1
|
Manbohi A, Rahnama R, Taheri M, Hamzeh MA, Hamzehpour A. Antibiotics in surface waters of the south caspian sea: Occurrence, spatial distribution and ecological risks. ENVIRONMENTAL RESEARCH 2024; 261:119709. [PMID: 39084508 DOI: 10.1016/j.envres.2024.119709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Marine environments play a crucial role in absorbing land-based pollutants. While the presence of pharmaceuticals in various marine settings worldwide is well-documented, there is a lack of data regarding pharmaceutical occurrence in the south Caspian Sea. This study examined the presence and spatial distribution of 14 antibiotics in the surface waters of the south Caspian Sea during summer of 2020. Our findings revealed that antibiotics were widespread in this region, with total concentrations reaching up to 3499.9 ng/L. The detection frequencies of the studied antibiotics ranging from 22.0% to 67.0%. Trimethoprim, ofloxacin, and sulfamethoxazole were commonly detected, with detection frequencies exceeding 56.0%. Ofloxacin (235.8 ng/L) and Erythromycin-H2O (2.3 ng/L) had the highest and lowest detected concentrations among the studied antibiotics. Furthermore, fluoroquinolones exhibited notably higher concentrations compared to other antibiotic groups. The highest concentrations of most antibiotics were found in surface waters collected from Ramsar and Chalus stations, located in the middle section of the coastline. Across all transects, the distribution of antibiotics exhibited a decreasing trend towards the sea, indicating that coastal and inland aquaculture, as well as municipal wastewaters, were probably the primary sources of antibiotics in this area. Multivariate analysis revealed that antibiotics, phosphate, nitrate, and COD were all positively correlated with stations Ram-1, Ram-20, Cha-1, Cha-20, and Tor-1, where the highest antibiotic levels were recorded. Risk assessment indicated that clarithromycin, ofloxacin and enrofloxacin posed medium to high risks to aquatic organisms. These findings offer essential baseline information and valuable insights for the comparative assessment of future antibiotic data in the south Caspian Sea.
Collapse
Affiliation(s)
- Ahmad Manbohi
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran.
| | - Reza Rahnama
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| | - Mehrshad Taheri
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| | - Mohammad Ali Hamzeh
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| | - Ali Hamzehpour
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| |
Collapse
|
2
|
Sokołowski A, Caban M, Panasiuk A, Włodarska-Kowalczuk M, Balazy P. Low pharmaceutical pollution of epibenthic organisms from Admiralty Bay, Antarctica (King George Island, South Shetland Islands). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177277. [PMID: 39488289 DOI: 10.1016/j.scitotenv.2024.177277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
The presence of medicinal products has been reported in the Antarctic marine environment but still little is known about the bioaccumulation of these compounds. This study was set up to detect and quantify pharmaceutical residues in benthic biota from Admiralty Bay, King George Island (South Shetland Islands, Antarctica). Pharmaceuticals and stimulants were analysed using LC-MS/MS in dominant epibenthic macroorganisms that were collected at eight nearshore sublittoral sites (water depth 3-30 m) by a SCUBA diving team during austral summer (February 2023). Out of 22 analytes, only the stimulant caffeine (CAF) and the antiepileptic carbamazepine (CBZ) have been identified in the macrobenthic algae and invertebrates indicating a relatively low contamination level of the bay. The analytes were detected predominantly in the northern part of the bay (Mackellar Inlet and Martel Inlet) which reflects likely their elevated environmental concentrations in this area and suggests that local research stations represent the main source of pharmaceutical contamination. Irrespective of the sampling site, both compounds were found almost exclusively in brown and red macroalgae highlighting their potential for uptake and accumulation of CAF and CBZ. This study provided the first evidence of the presence of medicinal substances in the Antarctic macrobenthic organisms and can serve as a baseline for environmental risk assessment.
Collapse
Affiliation(s)
- Adam Sokołowski
- University of Gdańsk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Magda Caban
- University of Gdańsk, Faculty of Chemistry, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Panasiuk
- University of Gdańsk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Maria Włodarska-Kowalczuk
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Piotr Balazy
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
3
|
Newman BK, Velayudan A, Petrović M, Álvarez-Muñoz D, Čelić M, Oelofse G, Colenbrander D, le Roux M, Ndungu K, Madikizela LM, Chimuka L, Richards H. Occurrence and potential hazard posed by pharmaceutically active compounds in coastal waters in Cape Town, South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174800. [PMID: 39009155 DOI: 10.1016/j.scitotenv.2024.174800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The occurrence of 58 pharmaceutically active compounds (PhACs) in surface water at 28 coastal and five river sites, and in two stormwater flows in Cape Town, South Africa, was investigated in winter and summer. After accounting for quality assurance and control data, 33 PhACs were considered in detail. In winter, 25 PhACs were found at one or more sites and 27 in summer. Salicylic acid was the most widespread PhAC in each season. At least one PhAC was found at each site in each survey. The largest number found at a site was 22 at Lifebox23 Beach in winter and 23 at Macassar Beach and in the Black and Diep Rivers in summer. These sites are strongly directly or indirectly affected by wastewater treatment plant discharges. The range in ΣPhAC concentrations was 41 ng L-1 to 9.3 μg L-1 in winter and 109 ng L-1 to 18.9 μg L-1 in summer. The hazard posed by PhACs was estimated using Predicted No Effect Concentrations (PNEC) from several sources. Hazard Quotients (HQs) for numerous PhACs were >1, and for several even >10, including azithromycin, cimetidine, clarithromycin, erythromycin, and ibuprofen. The highest hazards were at coastal sites strongly indirectly affected by wastewater treatment plant discharges. Azithromycin, trimethoprim, and sulfamethoxazole at some sites may have promoted antibiotic resistance in bacteria, while irbesartan at some sites might have posed a hazard to fish according to the fish plasma model. The concentrations of several PhACs at some coastal sites are higher than concentrations reported in estuarine, coastal, and marine waters in other parts of the world.
Collapse
Affiliation(s)
- Brent Kenneth Newman
- Coastal Systems and Earth Observation Research Group, Council for Scientific and Industrial Research (CSIR), Postnet Suite 367, Private Bag X10, Musgrave Road, Durban 4062, South Africa.; Nelson Mandela University, P.O. Box 77000, Port Elizabeth 6031, South Africa.
| | - Anisha Velayudan
- Coastal Systems and Earth Observation Research Group, Council for Scientific and Industrial Research (CSIR), Postnet Suite 367, Private Bag X10, Musgrave Road, Durban 4062, South Africa
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA)-CERCA, C/Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Diana Álvarez-Muñoz
- Catalan Institute for Water Research (ICRA)-CERCA, C/Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Mira Čelić
- Catalan Institute for Water Research (ICRA)-CERCA, C/Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Gregg Oelofse
- Environmental Management Department, Coastal Management Branch, P.O. Box 16548, Vlaeberg, Cape Town 8018, South Africa
| | - Darryl Colenbrander
- Environmental Management Department, Coastal Management Branch, P.O. Box 16548, Vlaeberg, Cape Town 8018, South Africa
| | - Maria le Roux
- Environmental Management Department, Coastal Management Branch, P.O. Box 16548, Vlaeberg, Cape Town 8018, South Africa
| | - Kuria Ndungu
- Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, 0349 Oslo, Norway
| | - Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa
| | - Heidi Richards
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa
| |
Collapse
|
4
|
Castillo NA, Santos RO, James WR, Rezek R, Cerveny D, Boucek RE, Adams AJ, Fick J, Brodin T, Rehage JS. Widespread pharmaceutical exposure at concentrations of concern for a subtropical coastal fishery: Bonefish (Albula vulpes). MARINE POLLUTION BULLETIN 2024; 209:117143. [PMID: 39461181 DOI: 10.1016/j.marpolbul.2024.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Pharmaceuticals have been acknowledged as an important contaminant of emerging concern with the potential to cause adverse effects in exposed fauna. Most research has focused on temperate freshwater systems; therefore, there is a pressing need to quantify pharmaceutical exposure in subtropical coastal marine systems. This study investigated the prevalence of pharmaceutical exposure to bonefish (Albula vulpes) in subtropical South Florida, USA, and evaluated the relative risk of detected concentrations to elicit pharmacological effects. The influence of sampling region, season (within or outside spawning season), and bonefish length on pharmaceutical assemblage, detection frequency, and risk was assessed. Both spatial (multiple regions) and temporal (spawning season) components were considered in order to incorporate bonefish biology biological in our exploration of pharmaceutical exposure and potential risk of effect. To quantify risk of pharmacological effects, concentrations were compared to a 1/3 threshold of the human therapeutic plasma concentration (HTPC). In total, 53 different pharmaceuticals were detected with an average of 7.1 pharmaceuticals per bonefish and 52.3 % had at least one pharmaceutical exceeding the 1/3 HTPC threshold. The presence of pharmaceutical cocktails at concentrations capable of eliciting pharmacological effects is of particular concern considering the potential for unknown interactions. For exposure and risk of pharmacological effect, region and season were significant, while bonefish length was not. Pharmaceutical exposure and risk were highest in the most remote sampling region. Results establish pharmaceuticals' widespread prevalence in subtropical coastal marine ecosystems, exposure and risk to biota, and the necessity to examine marine systems.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Florida International University, Miami, FL, USA.
| | - R O Santos
- Department of Biology, Florida International University, Miami, FL, USA
| | - W R James
- Earth and Environment Department, Florida International University, Miami, FL, USA; Department of Biology, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Florida International University, Miami, FL, USA
| |
Collapse
|
5
|
Herrero-Villar M, Taggart MA, Mateo R. Pharmaceuticals in avian scavengers and other birds of prey: A toxicological perspective to improve risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174425. [PMID: 38969127 DOI: 10.1016/j.scitotenv.2024.174425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Pharmaceuticals are emerging contaminants given their increasing use worldwide due to intensive food production and population growth. These compounds reach the environment through different pathways with potential negative consequences for wildlife. One dramatic example occurred in Asia, where three native vulture populations collapsed almost to extinction due to acute intoxication with diclofenac, a veterinary use non-steroidal anti-inflammatory drug (NSAID). As seen with diclofenac, avian scavengers are useful sentinels to monitor for the presence of pharmaceuticals in the environment given their position at the top of the trophic chain, and in the case of obligate avian scavengers (vultures), their intimate link to domestic animal carcasses. Unfortunately, little is known about the wider exposure and potential health and population risks of pharmaceuticals to birds of prey. Here we compile literature data regarding relevant toxicological aspects of the most important pharmaceutical groups for birds of prey in terms of toxicity: NSAIDs, antibiotics, external antiparasitics and barbiturates. This work also includes critical information for future risk assessments, including concentrations of drug residues that can remain in animal tissues after treatment, or specific pharmaceutical features that might influence their toxicity in avian scavengers and other birds of prey. We also consider future research needs in this field and provide management recommendations to prevent potential intoxication events with pharmaceuticals in these species. This review highlights the need to consider specific risk assessments regarding exposure to pharmaceuticals, especially those used in veterinary medicine, for birds of prey.
Collapse
Affiliation(s)
- Marta Herrero-Villar
- Instituto de Investigación en Recursos Cinegéticos-IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071 Ciudad Real, Spain.
| | - Mark A Taggart
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, Scotland KW14 7JD, UK
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos-IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071 Ciudad Real, Spain; Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
6
|
Queirós V, Leite C, Azeiteiro UM, Belloso MC, Soares AMVM, Santos JL, Alonso E, Barata C, Freitas R. Salinity influence on Mytilus galloprovincialis exposed to antineoplastic agents: a transcriptomic, biochemical, and histopathological approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125135. [PMID: 39426480 DOI: 10.1016/j.envpol.2024.125135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Nowadays, aquatic species face a variety of environmental risks associated with pharmaceutical consumption. More specifically, the increased number of cancer patients has been accompanied by an increased consumption of antineoplastic drugs, such as ifosfamide (IF) and cyclophosphamide (CP). These drugs have been found in aquatic ecosystems, raising concerns about their impact, especially on estuarine species, as marine waters are the final recipients of continental effluents. Simultaneously, predicted climatic changes, such as salinity shifts, may threaten organisms. Considering this, the present research aims to investigate the combined effects of IF and CP, and salinity shifts. For this, a transcriptomic, biochemical, and histopathological assessment was made using the bivalve species Mytilus galloprovincialis exposed for 28 days to IF and CP (500 ng/L), individually, at different salinity levels (20, 30, and 40). IF and CP up-regulated metabolism-related gene cyp3a1, with CP also affecting abcc gene, showing minimal salinity impact and highlighting the importance of these metabolic routes in mussels. Salinity shifts affected the transcription of genes related to apoptosis and cell cycle growth, such as p53, as well as the aerobic metabolism, the antioxidant and biotransformation mechanisms. These findings indicate mussels' high metabolic adaptability to osmotic stress. Under CP exposure and low salinity, mussels exhibited increased cellular damage and histopathological effects in digestive gland tubules, revealing detrimental effects towards M. galloprovincialis, and suggesting that a metabolic slowdown and activation of antioxidant mechanisms helped prevent oxidative damage at the control and high salinities. Overall, results reinforce the need for antineoplastics ecotoxicological risk assessment, especially under foreseen climate change scenarios.
