1
|
Su M, Wang T, Zou C, Cao K, Liu F. Global, regional, and national burdens of Alzheimer's disease and other forms of dementia in the elderly population from 1999 to 2019: A trend analysis based on the Global Burden of Disease Study 2019. IBRAIN 2024; 10:488-499. [PMID: 39691425 PMCID: PMC11649385 DOI: 10.1002/ibra.12181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 12/19/2024]
Abstract
Dementia represents a significant health issue, afflicting both patients and their families. To assess the global trends in the incidence, prevalence, mortality, and disability-adjusted life years (DALYs) of Alzheimer's disease (AD) and other dementias in the elderly population, the Global Burden of Disease Study (1999-2019) was used. The average annual percentage change (AAPC) was estimated using linear regression. Stratified analysis of the global trends by age, sex, region, national level, and social development index (SDI) were also performed. The global incidence of AD and other dementias increased from 507.96 per 100,000 in 1990 to 569.39 per 100,000 in 2019, showing a significant increase in this period. In males, the incidence increased from 387.56 per 100,000 population in 1990 to 462.40 per 100,000 in 2019 (AAPC = 0.61), whereas females experienced a slower rise (AAPC = 0.31) and had a higher incidence in 2019 (662.93 per 100,000 population). The most significant increase was observed in individuals aged 60-64 and those in the middle-SDI quintile. Regionally, the high-income Asia Pacific had the highest incidence (890.01 per 100,000 population) and DALYs (3043.86 per 100,000) in AD and other dementias in 2019. As for national trends, Japan had the most pronounced increase in the incidence and DALYs of AD and other dementias during the 1990-2019 period. These findings highlight the growing burden of dementias on life expectancy at a population level, which is significant for healthcare professionals and decision-makers to conduct the ongoing debate on the policy of AD and other dementias.
Collapse
Affiliation(s)
- Mengdan Su
- Department of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| | - Tianhong Wang
- Department of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| | - Congcong Zou
- Department of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| | - Keyu Cao
- Department of Nursing, West China HospitalSichuan UniversityChengduChina
- West China School of NursingSichuan UniversityChengduChina
| | - Fei Liu
- Department of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
2
|
Li N, Flanagan BA, Edmands S. The role of mitochondria in sex- and age-specific gene expression in a species without sex chromosomes. Proc Natl Acad Sci U S A 2024; 121:e2321267121. [PMID: 38838014 PMCID: PMC11181141 DOI: 10.1073/pnas.2321267121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
Mitochondria perform an array of functions, many of which involve interactions with gene products encoded by the nucleus. These mitochondrial functions, particularly those involving energy production, can be expected to differ between sexes and across ages. Here, we measured mitochondrial effects on sex- and age-specific gene expression in parental and reciprocal F1 hybrids between allopatric populations of Tigriopus californicus with over 20% mitochondrial DNA divergence. Because the species lacks sex chromosomes, sex-biased mitochondrial effects are not confounded by the effects of sex chromosomes. Results revealed pervasive sex differences in mitochondrial effects, including effects on energetics and aging involving nuclear interactions throughout the genome. Using single-individual RNA sequencing, sex differences were found to explain more than 80% of the variance in gene expression. Males had higher expression of mitochondrial genes and mitochondrially targeted proteins (MTPs) involved in oxidative phosphorylation (OXPHOS), while females had elevated expression of non-OXPHOS MTPs, indicating strongly sex-dimorphic energy metabolism at the whole organism level. Comparison of reciprocal F1 hybrids allowed insights into the nature of mito-nuclear interactions, showing both mitochondrial effects on nuclear expression, and nuclear effects on mitochondrial expression. While based on a small set of crosses, sex-specific increases in mitochondrial expression with age were associated with longer life. Network analyses identified nuclear components of strong mito-nuclear interactions and found them to be sexually dimorphic. These results highlight the profound impact of mitochondria and mito-nuclear interactions on sex- and age-specific gene expression.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Ben A. Flanagan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
3
|
Tower J. Selectively advantageous instability in biotic and pre-biotic systems and implications for evolution and aging. FRONTIERS IN AGING 2024; 5:1376060. [PMID: 38818026 PMCID: PMC11137231 DOI: 10.3389/fragi.2024.1376060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Rules of biology typically involve conservation of resources. For example, common patterns such as hexagons and logarithmic spirals require minimal materials, and scaling laws involve conservation of energy. Here a relationship with the opposite theme is discussed, which is the selectively advantageous instability (SAI) of one or more components of a replicating system, such as the cell. By increasing the complexity of the system, SAI can have benefits in addition to the generation of energy or the mobilization of building blocks. SAI involves a potential cost to the replicating system for the materials and/or energy required to create the unstable component, and in some cases, the energy required for its active degradation. SAI is well-studied in cells. Short-lived transcription and signaling factors enable a rapid response to a changing environment, and turnover is critical for replacement of damaged macromolecules. The minimal gene set for a viable cell includes proteases and a nuclease, suggesting SAI is essential for life. SAI promotes genetic diversity in several ways. Toxin/antitoxin systems promote maintenance of genes, and SAI of mitochondria facilitates uniparental transmission. By creating two distinct states, subject to different selective pressures, SAI can maintain genetic diversity. SAI of components of synthetic replicators favors replicator cycling, promoting emergence of replicators with increased complexity. Both classical and recent computer modeling of replicators reveals SAI. SAI may be involved at additional levels of biological organization. In summary, SAI promotes replicator genetic diversity and reproductive fitness, and may promote aging through loss of resources and maintenance of deleterious alleles.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Cheng B, Pan C, Cai Q, Liu L, Cheng S, Yang X, Meng P, Wei W, He D, Liu H, Jia Y, Wen Y, Xu P, Zhang F. Long-term ambient air pollution and the risk of musculoskeletal diseases: A prospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133658. [PMID: 38310839 DOI: 10.1016/j.jhazmat.2024.133658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Evidence of the associations of air pollution and musculoskeletal diseases is inconsistent. This study aimed to examine the associations between air pollutants and the risk of incident musculoskeletal diseases, such as degenerative joint diseases (n = 38,850) and inflammatory arthropathies (n = 20,108). An air pollution score was constructed to assess the combined effect of PM2.5, PM2.5-10, NO2, and NOX. Cox proportional hazard model was applied to assess the relationships between air pollutants and the incidence of each musculoskeletal disease. The air pollution scores exhibited the modest association with an increased risk of osteoporosis (HR = 1.006, 95% CI: 1.002-1.011). Among the individual air pollutants, PM2.5 and PM2.5-10 exhibited the most significant effect on elevated risk of musculoskeletal diseases, such as PM2.5 on osteoporosis (HR = 1.064, 95% CI: 1.020-1.110), PM2.5-10 on inflammatory arthropathies (HR = 1.059, 95% CI: 1.037-1.081). Females were found to have a higher risk of incident musculoskeletal diseases when exposed to air pollutants. Individuals with extreme BMI or lower socioeconomic status had a higher risk of developing musculoskeletal diseases. Our findings reveal that long-term exposure to ambient air pollutants may contribute to an increased risk of musculoskeletal diseases.
Collapse
Affiliation(s)
- Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China.
| |
Collapse
|
5
|
Li N, Flanagan BA, Edmands S. The role of mitochondria in sex- and age-specific gene expression in a species without sex chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570893. [PMID: 38106076 PMCID: PMC10723445 DOI: 10.1101/2023.12.08.570893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mitochondria perform an array of functions, many of which involve interactions with gene products encoded by the nucleus. These mitochondrial functions, particularly those involving energy production, can be expected to differ between sexes and across ages. Here we measured mitochondrial effects on sex- and age-specific gene expression in parental and reciprocal F1 hybrids between allopatric populations of Tigriopus californicus with over 20% mitochondrial DNA divergence. Because the species lacks sex chromosomes, sex-biased mitochondrial effects are not confounded by the effects of sex chromosomes. Using single-individual RNA sequencing, sex differences were found to explain more than 80% of the variance in gene expression. Males had higher expression of mitochondrial genes and mitochondrially targeted proteins (MTPs) involved in oxidative phosphorylation (OXPHOS), while females had elevated expression of non-OXPHOS MTPs, indicating strongly sex-dimorphic energy metabolism at the whole organism level. Comparison of reciprocal F1 hybrids allowed insights into the nature of mito-nuclear interactions, showing both mitochondrial effects on nuclear expression, as well as nuclear effects on mitochondrial expression. Across both sexes, increases in mitochondrial expression with age were associated with longer life. Network analyses identified nuclear components of strong mito-nuclear interactions, and found them to be sexually dimorphic. These results highlight the profound impact of mitochondria and mito-nuclear interactions on sex- and age-specific gene expression.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | | | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Li X, Duan X, Wang W. MEG3 polymorphisms associated with peripheral blood leukocyte mitochondrial DNA copy number in PAHs-exposure workers. CHEMOSPHERE 2023; 344:140335. [PMID: 37778642 DOI: 10.1016/j.chemosphere.2023.140335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/01/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Epidemiological studies have shown that exposure to Polycyclic aromatic hydrocarbons (PAHs) is associated with reduced mitochondrial DNA copy number (mtDNA-CN). Long non-coding RNA maternally expressed gene 3 (MEG3) is involved in mitochondrial function regulation. However, it is unknown whether single-nucleotide polymorphisms in the MEG3 can regulate the mtDNAcn in PAHs exposed populations. The aim of this study was to examine the effect of MEG3 genetic polymorphisms on the mtDNA-CN in PAHs exposed populations. MATERIALS AND METHODS We recruited 544 coke oven workers and 238 controls using random cluster sampling. High-performance liquid chromatography was used to detect the concentrations of four OH-PAHs (1-hydroxypyrene [1-OHPyr], 1-hydroxynathalene [1-OHNap], 2-hydroxynathalene [2-OHNap], and 3-hydroxyphenanthrene [3-OHPhe]) in urine. The mtDNA-CN of peripheral blood leukocytes was measured using the quantitative polymerase chain reaction method. Sequenom Mass ARRAY matrix-assisted laser desorption/ionization-time of flight mass spectrometry platform was used to detect ten polymorphisms in MEG3. RESULTS The OH-PAHs levels in the exposure group were significantly higher than those in the control group (P < 0.001). The mtDNA-CN in the exposure group was significantly lower than that in the control group (P < 0.001). A linear regression model revealed that PAHs-exposure (β [95% confidence interval, CI], -0.428 [-0.475, -0.381], P < 0.001), male gender (-0.052 [-0.098, -0.005], P = 0.029), genotype TT for MEG3 rs11859 (-0.088 [-0.142, -0.035], P = 0.001), and genotype GG for MEG3 rs7155428 (-0.114 [-0.210, -0.017], P = 0.021) were associated with decreased mtDNA-CN. CONCLUSION PAHs-exposure, male gender, genotype TT for rs11859, and genotype GG for rs7155428 were risk factors for mtDNA-CN.
