1
|
Li X, Wang M, Hou M, Su G, Sun B, Hua Y, Pang J, Meng J, Shi B, Li Q. Current status and strategies for controlling hexachlorobutadiene from multiple perspectives of emission, occurrence, and disposal. ENVIRONMENTAL RESEARCH 2025; 268:120760. [PMID: 39756780 DOI: 10.1016/j.envres.2025.120760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Hexachlorobutadiene (HCBD), as an emerging persistent organic pollutant, poses a pressing global environmental issue concerning its reduction and control. However, the lack of systematic studies on the sources and occurrence of HCBD hinders the development of effective disposal technologies. This study addresses HCBD prevention and treatment from multiple perspectives, including source emissions, environmental contamination distribution, and control technologies. The dominant source of HCBD emissions varied by country, mainly industrial production processes of trichloroethylene, perchloroethylene, and carbon tetrachloride in China and magnesium production in Europe. Further research on the relevant generation mechanisms is necessary to develop targeted source control strategies. HCBD has been detected in various environmental media and biological organisms worldwide. Compared to sludge and soil, the concentration of HCBD in the atmosphere and water were relatively higher, particularly in China and Nigeria, with the concentration reaching up to 179 μg/m3 and 2629 μg/L, respectively. Attention should be focused on the water treatment processes to reduce HCBD levels in sludge and ensure the safety of drinking water. Additionally, studies of HCBD exposure levels in organisms should also focus on diet to further assess health risks to humans. Currently, available disposal technologies primarily focus on the treatment of contaminated environmental media, including physical thermal desorption, chemical reduction dechlorination and oxidative degradation, and biodegradation, while the development and application of source control methods remain insufficient. However, these technologies may not completely degrade HCBD, potentially causing secondary pollution. Future efforts should prioritize the development of green, efficient, and thoroughly destructive thermal catalytic technologies, with an emphasis on the integration of multiple techniques. This work provides critical insights for the development and implementation of comprehensive control strategies for HCBD regarding its source, occurrence, and pollution disposal.
Collapse
Affiliation(s)
- Xin Li
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China; Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mujie Wang
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing, 100035, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - YuKang Hua
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxin Pang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Fernandes AR, Schächtele A, Malisch R, Zwickel T, Tschiggfrei K, Falandysz J. Prioritising relevant polychlorinated naphthalene (PCN) congeners for human dietary exposure studies. CHEMOSPHERE 2025; 370:144044. [PMID: 39733955 DOI: 10.1016/j.chemosphere.2024.144044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Following a decline in the production and use of polychlorinated naphthalenes (PCNs) and the restrictions introduced by the Stockholm Convention, dietary intake represents the most significant pathway of human exposure to these dioxin-like contaminants. PCNs occur ubiquitously in foods, originating from the legacy of historical production that is now globally redistributed, as well as from ongoing industrial and domestic combustion sources which have a stronger influence on occurrence patterns in countries where they were not produced. Recent studies have benefited from a wider set of available PCN reference standards, enabling more accurate reporting of a diverse range of congeners. Combining the available information on food occurrence with relative potency (REP) data, an initial selection of twenty PCN congeners are presented here for monitoring of foodstuffs. The selection is expected to provide a good indication of the overall dioxin-like toxic equivalence (TEQ) associated with food occurrence, particularly in industrialised countries and regions where both, historical production and current combustion processes are significant sources. The selection also appears to be representative of the vast majority of PCN TEQ reported in human tissues despite the limited amount of reliable data. Future studies will benefit from the increasing availability of new PCN standards and provide a broader spectrum of occurrence data in foods and human tissues. They will also support toxicological studies on a wider range of congeners and biological effects, enhancing our understanding of PCN-mediated toxicity. Both these information strands will allow refinement and expansion of the proposed selection of congeners, if required.
Collapse
Affiliation(s)
- Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Alexander Schächtele
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Chemisches und Veterinäruntersuchungsamt, Bissierstraße 5, Freiburg, D-79114, Germany
| | - Rainer Malisch
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Chemisches und Veterinäruntersuchungsamt, Bissierstraße 5, Freiburg, D-79114, Germany
| | - Theresa Zwickel
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Chemisches und Veterinäruntersuchungsamt, Bissierstraße 5, Freiburg, D-79114, Germany
| | - Karin Tschiggfrei
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Chemisches und Veterinäruntersuchungsamt, Bissierstraße 5, Freiburg, D-79114, Germany
| | - Jerzy Falandysz
- Medical University of Lodz, Department of Toxicology, 90-151, Lódź, Poland
| |
Collapse
|
3
|
Park J, Akinboye AJ, Lee JG. Development of an analytical method involving thiol methylation for the analysis of pentachlorothiophenol in food using gas chromatography-tandem mass spectrometry. Food Chem X 2025; 25:102175. [PMID: 39897980 PMCID: PMC11786890 DOI: 10.1016/j.fochx.2025.102175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 01/11/2025] [Indexed: 02/04/2025] Open
Abstract
Organic pollutants such as pentachlorothiophenol are a major environmental and food safety hazard owing to their degradation resistance and bioaccumulation potential. Since existing methods for detecting and quantifying PCTP are applicable only to environmental and aquatic samples, it is imperative to develop methods applicable to foods. Herein, a method involving gas chromatography-tandem mass spectrometry and optimized methylation conditions is proposed for quantifying PCTP concentrations in food. The method was validated using six food samples, and the performance parameters were found to be within acceptable standards. Reproducibility was the most significant factor influencing the measurement uncertainty. An analysis of 870 food samples covering agricultural, livestock, and fishery categories showed PCTP concentrations ranging from not detected (ND) to 13.63 ng/g wet weight, with dairy products (ND to 4.97 ng/g) showing the highest level. In animal-derived food, PCTP was detected only in eggs (ND to 3.10 ng/g) and mussels (ND to 4.36 ng/g).
Collapse
Affiliation(s)
| | | | - Joon-Goo Lee
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
4
|
Chen S, Fan T, Ren T, Zhang N, Zhao L, Zhong R, Sun G. High-throughput prediction of oral acute toxicity in Rat and Mouse of over 100,000 polychlorinated persistent organic pollutants (PC-POPs) by interpretable data fusion-driven machine learning global models. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136295. [PMID: 39471609 DOI: 10.1016/j.jhazmat.2024.136295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
This study utilized available oral acute toxicity data in Rat and Mouse for polychlorinated persistent organic pollutants (PC-POPs) to construct data fusion-driven machine learning (ML) global models. Based on atom-centered fragments (ACFs), the collected high-throughput data overcame the applicability limitations, enabling accurate toxicity prediction for a wide range of PC-POPs series compounds using only single models. The data variances in the Rat training and test sets were 1.52 and 1.34, respectively, while for the Mouse, the values were 1.48 and 1.36, respectively. Genetic algorithm (GA) was used to build multiple linear regression (MLR) models and pre-screen descriptors, addressing the "black-box" problem prevalent in ML and enhancing model interpretability. The best ML models for Rat and Mouse achieved approximately 90 % prediction reliability for over 100,000 true untested compounds. Ultimately, a warning list of highly toxic compounds for eight categories of polychlorinated atom-centered fragments (PCACFs) was generated based on the prediction results. The analysis of descriptors revealed that dioxin analogs generally exhibited higher toxicity, because the heteroatoms and ring systems increased structural complexity and formed larger conjugated systems, contributing to greater oral acute toxicity. The present study provides valuable insights for guiding the subsequent in vivo tests, environmental risk assessment and the improvement of global governance system of pollutants.
Collapse
Affiliation(s)
- Shuo Chen
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Domingo JL. Concentrations of polychlorinated naphthalenes in food and human dietary exposure: A review of the scientific literature. Food Res Int 2024; 195:114949. [PMID: 39277227 DOI: 10.1016/j.foodres.2024.114949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
In general, for most environmental persistent organic pollutants (POPs), dietary intake is the main way of exposure. Polychlorinated naphthalenes (PCNs) are a family of two-ringed aromatic compounds, which are ubiquitous environmental contaminants, being structurally similar to PCDD/Fs and PCBs. Although the production and use of PCNs were banned in the USA and Europe some decades ago, due to their persistent properties, PCNs remain still present in the environment, being able to enter the food chain. The present paper was aimed at reviewing the results of the studies focused on determining the levels of PCNs in foods. The human dietary intake of these compounds was also reviewed with the few available data. The information on the levels of PCNs in foodstuffs is currently more abundant than that found in a previous review (Domingo, 2004). Since then, China is the country that has contributed with the greatest number of studies. The results of most surveys seem to suggest that human health risks of PCNs due to dietary exposure should not be worrying. However, because of the important differences in the methodology of the published studies, the comparison of the results is not easy, although there seems to be a general trend towards a decrease in the levels of PCNs in foods. In the next few years, a continued reduction of the environmental levels of PCNs is still expected. Therefore, a direct repercussion of the concentrations of these pollutants in foodstuffs must be also noted. Consequently, a reduction of the dietary exposure to PCNs should be expected. Anyway, to establish the tolerable dietary intake of PCNs is a key issue for assessing human health risks of these pollutants.
Collapse
Affiliation(s)
- Jose L Domingo
- Universitat Rovira i Virgili, School of Medicine, Laboratory of Toxicology and Environmental Health, 43201 Reus, Catalonia, Spain.
| |
Collapse
|
6
|
Bouchnak R, El Ayari T, Rabeh I, Salhi O, Aloui F, Maamouri A, Gravato C, Trabelsi M, Mhadhbi L. Polyethylene microplastic modulates the toxicity of pentachlorophenol to the microalgae Isochrysis galbana, clone t-ISO. CHEMOSPHERE 2024; 367:143588. [PMID: 39461439 DOI: 10.1016/j.chemosphere.2024.143588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Pentachlorophenol (PCP) and polyethylene microplastic (PE-MP) have been designated as emerging and persistent pollutants, respectively. The combined effects of those pollutants are still unknown, especially to organisms like phytoplankton that may adsorb to their surface. Therefore, the purpose of this study was to investigate for the first time the effects of PE-MP alone and in combination with PCP on the microalgae Isochrysis galbana, clone t-ISO following 72 h of exposure. Photosynthetic pigments amounts, carotenoid, protein, carbohydrate and fatty acids have been assessed. Acute toxicity test showed that the 72 h median inhibition concentration (72 h-EC50) was 148.2, 0.66 and 087 mg L-1 for PE-MP, PCP and their mixture. The utmost effects in growth inhibition rates were noted with 0.5 and 1.25 mg L-1 PCP (23% and 85%, respectively), and 100 and 300 mg L-1 PE-MP (49% and 64%, respectively). Moreover, it was found that those concentrations had a major impact on the photosynthetic pigments, protein, carbohydrate, and fatty acids amounts in algal cells. Furthermore, levels of H2O2 and Malondialdehyde (MDA), as well as the activities of catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX), indicated the induction of an oxidative stress in algal cells. It appears that adding PE-MP at a no-effect concentration (25 mg L-1) reduces the toxicity caused by PCP due to its adsorption to polyethylene microplastics.
