruses even in critical-quality waters. The findings emphasize the potential for extending the application of UVC-LED as a viable solution for household water treatment.
Collapse
Affiliation(s)
- Bárbara Luíza Souza Freitas
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Natália Melo de Nasser Fava
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Murilo Guilherme de Melo-Neto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Gustavo Gonçalves Dalkiranis
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Adriano Luiz Tonetti
- School of Civil Engineering, Architecture and Urbanism - FECFAU, UNICAMP (State University of Campinas), Avenida Albert Einstein, 951, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-852, Brazil
| | - John Anthony Byrne
- Nanotechnology and Integrated Bioengineering Centre, School of Engineering, Ulster University, Jordanstown, BT37 0QB, Northern Ireland, United Kingdom
| | - Pilar Fernandez-Ibañez
- Nanotechnology and Integrated Bioengineering Centre, School of Engineering, Ulster University, Jordanstown, BT37 0QB, Northern Ireland, United Kingdom
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo, 13566-590, Brazil.
| |
Collapse
|
2
|
Zambrano-Alvarado JI, Uyaguari-Diaz MI. Insights into water insecurity in Indigenous communities in Canada: assessing microbial risks and innovative solutions, a multifaceted review. PeerJ 2024; 12:e18277. [PMID: 39434791 PMCID: PMC11493031 DOI: 10.7717/peerj.18277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Canada is considered a freshwater-rich country, despite this, several Indigenous reserves struggle with household water insecurity. In fact, some of these communities have lacked access to safe water for almost 30 years. Water quality in Canadian Indigenous reserves is influenced by several factors including source water quality, drinking water treatments applied, water distribution systems, and water storage tanks when piped water is unavailable. The objective of this multifaceted review is to spot the challenges and consequences of inadequate drinking water systems (DWS) and the available technical and microbiological alternatives to address water sanitation coverage in Indigenous reserves of Canada, North America (also known as Turtle Island). A comprehensive literature review was conducted using national web portals from both federal and provincial governments, as well as academic databases to identify the following topics: The status of water insecurity in Indigenous communities across Canada; Microbiological, chemical, and natural causes contributing to water insecurity; Limitations of applying urban-style drinking water systems in Indigenous reserves in Canada and the management of DWS for Indigenous communities in other high-income countries; and the importance of determining the microbiome inhabiting drinking water systems along with the cutting-edge technology available for its analysis. A total of 169 scientific articles matched the inclusion criteria. The major themes discussed include: The status of water insecurity and water advisories in Canada; the risks of pathogenic microorganisms (i.e., Escherichia coli and total coliforms) and other chemicals (i.e., disinfection by-products) found in water storage tanks; the most common technologies available for water treatment including coagulation, high- and low-pressure membrane filtration procedures, ozone, ion exchange, and biological ion exchange and their limitations when applying them in remote Indigenous communities. Furthermore, we reviewed the benefits and drawbacks that high throughput tools such as metagenomics (the study of genomes of microbial communities), culturomics (a high-efficiency culture approach), and microfluidics devices (microminiaturized instruments) and what they could represent for water monitoring in Indigenous reserves. This multifaceted review demonstrates that water insecurity in Canada is a reflection of the institutional structures of marginalization that persist in the country and other parts of Turtle Island. DWS on Indigenous reserves are in urgent need of upgrades. Source water protection, and drinking water monitoring plus a comprehensive design of culturally adapted, and sustainable water services are required. Collaborative efforts between First Nations authorities and federal, provincial, and territorial governments are imperative to ensure equitable access to safe drinking water in Indigenous reserves.
Collapse
Affiliation(s)
| | - Miguel I. Uyaguari-Diaz
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Onoda Y, Nagahashi M, Yamashita M, Fukushima S, Aizawa T, Yamauchi S, Fujikawa Y, Tanaka T, Kadomura-Ishikawa Y, Ishida K, Uebanso T, Mawatari K, Blatchley ER, Takahashi A. Accumulated melanin in molds provides wavelength-dependent UV tolerance. Photochem Photobiol Sci 2024; 23:1791-1806. [PMID: 39287919 DOI: 10.1007/s43630-024-00632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Fungal contamination poses a serious threat to public health and food safety because molds can grow under stressful conditions through melanin accumulation. Although ultraviolet (UV) irradiation is popular for inhibiting microorganisms, its effectiveness is limited by our insufficient knowledge about UV tolerance in melanin-accumulating molds. In this study, we first confirmed the protective effect of melanin by evaluating the UV sensitivity of young and mature spores. Additionally, we compared UV sensitivity between spores with accumulated melanin and spores prepared with melanin biosynthesis inhibitors. We found that mature spores were less UV-sensitive than young spores, and that reduced melanin accumulation by inhibitors led to reduced UV sensitivity. These results suggest that melanin protects cells against UV irradiation. To determine the most effective wavelength for inhibition, we evaluated the wavelength dependence of UV tolerance in a yeast (Rhodotorula mucilaginosa) and in molds (Aspergillus fumigatus, Cladosporium halotolerans, Cladosporium sphaerospermum, Aspergillus brasiliensis, Penicillium roqueforti, and Botrytis cinerea). We assessed UV tolerance using a UV-light emitting diode (LED) irradiation system with 13 wavelength-ranked LEDs between 250 and 365 nm, a krypton chlorine (KrCl) excimer lamp device, and a low pressure (LP) Hg lamp device. The inhibition of fungi peaked at around 270 nm, and most molds showed reduced UV sensitivity at shorter wavelengths as they accumulated pigment. Absorption spectra of the pigments showed greater absorption at shorter wavelengths, suggesting greater UV protection at these wavelengths. These results will assist in the development of fungal disinfection systems using UV, such as closed systems of air and water purification.
Collapse
Affiliation(s)
- Yushi Onoda
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Nichia Corporation, Anan, Tokushima, Japan
| | - Miharu Nagahashi
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Michiyo Yamashita
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Shiho Fukushima
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | | | | | | | | | - Yasuko Kadomura-Ishikawa
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Kai Ishida
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Takashi Uebanso
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Kazuaki Mawatari
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN, USA
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Akira Takahashi
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan.
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan.
| |
Collapse
|
4
|
Pangerl J, Sukul P, Rück T, Fuchs P, Weigl S, Miekisch W, Bierl R, Matysik FM. An inexpensive UV-LED photoacoustic based real-time sensor-system detecting exhaled trace-acetone. PHOTOACOUSTICS 2024; 38:100604. [PMID: 38559568 PMCID: PMC10973644 DOI: 10.1016/j.pacs.2024.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
In this research we present a low-cost system for breath acetone analysis based on UV-LED photoacoustic spectroscopy. We considered the end-tidal phase of exhalation, which represents the systemic concentrations of volatile organic compounds (VOCs) - providing clinically relevant information about the human health. This is achieved via the development of a CO2-triggered breath sampling system, which collected alveolar breath over several minutes in sterile and inert containers. A real-time mass spectrometer is coupled to serve as a reference device for calibration measurements and subsequent breath analysis. The new sensor system provided a 3σ detection limit of 8.3 ppbV and an NNEA of 1.4E-9 Wcm-1Hz-0.5. In terms of the performed breath analysis measurements, 12 out of 13 fell within the error margin of the photoacoustic measurement system, demonstrating the reliability of the measurements in the field.
Collapse
Affiliation(s)
- Jonas Pangerl
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, Regensburg 93053, Germany
- Institute of Analytical Chemistry, Chemo- and Biosensing, University of Regensburg, Regensburg 93053, Germany
| | - Pritam Sukul
- Rostock Medical Breath Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Rostock 18057, Germany
| | - Thomas Rück
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, Regensburg 93053, Germany
| | - Patricia Fuchs
- Rostock Medical Breath Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Rostock 18057, Germany
| | - Stefan Weigl
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, Regensburg 93053, Germany
| | - Wolfram Miekisch
- Rostock Medical Breath Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Rostock 18057, Germany
| | - Rudolf Bierl
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, Regensburg 93053, Germany
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- and Biosensing, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
5
|
Azuma T, Usui M, Hasei T, Hayashi T. On-Site Inactivation for Disinfection of Antibiotic-Resistant Bacteria in Hospital Effluent by UV and UV-LED. Antibiotics (Basel) 2024; 13:711. [PMID: 39200012 PMCID: PMC11350808 DOI: 10.3390/antibiotics13080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
The problem of antimicrobial resistance (AMR) is not limited to the medical field but is also becoming prevalent on a global scale in the environmental field. Environmental water pollution caused by the discharge of wastewater into aquatic environments has caused concern in the context of the sustainable development of modern society. However, there have been few studies focused on the treatment of hospital wastewater, and the potential consequences of this remain unknown. This study evaluated the efficacy of the inactivation of antimicrobial-resistant bacteria (AMRB) and antimicrobial resistance genes (AMRGs) in model wastewater treatment plant (WWTP) wastewater and hospital effluent based on direct ultraviolet (UV) light irradiation provided by a conventional mercury lamp with a peak wavelength of 254 nm and an ultraviolet light-emitting diode (UV-LED) with a peak emission of 280 nm under test conditions in which the irradiance of both was adjusted to the same intensity. The overall results indicated that both UV- and UV-LED-mediated disinfection effectively inactivated the AMRB in both wastewater types (>99.9% after 1-3 min of UV and 3 min of UV-LED treatment). Additionally, AMRGs were also removed (0.2-1.4 log10 for UV 254 nm and 0.1-1.3 log10 for UV 280 nm), and notably, there was no statistically significant decrease (p < 0.05) in the AMRGs between the UV and UV-LED treatments. The results of this study highlight the importance of utilizing a local inactivation treatment directly for wastewater generated by a hospital prior to its flow into a WWTP as sewage. Although additional disinfection treatment at the WWTP is likely necessary to remove the entire quantity of AMRB and AMRGs, the present study contributes to a significant reduction in the loads of WWTP and urgent prevention of the spread of infectious diseases, thus alleviating the potential threat to the environment and human health risks associated with AMR problems.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (T.H.); (T.H.)
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan;
| | - Tomohiro Hasei
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (T.H.); (T.H.)