Collapse
Affiliation(s)
- Xinling Li
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China
| | - Xiaoran Duan
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China.
| |
Collapse
|
7
|
Love CS. "Just the Facts Ma'am": Moral and Ethical Considerations for Artificial Intelligence in Medicine and its Potential to Impact Patient Autonomy and Hope. LINACRE QUARTERLY 2023; 90:375-394. [PMID: 37974568 PMCID: PMC10638968 DOI: 10.1177/00243639231162431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Applying machine-based learning and synthetic cognition, commonly referred to as artificial intelligence (AI), to medicine intimates prescient knowledge. The ability of these algorithms to potentially unlock secrets held within vast data sets makes them invaluable to healthcare. Complex computer algorithms are routinely used to enhance diagnoses in fields like oncology, cardiology, and neurology. These algorithms have found utility in making healthcare decisions that are often complicated by seemingly endless relationships between exogenous and endogenous variables. They have also found utility in the allocation of limited healthcare resources and the management of end-of-life issues. With the increase in computing power and the ability to test a virtually unlimited number of relationships, scientists and engineers have the unprecedented ability to increase the prognostic confidence that comes from complex data analysis. While these systems present exciting opportunities for the democratization and precision of healthcare, their use raises important moral and ethical considerations around Christian concepts of autonomy and hope. The purpose of this essay is to explore some of the practical limitations associated with AI in medicine and discuss some of the potential theological implications that machine-generated diagnoses may present. Specifically, this article examines how these systems may disrupt the patient and healthcare provider relationship emblematic of Christ's healing mission. Finally, this article seeks to offer insights that might help in the development of a more robust ethical framework for the application of these systems in the future.
Collapse
|
8
|
Dzidek A, Czerwińska-Ledwig O, Żychowska M, Pilch W, Piotrowska A. The Role of Increased Expression of Sirtuin 6 in the Prevention of Premature Aging Pathomechanisms. Int J Mol Sci 2023; 24:ijms24119655. [PMID: 37298604 DOI: 10.3390/ijms24119655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Sirtuins, in mammals, are a group of seven enzymes (SIRT1-SIRT7) involved in the post-translational modification of proteins-they are considered longevity proteins. SIRT6, classified as class IV, is located on the cell nucleus; however, its action is also connected with other regions, e.g., mitochondria and cytoplasm. It affects many molecular pathways involved in aging: telomere maintenance, DNA repair, inflammatory processes or glycolysis. A literature search for keywords or phrases was carried out in PubMed and further searches were carried out on the ClinicalTrials.gov website. The role of SIRT6 in both premature and chronological aging has been pointed out. SIRT6 is involved in the regulation of homeostasis-an increase in the protein's activity has been noted in calorie-restriction diets and with significant weight loss, among others. Expression of this protein is also elevated in people who regularly exercise. SIRT6 has been shown to have different effects on inflammation, depending on the cells involved. The protein is considered a factor in phenotypic attachment and the migratory responses of macrophages, thus accelerating the process of wound healing. Furthermore, exogenous substances will affect the expression level of SIRT6: resveratrol, sirtinol, flavonoids, cyanidin, quercetin and others. This study discusses the importance of the role of SIRT6 in aging, metabolic activity, inflammation, the wound healing process and physical activity.
Collapse
Affiliation(s)
- Adrianna Dzidek
- Doctoral School of Physical Culture Science, University of Physical Education, 31-571 Krakow, Poland
| | - Olga Czerwińska-Ledwig
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education, 31-571 Krakow, Poland
| | - Małgorzata Żychowska
- Faculty of Health Sciences and Physical Culture, Biological Fundation of Physical Culture, Kazimierz Wielki University in Bydgoszcz, 85-064 Bydgoszcz, Poland
| | - Wanda Pilch
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education, 31-571 Krakow, Poland
| | - Anna Piotrowska
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education, 31-571 Krakow, Poland
| |
Collapse
|
9
|
Shaposhnikov MV, Gorbunova AA, Zemskaya NV, Ulyasheva NS, Pakshina NR, Yakovleva DV, Moskalev A. Simultaneous activation of the hydrogen sulfide biosynthesis genes (CBS and CSE) induces sex-specific geroprotective effects in Drosophila melanogaster. Biogerontology 2023; 24:275-292. [PMID: 36662374 DOI: 10.1007/s10522-023-10017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Hydrogen sulfide (H2S) is one of the most important gasotransmitters that affect lifespan and provide resistance to adverse environmental conditions. Here we investigated geroprotective effects of the individual and simultaneous overexpression of genes encoding key enzymes of H2S biosynthesis - cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) on D. melanogaster model. Simultaneous overexpression of CBS and CSE resulted in additive (in males) and synergistic (in females) beneficial effects on median lifespan. Individual overexpression of CBS was associated with increased thermotolerance and decreased transcription level of genes encoding stress-responsive transcription factors HIF1 and Hsf, while individual overexpression of CSE was associated with increased resistance to paraquat. Simultaneous overexpression of both genes increased resistance to hyperthermia in old females or paraquat in old males. The obtained results suggest sex-specific epistatic interaction of CBS and CSE overexpression effects on longevity and stress resistance.
Collapse
Affiliation(s)
- Mikhail V Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation, 119991
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Anastasia A Gorbunova
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Natalia S Ulyasheva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Natalya R Pakshina
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Daria V Yakovleva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation, 119991.
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982.
| |
Collapse
|
10
|
Winsky-Sommerer R, King HA, Iadevaia V, Möller-Levet C, Gerber AP. A post-transcriptional regulatory landscape of aging in the female mouse hippocampus. Front Aging Neurosci 2023; 15:1119873. [PMID: 37122377 PMCID: PMC10135431 DOI: 10.3389/fnagi.2023.1119873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023] Open
Abstract
Aging is associated with substantial physiological changes and constitutes a major risk factor for neurological disorders including dementia. Alterations in gene expression upon aging have been extensively studied; however, an in-depth characterization of post-transcriptional regulatory events remains elusive. Here, we profiled the age-related changes of the transcriptome and translatome in the female mouse hippocampus by RNA sequencing of total RNA and polysome preparations at four ages (3-, 6-, 12-, 20-month-old); and we implemented a variety of bioinformatics approaches to unravel alterations in transcript abundance, alternative splicing, and polyadenylation site selection. We observed mostly well-coordinated transcriptome and translatome expression signatures across age including upregulation of transcripts related to immune system processes and neuroinflammation, though transcripts encoding ribonucleoproteins or associated with mitochondrial functions, calcium signaling and the cell-cycle displayed substantial discordant profiles, suggesting translational control associated with age-related deficits in hippocampal-dependent behavior. By contrast, alternative splicing was less preserved, increased with age and was associated with distinct functionally-related transcripts encoding proteins acting at synapses/dendrites, RNA-binding proteins; thereby predicting regulatory roles for RBM3 and CIRBP. Only minor changes in polyadenylation site selection were identified, indicating pivotal 3'-end selection in young adults compared to older groups. Overall, our study provides a comprehensive resource of age-associated post-transcriptional regulatory events in the mouse hippocampus, enabling further examination of the molecular features underlying age-associated neurological diseases.
Collapse
Affiliation(s)
| | | | | | | | - André P. Gerber
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
11
|
Tiberi J, Cesarini V, Stefanelli R, Canterini S, Fiorenza MT, Rosa PL. Sex differences in antioxidant defence and the regulation of redox homeostasis in physiology and pathology. Mech Ageing Dev 2023; 211:111802. [PMID: 36958540 DOI: 10.1016/j.mad.2023.111802] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Reactive oxygen species (ROS) is a term that defines a group of unstable compounds derived from exogenous sources or endogenous metabolism. Under physiological conditions, low levels of ROS play a key role in the regulation of signal transduction- or transcription-mediated cellular responses. In contrast, excessive and uncontrolled loading of ROS results in a pathological state known as oxidative stress (OS), a leading contributor to aging and a pivotal factor for the onset and progression of many disorders. Evolution has endowed cells with an antioxidant system involved in stabilizing ROS levels to a specific threshold, preserving ROS-induced signalling function and limiting negative side effects. In mammals, a great deal of evidence indicates that females defence against ROS is more proficient than males, determining a longer lifespan and lower incidence of most chronic diseases. In this review, we will summarize the most recent sex-related differences in the regulation of redox homeostasis. We will highlight the peculiar aspects of the antioxidant defence in sex-biased diseases whose onset or progression is driven by OS, and we will discuss the molecular, genetic, and evolutionary determinants of female proficiency to cope with ROS.