Collapse
Affiliation(s)
- Rahma Bouchnak
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| | - Tahani El Ayari
- Group of Fundamental and Applied Malacology (MAF), Laboratory of Environment Bio-Monitoring (LBE), Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Bizerte, Tunisia.
| | - Imen Rabeh
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| | - Oumaima Salhi
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia; IRDL UMR CNRS 6027, Université Bretagne Sud, 56000 Vannes, France.
| | - Foued Aloui
- Laboratoire des Ressources Sylvo-Pastorales, Université de Jendouba, Institut Sylvo-Pastoral de Tabarka, Tunisia.
| | - Ahmed Maamouri
- Interprofessional Grouping of Fishery Products, Fish Hatchery of Tabarka, Tunisia.
| | - Carlos Gravato
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Monia Trabelsi
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| | - Lazhar Mhadhbi
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| |
Collapse
|
7
|
Zhang W, Tang Y, Han Y, Tian D, Yu Y, Yu Y, Li W, Shi W, Liu G. Pentachlorophenol impairs the antimicrobic capability of blood clam via undermining humoral immunity and disrupting humoral-cellular crosstalk. CHEMOSPHERE 2024; 364:143230. [PMID: 39222693 DOI: 10.1016/j.chemosphere.2024.143230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Due to past massive usage and persistent nature, pentachlorophenol (PCP) residues are prevalent in environments, posing a potential threat to various organisms such as sessile filter-feeding bivalves. Although humoral immunity and its crosstalk with cellular one are crucial for the maintaining of robust antimicrobic capability, little is known about the impacts of PCP on these critical processes in bivalve mollusks. In this study, pathogenic bacterial challenge and plasma antimicrobic capability assays were carried out to assess the toxic effects of PCP on the immunity of a common bivalve species, blood clam (Tegillarca granosa). Moreover, the impacts of PCP-exposure on the capabilities of pathogen recognition, hemocyte recruitment, and pathogen degradation were analyzed as well. Furthermore, the activation status of downstream immune-related signalling pathways upon PCP exposure was also assessed. Data obtained illustrated that 28-day treatment with environmentally realistic levels of PCP resulted in evident declines in the survival rates of blood clam upon Vibrio challenge along with markedly weakened plasma antimicrobic capability. Additionally, the levels of lectin and peptidoglycan-recognition proteins (PGRPs) in plasma as well as the expression of pattern recognition receptors (PRRs) in hemocytes were found to be significantly inhibited by PCP-exposure. Moreover, along with the downregulation of immune-related signalling pathway, markedly fewer chemokines (interleukin 8 (IL-8), IL-17, and tumor necrosis factor α (TNF-α)) in plasma and significantly suppressed chemotactic activity of hemocytes were also observed in PCP-exposed blood clams. Furthermore, compared to that of the control, blood clams treated with PCP had markedly lower levels of antimicrobic active substances, lysozyme (LZM) and antimicrobial peptides (AMP), in their plasma. In general, the results of this study suggest that PCP exposure could significantly impair the antimicrobic capability of blood clam via undermining humoral immunity and disrupting humoral-cellular crosstalk.
Collapse
Affiliation(s)
- Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Han
- School of Life and Environmental, Hangzhou Normal University, Hangzhou, 311121, China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Heo H, Park MK, Cho IG, Kim J, Shin ES, Chang YS, Choi SD. Assessment of polychlorinated naphthalenes in Korean foods: Levels, profiles, and dietary intake. Food Chem 2024; 451:139498. [PMID: 38703730 DOI: 10.1016/j.foodchem.2024.139498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Concerns about dioxin-like compounds have increased; however, the monitoring of polychlorinated naphthalenes (PCNs) in food and the assessment of dietary intake remain limited. In this study, various foods were collected from Korean markets and analyzed for PCNs. Fishery products exhibited the highest mean concentration (48.0 pg/g ww) and toxic equivalent (TEQ) (0.0185 pg-TEQ/g ww). Agricultural products were the largest contributors (35.7%) to the total dietary intake of PCNTEQ, followed by livestock products (33.6%), fishery products (20.2%), and processed foods (10.5%). The mean intake of PCNTEQ for the Korean population was 0.901 pg-TEQ/day for males and 0.601 pg-TEQ/day for females. Generally, males and younger groups had higher daily intakes of PCNTEQ, but they did not exceed the tolerable weekly intakes. Nonetheless, it is important to manage potential health risks associated with PCNs and other dioxin-like compounds by identifying major food items contributing to PCN exposure and considering age and gender differences.
Collapse
Affiliation(s)
- Hyeji Heo
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min-Kyu Park
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - In-Gyu Cho
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jongchul Kim
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun-Su Shin
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yoon-Seok Chang
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung-Deuk Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
9
|
Bresson SE, Ruzzin J. Persistent organic pollutants disrupt the oxidant/antioxidant balance of INS-1E pancreatic β-cells causing their physiological dysfunctions. ENVIRONMENT INTERNATIONAL 2024; 190:108821. [PMID: 38885551 DOI: 10.1016/j.envint.2024.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Persistent organic pollutants (POPs) have emerged as potent diabetogenic agents, but their mechanisms of action remain poorly identified. OBJECTIVES In this study, we aim to determine the mechanisms regulating the damaging effects of POPs in pancreatic β-cells, which have a central role in the development of diabetes. METHODS We treated INS-1E pancreatic β-cells with PCB-153, p,p'-DDE, PCB-126, or TCDD at doses ranging from 1 × 10-15to 5 × 10-6M. We measured insulin content and secretion, cell viability and assessed the mRNA expression of the xenobiotic nuclear receptors Nr1i2 and Nr1i3, and the aryl hydrocarbon receptor (Ahr). In addition, we evaluated the antioxidant defense and production of reactive oxygen species (ROS). Finally, we studied the ability of the antioxidant N-acetyl-L-cysteine (NAC) to counteract the effects of POPs in INS-1E cells. RESULTS When exposed to environmental POP levels, INS-1E cells had impaired production and secretion of insulin. These defects were observed for all tested POPs and were paralleled by reduced Ins1 and Ins2 mRNA expression. While POP treatment for 3 days did not affect INS-1E cell viability, longer treatment progressively killed the cells. Furthermore, we found that the xenobiotic detoxification machinery is poorly expressed in the INS-1E cells, as characterized by the absence of Nr1i2 and Nr1i3 and their respective downstream targets Cyp3a1/Cyp3a2 and Cyp2b1/Cyp2b3, and the weak functionality of the Ahr/Cyp1a1 signaling. Interestingly, POPs dysregulated key antioxidant enzymes such as glutathione peroxidases, peroxiredoxins, thioredoxins, and catalases. In parallel, the production of intracellular ROS, including superoxide anion (O2•-) and hydrogen peroxide (H2O2), was increased by POP exposure. Improving the oxidant scavenging capacity of INS-1E cells by NAC treatment restored the production and secretion of insulin. CONCLUSION By promoting oxidative stress and impairing the ability of INS-1E cells to produce and secrete insulin, this study reveals how POPs can mechanistically act as diabetogenic agents, and provides new scientific evidence supporting the concept that POPs are fueling the diabetes epidemics.
Collapse
Affiliation(s)
- Sophie Emilie Bresson
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jérôme Ruzzin
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Zhou Q, Chen H, Li L, Wu Y, Yang X, Jiang A, Wu W. The Bioaccessibility and Bioavailability of Pentachlorophenol in Five Animal-Derived Foods Measured by Simulated Gastrointestinal Digestion. Foods 2024; 13:1254. [PMID: 38672926 PMCID: PMC11049475 DOI: 10.3390/foods13081254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Pentachlorophenol (PCP) is a ubiquitous emerging persistent organic pollutant detected in the environment and foodstuffs. Despite the dietary intake of PCP being performed using surveillance data, the assessment does not consider the bioaccessibility and bioavailability of PCP. Pork, beef, pork liver, chicken and freshwater fish Ctenopharyngodon Idella-fortified by three levels of PCP were processed by RIVM and the Caco-2 cell model after steaming, boiling and pan-frying, and PCP in foods and digestive juices were detected using isotope dilution-UPLC-MS/MS. The culinary treatment and food matrix were significantly influenced (p < 0.05) in terms of the bioaccessibility and bioavailability of PCP. Pan-frying was a significant factor (p < 0.05) influencing the digestion and absorption of PCP in foods, with the following bioaccessibility: pork (81.37-90.36%), beef (72.09-83.63%), pork liver (69.11-78.07%), chicken (63.43-75.52%) and freshwater fish (60.27-72.14%). The bioavailability was as follows: pork (49.39-63.41%), beef (40.32-53.43%), pork liver (33.63-47.11%), chicken (30.63-40.83%) and freshwater fish (17.14-27.09%). Pork and beef with higher fat content were a key factor in facilitating the notable PCP bioaccessibility and bioavailability (p < 0.05). Further, the exposure of PCP to the population was significantly reduced by 42.70-98.46% after the consideration of bioaccessibility and bioavailability, with no potential health risk. It can improve the accuracy of risk assessment for PCP.
Collapse
Affiliation(s)
- Quan Zhou
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Huiming Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China; (H.C.); (L.L.); (X.Y.)
| | - Liangliang Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China; (H.C.); (L.L.); (X.Y.)
| | - Yongning Wu
- Key Laboratory of Food Safety Risk Assessment, National Center for Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China;
| | - Xingfen Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China; (H.C.); (L.L.); (X.Y.)
| | - Aimin Jiang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Weiliang Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China; (H.C.); (L.L.); (X.Y.)
| |
Collapse
|
11
|
Wan G, Zhang Z, Chen J, Li M, Li J. GenX caused liver injury and potential hepatocellular carcinoma of mice via drinking water even at environmental concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123574. [PMID: 38365076 DOI: 10.1016/j.envpol.2024.123574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Hexafluoropropylene oxide dimer acid (GenX) is an alternative to perfluorooctanoic acid (PFOA), whose environmental concentration is close to its maximum allowable value established by the US Environmental Protection Agency, so its effects on human health are of great concern. The liver is one of the most crucial target organ for GenX, but whether GenX exposure induces liver cancer still unclear. In this research project, male C57 mice were disposed to GenX in drinking water at environmental concentrations (0.1 and 10 μg/L) and higher concentrations (1 and 100 mg/L) for 14 weeks to explore its effects on liver injury and potential carcinogenicity in mice. GenX was found to cause a dose-dependent increase in the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), and triglyceride (TG). As the content of GenX in drinking water increased, so did the concentrations of Glypican-3 (GPC-3) and detachment gamma-carboxyprothrombin (DCP), indicators of early hepatocellular cancer. GenX destroyed the boundaries and arrangements of hepatocytes, in which monocyte infiltration, balloon-like transformation, and obvious lipid vacuoles were observed between cells. Following exposure to GenX, Masson sections revealed a significant quantity of collagen deposition in the liver. Alpha-feto protein (AFP), vascular endothelial growth factor (VEGF), Ki67, matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) gene expression increased in a dose-dependent manner in the treatment group relative to the control group. In general, drinking water GenX exposure induced liver function impairment, elevated blood lipid level, caused liver pathological structure damage and liver fibrosis lesions, changed the liver inflammatory microenvironment, and increased the concentration of liver-related tumor indicator even in the environmental concentration, suggesting GenX is a potential carcinogen.