Collapse
Affiliation(s)
- Vanessa Queirós
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carla Leite
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ulisses M Azeiteiro
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta Casado Belloso
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Kang D, Ahn YY, Moon HB, Kim K, Jeon J. Exploring micropollutants in polar environments based on non-target analysis using LC-HRMS. MARINE POLLUTION BULLETIN 2024; 209:117083. [PMID: 39393234 DOI: 10.1016/j.marpolbul.2024.117083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
The routine use of chemicals in polar regions contributes to unexpected occurrence of micropollutants, with sewage discharge as a prominent pollution source. The aim of this study was to identify and quantify micropollutants in polar environments near potential point sources using non-target analysis (NTA) with liquid chromatography high-resolution mass spectrometry. Seawater samples were collected from Ny-Ålesund, Svalbard and Marian Cove, King George Island, in 2023. We tentatively identified 32 compounds with NTA, along with 105 homologous series substances. Of these, 18 substances were confirmed, and 13 were quantified using the internal standard method. Most quantified substances in the Ny-Ålesund, including caffeine, naproxen, and polyethylene glycols (PEGs), exhibited concentrations ranged from 0.9 to 770,000 ng/L. In Marian Cove, the analysis predominantly detected acetaminophen, with concentrations ranging from 13 to 35 ng/L. The findings underscore the presence and spatial distribution of emerging micropollutants resulting from wastewater discharge in polar regions.
Collapse
Affiliation(s)
- Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Yong-Yoon Ahn
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Science, University of Science of Technology (UST), Incheon 21990, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea.
| |
Collapse
|
8
|
Saliu F, Becchi A, Montalbetti E, Isa V, Gatti T, Riseri D, Lasagni M, Galli P, Seveso D. Application of marine sponges for biomonitoring active pharmaceutical ingredients (APIs) in coral reefs. Optimization of an SPME and ESI-LC-MS/MS method. MARINE POLLUTION BULLETIN 2024; 207:116867. [PMID: 39182405 DOI: 10.1016/j.marpolbul.2024.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Chemical pollution is a threat to coral reefs. To preserve them, it is crucial to monitor novel contaminants and assess the related risks. The occurrence of active pharmaceutical ingredients (APIs) in coral reefs has been poorly investigated until now. Under this light, we tested the use of the marine sponge Cf. Hyrtios as bio-monitors and conducted a pilot study in the Faafu Atoll (Maldives). Analyses were carried out by in vivo solid-phase microextraction (SPME) and liquid chromatography (LC) electrospray ionization (ESI) tandem mass spectrometry (MS/MS). Twelve APIs were selected for method optimization. Limits of quantitation (LOQs) were in the 0.6 and 2.5 ng/g range, accuracy between 86.5 % and 104.7 %, and precision between 3.0 % and 14.9 %. All the sponges located in the inner reefs resulted contaminated with at least one API. Gabapentin and Carbamazepine displayed the highest detection rates, while Ketoprofen had the highest concentration (up to 15.7 ng/g).
Collapse
Affiliation(s)
- Francesco Saliu
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Alessandro Becchi
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Enrico Montalbetti
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| | - Valerio Isa
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; Costa Edutainment SpA - Acquario di Genova, Area Porto Antico, Ponte Spinola, 16128 Genoa, Italy
| | - Tommaso Gatti
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Davide Riseri
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Marina Lasagni
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Paolo Galli
- University of Dubai, Dubai, P.O. Box 14143, United Arab Emirates
| | - Davide Seveso
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| |
Collapse
|
9
|
Adedipe DT, Chen C, Lai RWS, Xu S, Luo Q, Zhou GJ, Boxall A, Brooks BW, Doblin MA, Wang X, Wang J, Leung KMY. Occurrence and potential risks of pharmaceutical contamination in global Estuaries: A critical review and analysis. ENVIRONMENT INTERNATIONAL 2024; 192:109031. [PMID: 39321536 DOI: 10.1016/j.envint.2024.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Input of pollutants to estuaries is one of the major threats to marine biodiversity and fishery resources, and pharmaceuticals are one of the most important contaminants of emerging concern in aquatic ecosystems. To synthesize pharmaceutical pollution levels in estuaries over the past 20 years from a global perspective, this review identified 3229 individual environmental occurrence data for 239 pharmaceuticals across 91 global estuaries distributed in 26 countries. The highest cumulative weighted average concentration level (WACL) of all detected pharmaceuticals in estuarine water was observed in Africa (145,461.86 ng/L), with 30 pharmaceuticals reported. North America (24,316.39 ng/L) was ranked second in terms of WACL, followed by South America (20,784.13 ng/L), Asia (5958.38 ng/L), Europe (4691.23 ng/L), and Oceania (2916.32 ng/L). Carbamazepine, diclofenac, and paracetamol were detected in all continents. A total of 41 functional categories of pharmaceuticals were identified, and analgesics, antibiotics, and stimulants were amongst the most ubiquitous groups in estuaries worldwide. Although many pharmaceuticals were observed to present lower than or equal to moderate ecological risk, 34 pharmaceuticals were identified with high or very high ecological risks in at least one continent. Pharmaceutical pollution in estuaries was positively correlated with regional unemployment and poverty ratios, but negatively correlated with life expectancy and GDP per capita. There are some limitations that may affect this synthesis, such as comparability of the sampling and pretreatment methodology, differences in the target pharmaceuticals for monitoring, and potentially limited number and diversity of estuaries covered, which prompt us to standardize methods for monitoring these pharmaceutical contaminants in future global studies.
Collapse
Affiliation(s)
- Demilade T Adedipe
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chong Chen
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Racliffe Weng Seng Lai
- Department of Ocean Science and Technology, Faculty of Science and Technology, The University of Macau, Macau, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qiong Luo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Guang-Jie Zhou
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Alistair Boxall
- Department of Environment and Geography, University of York, York YO10 5DD, United Kingdom
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Martina A Doblin
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia; Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen, China
| | - Juying Wang
- National Marine Environment Monitoring Center, Liaoning, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
10
|
Castillo NA, James WR, Santos RO, Rezek R, Cerveny D, Boucek RE, Adams AJ, Trabelsi S, Distrubell A, Sandquist M, Fick J, Brodin T, Rehage JS. Identifying pathways of pharmaceutical exposure in a mesoconsumer marine fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135382. [PMID: 39088947 DOI: 10.1016/j.jhazmat.2024.135382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Pharmaceutical uptake involves processes that vary across aquatic systems and biota. However, single studies examining multiple environmental compartments, microhabitats, biota, and exposure pathways in mesoconsumer fish are sparse. We investigated the pharmaceutical burden in bonefish (Albula vulpes), pathways of exposure, and estimated exposure to a human daily dose. To evaluate exposure pathways, the number and composition of pharmaceuticals across compartments and the bioconcentration in prey and bonefish were assessed. To evaluate bioaccumulation, we proposed the use of a field-derived bioaccumulation factor (fBAF), due to variability inherent to natural systems. Exposure to a human daily dose was based on bonefish daily energetic requirements and consumption rates using pharmaceutical concentrations in prey. Pharmaceutical number and concentration were highest in prey, followed by bonefish, water and sediment. Fifteen pharmaceuticals were detected in common among bonefish, prey, and water; all of which bioconcentrated in prey and bonefish, and four bioaccumulated in bonefish. The composition of detected pharmaceuticals was compartment specific, and prey were most similar to bonefish. Bonefish were exposed to a maximum of 1.2 % of a human daily dose via prey consumption. Results highlight the need for multicompartment assessments of exposure and consideration of prey along with water as a pathway of exposure.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA.
| | - W R James
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA; Department of Biology, Florida International University, Miami, FL, USA
| | - R O Santos
- Department of Biology, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - S Trabelsi
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - A Distrubell
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - M Sandquist
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| |
Collapse
|
11
|
Liu Y, Shi X, Lu C, Kou G, Wu X, Meng X, Lv Y, Luo J, Cui W, Yang X. Acute indomethacin exposure impairs cardiac development by affecting cardiac muscle contraction and inducing myocardial apoptosis in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116976. [PMID: 39216225 DOI: 10.1016/j.ecoenv.2024.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The accumulation of the active pharmaceutical chemical in the environment usually results in environmental pollution to increase the risk to human health. Indomethacin is a non-steroidal anti-inflammatory drug that potentially causes systemic and developmental toxicity in various tissues. However, there have been few studies for its potential effects on cardiac development. In this study, we systematically determined the cardiotoxicity of acute indomethacin exposure in zebrafish at different concentrations with morphological, histological, and molecular levels. Specifically, the malformation and dysfunction of cardiac development, including pericardial oedema, abnormal heart rate, the larger distance between the venous sinus and bulbus arteriosus (SV-BA), enlargement of the pericardial area, and aberrant motor capability, were determined after indomethacin exposure. In addition, further investigation indicated that indomethacin exposure results in myocardial apoptosis in a dose-dependent manner in zebrafish at early developmental stage. Mechanistically, our results revealed that indomethacin exposure mainly regulates key cardiac development-related genes, especially genes related to the cardiac muscle contraction-related signaling pathway, in zebrafish embryos. Thus, our findings suggested that acute indomethacin exposure might cause cardiotoxicity by disturbing the cardiac muscle contraction-related signaling pathway and inducing myocardial apoptosis in zebrafish embryos.
Collapse
Affiliation(s)
- Yi Liu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Xiaoling Shi
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Chunjiao Lu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Guanhua Kou
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Xuewei Wu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Xin Meng
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Yuhang Lv
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Juanjuan Luo
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Wei Cui
- College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China.
| | - Xiaojun Yang
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China.
| |
Collapse
|
12
|
Dreyer S, Marcu D, Keyser S, Bennett M, Maree L, Koeppel K, Abernethy D, Petrik L. Factors in the decline of the African penguin: Are contaminants of emerging concern (CECs) a potential new age stressor? MARINE POLLUTION BULLETIN 2024; 206:116688. [PMID: 39029148 DOI: 10.1016/j.marpolbul.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024]
Abstract
The African penguin is currently experiencing a significant decline, with just over 10,000 breeding pairs left. A substantial body of research reflects the impacts of contaminants of emerging concern (CECs) on the marine environment, with wastewater treatment plants reported as one of the main sources of CEC release. In South Africa, CECs were identified contaminating the marine environment and bioaccumulating in several marine species. Approximately 70 % of all African penguin colonies breed in close proximity to cities and/or harbors in South Africa. Currently, the impact of CECs as a stressor upon the viability of African penguin populations is unknown. Based on the search results there was a clear lack of information on CECs' bioaccumulation and impact on the African penguin. This narrative review will thus focus on the prevalent sources and types of CECs and examine the reported consequences of constant exposure in seabirds, particularly African penguins.
Collapse
Affiliation(s)
- Stephanie Dreyer
- Animal Production Studies, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| | - Daniel Marcu
- School of Biological Sciences, University of East Anglia, NR4 7TJ, United Kingdom
| | - Shannen Keyser
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Monique Bennett
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Katja Koeppel
- Animal Production Studies, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Darrell Abernethy
- Aberystwyth School of Veterinary Science, Aberystwyth University, Ceredigion SY23 3FL, United Kingdom
| | - Leslie Petrik
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
13
|
Menicagli V, Ruffini Castiglione M, Cioni E, Spanò C, Balestri E, De Leo M, Bottega S, Sorce C, Lardicci C. Stress responses of the seagrass Cymodocea nodosa to environmentally relevant concentrations of pharmaceutical ibuprofen: Ecological implications. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135188. [PMID: 39024758 DOI: 10.1016/j.jhazmat.2024.135188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Pharmaceuticals like ibuprofen (IBU) entering marine environments are of great concern due to their increasing consumption and impact on wildlife. No information on IBU toxicity to seagrasses is yet available. Seagrasses form key habitats and are threatened worldwide by multiple stressors. Here, the responses of the seagrass Cymodocea nodosa to a short-term exposure (12 days) to environmentally realistic IBU concentrations (0.25-2.5-25 µg L-1), both at organism (plant growth) and sub-organism level (oxidative status, photosynthetic efficiency, and specialized metabolites production), were assessed in mesocosm. Chemical analyses to detect the presence of IBU and its metabolites in seawater and plants were also performed. IBU did not affect plant growth but caused physiological alterations which varied in severity depending on its concentration. Concentrations of 0.25 and 2.5 µg L-1 resulted in oxidative stress, but an increased antioxidant enzyme activity enabled plants to tolerate stress. A concentration of 25 µg L-1 caused greater oxidative stress, reduced antioxidant enzyme activity and specialized metabolites production, and impaired photosynthetic machinery functioning (particularly PSII). IBU was detected in seawater but not in plants suggesting no bioaccumulation. These findings indicate that C. nodosa could not withstand high IBU stress, and this could reduce its resilience to additional environmental stressors.