Collapse
Affiliation(s)
- Jessica Tiberi
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Valeriana Cesarini
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Roberta Stefanelli
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
12
|
Alves ED, Benevenuto LGD, Morais BP, Barros MA, Achcar JA, Montrezor LH. Ovarian Microenvironment Modulation by Adipose-Mesenchymal Stem Cells and Photobiomodulation Can Alter Osteoblasts Functions In Vitro. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023. [DOI: 10.1007/s40883-023-00297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Immonen E, Sayadi A, Stojković B, Savković U, Đorđević M, Liljestrand-Rönn J, Wiberg RAW, Arnqvist G. Experimental Life History Evolution Results in Sex-specific Evolution of Gene Expression in Seed Beetles. Genome Biol Evol 2022; 15:6948356. [PMID: 36542472 PMCID: PMC9830990 DOI: 10.1093/gbe/evac177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The patterns of reproductive timing and senescence vary within and across species owing to differences in reproductive strategies, but our understanding of the molecular underpinnings of such variation is incomplete. This is perhaps particularly true for sex differences. We investigated the evolution of sex-specific gene expression associated with life history divergence in replicated populations of the seed beetle Acanthoscelides obtectus, experimentally evolving under (E)arly or (L)ate life reproduction for >200 generations which has resulted in strongly divergent life histories. We detected 1,646 genes that were differentially expressed in E and L lines, consistent with a highly polygenic basis of life history evolution. Only 30% of differentially expressed genes were similarly affected in males and females. The evolution of long life was associated with significantly reduced sex differences in expression, especially in non-reproductive tissues. The expression differences were overall more pronounced in females, in accordance with their greater phenotypic divergence in lifespan. Functional enrichment analysis revealed differences between E and L beetles in gene categories previously implicated in aging, such as mitochondrial function and defense response. The results show that divergent life history evolution can be associated with profound changes in gene expression that alter the transcriptome in a sex-specific way, highlighting the importance of understanding the mechanisms of aging in each sex.
Collapse
Affiliation(s)
| | - Ahmed Sayadi
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Biljana Stojković
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia,Faculty of Biology, Institute of Zoology, University of Belgrade, Belgrade, Serbia
| | - Uroš Savković
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirko Đorđević
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - R Axel W Wiberg
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Corton JC, Lee JS, Liu J, Ren H, Vallanat B, DeVito M. Determinants of gene expression in the human liver: Impact of aging and sex on xenobiotic metabolism. Exp Gerontol 2022; 169:111976. [PMID: 36244585 PMCID: PMC10586520 DOI: 10.1016/j.exger.2022.111976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Abstract
There is a need to characterize the potential susceptibility of older adults to toxicity from environmental chemical exposures. Liver xenobiotic metabolizing enzymes (XMEs) play important roles in detoxifying and eliminating xenobiotics. We examined global gene expression in the livers of young (21-45 years) and old (69+ years) men and women. Differentially expressed genes (DEG) were identified using two-way ANOVA (p ≤ 0.05). We identified 1437 and 1670 DEGs between young and old groups in men and women, respectively. Only a minor number of the total number of genes overlapped (146 genes). Aging increased or decreased pathways involved in inflammation and intermediary metabolism, respectively. Aging led to numerous changes in the expression of XME genes or genes known to control their expression (~90 genes). Out of 10 cytochrome P450s activities examined, there were increased activities of CYP1A2 and CYP2C9 enzymes in the old groups. We also identified sex-dependent genes that were more numerous in the young group (1065) than in the old group (202) and included changes in XMEs. These studies indicate that the livers from aging humans when compared to younger adults exhibit changes in XMEs that may lead to differences in the metabolism of xenobiotics.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, NC 27711, United States of America.
| | - Janice S Lee
- Center for Public Health and Environmental Assessment, US EPA, Research Triangle Park, NC 27711, United States of America.
| | - Jie Liu
- Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, NC 27711, United States of America.
| | - Hongzu Ren
- Center for Public Health and Environmental Assessment, US EPA, Research Triangle Park, NC 27711, United States of America.
| | - Beena Vallanat
- Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, NC 27711, United States of America.
| | - Michael DeVito
- Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, NC 27711, United States of America.
| |
Collapse
|
15
|
Li X, Feng X, Sun X, Hou N, Han F, Liu Y. Global, regional, and national burden of Alzheimer's disease and other dementias, 1990–2019. Front Aging Neurosci 2022; 14:937486. [PMID: 36299608 PMCID: PMC9588915 DOI: 10.3389/fnagi.2022.937486] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background With the increase in the aging population worldwide, Alzheimer's disease has become a rapidly increasing public health concern. Monitoring the dementia disease burden will support health development strategies by providing scientific data. Methods Based on the data obtained from the 2019 Global Burden of Disease (GBD) database, the numbers and age-standardized rates (ASRs) of incidence, prevalence, death, and disability-adjusted life-years (DALYs) of Alzheimer's disease and other dementias from 1990 to 2019 were analyzed. Calculated estimated annual percentage changes (EAPCs) and Joinpoint regression analyses were performed to evaluate the trends during this period. We also evaluated the correlations between the epidemiology and the sociodemographic index (SDI), an indicator to evaluate the level of social development in a country or region considering the education rate, economic situation, and total fertility rate. Results From 1990 to 2019, the incidence and prevalence of Alzheimer's disease and other dementias increased by 147.95 and 160.84%, respectively. The ASR of incidence, prevalence, death, and DALYs in both men and women consistently increased over the study period. All the ASRs in women were consistently higher than those in men, but the increases were more pronounced in men. In addition, the ASRs of incidence, prevalence, and DALYs were positively correlated with the SDI. Moreover, the proportion of patients over 70 years old with dementia was also positively correlated with the SDI level. Smoking was a major risk factor for the disease burden of dementia in men, while obesity was the major risk factor for women. Conclusion From 1990 to 2019, the Alzheimer's disease burden increased worldwide. This trend was more serious in high-SDI areas, especially among elderly populations in high-SDI areas, who should receive additional attention. Policy-makers should take steps to reverse this situation. Notably, women were at a higher risk for the disease, but the risk in men showed a faster increase. We should give attention to the aging population, attach importance to interventions targeting dementia risk factors, and formulate action plans to address the increasing incidence of dementia.
Collapse
Affiliation(s)
- Xue Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaojin Feng
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Yongping Liu
| | - Yongping Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Fang Han
| |
Collapse
|
16
|
Malacrinò A, Brengdahl MI, Kimber CM, Mital A, Shenoi VN, Mirabello C, Friberg U. Ageing desexualizes the Drosophila brain transcriptome. Proc Biol Sci 2022; 289:20221115. [PMID: 35946149 PMCID: PMC9364003 DOI: 10.1098/rspb.2022.1115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
General evolutionary theory predicts that individuals in low condition should invest less in sexual traits compared to individuals in high condition. Whether this positive association between condition and investment also holds between young (high condition) and senesced (low condition) individuals is however less clear, since elevated investment into reproduction may be beneficial when individuals approach the end of their life. To address how investment into sexual traits changes with age, we study genes with sex-biased expression in the brain, the tissue from which sexual behaviours are directed. Across two distinct populations of Drosophila melanogaster, we find that old brains display fewer sex-biased genes, and that expression of both male-biased and female-biased genes converges towards a sexually intermediate phenotype owing to changes in both sexes with age. We further find that sex-biased genes in general show heightened age-dependent expression in comparison to unbiased genes and that age-related changes in the sexual brain transcriptome are commonly larger in males than females. Our results hence show that ageing causes a desexualization of the fruit fly brain transcriptome and that this change mirrors the general prediction that low condition individuals should invest less in sexual phenotypes.
Collapse
Affiliation(s)
- Antonino Malacrinò
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Münster, Germany,Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | | | | | - Avani Mital
- IFM Biology, Linköping University, 581 83 Linköping, Sweden
| | | | - Claudio Mirabello
- Department of Physics, Chemistry and Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Linköping University, 581 83 Linköping, Sweden
| | - Urban Friberg
- IFM Biology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
17
|
Yu Y, Chen M, Lu ZY, Liu Y, Li B, Gao ZX, Shen ZG. High-temperature stress will put the thermo-sensitive teleost yellow catfish (Tachysurus fulvidraco) in danger through reducing reproductivity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113638. [PMID: 35597142 DOI: 10.1016/j.ecoenv.2022.113638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Recently, concerns for species that sex differentiation is influenced by temperature in the context of global warming have increased because disrupted operational sex ratios could threaten population maintenance. In contrast, little attention has been given to the reproductive ability of populations that experienced elevated temperatures. In this study, we demonstrated that high temperature (HT) would decrease population size via three different aspects of reproductive ability for the first time. We show that, in a thermo-sensitive teleost yellow catfish, a short period of HT (+3 °C) exposure during the critical period of sex differentiation leads to a different percentage of masculinization of XX genotypic females (1-23%) in wet-lab and natural water bodies. Combining the results of gonadal appearance, histology, sperm parameters, and fertilization rate, we found that XX pseudo-males induced by HT display significantly discounted fertility and reproductive performance compared to XY normal males. We demonstrate that the survival of the XY genotype is lower than XX genotype under environmental stress, including HT, hypoxia, and parasite infection, and the differential survival seems unrelated to male-biased sexual size dimorphism. The mathematical model predicts that the phenotypic female percent will be stabilized at 50% and the population will be sustainably maintained when masculinizing force is less than 0.5, while HT will put the population in danger when the masculinizing force exceeds 0.5. However, when we combine the real-world data of reproductive ability and mathematic model, our results suggest the population size decreases and the long-term survival of the studied species are threatened under the projected pace of increasing temperature. These findings will be useful for understanding the long-term effects of increasing temperature on sex ratio, reproduction and population maintenance in teleost.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zi-Yi Lu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Ya Liu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Bo Li
- Institute of Fisheries, Wuhan Academy of Agricultural Sciences, Wuhan, PR China
| | - Ze-Xia Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
18
|
Sex-specific regulation of development, growth and metabolism. Semin Cell Dev Biol 2022; 138:117-127. [PMID: 35469676 DOI: 10.1016/j.semcdb.2022.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022]
Abstract
Adult females and males of most species differ in many aspects of their morphology, physiology and behavior, in response to sex-specific selective pressures that maximize fitness. While we have an increasingly good understanding of the genetic mechanisms that initiate these differences, the sex-specific developmental trajectories that generate them are much less well understood. Here we review recent advances in the sex-specific regulation of development focusing on two models where this development is increasingly well understood: Sexual dimorphism of body size in the fruit fly Drosophila melanogaster and sexual dimorphism of horns in the horned beetle Onthophagus taurus. Because growth and development are also supported by metabolism, the regulation of sex-specific metabolism during and after development is an important aspect of the generation of female and male phenotypes. Hitherto, the study of sex-specific development has largely been independent of the study of sex-specific metabolism. Nevertheless, as we discuss in this review, recent research has begun to reveal considerable overlap in the cellular and physiological mechanisms that regulate sex-specific development and metabolism.