Collapse
Affiliation(s)
- Guojun Wan
- Department of Occupational and Environmental Health, School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, 215123, China
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, 215123, China
| | - Jingsi Chen
- Department of Occupational and Environmental Health, School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, 215123, China
| | - Mei Li
- School of Civil Engineering, Suzhou University of Science and Technology, 215011, China
| | - Jiafu Li
- Department of Occupational and Environmental Health, School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
12
|
Chen Z, Jiang Y, Lai X, Zhu C, Zhang D, Wang H. Co-exposure to pentachlorophenol (PCP) and cadmium (Cd) triggers apoptosis-like cell death in Eschericia coli. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123640. [PMID: 38401637 DOI: 10.1016/j.envpol.2024.123640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Pentachlorophenol (PCP) - cadmium (Cd) complex pollution has been identified as a form of persistent soil pollution in south China, exerting detrimental impacts on the indigenous soil bacterial communities. Hence, it is worthwhile to investigate whether and how bacterial populations alter in response to these pollutants. In this study, Escherichia coli was used as a model bacterium. Results showed that PCP exposure caused bacterial cell membrane permeability changes, intracellular ROS elevation, and DNA fragmentation, and triggered apoptosis-like cell death at low exposure concentration and necrosis at high exposure concentration. Cd exposure caused severe oxidative damage and cell necrosis in the tested bacterial strain. The co-exposure to PCP and Cd elevated the ROS level, stimulated the bacterial caspase activity, and induced DNA fragmentation, thereby leading to an apoptosis-like cell death. In conclusion, PCP-Cd complex pollution can cause bacterial population to decrease through apoptosis-like cell death pathway. However, it is worth noting that the subpopulation survives under the complex pollution stress.
Collapse
Affiliation(s)
- Zhilan Chen
- School of Life and Health Sciences, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan, 411201, Hunan Province, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan, 411201, Hunan Province, China.
| | - Yi Jiang
- School of Life and Health Sciences, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan, 411201, Hunan Province, China
| | - Xuebin Lai
- School of Life and Health Sciences, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan, 411201, Hunan Province, China
| | - Chenhong Zhu
- School of Life and Health Sciences, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan, 411201, Hunan Province, China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, China
| |
Collapse
|
13
|
Gurunathan S, Thangaraj P, Kim JH. Postbiotics: Functional Food Materials and Therapeutic Agents for Cancer, Diabetes, and Inflammatory Diseases. Foods 2023; 13:89. [PMID: 38201117 PMCID: PMC10778838 DOI: 10.3390/foods13010089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Postbiotics are (i) "soluble factors secreted by live bacteria, or released after bacterial lysis, such as enzymes, peptides, teichoic acids, peptidoglycan-derived muropeptides, polysaccharides, cell-surface proteins and organic acids"; (ii) "non-viable metabolites produced by microorganisms that exert biological effects on the hosts"; and (iii) "compounds produced by microorganisms, released from food components or microbial constituents, including non-viable cells that, when administered in adequate amounts, promote health and wellbeing". A probiotic- and prebiotic-rich diet ensures an adequate supply of these vital nutrients. During the anaerobic fermentation of organic nutrients, such as prebiotics, postbiotics act as a benevolent bioactive molecule matrix. Postbiotics can be used as functional components in the food industry by offering a number of advantages, such as being added to foods that are harmful to probiotic survival. Postbiotic supplements have grown in popularity in the food, cosmetic, and healthcare industries because of their numerous health advantages. Their classification depends on various factors, including the type of microorganism, structural composition, and physiological functions. This review offers a succinct introduction to postbiotics while discussing their salient features and classification, production, purification, characterization, biological functions, and applications in the food industry. Furthermore, their therapeutic mechanisms as antibacterial, antiviral, antioxidant, anticancer, anti-diabetic, and anti-inflammatory agents are elucidated.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
14
|
Drábová L, Pulkrabová J, Hrbek V, Kocourek V, Hajšlová J. POPs and PAHs in fish oil-based food supplements at the Czech market. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:197-208. [PMID: 37055876 DOI: 10.1080/19393210.2023.2200374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
The objectives of this study were to assess concentrations of three groups of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in 44 fish oil-based food supplements, to estimate their daily intake by consumers and, to evaluate the compliance of the oil samples with the oil origin declarations (cod liver oil or fish oil). The concentrations of ∑PCBs (7 congeners), OCPs (19 compounds, represented mainly by ∑DDTs), ∑PBDEs (10 congeners), and ∑PAHs (16 compounds) found in samples ranged between 0.15-55.7 µg kg-1, 0.93-72.8 µg kg-1, 0.28-27.5 µg kg-1, and 0.32-51.9 µg kg-1, respectively. Besides, the authenticity of the oils was assessed based on the fingerprints obtained by DART-HRMS, an ambient mass spectrometry technique. Four samples declared as fish oil were probably prepared from cod liver oil, which is much cheaper. Furthermore, these samples contained elevated concentrations of halogenated POPs when compared to supplements produced from fish oil.
Collapse
Affiliation(s)
- Lucie Drábová
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czech Republic
| | - Jana Pulkrabová
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czech Republic
| | - Vojtěch Hrbek
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czech Republic
| | - Vladimír Kocourek
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czech Republic
| | - Jana Hajšlová
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
15
|
Hu Y, Li Y, Shi Y, Kuang Y, Zhou S, Peng Y, Liu Y, Chen L, Zhou N, Zheng J, Zhu F, Ouyang G. A robust and ultra-high-surface hydrogen-bonded organic framework promoting high-efficiency solid phase microextraction of multiple persistent organic pollutants from beverage and tea. Food Chem 2023; 415:135790. [PMID: 36868067 DOI: 10.1016/j.foodchem.2023.135790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Persistent organic pollutants (POPs) are widely distributed in the environment and are toxic, even at low concentrations. In this study, we first used hydrogen-bonded organic framework (HOF) to enrich POPs, based on solid phase microextraction (SPME). The HOF called PFC-1 (self-assembled by 1,3,6,8-tetra(4-carboxylphenyl)pyrene) has an ultra-high specific surface area, excellent thermochemical stability, and abundant functional groups, making it potential to be an excellent coating in SPME. And the as-prepared PFC-1 fiber have demonstrated outstanding enrichment abilities for nitroaromatic compounds (NACs) and POPs. Furthermore, the PFC-1 fiber was coupled with gas chromatography-mass spectrometry (GC-MS) to develop an ultrasensitive and practical analytical method with wide linearity (0.2-200 ng·L-1), low detection limits for organochlorine pesticides (OCPs) (0.070-0.082 ng·L-1) and polychlorinated biphenyls (PCBs) (0.030-0.084 ng·L-1), good repeatability (6.7-9.9%), and satisfactory reproducibility (4.1-8.2%). Trace concentrations of OCPs and PCBs in drinking water, tea beverage, and tea were also determined precisely with the proposed analytical method.
Collapse
Affiliation(s)
- Yalan Hu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, PR China
| | - Youyou Li
- Joint International Center for CO(2) Capture and Storage (iCCS), College of Chemistry and Chemical Engineering, Hunan University, Lushannan Road 1, Changsha 410082, PR China
| | - Yueru Shi
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China
| | - Yixin Kuang
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China
| | - Suxin Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China
| | - Yuan Peng
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, PR China
| | - Yuefan Liu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, PR China
| | - Luyi Chen
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou 510006, PR China.
| | - Ningbo Zhou
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, PR China.
| | - Juan Zheng
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | - Fang Zhu
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China
| | - Gangfeng Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, PR China
| |
Collapse
|
16
|
Liu C, Ruan J, Ruan F, Ding X, Han C, Huang C, Zhong H, He C, Zuo Z, Huang J. Estradiol protects female mice from hyperuricemia induced by PCB138 exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115093. [PMID: 37270882 DOI: 10.1016/j.ecoenv.2023.115093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a type of persistent organic pollutant (POP). Our previous study demonstrated that exposure to 0.5-50 μg/kg bw PCB138 during postnatal days (PND) 3-21 led to elevated serum uric acid (UA) levels and kidney injury in adult male mice. Given that the prevalence of hyperuricemia (HUA) is significantly lower in women than in men, it is worth investigating whether POP-induced HUA and its secondary kidney injury have sexual dimorphism. Herein, we exposed female mice to 0.5-50 μg/kg bw PCB138 during PND 3-21, resulting in elevated serum UA levels, but without causing significant kidney damage. Concurrently, we found a negative correlation between serum 17β-estradiol (E2) and serum UA levels. We also observed down-regulation of estrogen receptor (ER) protein levels in the kidneys of the PCB138-exposed groups. Furthermore, our study showed that E2 rescued the increased UA level and cytotoxicity caused by HUA in human renal tubular epithelial (HK-2) cells. Collectively, our findings suggest that E2 likely plays a crucial protective role in PCB138-induced HUA and kidney injury in female mice. Our research highlights the existence of sexual dimorphism in kidney injury secondary to HUA induced by POPs, which could provide guidance for individuals of different genders in preventing kidney injury caused by environmental factors.
Collapse
Affiliation(s)
- Changqian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Changshun Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Chaoqun Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongbin Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
17
|
Li C, Pang M, Li Y, Han L, Fan Y, Xin X, Zhang X, Zhang N, Qin Y. Protective effect of vitamin C against tetrachlorobenzoquinone-induced 5-hydroxymethylation-dependent apoptosis in HepG2 cells mainly via the mitochondrial apoptosis pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115097. [PMID: 37271103 DOI: 10.1016/j.ecoenv.2023.115097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Tetrachlorobenzoquinone (TCBQ) is an active metabolite of pentachlorophenol, and stimulates the accumulation of ROS to trigger apoptosis. The preventive effect of vitamin C (Vc) against TCBQ-induced apoptosis in HepG2 cells is unknown. And there is little known about TCBQ-triggered 5-hydromethylcytosine (5hmC)-dependent apoptosis. Here, we confirmed that Vc alleviated TCBQ-induced apoptosis. Through investigating the underlying mechanism, we found TCBQ downregulated 5hmC levels of genomic DNA in a Tet-dependent manner, with a particularly pronounced decrease in the promoter region, using UHPLC-MS-MS analysis and hydroxymethylated DNA immunoprecipitation sequencing. Notably, TCBQ exposure resulted in alterations of 5hmC abundance to ∼91% of key genes at promoters in the mitochondrial apoptosis pathway, along with changes of mRNA expression in 87% of genes. By contrast, 5hmC abundance of genes only exhibited slight changes in the death receptor/ligand pathway. Interestingly, the pretreatment with Vc, a positive stimulator of 5hmC generation, restored 5hmC in the genomic DNA to near-normal levels. More notably, Vc pretreatment further counter-regulated TCBQ-induced alteration of 5hmC abundance in the promoter with 100% of genes, accompanying the reverse modulation of mRNA expressions in 89% of genes. These data from Vc pretreatment supported the relationship between TCBQ-induced apoptosis and the altered 5hmC abundance. Additionally, Vc also suppressed TCBQ-stimulated generation of ROS, and further increased the stability of mitochondria. Our study illuminates a new mechanism of TCBQ-induced 5hmC-dependent apoptosis, and the dual mechanisms of Vc against TCBQ-stimulated apoptosis via reversely regulating 5hmC levels and scavenging ROS. The work also provided a possible strategy for the detoxification of TCBQ.