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (T.H.); (T.H.)
| |
Collapse
|
6
|
Ghosh S, Wu X, Chen Y, Hu J. Application of UV LEDs to inactivate antibiotic resistant bacteria: Kinetics, efficiencies, and reactivations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173075. [PMID: 38750759 DOI: 10.1016/j.scitotenv.2024.173075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Unregulated antibiotic use has led to the proliferation of antibiotic-resistant bacteria (ARB) in aquatic environments. Ultraviolet light-emitting diodes (UV LEDs) have evolved as an innovative technology for inactivating microorganisms offering several advantages over traditional mercury lamps. This research concentrated on utilizing UV LEDs with three distinct wavelengths (265 nm, 275 nm, and 285 nm) to inactivate E. coli DH10β encoding the ampicillin-resistant blaTEM-1 gene in its plasmid. Non-linear models, such as Geeraerd's and Weibull, provided more accurate characterization of the inactivation profiles than the traditional log-linear model due to the incorporation of both biological mechanisms and a deterministic approach within non-linear models. The inactivation rates of ARB were higher than antibiotic-sensitive bacteria (ASB) when subjected to UV LEDs. The highest inactivation rates were observed when all microorganisms were exposed to 265 nm. Photoreactivation emerged as the primary mechanism responsible for repairing DNA damage induced by UV LEDs. 285 nm showed the highest reactivation efficiencies for ARB under different fluences. At higher fluences, both 265 and 275 nm displayed similar effectiveness in suppressing reactivation, while at lower fluences, 275 nm exhibited better efficacies in controlling the reactivation. Therefore, the inhibition of reactivation was influenced by the extent of damage incurred to both DNA and enzymes. In nutrient-poor media (0.9 % NaCl), ASB did not exhibit any reactivation potential. However, the addition of Luria-Bertani (LB) broth promoted the reactivation of ASB. Lower fluence rate was more beneficial at 265 nm whereas higher fluence rates were more effective for longer wavelengths. The inactivation of ARB was enhanced by dissolved organic carbon (DOC) at low fluences. However, the removal of ARB was reduced due to the presence of DOC at higher fluences. The highest energy demand for ARB inactivation was reported at 285 nm. ENVIRONMENTAL IMPLICATION: The excessive and unregulated utilization of antibiotics has emerged as a significant issue for public health. This paper presents a comprehensive analysis of the effectiveness of UV LEDs, an emerging technology, in the inactivation of antibiotic-resistant bacteria (ARB). This research paper explores the kinetics of UV LEDs with different wavelengths to inactivate ARB along with the reactivation efficiencies. This research work also explores the impact and relevant mechanisms of the impact of dissolved organic carbon (DOC) on the inactivation of ARB by UV LEDs.
Collapse
Affiliation(s)
- Shayok Ghosh
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Xinyu Wu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Yiwei Chen
- NUS Environmental Research Institute, National University of Singapore, #02-03, T-Lab Building 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, #02-03, T-Lab Building 5A Engineering Drive 1, Singapore 117411, Singapore..
| |
Collapse
|
7
|
Li B, Zuo Q, Deng J, Deng Z, Li P, Wu J. Enhanced inactivation of Escherichia coli through hydrogen peroxide decomposition assisted by nanoscale cupric oxide-decorated activated carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121327. [PMID: 38824892 DOI: 10.1016/j.jenvman.2024.121327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
In this study, nanoscale cupric oxide-decorated activated carbon (nCuO@AC) was synthesized by impregnation-calcination and employed to assist the decomposition of H2O2 for effective sterilization with Escherichia coli as target bacteria. Characteristic technologies demonstrated that copper oxide particles of 50-100 nm were uniformly distributed on AC surface. Owing to electron transfer from hydroxyl and aldehyde to CuO on AC, surface-bonded Cu(II) was partially reduced to Cu(I) in the nCuO matrix. The resultant Cu(I) expedited the decomposition of H2O2 and converted it into ·OH radicals which were identified by quenching experiment and electron paramagnetic resonance test. Due to oxidation attack of generated ·OH, the nCuO@AC-H2O2 system achieved a much higher inactivation rate of 6.0 log within 30 min as compared to those of 2.1 and 1.3 log in the nCuO@AC and nCuO-H2O2 systems. It also exhibited excellent pH adaptability and high inactivation efficiency under neutral conditions. After four cycles, the nCuO@AC-H2O2 system could still inactivate 5.5 log bacteria, indicating excellent stability and reusability of nCuO@AC. Spent nCuO@AC could be regenerated by eluting surficial copper oxides with hydrochloric acid, and re-coating nCuO particles through impregnation-calcination with a regeneration rate of 96.6%. Our results demonstrated that nCuO@AC was an efficient and prospective catalyst to assist the decomposition of H2O2 for effective inactivation of bacteria in water.
Collapse
Affiliation(s)
- Bing Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Qian Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianping Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Zhiyi Deng
- School of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Suyamud B, Lohwacharin J, Ngamratanapaiboon S. Effect of dissolved organic matter on bacterial regrowth and response after ultraviolet disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171864. [PMID: 38521274 DOI: 10.1016/j.scitotenv.2024.171864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
The effect of dissolved organic matter (DOM) on bacterial regrowth in water after disinfection using ultraviolet (UV) light emitting diodes (UVLEDs) is still unclear. Herein, the regrowth and responses of Vibrio parahaemolyticus and Bacillus cereus were investigated after being exposed to UVLEDs at combined wavelengths (265 and 280 nm) in a phosphate-buffered saline consisting of Suwannee River natural organic matter (SRNOM) and Suwannee River fulvic acid (SRFA). Low-molecular-weight (MW) organic compounds, which may form into intermediary photoproducts, and indicate bacterial repair metabolism, were characterized through non-target screening using orbitrap mass spectrometry. This study demonstrates the ability of the UVLEDs-inactivated cells to regrow. After UV exposure, a considerable upregulation of RecA was observed in two strains. With increasing the incubation time, the expression levels of RecA in V. parahaemolyticus increased, which may be attributed to the dark repair mechanism. Coexisting anionic DOM affects both the disinfection and bacterial regrowth processes. The time required for bacterial regrowth after UV exposure reflects the time needed for the individual cells to reactivate, and it differs in the presence or absence of DOM. In the presence of DOM, the cells were less damaged and required less time to grow. The UVLEDs exposure results in the occurrence of low-MW organic compounds, including carnitine or acryl-carnitine with N-acetylmuramic acid, which are associated with bacterial repair metabolism. Overall, the results of this study expand the understanding of the effects of water matrices on bacterial health risks. This can aid in the development of more effective strategies for water disinfection.
Collapse
Affiliation(s)
- Bongkotrat Suyamud
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Jenyuk Lohwacharin
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Professor Aroon Sorathesn Center of Excellence in Environmental Engineering, Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Surachai Ngamratanapaiboon
- Division of Pharmacology, Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
9
|
Monika, Madugula SK, Kondabagil K, Kunwar A. Far-UVC (222 nm) irradiation effectively inactivates ssRNA, dsRNA, ssDNA, and dsDNA viruses as compared to germicidal UVC (254 nm). Photochem Photobiol 2024. [PMID: 38736273 DOI: 10.1111/php.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Ultraviolet-C (UVC) irradiation is being used as an effective approach for the disinfection of pathogenic viruses present in air, surfaces, and water. Recently, far-UVC radiation (222 nm) emitted by KrCl* (krypton-chloride) excimer lamps have been recommended for disinfecting high-risk public spaces to reduce the presence and transmission of infectious viruses owing to limited human health exposure risks as compared to germicidal UVC (254 nm). In this study, the UVC inactivation performances of individual filtered KrCl* excimer lamp (222 nm) and germicidal UVC lamp (254 nm) were determined against four viruses, bacteriophages MS2, Phi6, M13, and T4, having different genome compositions (ssRNA, dsRNA, ssDNA and dsDNA, respectively) and shapes (i.e., spherical (Phi6), linear (M13), and icosahedral (MS2 and T4)). Here, the disinfection efficacies of filtered KrCl* excimer lamp (222 nm) and germicidal UVC lamp (254 nm) were evaluated for highly concentrated virus droplets that mimic the virus-laden droplets released from the infected person and deposited on surfaces as fomites. Filtered KrCl* excimer (222 nm) showed significantly better inactivation against all viruses having different genome compositions and structures compared to germicidal UVC (254 nm). The obtained sensitivity against the filtered KrCl* excimer (222 nm) was found to be in the order, T4 > M13 > Phi6 > MS2 whereas for the germicidal UVC (254 nm) it was T4 > M13 > MS2 > Phi6. These results provide a strong basis to promote the use of filtered KrCl* excimer lamps (222 nm) in disinfecting contagious viruses and to limit the associated disease spread in public places and other high-risk areas.
Collapse
Affiliation(s)
- Monika
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Santhosh Kumar Madugula
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
- Koita Centre for Digital Health (KCDH), Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
10
|
Lu YH, Wang RX, Liu HL, Lai ACK. Evaluating the Performance of UV Disinfection across the 222-365 nm Spectrum against Aerosolized Bacteria and Viruses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6868-6877. [PMID: 38593035 DOI: 10.1021/acs.est.3c08675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Bioaerosols play a significant role in the transmission of many infectious diseases, especially in enclosed indoor environments. Ultraviolet (UV) disinfection has demonstrated a high efficacy in inactivating microorganisms suspended in the air. To develop more effective and efficient UV disinfection protocols, it is necessary to evaluate and optimize the effectiveness of UV disinfection against aerosolized bacteria and viruses across the entire UV spectrum. In this study, we evaluated the performance of UV disinfection across the UV spectrum, ranging from 222 to 365 nm, against aerosolized bacteria and viruses, including Escherichia coli, Staphylococcus epidermidis, Salmonella enterica, MS2, P22, and Phi6. Six commonly available UV sources, including gas discharge tubes and light-emitting diodes with different emission spectra, were utilized, and their performance in terms of inactivation efficacy, action spectrum, and energy efficiency was determined. Among these UV sources, the krypton chloride excilamp emitting at a peak wavelength of 222 nm was the most efficient in inactivating viral bioaerosols. A low-pressure mercury lamp emitting at 254 nm performed well on both inactivation efficacy and energy efficiency. A UV light-emitting diode emitting at 268 nm demonstrated the highest bacterial inactivation efficacy, but required approximately 10 times more energy to achieve an equivalent inactivation level compared with that of the krypton chloride excilamp and low-pressure mercury lamp. This study provides insights into UV inactivation on bioaerosols, which can guide the development of effective wavelength-targeted UV air disinfection technologies and may significantly help reduce bioaerosol transmission in public areas.
Collapse
Affiliation(s)
- Y H Lu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - R X Wang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - H L Liu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - A C K Lai
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| |
Collapse
|
11
|
Labadie M, Marchal F, Merbahi N, Girbal-Neuhauser E, Fontagné-Faucher C, Marcato-Romain CE. Cell density and extracellular matrix composition mitigate bacterial biofilm sensitivity to UV-C LED irradiation. Appl Microbiol Biotechnol 2024; 108:286. [PMID: 38578301 PMCID: PMC10997551 DOI: 10.1007/s00253-024-13123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Ultraviolet-C light-emitting diodes (UV-C LEDs) are an emerging technology for decontamination applications in different sectors. In this study, the inactivation of bacterial biofilms was investigated by applying an UV-C LED emitting at 280 nm and by measuring both the influence of the initial cell density (load) and presence of an extracellular matrix (biofilm). Two bacterial strains exposing diverging matrix structures and biochemical compositions were used: Pseudomonas aeruginosa and Leuconostoc citreum. UV-C LED irradiation was applied at three UV doses (171 to 684 mJ/cm2) on both surface-spread cells and on 24-h biofilms and under controlled cell loads, and bacterial survival was determined. All surface-spread bacteria, between 105 and 109 CFU/cm2, and biofilms at 108 CFU/cm2 showed that bacterial response to irradiation was dose-dependent. The treatment efficacy decreased significantly for L. citreum surface-spread cells when the initial cell load was high, while no load effect was observed for P. aeruginosa. Inactivation was also reduced when bacteria were grown under a biofilm form, especially for P. aeruginosa: a protective effect could be attributed to abundant extracellular DNA and proteins in the matrix of P. aeruginosa biofilms, as revealed by Confocal Laser Scanning Microscopy observations. This study showed that initial cell load and exopolymeric substances are major factors influencing UV-C LED antibiofilm treatment efficacy. KEY POINTS: • Bacterial cell load (CFU/cm2) could impact UV-C LED irradiation efficiency • Characteristics of the biofilm matrix have a paramount importance on inactivation • The dose to be applied can be predicted based on biofilm properties.