Collapse
|
19
|
Brandi ML. Are sex hormones promising candidates to explain sex disparities in the COVID-19 pandemic? Rev Endocr Metab Disord 2022; 23:171-183. [PMID: 34761329 PMCID: PMC8580578 DOI: 10.1007/s11154-021-09692-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests that the novel Coronavirus disease-2019 (COVID-19) is deadlier for men than women both in China and in Europe. Male sex is a risk factor for COVID-19 mortality. The meccanisms underlying the reduced morbidity and lethality in women are currently unclear, even though hypotheses have been posed (Brandi and Giustina in Trends Endocrinol Metab. 31:918-27, 2020). This article aims to describe the role of sex hormones in sex- and gender-related fatality of COVID-19. We discuss the possibility that potential sex-specific mechanisms modulating the course of the disease include both the androgen- and the estrogen-response cascade. Sex hormones regulate the respiratory function, the innate and adaptive immune responses, the immunoaging, the cardiovascular system, and the entrance of the virus in the cells. Recommendations for the future government policies and for the management of COVID-19 patients should include a dimorphic approach for males and females. As the estrogen receptor signaling appears critical for protection in women, more studies are needed to translate the basic knowledge into clinical actions. Understanding the etiological bases of sexual dimorphism in COVID-19 could help develop more effective strategies in individual patients in both sexes, including designing a good vaccine.
Collapse
Affiliation(s)
- Maria Luisa Brandi
- Fondazione Italiana Per La Ricerca Sulle Malattie Dell'Osso, Florence, Italy.
| |
Collapse
|
20
|
Lemaître J, Rey B, Gaillard J, Régis C, Gilot‐Fromont E, Débias F, Duhayer J, Pardonnet S, Pellerin M, Haghani A, Zoller JA, Li CZ, Horvath S. DNA methylation as a tool to explore ageing in wild roe deer populations. Mol Ecol Resour 2022; 22:1002-1015. [PMID: 34665921 PMCID: PMC9297961 DOI: 10.1111/1755-0998.13533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
DNA methylation-based biomarkers of ageing (epigenetic clocks) promise to lead to new insights into evolutionary biology of ageing. Relatively little is known about how the natural environment affects epigenetic ageing effects in wild species. In this study, we took advantage of a unique long-term (>40 years) longitudinal monitoring of individual roe deer (Capreolus capreolus) living in two wild populations (Chizé and Trois-Fontaines, France) facing different ecological contexts, to investigate the relationship between chronological age and levels of DNA methylation (DNAm). We generated novel DNA methylation data from n = 94 blood samples, from which we extracted leucocyte DNA, using a custom methylation array (HorvathMammalMethylChip40). We present three DNA methylation-based estimators of age (DNAm or epigenetic age), which were trained in males, females, and both sexes combined. We investigated how sex differences influenced the relationship between DNAm age and chronological age using sex-specific epigenetic clocks. Our results highlight that old females may display a lower degree of biological ageing than males. Further, we identify the main sites of epigenetic alteration that have distinct ageing patterns between the two sexes. These findings open the door to promising avenues of research at the crossroads of evolutionary biology and biogerontology.
Collapse
Affiliation(s)
- Jean‐François Lemaître
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Benjamin Rey
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Jean‐Michel Gaillard
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Corinne Régis
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Emmanuelle Gilot‐Fromont
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
- Université de LyonVetAgro SupMarcy‐l'EtoileFrance
| | - François Débias
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Jeanne Duhayer
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Sylvia Pardonnet
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Maryline Pellerin
- Direction de la Recherche et de l'Appui ScientifiqueOffice Français de la BiodiversitéUnité Ongulés SauvagesGapFrance
| | - Amin Haghani
- Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos Angeles CaliforniaUSA
| | - Joseph A. Zoller
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Caesar Z. Li
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Steve Horvath
- Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos Angeles CaliforniaUSA
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
21
|
Sándor S, Jónás D, Tátrai K, Czeibert K, Kubinyi E. Poly(A) RNA sequencing reveals age-related differences in the prefrontal cortex of dogs. GeroScience 2022; 44:1269-1293. [PMID: 35288843 PMCID: PMC9213612 DOI: 10.1007/s11357-022-00533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Dogs may possess a unique translational potential to investigate neural aging and dementia because they are prone to age-related cognitive decline, including an Alzheimer’s disease–like pathological condition. Yet very little is known about the molecular mechanisms underlying canine cognitive decline. The goal of the current study was to explore the transcriptomic differences between young and old dogs’ frontal cortex, which is a brain region often affected by various forms of age-related dementia in humans. RNA isolates from the frontal cortical brain area of 13 pet dogs, which represented 7 different breeds and crossbreds, were analyzed. The dogs were euthanized for medical reasons, and their bodies had been donated by their owners for scientific purposes. The poly(A) tail RNA subfraction of the total transcriptome was targeted in the sequencing analysis. Cluster analyses, differential gene expression analyses, and gene ontology analyses were carried out to assess which genes and genetic regulatory mechanisms were mostly affected by aging. Age was the most prominent factor in the clustering of the animals, indicating the presence of distinct gene expression patterns related to aging in a genetically variable population. A total of 3436 genes were found to be differentially expressed between the age groups, many of which were linked to neural function, immune system, and protein synthesis. These findings are in accordance with previous human brain aging RNA sequencing studies. Some genes were found to behave more similarly to humans than to rodents, further supporting the applicability of dogs in translational aging research.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary.
| | - Dávid Jónás
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Kitti Tátrai
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary.,Department of Genetics, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Kálmán Czeibert
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Eniko Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| |
Collapse
|
22
|
Abstract
Oxidative stress is caused by homeostasis disrupted by excessively increased reactive oxygen species (ROS) due to intrinsic or extrinsic causes. Among diseases caused by the abnormal induction of ROS, cancer is a representative disease that shows gender specificity in the development and malignancy. Females have the advantage of longer life expectancy than males because of the genetic advantages derived from X chromosomes, the antioxidant protective function by estrogen, and the decrease in exposure to extrinsic risk factors such as alcohol and smoking. This study first examines the ordinary biological responses to oxidative stress and the effects of ROS on the cancer progression and describes the differences in cancer incidence and mortality by gender and the differences in oxidative stress affected by sex hormones. This paper summarized how several important transcription factors regulate ROS-induced stress and in vivo responses, and how their expression is changed by sex hormones. Estrogen is associated with disease resistance and greater mitochondrial function, and reduces mitochondrial damage and ROS production in females than in males. In addition, estrogen affects the activation of nuclear factor-erythroid 2 p45-related factor (NRF) 2 and the regulation of other antioxidant-related transcription factors through NRF2, leading to benefits in females. Because ROS have a variety of molecular targets in cells, the effective cancer treatment requires understanding the potential of ROS and focusing on the characteristics of the research target such as patient's gender. Therefore, this review intends to emphasize the necessity of discussing gender specificity as a new therapeutic approach for efficient regulation of ROS considering individual specificity.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
23
|
Bronikowski AM, Meisel RP, Biga PR, Walters J, Mank JE, Larschan E, Wilkinson GS, Valenzuela N, Conard AM, de Magalhães JP, Duan J, Elias AE, Gamble T, Graze R, Gribble KE, Kreiling JA, Riddle NC. Sex-specific aging in animals: Perspective and future directions. Aging Cell 2022; 21:e13542. [PMID: 35072344 PMCID: PMC8844111 DOI: 10.1111/acel.13542] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/15/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022] Open
Abstract
Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs.
Collapse
Affiliation(s)
- Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Richard P. Meisel
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Peggy R. Biga
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - James R. Walters
- Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceKansasUSA
| | - Judith E. Mank
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BioscienceUniversity of ExeterPenrynUK
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | | | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Ashley Mae Conard
- Department of Computer ScienceCenter for Computational and Molecular BiologyBrown UniversityProvidenceRhode IslandUSA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing GroupInstitute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | | | - Amy E. Elias
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Tony Gamble
- Department of Biological SciencesMarquette UniversityMilwaukeeWisconsinUSA
- Milwaukee Public MuseumMilwaukeeWisconsinUSA
- Bell Museum of Natural HistoryUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Rita M. Graze
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Kristin E. Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMassachusettsUSA
| | - Jill A. Kreiling
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Nicole C. Riddle
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
24
|
Rendina D, D'Elia L, De Filippo G, Abate V, Evangelista M, Giaquinto A, Barone B, Piccinocchi G, Prezioso D, Strazzullo P. Metabolic syndrome is not associated to an increased risk of low bone mineral density in men at risk for osteoporosis. J Endocrinol Invest 2022; 45:309-315. [PMID: 34313972 PMCID: PMC8783849 DOI: 10.1007/s40618-021-01638-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE We have recently demonstrated a significant association between osteoporosis (Op) and metabolic syndrome (MetS) in Caucasian women examined by Dual-energy X-ray absorptiometry (DXA) for suspected Op. This cross-sectional study was performed to evaluate the association between MetS and Op in Caucasian men enrolled in the same geographical area, with identical criteria and in the same time range. METHODS Among subjects enrolled in the SIMON study, we selected the medical records of all free-living men who performed a contextual evaluation of both bone mineral density (BMD) by DXA and MetS constitutive elements (arterial blood pressure, waist circumference, serum levels of triglycerides, high-density lipoprotein cholesterol, and fasting glucose). All enrolled subjects refer to "COMEGEN" general practitioners' cooperative operating in Naples, Southern Italy. RESULTS Overall, the medical records of 880 men were examined. No significant association between MetS and Op was observed. Among MetS constitutive elements, waist circumference was inversely related to Op risk. CONCLUSION In Caucasian men examined by DXA for suspected Op, no significant association was observed between Op and MetS. The study results contrast to those observed in women enrolled in the same geographical area, with identical criteria and in the same time range and may be related to sexual dimorphism occurring in clinical expressiveness of both MetS and Op.