Collapse
Affiliation(s)
- Virginia Menicagli
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy
| | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Emily Cioni
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Carmelina Spanò
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Elena Balestri
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy.
| | - Marinella De Leo
- Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Stefania Bottega
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy
| | - Carlo Sorce
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Lardicci
- Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy; Department of Earth Sciences, University of Pisa, via S. Maria 53, 56126 Pisa, Italy
| |
Collapse
|
14
|
Bastolla CLV, Guerreiro FC, Saldaña-Serrano M, Gomes CHAM, Lima D, Rutkoski CF, Mattos JJ, Dias VHV, Righetti BPH, Ferreira CP, Martim J, Alves TC, Melo CMR, Marques MRF, Lüchmann KH, Almeida EA, Bainy ACD. Emerging and legacy contaminants on the Brazilian southern coast (Santa Catarina): A multi-biomarker approach in oysters Crassostrea gasar (Adanson, 1757). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171679. [PMID: 38494031 DOI: 10.1016/j.scitotenv.2024.171679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Coastal environments, such as those in the Santa Catarina State (SC, Brazil), are considered the primary receptors of anthropogenic pollutants. In this study, our objective was to evaluate the levels of emerging contaminants (ECs) and persistent organic pollutants (POPs) in indigenous Crassostrea gasar oysters from different regions of SC coast in the summer season (March 2022). Field collections were conducted in the São Francisco do Sul, Itajaí, Florianópolis and Laguna coastal zones. We analyzed the bioaccumulation levels of 75 compounds, including antibiotics (AB), endocrine disruptors (ED), non-steroidal anti-inflammatory drugs (NSAIDs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides. Furthermore, we assessed biomarker responses related to biotransformation, antioxidant defense, heat shock protection and oxidative damage in oysters' gills. Prevalence of ECs was observed in the central and southern regions, while the highest concentrations of POPs were detected in the central-northern regions of SC. Oysters exhibited an induction in biotransformation systems (cyp2au1 and cyp356a1, sult and GST activity) and antioxidant enzymes activities (SOD, CAT and GPx). Higher susceptibility to lipid peroxidation was observed in the animals from Florianópolis compared to other regions. Correlation analyses indicated possible associations between contaminants and environmental variables in the biomarker responses, serving as a warning related to climate change. Our results highlight the influence of anthropogenic activities on SC, serving as baseline of ECs and POPs levels in the coastal areas of Santa Catarina, indicating more critical zones for extensive monitoring, aiming to conserve coastal regions.
Collapse
Affiliation(s)
- Camila L V Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Fernando C Guerreiro
- Department of Natural Sciences, Blumenau Regional University Foundation, FURB, Blumenau, Santa Catarina, Brazil
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Carlos H A M Gomes
- Marine Mollusc Laboratory (LMM), Department of Aquaculture, Center for Agricultural Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Camila F Rutkoski
- Department of Natural Sciences, Blumenau Regional University Foundation, FURB, Blumenau, Santa Catarina, Brazil
| | - Jacó J Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Vera Helena V Dias
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Bárbara P H Righetti
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Clarissa P Ferreira
- Department of Fisheries Engineering and Biological Sciences, State University of Santa Catarina, UDESC, Laguna, Brazil
| | - Julia Martim
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Thiago C Alves
- Department of Natural Sciences, Blumenau Regional University Foundation, FURB, Blumenau, Santa Catarina, Brazil
| | - Claudio M R Melo
- Department of Fisheries Engineering and Biological Sciences, State University of Santa Catarina, UDESC, Laguna, Brazil
| | - Maria R F Marques
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Karim H Lüchmann
- Department of Fisheries Engineering and Biological Sciences, State University of Santa Catarina, UDESC, Laguna, Brazil
| | - Eduardo A Almeida
- Department of Natural Sciences, Blumenau Regional University Foundation, FURB, Blumenau, Santa Catarina, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
15
|
Becchi A, Mantovani M, Lasagni M, Collina E, Montano S, Galli P, Saliu F. Application of non-lethal bioSPME-LC-MS/MS for the detection of human pharmaceuticals in soft corals: A survey at the North Nilandhe atoll (Maldives). CHEMOSPHERE 2024; 356:141781. [PMID: 38554875 DOI: 10.1016/j.chemosphere.2024.141781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
At present the information regarding the occurrence of human pharmaceuticals (PhaCs) in coral reefs and their potential impacts on the associated fauna is limited. To optimize the collection of data in these delicate environments, we employed a solid-phase microextraction (bioSPME) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) procedure that enabled in vivo determinations in soft corals. Specifically, we researched the antibiotics Ofloxacin Sulfamethoxazole and Clarithromycin, the anti-inflammatory Diclofenac Propyphenazone Ketoprofen and Amisulpride, the neuroactive compounds Gabapentin-lactam, the beta-blocker Metoprolol and the antiepileptic Carbamazepine. Reproducibility was between 2.1% and 9.9% and method detection limits LODs) were between 0.2 and 1.6 ng/g and LOQs between 0.8 and 5.4 mg/g. The method was then applied to establish a baseline for the occurrence of these compounds in the Maldivian archipelago. Colonies of Sarcophyton sp. and Sinularia sp. were sampled along an inner-outer reef transect. Five of the ten targeted PhaCs were identified, and 40% of the surveyed coral colonies showed the occurrence of at least one of the selected compounds. The highest concentrations were found inside the atoll rim. Oxoflacin (9.5 ± 3.9 ng/g) and Ketoprofen (4.5 ± 2.3 ng/g) were the compounds with the highest average concentrations. Outside the atoll rim, only one sample showed contamination levels above the detection limit. No significant differences were highlighted among the two surveyed soft coral species, both in terms of average concentrations and bioconcentration factors (BCFs).
Collapse
Affiliation(s)
- Alessandro Becchi
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Marco Mantovani
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Marina Lasagni
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Elena Collina
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Simone Montano
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives
| | - Paolo Galli
- University of Dubai, PO Box: 14143, Dubai Academic City, United Arab Emirates
| | - Francesco Saliu
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| |
Collapse
|
16
|
Madesh S, Sudhakaran G, Meenatchi R, Guru A, Arockiaraj J. Interconnected environmental challenges: heavy metal-drug interactions and their impacts on ecosystems. Drug Chem Toxicol 2024:1-18. [PMID: 38658397 DOI: 10.1080/01480545.2024.2342956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Industrial expansion and inadequate environmental safety measures are major contributors to environmental contamination, with heavy metals (HMs) and pharmaceutical waste playing crucial roles. Their negative effects are most noticeable in aquatic species and vegetation, where they accumulate in tissues and cause harmful results. Interactions between HMs and pharmaceutical molecules result in the production of metal-drug complexes (MDCs), which have the potential to disturb diverse ecosystems and their interdependence. However, present studies frequently focus on individual pollutants and their effects on specific environmental parameters, leaving out the cumulative effects of pollutants and their processes across several environmental domains. To address this gap, this review emphasizes the environmental sources of HMs, elucidates their emission pathways during anthropogenic activities, investigates the interactions between HMs and pharmaceutical substances, and defines the mechanisms underlying the formation of MDCs across various ecosystems. Furthermore, this review underscores the simultaneous occurrence of HMs and pharmaceutical waste across diverse ecosystems, including the atmosphere, soil, and water resources, and their incorporation into biotic organisms across trophic levels. It is important to note that these complex compounds represent a higher risk than individual contaminants.
Collapse
Affiliation(s)
- S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Ramu Meenatchi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
17
|
Mezzelani M, Notarstefano V, Panni M, Giorgini E, Gorbi S, Regoli F. Exposure to environmental pharmaceuticals affects the macromolecular composition of mussels digestive glands. Sci Rep 2024; 14:9369. [PMID: 38653774 DOI: 10.1038/s41598-024-59663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Human pharmaceuticals represent a major challenge in natural environment. A better knowledge on their mechanisms of action and adverse effects on cellular pathways is fundamental to predict long-term consequences for marine wildlife. The FTIRI Imaging (FTIRI) spectroscopy represents a vibrational technique allowing to map specific areas of non-homogeneous biological samples, providing a unique biochemical and ultrastructural fingerprint of the tissue. In this study, FTIRI technique has been applied, for the first time, to characterize (i) the chemical building blocks of digestive glands of Mytilus galloprovincialis, (ii) alterations and (iii) resilience of macromolecular composition, after a 14-days exposure to 0.5 µg/L of carbamazepine (CBZ), valsartan (VAL) and their mixture, followed by a 14-days recovery period. Spectral features of mussels digestive glands provided insights on composition and topographical distribution of main groups of biological macromolecules, such as proteins, lipids, and glycosylated compounds. Pharmaceuticals caused an increase in the total amount of protein and a significant decrease of lipids levels. Changes in macromolecular features reflected the modulation of specific molecular and biochemical pathways thus supporting our knowledge on mechanisms of action of such emerging pollutants. Overall, the applied approach could represent an added value within integrated strategies for the effects-based evaluation of environmental contaminants.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Valentina Notarstefano
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Michela Panni
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Elisabetta Giorgini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
- NBFC, National Biodiversity Future Center, Palermo, 90131, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy.
- NBFC, National Biodiversity Future Center, Palermo, 90131, Italy.
| |
Collapse
|
18
|
Godoi FGA, Dias MA, Guerreiro ADS, Branco GS, Montagner CC, Moreira RG, Lo Nostro FL. Physiological responses on the reproductive, metabolism and stress endpoints of Astyanax lacustris females (Teleostei: Characiformes) after diclofenac and ibuprofen exposure. Comp Biochem Physiol C Toxicol Pharmacol 2024; 278:109846. [PMID: 38316244 DOI: 10.1016/j.cbpc.2024.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
Diclofenac (DCF) and ibuprofen (IBU) are pharmaceutical compounds frequently detected in aquatic compartments worldwide. Several hazard effects including developmental abnormalities and redox balance impairment have been elucidated in aquatic species, but multiple endocrine evaluations are scarce. Therefore, the present study aimed to assess the disruptive physiological effects and toxicity of DCF and IBU isolated and combined, using females of the native freshwater teleost Astyanax lacustris. In regards to NSAIDs bioavailability, the results showed absence of degradation of IBU and DCF after 7 days of exposure. IBU LC50 for A. lacustris was 137 mgL-1 and females exposed to IBU isolated increased thyroxine (T4) concentration at 24 h and decreased after 96 h; DCF exposure decreased triiodothyronine (T3) concentration at 96 h. Circulating levels of 17β-estradiol (E2), cortisol (F) and testosterone (T) were not affected by any treatment. HPG and HPI axis genes fshβ, pomc and vtg were upregulated after 24 h of IBU exposure, and dio2 was downregulated in DCF fish exposed group after 96 h compared to the mixture. Protein concentration was reduced in muscle and increased in the liver by DCF and mixtures exposures at 24 h; while liver lipids were increased in the mixture groups after 96 h. The study point out the capacity of NSAIDs to affect endocrine endpoints in A. lacustris females and induce changes in energetic substrate content after acute exposure to isolated and mixed NSAIDs treatments. Lastly, the present investigation brings new insights into the toxicity and endocrine disruptive activity of NSAIDs in Latin America teleost species and the aquatic environment.