Collapse
Affiliation(s)
- Maritxu Labadie
- Université de Toulouse, UPS, IUT Paul Sabatier, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire Et Environnementale), 24 Rue d'Embaquès, Auch, F-32000, France
| | - Frédéric Marchal
- Université de Toulouse, UPS, INPT, LAPLACE UMR 5223 (Laboratoire Plasma Et Conversion d'Energie), 118 Route de Narbonne, Toulouse, F-31062, France
| | - Nofel Merbahi
- Université de Toulouse, UPS, INPT, LAPLACE UMR 5223 (Laboratoire Plasma Et Conversion d'Energie), 118 Route de Narbonne, Toulouse, F-31062, France
| | - Elisabeth Girbal-Neuhauser
- Université de Toulouse, UPS, IUT Paul Sabatier, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire Et Environnementale), 24 Rue d'Embaquès, Auch, F-32000, France
| | - Catherine Fontagné-Faucher
- Université de Toulouse, UPS, IUT Paul Sabatier, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire Et Environnementale), 24 Rue d'Embaquès, Auch, F-32000, France
| | - Claire-Emmanuelle Marcato-Romain
- Université de Toulouse, UPS, IUT Paul Sabatier, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire Et Environnementale), 24 Rue d'Embaquès, Auch, F-32000, France.
| |
Collapse
|
12
|
Espinosa-Barrera PA, Gómez-Gómez M, Vanegas J, Machuca-Martinez F, Torres-Palma RA, Martínez-Pachón D, Moncayo-Lasso A. Systematic analysis of the scientific-technological production on the use of the UV, H 2O 2, and/or Cl 2 systems in the elimination of bacteria and associated antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6782-6814. [PMID: 38165540 PMCID: PMC10821820 DOI: 10.1007/s11356-023-31435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
This study presents a systematic review of the scientific and technological production related to the use of systems based on UV, H2O2, and Cl2 for the elimination of antibiotic-resistant bacteria (ARB) and genes associated with antibiotic resistance (ARGs). Using the Pro Know-C (Knowledge Development Process-Constructivist) methodology, a portfolio was created and analyzed that includes 19 articles and 18 patents published between 2011 and 2022. The results show a greater scientific-technological production in UV irradiation systems (8 articles and 5 patents) and the binary combination UV/H2O2 (9 articles and 4 patents). It was emphasized that UV irradiation alone focuses mainly on the removal of ARB, while the addition of H2O2 or Cl2, either individually or in binary combinations with UV, enhances the removal of ARB and ARG. The need for further research on the UV/H2O2/Cl2 system is emphasized, as gaps in the scientific-technological production of this system (0 articles and 2 patents), especially in its electrochemically assisted implementation, have been identified. Despite the gaps identified, there are promising prospects for the use of combined electrochemically assisted UV/H2O2/Cl2 disinfection systems. This is demonstrated by the effective removal of a wide range of contaminants, including ARB, fungi, and viruses, as well as microorganisms resistant to conventional disinfectants, while reducing the formation of toxic by-products.
Collapse
Affiliation(s)
- Paula Andrea Espinosa-Barrera
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
- Doctorado en Ciencia Aplicada (DCA), Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Marcela Gómez-Gómez
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Javier Vanegas
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Fiderman Machuca-Martinez
- Centro de Excelencia en Nuevos Materiales, Universidad del Valle, Calle 13 No. 100-00, Cali, Colombia
| | - Ricardo Antonio Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia.
| |
Collapse
|
13
|
Soro AB, Ekhlas D, Shokri S, Yem MM, Li RC, Barroug S, Hannon S, Whyte P, Bolton DJ, Burgess CM, Bourke P, Tiwari BK. The efficiency of UV light-emitting diodes (UV-LED) in decontaminating Campylobacter and Salmonella and natural microbiota in chicken breast, compared to a UV pilot-plant scale device. Food Microbiol 2023; 116:104365. [PMID: 37689419 DOI: 10.1016/j.fm.2023.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/12/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
This study investigated the combined effect of Ultraviolet (UV) light-emitting diode (LED) technology treatment with refrigerated storage of chicken breast meat over 7 days on Campylobacter jejuni, Salmonella enterica serovar Typhimurium, total viable counts (TVC) and total Enterobacteriaceae counts (TEC). An optimised UV-LED treatment at 280 nm for 6 min decreased inoculated S. Typhimurium and C. jejuni populations by 0.6-0.64 log CFU/g, and TVC and TEC population by 1-1.2 log CFU/g in chicken samples. During a 7-day storage at 4 °C, a 0.73 log reduction in C. jejuni was achieved compared with non-treated samples. Moreover, the UV-LED effectiveness to reduce TVC and TEC during refrigerated storage was compared with a conventional UV lamp and a similar efficiency was observed. The impact of UV-LED and UV lamp devices on the microbial community composition of chicken meat during storage was further examined using 16 S rRNA gene amplicon sequencing. Although similar bacterial reductions were observed for both technologies, the microbial communities were impacted differently. Treatment with the UV conventional lamp increased the proportion of Brochothrix spp. In meat samples, whilst Photobacterium spp. Levels were reduced.
Collapse
Affiliation(s)
- Arturo B Soro
- Foodborne Pathogens Unit, Department of Infectious Diseases in Humans, Sciensano, Juliette Wytsman 14, 1050, Ixelles, Brussels, Belgium; Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Daniel Ekhlas
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sajad Shokri
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| | - Ming Ming Yem
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| | - Rui Chao Li
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| | - Soukaina Barroug
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland
| | - Shay Hannon
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Paula Bourke
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| | | |
Collapse
|
14
|
Brentjens ET, Beall EAK, Zucker RM. Analysis of Microcystis aeruginosa physiology by spectral flow cytometry: Impact of chemical and light exposure. PLOS WATER 2023; 2:1-30. [PMID: 38516272 PMCID: PMC10953801 DOI: 10.1371/journal.pwat.0000177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
M. aeruginosa fluorescent changes were observed using a Cytek Aurora spectral flow cytometer that contains 5 lasers and 64 narrow band detectors located between 365 and 829 nm. Cyanobacteria were treated with different concentrations of H2O2 and then monitored after exposure between 1 and 8 days. The red fluorescence emission derived from the excitation of cyanobacteria with a yellow green laser (550 nm) was measured in the 652-669 nm detector while green fluorescence from excitation with a violet laser (405 nm) was measured in the 532-550 nm detector. The changes in these parameters were measured after the addition of H2O2. There was an initial increase in red fluorescence intensity at 24 hours. This was followed by a daily decrease in red fluorescence intensity. In contrast, green fluorescence increased at 24 hours and remained higher than the control for the duration of the 8-day study. A similar fluorescence intensity effect as H2O2 on M. aeruginosa fluorescence emissions was observed after exposure to acetylacetone, diuron (DCMU), peracetic acid, and tryptoline. Minimal growth was also observed in H2O2 treated cyanobacteria during exposure of H2O2 for 24 days. In another experiment, H2O2-treated cyanobacteria were exposed to high-intensity blue (14 mW) and UV (1 mW) lights to assess the effects of light stress on fluorescence emissions. The combination of blue and UV light with H2O2 had a synergistic effect on M. aeruginosa that induced greater fluorescent differences between control and treated samples than exposure to either stimulus individually. These experiments suggest that the early increase in red and green fluorescence may be due to an inhibition in the ability of photosynthesis to process photons. Further research into the mechanisms driving these increases in fluorescence is necessary.
Collapse
Affiliation(s)
- Emma T. Brentjens
- Oak Ridge Institute for Science and Education Research Participation Program hosted by U.S. Environmental Protection Agency, Oak Ridge, TN, United States of America
| | - Elizabeth A. K. Beall
- Oak Ridge Institute for Science and Education Research Participation Program hosted by U.S. Environmental Protection Agency, Oak Ridge, TN, United States of America
| | - Robert M. Zucker
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Office of Research and Development, RTP, NC, United States of America
| |
Collapse
|
15
|
Yeter-Alat H, Belgareh-Touzé N, Huvelle E, Banroques J, Tanner NK. The DEAD-Box RNA Helicase Ded1 Is Associated with Translating Ribosomes. Genes (Basel) 2023; 14:1566. [PMID: 37628617 PMCID: PMC10454743 DOI: 10.3390/genes14081566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
DEAD-box RNA helicases are ATP-dependent RNA binding proteins and RNA-dependent ATPases that possess weak, nonprocessive unwinding activity in vitro, but they can form long-lived complexes on RNAs when the ATPase activity is inhibited. Ded1 is a yeast DEAD-box protein, the functional ortholog of mammalian DDX3, that is considered important for the scanning efficiency of the 48S pre-initiation complex ribosomes to the AUG start codon. We used a modified PAR-CLIP technique, which we call quicktime PAR-CLIP (qtPAR-CLIP), to crosslink Ded1 to 4-thiouridine-incorporated RNAs in vivo using UV light centered at 365 nm. The irradiation conditions are largely benign to the yeast cells and to Ded1, and we are able to obtain a high efficiency of crosslinking under physiological conditions. We find that Ded1 forms crosslinks on the open reading frames of many different mRNAs, but it forms the most extensive interactions on relatively few mRNAs, and particularly on mRNAs encoding certain ribosomal proteins and translation factors. Under glucose-depletion conditions, the crosslinking pattern shifts to mRNAs encoding metabolic and stress-related proteins, which reflects the altered translation. These data are consistent with Ded1 functioning in the regulation of translation elongation, perhaps by pausing or stabilizing the ribosomes through its ATP-dependent binding.
Collapse
Affiliation(s)
- Hilal Yeter-Alat
- Expression Génétique Microbienne, Université de Paris Cité & CNRS, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (E.H.); (J.B.)
- Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005 Paris, France
| | - Naïma Belgareh-Touzé
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226 CNRS, Institut de Biologie Physico-Chimique, Sorbonne Université, 13 Rue Pierre et Marie Curie, 75005 Paris, France;
| | - Emmeline Huvelle
- Expression Génétique Microbienne, Université de Paris Cité & CNRS, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (E.H.); (J.B.)
- Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005 Paris, France
| | - Josette Banroques
- Expression Génétique Microbienne, Université de Paris Cité & CNRS, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (E.H.); (J.B.)
- Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005 Paris, France
| | - N. Kyle Tanner
- Expression Génétique Microbienne, Université de Paris Cité & CNRS, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (E.H.); (J.B.)
- Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005 Paris, France
| |
Collapse
|
16
|
Luo X, Li W, Liang Z, Liu Y, Fan DE. Portable Bulk-Water Disinfection by Live Capture of Bacteria with Divergently Branched Porous Graphite in Electric Fields. ACS NANO 2023. [PMID: 37224419 DOI: 10.1021/acsnano.2c12229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Easy access to clean water is essential to functioning and development of modern society. However, it remains arduous to develop energy-efficient, facile, and portable water treatment systems for point-of-use (POU) applications, which is particularly imperative for the safety and resilience of society during extreme weather and critical situations. Here, we propose and validate a meritorious working scheme for water disinfection via directly capturing and removing pathogen cells from bulk water using strategically designed three-dimensional (3D) porous dendritic graphite foams (PDGFs) in a high-frequency AC field. The prototype, integrated in a 3D-printed portable water-purification module, can reproducibly remove 99.997% E. coli bacteria in bulk water at a few voltages with among the lowest energy consumption at 435.5 J·L-1. The PDGFs, costing $1.47 per piece, can robustly operate at least 20 times for more than 8 h in total without functional degradation. Furthermore, we successfully unravel the involved disinfection mechanism with one-dimensional Brownian dynamics simulation. The system is practically applied that brings natural water in Waller Creek at UT Austin to the safe drinking level. This research, including the working mechanism based on dendritically porous graphite and the design scheme, could inspire a future device paradigm for POU water treatment.
Collapse
|
17
|
Martín-Sómer M, Pablos C, Adán C, van Grieken R, Marugán J. A review on led technology in water photodisinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163963. [PMID: 37149196 DOI: 10.1016/j.scitotenv.2023.163963] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for water disinfection. The effect of different UV wavelengths and their combinations was analysed for the inactivation of various microorganisms and the inhibition of repair mechanisms. Whereas 265 nm UVC LED present a higher DNA damaging potential, 280 nm radiation is reported to repress photoreactivation and dark repair. No synergistic effects have been proved to exist when coupling UVB + UVC whereas sequential UVA-UVC radiation seemed to enhance inactivation. Benefits of pulsed over continuous radiation in terms of germicidal effects and energy consumption were also analysed, but with inconclusive results. However, pulsed radiation may be promising for improving thermal management. As a challenge, the use of UV LED sources introduces significant inhomogeneities in the light distribution, pushing for the development of adequate simulation methods to ensure that the minimum target dose required for the target microbes is achieved. Concerning energy consumption, selecting the optimal wavelength of the UV LED needs a compromise between the quantum efficiency of the process and the electricity-to-photon conversion. The expected development of the UV LED industry in the next few years points to UVC LED as a promising technology for water disinfection at a large scale that could be competitive in the market in the near future.
Collapse
Affiliation(s)
- Miguel Martín-Sómer
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Cristina Pablos
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Cristina Adán
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Rafael van Grieken
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Javier Marugán
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| |
Collapse
|
18
|
Itani N, El Fadel M. Microbial inactivation kinetics of UV LEDs and effect of operating conditions: A methodological critical analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163727. [PMID: 37120022 DOI: 10.1016/j.scitotenv.2023.163727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Tiny ultraviolet (UV) light-emitting diodes (LED)s that are replacing the conventional energy-intensive mercury UV lamps have gained interest since the early 2000's because of their promising advantages. In the context of microbial inactivation (MI) of waterborne microbes, disinfection kinetics of those LEDs exhibited variations among studies, in terms of varying the UV wavelength, the exposure time, power, and dose (UV fluence) as well as other operational conditions. While reported results may appear contradictory when examined separately, they probably are not when analyzed collectively. As such, in this study, we carry out a quantitative collective regression analysis of the reported data to shed light on the kinetics of MI by the emerging UV LEDs technology alongside the effects of varying operational conditions. The main goal is to identify dose response requirements for UV LEDs and to compare them to traditional UV lamps in addition to ascertaining optimal settings that could help in achieving the optimal inactivation outcome for comparable UV doses. The analysis showed that kinetically, UV LEDs are as effective as conventional mercury lamps for water disinfection, and at times more effective, especially for UV resistant microbes. We defined the maximal efficiency at two wavelengths, 260-265 nm and 280 nm, among a wide range of available LED wavelengths. We also defined the UV fluence per log inactivation of tested microbes. At the operational level, we identified existing gaps and developed a framework for a comprehensive analysis program for future needs.
Collapse
Affiliation(s)
- N Itani
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University, United Arab Emirates; Department of Civil and Environmental Engineering, American University of Beirut, Lebanon
| | - M El Fadel
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University, United Arab Emirates; Department of Civil and Environmental Engineering, American University of Beirut, Lebanon.
| |
Collapse
|
19
|
Moreno-Andrés J, Tierno-Galán M, Romero-Martínez L, Acevedo-Merino A, Nebot E. Inactivation of the waterborne marine pathogen Vibrio alginolyticus by photo-chemical processes driven by UV-A, UV-B, or UV-C LED combined with H 2O 2 or HSO 5. WATER RESEARCH 2023; 232:119686. [PMID: 36764105 DOI: 10.1016/j.watres.2023.119686] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Ultraviolet (UV) radiation is a well-implemented process for water disinfection. The development of emergent UV sources, such as light-emitting diodes (LEDs), has afforded new possibilities for advanced oxidation processes. The emission wavelength is considered to be an important factor for photo-chemical processes in terms of both biological damage and energetic efficiency, as the inactivation mechanisms and mode-of-action may differ according to the wavelength that is applied. In addition, these processes merit exploration for inactivating emerging pathogens, such as marine vibrios, that are important bacteria to control in maritime activities. The main goal of this study was to compare the disinfection efficacy of several UV-LED driven processes with different modes of action. First, the effect of UV-LEDs was assessed at different UV ranges (UV-A, UV-B, or UV-C). Second, the possible enhancement of a combination with hydrogen peroxide (H2O2) or peroxymonosulfate salt (HSO5-) was investigated under two different application strategies, i.e. simultaneous or sequential. The results obtained indicate a high sensitivity of Vibrio alginolyticus to UV radiation, especially under UV-B (kobs = 0.24 cm2/mJ) and UV-C (kobs = 1.47 cm2/mJ) irradiation. The highest inactivation rate constants were obtained for UV/HSO5- (kobs (cm2/mJ)=0.0007 (UV-A); 0.39 (UV-B); 1.79 (UV-C)) with respect to UV/H2O2 (kobs (cm2/mJ)=0.0006 (UV-A); 0.26 (UV-B); and 1.54 (UV-C)) processes, however, regrowth was avoided only with UV/H2O2. Additionally, the disinfection enhancement caused by a chemical addition was more evident in the order UV-A > UV-B > UV-C. By applying H2O2 (10 mg/L) or HSO5- (2.5 mg/L) in a sequential mode before the UV, negligible effects were obtained in comparison with the simultaneous application. Finally, promising electrical energy per order (EEO) values were obtained as follows: UV/HSO5- (EEO (kWh/m3)=1.68 (UV-A); 0.20 (UV-B); 0.04 (UV-C)) and UV/H2O2 (EEO (kWh/m3)=2.15 (UV-A); 0.32 (UV-B); 0.04 (UV-C)), demonstrating the potential of UV-LEDs for disinfection in particular activities such as the aquaculture industry or maritime transport.
Collapse
Affiliation(s)
- Javier Moreno-Andrés
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea. University of Cadiz, Spain.
| | - Miguel Tierno-Galán
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea. University of Cadiz, Spain
| | - Leonardo Romero-Martínez
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea. University of Cadiz, Spain
| | - Asunción Acevedo-Merino
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea. University of Cadiz, Spain
| | - Enrique Nebot
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea. University of Cadiz, Spain
| |
Collapse
|
20
|
Gandhi J, Prakash H. Photo-disinfection Processes for Bacterial Inactivation and Underlying Principles for Water Constituents’ Impact: A Review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
21
|
Nyangaresi PO, Rathnayake T, Beck SE. Evaluation of disinfection efficacy of single UV-C, and UV-A followed by UV-C LED irradiation on Escherichia coli, B. spizizenii and MS2 bacteriophage, in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160256. [PMID: 36402311 DOI: 10.1016/j.scitotenv.2022.160256] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Ultraviolet light-emitting diodes (UV LEDs) have shown ability to inactivate microorganisms and viruses in water. The unique characteristic of the UV-LEDs' diversity in wavelengths ranging from UV-C, UV-B, and UV-A, allows for wavelengths to be combined in different manners for polychromatic irradiation. Previous studies reported no synergy from simultaneous or sequential UV-C and UV-B as well as UV-C or UV-B followed by UV-A irradiation. However, synergy was reported for UV-A followed by UV-C or UV-B irradiation on various microorganisms. Nevertheless, no clear ground has been reached on whether to adopt single UV-C wavelengths or UV-A followed by UV-C LED, irradiation on inactivation of microorganisms and viruses in water. Therefore, this work evaluates the disinfection efficacy of single UV-C as well as UV-A followed by UV-C LED irradiation on Escherichia coli, Bacillus spizizenii spores and MS2 bacteriophage in water. The UV-C wavelengths were represented by 267 and 278 nm UV LEDs, and UV-A by 368 nm UV LEDs. In this study, E. coli was highly susceptible to UV radiation followed by B. spizizenii spores, and lastly MS2. Repair following UV inactivation was only observed in E. coli. The synergistic effect found in both E. coli, and B. spizizenii spores was attributed to the different inactivation mechanisms of the UV-C and UV-A wavelengths. In both single UV-C, and UV-A followed by UV-C LED irradiations, single 267 nm UV-C LED showed higher inactivation efficacy. Meanwhile, single 278 nm UV-C LED showed higher efficacy in terms of suppression of repair, and electrical energy consumption. Using single UV-C LEDs in a water disinfection system cuts down on related extra costs by avoiding combined wavelengths while still attaining better levels of microorganism inactivation, repair suppression and electrical energy consumption. These findings are applicable for the design and implementation of UV LED water disinfection systems.
Collapse
Affiliation(s)
- Paul Onkundi Nyangaresi
- Department of Civil Engineering, University of British Columbia, 2002-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Thusitha Rathnayake
- Department of Civil Engineering, University of British Columbia, 2002-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sara E Beck
- Department of Civil Engineering, University of British Columbia, 2002-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
22
|
Ren Z, Cao H, Desmond P, Liu B, Ngo HH, He X, Li G, Ma J, Ding A. Ions play different roles in virus removal caused by different NOMs in UF process: Removal efficiency and mechanism analysis. CHEMOSPHERE 2023; 313:137644. [PMID: 36577454 DOI: 10.1016/j.chemosphere.2022.137644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In this study, we investigated the effect of different compositions of aquatic natural organic matter (NOM) and ions on virus removal by ultrafiltration (UF). MS2 bacteriophage was used as a surrogate. Humic acid (HA) improved the MS2 removal rate from 1.95 ± 0.09 LRV to 2.40 ± 0.03 LRV at the HA dosage of 9 mg/L through the combined mechanisms of size exclusion, electrostatic repulsion and hydrophobicity. MS2 removal rate further increased to 3.10 ± 0.05 LRV by 10 mmol/L Na+ dosage and 3.19 ± 0.12 LRV by Ca2+ 1 mmol/L in the HA-containing UF system. Size exclusion turned into the dominant virus removal mechanism according to the results of the fouling model fitting and the weakening of electrostatic repulsion and hydrophobicity. The complexation of Ca2+ also played a role in MS2 removal based on the analysis of interaction force. MS2 removal rate by bovine serum albumin (BSA) was poor, which was 2.07 ± 0.06 LRV at the BSA dosage of 9 mg/L. Hydrophobicity was greatly reduced and the dominant virus removal mechanisms were size exclusion and electrostatic repulsion. 10 mmol/L Na+ in the presence of BSA deteriorated MS2 removal rate to 2.02 ± 0.07 LRV by the weakening of electrostatic repulsion, hydrophobicity and size exclusion. Electrostatic repulsion severely decreased by 1 mmol/L Ca2+ and the enhanced adsorption barrier represented competitive adsorption of Ca2+ by BSA and MS2 contributed for MS2 removal further decline (1.99 ± 0.05 LRV). Complex components in water will have different effects on virus removal due to their properties and interactions. This study can provide references for selecting more efficient water treatment methods according to the different compositions of raw water in actual water treatment applications during the UF process. Moreover, the retention of virus by UF can be predicted based on our study results.