Collapse
Affiliation(s)
- Cuiping Li
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| | - Mengfan Pang
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Yaping Li
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| | - Lirong Han
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Yajiao Fan
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Xuelian Xin
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Xian Zhang
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Ning Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Shandong 253023, PR China
| | - Yan Qin
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding 071002, PR China
| |
Collapse
|
18
|
Zhang Y, Mhungu F, Zhang W, Wang Y, Li H, Liu Y, Li Y, Gan P, Pan X, Huang J, Zhong X, Song S, Liu Y, Chen K. Probabilistic risk assessment of dietary exposure to pentachlorophenol in Guangzhou, China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:262-270. [PMID: 36634160 DOI: 10.1080/19440049.2022.2163301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pentachlorophenol (PCP) is a ubiquitous environmental contaminant commonly existing as its sodium salt (NaPCP), which enters the human body primarily through long term but low-level dietary exposure. PCP contributes to chemical carcinogenesis and teratogenesis. In this study, the probabilistic risk of dietary exposure to PCP in Guangzhou citizens was investigated. In total, 923 food samples in the categories of pork, livestock (beef and lamb), poultry, offal, eggs, and freshwater fish (considered to be relatively susceptible to PCP contamination) were collected from various markets in Guangzhou and tested for PCP. Probabilistic risk assessment model calculations for PCP dietary exposure and margin of exposure (MOE) values were performed using @RISK software, based on a Monte Carlo simulation with 10,000 iterations. The overall detection rate of PCP (above 1 μg kg-1, the detection limit) was 19.9% (184/923), with an average of 7.9 μg kg-1. The highest rate of PCP detection, 28.2%, was in livestock (beef and lamb). The MOE value for dietary PCP exposure in general Guangzhou residents averaged 400, which was far below 5,000 (the borderline for judging a health risk). The lowest MOE value, 190, was observed in the 3- to-6-year old population and indicates a significant risk. In conclusion, this study suggests that PCP exposure in Guangzhou residents is of considerable health risk, especially for the pre-school young children.
Collapse
Affiliation(s)
- Yuhua Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Florence Mhungu
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Weiwei Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yanyan Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Hailin Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yufei Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yan Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Pingsheng Gan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jie Huang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xianwu Zhong
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Shaofang Song
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yungang Liu
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Kuncai Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
19
|
Junghyuck S, Shin Y, Lee J, Hakseung R, Seo S, Lee G, Koo YE. Risk assessment of hexachlorobutadiene (HCBD) in the Korean diet. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:271-281. [PMID: 36548926 DOI: 10.1080/19440049.2022.2146210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hexachlorobutadiene (HCBD) is a persistent organic pollutant (POP), and a toxin whose primary target organ is the kidney. Consequently, quantifying the amount of HCBD in food is essential for determining whether it poses a health risk. The current study established and validated an analytical method for assessing HCBD in food using gas chromatography/mass spectrometry (GC/MS). Subsequently, we conducted for the first time a risk assessment of HCBD through Korean food consumption. The ranges of HCBD concentration in 595 food samples were as follows: not detectable (nd)-0.947 ng/g for agricultural products, nd-0.920 ng/g for animal products, nd-1.323 ng/g for fishery products and nd-1.081 ng/g for processed food products. The daily intakes of HCBD for the general population were 0.22 ng/kg body weight (b.w.)/day for agricultural products, 0.30 ng/kg b.w./day for animal products, 0.07 ng/kg b.w./day for fishery products and 0.33 ng/kg b.w./day for processed food products. These exposure levels are below the tolerable daily intake (TDI, 2 μg/kg body weight/day) established by the National Institute of Food and Drug Safety Evaluation (NiFDS) in the Republic of Korea. Taking into account the risk index of 0.011%, we can, therefore, conclude that there are no health concerns for the Korean population.
Collapse
Affiliation(s)
- Suh Junghyuck
- Food Contaminants Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Yongwoon Shin
- Food Contaminants Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Jieun Lee
- Food Contaminants Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Ryu Hakseung
- Food Contaminants Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Sujin Seo
- Food Contaminants Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Gunyoung Lee
- Food Contaminants Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Yong Eui Koo
- Food Contaminants Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| |
Collapse
|
20
|
Louis H, Chima CM, Amodu IO, Gber TE, Unimuke TO, Adeyinka AS. Organochlorine detection on transition metals (X=Zn, Ti, Ni, Fe, and Cr) anchored fullerenes (C
23
X). ChemistrySelect 2023. [DOI: 10.1002/slct.202203843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hitler Louis
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry Faculty of Physical Sciences University of Calabar Calabar Nigeria
| | - Chioma M. Chima
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry Faculty of Physical Sciences University of Calabar Calabar Nigeria
| | - Ismail O. Amodu
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
- Department of Mathematics Faculty of Physical Sciences University of Calabar Calabar Nigeria
| | - Terkumbur E. Gber
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry Faculty of Physical Sciences University of Calabar Calabar Nigeria
| | - Tomsmith O. Unimuke
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry Faculty of Physical Sciences University of Calabar Calabar Nigeria
| | - Adedapo S. Adeyinka
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| |
Collapse
|
21
|
Wang Y, Zhang S, Wang Y, Wu X, Zou Y, Zhou W, Wang P, Cheng J, Dong S. Concentration and risk assessment of PCNs in green tea in different locations in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157587. [PMID: 35882323 DOI: 10.1016/j.scitotenv.2022.157587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Polychlorinated naphthalenes (PCNs) were added to the Stockholm Convention list of persistent organic pollutants in 2015. PCNs are mainly unintentionally produced during industrial processes nowadays, and can be widely found in environmental media and foodstuffs. Dietary intake is the primary pathway for human exposure to PCNs. PCNs in different categories of foodstuffs have been reported. However, little information on PCN concentrations in green tea, a popular beverage worldwide is available. In this study, all 75 PCN congener concentrations and distributions in green tea samples (n = 102) from 11 regions in China were determined, and risk assessment of human exposure to PCNs through tea consumption was conducted. The PCN concentrations in all the green tea samples were 3.62-175 pg/g dry weight (mean 36.1 pg/g dry weight). Similar PCN homolog and congener profiles were found in green tea samples from different areas. The dominant PCN homologs in all of the green tea samples were di-CNs, tetra-CNs, and tri-CNs. No direct relationships were found between PCN emission sources and PCN concentrations in the green tea samples. The brewing technique could affect the PCN concentrations and homolog profiles in tea leaves. PCNs in green tea from China were found to pose little risk to humans.
Collapse
Affiliation(s)
- Yaxin Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Su Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yujiao Wang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xingyi Wu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Zou
- Organic Biological Analytical Chemistry Group, Department of Chemistry, University of Liège, Liège 4000, Belgium
| | - Wenfeng Zhou
- College of Science, China Agricultural University, Beijing 100193, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
22
|
Fernandes AR, Kilanowicz A, Stragierowicz J, Klimczak M, Falandysz J. The toxicological profile of polychlorinated naphthalenes (PCNs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155764. [PMID: 35545163 DOI: 10.1016/j.scitotenv.2022.155764] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
The legacy of polychlorinated naphthalenes (PCNs) manufactured during the last century continues to persist in the environment, food and humans. Metrological advances have improved characterisation of these occurrences, enabling studies on the effects of exposure to focus on congener groups and individual PCNs. Liver and adipose tissue show the highest retention but significant levels of PCNs are also retained by the brain and nervous system. Molecular configuration appears to influence tissue disposition as well as retention, favouring the higher chlorinated (≥ four chlorines) PCNs while most lower chlorinated molecules readily undergo hydroxylation and excretion through the renal system. Exposure to PCNs reportedly provokes a wide spectrum of adverse effects that range from hepatotoxicity, neurotoxicity and immune response suppression along with endocrine disruption leading to reproductive disorders and embryotoxicity. A number of PCNs, particularly hexachloronaphthalene congeners, elicit AhR mediated responses that are similar to, and occur within similar potency ranges as most dioxin-like polychlorinated biphenyls (PCBs) and some chlorinated dibenzo-p-dioxins and furans (PCDD/Fs), suggesting a relationship based on molecular size and configuration between these contaminants. Most toxicological responses generally appear to be associated with higher chlorinated PCNs. The most profound effects such as serious and sometimes fatal liver disease, chloracne, and wasting syndrome resulted either from earlier episodes of occupational exposure in humans or from acute experimental dosing of animals at levels that reflected these exposures. However, since the restriction of manufacture and controls on inadvertent production (during combustion processes), the principal route of human and animal exposure is likely to be dietary intake. Therefore, further investigations should include the effects of chronic lower level intake of higher chlorinated PCN congeners that persist in the human diet and subsequently in human and animal tissues. PCNs in the diet should be evaluated cumulatively with other similarly occurring dioxin-like contaminants.
Collapse
Affiliation(s)
- Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Joanna Stragierowicz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Michał Klimczak
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Jerzy Falandysz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| |
Collapse
|
23
|
Aravind Kumar J, Krithiga T, Sathish S, Renita AA, Prabu D, Lokesh S, Geetha R, Namasivayam SKR, Sillanpaa M. Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154808. [PMID: 35341870 DOI: 10.1016/j.scitotenv.2022.154808] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Persistent organic pollutants (POPs) are organic chemicals that can persist in the environment for a longer period due to their non-biodegradability. The pervasive and bio-accumulative behavior of POPs makes them highly toxic to the environmental species including plants, animals, and humans. The present review specifies the POP along with their fate, persistence, occurrence, and risk analysis towards humans. The different biological POPs degradation methods, especially the microbial degradation using bacteria, fungi, algae, and actinomycetes, and their mechanisms were described. Moreover, the source, transport of POPs to the environmental sources, and the toxic nature of POPs were discussed in detail. Agricultural and industrial activities are distinguished as the primary source of these toxic compounds, which are delivered to air, soil, and water, affecting on the social and economic advancement of society at a worldwide scale. This review also demonstrated the microbial degradation of POPs and outlines the potential for an eco-accommodating and cost-effective approach for the biological remediation of POPs using microbes. The direction for future research in eliminating POPs from the environmental sources through various microbial processes was emphasized.