Collapse
Affiliation(s)
- Filipe G A Godoi
- Departamento de Fisiología, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil.
| | - Mariana A Dias
- Laboratório de Química Ambiental, Departamento de Química Analítica, Instituto de Química - Universidad de Campinas, 13086-970 Campinas, Brazil
| | - Amanda da S Guerreiro
- Departamento de Fisiología, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | - Giovana S Branco
- Departamento de Fisiología, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | - Cassiana C Montagner
- Laboratório de Química Ambiental, Departamento de Química Analítica, Instituto de Química - Universidad de Campinas, 13086-970 Campinas, Brazil
| | - Renata G Moreira
- Departamento de Fisiología, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | - Fabiana L Lo Nostro
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, CONICET-UBA, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
19
|
Gobbato J, Becchi A, Bises C, Siena F, Lasagni M, Saliu F, Galli P, Montano S. Occurrence of phthalic acid esters (PAEs) and active pharmaceutical ingredients (APIs) in key species of anthozoans in Mediterranean Sea. MARINE POLLUTION BULLETIN 2024; 200:116078. [PMID: 38290362 DOI: 10.1016/j.marpolbul.2024.116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The Mediterranean Sea's biodiversity is declining due to climate change and human activities, with plastics and emerging contaminants (ECs) posing significant threats. This study assessed phthalic acid esters (PAEs) and active pharmaceutical ingredients (APIs) occurrence in four anthozoan species (Cladocora caespitosa, Eunicella cavolini, Madracis pharensis, Parazoanthus axinellae) using solid phase microextraction (SPME) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). All specimens were contaminated with at least one contaminant, reaching maximum values of 57.3 ng/g for the ∑PAEs and 64.2 ng/g (wet weight) for ∑APIs, with dibutyl phthalate and Ketoprofen being the most abundant. P. axinellae was the most contaminated species, indicating higher susceptibility to bioaccumulation, while the other three species showed two-fold lower concentrations. Moreover, the potential adverse effects of these contaminants on anthozoans have been discussed. Investigating the impact of PAEs and APIs on these species is crucial, given their key role in the Mediterranean benthic communities.
Collapse
Affiliation(s)
- J Gobbato
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives.
| | - A Becchi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - C Bises
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives
| | - F Siena
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives
| | - M Lasagni
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - F Saliu
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - P Galli
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives; University of Dubai, P.O. Box 14143, Dubai Academic City, United Arab Emirates; NBFC (National Biodiversity Future Center), 90133 Palermo, Italy
| | - S Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives; NBFC (National Biodiversity Future Center), 90133 Palermo, Italy
| |
Collapse
|
20
|
Alzola-Andres M, Cerveny D, Domingo-Echaburu S, Lekube X, Ruiz-Sancho L, Brodin T, Orive G, Lertxundi U. Pharmaceutical residues in stranded dolphins in the Bay of Biscay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168570. [PMID: 37979850 DOI: 10.1016/j.scitotenv.2023.168570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
There is a growing concern about the presence of pharmaceuticals on the aquatic environment, while the marine environment has been much less investigated than in freshwater. Marine mammals are suitable sentinel species of the marine environment because they often feed at high trophic levels, have unique fat stores and long lifespan. Some small delphinids in particular serve as excellent sentinel species for contamination in the marine environment worldwide. To the best of our knowledge, no pharmaceuticals have been detected or reported in dolphins so far. In the present study, muscle, liver and blubber samples from three common dolphins (Delphinus delphis) and seven striped dolphins (Stenella coeruleoalba) stranded along the Basque Coast (northern Spain) were collected. A total of 95 pharmaceuticals based on detectability and predicted ability to bioaccumulate in fish were included in the liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. At least one pharmaceutical was found in 70 % of the individuals. Only three of the 95 monitored pharmaceuticals were detected in dolphin's tissues. Very low concentrations (<1 ng/g) of orphenadrine and pizotifen were found in liver and promethazine in blubber. Herein, the gap in the knowledge regarding the study organisms and marine environments with respect to pharmaceutical pollution, which demands further research to understand if pharmaceuticals are a threat for these apex predators, is highlighted and discussed.
Collapse
Affiliation(s)
| | - Daniel Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany, Czech Republic
| | - Saioa Domingo-Echaburu
- Osakidetza Basque Health Service, Debagoiena Integrated Health Organisation, Pharmacy Service, Nafarroa Hiribidea 16, 20500 Arrasate, Gipuzkoa, Spain
| | - Xabier Lekube
- Biscay Bay Environmental Biospecimen Bank (BBEBB), Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza 47, 48620 Plentzia, Basque Country, Spain; CBET+ Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Leire Ruiz-Sancho
- AMBAR Elkartea Organisation, Ondarreta Ibilbidea z/g, 48620 Plentzia, Bizkaia, Spain
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Unax Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz, Spain.
| |
Collapse
|
21
|
Magnuson JT, Sydnes MO, Ræder EM, Schlenk D, Pampanin DM. Transcriptomic profiles of brains in juvenile Atlantic cod (Gadus morhua) exposed to pharmaceuticals and personal care products from a wastewater treatment plant discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169110. [PMID: 38065506 DOI: 10.1016/j.scitotenv.2023.169110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) are frequently detected in marine environments, posing a threat to aquatic organisms. Our previous research demonstrated the occurrence of neuroactive compounds in effluent and sediments from a wastewater treatment plant (WWTP) in a fjord North of Stavanger, the fourth-largest city in Norway. To better understand the influence of PPCP mixtures on fish, Atlantic cod (Gadus morhua) were caged for one month in 3 locations: site 1 (reference), site 2 (WWTP discharge), and site 3 (6.7 km west of discharge). Transcriptomic profiling was conducted in the brains of exposed fish and detection of PPCPs in WWTP effluent and muscle fillets were determined. Caffeine (47.8 ng/L), benzotriazole (10.9 ng/L), N,N-diethyl-meta-toluamide (DEET) (5.6 ng/L), methyl-1H-benzotriazole (5.5 ng/L), trimethoprim (3.4 ng/L), carbamazepine (2.1 ng/L), and nortriptyline (0.4 ng/L) were detected in the WWTP effluent. Octocrylene concentrations were observed in muscle tissue at all sites and ranged from 53 to 193 ng/g. Nervous system function and endocrine system disorders were the top enriched disease and function pathways predicted in male and female fish at site 2, with the top shared canonical pathways involved with estrogen receptor and Sirtuin signaling. At the discharge site, predicted disease and functional responses in female brains were involved in cellular assembly, organization, and function, tissue development, and nervous system development, whereas male brains were involved in connective tissue development, function, and disorders, nervous system development and function, and neurological disease. The top shared canonical pathways in females and males were involved in fatty acid activation and tight junction signaling. This study suggests that pseudopersistent, chronic exposure of native juvenile Atlantic cod from this ecosystem to PPCPs may alter neuroendocrine and neuron development.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway; U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA.
| | - Magne O Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Erik Magnus Ræder
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Ås 1433, Norway
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| |
Collapse
|
22
|
Castillo NA, James WR, Santos RO, Rezek R, Cerveny D, Boucek RE, Adams AJ, Goldberg T, Campbell L, Perez AU, Schmitter-Soto JJ, Lewis JP, Fick J, Brodin T, Rehage JS. Understanding pharmaceutical exposure and the potential for effects in marine biota: A survey of bonefish (Albula vulpes) across the Caribbean Basin. CHEMOSPHERE 2024; 349:140949. [PMID: 38096990 DOI: 10.1016/j.chemosphere.2023.140949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Most research on pharmaceutical presence in the environment to date has focused on smaller scale assessments of freshwater and riverine systems, relying mainly on assays of water samples, while studies in marine ecosystems and of exposed biota are sparse. This study investigated the pharmaceutical burden in bonefish (Albula vulpes), an important recreational and artisanal fishery, to quantify pharmaceutical exposure throughout the Caribbean Basin. We sampled 74 bonefish from five regions, and analyzed them for 102 pharmaceuticals. We assessed the influence of sampling region on the number of pharmaceuticals, pharmaceutical assemblage, and risk of pharmacological effects. To evaluate the risk of pharmacological effects at the scale of the individual, we proposed a metric based on the human therapeutic plasma concentration (HTPC), comparing measured concentrations to a threshold of 1/3 the HTPC for each pharmaceutical. Every bonefish had at least one pharmaceutical, with an average of 4.9 and a maximum of 16 pharmaceuticals in one individual. At least one pharmaceutical was detected in exceedance of the 1/3 HTPC threshold in 39% of bonefish, with an average of 0.6 and a maximum of 11 pharmaceuticals exceeding in a Key West individual. The number of pharmaceuticals (49 detected in total) differed across regions, but the risk of pharmacological effects did not (23 pharmaceuticals exceeded the 1/3 HTPC threshold). The most common pharmaceuticals were venlafaxine (43 bonefish), atenolol (36), naloxone (27), codeine (27), and trimethoprim (24). Findings suggest that pharmaceutical detections and concentration may be independent, emphasizing the need to monitor risk to biota regardless of exposure diversity, and to focus on risk quantified at the individual level. This study supports the widespread presence of pharmaceuticals in marine systems and shows the utility of applying the HTPC to assess the potential for pharmacological effects, and thus quantify impact of exposure at large spatial scales.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA.
| | - W R James
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA; Department of Biology, Institute of Environment, Florida International University, Miami, FL, USA
| | - R O Santos
- Department of Biology, Institute of Environment, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - T Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - L Campbell
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - A U Perez
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - J J Schmitter-Soto
- Departmento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur, Chetumal, Mexico
| | - J P Lewis
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| |
Collapse
|
23
|
Wu R, Sin EYY, Zhang K, Xu S, Ruan Y, Mak YL, Yung YK, Sun SWC, Yang R, Lam PKS. Medicating the coast in a metropolitan city: Enantiomeric profiles and joint probabilistic risk assessment of antidepressants and antihistamines. ENVIRONMENT INTERNATIONAL 2024; 184:108434. [PMID: 38237506 DOI: 10.1016/j.envint.2024.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 02/23/2024]
Abstract
Pharmaceuticals are receiving increasing attention as emerging contaminants in the aquatic environment. Herein, we investigated the occurrence of 11 antidepressants, 6 antihistamines and 4 metabolites in treated wastewater effluents, rivers, stormwater, and seawater in Hong Kong, with special focus on chirality. The average levels of ∑pharmaceuticals ranged from 0.525 to 1070 ng/L in all samples and the total annual mass load of target pharmaceuticals in the marine environment of Hong Kong was 756 kg/y. Antihistamines accounted for >80 % of ∑pharmaceuticals, with diphenhydramine and fexofenadine being predominant. The occurrence and enantiomeric profiles of brompheniramine and promethazine sulfoxide were reported in global natural waters for the first time. Among chiral pharmaceuticals, mirtazapine and fexofenadine exhibited R-preference, while others mostly exhibited S-preference, implying that the ecological risks derived from achiral data for chiral pharmaceuticals may be biased. The joint probabilistic risk assessment of fluoxetine revealed that R-fluoxetine and rac-fluoxetine presented different ecological risks from that of S-fluoxetine; Such assessment also revealed that target pharmaceuticals posed only minimal to low risks, except that diphenhydramine posed an intermediate risk. As estimated, 10 % aquatic species will be affected when the environmental level of diphenhydramine exceeds 7.40 ng/L, which was seen in 46.9 % samples. Collectively, this study highlights further investigations on the enantioselectivity of chiral pharmaceuticals, particularly on environmental behavior and ecotoxicity using local aquatic species as target organisms.
Collapse
Affiliation(s)
- Rongben Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong SAR, China
| | - Esther Yan-Yin Sin
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong SAR, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong SAR, China; National Observation and Research Station of Coastal Ecological Environment in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, 999078, Macao SAR, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong SAR, China; Department of Chemistry, City University of Hong Kong, 999077, Hong Kong SAR, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong SAR, China; Department of Chemistry, City University of Hong Kong, 999077, Hong Kong SAR, China
| | - Yim Ling Mak
- Water Quality Management Group, Environmental Protection Department, Hong Kong SAR Government, 999077, Hong Kong SAR, China
| | - Ying-Kit Yung
- Water Quality Management Group, Environmental Protection Department, Hong Kong SAR Government, 999077, Hong Kong SAR, China
| | - Sunny Wai-Choi Sun
- Water Quality Management Group, Environmental Protection Department, Hong Kong SAR Government, 999077, Hong Kong SAR, China
| | - Rong Yang
- Water Quality Management Group, Environmental Protection Department, Hong Kong SAR Government, 999077, Hong Kong SAR, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong SAR, China; Department of Chemistry, City University of Hong Kong, 999077, Hong Kong SAR, China; Department of Science, School of Science and Technology, Hong Kong Metropolitan University, 999077, Hong Kong SAR, China.
| |
Collapse
|
24
|
Lin J, Chi L, Yuan Q, Li B, Feng M. Photodegradation of typical pharmaceuticals changes toxicity to algae in estuarine water: A metabolomic insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168338. [PMID: 37931817 DOI: 10.1016/j.scitotenv.2023.168338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
The ubiquitous existence of various pharmaceuticals in the marine environment has received global attention for their risk assessment. However, rather little is known thus far regarding the natural attenuation (e.g., photolysis)-induced product/mixture toxicity of these pharmaceuticals on marine organisms. In this study, the photodegradation behavior, product formation, and risks of two representative pharmaceuticals (i.e., ciprofloxacin, CIP; diclofenac, DCF) were explored in the simulated estuary water. It was noted that both pharmaceuticals can be completely photolyzed within 1 h, and five products of CIP and three products of DCF were identified by a high-resolution liquid chromatography-mass spectrometer. Accordingly, their photodecomposition pathways were tentatively proposed. The in silico prediction suggested that the formed transformation products maintained the persistence, bioaccumulation potential, and multi-endpoint toxic effects such as genotoxicity, developmental toxicity, and acute/chronic toxicity on different aquatic species. Particularly, the non-targeted metabolomics first elucidated that DCF and its photolytic mixtures can significantly affect the antioxidant status of marine algae (Heterosigma akashiwo), triggering oxidative stress and damage to cellular components. It is very alarming that the complete photolyzed DCF sample induced more serious oxidative stress than DCF itself, which called for more concern about the photolysis-driven ecological risks. Overall, this investigation first uncovered the overlooked but serious toxicity of the transformation products of prevalent pharmaceuticals during natural attenuation on marine species.