Collapse
Affiliation(s)
- Zixiao Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Haiyan Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Peter Desmond
- Institute of Environmental Engineering (ISA), RWTH Aachen University, 52056, Aachen, Germany
| | - Bingsheng Liu
- China Construction Third Bureau Green Industry Investment Co., Ltd., Wuhan, 430072, China
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Xu He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
23
|
Jing Z, Lu Z, Zhao Z, Cao W, Wang W, Ke Y, Wang X, Sun W. Molecular ecological networks reveal the spatial-temporal variation of microbial communities in drinking water distribution systems. J Environ Sci (China) 2023; 124:176-186. [PMID: 36182128 DOI: 10.1016/j.jes.2021.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 06/16/2023]
Abstract
Microbial activity and regrowth in drinking water distribution systems is a major concern for water service companies. However, previous studies have focused on the microbial composition and diversity of the drinking water distribution systems (DWDSs), with little discussion on microbial molecular ecological networks (MENs) in different water supply networks. MEN analysis explores the potential microbial interaction and the impact of environmental stress, to explain the characteristics of microbial community structures. In this study, the random matrix theory-based network analysis was employed to investigate the impact of seasonal variation including water source switching on the networks of three DWDSs that used different disinfection methods. The results showed that microbial interaction varied slightly with the seasons but was significantly influenced by different DWDSs. Proteobacteria, identified as key species, play an important role in the network. Combined UV-chlorine disinfection can effectively reduce the size and complexity of the network compared to chlorine disinfection alone, ignoring seasonal variations, which may affect microbial activity or control microbial regrowth in DWDSs. This study provides new insights for analyzing the dynamics of microbial interactions in DWDSs.
Collapse
Affiliation(s)
- Zibo Jing
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhinan Zhao
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenfeng Cao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Weibo Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| |
Collapse
|
24
|
Ashrafudoulla M, Ulrich MSI, Toushik SH, Nahar S, Roy PK, Mizan FR, Park SH, Ha SD. Challenges and opportunities of non-conventional technologies concerning food safety. WORLD POULTRY SCI J 2023. [DOI: 10.1080/00439339.2023.2163044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Md. Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Mevo S. I. Ulrich
- Department of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | | | - Shamsun Nahar
- Department of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Pantu Kumar Roy
- Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Furkanur Rahaman Mizan
- Department of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| |
Collapse
|
25
|
Lu YH, Wu H, Zhang HH, Li WS, Lai ACK. Synergistic disinfection of aerosolized bacteria and bacteriophage by far-UVC (222-nm) and negative air ions. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129876. [PMID: 36087531 DOI: 10.1016/j.jhazmat.2022.129876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Air ionizers and 222-nm krypton-chlorine (KrCl) excilamp have proven to be effective disinfection apparatus for bacteria and viruses with limited health risks. We determined inactivation efficiencies by operating them individually and in combined modules. Gram-positive and gram-negative bacteria, non-enveloped dsDNA virus, and enveloped dsRNA virus were examined in a designed air disinfection system. Our results showed that the bioaerosols were inactivated efficiently by negative ionizers and far-UVC (222-nm), either used individually or in combination. Among which the combined modules of negative ionizers and KrCl excilamp had the best disinfection performance for the bacteria. The aerosolized virus P22 and Phi 6 were more susceptible to 222-nm emitted by KrCl excilamp than negative air ions. Significant greater inactivation of bacterial bioaerosols were identified after treated by combined treatment of negative air ion and far-UVC for 2 minutes (Escherichia coli, 6.25 natural log (ln) reduction; Staphylococcus epidermidis, 3.66 ln reduction), as compared to the mean sum value of inactivation results by respective individual treatment of negative ionizers and KrCl excilamp (Escherichia coli, 4.34 ln; Staphylococcus epidermidis, 1.75 ln), indicating a synergistic inactivation effect. The findings provide important baseline data to support the design and development of safe and high-efficient disinfection systems.
Collapse
Affiliation(s)
- Y H Lu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China
| | - H Wu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China; Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong China
| | - H H Zhang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China
| | - W S Li
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong China
| | - A C K Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China.
| |
Collapse
|
26
|
Alonso VPP, Gonçalves MPMBB, de Brito FAE, Barboza GR, Rocha LDO, Silva NCC. Dry surface biofilms in the food processing industry: An overview on surface characteristics, adhesion and biofilm formation, detection of biofilms, and dry sanitization methods. Compr Rev Food Sci Food Saf 2023; 22:688-713. [PMID: 36464983 DOI: 10.1111/1541-4337.13089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/09/2022]
Abstract
Bacterial biofilm formation in low moisture food processing (LMF) plants is related to matters of food safety, production efficiency, economic loss, and reduced consumer trust. Dry surfaces may appear dry to the naked eye, however, it is common to find a coverage of thin liquid films and microdroplets, known as microscopic surface wetness (MSW). The MSW may favor dry surface biofilm (DSB) formation. DSB formation is similar in other industries, it occurs through the processes of adhesion, production of extracellular polymeric substances, development of microcolonies and maturation, it is mediated by a quorum sensing (QS) system and is followed by dispersal, leading to disaggregation. Species that survive on dry surfaces develop tolerance to different stresses. DSB are recalcitrant and contribute to higher resistance to sanitation, becoming potential sources of contamination, related to the spoilage of processed products and foodborne disease outbreaks. In LMF industries, sanitization is performed using physical methods without the presence of water. Although alternative dry sanitizing methods can be efficiently used, additional studies are still required to develop and assess the effect of emerging technologies, and to propose possible combinations with traditional methods to enhance their effects on the sanitization process. Overall, more information about the different technologies can help to find the most appropriate method/s, contributing to the development of new sanitization protocols. Thus, this review aimed to identify the main characteristics and challenges of biofilm management in low moisture food industries, and summarizes the mechanisms of action of different dry sanitizing methods (alcohol, hot air, UV-C light, pulsed light, gaseous ozone, and cold plasma) and their effects on microbial metabolism.
Collapse
Affiliation(s)
- Vanessa Pereira Perez Alonso
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Maria Paula M B B Gonçalves
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | | - Giovana Rueda Barboza
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | |
Collapse
|
27
|
UV tolerance of Lactococcus lactis 936-type phages: Impact of wavelength, matrix, and pH. Int J Food Microbiol 2022; 378:109824. [DOI: 10.1016/j.ijfoodmicro.2022.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/17/2022] [Accepted: 06/26/2022] [Indexed: 11/22/2022]
|
28
|
Study on the Disinfection Efficiency of the Combined Process of Ultraviolet and Sodium Hypochlorite on the Secondary Effluent of the Sewage Treatment Plant. Processes (Basel) 2022. [DOI: 10.3390/pr10081622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The combined disinfection process of ultraviolet and sodium hypochlorite has more advantages than the single disinfection method in reducing the disinfectant dosage, shortening the reaction time, and resisting the impact of water quality changes and inhibiting the light reactivation of microorganisms. Given this, using the secondary effluent of a sewage plant as the research object, the disinfection efficiency of the combined process of ultraviolet and sodium hypochlorite was investigated. The experimental results showed that the inactivation effect of UV followed by sodium hypochlorite on fecal coliform and the inhibition of microbial photoreactivation was more significant than that of simultaneous disinfection of UV and sodium hypochlorite disinfection. When the UV dose was 24 mJ/cm2, after disinfection with UV followed by sodium hypochlorite, only 1 mg/L of sodium hypochlorite was required to be added, and a contact reaction time of 1 min for the fecal coliform index to meet the first-Class A emission standard. After disinfection, the effluent’s maximum reactivation rate of fecal coliform was 26.96%. However, the simultaneous disinfection of ultraviolet and sodium hypochlorite required the addition of 3 mg/L of sodium hypochlorite. After disinfection, the maximum reactivation rate of the fecal coliform group reached 30.81%.
Collapse
|
29
|
Cai G, Liu T, Zhang J, Song H, Jiang Q, Zhou C. Control for chlorine resistant spore forming bacteria by the coupling of pre-oxidation and coagulation sedimentation, and UV-AOPs enhanced inactivation in drinking water treatment. WATER RESEARCH 2022; 219:118540. [PMID: 35550966 DOI: 10.1016/j.watres.2022.118540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Spore forming bacteria (SFB) are strongly chlorine resistant. Their presence in drinking water may cause diseases and pose threat to public health. Three SFB strains, i.e. Bacillus alvei, Bacillus cereus, and Lysinibacillus fusiformis, were isolated and identified from the finished water of a drinking water treatment plant where bacteria colonies occasionally reached the limit value. Due to their chlorine resistance, a SFB control strategy coupling pre-oxidation, coagulation sedimentation, and UV-AOPs inactivation in water treatment process was studied in lab scale. Five minutes pre-oxidation treatment by applying Cl2 and ClO2 induced remarkable spore transformation. Longer pre-oxidation exposure time didn't have apparent improvement. Cl2 and ClO2 dosages of 0.9 mg/L and 0.5 mg/L were suggested, respectively. The formed spores can be efficiently removed by the following coagulation sedimentation treatment. At a suggested dosage combination of 20 mg/L PAC and 0.08 mg/L PAM, spore removal efficiency reached about 3.15-lg. Comparing to applying sole UV irradiation, enhanced UV inactivation by adding 0.1 mM H2O2, or Cl2, or peroxymonosulfate (PMS) substantially improved the inactivation of the most chlorine resistant SFB strain, Lysinibacillus fusiformis. UV-AOPs stably achieved 2-lg inactivation rate at UV dosage of 40 mJ/cm2. UV/H2O2, UV/Cl2 and UV/PMS inactivation kinetically enhanced 1.20 times, 1.36 times and 1.91 times over sole UV irradiation. Intracellular DNA and ATP leakages were detected, and remarkable damages of Lysinibacillus fusiformis cells' surface and ultrastructure were observed. These findings evidenced cell wall and cell membrane destructions, guaranteeing substantial SFB cells inactivation. This study was carried out based on three SFB strains isolated from a finished water, and common engineering practical operations. By providing engineeringly relevant references, the outcomes obtained would be helpful for dealing with SFB outbreak risk in drinking water treatment.