Collapse
Affiliation(s)
- D Rendina
- Department of Clinical Medicine and Surgery, Federico II University, 80131, Naples, Italy
| | - L D'Elia
- Department of Clinical Medicine and Surgery, Federico II University, 80131, Naples, Italy
| | - G De Filippo
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert-Debré, Service d'Endocrinologie et Diabétologie, 48, Boulevard Sérurier, 75019, Paris, France.
| | - V Abate
- Department of Clinical Medicine and Surgery, Federico II University, 80131, Naples, Italy
| | - M Evangelista
- Department of Clinical Medicine and Surgery, Federico II University, 80131, Naples, Italy
| | - A Giaquinto
- Department of Clinical Medicine and Surgery, Federico II University, 80131, Naples, Italy
| | - B Barone
- Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University, 80131, Naples, Italy
| | | | - D Prezioso
- Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University, 80131, Naples, Italy
| | - P Strazzullo
- Department of Clinical Medicine and Surgery, Federico II University, 80131, Naples, Italy
| |
Collapse
|
25
|
Aging-Related Variation of Cuticular Hydrocarbons in Wild Type and Variant Drosophila melanogaster. J Chem Ecol 2022; 48:152-164. [PMID: 35022940 DOI: 10.1007/s10886-021-01344-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The cuticle of all insects is covered with hydrocarbons which have multiple functions. Cuticular hydrocarbons (CHCs) basically serve to protect insects against environmental harm and reduce dehydration. In many species, some CHCs also act as pheromones. CHCs have been intensively studied in Drosophila species and more especially in D. melanogaster. In this species, flies produce about 40 CHCs forming a complex sex- and species-specific bouquet. The quantitative and qualitative pattern of the CHC bouquet was characterized during the first days of adult life but remains unexplored in aging flies. Here, we characterized CHCs during the whole-or a large period of-adult life in males and females of several wild type and transgenic lines. Both types of lines included standard and variant CHC profiles. Some of the genotypes tested here showed very dramatic and unexpected aging-related variation based on their early days' profile. This study provides a concrete dataset to better understand the mechanisms underlying the establishment and maintenance of CHCs on the fly cuticle. It could be useful to determine physiological parameters, including age and response to climate variation, in insects collected in the wild.
Collapse
|
26
|
Hawkes M, Lane SM, Rapkin J, Jensen K, House C, Sakaluk SK, Hunt J. Intralocus sexual conflict over optimal nutrient intake and the evolution of sex differences in life span and reproduction. Funct Ecol 2022. [DOI: 10.1111/1365-2435.13995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Hawkes
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
| | - Sarah M. Lane
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
- School of Biological and Marine Sciences Animal Behaviour Research Group University of Plymouth Plymouth UK
| | - James Rapkin
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
| | - Kim Jensen
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
- Department of Bioscience Aarhus University Silkeborg Denmark
| | - Clarissa M. House
- School of Science Western Sydney University Penrith NSW Australia
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Scott K. Sakaluk
- Behavior, Ecology, Evolution and Systematics Section School of Biological Sciences Illinois State University Normal IL USA
| | - John Hunt
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
- School of Science Western Sydney University Penrith NSW Australia
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| |
Collapse
|
27
|
Chen Q, Li ZH, Song WQ, Yao Y, Zhang YJ, Zhong WF, Zhang PD, Liu D, Zhang XR, Huang QM, Zhao XY, Shi XM, Mao C. Association between single nucleotide polymorphism of rs1937 in TFAM gene and longevity among the elderly Chinese population: based on the CLHLS study. BMC Geriatr 2022; 22:16. [PMID: 34979947 PMCID: PMC8722189 DOI: 10.1186/s12877-021-02655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background To investigate whether the mitochondrial transcription factor A (TFAM) rs1937 single nucleotide polymorphism (SNP) is associated with longevity. Methods We conducted a case-control study among Chinese long-lived individuals (≥90 years). Data were obtained on 3294 participants who were able to voluntarily provided a saliva sample during 2008–2009 from the Chinese Longitudinal Healthy Longevity Survey (CLHLS). In this study, 1387 young elderly (65–74 years) were allocated to the control group, and 1907 long-lived individuals were recruited as the case group. SNP rs1937 on TFAM were genotyped. Logistic regression models were applied to evaluate the association between rs1937 SNP and longevity. Results The genotype frequency of the SNP of rs1937 in the two groups had a significant difference (p = 0.003). Binary logistic regression analysis showed that compared to younger elderly, the long-lived individuals with “CC genotype” of rs1937 were more closely related to increased longevity than those with “GG genotype” (OR: 1.989, 95% CI: 1.160–3.411). The positive association between rs1937 SNP and longevity was robust in stratified analyses and sensitivity analyses. Conclusions We found the SNP of rs1937 may be a potential biomarker for longer human life span. Further studies are necessary to elucidate the biological mechanism of rs1937 on TFAM with promoting longevity. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-021-02655-3.
Collapse
Affiliation(s)
- Qing Chen
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhi-Hao Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei-Qi Song
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yao Yao
- Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China
| | - Yu-Jie Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wen-Fang Zhong
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Pei-Dong Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dan Liu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xi-Ru Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qing-Mei Huang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiao-Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.
| | - Xiao-Ming Shi
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Chen Mao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
28
|
Sheshadri D, Onkar A, Ganesh S. Alterations in brain glycogen levels influence life-history traits and reduce the lifespan in female Drosophila melanogaster. Biol Open 2021; 10:273730. [PMID: 34817590 PMCID: PMC8689487 DOI: 10.1242/bio.059055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Sexual dimorphism in lifespan, wherein females outlive males, is evident across all animal taxa. The longevity difference between sexes is controlled by multiple physiological processes with complex relationships to one another. In recent years, glycogen, the storage form of glucose, has been shown to cause rapid aging upon forced synthesis in healthy neurons. Glycogen in the form of corpora amylacea in the aging brain is also widely reported. While these studies did suggest a novel role for glycogen in aging, most of them have focused on pooled samples, and have not looked at sex-specific effects, if any. Given the widespread occurrence of sex-biased expression of genes and the underlying physiology, it is important to look at the sex-specific effects of metabolic processes. In the present study, using transgenic fly lines for the human glycogen synthase, we investigated the sex-specific effects of glycogen on stress resistance, fitness, and survival. We demonstrate that Drosophila melanogaster females with altered levels of glycogen in the brain display a shortened lifespan, increased resistance to starvation, and higher oxidative stress than male flies. The present study thus provides a novel insight into the sex-specific effect of glycogen in survival and aging and how differences in metabolic processes could contribute to sex-specific traits.
Collapse
Affiliation(s)
- Deepashree Sheshadri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Akanksha Onkar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
29
|
Titus MB, Chang AW, Olesnicky EC. Exploring the Diverse Functional and Regulatory Consequences of Alternative Splicing in Development and Disease. Front Genet 2021; 12:775395. [PMID: 34899861 PMCID: PMC8652244 DOI: 10.3389/fgene.2021.775395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing is a fundamental mechanism of eukaryotic RNA regulation that increases the transcriptomic and proteomic complexity within an organism. Moreover, alternative splicing provides a framework for generating unique yet complex tissue- and cell type-specific gene expression profiles, despite using a limited number of genes. Recent efforts to understand the negative consequences of aberrant splicing have increased our understanding of developmental and neurodegenerative diseases such as spinal muscular atrophy, frontotemporal dementia and Parkinsonism linked to chromosome 17, myotonic dystrophy, and amyotrophic lateral sclerosis. Moreover, these studies have led to the development of innovative therapeutic treatments for diseases caused by aberrant splicing, also known as spliceopathies. Despite this, a paucity of information exists on the physiological roles and specific functions of distinct transcript spliceforms for a given gene. Here, we will highlight work that has specifically explored the distinct functions of protein-coding spliceforms during development. Moreover, we will discuss the use of alternative splicing of noncoding exons to regulate the stability and localization of RNA transcripts.
Collapse
Affiliation(s)
- M Brandon Titus
- University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Adeline W Chang
- University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Eugenia C Olesnicky
- University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
30
|
Stranahan AM. Visceral adiposity, inflammation, and hippocampal function in obesity. Neuropharmacology 2021; 205:108920. [PMID: 34902347 DOI: 10.1016/j.neuropharm.2021.108920] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023]
Abstract
The 'apple-shaped' anatomical pattern that accompanies visceral adiposity increases risk for multiple chronic diseases, including conditions that impact the brain, such as diabetes and hypertension. However, distinguishing between the consequences of visceral obesity, as opposed to visceral adiposity-associated metabolic and cardiovascular pathologies, presents certain challenges. This review summarizes current literature on relationships between adipose tissue distribution and cognition in preclinical models and highlights unanswered questions surrounding the potential role of tissue- and cell type-specific insulin resistance in these effects. While gaps in knowledge persist related to insulin insensitivity and cognitive impairment in obesity, several recent studies suggest that cells of the neurovascular unit contribute to hippocampal synaptic dysfunction, and this review interprets those findings in the context of progressive metabolic dysfunction in the CNS. Signalling between cerebrovascular endothelial cells, astrocytes, microglia, and neurons has been linked with memory deficits in visceral obesity, and this article describes the cellular changes in each of these populations with respect to their role in amplification or diminution of peripheral signals. The picture emerging from these studies, while incomplete, implicates pro-inflammatory cytokines, insulin resistance, and hyperglycemia in various stages of obesity-induced hippocampal dysfunction. As in the parable of the five blind wanderers holding different parts of an elephant, considerable work remains in order to assemble a model for the underlying mechanisms linking visceral adiposity with age-related cognitive decline.