Collapse
Affiliation(s)
- Jiang Lin
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Lianbao Chi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Yuan
- China United Engineering Corporation Limited, Hangzhou 310052, China
| | - Busu Li
- Laoshan Laboratory, Qingdao 266237, China.
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| |
Collapse
|
25
|
Su D, Wei Y, Chelimuge, Ma Y, Chen Y, Liu Z, Ben W, Wang Y. Distribution, ecological risks and priority of pharmaceuticals in the coastal water of Qinhuangdao, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167955. [PMID: 37875199 DOI: 10.1016/j.scitotenv.2023.167955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023]
Abstract
Although there has been a surge of interest in research focused on the presence of pharmaceuticals in the marine environment, study on the distribution and risks of pharmaceuticals in coastal waters remains inadequately documented due to the specific features of the marine environment, such as strong dilution, high salinity, and complex hydrodynamics. In this study, thirty pharmaceuticals with diverse physicochemical properties were analyzed in a coastal sea with low hydrodynamic energy caused by various artificial structures. The results indicate that 14 compounds were detected in seawater, with concentrations ranging from <1 to 201.4 ng L-1, among which caffeine, metoprolol, and atenolol were detected at high levels. Statistical analysis reveals the prevalence of the most target pharmaceuticals with downward trends in concentrations from estuary to offshore region, demonstrating the significant impacts of riverine inputs on the coastal water. Nevertheless, the distribution patterns of caffeine and atenolol were intricate, suggesting that they may have also originated from other unknown sources. A newly-developed method combining risk quotient (RQ) and species sensitivity distribution (SSD) models was used in ecological risk assessment. The results indicate generally higher risks of target pharmaceuticals in the estuary compared to the offshore region, with caffeine, carbamazepine, and norfloxacin identified as the top three priority pollutants.
Collapse
Affiliation(s)
- Du Su
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Yuhong Wei
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Chelimuge
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yue Ma
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Yang Chen
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Zhiliang Liu
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China.
| | - Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Yibo Wang
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| |
Collapse
|
26
|
Dumas T, Gomez E, Boccard J, Ramirez G, Armengaud J, Escande A, Mathieu O, Fenet H, Courant F. Mixture effects of pharmaceuticals carbamazepine, diclofenac and venlafaxine on Mytilus galloprovincialis mussel probed by metabolomics and proteogenomics combined approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168015. [PMID: 37879482 DOI: 10.1016/j.scitotenv.2023.168015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Exposure to single molecules under laboratory conditions has led to a better understanding of the mechanisms of action (MeOAs) and effects of pharmaceutical active compounds (PhACs) on non-target organisms. However, not taking the co-occurrence of contaminants in the environment and their possible interactions into account may lead to underestimation of their impacts. In this study, we combined untargeted metabolomics and proteogenomics approaches to assess the mixture effects of diclofenac, carbamazepine and venlafaxine on marine mussels (Mytilus galloprovincialis). Our multi-omics approach and data fusion strategy highlighted how such xenobiotic cocktails induce important cellular changes that can be harmful to marine bivalves. This response is mainly characterized by energy metabolism disruption, fatty acid degradation, protein synthesis and degradation, and the induction of endoplasmic reticulum stress and oxidative stress. The known MeOAs and molecular signatures of PhACs were taken into consideration to gain insight into the mixture effects, thereby revealing a potential additive effect. Multi-omics approaches on mussels as sentinels offer a comprehensive overview of molecular and cellular responses triggered by exposure to contaminant mixtures, even at environmental concentrations.
Collapse
Affiliation(s)
- Thibaut Dumas
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Elena Gomez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Geneva 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 1211, Switzerland
| | - Gaëlle Ramirez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Aurélie Escande
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Olivier Mathieu
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France; Laboratoire de Pharmacologie-Toxicologie, CHU de Montpellier, Montpellier, France
| | - Hélène Fenet
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Frédérique Courant
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
27
|
Martinez Vargas S, Vitale AJ, Genchi SA, Nogueira SF, Arias AH, Perillo GM, Siben A, Delrieux CA. Monitoring multiple parameters in complex water scenarios using a low-cost open-source data acquisition platform. HARDWAREX 2023; 16:e00492. [PMID: 38148972 PMCID: PMC10749909 DOI: 10.1016/j.ohx.2023.e00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 12/28/2023]
Abstract
Water monitoring faces challenges that are driven by the infrastructure, protection, financial resources, science and innovation policies, among others. A modular, low-cost, fully open-source and small-sized Unmanned Surface Vessel (USV) called EMAC-USV (EMAC: Estación de Monitoreo Ambiental Costero), is proposed for monitoring bathymetry and water quality parameters (i.e. temperature, suspended solids concentration and hydrocarbon concentration) in complex water scenarios. A detailed description of each part of the platform as well as all electronic connections and functioning is presented.The field works were carried out in two small waste stabilization ponds and in a portion of the main tidal channel of the Bahía Blanca port. The EMAC-USV is the result of a cautious design, regarding the balancing performance, communications, payload capacity, among others.
Collapse
Affiliation(s)
- Steven Martinez Vargas
- Instituto Argentino de Oceanografía (IADO), CONICET-Universidad Nacional del Sur (UNS), B8000FWB, Bahía Blanca, Argentina
- Departamento de Ingeniería Eléctrica y de Computadoras, UNS, Bahía Blanca, Argentina
| | - Alejandro J. Vitale
- Instituto Argentino de Oceanografía (IADO), CONICET-Universidad Nacional del Sur (UNS), B8000FWB, Bahía Blanca, Argentina
- Departamento de Ingeniería Eléctrica y de Computadoras, UNS, Bahía Blanca, Argentina
- Departamento de Geografía y Turismo, UNS, Bahía Blanca, Argentina
| | - Sibila A. Genchi
- Instituto Argentino de Oceanografía (IADO), CONICET-Universidad Nacional del Sur (UNS), B8000FWB, Bahía Blanca, Argentina
- Departamento de Geografía y Turismo, UNS, Bahía Blanca, Argentina
| | - Simón F. Nogueira
- Instituto Argentino de Oceanografía (IADO), CONICET-Universidad Nacional del Sur (UNS), B8000FWB, Bahía Blanca, Argentina
- Departamento de Ingeniería, UNS, Bahía Blanca, Argentina
| | - Andrés H. Arias
- Instituto Argentino de Oceanografía (IADO), CONICET-Universidad Nacional del Sur (UNS), B8000FWB, Bahía Blanca, Argentina
- Departamento de Química, UNS, Bahía Blanca, Argentina
| | - Gerardo M.E. Perillo
- Instituto Argentino de Oceanografía (IADO), CONICET-Universidad Nacional del Sur (UNS), B8000FWB, Bahía Blanca, Argentina
- Departamento de Geología, UNS, Bahía Blanca, Argentina
| | - Agustín Siben
- Instituto Argentino de Oceanografía (IADO), CONICET-Universidad Nacional del Sur (UNS), B8000FWB, Bahía Blanca, Argentina
- Departamento de Ingeniería Eléctrica y de Computadoras, UNS, Bahía Blanca, Argentina
| | - Claudio A. Delrieux
- Departamento de Ingeniería Eléctrica y de Computadoras, UNS, Bahía Blanca, Argentina
- Instituto de Ciencias e Ingeniería de la Computación, CONICET-UNS, Bahía Blanca, Argentina
| |
Collapse
|
28
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|
29
|
Romero-Murillo P, Gallego JL, Leignel V. Marine Pollution and Advances in Biomonitoring in Cartagena Bay in the Colombian Caribbean. TOXICS 2023; 11:631. [PMID: 37505596 PMCID: PMC10385514 DOI: 10.3390/toxics11070631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Coastal zones sustain extensive biodiversity, support key processes for ocean dynamics, and influence the balance of the global environment. They also provide resources and services to communities, determine their culture, and are the basis for their economic growth. Cartagena Bay in the Colombian Caribbean is the place of the establishment of one of the country's main cities, which has a great historical and tourist attraction, and it is also the location of the main commercial port and a great variety of industries. Historically, it has been affected by several environmental impacts and intense pollution. This situation has gained the attention of different researchers, so herein is presented a literature review with a systematic approach using RStudio's bibliometrix on the presence of pollutants and the impact on biodiversity in recent decades, providing a critical analysis of the state of Cartagena Bay and its future needs to ensure its recovery and conservation. In addition, the socioeconomic dynamics related to the environmental state of Cartagena Bay are presented from the framework drivers, pressures, status, impacts, and responses (DPSIR). The update and critical understanding of the sources, fate, and effects of pollution are important not only for the knowledge of the status of this singular ecosystem but also to encourage future research and entrench evidence to support decision makers' actions. This review highlights that several pollutants that have been detected exceeding sediment quality guidelines, like As, Cd, Hg, and PAH, are also reported to bioaccumulate and cause damage throughout the trophic levels of the coastal environment. In addition, the potential use of sentinel species and biomarkers for their monitoring is discussed. Finally, the factors that cause pollution and threaten the state of the bay continue to exert pressure and impact; thus, there is a call for the further monitoring of this ecosystem and the strengthening of policies and regulations.
Collapse
Affiliation(s)
- Patricia Romero-Murillo
- Escuela de Biología Marina, Grupo de Investigación GIBEAM, Universidad del Sinú Seccional Cartagena, Av. El Bosque Trans, 54 N° 30-453 Santillana, Cartagena de Indias 130014, Colombia
| | - Jorge L Gallego
- Grupo de Investigaciones y Mediciones Ambientales GEMA, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 N° 30-65, Medellín 050026, Colombia
| | - Vincent Leignel
- Laboratoire BIOSSE, Le Mans Université, Avenue O Messiaen, 72000 Le Mans, France
| |
Collapse
|
30
|
Picone M, Distefano GG, Zangrando R, Gambaro A, Volpi Ghirardini A. Neonicotinoids and pharmaceuticals in hair of the Red fox (Vulpes vulpes) from the Cavallino-Treporti peninsula, Italy. ENVIRONMENTAL RESEARCH 2023; 228:115837. [PMID: 37028535 DOI: 10.1016/j.envres.2023.115837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 05/16/2023]
Abstract
Neonicotinoids (NEOs) and active pharmaceuticals ingredients (API) are contaminants widely diffused worldwide, causing increasing concern for potential adverse effects on wildlife. However, research on these contaminants have focused on target and non-target invertebrates, while information on potential effects in terrestrial mammals is lacking. We performed preliminary non-invasive monitoring of NEOs and API in a suburban and agricultural area using hair of the Red fox. The Red fox is a widely diffused mesopredator in Europe, and its plasticity in feeding habits makes it an excellent indicator for assessing exposure to environmental contamination. We observed the presence of NEOs in many Red fox hair samples (n = 11), including imidacloprid (IMI), acetamiprid (ACE), and clothianidin (CLO). The highest quantified concentrations were 6.4 ng g-1 dry weight (dw), 6.7 ng g-1 dw, and 0.9 ng g-1 dw for IMI, ACE, and CLO, respectively. The targeted APIs included non-steroidal anti-inflammatory drugs (NSAIDs) and antidepressants. APIs were less frequently detected than NEOs, and the compounds with the highest prevalence were the NSAID ketoprofen (36%), the antidepressant sertraline (36%), and its active metabolite norsertraline (27%). The presence of human pharmaceuticals such as the NSAID ibuprofen and the antidepressants sertraline, fluoxetine, and their active metabolites norsertraline and norfluoxetine suggest environmental contamination due to untreated and partially treated wastewater discharged in surface waters and soils of the study area. The detection and quantification of ketoprofen and flunixin also suggest the possible use of contaminated manure on farmland. Findings indicate that hair may be used for monitoring environmental exposure to NEOs and provide evidence that hair is a good marker of exposure for antidepressants and certain NSAIDs, including ibuprofen, ketoprofen, and flunixin.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, Via Torino 155, 30172, Venezia-Mestre, Italy.