Collapse
Affiliation(s)
- J Aravind Kumar
- Department of Biomass and Energy Conversion, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai - 600119, India
| | - S Sathish
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai - 600119, India
| | - A Annam Renita
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai - 600119, India.
| | - D Prabu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai - 600119, India
| | - S Lokesh
- Department of Biomass and Energy Conversion, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Geetha
- Department of Instrumentation and Control Engineering, Saveetha School of Engineering, SIMATS, Chennai, India
| | - S Karthick Raja Namasivayam
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Mika Sillanpaa
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| |
Collapse
|
24
|
Wang Y, Zhang S, Fan M, Wang R, Zou Y, Wang P, Cheng J, Dong S. Polychlorinated naphthalenes in farmed Chinese mitten crabs in China: Concentration, distribution and source analysis. ENVIRONMENTAL RESEARCH 2022; 206:112582. [PMID: 34929190 DOI: 10.1016/j.envres.2021.112582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Polychlorinated naphthalenes (PCNs) are both highly toxic and bioaccumulative environmental contaminates. Dietary intake is the primary pathway for human exposure to PCNs, and PCN concentrations in aquatic foodstuffs are relatively high. Chinese mitten crab (Eriocheir sinensis) is one kind of popular aquatic foodstuffs in Asian countries. Farmed crabs could exposure to PCNs both through feed and environment. However, information on the occurrence of PCNs in farmed crabs is scarce. The present study investigated 75 PCN congeners in farmed Chinese mitten crabs, crab compound feed and sediments collected from Anhui Province and Shanghai in China. The total PCN concentrations in farmed Chinese mitten crabs from Anhui Province and Shanghai were 11.2-42.2 and 5.46-43.8 pg/g wet weight (ww), respectively. The PCN homologue profiles in crabs from both areas were similar, and both were dominated by di-CNs and penta-CNs. In contrast, lower chlorinated PCNs (di-CNs, tri-CNs and tetra-CNs) were the most common homologues in specimens of crab compound feed and sediment samples, indicating that selective bioaccumulation and metabolism of PCNs might occur in farmed crabs. No regional differences were found in the PCN congener profiles of farmed crabs, feed and sediment samples taken from Anhui Province and Shanghai. An assessment found no significant health risk associated with Chinese exposure to PCNs through farmed Chinese mitten crab consumption.
Collapse
Affiliation(s)
- Yaxin Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Su Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mengdie Fan
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yun Zou
- Organic Biological Analytical Chemistry Group, Department of Chemistry, University of Liège, Liège, 4000, Belgium
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
25
|
Palát J, Kukučka P, Codling GP, Price EJ, Janků P, Klánová J. Application of 96-well plate SPE method for analysis of persistent organic pollutants in low volume blood serum samples. CHEMOSPHERE 2022; 287:132300. [PMID: 34563784 DOI: 10.1016/j.chemosphere.2021.132300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Though many persistent organic pollutants (POPs) are closely regulated the human population is still exposed to these ubiquitous chemicals from the environment and diet. Safe management and human biomonitoring of POPs is necessary to understand the risk of exposure. Within human biomonitoring the mass of sample is often limited, therefore robust methods using smaller sample amounts are necessary. This study developed a 96-well plate solid phase extraction (SPE) method for determination of selected POPs: polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and non-persistent novel flame retardants (NFRs) in low volume blood serum. Non-destructive clean-up coupling Oasis HLB extraction plate with Phree phospholipid removal plate was employed. Extraction efficiency was determined at low and high concentrations in certified reference materials NIST SRM 1957 and 1958, respectively. Target compounds deviated from certified values on average by 15% and 21% for SRM 1957 and SRM 1958, respectively. Observed limit of detections (LODs) ranged from 0.36 pg/mL (PCB 180) to 66.07 pg/mL (δ-HCH). The applicability for real samples is demonstrated on 48 samples from pregnant women enrolled in the pilot phase of the CELSPAC: TNG study. In total, 30 target compounds were detected in at least one sample. The method developed here provides a fast and reliable analysis of human blood serum with possibility to introduce automation for the sample preparation procedure.
Collapse
Affiliation(s)
- Jiří Palát
- RECETOX Centre, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Petr Kukučka
- RECETOX Centre, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.
| | - Garry P Codling
- RECETOX Centre, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic; Toxicology Centre, University of Saskatchewan, 44 Campus Dr, SK, S7N 5B3, Saskatoon, Canada
| | - Elliott J Price
- RECETOX Centre, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Petr Janků
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic; Department of Nursing and Midwifery, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Jana Klánová
- RECETOX Centre, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| |
Collapse
|
26
|
Fernandes AR, Zwickel T, Schächtele A. Ensuring the reliability of brominated flame retardant data on food and feed occurrence through harmonised analytical criteria and proficiency testing. CHEMOSPHERE 2022; 286:131921. [PMID: 34426293 DOI: 10.1016/j.chemosphere.2021.131921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The volume of occurrence data on food and animal feed contaminants such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDDs) is slowly increasing as more laboratories develop analytical capability. This data allows an evaluation of current background levels in different countries and regions and is also useful for estimating the health risk through dietary exposure and as evidence for the formulation of future control strategies. Existing data varies in the number of analytes reported and the quality measures applied. In order to ensure reliability and comparability, guidance on analytical criteria such as precision and trueness, limits of quantitation, recovery, positive identification, etc. is provided. These parameters are based on several years of collective experience and allow validation and regular quality control of analysis of individual PBDE congeners and HBCDD stereoisomers. The criteria-based approach also allows laboratories the flexibility to use different analytical methodologies and techniques for generating data. The effectiveness of this approach has been demonstrated by a successful proficiency testing scheme that has been used for a number of years and has attracted an increasing number of participants. The majority of participating laboratories (>80%) have been able to demonstrate performance within the 95% confidence interval (│z-score│≤ 2) and a further 10% of laboratories demonstrated performance with a z-score of (2 <│z-score│< 3). The combined support of these guidance criteria backed by successful proficiency testing will ensure the reliability and comparability of results, in particular, to refine risk assessments and to help the formulation of regulatory policy.
Collapse
Affiliation(s)
- Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Theresa Zwickel
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Bissierstraße 5, Freiburg, D-79114, Germany
| | - Alexander Schächtele
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Bissierstraße 5, Freiburg, D-79114, Germany
| |
Collapse
|
27
|
Plastic Pollution, Waste Management Issues, and Circular Economy Opportunities in Rural Communities. SUSTAINABILITY 2021. [DOI: 10.3390/su14010020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rural areas are exposed to severe environmental pollution issues fed by industrial and agricultural activities combined with poor waste and sanitation management practices, struggling to achieve the United Nations’ Sustainable Development Goals (SDGs) in line with Agenda 2030. Rural communities are examined through a “dual approach” as both contributors and receivers of plastic pollution leakage into the natural environment (through the air–water–soil–biota nexus). Despite the emerging trend of plastic pollution research, in this paper, we identify few studies investigating rural communities. Therefore, proxy analysis of peer-reviewed literature is required to outline the significant gaps related to plastic pollution and plastic waste management issues in rural regions. This work focuses on key stages such as (i) plastic pollution effects on rural communities, (ii) plastic pollution generated by rural communities, (iii) the development of a rural waste management sector in low- and middle-income countries in line with the SDGs, and (iv) circular economy opportunities to reduce plastic pollution in rural areas. We conclude that rural communities must be involved in both future plastic pollution and circular economy research to help decision makers reduce environmental and public health threats, and to catalyze circular initiatives in rural areas around the world, including less developed communities.
Collapse
|
28
|
Negrete-Bolagay D, Zamora-Ledezma C, Chuya-Sumba C, De Sousa FB, Whitehead D, Alexis F, Guerrero VH. Persistent organic pollutants: The trade-off between potential risks and sustainable remediation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113737. [PMID: 34536739 DOI: 10.1016/j.jenvman.2021.113737] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Persistent Organic Pollutants (POPs) have become a very serious issue for the environment because of their toxicity, resistance to conventional degradation mechanisms, and capacity to bioconcentrate, bioaccumulate and biomagnify. In this review article, the safety, regulatory, and remediation aspects of POPs including aromatic, chlorinated, pesticides, brominated, and fluorinated compounds, are discussed. Industrial and agricultural activities are identified as the main sources of these harmful chemicals, which are released to air, soil and water, impacting on social and economic development of society at a global scale. The main types of POPs are presented, illustrating their effects on wildlife and human beings, as well as the ways in which they contaminate the food chain. Some of the most promising and innovative technologies developed for the removal of POPs from water are discussed, contrasting their advantages and disadvantages with those of more conventional treatment processes. The promising methods presented in this work include bioremediation, advanced oxidation, ionizing radiation, and nanotechnology. Finally, some alternatives to define more efficient approaches to overcome the impacts that POPs cause in the hydric sources are pointed out. These alternatives include the formulation of policies, regulations and custom-made legislation for controlling the use of these pollutants.
Collapse
Affiliation(s)
- Daniela Negrete-Bolagay
- School of Biological Sciences and Engineering, Yachay Tech University, 100119, Urcuquí, Ecuador.
| | - Camilo Zamora-Ledezma
- Tissue Regeneration and Repair: Orthobiology, Biomaterials & Tissue Engineering Research Group, UCAM - Universidad Católica de Murcia, Avda. Los Jerónimos 135, Guadalupe, 30107, Murcia, Spain.
| | - Cristina Chuya-Sumba
- School of Biological Sciences and Engineering, Yachay Tech University, 100119, Urcuquí, Ecuador.
| | - Frederico B De Sousa
- Laboratório de Sistemas Poliméricos e Supramoleculares, Physics and Chemistry Institute, Federal University of Itajubá, 37500-903, Itajubá, Brazil.
| | - Daniel Whitehead
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA.
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, 100119, Urcuquí, Ecuador.
| | - Victor H Guerrero
- Department of Materials, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, 170525, Ecuador.
| |
Collapse
|
29
|
Wang Y, Zhang H, Hou X, Zhang Q, Chen W, Shi J, Jiang G. Simultaneous determination of tetra-, penta- and hexachlorobutadienes in shellfish by gas chromatography-triple quadrupole mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117845. [PMID: 34330014 DOI: 10.1016/j.envpol.2021.117845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Polychloro-1,3-butadienes (polyCBDs) are attracting increasing concern due to their high toxicity. However, research on multiple polyCBDs in aquatic biota is still extremely limited. In this study, a sensitive method for simultaneous determination of nine polyCBD (Cl4-Cl6) congeners, including six tetrachlorobutadiene (TeCBD) isomers, two pentachlorobutadiene (PeCBD) isomers, and hexachlorobutadiene (HCBD), in shellfish was developed based on accelerated solvent extraction (ASE), solid-phase extraction (SPE) clean-up and gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS/MS). Low method limits of detection (MDLs) in the range 0.03-0.21 ng/g dry weight for target analytes with satisfactory recoveries (47.7 %-70.6 %) were achieved. The valid method was then applied to analyze nine polyCBDs congeners in 42 shellfish and 11 fish samples collected from markets in eight coastal cities, China. Trace HCBD was detected in 14 samples, while TeCBDs and PeCBDs were under the MDLs in all the samples, indicating little contamination of these pollutants in the marketed shellfish and fish in China. Multiple polyCBDs especially TeCBDs and PeCBDs were firstly involved in the proposed method and investigation here, which lay the groundwork for future research on the environmental behavior and exposure risks of polyCBDs in aquatic biotas.