Collapse
Affiliation(s)
- Guangqiang Cai
- Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China; Shenzhen Water Affairs (Group) Co., Ltd., Shenzhen, 518031, China
| | - Tongzhou Liu
- Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China.
| | - Jinsong Zhang
- Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China; Shenzhen Water Affairs (Group) Co., Ltd., Shenzhen, 518031, China
| | - Haoran Song
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Qijun Jiang
- Shenzhen Shen Shui Bao An Water Affairs (Group) Co., Ltd., Shenzhen, 518133, China
| | - Chang Zhou
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
30
|
de Almeida MTG, de Almeida BG, Siqueira JPZ, Byzynski Soares G, Sigari Morais V, Mitsue Yasuoka FM, Ghiglieno F. Ultraviolet-C Light-emitting Device Against Microorganisms in Beauty Salons. Pathog Immun 2022; 7:49-59. [PMID: 35795726 PMCID: PMC9249058 DOI: 10.20411/pai.v7i1.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Ultraviolet light in the UV-C band is also known as germicidal radiation, and it is widely used for decontamination and disinfection of environments, water, and food. The ultraviolet source transfers electromagnetic energy from a mercury arc lamp to an organism's genetic material. When UV radiation penetrates the cell wall of an organism, it destroys the cell's ability to reproduce, through a physical and not chemical process. Thus, the objective of this study was to evaluate the antimicrobial potential of a new UV-C generating device (Asepsis) against clinically important microorganisms that may be present in beauty centers. Methods We present here a set of tests performed on tools easy to find in beauty salons (hair-brushes, nail pliers, makeup brushes, and, due to the recent COVID-19 pandemic, face mask samples). They were individually contaminated with bacteria (Pseudomonas aeruginosa, Staphylococcus aureus), fungi (Microsporum canis, Trichophyton rubrum, Candida albicans, Malassezia furfur), and the Chikungunya virus. Different times of exposure were evaluated (1, 3, and 5 minutes). Results There was notable reduction in the microbial load in every test, in comparison with control groups. Best results were observed on face mask samples, while the makeup brush showed less reduction, even with longer periods of exposure. Conclusions Beauty salons present a risk of infections due to microbial exposure. The device tested can efficiently inactivate, in a short time, microorganisms contaminating most tools found in this setting. The device also showed promising results against enveloped virus.
Collapse
Affiliation(s)
| | - Bianca Gottardo de Almeida
- Universidade Júlio de Mesquita Filho (UNESP), campus of São José do Rio Preto (Ibilce), São José do Rio Preto, Brazil
| | | | | | | | | | - Filippo Ghiglieno
- Universidade Federal de São Carlos (UFSCar) – Laboratório de Óptica, Laser e Fotônica (OLAF), São Carlos, Brazil
| |
Collapse
|
31
|
Yang Z, Liu P, Wei H, Li H, Li J, Qiu X, Ding R, Guo X. Alteration in microbial community and antibiotic resistance genes mediated by microplastics during wastewater ultraviolet disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153918. [PMID: 35189224 DOI: 10.1016/j.scitotenv.2022.153918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/12/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) could be as a vector to colonize microorganisms and antibiotic resistance gene (ARGs) in surface water. However, little information is known regarding their changes by the presence of MPs in wastewater treatment. Here, the effects of different concentrations and sizes of polystyrene microplastics (PSMPs) on the distribution and removal of microbial communities and ARGs under ultraviolet disinfection of urban sewage have been systematically studied. Results showed that the presence of MPs altered abundance and functions of microorganisms in wastewater, despite different effects on different types of microorganisms. The most abundant ARGs in original disinfection tank sewage was rpoB2 (6.34%). A certain concentration range of MPs can improve the ability of specific types of ARGs in the UV disinfection process. Compared to the system without PSMPs, the content of Deinococcus-Thermus and Bacteroidetes phylum increased, while Actinobacteria and Proteobacteria phylum decreased in the presence of MPs. The microbial functions, especially the genetic information processing and metabolism were altered by the presence of PSMPs. In addition, PSMPs altered the content of ARGs, where the contents of OXA-182 and ErmH were increased, while adeF and ANT3-Iic were decreased. PSMPs also decreased the free ARB content in wastewater by providing colonization sites. The UV disinfection efficiency of microorganisms and ARGs was also intervened by PSMPs since they provided colonization sites and increased the water turbidity. The findings indicated that PSMPs altered the distribution and removal of microbial community and ARGs in ultraviolet disinfection of wastewater, highlighting the combined risks.
Collapse
Affiliation(s)
- Zeyuan Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Haoyu Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
32
|
Fufa PA, Feysia GB, Gultom NS, Kuo DH, Chen X, Kabtamu DM, Zelekew OA. Visible light-driven photocatalytic activity of Cu 2O/ZnO/Kaolinite-based composite catalyst for the degradation of organic pollutant. NANOTECHNOLOGY 2022; 33:315601. [PMID: 35468594 DOI: 10.1088/1361-6528/ac69f9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Herein, we design to synthesize a novel Cu2O/ZnO/kaolinite composite catalyst by co-precipitation method. The synthesized composite catalysts were labeled as 5CZK, 10CZK, 15CZK, and 20CZK which represent 5, 10, 15, and 20% of Cu2O, respectively, on ZnO/kaolinite. The photocatalyst samples were characterized with different instruments. Moreover, the methylene blue (MB) dye was used as a target organic pollutant and the degradation was evaluated under visible light irradiation. The highest performance for the degradation of MB was achieved by 10CZK catalyst and degrades 93% within 105 min. However, ZnO (Z), Cu2O/ZnO (CZ), 5CZK, 15CZK, and 20CZK composite catalysts, degrades 28, 66, 76, 71, and 68% of MB dye, respectively. The enhanced degradation efficiency of 10CZK composites catalyst could be due to the higher adsorption properties from metakaolinite and the light-responsive properties of the Cu2O/ZnO samples under visible light. Hence, the resulting composite catalyst could be applicable for environmental remediation.
Collapse
Affiliation(s)
- Paulos Asefa Fufa
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
- Faculty of Chemistry, Silesian University of Technology, Marcina Strzody 9, 44-100 Gliwice, Poland
| | - Gebisa Bekele Feysia
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Noto Susanto Gultom
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Xiaoyun Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Daniel Manaye Kabtamu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Osman Ahmed Zelekew
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
33
|
Qiu W, Chen H, Zhang S, Xiong Y, Zheng M, Zhu T, Park M, Magnuson JT, Zheng C, El-Din MG. Remediation of surface water contaminated by pathogenic microorganisms using calcium peroxide: Matrix effect, micro-mechanisms and morphological-physiological changes. WATER RESEARCH 2022; 211:118074. [PMID: 35093710 DOI: 10.1016/j.watres.2022.118074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Calcium peroxide (CaO2), a common solid peroxide, has been increasingly used in contaminated site remediation due to its ability to release oxygen (O2) and hydrogen peroxide (H2O2) and its environmental friendliness. Our present study is first to explore micromechnisms of CaO2 to efficaciously inactivate pathogen indicators including gram-negative bacterium of Escherichia coli (E. coli), gram-positive bacterium of Staphylococcus aureus (S. aureus), and virus of Escherichia coli-specific M13 bacteriophage (VCSM13) under low concentration (≤ 4 mmol L-1 (mM)). The inactivation mechanisms of E. coli, S. aureus (1 mmol L-1 CaO2) and VCSM13 (4 mmol L-1) were mainly attributed to OH- (32∼58%) and •OH (34∼42%), followed by H2O2 (13∼20%) and O2•- (10∼12%) generated from CaO2, with the observed morphological and physiological-associated damages. Also, average steady-state concentrations of (OH-, •OH, H2O2, and O2•-) and their reaction rate constants with E. coli and VCSM13 were determined. Accordingly, the micro-mechanism model of inactivation was established and validated, and the inactivation efficiency of the same order of magnitude of pathogen was predicted. Furthermore, during the common environmental factors, the copper ions was found to be promote CaO2 inactivation of pathogens, and dissolved organic matter (DOM) fractions had a negative effect on CaO2 inactivation. The present study explored the mechanisms of CaO2 inactivation of pathogens in real surface water, laying the foundation for its potential use in the inactivation of water-borne microbial pathogens.
Collapse
Affiliation(s)
- Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Honghong Chen
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuwen Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying Xiong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Zheng
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Department of Civil & Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Tingting Zhu
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Guangdong Engineering Research Center of Low Energy Sewage Treatment, Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
| | - Minkyu Park
- Department of Chemical & Environmental Engineering, University of Arizona,1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, United States
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Mohamed Gamal El-Din
- Department of Civil & Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
34
|
Kwait R, Kerwin K, Herzog C, Bennett J, Padhi S, Zoccolo I, Maslo B. Whole‐room ultraviolet sanitization as a method for the site‐level treatment of
Pseudogymnoascus destructans. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Robert Kwait
- Department of Ecology, Evolution, and Natural Resources, Rutgers the State University of New Jersey New Brunswick New Jersey USA
| | - Kathleen Kerwin
- Department of Ecology, Evolution, and Natural Resources, Rutgers the State University of New Jersey New Brunswick New Jersey USA
| | - Carl Herzog
- New York State Department of Environmental Conservation Albany New York USA
| | - Joan Bennett
- Department of Plant Biology and Pathology Rutgers, the State University of New Jersey New Brunswick New Jersey USA
| | - Sally Padhi
- Department of Plant Biology and Pathology Rutgers, the State University of New Jersey New Brunswick New Jersey USA
| | - Isabelle Zoccolo
- Department of Ecology, Evolution, and Natural Resources, Rutgers the State University of New Jersey New Brunswick New Jersey USA
| | - Brooke Maslo
- Department of Ecology, Evolution, and Natural Resources, Rutgers the State University of New Jersey New Brunswick New Jersey USA
| |
Collapse
|
35
|
Luo X, Zhang B, Lu Y, Mei Y, Shen L. Advances in application of ultraviolet irradiation for biofilm control in water and wastewater infrastructure. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126682. [PMID: 34388918 DOI: 10.1016/j.jhazmat.2021.126682] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 05/26/2023]
Abstract
Biofilms are ubiquitous in aquatic environment. While so far, most of the ultraviolet (UV) disinfection studies focus on planktonic bacteria, and only limited attention has been given to UV irradiation on biofilms. To enrich this knowledge, the present paper reviews the up-to-date studies about applying UV to control biofilms in water and wastewater infrastructure. The development of UV light sources from the conventional mercury lamp to the light emitting diode (LED), and the resistance mechanisms of biofilms to UV are summarized, respectively. Then the feasibility to control biofilms with UV is discussed in terms of three technical routes: causing biofilm slough, inhibiting biofilm formation, and inactivating bacteria in the established biofilm. A comprehensive evaluation of the biofilm-targeted UV technologies currently used or potentially useful in water industry is provided as well, after comparative analyses on single/combined wavelengths, continuous/pulsed irradiation, and instant/chronic disinfection effects. UV LEDs are emerging as competitive light sources because of advantages such as possible selection of wavelengths, adjustable emitting mode and the designable configuration. They still, however, face challenges arising from the low wall plug efficiency and power output. At last, the implementation of the UV-based advanced oxidation processes in controlling biofilms on artificial surfaces is overviewed and their synergistic mechanisms are proposed, which further enlightens the prospective of UV in dealing with the biofilm issue in water infrastructure.