Collapse
Affiliation(s)
- Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1462 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
31
|
Flanagan BA, Li N, Edmands S. Mitonuclear interactions alter sex-specific longevity in a species without sex chromosomes. Proc Biol Sci 2021; 288:20211813. [PMID: 34727715 PMCID: PMC8564613 DOI: 10.1098/rspb.2021.1813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Impaired mitochondrial function can lead to senescence and the ageing phenotype. Theory predicts degenerative ageing phenotypes and mitochondrial pathologies may occur more frequently in males due to the matrilineal inheritance pattern of mitochondrial DNA observed in most eukaryotes. Here, we estimated the sex-specific longevity for parental and reciprocal F1 hybrid crosses for inbred lines derived from two allopatric Tigriopus californicus populations with over 20% mitochondrial DNA divergence. T. californicus lacks sex chromosomes allowing for more direct testing of mitochondrial function in sex-specific ageing. To better understand the ageing mechanism, we estimated two age-related phenotypes (mtDNA content and 8-hydroxy-20-deoxyguanosine (8-OH-dG) DNA damage) at two time points in the lifespan. Sex differences in lifespan depended on the mitochondrial and nuclear backgrounds, including differences between reciprocal F1 crosses which have different mitochondrial haplotypes on a 50 : 50 nuclear background, with nuclear contributions coming from alternative parents. Young females showed the highest mtDNA content which decreased with age, while DNA damage in males increased with age and exceed that of females 56 days after hatching. The adult sex ratio was male-biased and was attributed to complex mitonuclear interactions. Results thus demonstrate that sex differences in ageing depend on mitonuclear interactions in the absence of sex chromosomes.
Collapse
Affiliation(s)
- Ben A. Flanagan
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 130, Los Angeles, CA 90089, USA
| | - Ning Li
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 130, Los Angeles, CA 90089, USA
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 130, Los Angeles, CA 90089, USA
| |
Collapse
|
32
|
Zhang Y, Chen A, Zou M, Yang Z, Zheng D, Fan M, Jin G. Disease burden of age-related macular degeneration in China from 1990 to 2019: findings from the global burden of disease study. J Glob Health 2021; 11:08009. [PMID: 34737869 PMCID: PMC8564881 DOI: 10.7189/jogh.11.08009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background To evaluate the disease burden of age–related macular degeneration (AMD) in terms of disability-adjusted life years (DALY) in China from 1990 to 2019. Methods Prevalence of blindness and vision loss due to AMD and DALY number, rate, and age-standardized rates of AMD were collected from the Global Burden of Disease Study 2019 database. The characters of variables were analyzed between China and its neighboring countries. Results From 1990 to 2019, the all-age number and rate for AMD prevalence and DALYs increased significantly in China, while the age standardized DALYs rate in 2019 showed a decrease of 3.63% compared with that in 1990. Females were found to have a higher prevalence and DALYs than males. The 65-69 age group had the highest AMD DALYs number, while the DALYs rate showed a positive association with age. In 2019, when compared to neighboring countries, the age standardized prevalence rate of AMD in China was ranked second after Pakistan, while the age standardized DALYs rate ranked second after Pakistan and India. Conclusions Despite a small decrease in age standardized DALYs rate in China in the past three decades, the disease burden of AMD is still considerable and much higher compared to neighboring developed countries. Optimizing health services allocation is needed to further reduce this burden.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Aiming Chen
- Department of Pharmacy, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Minjie Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhenlan Yang
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danying Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Min Fan
- Department of General Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guangming Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Rodrigo MJ, Martinez-Rincon T, Subias M, Mendez-Martinez S, Pablo LE, Polo V, Aragon-Navas A, Garcia-Herranz D, Feijoo JG, Osuna IB, Herrero-Vanrell R, Garcia-Martin E. Influence of Sex on Neuroretinal Degeneration: Six-Month Follow-Up in Rats With Chronic Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:9. [PMID: 34643665 PMCID: PMC8525827 DOI: 10.1167/iovs.62.13.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose To evaluate differences by sex in the neuroretina of rats with chronic glaucoma over 24 weeks of follow-up, and to assess by sex the influence on neurodegeneration of different methods of inducing ocular hypertension. Methods Forty-six Long-Evans rats-18 males and 28 females-with induced chronic glaucoma were analyzed. Glaucoma was achieved via 2 models: repeatedly sclerosing the episcleral veins (9 male/14 female) or by injecting poly(lactic-co-glycolic acid) microspheres measuring 20 to 10 µm (Ms20/10) into the anterior chamber (9 male/14 female). The IOP was measured weekly by tonometer; neuroretinal function was recorded by dark/light-adapted electroretinography at baseline and weeks 12 and 24; and structure was analyzed by optical coherence tomography using the retina posterior pole, retinal nerve fiber layer and ganglion cell layer protocols at baseline and weeks 8, 12, 18, and 24. Results Males showed statistically significant (P < 0.05) higher IOP in both chronic glaucoma models, and greater differences were found in the episcleral model at earlier stages. Males with episclerally induced glaucoma showed a statistically higher increase in retinal thickness in optical coherence tomography recordings than females and also when comparing Ms20/10 at 12 weeks. Males showed a higher percentage of retinal nerve fiber layer thickness loss in both models. Ganglion cell layer thickness loss was only detected in the Ms20/10 model. Males exhibited worse dark/light-adapted functionality in chronic glaucoma models, which worsened in the episcleral sclerosis model at 12 weeks, than females. Conclusions Female rats with chronic glaucoma experienced lower IOP and structural loss and better neuroretinal functionality than males. Sex and the ocular hypertension-inducing method influenced neuroretinal degeneration.
Collapse
Affiliation(s)
- Maria J Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain
| | - Teresa Martinez-Rincon
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Manuel Subias
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Silvia Mendez-Martinez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Luis E Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain
| | - Vicente Polo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Alba Aragon-Navas
- Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - David Garcia-Herranz
- Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Julian García Feijoo
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Ophthalmology, San Carlos Clinical Hospital, UCM, Madrid, Spain
| | - Irene Bravo Osuna
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rocio Herrero-Vanrell
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,https://orcid.org/0000-0001-6258-2489
| |
Collapse
|
34
|
Opstad TB, Sundfør T, Tonstad S, Seljeflot I. Effect of intermittent and continuous caloric restriction on Sirtuin1 concentration depends on sex and body mass index. Nutr Metab Cardiovasc Dis 2021; 31:1871-1878. [PMID: 33975734 DOI: 10.1016/j.numecd.2021.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND & AIMS The favorable effect of caloric restriction (CR) on health span is well known and partly mediated by the sirtuin system. Sirtuin1, a regulator of energy homeostasis in response to nutrient availability, is activated by CR. We therefore investigated effects of two different CR regimens on Sirtuin1 concentrations. METHODS & RESULTS The study included 112 abdominally obese subjects, randomized to intermittent or continuous CR for 1 year. Blood samples and anthropometric measures were collected at baseline and after 12 months. Sirtuin1 concentrations were measured by ELISA. Sirtuin1 correlated significantly to BMI at baseline (r = .232, p = 0.019). Mean reduction in body-weight was 8.0 and 9.0 kg after intermittent and continuous CR, respectively. After 1 year, no significant between-group differences in Sirtuin1 levels were observed according to regimen (p = 0.98) and sex (p = 0.41). An increase in median Sirtuin1 concentrations (pg/mL) [25, 75 percentiles] from baseline was observed after intermittent CR in the total population (884 [624, 1285] vs.762 [530, 1135]; p = 0.041), most marked in men (820 [623, 1250] vs. 633 [524, 926]; p = 0.016). Improvement in BMI after 1 year correlated to Sirtuin1 changes, but varied according to sex. In women, Spearman's rho = .298, p = 0.034, with stronger correlation in the intermittent CR group (r = .424, p = 0.049). In men, there was an inverse relation to Sirtuin1 changes, only in the intermittent CR group (r = -.396, p = 0.045). CONCLUSIONS Effects on Sirtuin1 concentrations after 1 year of CR are sex and BMI-related. Intermittent CR regimen affected Sirtuin1 to a stronger extent than continuous CR, suggesting individualized dietary intervention.
Collapse
Affiliation(s)
- Trine B Opstad
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway.