Collapse
Affiliation(s)
- Yaotian Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haiyan Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
30
|
Lu Y, Chen ZF, Chen YJ, Xu YZ, Chen Y, Dai X, Yao L, Qi Z, Cai Z. Distribution and risk assessment of hexachlorobutadiene, pentachloroanisole, and chlorobenzenes in sediment and wild fish from a region affected by industrial and agricultural activities in South China. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126002. [PMID: 33992918 DOI: 10.1016/j.jhazmat.2021.126002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Hexachlorobutadiene, pentachloroanisole, and chlorobenzenes are regulated to control their release into the environment. There is little information regarding the distribution and risks of these pollutants in Chinese rivers. Therefore, we selected a prosperous agricultural and industrial region in South China as our study area and investigated the contamination profiles and risks of these pollutants in sediment and fish tissue samples. The results showed that, when compared with their levels in sediment, these lipophilic pollutants tended to accumulate in fish tissues in the following order: liver > brain > muscle. Some trichlorobenzene was found to be the result of reductive dechlorination of higher chlorinated benzenes. Hexachlorobutadiene and hexachlorobenzene could pose medium risks at certain sampling sites, but in general, almost no risk was found to the ecosystem. When the estimated daily human intakes of analytes through fish consumption were calculated for different age groups, the results suggested the analytes were unlikely to be a serious health concern for human. Our results could be used to update the existing data on the occurrence of these pollutants in the aquatic environment and to provide information for further pollution control by the local government.
Collapse
Affiliation(s)
- Yan Lu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| | - Yi-Jie Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying-Zao Xu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanyan Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiaoxin Dai
- Ministry of Agriculture Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Aquatic Product (Guangzhou), Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Li Yao
- Guangdong Institute of Analysis (China National Analytical Center), Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
31
|
Wang S, Gao L, Zheng M, Qiao L, Xu C, Wang K, Huang D. Occurrences, congener group profiles, and risk assessment of short- and medium-chain chlorinated paraffins in cup instant noodles from China. CHEMOSPHERE 2021; 279:130503. [PMID: 33894510 DOI: 10.1016/j.chemosphere.2021.130503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Dietary intake is an important route of human exposure to chlorinated paraffins (CPs). Cup instant noodles are widely popular food and millions packet of instant noodles are consumed every year. To investigate the levels, congener groups, and health risk of SCCPs and MCCPs in each component of cup instant noodles, samples of nine common brands were collected and analyzed by comprehensive two dimensional gas chromatography coupled with mass spectrometry. The mean concentrations in the noodles were 1.2 × 103 ng/g wet weight (ww) (SCCPs) and 1.2 × 102 ng/g ww (MCCPs), the mean concentrations in the seasoning were 1.4 × 103 ng/g ww (SCCPs) and 1.3 × 102 ng/g ww (MCCPs), and the mean concentrations in the soup were 5.6 × 102 ng/L (SCCPs) and 5.4 × 102 ng/L (MCCPs). The SCCP to MCCP ratio were similar in the soup and soup container, which means CPs in the soup might be migrated from the soup container. Seasoning and noodles from the same brands have similar congener profiles of SCCPs and MCCPs, which may be raised from the manufacturing process or food packaging materials. The dominant SCCP congener groups were C10-11Cl6-7 in noodles and seasoning, and C10,13Cl6-7 in soup. The dominant MCCP congener groups were C14-15Cl6-7 in noodles and seasoning, and C14-15Cl6-7 in soup. A preliminary health risk assessment indicated that the current intakes of SCCPs and MCCPs through cup instant noodles in China did not pose a significant risk to human health.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | | | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chi Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunran Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Giacometti F, Shirzad-Aski H, Ferreira S. Antimicrobials and Food-Related Stresses as Selective Factors for Antibiotic Resistance along the Farm to Fork Continuum. Antibiotics (Basel) 2021; 10:671. [PMID: 34199740 PMCID: PMC8230312 DOI: 10.3390/antibiotics10060671] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global problem and there has been growing concern associated with its widespread along the animal-human-environment interface. The farm-to-fork continuum was highlighted as a possible reservoir of AMR, and a hotspot for the emergence and spread of AMR. However, the extent of the role of non-antibiotic antimicrobials and other food-related stresses as selective factors is still in need of clarification. This review addresses the use of non-antibiotic stressors, such as antimicrobials, food-processing treatments, or even novel approaches to ensure food safety, as potential drivers for resistance to clinically relevant antibiotics. The co-selection and cross-adaptation events are covered, which may induce a decreased susceptibility of foodborne bacteria to antibiotics. Although the available studies address the complexity involved in these phenomena, further studies are needed to help better understand the real risk of using food-chain-related stressors, and possibly to allow the establishment of early warnings of potential resistance mechanisms.
Collapse
Affiliation(s)
- Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy;
| | - Hesamaddin Shirzad-Aski
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan 49178-67439, Iran;
| | - Susana Ferreira
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
33
|
Rigby H, Dowding A, Fernandes A, Humphries D, Jones NR, Lake I, Petch RG, Reynolds CK, Rose M, Smith SR. Concentrations of organic contaminants in industrial and municipal bioresources recycled in agriculture in the UK. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142787. [PMID: 33246727 DOI: 10.1016/j.scitotenv.2020.142787] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 08/14/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
Many types of bioresource materials are beneficially recycled in agriculture for soil improvement and as alternative bedding materials for livestock, but they also potentially transfer contaminants into plant and animal foods. Representative types of industrial and municipal bioresources were selected to assess the extent of organic chemical contamination, including: (i) land applied materials: treated sewage sludge (biosolids), meat and bone meal ash (MBMA), poultry litter ash (PLA), paper sludge ash (PSA) and compost-like-output (CLO), and (ii) bedding materials: recycled waste wood (RWW), dried paper sludge (DPS), paper sludge ash (PSA) and shredded cardboard. The materials generally contained lower concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (PCBs) relative to earlier reports, indicating the decline in environmental emissions of these established contaminants. However, concentrations of polycyclic aromatic hydrocarbons (PAHs) remain elevated in biosolids samples from urban catchments. Polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) were present in larger amounts in biosolids and CLO compared to their chlorinated counterparts and hence are of potentially greater significance in contemporary materials. The presence of non-ortho-polychlorinated biphenyls (PCBs) in DPS was probably due to non-legacy sources of PCBs in paper production. Flame retardent chemicals were one of the most significant and extensive groups of contaminants found in the bioresource materials. Decabromodiphenylether (deca-BDE) was the most abundant polybrominated diphenyl ether (PBDE) and may explain the formation and high concentrations of PBDD/Fs detected. Emerging flame retardant compounds, including: decabromodiphenylethane (DBDPE) and organophosphate flame retardants (OPFRs), were also detected in several of the materials. The profile of perfluoroalkyl substances (PFAS) depended on the type of waste category; perfluoroundecanoic acid (PFUnDA) was the most significant PFAS for DPS, whereas perfluorooctane sulfonate (PFOS) was dominant in biosolids and CLO. The concentrations of polychlorinated alkanes (PCAs) and di-2-ethylhexyl phthalate (DEHP) were generally much larger than the other contaminants measured, indicating that there are major anthropogenic sources of these potentially hazardous chemicals entering the environment. The study results suggest that continued vigilance is required to control emissions and sources of these contaminants to support the beneficial use of secondary bioresource materials.
Collapse
Affiliation(s)
- Hannah Rigby
- Imperial College Consultants Ltd., 58 Prince's Gate, Exhibition Road, London SW7 2PG, UK
| | - Alan Dowding
- Chemical Contaminants and Residues Branch, Food Safety Policy, Food Standards Agency, Clive House, 70 Petty France, London SW1H 9EX, UK
| | - Alwyn Fernandes
- The Food and Environment Research Agency (Fera), Sand Hutton, York YO41 1LZ, UK; University of East Anglia, School of Environmental Sciences, Norwich NR4 7TJ, UK
| | - David Humphries
- The University of Reading, School of Agriculture, Policy and Development, Centre for Dairy Research, POB 237, Reading, Berkshire RG6 6AR, UK
| | - Natalia R Jones
- University of East Anglia, School of Environmental Sciences, Norwich NR4 7TJ, UK
| | - Iain Lake
- University of East Anglia, School of Environmental Sciences, Norwich NR4 7TJ, UK
| | - Rupert G Petch
- The Food and Environment Research Agency (Fera), Sand Hutton, York YO41 1LZ, UK
| | - Christopher K Reynolds
- The University of Reading, School of Agriculture, Policy and Development, Centre for Dairy Research, POB 237, Reading, Berkshire RG6 6AR, UK
| | - Martin Rose
- The Food and Environment Research Agency (Fera), Sand Hutton, York YO41 1LZ, UK
| | - Stephen R Smith
- Imperial College Consultants Ltd., 58 Prince's Gate, Exhibition Road, London SW7 2PG, UK.
| |
Collapse
|
34
|
Zhou Q, Wu WL, Lin CQ, Liang H, Long CY, Lv F, Pan JL, Liu ZT, Wang BY, Yang XF, Deng XL, Jiang AM. Occurrence and dietary exposure assessment of pentachlorophenol in livestock, poultry, and aquatic foods marketed in Guangdong Province, China: Based on food monitoring data from 2015 to 2018. J Food Sci 2021; 86:1132-1143. [PMID: 33598948 DOI: 10.1111/1750-3841.15653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 11/29/2022]
Abstract
As a persistent organic pollutant, pentachlorophenol (PCP) has serious impacts on human health. However, its presence in animal source food products sold in the Guangdong Province (GD) of China, and the resultant dietary exposure have not been elucidated. To address this gap, 3,100 samples from seven food categories, including beef, pork, mutton, offals, broilers, hen eggs, and farmed freshwater fish, marketed throughout four geographical regions of GD, were collected from 2015 to 2018. Gas chromatography coupled with mass spectrometry was employed to detect PCP levels in these food matrices. PCP was found in all food categories, but the average contamination levels were low, ranging from 0.40 µg/kg wet weight (ww) (hen eggs) to 5.85 µg/kg ww (offals). However, higher concentrations of PCP were detected (P < 0.05) in animal source food from the North region. Additionally, a temporal declining trend was observed in this four-year consecutive survey. The estimated human dietary exposure of PCP to population groups, including the general population and subgroups (male and female, children, and adults), was found to be far below the permissible daily intake (3 µg/kg body weight). Therefore, the health impacts of PCP should be correspondingly low for local residents, based on current toxicological knowledge. Regional exposure patterns varied due to different extents of contamination in the four areas, and pork, broilers, and freshwater fish were the major sources of dietary PCP exposure. PRACTICAL APPLICATION: As a persistent organic pollutant, pentachlorophenol (PCP) has serious impacts on human health. However, its presence in animal source food products sold in Guangdong Province of China, and the resultant dietary exposure have not been elucidated. In this study, we conducted an in-depth investigation on the occurrence of PCP in major foodstuff categories, including beef, pork, mutton, broilers, offals, hen eggs, and farmed freshwater fish, marketed in all 21 prefecture-level divisions of Guangdong Province, in order to provide integral insights for regulatory authorities.