Collapse
Affiliation(s)
- Xueru Luo
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Baoping Zhang
- Department of Electronic Engineering, Laboratory of Micro/Nano-Optoelectronics, Xiamen University, Xiamen, Fujian 361005, China.
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yang Mei
- Department of Electronic Engineering, Laboratory of Micro/Nano-Optoelectronics, Xiamen University, Xiamen, Fujian 361005, China
| | - Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
36
|
Feng W, Liu Y, Gao L. Stormwater treatment for reuse: Current practice and future development - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113830. [PMID: 34600425 DOI: 10.1016/j.jenvman.2021.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Stormwater harvesting is an effective measure to mitigate flooding risk and pollutant migration in our urban environment with the continuously increasing impermeable faction. Treatment of harvested stormwater also provides the fit-for-purpose water sources as an alternative to potable water supply ensuring the reliability and sustainability of the water management in the living complex. In order to provide the water management decision-maker with a broad range of related technology database and to facilitate the implementation of stormwater harvesting in the future, a comprehensive review was undertaken to understand the corresponding treatment performance, the applicable circumstances of current stormwater treatment and harvesting technologies. Technologies with promising potential for stormwater treatment were also reviewed to investigate the feasibility of being used in an integrated process. The raw stormwater quality and the required quality for different levels of stormwater reuses (irrigation, recreational, and potable) were reviewed and compared. The required level of treatment is defined for different 'fit-for-purpose' uses of harvested stormwater. Stormwater biofilter and constructed wetland as the two most advanced and widely used stormwater harvesting and treatment technologies, their main functionality, treatment performance and adequate scale of the application were reviewed based on published peer-reviewed articles and case studies. Excessive microbial effluent that exists in stormwater treated using these two technologies has restricted the stormwater reuse in most cases. Water disinfection technologies developed for wastewater and surface water treatment but with high potential to be used for stormwater treatment have been reviewed. Their feasibility and limitation for stormwater treatment are presented with respect to different levels of fit-for-purpose reuses. Implications for future implementation of stormwater treatment are made on proposing treatment trains that are suitable for different fit-for-purpose stormwater reuses.
Collapse
Affiliation(s)
- Wenjun Feng
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Yue Liu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Li Gao
- Institute of Sustainability and Innovation, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia; South East Water Corporation, Seaford, VIC, 3198 Australia.
| |
Collapse
|
37
|
SUZUKI AKIHIRO, EMOTO AKIRA, SHIRAI AKIHIRO, NAGAMATSU KENTARO. Ultraviolet Light-Emitting Diode (UV-LED) Sterilization of Citrus Bacterial Canker Disease Targeted for Effective Decontamination of <i>Citrus Sudachi</i> Fruit. Biocontrol Sci 2022; 27:1-7. [DOI: 10.4265/bio.27.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- AKIHIRO SUZUKI
- Institute of Post-LED Photonics (pLED) ,Tokushima University
| | - AKIRA EMOTO
- Institute of Post-LED Photonics (pLED) ,Tokushima University
| | - AKIHIRO SHIRAI
- Institute of Post-LED Photonics (pLED) ,Tokushima University
| | - KENTARO NAGAMATSU
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| |
Collapse
|
38
|
Chen C, Guo L, Yang Y, Oguma K, Hou LA. Comparative effectiveness of membrane technologies and disinfection methods for virus elimination in water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149678. [PMID: 34416607 PMCID: PMC8364419 DOI: 10.1016/j.scitotenv.2021.149678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 05/22/2023]
Abstract
The pandemic of the 2019 novel coronavirus disease (COVID-19) has brought viruses into the public horizon. Since viruses can pose a threat to human health in a low concentration range, seeking efficient virus removal methods has been the research hotspots in the past few years. Herein, a total of 1060 research papers were collected from the Web of Science database to identify technological trends as well as the research status. Based on the analysis results, this review elaborates on the state-of-the-art of membrane filtration and disinfection technologies for the treatment of virus-containing wastewater and drinking water. The results evince that membrane and disinfection methods achieve a broad range of virus removal efficiency (0.5-7 log reduction values (LRVs) and 0.09-8 LRVs, respectively) that is attributable to the various interactions between membranes or disinfectants and viruses having different susceptibility in viral capsid protein and nucleic acid. Moreover, this review discusses the related challenges and potential of membrane and disinfection technologies for customized virus removal in order to prevent the dissemination of the waterborne diseases.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Lihui Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Kumiko Oguma
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China; Xi'an High-Tech Institute, Xi'an 710025, China.
| |
Collapse
|
39
|
Vitzilaiou E, Kuria AM, Siegumfeldt H, Rasmussen MA, Knøchel S. The impact of bacterial cell aggregation on UV inactivation kinetics. WATER RESEARCH 2021; 204:117593. [PMID: 34482094 DOI: 10.1016/j.watres.2021.117593] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Reconditioning of food processing water streams for reuse is an increasingly common water management practice in the food industry and UV disinfection is often employed as part of the water treatment. Several factors may impact the effect of UV radiation. Here, we aim to assess the impact of cell aggregation on UV inactivation kinetics and investigate if UV exposure induces aggregation. Three strains, isolated from food processing water reuse lines (Raoultella ornithinolytica, Pseudomonas brenneri, Rothia mucilaginosa) and both an aggregating and a non-aggregating strain of Staphylococcus aureus were exposed to UVC light at 255 nm using UV LED equipment. Total Viable Count and phase-contrast microscopy, coupled with image analysis, were used to compare the UV inactivation kinetics with the average particle size for a range of UV doses. Tailing effect, seen as a strong reduction in inactivation rate, was observed for all strains at higher UV doses (industrial strains ≥ 50 or 120 mJ/cm2, S. aureus strains ≥ 40 or 60 mJ/cm2). The naturally aggregating strains were more UV tolerant, both within and between species. When aggregates of S. aureus were broken, UV tolerance decreased. For the processing water isolates, the lowest applied UV dose (25 mJ/cm2) significantly increased the average particle size. Application of higher UV doses obtained with longer exposure times did not further increase the particle size compared with untreated samples. For the S. aureus strains, however, no consistent change in average particle size was observed due to UV. Our results demonstrate that aggregating strains have a higher degree of protection and that UV radiation induces aggregation in some, but not all bacteria. A better understanding of the mechanisms governing microbial aggregation and survival during UV treatment could help to improve UV applications and predictions of microbial inactivation.
Collapse
Affiliation(s)
- Eirini Vitzilaiou
- Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark.
| | - Asaph M Kuria
- Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark
| | - Henrik Siegumfeldt
- Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark
| | - Morten A Rasmussen
- Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark; COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Knøchel
- Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark
| |
Collapse
|
40
|
Lu Y, Yang B, Zhang H, Lai ACK. Inactivation of foodborne pathogenic and spoilage bacteria by single and dual wavelength UV-LEDs: Synergistic effect and pulsed operation. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
The Influence of Photocatalytic Reactors Design and Operating Parameters on the Wastewater Organic Pollutants Removal—A Mini-Review. Catalysts 2021. [DOI: 10.3390/catal11050556] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The organic pollutants removal by conventional methods (adsorption, coagulation, filtration, microorganism and enzymes) showed important limitation due to the reluctance of these molecules. An alternative to this issue is represented by the photocatalytic technology considered as an advanced oxidation process (AOP). The photoreactors design and concepts vary based on the working regime (static or dynamic), photocatalyst morphology (powders or bulk) and volume. This mini-review aims to provide specific guidelines on the correlations between the photoreactor concept characteristics (working regime, volume and flow rate), irradiation scenarios (light spectra, irradiation period and intensity) and the photocatalytic process parameters (photocatalyst materials and dosage, pollutant type and concentration, pollutant removal efficiency and constant rate). The paper considers two main photoreactor geometries (cylindrical and rectangular) and analyses the influence of parameters optimization on the overall photocatalytic efficiency. Based on the systematic evaluation of the input data reported in the scientific papers, several perspectives regarding the photocatalytic reactors’ optimization were included.
Collapse
|
42
|
Wang M, Ateia M, Awfa D, Yoshimura C. Regrowth of bacteria after light-based disinfection - What we know and where we go from here. CHEMOSPHERE 2021; 268:128850. [PMID: 33187648 DOI: 10.1016/j.chemosphere.2020.128850] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments.
Collapse
Affiliation(s)
- Manna Wang
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
| | - Dion Awfa
- Water and Wastewater Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
43
|
Bono N, Ponti F, Punta C, Candiani G. Effect of UV Irradiation and TiO 2-Photocatalysis on Airborne Bacteria and Viruses: An Overview. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1075. [PMID: 33669103 PMCID: PMC7956276 DOI: 10.3390/ma14051075] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/07/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
Current COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has put a spotlight on the spread of infectious diseases brought on by pathogenic airborne bacteria and viruses. In parallel with a relentless search for therapeutics and vaccines, considerable effort is being expended to develop ever more powerful technologies to restricting the spread of airborne microorganisms in indoor spaces through the minimization of health- and environment-related risks. In this context, UV-based and photocatalytic oxidation (PCO)-based technologies (i.e., the combined action of ultraviolet (UV) light and photocatalytic materials such as titanium dioxide (TiO2)) represent the most widely utilized approaches at present because they are cost-effective and ecofriendly. The virucidal and bactericidal effect relies on the synergy between the inherent ability of UV light to directly inactivate viral particles and bacteria through nucleic acid and protein damages, and the production of oxidative radicals generated through the irradiation of the TiO2 surface. In this literature survey, we draw attention to the most effective UV radiations and TiO2-based PCO technologies available and their underlying mechanisms of action on both bacteria and viral particles. Since the fine tuning of different parameters, namely the UV wavelength, the photocatalyst composition, and the UV dose (viz, the product of UV light intensity and the irradiation time), is required for the inactivation of microorganisms, we wrap up this review coming up with the most effective combination of them. Now more than ever, UV- and TiO2-based disinfection technologies may represent a valuable tool to mitigate the spread of airborne pathogens.
Collapse
Affiliation(s)
- Nina Bono
- GenT LΛB & µBioMI LΛB, Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via L. Mancinelli, 7, 20131 Milan, Italy; (N.B.); (F.P.)
| | - Federica Ponti
- GenT LΛB & µBioMI LΛB, Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via L. Mancinelli, 7, 20131 Milan, Italy; (N.B.); (F.P.)
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Carlo Punta
- OSCMLab, Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via L. Mancinelli, 7, 20131 Milan, Italy;
- Milano Politecnico Research Unit, National Interuniversity Consortium of Materials Science and Technology—INSTM, Via Mancinelli 7, 20131 Milan, Italy
| | - Gabriele Candiani
- GenT LΛB & µBioMI LΛB, Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via L. Mancinelli, 7, 20131 Milan, Italy; (N.B.); (F.P.)