| | - Tine Sundfør
- Section of Preventive Cardiology, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, Oslo, Norway
| | - Serena Tonstad
- Section of Preventive Cardiology, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
35
|
Duran-Ortiz S, List EO, Basu R, Kopchick JJ. Extending lifespan by modulating the growth hormone/insulin-like growth factor-1 axis: coming of age. Pituitary 2021; 24:438-456. [PMID: 33459974 PMCID: PMC8122064 DOI: 10.1007/s11102-020-01117-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Progress made in the years of aging research have allowed the opportunity to explore potential interventions to slow aging and extend healthy lifespan. Studies performed in yeast, worms, flies and mice subjected to genetic and pharmacological interventions have given insight into the cellular and molecular mechanisms associated with longevity. Furthermore, it is now possible to effectively modulate pathways that slow aging at different stages of life (early life or at an adult age). Interestingly, interventions that extend longevity in adult mice have had sex-specific success, suggesting a potential link between particular pathways that modulate aging and sex. For example, reduction of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis at an adult age extends lifespan preferentially in females. Moreover, several postnatal dietary interventions tested by the 'Intervention Testing Program (ITP)' from the National Institute of Aging (NIA) have shown that while pharmacological interventions like rapamycin affect the IGF-1/insulin pathway and preferentially extend lifespan in females; dietary compounds that target other cellular pathways are effective only in male mice-indicating mutually exclusive sex-specific pathways. Therefore, a combination of interventions that target non-overlapping aging-related pathways appears to be an effective approach to further extend healthy lifespan in both sexes. Here, we review the germline and postnatal mouse lines that target the GH/IGF-1 axis as a mechanism to extend longevity as well as the dietary compounds that tested positive in the NIA program to increase lifespan. We believe that the interventions reviewed in this paper could constitute feasible combinations for an extended healthy lifespan in both male and female mice.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
36
|
Titus MB, Wright EG, Bono JM, Poliakon AK, Goldstein BR, Super MK, Young LA, Manaj M, Litchford M, Reist NE, Killian DJ, Olesnicky EC. The conserved alternative splicing factor caper regulates neuromuscular phenotypes during development and aging. Dev Biol 2021; 473:15-32. [PMID: 33508255 PMCID: PMC7987824 DOI: 10.1016/j.ydbio.2021.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
RNA-binding proteins play an important role in the regulation of post-transcriptional gene expression throughout the nervous system. This is underscored by the prevalence of mutations in genes encoding RNA splicing factors and other RNA-binding proteins in a number of neurodegenerative and neurodevelopmental disorders. The highly conserved alternative splicing factor Caper is widely expressed throughout the developing embryo and functions in the development of various sensory neural subtypes in the Drosophila peripheral nervous system. Here we find that caper dysfunction leads to aberrant neuromuscular junction morphogenesis, as well as aberrant locomotor behavior during larval and adult stages. Despite its widespread expression, our results indicate that caper function is required to a greater extent within the nervous system, as opposed to muscle, for neuromuscular junction development and for the regulation of adult locomotor behavior. Moreover, we find that Caper interacts with the RNA-binding protein Fmrp to regulate adult locomotor behavior. Finally, we show that caper dysfunction leads to various phenotypes that have both a sex and age bias, both of which are commonly seen in neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- M Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Ethan G Wright
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Jeremy M Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Andrea K Poliakon
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Brandon R Goldstein
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Meg K Super
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Lauren A Young
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Melpomeni Manaj
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Morgan Litchford
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Noreen E Reist
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, 80903, USA
| | - Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
| |
Collapse
|
37
|
Li X, Duan X, Zhang H, Ding M, Wang Y, Yang Y, Yao W, Zhou X, Wang W. Genetic polymorphisms of metabolic enzyme genes associated with leukocyte mitochondrial DNA copy number in PAHs exposure workers. Cancer Rep (Hoboken) 2021; 4:e1361. [PMID: 33788425 PMCID: PMC8388165 DOI: 10.1002/cnr2.1361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) exposure had been reported to be a risk factor of mtDNAcn in our early study. However, the effect of metabolic enzymes' genetic polymorphisms on mtDNAcn in PAHs-Exposure workers has not been fully evaluated. AIM The aim of the study was to explore the effect of metabolic enzymes' genetic polymorphisms on mtDNAcn in PAHs-Exposure. METHODS AND RESULTS We investigated the effects of metabolic enzymes' genetic polymorphisms on mtDNAcn among 544 coke oven workers and 238 office staffs. The mtDNAcn of peripheral blood leukocytes was measured using the Real-time quantitative polymerase chain reaction (PCR) method. PCR and restriction fragment length was used to detect five polymorphisms in GSTT1, GSTM1, GSTP1 rs1695, CYP2E1 rs6413432, and CYP2E1 rs3813867. The mtDNAcn in peripheral blood leukocytes was significantly lower in the exposure group than that in the control group (p < .001). The 1-OHPYR had an increasing trend with the genotypes AA→AG → GG of GSTP1 rs1695 in the control group. Generalized linear model indicated that the influencing factors of mtDNAcn were PAHs-exposure [β (95% CI) = -0.420 (-0.469, -0.372), p < .001], male [β (95% CI) = -0.058 (-0.103, -0.012), p = .013], and AA genotype for GSTP1 rs1695 [β (95% CI) = -0.051 (-0.095, -0.008), p = .020]. CONCLUSION The individuals carrying the AA genotype of GSTP1 rs1695 may have a lower mtDNAcn due to their weaker detoxification of PAHs.
Collapse
Affiliation(s)
- Xinling Li
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China.,The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China
| | - Xiaoran Duan
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingcui Ding
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yanbin Wang
- Safety Management Department of Anyang Iron and Steel Group Company, Anyang, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wu Yao
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoshan Zhou
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China.,The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China.,The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China
| |
Collapse
|
38
|
Kim JY, Min K, Paik HY, Lee SK. Sex omission and male bias are still widespread in cell experiments. Am J Physiol Cell Physiol 2021; 320:C742-C749. [PMID: 33656929 DOI: 10.1152/ajpcell.00358.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Integrating sex as an important biological variable is imperative to enhance the accuracy and reproducibility of cell-based studies, which provide basic information for subsequent preclinical and clinical study designs. Recently, international funding agencies and renowned journals have been attempting to integrate sex as a variable in every research step. To understand what progress has been made in reporting of cell sex in the articles published in AJP-Cell Physiology since the analysis in 2013, we examined the sex notation of the cells in relevant articles published in the same journal in 2018. Of the 107 articles reporting cell experiments, 53 reported the sex of the cells, 18 used both male and female cells, 23 used male cells only, and 12 used female cells only. Sex omission was more frequent when cell lines were used than when primary cells were used. In the articles describing experiments performed using rodent primary cells, more than half of the studies used only male cells. Our results showed an overall improvement in sex reporting for cells in AJP-Cell Physiology articles from 2013 (25%) to 2018 (50%). However, sex omission and male bias were often found still. Furthermore, the obtained results were rarely analyzed by sex even when both male and female cells were used in the experiments. To boost sex-considerate research implementation in basic biomedical studies, cooperative efforts of the research community, funders, and publishers are urged.
Collapse
Affiliation(s)
- Jun Yeob Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyoungmi Min
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hee Young Paik
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Suk Kyeong Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
39
|
Radovic Pletikosic SM, Starovlah IM, Miljkovic D, Bajic DM, Capo I, Nef S, Kostic TS, Andric SA. Deficiency in insulin-like growth factors signalling in mouse Leydig cells increase conversion of testosterone to estradiol because of feminization. Acta Physiol (Oxf) 2021; 231:e13563. [PMID: 32975906 DOI: 10.1111/apha.13563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
AIM A growing body of evidence pointed correlation between insulin-resistance, testosterone level and infertility, but there is scarce information about mechanisms. The aim of this study was to identify the possible mechanism linking the insulin-resistance with testosterone-producing-Leydig-cells functionality. METHODS We applied in vivo and in vitro approaches. The in vivo model of functional genomics is represented by INSR/IGF1R-deficient-testosterone-producing Leydig cells obtained from the prepubertal (P21) and adult (P80) male mice with insulin + IGF1-receptors deletion in steroidogenic cells (Insr/Igf1r-DKO). The in vitro model of INSR/IGF1R-deficient-cell was mimicked by blockade of insulin/IGF1-receptors on the primary culture of P21 and P80 Leydig cells. RESULTS Leydig-cell-specific-insulin-resistance induce the development of estrogenic characteristics of progenitor Leydig cells in prepubertal mice and mature Leydig cells in adult mice, followed with a dramatic reduction of androgen phenotype. Level of androgens in serum, testes and Leydig cells decrease as a consequence of the dramatic reduction of steroidogenic capacity and activity as well as all functional markers of Leydig cell. Oppositely, the markers for female-steroidogenic-cell differentiation and function increase. The physiological significances are the higher level of testosterone-to-estradiol-conversion in double-knock-out-mice of both ages and few spermatozoa in adults. Intriguingly, the transcription of pro-male sexual differentiation markers Sry/Sox9 increased in P21-Leydig-cells, questioning the current view about the antagonistic genetic programs underlying gonadal sex determination. CONCLUSION The results provide new molecular mechanisms leading to the development of the female phenotype in Leydig cells from Insr/Igf1r-DKO mice and could help to better understand the correlation between insulin resistance, testosterone and male (in)fertility.
Collapse
Affiliation(s)
- Sava M. Radovic Pletikosic
- Laboratory for Reproductive Endocrinology and Signalling Laboratory for Chronobiology and Aging CeRES DBE Faculty of Sciences University of Novi Sad Novi Sad Serbia
| | - Isidora M. Starovlah
- Laboratory for Reproductive Endocrinology and Signalling Laboratory for Chronobiology and Aging CeRES DBE Faculty of Sciences University of Novi Sad Novi Sad Serbia
| | - Dejan Miljkovic
- Center for Medical‐Pharmaceutical Research and Quality Control Department for Histology and Embryology Faculty of Medicine University of Novi Sad Novi Sad Serbia
| | - Dragana M. Bajic
- Laboratory for Reproductive Endocrinology and Signalling Laboratory for Chronobiology and Aging CeRES DBE Faculty of Sciences University of Novi Sad Novi Sad Serbia
| | - Ivan Capo
- Center for Medical‐Pharmaceutical Research and Quality Control Department for Histology and Embryology Faculty of Medicine University of Novi Sad Novi Sad Serbia
| | - Serge Nef
- Department of Genetic Medicine and Development Medical Faculty University of Geneva Geneva Switzerland
| | - Tatjana S. Kostic
- Laboratory for Reproductive Endocrinology and Signalling Laboratory for Chronobiology and Aging CeRES DBE Faculty of Sciences University of Novi Sad Novi Sad Serbia
| | - Silvana A. Andric
- Laboratory for Reproductive Endocrinology and Signalling Laboratory for Chronobiology and Aging CeRES DBE Faculty of Sciences University of Novi Sad Novi Sad Serbia
| |
Collapse
|
40
|
Nagarajan-Radha V, Devaraj PSD. Sex differences in postprandial blood glucose and body surface temperature are contingent on flight in the fruit bat, Cynopterus sphinx. Biol Open 2021; 10:bio.053926. [PMID: 33509836 PMCID: PMC7903995 DOI: 10.1242/bio.053926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The postprandial blood glucose level is very high for the body size in frugivorous bats. Like other homeotherms, bats release heat during digestion of dietary macronutrients. Despite males and females of the same species exhibiting different foraging behaviour, empirical support for sex differences in blood glucose and body surface temperature in fruit bats is poor. Moreover, while flight affects postprandial metabolism, whether such effects are different in each sex of fruit bats is unclear. Here, we studied these questions in the fruit bat, Cynopterus sphinx. We first assessed whether there are sex differences in the postprandial level of blood glucose and body surface temperature over time in rested bats. We then assessed whether flight affects outcomes of sex differences in both traits. We found that the estimated marginal means of both traits were generally higher in females than males, in rested bats. Notably, the sex difference in both traits was only significant at specific sampling time of the assay. Further, the trait means significantly differed between the sexes only in the rested, but not active, bats, meaning that signals of sex difference in metabolic traits eroded when bats were active. Taken together, our findings suggest that in C. sphinx, the sex specificity in the expression of metabolic traits is significantly dependent on physical activity. Summary: The level of sex differences in metabolic traits is affected by flight in Cynopterus sphinx, a finding that has general implications for sex-specific life-history evolution in fruit bats.