Collapse
Affiliation(s)
- Quan Zhou
- College of Food Science, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Wei-Liang Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, P. R. China.,Institute of Nutrition and Food Safety, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China.,Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Chang-Qin Lin
- Testing Department of Chemistry and Light Industry, Zhongshan Supervision Testing Institute of Quality & Metrology, Zhongshan, 528405, P. R. China
| | - Hui Liang
- Institute of Nutrition and Food Safety, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China.,Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Chao-Yang Long
- Institute of Nutrition and Food Safety, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China.,Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Fen Lv
- Institute of Nutrition and Food Safety, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China.,Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jia-Liang Pan
- Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China.,Department of Hygiene Detection Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhi-Ting Liu
- Institute of Nutrition and Food Safety, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China.,Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Bo-Yuan Wang
- Department of Public Health and Food Hygiene, Zhongshan Center for Disease Control and Prevention, Zhongshan, 528403, P. R. China
| | - Xing-Fen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, P. R. China.,Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xiao-Ling Deng
- Institute of Nutrition and Food Safety, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China.,Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ai-Min Jiang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, P. R. China
| |
Collapse
|
35
|
Ngweme GN, Al Salah DMM, Laffite A, Sivalingam P, Grandjean D, Konde JN, Mulaji CK, Breider F, Poté J. Occurrence of organic micropollutants and human health risk assessment based on consumption of Amaranthus viridis, Kinshasa in the Democratic Republic of the Congo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142175. [PMID: 32920409 PMCID: PMC7467084 DOI: 10.1016/j.scitotenv.2020.142175] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 05/08/2023]
Abstract
The contamination of water resource and food chain by persistent organic pollutants (POPs) constitutes a major environmental and human health concern worldwide. The aim of this study was to investigate the levels of POPs in irrigation water, soil and in Amaranthus viridis (A. viridis) from different gardening sites in Kinshasa to evaluate the potential environmental and human health risks. A survey study for the use of pesticides and fertilizers was carried out with 740 market gardeners. The levels of POPs (including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs)) were analyzed in irrigation water and 144 vegetable samples collected from different gardening sites. The assessment of potential human health risk was estimated by calculating daily intake and toxic equivalency to quantify the carcinogenicity. The results show highest PAH levels in A. viridis from all studied sites. The concentrations of the sum of seven PCBs (Σ7PCBS) congeners in analyzed plants ranged between 15.89 and 401.36 ng g-1. The distributions of OCPs in both water and A. viridis were congener specific, chlorpyrifos-ethyl and p,p'-DDE were predominantly detected. Among PBDEs, only BDE47 was quantified with noticeable concentration in A. viridis, while no PBDEs were detected in irrigation water. Higher estimated daily intake values indicate that consuming leafy vegetables might associate with increased human health risks. However, calculated incremental lifetime cancer risk values indicates no potential carcinogenic risk for the local population. The results of this study provide important information on A. viridis contamination by POPs and strongly recommend implementing the appropriate measures to control the use of chemicals used in studied gardening areas. Thus in Kinshasa, urban agriculture control programs for POPs and fertilizers is very important in order to protect the public health through direct and dietary exposure pathways.
Collapse
Affiliation(s)
- Georgette N Ngweme
- School of Public Health, Faculty of Medicine, University of Kinshasa, Po.Box 11850, Kinshasa XI, Democratic Republic of the Congo
| | - Dhafer Mohammed M Al Salah
- Department F.-A. Forel for Environmental and Aquatic Sciences, and Institute of Environmental Sciences, Faculty of Science, University of Geneva, 66 Boulevard Carl-Vogt, CH-1205 Geneva, Switzerland; King Abdulaziz City for Science and Technology, Joint Centers of Excellence Program, Prince Turki the 1st st, Riyadh 11442, Saudi Arabia
| | - Amandine Laffite
- Department F.-A. Forel for Environmental and Aquatic Sciences, and Institute of Environmental Sciences, Faculty of Science, University of Geneva, 66 Boulevard Carl-Vogt, CH-1205 Geneva, Switzerland
| | - Periyasamy Sivalingam
- Postgraduate and Research Department of Microbiology, Jamal Mohamed College, Tiruchirappalli 620020, Tamil Nadu, India
| | - Dominique Grandjean
- Central Environmental Laboratory (GR-CEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joel N Konde
- School of Public Health, Faculty of Medicine, University of Kinshasa, Po.Box 11850, Kinshasa XI, Democratic Republic of the Congo
| | - Crispin K Mulaji
- Department of Chemistry, Faculty of Science, University of Kinshasa (UNIKIN), Po.Box 190, Kinshasa XI, Democratic Republic of the Congo
| | - Florian Breider
- Central Environmental Laboratory (GR-CEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - John Poté
- Department F.-A. Forel for Environmental and Aquatic Sciences, and Institute of Environmental Sciences, Faculty of Science, University of Geneva, 66 Boulevard Carl-Vogt, CH-1205 Geneva, Switzerland; Department of Chemistry, Faculty of Science, University of Kinshasa (UNIKIN), Po.Box 190, Kinshasa XI, Democratic Republic of the Congo.
| |
Collapse
|
36
|
WANG Y, ZHANG H, SHI J, JIANG G. [Research progress on analytical methods for the determination of hexachlorobutadiene]. Se Pu 2021; 39:46-56. [PMID: 34227358 PMCID: PMC9274838 DOI: 10.3724/sp.j.1123.2020.05019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Indexed: 11/25/2022] Open
Abstract
Hexachlorobutadiene (HCBD) is one of persistent organic pollutants (POPs) listed in Annex A and Annex C of the Stockholm Convention in 2015 and 2017, respectively. Research on the sources, environmental occurrences, and biological effects of HCBD has a great significance in controlling this newly added POPs. Sensitive and credible methods for the determination of HCBD are preconditions and form the basis for related research work. In recent years, many researchers have included HCBD as one of the analytes in monitoring or methodological studies. Based on the results of these studies, this paper reviews the research progress on analytical methods for the determination of HCBD and focuses on sample pretreatment methods for the analysis of HCBD in various matrices such as air, water, soil, sewage sludge, and biological tissues. The advantages and disadvantages of the methods are also compared to provide reference for further research in this field.For air samples, HCBD was usually collected by passing air through sorbent cartridges. Materials such as Tenax-TA, Carbosieve, Carbopack, Carboxen 1000, or their mixtures were used as the sorbent. HCBD was thermally desorbed and re-concentrated in a trap and finally transferred for instrumental analysis. Limits of detection (LODs) for HCBD in these methods were at the ng/m3 scale. Compared to sampling using pumps, passive air samplers (PAS) such as polyurethane foam PAS (PUF-PAS) do not require external power supply and are more convenient for sampling POPs in air at a large scale. The LOD of the sorbent-impregnated PUF PAS (SIP-PAS) method was much lower (0.03 pg/m3) than that of the PUF-PAS method (20 pg/m3). However, the sampling volumes in the SIP-PAS and PUF-PAS methods (-6 m3) calculated from the log KOA value of HCBD have significant uncertainty, and this must be confirmed in the future.For water samples, HCl or copper sulfate was added to the sample immediately after sampling to prevent any biological activities. HCBD can be extracted from water using methods such as the purge and trap method, liquid-liquid extraction (LLE) method, and solid phase extraction (SPE) method. Among these methods, SPE enabled the simultaneous extraction, purification, and concentration of trace HCBD in a single step. Recoveries of HCBD on Strata-X and Envi-Carb SPE cartridges (63%-64%) were higher than those on Envi-disk, Oasis HLB, and Strata-C18 cartridges (31%-46%). Drying is another key step for obtaining high recoveries of HCBD. Disk SPE involving the combination of a high-vacuum pump and a low-humidity atmosphere is an effective way to eliminate the residual water. In addition, a micro SPE method using functionalized polysulfone membranes as sorbents and employing ultrasonic desorption was developed for extracting HCBD from drinking water. The recovery of HCBD reached 102%, with a relative standard deviation (RSD) of 3.5%.For solid samples such as dust, soil, sediment, sewage sludge, fly ash, and biota tissue, multiple pretreatment methods were used in combination, owing to the more complex matrix. Freeze or air drying, grinding, and sieving of samples were commonly carried out before the extraction. Soxhlet extraction is a typical extraction method for HCBD; however, it requires many organic reagents and is time consuming. The accelerated solvent extraction (ASE) method requires a small amount of organic reagent, and the extraction can be performed rapidly. It was recently applied for the extraction of HCBD from solid samples under 10.34 MPa and at 100 ℃. Purification could be achieved simultaneously by mixing florisil materials with samples in the ASE pool. Nevertheless, employing the ASE methods widely is difficult because of their high costs. Ultrasonic-assisted extraction (UAE) has the same extraction efficiency for HCBD, with much lower costs compared to ASE, and is therefore adopted by most researchers. The type of extraction solvent, solid-to-liquid ratio, ultrasonic temperature, and power affect the extraction efficiency. Ultrasonic extraction at 30 ℃ and 200 W using 30 mL dichloromethane as the extraction solvent resulted in acceptable recoveries (64.0%-69.4%) of HCBD in 2 g fly ash. After extraction, a clean-up step is necessary for the extracts of solid samples. Column chromatography is frequently used for purification. The combined use of several columns or a multilayer column filled with florisil, silica gel, acid silica gel, or alumina can improve the elimination efficiency of interfering substances.Instrumental analysis for HCBD is mainly performed with a gas chromatograph equipped with a mass spectrometer operating in selected ion monitoring mode. DB-5MS, HP-5MS, HP-1, ZB-5MS, and BP-5 can be used as the chromatographic columns. Qualification ions and quantification ions include m/z 225, 223, 260, 227, 190, and 188. GC-MS using an electron ionization (EI) source was more sensitive to HCBD than GC-MS using a positive chemical ionization source (PCI) and atmospheric pressure chemical ionization source (APCI). Gas chromatography-tandem mass spectrometry (GC-MS/MS), gas chromatography-high-resolution mass spectrometry (GC-HRMS), and high-resolution gas chromatography-high-resolution mass spectrometry (HRGC-HRMS) have recently been used for the separation and determination of HCBD and various other organic pollutants. Instrumental detection limits for HCBD in GC-MS/MS, GC-HRMS, and HRGC-HRMS were more than ten times lower than that in GC-MS, indicating the remarkable application potential of these high-performance instruments in HCBD analysis.
Collapse
|
37
|
Stragierowicz J, Stypuła-Trębas S, Radko L, Posyniak A, Nasiadek M, Klimczak M, Kilanowicz A. An assessment of the estrogenic and androgenic properties of tetra- and hexachloronaphthalene by YES/YAS in vitro assays. CHEMOSPHERE 2021; 263:128006. [PMID: 33297039 DOI: 10.1016/j.chemosphere.2020.128006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
Many persistent organic pollutants (POPs) exhibit endocrine disrupting activity but studies on some POPs, e.g., polychlorinated naphthalenes (PCNs), are very scarce. The present study investigates the (anti)estrogenic and (anti)androgenic activities of 1,2,3,5,6,7-hexachloronaphthalane (PCN67) and 1,3,5,8-tetrachloronaphthalene (PCN43) using the yeast estrogen and androgen reporter bioassays. Among the tested substances, antiestrogenic response was only shown by PCN67. The strongest inhibition of estrogenic activity (up to 17.4%) was observed in the low concentration ranges (5 pM - 0.5 nM) in the presence of 1.5 nM 17β-estradiol. Both tested compounds showed partial estrogenic activity with a hormetic-type response. However, both studied chemicals showed strong antiandrogenic effects: their potency in the presence of 100 nM 17β-testosterone for PCN43 (IC50 = 2.59 μM) and PCN67 (IC50 = 3.14 μM) was approximately twice that of the reference antiandrogen flutamide (IC50 = 6.14 μM). It cannot be excluded that exposure to PCNs, together with other endocrine disrupting chemicals (EDCs), may contribute to the deregulation of sex steroid hormone signaling.