- Milano Politecnico Research Unit, National Interuniversity Consortium of Materials Science and Technology—INSTM, Via Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
44
|
Vilé G. Photocatalytic materials and light-driven continuous processes to remove emerging pharmaceutical pollutants from water and selectively close the carbon cycle. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01713b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Past and present technologies for wastewater purification and future research directions are critically discussed in this review.
Collapse
Affiliation(s)
- Gianvito Vilé
- Department of Chemistry
- Materials, and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- IT-20133 Milano
- Italy
| |
Collapse
|
45
|
Palika A, Rahimi A, Bolisetty S, Handschin S, Fischer P, Mezzenga R. Amyloid hybrid membranes for bacterial & genetic material removal from water and their anti-biofouling properties. NANOSCALE ADVANCES 2020; 2:4665-4670. [PMID: 36132927 PMCID: PMC9419293 DOI: 10.1039/d0na00189a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/03/2020] [Indexed: 05/09/2023]
Abstract
Water scarcity and contamination by biological pollutants are global challenges that significantly affect public health. Reverse osmosis, nanofiltration and ultrafiltration technologies are very effective for the elimination of pathogens and most contaminants but associated with considerable capital and operating costs, high energy consumption and the use of chlorinated chemicals to suppress membrane fouling. Additionally, the pressure needed by these techniques may disrupt the pathogenic microbial cell membranes, causing the release of genetic material (fragments of DNA, RNA and plasmids) into the water. Here, we introduce the simultaneous removal of both bacteria and associated genetic material using amyloid hybrid membranes, via a combined adsorption and size exclusion mechanism. Amyloid hybrid membranes can remove upto and beyond 99% of the genetic material by adsorption, where amyloid fibrils act as the primary adsorbing material. When the same membranes are surface-modified using chitosan, the anti-biofouling performance of the membranes improved significantly, with a bacterial removal efficiency exceeding 6 log.
Collapse
Affiliation(s)
- Archana Palika
- ETH Zurich, Department of Health Sciences and Technology Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Akram Rahimi
- ETH Zurich, Department of Health Sciences and Technology Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Sreenath Bolisetty
- ETH Zurich, Department of Health Sciences and Technology Schmelzbergstrasse 9 8092 Zurich Switzerland
- BluAct Technologies GmbH Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Stephan Handschin
- ETH Zurich, Department of Health Sciences and Technology Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Peter Fischer
- ETH Zurich, Department of Health Sciences and Technology Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences and Technology Schmelzbergstrasse 9 8092 Zurich Switzerland
- ETH Zurich Department of Materials Wolfgang-Pauli-Strasse 10 8093 Zurich Switzerland +41 44 632 9140 +41 44 632 1603
| |
Collapse
|
46
|
Soler M, Scholtz A, Zeto R, Armani AM. Engineering photonics solutions for COVID-19. APL PHOTONICS 2020; 5:090901. [PMID: 33015361 PMCID: PMC7523711 DOI: 10.1063/5.0021270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/17/2020] [Indexed: 05/04/2023]
Abstract
As the impact of COVID-19 on society became apparent, the engineering and scientific community recognized the need for innovative solutions. Two potential roadmaps emerged: developing short-term solutions to address the immediate needs of the healthcare communities and developing mid/long-term solutions to eliminate the over-arching threat. However, in a truly global effort, researchers from all backgrounds came together in tackling this challenge. Short-term efforts have focused on re-purposing existing technologies and leveraging additive manufacturing techniques to address shortages in personal protective equipment and disinfection. More basic research efforts with mid-term and long-term impact have emphasized developing novel diagnostics and accelerating vaccines. As a foundational technology, photonics has contributed directly and indirectly to all efforts. This perspective will provide an overview of the critical role that the photonics field has played in efforts to combat the immediate COVID-19 pandemic as well as how the photonics community could anticipate contributing to future pandemics of this nature.
Collapse
Affiliation(s)
- Maria Soler
- Nanobiosensors and Bioanalytical Applications
Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST
and CIBER-BBN, Barcelona, Spain
| | - Alexis Scholtz
- Department of Biomedical Engineering, University
of Southern California, Los Angeles, California 90089,
USA
| | - Rene Zeto
- Mork Family Department of Chemical Engineering and
Materials Science, University of Southern California, Los Angeles,
California 90089, USA
| | | |
Collapse
|
47
|
Chen X, Wang Y, Li W, Zhao X, Lu Y, Yu Y, Chen S, Ding Z. Microbial contamination in distributed drinking water purifiers induced by water stagnation. ENVIRONMENTAL RESEARCH 2020; 188:109715. [PMID: 32505883 DOI: 10.1016/j.envres.2020.109715] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Small-scale distributed water purifiers (SSDWPs), providing better quality drinking water, are popularly used both in homes and in the public domain. Non-continuous operation leads to water stagnation and ultimately induces microbial contamination. However, information related to such contamination in these purifiers is reported scarcely. In the present study, an SSDWP, consisting of sand filtration (SF), granular activated carbon (GAC), and ultrafiltration (UF) processes, was established to explore microbial changes induced by water stagnation, based on the aspects of bacterial count, microbial size, microbiome and pathogenic communities. Our results primary showed that: first, compared with drinking water distribution system (DWDS), bacterial counts increased more rapidly in SSDWPs, growing to > 500 cfu/mL after 2.5 h stagnation. The proportion of intact cells also increased with stagnation time. Conversely, microbial size decreased with stagnation time according to changes in forward scatter detected using flow cytometry. Second, microbiome evolution followed the isolated island model, while in stagnated DWDS, microbiome evolved according to the continent island model, and the former had higher abundance of biodiversity. Furthermore, stagnation evidently caused microbiome changes in each unit, and spatial differences contributed to microbiome dissimilarity more significantly than temporal differences. Third, Mycobacterium was the dominant pathogenic genus in the SF and GAC units while Acinetobacter was the most abundant in the UF unit. Pathogenic risks increased with water stagnation time and lower nutrients level contributed to pathogenic community richness. Therefore, terminal disinfection of SSDWPs is strongly advised.
Collapse
Affiliation(s)
- Xiao Chen
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing, 210007, China
| | - Yi Wang
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing, 210007, China.
| | - Weiying Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaolan Zhao
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing, 210007, China
| | - Yaofeng Lu
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing, 210007, China
| | - Yingjun Yu
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing, 210007, China
| | - Sheng Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhibin Ding
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing, 210007, China.
| |
Collapse
|
48
|
Self-cleaning, antimicrobial, and antifouling membrane via integrating mesoporous graphitic carbon nitride into polyvinylidene fluoride. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118146] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Vergine P, Amalfitano S, Salerno C, Berardi G, Pollice A. Reuse of ultrafiltered effluents for crop irrigation: On-site flow cytometry unveiled microbial removal patterns across a full-scale tertiary treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137298. [PMID: 32087587 DOI: 10.1016/j.scitotenv.2020.137298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Reuse of treated wastewater for crop irrigation has been widely adopted to mitigate the effects of water scarcity on agricultural yields and to help preserving the integrity of aquatic ecosystems. This paper presents the outcomes of one-year monitoring of a full-scale agro-industrial wastewater treatment plant designed for water reuse, with a multistage tertiary treatment based on sand filtration, membrane ultrafiltration, storage and on-demand UV disinfection. We aimed to test flow cytometry as a monitoring tool to provide on-site indications on tertiary treatment performances and on the quality of treated wastewater along the treatment scheme. Membrane ultrafiltration retained prokaryotic cells and E. coli (>3 log). During storage of treated effluents, a significant decay of E. coli was observed together with the growth of prokaryotic and eukaryotic cells, and the UV disinfection was effective only against fecal indicators. The microbial quality of the treated effluent was comparable to the control groundwater locally used for irrigation. On-site rapid assessments by flow cytometry allowed unveiling crucial aspects affecting the microbiological quality of ultrafiltration permeate and treated effluent immediately after sampling, including plant operating performances and microbial removal patterns across the treatment train.
Collapse
Affiliation(s)
- Pompilio Vergine
- Water Research Institute (IRSA-CNR), Viale F. De Blasio, 5, 70132 Bari, Italy
| | - Stefano Amalfitano
- Water Research Institute (IRSA-CNR), Via Salaria Km 29.300, 00015 Monterotondo, Rome, Italy.
| | - Carlo Salerno
- Water Research Institute (IRSA-CNR), Viale F. De Blasio, 5, 70132 Bari, Italy
| | - Giovanni Berardi
- Water Research Institute (IRSA-CNR), Viale F. De Blasio, 5, 70132 Bari, Italy
| | - Alfieri Pollice
- Water Research Institute (IRSA-CNR), Viale F. De Blasio, 5, 70132 Bari, Italy
| |
Collapse
|
50
|
Vitzilaiou E, Aunsbjerg SD, Mahyudin NA, Knøchel S. Stress Tolerance of Yeasts Dominating Reverse Osmosis Membranes for Whey Water Treatment. Front Microbiol 2020; 11:816. [PMID: 32431679 PMCID: PMC7214788 DOI: 10.3389/fmicb.2020.00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
Filamentous yeast species belonging to the closely related Saprochaete clavata and Magnusiomyces spicifer were recently found to dominate biofilm communities on the retentate and permeate surface of Reverse Osmosis (RO) membranes used in a whey water treatment system after CIP (Cleaning-In-Place). Microscopy revealed that the two filamentous yeast species can cover extensive areas due to their large cell size and long hyphae formation. Representative strains from these species were here further characterized and displayed similar physiological and biochemical characteristics. Both strains tested were able to grow in twice RO-filtrated permeate water and metabolize the urea present. Little is known about the survival characteristics of these strains. Here, their tolerance toward heat (60, 70, and 80°C) and Ultraviolet light (UV-C) treatment at 255 nm using UV-LED was assessed as well as their ability to form biofilm and withstand cleaning associated stress. According to the heat tolerance experiments, the D60°C of S. clavata and M. spicifer is 16.37 min and 7.24 min, respectively, while a reduction of 3.5 to >4.5 log (CFU/mL) was ensured within 5 min at 70°C. UV-C light at a dose level 10 mJ/cm2 had little effect, while doses of 40 mJ/cm2 and upward ensured a ≥4log reduction in a static laboratory scale set-up. The biofilm forming potential of one filamentous yeast and one budding yeast, Sporopachydermia lactativora, both isolated from the same biofilm, was compared in assays employing flat-bottomed polystyrene microwells and peg lids, respectively. In these systems, employing both nutrient rich as well as nutrient poor media, only the filamentous yeast was able to create biofilm. However, on RO membrane coupons in static systems, both the budding yeast and a filamentous yeast were capable of forming single strain biofilms and when these coupons were exposed to different simulations of CIP treatments both the filamentous and budding yeast survived these. The dominance of these yeasts in some filter systems tested, their capacity to adhere and their tolerance toward relevant stresses as demonstrated here, suggest that these slow growing yeasts are well suited to initiate microbial biofouling on surfaces in low nutrient environments.
Collapse
Affiliation(s)
- Eirini Vitzilaiou
- Laboratory of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Stina D. Aunsbjerg
- Laboratory of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - N. A. Mahyudin
- Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Susanne Knøchel
- Laboratory of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|