| | - Gabriele Giuseppe Distefano
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Roberta Zangrando
- National Council for the Research - Institute of Polar Sciences, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, Via Torino 155, 30172, Venezia-Mestre, Italy; National Council for the Research - Institute of Polar Sciences, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, Via Torino 155, 30172, Venezia-Mestre, Italy
| |
Collapse
|
31
|
Ferreira CSS, Soares SC, Kille P, Oliveira M. Identifying knowledge gaps in understanding the effects of selective serotonin reuptake inhibitors (SSRIs) on fish behaviour. CHEMOSPHERE 2023; 335:139124. [PMID: 37285976 DOI: 10.1016/j.chemosphere.2023.139124] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are a class of antidepressants increasingly prescribed to treat patients with clinical depression. As a result of the significant negative impact of the COVID-19 pandemic on the population's mental health, its consumption is expected to increase even more. The high consumption of these substances leads to their environmental dissemination, with evidence of their ability to compromise molecular, biochemical, physiological, and behavioural endpoints in non-target organisms. This study aimed to provide a critical review of the current knowledge regarding the effects of SSRI antidepressants on fish ecologically relevant behaviours and personality-dependent traits. A literature review shows limited data concerning the impact of fish personality on their responses to contaminants and how such responses could be influenced by SSRIs. This lack of information may be attributable to a lack of widely adopted standardized protocols for evaluating behavioural responses in fish. The existing studies examining the effects of SSRIs across various biological levels overlook the intra-specific variations in behaviour and physiology associated with different personality patterns or coping styles. Consequently, some effects may remain undetected, such as variations in coping styles and the capacity to handle environmental stressors. This oversight could potentially result in long-term effects with ecological implications. Data support the need for more studies to understand the impact of SSRIs on personality-dependent traits and how they may impair fitness-related behaviours. Given the considerable cross-species similarity in the personality dimensions, the collected data may allow new insights into the correlation between personality and animal fitness.
Collapse
Affiliation(s)
- Carla S S Ferreira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Sandra C Soares
- William James Center for Research (WJRC), Department of Education and Psychology, University of Aveiro, 3810-193, Aveiro, Portugal; Center for Health Technology and Services Research (CINTESIS), Department of Education and Psychology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Miguel Oliveira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
32
|
Liu L, Miao J, Liu P, Zhao A, Yao L, Pan L. Comparison and quantification of estrogen receptor-mediated responsiveness to endocrine disruptors in bivalves by using complementary model and a novel yeast assay approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121208. [PMID: 36738881 DOI: 10.1016/j.envpol.2023.121208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Endocrine disrupting chemicals (EDCs) in estuaries and coastal habitats have been widely detected over the world and caused global concern. Bivalves have been shown to be vulnerable to endocrine disruption. However, estrogen receptors (ERs) sensitivity to steroids and EDCs has long been considered to be restricted to vertebrates. In the present study, a computational simulation docking model was applied to qualitatively predict the binding behavior of two bivalve ERs to estradiol and compared the docking activity with zebra fish ERa. A novel reconstituted yeast system was constructed by using transcriptional activator GAL-4 consists of ER-expressing plasmid and ERE (estrogen responsive element)-containing plasmid. The assays showed that bivalve ER specifically activate transcription in response to tested steroids and EDCs, but the activation ability is weaker compared to zebra fish ERa. The results corroborate the presence of an active ER in bivalve molluscs and provide a promising tool for screening of marine environmental pollutants active in disturbing ERs of bivalves, as well as understanding the underlying mechanism across taxonomic groups and phyla.
Collapse
Affiliation(s)
- Liru Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Peipei Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Anran Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Linlin Yao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
33
|
Kuznetsova OV, Keppler BK, Timerbaev AR. Seawater analysis of engineered nanoparticles using ICP-MS-based technology: Addressing challenges with the development of reliable monitoring strategy. Talanta 2023; 252:123846. [DOI: 10.1016/j.talanta.2022.123846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
|
34
|
Ojemaye CY, Pampanin DM, Sydnes MO, Green L, Petrik L. The burden of emerging contaminants upon an Atlantic Ocean marine protected reserve adjacent to Camps Bay, Cape Town, South Africa. Heliyon 2022; 8:e12625. [PMID: 36619409 PMCID: PMC9816787 DOI: 10.1016/j.heliyon.2022.e12625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The presence and levels of fifteen chemicals of emerging concerns, including five perfluorinated compounds (PFCs), two industrial chemicals, seven pharmaceuticals and one personal care product, were evaluated in biota, seawater and sediments obtained from near-shore coastal zone in Camps Bay, Cape Town, South Africa. Eight compounds were found in seawater, and between nine to twelve compounds were quantified in marine invertebrates, sediment and seaweed. Diclofenac was the prevalent pharmaceutical with a maximum concentration of 2.86 ng/L in seawater, ≥110.9 ng/g dry weight (dw) in sediments and ≥67.47 ng/g dw in marine biotas. Among PFCs, perfluoroheptanoic acid was predominant in seawater (0.21-0.46 ng/L). Accumulation of perfluorodecanoic acid (764 ng/g dw) as well as perfluorononanoic acid and perfluorooctanoic acid (504.52 and 597.04 ng/g dw, respectively) was highest in samples of seaweed. The environmental risk assessment carried out in this study showed that although individual pollutants pose a low acute and chronic risk, yet individual compounds each had a high bioaccumulation factor in diverse marine species, and their combination as a complex mixture in marine organisms might have adverse effects upon aquatic organisms. Data revealed that this Atlantic Ocean marine protected environment is affected by the presence of numerous and diverse emerging contaminants that could only have originated from sewage discharges. The complex mixture of persistent chemicals found bioaccumulating in marine organisms could bode ill for the propagation and survival of marine protected species, since many of these compounds are known toxicants.
Collapse
Affiliation(s)
- Cecilia Y. Ojemaye
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa,Corresponding author.
| | - Daniela M. Pampanin
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, N. O. 4036 Stavanger, Norway
| | - Magne O. Sydnes
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, N. O. 4036 Stavanger, Norway
| | - Lesley Green
- Environmental Humanities South and Department of Anthropology, University of Cape Town, Cape Town, South Africa
| | - Leslie Petrik
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
35
|
Magnuson JT, Longenecker-Wright Z, Havranek I, Monticelli G, Brekken HK, Kallenborn R, Schlenk D, Sydnes MO, Pampanin DM. Bioaccumulation potential of the tricyclic antidepressant amitriptyline in a marine Polychaete, Nereis virens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158193. [PMID: 35995163 DOI: 10.1016/j.scitotenv.2022.158193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The continual discharge of pharmaceuticals from wastewater treatment plants (WWTPs) into the marine environment, even at concentrations as low as ng/L, can exceed levels that induce sublethal effects to aquatic organisms. Amitriptyline, a tricyclic antidepressant, is the most prescribed antidepressant in Norway, though the presence, potential for transport, and uptake by aquatic biota have not been assessed. To better understand the release and bioaccumulative capacity of amitriptyline, laboratory exposure studies were carried out with field-collected sediments. Influent and effluent composite samples from the WWTP of Stavanger (the 4th largest city in Norway) were taken, and sediment samples were collected in three sites in the proximity of this WWTP discharge at sea (WWTP discharge (IVAR), Boknafjord, and Kvitsøy (reference)). Polychaetes (Nereis virens) were exposed to field-collected sediments, as well as to Kvitsøy sediment spiked with 3 and 30 μg/g amitriptyline for 28 days. The WWTP influent and effluent samples had concentrations of amitriptyline of 4.93 ± 1.40 and 6.24 ± 1.39 ng/L, respectively. Sediment samples collected from IVAR, Boknafjord, and Kvitsøy had concentrations of 6.5 ± 3.9, 15.6 ± 12.7, and 12.7 ± 8.0 ng/g, respectively. Concentrations of amitriptyline were below the limit of detection in polychaetes exposed to sediment collected from Kvitsøy and IVAR, and 5.2 ± 2.8 ng/g in those exposed to Boknafjord sediment. Sediment spiked with 3 and 30 μg/g amitriptyline had measured values of 423.83 ± 33.1 and 763.2 ± 180.5 ng/g, respectively. Concentrations in worms exposed to the amended sediments were 9.5 ± 0.2 and 56.6 ± 2.2 ng/g, respectively. This is the first known study to detect measurable concentrations of amitriptyline in WWTP discharge in Norway and accumulation in polychaetes treated with field-collected sediments, suggesting that amitriptyline has the potential for trophic transfer in marine systems.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway.
| | - Zoe Longenecker-Wright
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Ivo Havranek
- Faculty of Chemistry, Biotechnology & Food Sciences, Norwegian University of Life Sciences, Ås 1433, Norway
| | - Giovanna Monticelli
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Hans Kristian Brekken
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology & Food Sciences, Norwegian University of Life Sciences, Ås 1433, Norway
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Magne O Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| |
Collapse
|
36
|
Reamer MB. Communicating ocean and human health connections: An agenda for research and practice. Front Public Health 2022; 10:1033905. [PMID: 36530715 PMCID: PMC9755358 DOI: 10.3389/fpubh.2022.1033905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
The emergence of ocean and human health (OHH) science as a distinct scholarly discipline has led to increased research outputs from experts in both the natural and social sciences. Formal research on communication strategies, messaging, and campaigns related to OHH science remains limited despite its importance as part of the social processes that can make knowledge actionable. When utilized to communicate visible, local issues for targeting audiences, OHH themes hold the potential to motivate action in pursuit of solutions to environmental challenges, supplementing efforts to address large-scale, abstract, or politicized issues such as ocean acidification or climate change. Probing peer-reviewed literature from relevant areas of study, this review article outlines and reveals associations between society and the quality of coastal and marine ecosystems, as well as key themes, concepts, and findings in OHH science and environmental communication. Recommendations for future work concerning effective ocean and human health science communication are provided, creating a platform for innovative scholarship, evidence-based practice, and novel collaboration across disciplines.
Collapse
|
37
|
Grzegórska A, Wysocka I, Głuchowski P, Ryl J, Karczewski J, Zielińska-Jurek A. Novel composite of Zn/Ti-layered double hydroxide coupled with MXene for the efficient photocatalytic degradation of pharmaceuticals. CHEMOSPHERE 2022; 308:136191. [PMID: 36037953 DOI: 10.1016/j.chemosphere.2022.136191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
In the present study, a hybrid photocatalyst of Zn/Ti layered double hydroxide (LDH) coupled with MXene - Ti3C2 was synthesized for the first time and applied in photocatalytic degradation of acetaminophen and ibuprofen, two commonly present in the natural environment and prone to accumulate in the aquatic ecosystem pharmaceuticals. The effect of MXene content (0.5 wt%, 2.5 wt%, and 5 wt%) on the photocatalytic activity of LDH/MXene composite was investigated. The composite of LDH/MXene containing 2.5 wt% of MXene revealed the highest photocatalytic activity in the degradation of acetaminophen (100% within 40 min) and ibuprofen (99.7% within 60 min). Furthermore, an improvement in acetaminophen and ibuprofen mineralization was observed for the composite material. Meanwhile, the introduction of interfering ions (Na+, Ca2+, Mg2+, Cl-, SO42-) in the model seawater did not affect the removal efficiency of both pharmaceuticals. The photocatalytic experiment performed in the four subsequent cycles, as well as FTIR, TEM, and XPS analyses after the photodegradation process confirmed the excellent stability and reusability of the prepared composite material. In order to evaluate the effect of various reactive oxidizing species (ROS) on the photocatalytic process, the trapping experiment was applied. It was noticed that •O2- had the main contribution in photocatalytic degradation of acetaminophen, while •OH and h+ mainly affected the degradation of ibuprofen. Finally, based on the results of Mott Schottky analysis, bandgap calculation, and ROS trapping experiment, the possible mechanism for pharmaceuticals degradation was proposed. This research illustrates the feasibility and novelty of the treatment of pharmaceuticals by LDH/MXene composites, implying that MXene plays a significant role in the electron-hole separation and thus high photocatalytic activity.