Collapse
Affiliation(s)
- Joanna Stragierowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Sylwia Stypuła-Trębas
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Lidia Radko
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Andrzej Posyniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Marzenna Nasiadek
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Michał Klimczak
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| |
Collapse
|
38
|
Lv X, Liu Z, Xu L, Song E, Song Y. Tetrachlorobenzoquinone exhibits immunotoxicity by inducing neutrophil extracellular traps through a mechanism involving ROS-JNK-NOX2 positive feedback loop. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115921. [PMID: 33187846 DOI: 10.1016/j.envpol.2020.115921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Tetrachlorobenzoquinone (TCBQ) is a common metabolite of persistent organic pollutants pentachlorophenol (PCP) and hexachlorobenzene (HCB). Current reports on the toxicity of TCBQmainly focused on its reproductive toxicity, neurotoxicity, carcinogenicity and cardiovascular toxicity. However, the possible immunotoxicity of TCBQ remains unclear. The release of neutrophil extracellular traps (NETs) is a recently discovered immune response mechanism, however, excess NETs play a pathogenic role in various immune diseases. In an attempt to address concerns regarding the immunotoxicity of TCBQ, we adopted primary mouse neutrophils as the research object, explored the influence of TCBQ on the formation of NETs. The results showed that TCBQ could induce NETs rapidly in a reactive oxygen species (ROS)-dependent manner. Moreover, TCBQ promoted the phosphorylation of c-Jun N-terminal kinase (JNK) mitogen activated protein kinase (MAPK), but not p38 or extracellular signal related kinase (ERK) in neutrophils. Mechanistically, JNK activation enhanced the expression of NADPH oxidase enzyme 2 (NOX2), which further accelerated the generation of ROS and thus amplified the formation of NETs. The pharmacologic blockage of JNK or NOX2 effectively ameliorated TCBQ-induced ROS and NETs, implying that ROS-JNK-NOX2 positive feedback loop was involved in TCBQ-induced NETs. In conclusion, we speculated that targeting NETs formation would be a promising therapeutic strategy in modulating the immunotoxicity of TCBQ.
Collapse
Affiliation(s)
- Xuying Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zixuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Lei Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
39
|
Hexachloronaphthalene Induces Mitochondrial-Dependent Neurotoxicity via a Mechanism of Enhanced Production of Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2479234. [PMID: 32685088 PMCID: PMC7335409 DOI: 10.1155/2020/2479234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Hexachloronaphthalene (PCN67) is one of the most toxic among polychlorinated naphthalenes. Despite the known high bioaccumulation and persistence of PCN67 in the environment, it is still unclear to what extent exposure to these substances may interfere with normal neuronal physiology and lead to neurotoxicity. Therefore, the primary goal of this study was to assess the effect of PCN67 in neuronal in vitro models. Neuronal death was assessed upon PCN67 treatment using differentiated PC12 cells and primary hippocampal neurons. At 72 h postexposure, cell viability assays showed an IC50 value of 0.35 μg/ml and dose-dependent damage of neurites and concomitant downregulation of neurofilaments L and M. Moreover, we found that younger primary neurons (DIV4) were much more sensitive to PCN67 toxicity than mature cultures (DIV14). Our comprehensive analysis indicated that the application of PCN67 at the IC50 concentration caused necrosis, which was reflected by an increase in LDH release, HMGB1 protein export to the cytosol, nuclear swelling, and loss of homeostatic control of energy balance. The blockage of mitochondrial calcium uniporter partially rescued the cell viability, loss of mitochondrial membrane potential (ΔΨm), and the overproduction of reactive oxygen species, suggesting that the underlying mechanism of neurotoxicity involved mitochondrial calcium accumulation. Increased lipid peroxidation as a consequence of oxidative stress was additionally seen for 0.1 μg/ml of PCN67, while this concentration did not affect ΔΨm and plasma membrane permeability. Our results show for the first time that neuronal mitochondria act as a target for PCN67 and indicate that exposure to this drug may result in neuron loss via mitochondrial-dependent mechanisms.
Collapse
|
40
|
Wang X, Gong P, Wang C, Wang X, Pokhrel B, Dotel J. Spatial distribution patterns and human exposure risks of polycyclic aromatic hydrocarbons, organochlorine pesticides and polychlorinated biphenyls in Nepal using tree bark as a passive air sampler. ENVIRONMENTAL RESEARCH 2020; 186:109510. [PMID: 32311529 DOI: 10.1016/j.envres.2020.109510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Nepal is abutted between the populated Indo-Gangetic Plain (IGP) and Himalayan mountains. Currently, knowledge on the country-wide distribution and cancer risks of atmospheric organic toxicants in Nepal remains limited. In this study, the concentrations, sources, and distributions of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs), along with their cancer risks, were investigated in Nepal by using tree bark as a passive air sampler. After transferring by a bark/air partitioning model, the averaged concentrations of ∑PAHs, ∑DDTs, ∑HCHs, HCB, ∑Endo and ∑PCBs in the atmosphere of Nepal were 3.71 × 104 pg/m3, 1.10 × 103 pg/m3, 2.92 × 102 pg/m3, 4.38 × 102 pg/m3, 4.66 pg/m3 and 65.8 pg/m3, respectively. Source diagnosis suggested that biomass burning is the major source for PAHs, while local application and long-range transport jointly contribute to the high levels of DDT and HCH in the air. The ILCR (incremental lifetime cancer risk) value was used to assess the risks of various chemicals. Adults have a higher risk than other age groups; the major exposure pathway for risk is by inhalation; and PAHs and HCHs are the dominant chemical classes that lead to risk. It was also found that, in certain hotspots in south Nepal, the carcinogenic risks caused by DDT and HCH were particularly high (>1 × 10-4). Given that illegal and disordered use of legacy POPs in south Nepal and the IGP region is common, our results highlight an urgent need for voluntary regulation of the ongoing use of pesticides.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Gong
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China
| | - Chuanfei Wang
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Balram Pokhrel
- School of Science, Kathmandu University, Dhulikhel, 45200, Nepal
| | - Jagdish Dotel
- Central Department of Hydrology and Meteorology, Tribhuvan University, Kathmandu, 44618, Nepal
| |
Collapse
|
41
|
Falandysz J, Fernandes AR. Compositional profiles, persistency and toxicity of polychlorinated naphthalene (PCN) congeners in edible cod liver products from 1972 to 2017. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114035. [PMID: 32041023 DOI: 10.1016/j.envpol.2020.114035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/17/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Edible cod liver products including cod liver oil and canned cod liver, sampled over the last five decades from the North Atlantic region, including the Baltic Sea were analysed for a set of persistent and toxicologically significant polychlorinated naphthalene (PCN) congeners with some of the highest relative potencies (dioxin-like toxicity) among PCNs. The targeted congeners showed a near-universality of occurrence in all samples apart from the most recent sample of cod liver oil which was assumed to be highly purified, as cod livers from the same period and location showed appreciable amounts of PCNs. The majority of dominant congeners in legacy technical PCN mixtures were absent or occurred in low concentrations, raising the possibility that congeners arising from combustion related sources may be acquiring a greater significance following the decline and elimination of PCN production. The apparent appreciation in the relative amounts of PCN#70 in the last three to four decades may provide support for this view. The PCN contribution to dioxin-like toxic equivalence (TEQ) that was estimated for these samples (range 1.2-15.9 pg TEQ g-1) was significant in comparison to the EU regulated value of 1.75 pg TEQ g-1 for dioxins in fish oils. Most of the TEQ was associated with PCNs 66/67, 64/68, 69 and 73. Although metabolic processes are likely to influence this distribution, the profile is a little different to that observed in the tissues of higher order animals where PCNs #66/67 and #73 may contribute approximately 90% to the summed TEQ.
Collapse
Affiliation(s)
- Jerzy Falandysz
- University of Gdańsk, Environmental Chemistry and Ecotoxicology, 80-308, Gdańsk, Poland; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015, Cartagena, Colombia(1).
| | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
42
|
Chen YJ, Zhang Y, Chen Y, Lu Y, Li R, Dong C, Qi Z, Liu G, Chen ZF, Cai Z. GC-MS/MS analysis for source identification of emerging POPs in PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110368. [PMID: 32114245 DOI: 10.1016/j.ecoenv.2020.110368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Emerging POPs have received increasing attention due to their potential persistence and toxicity, but thus far the report regarding the occurrence and distribution of these POPs in PM2.5 is limited. In this study, an extremely sensitive and reliable method, using ultrasonic solvent extraction and silica gel purification followed by gas chromatography coupled with electron ionization triple quadrupole mass spectrometry, was developed and used for the trace analysis of hexachlorobutadiene (HCBD), pentachloroanisole (PCA) and its analogs chlorobenzenes (CBs) in PM2.5 from Taiyuan within a whole year. The limits of detection and limits of quantitation of analytes were 1.14 × 10-4‒2.74 × 10-4 pg m-3 and 3.80 × 10-4‒9.14 × 10-4 pg m-3. HCBD and PCA were detected at the mean concentrations of 3.69 and 1.84 pg m-3 in PM2.5, which is reported for the first time. Based on the results of statistical analysis, HCBD may come from the unintentional emission of manufacture or incineration of chlorinate-contained products but not coal combustion, while O3-induced photoreaction was the potential source of PCA in PM2.5. The temporal distributions of CBs in PM2.5 were closely related to coal-driven or agricultural activities. Accordingly, our study reveals the contamination profiles of emerging POPs in PM2.5 from Taiyuan.
Collapse
Affiliation(s)
- Yi-Jie Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yanyan Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yan Lu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guoguang Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
43
|
Zhang H, Shen Y, Liu W, He Z, Fu J, Cai Z, Jiang G. A review of sources, environmental occurrences and human exposure risks of hexachlorobutadiene and its association with some other chlorinated organics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:831-840. [PMID: 31344544 DOI: 10.1016/j.envpol.2019.07.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Research on hexachlorobutadiene (HCBD) has increased since its listing in the Stockholm Convention on Persistent Organic Pollutants in 2011. However, thorough reports on recent data regarding this topic are lacking. Moreover, potential associations between HCBD and some chlorinated organics have usually been ignored in previous research. In this review, possible formation pathways and sources, current environmental occurrences and human exposure risks of HCBD are discussed, as well as the association with several organochlorine compounds. The results reveal that unintentional production and emission from industrial activities and waste treatments are the main sources of HCBD. Similar precursors are found for HCBD and chlorobenzenes, indicating the presence of common sources. Although recent data indicates that levels of HCBD in the environment are generally low, risks from human exposure to HCBD, together with other pollutants, may be high. More attention in the future needs to be paid to the mixed contamination of HCBD and other pollutants from common sources.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yanting Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wencong Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhiqiao He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|