Collapse
Affiliation(s)
- Anna Grzegórska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, Gdańsk, 80-233, Poland.
| | - Izabela Wysocka
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Paweł Głuchowski
- Institute of Low Temperature and Structural Research, Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Jacek Ryl
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, G. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Jakub Karczewski
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, G. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Anna Zielińska-Jurek
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, Gdańsk, 80-233, Poland.
| |
Collapse
|
38
|
Kamali N, Abbas F, Lehane M, Griew M, Furey A. A Review of In Situ Methods-Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the Collection and Concentration of Marine Biotoxins and Pharmaceuticals in Environmental Waters. Molecules 2022; 27:7898. [PMID: 36431996 PMCID: PMC9698218 DOI: 10.3390/molecules27227898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) are in situ methods that have been applied to pre-concentrate a range of marine toxins, pesticides and pharmaceutical compounds that occur at low levels in marine and environmental waters. Recent research has identified the widespread distribution of biotoxins and pharmaceuticals in environmental waters (marine, brackish and freshwater) highlighting the need for the development of effective techniques to generate accurate quantitative water system profiles. In this manuscript, we reviewed in situ methods known as Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the collection and concentration of marine biotoxins, freshwater cyanotoxins and pharmaceuticals in environmental waters since the 1980s to present. Twelve different adsorption substrates in SPATT and 18 different sorbents in POCIS were reviewed for their ability to absorb a range of lipophilic and hydrophilic marine biotoxins, pharmaceuticals, pesticides, antibiotics and microcystins in marine water, freshwater and wastewater. This review suggests the gaps in reported studies, outlines future research possibilities and guides researchers who wish to work on water contaminates using Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) technologies.
Collapse
Affiliation(s)
- Naghmeh Kamali
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Feras Abbas
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Mary Lehane
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Griew
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Ambrose Furey
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
39
|
Solaun O, Rodríguez JG, Borja Á, López-García E, Zonja B, Postigo C, Barceló D, de Alda ML, Larreta J. Antibiotics in the Basque coast (N Spain): Occurrence in waste and receiving waters, and risk assessment (2017-2020). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157563. [PMID: 35907554 DOI: 10.1016/j.scitotenv.2022.157563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The study of the presence of antibiotics in the aquatic environment is a preliminary step to analyse their possible harmful effects on aquatic ecosystems. In order to monitor their occurrence in the aquatic environment, the European Commission established in 2015, 2018, and 2020 three Watch Lists of substances for Union-wide monitoring (Decisions (EU) 2015/495, 2018/840, and 2020/1161), where some antibiotics within the classes of macrolides, fluoroquinolones and penicillins were included. In the Basque coast, northern Spain, three macrolide antibiotics (erythromycin, clarithromycin, azithromycin) and ciprofloxacin were monitored quarterly from 2017 to 2020 (covering a period before and after the COVID19 outbreak), in water samples collected from two Waste Water Treatment Plants (WWTPs), and three control points associated with receiving waters (transitional and coastal water bodies). This work was undertaken for the Basque Water Agency (URA). The three macrolide antibiotics in water showed a frequency of quantification >65 % in the Basque coast, with higher concentrations in the WWTP emission stations than in receiving waters. Their frequency of quantification decreased from 2017 to 2020, as did the consumption of antibiotics in Spanish primary care since 2015. Ciprofloxacin showed higher frequencies of quantification in receiving waters than in wastewaters, but the highest concentrations were observed in the WWTP emission stations. Although consumption of fluoroquinolones (among which is ciprofloxacin) in primary care in the Basque Country has decreased in recent years, this trend was not observed in the waters sampled in the present study. On the other hand, concentrations of clarithromycin, azithromycin, and ciprofloxacin in receiving waters exceeded their respective Predicted No-Effect Concentrations, so they could pose an environmental risk. These substances are widely used in human and animal medicine, so, although only ciprofloxacin is included in the third Watch List, it would be advisable to continue monitoring macrolides in the Basque coast as well.
Collapse
Affiliation(s)
- Oihana Solaun
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA). Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain.
| | - José Germán Rodríguez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA). Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain
| | - Ángel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA). Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain; King Abdulaziz University, Faculty of Marine Sciences, Jeddah, Saudi Arabia
| | - Ester López-García
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Bozo Zonja
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cristina Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Joana Larreta
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA). Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain
| |
Collapse
|
40
|
Effects of Sulfamethoxazole on Fertilization and Embryo Development in the Arbacia lixula Sea Urchin. Animals (Basel) 2022; 12:ani12182483. [PMID: 36139342 PMCID: PMC9495157 DOI: 10.3390/ani12182483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Drugs released into the aquatic environment create serious problems for the organisms that live there. For this reason, the present study investigates the in vitro effects of the antibiotic sulfamethoxazole, widely found in wastewater, on the fertilization and development of the Arbacia lixula sea urchin. The results showed a significant reduction in the percentage of fertilized oocytes at the highest drug concentrations, together with an increase in anomalies and delays in the development of the embryo. Therefore, the data obtained suggest urgent intervention on the release of these drugs in order to prevent important alterations in the species’ development and to preserve biodiversity. Abstract To date, drugs released into the aquatic environment are a real problem, and among antibiotics, sulfamethoxazole is the one most widely found in wastewater; thus, the evaluation of its toxicity on marine organisms is very important. This study, for the first time, investigates the in vitro effects of 4 concentrations of sulfamethoxazole (0.05 mg/L, 0.5 mg/L, 5 mg/L, 50 mg/L) on the fertilization and development of the sea urchin Arbacia lixula. The gametes were exposed to drugs in three different stages: simultaneously with, prior to, and post-fertilization. The results show a significant reduction in the percentage of fertilized oocytes at the highest drug concentrations. Moreover, an increase in anomalies and delays in embryo development following the treatment with the drug was demonstrated. Therefore, the data suggest that this antibiotic can alter the development of marine organisms, making it urgent to act to reduce their release and to determine the concentration range with the greatest impact.
Collapse
|
41
|
Amariei G, Jiménez-Jiménez S, García MÁ, Marina ML, Boltes K. First eco-toxicological evidence of ivabradine effect on the marine bacterium Vibrio fischeri: A chiral view. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156617. [PMID: 35691350 DOI: 10.1016/j.scitotenv.2022.156617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Ivabradine (S-ivabradine) is a contemporary antihypertensive drug designed and commercialized for cardiovascular diseases treatment over the world. In this work the enantiomer-specific stability and acute toxicity of ivabradine to the marine bacterium Vibrio fischeri as well as the potential mechanism of action were investigated for the first time. With this aim, real concentrations of ivabradine enantiomers under abiotic and biotic conditions were determined by Capillary Electrophoresis (CE) with cyclodextrins (CDs) as chiral selectors. A moderate chiral stability without enantiomeric interconversion was observed for ivabradine. The bioluminescence inhibition method revealed an enantioselective toxicity of ivabradine to marine bacterium. The order of ecotoxicity was R-ivabradine < racemic ivabradine < S-ivabradine with EC50 (t = 5 min) values about 75.98, 11.11 and 7.93 mg/L, respectively. Confocal Live/Dead stained images showed that bacterial envelops cells were seriously damaged after exposure to S-ivabradine. S-ivabradine also disturbed the esterase activity and significantly increased the ROS level compared with the control. Thus, oxidative stress originating membrane cells damage and enzymatic activity changes was shown to be the primary mechanism of S-ivabradine toxicity to marine bacterium. Our results highlight the need for more eco-toxicological evaluations of the cardiovascular drug S-ivabradine on other aquatic organisms to establish the risk on the environment.
Collapse
Affiliation(s)
- Georgiana Amariei
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Department of Biological and Chemical Engineering-Plastic and Plastic Engineering, Aarhus University, Aabogade 40, DK-8200 Aarhus N, Denmark
| | - Sara Jiménez-Jiménez
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - María Ángeles García
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química Andrés M. del Río, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química Andrés M. del Río, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Karina Boltes
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; IMDEA Water Institute, Parque Científico Tecnológico, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
42
|
Madikizela LM, Ncube S. Health effects and risks associated with the occurrence of pharmaceuticals and their metabolites in marine organisms and seafood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155780. [PMID: 35537516 DOI: 10.1016/j.scitotenv.2022.155780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals and their metabolites are continuously invading the marine environment due to their input from the land such as their disposal into the drains and sewers which is mostly followed by their transfer into wastewater treatment plants (WWTPs). Their incomplete removal in WWTPs introduces pharmaceuticals into oceans and surface water. To date, various pharmaceuticals and their metabolites have been detected in marine environment. Their occurrence in marine organisms raises concerns regarding toxic effects and development of drug resistant genes. Therefore, it is crucial to review the health effects and risks associated with the presence of pharmaceuticals and their metabolites in marine organisms and seafood. This is an important study area which is related to the availability of seafood and its quality. Hence, this study provides a critical review of the information available in literature which relates to the occurrence and toxic effects of pharmaceuticals in marine organisms and seafood. This was initiated through conducting a literature search focussing on articles investigating the occurrence and effects of pharmaceuticals and their metabolites in marine organisms and seafood. In general, most studies on the monitoring of pharmaceuticals and their metabolites in marine environment are conducted in well developed countries such as Europe while research in developing countries is still limited. Pharmaceuticals present in freshwater are mostly found in seawater and marine organisms. Furthermore, the toxicity caused by different pharmaceutical mixtures was observed to be more severe than that of individual compounds.
Collapse
Affiliation(s)
- Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa.
| | - Somandla Ncube
- Department of Chemistry, Sefako Makgatho Health Sciences University, P.O Box 60, Medunsa 0204, South Africa
| |
Collapse
|
43
|
Benedetti B, Baglietto M, MacKeown H, Scapuzzi C, Di Carro M, Magi E. An optimized processing method for polar organic chemical integrative samplers deployed in seawater: Toward a maximization of the analysis accuracy for trace emerging contaminants. J Chromatogr A 2022; 1677:463309. [PMID: 35853423 DOI: 10.1016/j.chroma.2022.463309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Passive sampling of emerging contaminants (ECs) in seawater represents a challenge in environmental monitoring. A specific protocol for Polar Organic Chemical Integrative Sampler (POCIS) processing may be necessary when dealing with marine applications, due to the peculiarity of the considered matrix. Herein, both the instrumental LC-MS/MS analysis and the sampler processing for the determination of 22 ECs in seawater were carefully optimized. The study entailed a test simulating POCIS sorbent exposure to seawater as well as the processing of replicated field POCIS with different elution solvents. The final method involved washing the sorbent with water, to eliminate most salts, and a two-step elution, by using methanol and a small volume of a dichloromethane-isopropanol mixture. With this protocol, recoveries between 58 and 137% (average 106%) were obtained for most analytes, including non-steroidal anti-inflammatory drugs, UV-filters, perfluorinated substances and caffeine. Still, the protocol was not suitable for very hydrophilic compounds (recovery under 20% for artificial sweeteners and the pharmaceutical salbutamol), which also showed remarkable ion suppression (matrix effects in the range 4-46%). For all other chemicals, the matrix effects were in the range 67-103% (average 86%), indicating satisfactory accuracy. Also, the overall method showed high sensitivity (detection limits in the range 0.04-9 ng g-1 of POCIS sorbent) and excellent specificity, thanks to the monitoring of two "precursor ion-product ion" MS transitions for identity confirmation. The method was applied to samplers deployed in the Ligurian coast (Italy), detecting caffeine, bisphenol A, ketoprofen and two UV-filters as the most concentrated in the POCIS sorbent.
Collapse
Affiliation(s)
- Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| | - Matteo Baglietto
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| | - Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| | - Chiara Scapuzzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy.
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| |
Collapse
|
44
|
Kucharski D, Nałęcz-Jawecki G, Drzewicz P, Skowronek A, Mianowicz K, Strzelecka A, Giebułtowicz J. The assessment of environmental risk related to the occurrence of pharmaceuticals in bottom sediments of the Odra River estuary (SW Baltic Sea). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154446. [PMID: 35283119 DOI: 10.1016/j.scitotenv.2022.154446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The occurrence of 130 pharmaceutically active compounds (PhACs) in sediments collected from 70 sampling sites in the Odra River estuary (SW Baltic Sea) was investigated. The highest concentration levels of the compounds were found in the vicinity of effluent discharge from two main Szczecin wastewater treatment plants: "Pomorzany" and "Zdroje", and nearby the seaport and shipyard. The highest environmental risks (RQ > 1) were observed for pseudoephedrine (RQ = 14.0), clindamycin (RQ = 7.3), nalidixic acid (RQ = 3.8), carbamazepine (RQ = 1.8), fexofenadine (RQ = 1.4), propranolol (RQ = 1.1), and thiabendazole (RQ = 1.1). RQ for each compound varied depending on the sampling sites. High environmental risk was observed in 30 sampling sites for clindamycin, 22 sampling sites for pseudoephedrine, 19 sampling sites for nalidixic acid, 4 sampling sites for carbamazepine, and 3 sampling sites for fexofenadine. The medium environmental risk (0.1 < RQ < 1) was observed for 16 compounds: amisulpride, amitriptyline, amlodipine, atropine, bisoprolol, chlorpromazine, lincomycin, metoprolol, mirtazapine, moclobemide, ofloxacin, oxazepam, tiapride, tolperisone, verapamil, and xylometazoline. Due to the scarcity of toxicological data related to benthic organisms, only an approximate assessment of the environmental risk of PhACs is possible. Nevertheless, the compounds with medium and high risk should be considered as pollutants of high environmental concern whose occurrence in the environment should remain under close scrutiny.
Collapse
Affiliation(s)
- Dawid Kucharski
- Faculty of Pharmacy, Medical University of Warsaw, Department of Bioanalysis and Drugs Analysis, Banacha 1, 02-097 Warsaw, Poland
| | - Grzegorz Nałęcz-Jawecki
- Faculty of Pharmacy, Medical University of Warsaw, Department of Environmental Health Sciences, Banacha 1, 02-097 Warsaw, Poland
| | - Przemysław Drzewicz
- Polish Geological Institute-National Research Institute, Rakowiecka 4, 00-975 Warsaw, Poland
| | - Artur Skowronek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Kamila Mianowicz
- Interoceanmetal Joint Organization, Cyryla i Metodego 9, 71-541 Szczecin, Poland
| | - Agnieszka Strzelecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Joanna Giebułtowicz
- Faculty of Pharmacy, Medical University of Warsaw, Department of Bioanalysis and Drugs Analysis, Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
45
|
MacKeown H, Benedetti B, Di Carro M, Magi E. The study of polar emerging contaminants in seawater by passive sampling: A review. CHEMOSPHERE 2022; 299:134448. [PMID: 35364083 DOI: 10.1016/j.chemosphere.2022.134448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Emerging Contaminants (ECs) in marine waters include different classes of compounds, such as pharmaceuticals and personal care products, showing "emerging concern" related to the environment and human health. Their measurement in seawater is challenging mainly due to the low concentration levels and the possible matrix interferences. Mass spectrometry combined with chromatographic techniques represents the method of choice to study seawater ECs, due to its sensitivity and versatility. Nevertheless, these instrumental techniques have to be preceded by suitable sample collection and pre-treatment: passive sampling represents a powerful approach in this regard. The present review compiles the existing occurrence studies on passive sampling coupled to mass spectrometry for the monitoring of polar ECs in seawater and discusses the availability of calibration data that enabled quantitative estimations. A vast majority of the published studies carried out during the last two decades describe the use of integrative samplers, while applications of equilibrium samplers represent approximately 10%. The polar Chemcatcher was the first applied to marine waters, while the more sensitive Polar Organic Chemical Integrative Sampler rapidly became the most widely employed passive sampler. The organic Diffusive Gradients in Thin film technology is a recently introduced and promising device, due to its more reliable sampling rates. The best passive sampler selection for the monitoring of ECs in the marine environment as well as future research and development needs in this area are further discussed. On the instrumental side, combining passive sampling with high resolution mass spectrometry to better assess polar ECs is strongly advocated, despite the current challenges associated.
Collapse
Affiliation(s)
- Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso, 31, 16146, Genoa, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso, 31, 16146, Genoa, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso, 31, 16146, Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso, 31, 16146, Genoa, Italy.
| |
Collapse
|
46
|
Świacka K, Maculewicz J, Smolarz K, Caban M. Long-term stability of diclofenac and 4-hydroxydiclofenac in the seawater and sediment microenvironments: Evaluation of biotic and abiotic factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119243. [PMID: 35381302 DOI: 10.1016/j.envpol.2022.119243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Studies in recent years have shown that significant amounts of diclofenac (DCF) and its metabolites are present in marine coastal waters. Their continuous flow into the environment may be associated with numerous negative effects on both fauna and flora. Although more and more is known about the effects of pharmaceuticals on marine ecosystems, there are still many issues that have not received enough attention, but are essential for risk assessment, such as long term stability. Furthermore, interaction of pharmaceuticals with sediments, which are inhabited by rich microbial, meiofaunal and macrobenthic communities need investigation. Therefore, we undertook an analysis of the stability of DCF and its metabolite, 4-hydroxy diclofenac, in seawater and sediment collected from the brackish environment of Puck Bay. Our 29-day experiment was designed to gain a better understanding of the fate of these compounds under experimental conditions same as near the seafloor. Diclofenac concentration decreased by 31.5% and 20.4% in the tanks with sediment and autoclaved sediment, respectively during 29-day long experiment. In contrast, the concentration of 4-OH diclofenac decreased by 76.5% and 90.2% in sediment and autoclaved sediment, respectively. The concentration decrease of both compounds in the sediment tanks resulted from their sorption in the sediment and biodegradation. Obtained results show that marine sediments favour DCF and 4-OH DCF removal from the water column.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
47
|
Distefano GG, Zangrando R, Basso M, Panzarin L, Gambaro A, Volpi Ghirardini A, Picone M. Assessing the exposure to human and veterinary pharmaceuticals in waterbirds: The use of feathers for monitoring antidepressants and nonsteroidal anti-inflammatory drugs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153473. [PMID: 35093362 DOI: 10.1016/j.scitotenv.2022.153473] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Exposure to active pharmaceutical ingredients (APIs) from both human and veterinary sources is an increasing threat to wildlife welfare and conservation. Notwithstanding, tracking the exposure to pharmaceuticals in non-target and sensitive vertebrates, including birds, is seldom performed and relies almost exclusively on analysing internal organs retrieved from carcasses or from experimentally exposed and sacrificed birds. Clearly, this excludes the possibility of performing large-scale monitoring. Analysing feathers collected from healthy birds may permit this, by detecting APIs in wild birds, including protected and declining species of waterbirds, without affecting their welfare. To this end, we set up a non-destructive method for analysing the presence of non-steroidal anti-inflammatory drugs (NSAIDs), selective serotonin reuptake inhibitors (SSRIs) and noradrenaline reuptake inhibitors (SNRIs) in the feathers of fledglings of both the Mediterranean gull (Ichtyaetus melanocephalus) and the Sandwich tern (Thalasseus sandvicensis). The presence of several NSAIDs and SSRIs above the method quantification limits have confirmed that feathers might be a suitable means of evaluating the exposure of birds to APIs. Moreover, the concentrations indicated that waterbirds are exposed to NSAIDs, such as diclofenac, ibuprofen and naproxen, and SSRIs, such as citalopram, desmethylcitalopram, fluvoxamine and sertraline, possibly due to their widespread use and incomplete removal in wastewater treatment plants (WWTPs). The active ingredient diclofenac raises a the primary concern for the ecosystem and the welfare of the waterbirds, due to its high prevalence (100% and 83.3% in Mediterranean gull and Sandwich tern, respectively), its concentrations detected in feathers (11.9 ng g-1 and 6.7 ng g-1 in Mediterranean gull and Sandwich tern, respectively), and its documented toxicity toward certain birds.
Collapse
Affiliation(s)
- Gabriele Giuseppe Distefano
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy
| | - Roberta Zangrando
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy; Istituto di Scienze Polari, Consiglio Nazionale delle Ricerche, Via Torino 155, I-30170 Mestre, Venezia, Italy
| | | | - Lucio Panzarin
- Associazione Naturalistica Sandonatese, c/o Centro Didattico Naturalistico il Pendolino, via Romanziol 130, 30020 Noventa di Piave, Venezia, Italy
| | - Andrea Gambaro
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy
| | - Annamaria Volpi Ghirardini
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy
| | - Marco Picone
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy.
| |
Collapse
|
48
|
Cravo A, Silva S, Rodrigues J, Cardoso VV, Benoliel MJ, Correia C, Coelho MR, Rosa MJ, Almeida CMM. Understanding the bioaccumulation of pharmaceutical active compounds by clams Ruditapes decussatus exposed to a UWWTP discharge. ENVIRONMENTAL RESEARCH 2022; 208:112632. [PMID: 35074358 DOI: 10.1016/j.envres.2021.112632] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Twenty-four pharmaceutical active compounds (PhACs) were evaluated in the soft tissues of clams Ruditappes decussatus exposed along a 1.5-km dispersal gradient of the treated effluent from an urban wastewater treatment plant discharging in Ria Formosa, and compared with those in the marine waters and discharged effluents. The clams were exposed for 1 month, in June-July 2016, 2017 and 2018. PhACs were quantified by high performance liquid chromatography coupled to tandem mass spectrometry after the quick, easy, cheap, effective, rugged and safe (QuEChERS) method (clams) or solid-phase extraction (water samples). The most representative PhACs in the effluents and receiving waters (regardless of the tidal dilution effect) were diclofenac, carbamazepine and caffeine (on average ≤ 2 μg/L) and only caffeine exhibited significant inter-annual differences, with higher values in 2017. In turn, the most bioaccumulated PhACs in clams were caffeine (0.54-27 ng/g wet weight, significantly higher in 2016) and acetaminophen (0.37-3.7 ng/g wet weight, significant lower in 2016). A multivariate principal component analysis showed (i) PhAC bioaccumulation primarily depended on biotic factors (clams length and weight), (ii) PhAC physicochemical properties Log Kow, pKa and water solubility interplaying with water abiotic variables were more relevant for explaining data variability in water than the physical dilution/tidal mixing, (iii) this process, reflected by the salinity gradient, had a tertiary role in data variation, responsible for spatial discrimination of marine waters. This study provides a better understanding of PhACs bioaccumulation by clams Ruditapes decussatus in real environmental conditions, under the influence of urban treated effluent dispersal in Ria Formosa coastal lagoon, a major producer of bivalves, ultimately disentangling key factors of PhAC bioaccumulation.
Collapse
Affiliation(s)
- Alexandra Cravo
- Centro de Investigação Marinha e Ambiental (CIMA), FCT, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Sofia Silva
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Rodrigues
- Empresa Portuguesa Das Águas Livres, S.A., Direção de Controlo de Qualidade da Água, Av. Berlim 15, 1800-031, Lisboa, Portugal
| | - Vítor Vale Cardoso
- Empresa Portuguesa Das Águas Livres, S.A., Direção de Controlo de Qualidade da Água, Av. Berlim 15, 1800-031, Lisboa, Portugal
| | - Maria João Benoliel
- Empresa Portuguesa Das Águas Livres, S.A., Direção de Controlo de Qualidade da Água, Av. Berlim 15, 1800-031, Lisboa, Portugal
| | - Cátia Correia
- Centro de Investigação Marinha e Ambiental (CIMA), FCT, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | | | - Maria João Rosa
- National Civil Engineering Laboratory (LNEC), Urban Water Unit, Water Quality and Treatment Laboratory, Av. Brasil 101, 1700-066, Lisboa, Portugal
| | - Cristina M M Almeida
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
49
|
Mauro M, Cammilleri G, Celi M, Cicero A, Arizza V, Ferrantelli V, Vazzana M. Effects of diclofenac on the gametes and embryonic development of Arbacia lixula. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2059582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- M. Mauro
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| | - G. Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Palermo, Italia
| | - M. Celi
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| | - A. Cicero
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Palermo, Italia
| | - V. Arizza
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| | - V. Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Palermo, Italia
| | - M. Vazzana
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| |
Collapse
|
50
|
Adeleye AS, Xue J, Zhao Y, Taylor AA, Zenobio JE, Sun Y, Han Z, Salawu OA, Zhu Y. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127284. [PMID: 34655870 DOI: 10.1016/j.jhazmat.2021.127284] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are found in wastewater, and thus, the environment. In this study, current knowledge about the occurrence and fate of PPCPs in aquatic systems-including wastewater treatment plants (WWTPs) and natural waters around the world-is critically reviewed to inform the state of the science and highlight existing knowledge gaps. Excretion by humans is the primary route of PPCPs entry into municipal wastewater systems, but significant contributions also occur through emissions from hospitals, PPCPs manufacturers, and agriculture. Abundance of PPCPs in raw wastewater is influenced by several factors, including the population density and demography served by WWTPs, presence of hospitals and drugs manufacturers in the sewershed, disease burden of the population served, local regulations, and climatic conditions. Based on the data obtained from WWTPs, analgesics, antibiotics, and stimulants (e.g., caffeine) are the most abundant PPCPs in raw wastewater. In conventional WWTPs, most removal of PPCPs occurs during secondary treatment, and overall removal exceeds 90% for treatable PPCPs. Regardless, the total PPCP mass discharged with effluent by an average WWTP into receiving waters (7.35-20,160 g/day) is still considerable, because potential adverse effects of some PPCPs (such as ibuprofen) on aquatic organisms occur within measured concentrations found in surface waters.
Collapse
Affiliation(s)
- Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA.
| | - Jie Xue
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yixin Zhao
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Alicia A Taylor
- Ecological and Biological Sciences Practice, Exponent, Inc., Oakland, CA 94612, USA
| | - Jenny E Zenobio
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yian Sun
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Ziwei Han
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Omobayo A Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yurong Zhu
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-2580, USA
| |
Collapse
|