Collapse
Affiliation(s)
| | - Paramanantha Swami Doss Devaraj
- Centre for Behavioural and Immuno Ecology, Department of Zoology, St. John's College, Palayamkottai 627002, Tamil Nadu, India
| |
Collapse
|
41
|
Shaposhnikov MV, Zemskaya NV, Koval LA, Schegoleva EV, Yakovleva DV, Ulyasheva NS, Gorbunova AA, Minnikhanova NR, Moskalev AA. Geroprotective potential of genetic and pharmacological interventions to endogenous hydrogen sulfide synthesis in Drosophila melanogaster. Biogerontology 2021; 22:197-214. [PMID: 33544267 DOI: 10.1007/s10522-021-09911-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Endogenous hydrogen sulfide (H2S) is a gasotransmitter with a wide range of physiological functions. Aging is accompanied by disruption of H2S homeostasis, therefore, interventions to the processes of H2S metabolism to maintain its balance may have geroprotective potential. Here we demonstrated the additive geroprotective effect of combined genetic and pharmacological interventions to the hydrogen sulfide biosynthesis system by overexpression of cystathionine-β-synthase and cystathionine-γ-lyase genes and treatment with precursors of H2S synthesis cysteine (Cys) and N-acetyl-L-cysteine (NAC). The obtained results suggest that additive effects of genetic and pharmacological interventions to H2S metabolism may be associated with the complex interaction between beneficial action of H2S production and prevention of adverse effects of excess H2S production by Cys and NAC treatment.
Collapse
Affiliation(s)
- Mikhail V Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russian Federation.,Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Liubov A Koval
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Eugenia V Schegoleva
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Daria V Yakovleva
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Natalia S Ulyasheva
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Anastasia A Gorbunova
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Natalya R Minnikhanova
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russian Federation. .,Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation.
| |
Collapse
|
42
|
Chhabra Y, Lee CMM, Müller AF, Brooks AJ. GHR signalling: Receptor activation and degradation mechanisms. Mol Cell Endocrinol 2021; 520:111075. [PMID: 33181235 DOI: 10.1016/j.mce.2020.111075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Growth hormone (GH) actions via initiating cell signalling through the GH receptor (GHR) are important for many physiological processes, in addition to its well-known role in regulating growth. The activation of JAK-STAT signalling by GH is well characterized, however knowledge on GH activation of SRC family kinases (SFKs) is still limited. In this review we summarise the collective knowledge on the activation, regulation, and downstream signalling of GHR. We highlight studies on GH activation of SFKs and the important outcome of this signalling pathway with a focus on the different degradation mechanisms that can regulate GHR availability since this is an area that warrants further study considering its role in tumour progression.
Collapse
Affiliation(s)
- Yash Chhabra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21231, USA
| | - Christine M M Lee
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Alexandra Franziska Müller
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Andrew J Brooks
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
43
|
Millington JW, Brownrigg GP, Chao C, Sun Z, Basner-Collins PJ, Wat LW, Hudry B, Miguel-Aliaga I, Rideout EJ. Female-biased upregulation of insulin pathway activity mediates the sex difference in Drosophila body size plasticity. eLife 2021; 10:e58341. [PMID: 33448263 PMCID: PMC7864645 DOI: 10.7554/elife.58341] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Nutrient-dependent body size plasticity differs between the sexes in most species, including mammals. Previous work in Drosophila showed that body size plasticity was higher in females, yet the mechanisms underlying increased female body size plasticity remain unclear. Here, we discover that a protein-rich diet augments body size in females and not males because of a female-biased increase in activity of the conserved insulin/insulin-like growth factor signaling pathway (IIS). This sex-biased upregulation of IIS activity was triggered by a diet-induced increase in stunted mRNA in females, and required Drosophila insulin-like peptide 2, illuminating new sex-specific roles for these genes. Importantly, we show that sex determination gene transformer promotes the diet-induced increase in stunted mRNA via transcriptional coactivator Spargel to regulate the male-female difference in body size plasticity. Together, these findings provide vital insight into conserved mechanisms underlying the sex difference in nutrient-dependent body size plasticity.
Collapse
Affiliation(s)
- Jason W Millington
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - George P Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Charlotte Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Ziwei Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Paige J Basner-Collins
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Lianna W Wat
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Bruno Hudry
- MRC London Institute of Medical Sciences, and Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, and Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| |
Collapse
|
44
|
The role of the PIK3CA gene in the development and aging of the brain. Sci Rep 2021; 11:291. [PMID: 33431926 PMCID: PMC7801510 DOI: 10.1038/s41598-020-79416-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 11/20/2020] [Indexed: 01/05/2023] Open
Abstract
The CLOVES syndrome is an overgrowth disease arising from mosaic activating somatic mutations in the PIK3CA gene. These mutations occur during fetal development producing malformation and overgrowth of a variety of tissues. It has recently been shown that treatment with low doses of a selective inhibitor of Class I PI3K catalytic subunit p110α, the protein product of the PIK3CA gene, can yield dramatic therapeutic benefits for patients with CLOVES and PROS (a spectrum of PIK3CA-related overgrowth syndromes). To assess the long-term effects of moderate loses of p110α activity, we followed development and growth of mice with heterozygous loss of p110α (Pik3ca+/−) over their entire lifetimes, paying particular attention to effects on the brain. While homozygous deletion of the Pik3ca gene is known to result in early embryonic lethality, these Pik3ca+/− mice displayed a longer lifespan compared to their wild-type littermates. These mice appeared normal, exhibited no obvious behavioral abnormalities, and no body weight changes. However, their brains showed a significant reduction in size and weight. Notably, mice featuring deletion of one allele of Pik3ca only in the brain also showed gradually reduced brain size and weight. Mechanistically, either deletion of p110α or pharmacological inhibition of p110α activity reduced neurosphere size, but not numbers, in vitro, suggesting that p110α activity is critical for neuronal stem cells. The phenotypes observed in our two genetically engineered mouse models suggest that the sustained pharmacological inhibition of the PIK3CA activity in human patients might have both beneficial and harmful effects, and future treatments may need to be deployed in a way to avoid or minimize adverse effects.
Collapse
|
45
|
Lan Y, Wang J, Yang Q, Tang RX, Zhou M, Lei GL, Li J, Zhang L, Yue BS, Fan ZX. Blood transcriptome analysis reveals gene expression features of breast-feeding rhesus macaque ( Macaca mulatta) infants. Zool Res 2020; 41:431-436. [PMID: 32400975 PMCID: PMC7340523 DOI: 10.24272/j.issn.2095-8137.2020.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yue Lan
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiao Wang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qiao Yang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rui-Xiang Tang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Min Zhou
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Guang-Lun Lei
- Sichuan Green-House Biotech Co., Ltd., Meishan, Sichuan 620010, China
| | - Jing Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Liang Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan 610081, China
| | - Bi-Song Yue
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhen-Xin Fan
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China. E-mail:
| |
Collapse
|
46
|
Li N, Flanagan BA, Partridge M, Huang EJ, Edmands S. Sex differences in early transcriptomic responses to oxidative stress in the copepod Tigriopus californicus. BMC Genomics 2020; 21:759. [PMID: 33143643 PMCID: PMC7607713 DOI: 10.1186/s12864-020-07179-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/22/2020] [Indexed: 01/21/2023] Open
Abstract
Background Patterns of gene expression can be dramatically different between males and females of the same species, in part due to genes on sex chromosomes. Here we test for sex differences in early transcriptomic response to oxidative stress in a species which lacks heteromorphic sex chromosomes, the copepod Tigriopus californicus. Results Male and female individuals were separately exposed to control conditions and pro-oxidant conditions (hydrogen peroxide and paraquat) for periods of 3 hours and 6 hours. Variance partitioning showed the greatest expression variance among individuals, highlighting the important information that can be obscured by the common practice of pooling individuals. Gene expression variance between sexes was greater than that among treatments, showing the profound effect of sex even when males and females share the same genome. Males exhibited a larger response to both pro-oxidants, differentially expressing more than four times as many genes, including up-regulation of more antioxidant genes, heat shock proteins and protease genes. While females differentially expressed fewer genes, the magnitudes of fold change were generally greater, indicating a more targeted response. Although females shared a smaller fraction of differentially expressed genes between stressors and time points, expression patterns of antioxidant and protease genes were more similar between stressors and more GO terms were shared between time points. Conclusions Early transcriptomic responses to the pro-oxidants H2O2 and paraquat in copepods revealed substantial variation among individuals and between sexes. The finding of such profound sex differences in oxidative stress response, even in the absence of sex chromosomes, highlights the importance of studying both sexes and the potential for developing sex-specific strategies to promote optimal health and aging in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07179-5.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA.
| | - Ben A Flanagan
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| | - MacKenzie Partridge
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| | - Elaine J Huang
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| |
Collapse
|
47
|
Zhou M, Zhang L, Yang Q, Yan C, Jiang P, Lan Y, Wang J, Tang R, He M, Lei G, Sun P, Su N, Price M, Li J, Lin F, Yue B, Fan Z. Age-related gene expression and DNA methylation changes in rhesus macaque. Genomics 2020; 112:5147-5156. [DOI: 10.1016/j.ygeno.2020.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/23/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
|
48
|
Shaposhnikov MV, Zemskaya NV, Koval LА, Minnikhanova NR, Kechko OI, Mitkevich VA, Makarov AA, Moskalev AА. Amyloid-β peptides slightly affect lifespan or antimicrobial peptide gene expression in Drosophila melanogaster. BMC Genet 2020; 21:65. [PMID: 33092519 PMCID: PMC7583308 DOI: 10.1186/s12863-020-00866-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/23/2022] Open
Abstract
Background Beta-amyloid peptide (Aβ) is the key protein in the pathogenesis of Alzheimer’s disease, the most common age-related neurodegenerative disorder in humans. Aβ peptide induced pathological phenotypes in different model organisms include neurodegeneration and lifespan decrease. However, recent experimental evidence suggests that Aβ may utilize oligomerization and fibrillization to function as an antimicrobial peptide (AMP), and protect the host from infections. We used the power of Drosophila model to study mechanisms underlying a dual role for Aβ peptides. Results We investigated the effects of Drosophila treatment with three Aβ42 peptide isoforms, which differ in their ability to form oligomers and aggregates on the lifespan, locomotor activity and AMP genes expression. Aβ42 slightly decreased female’s median lifespan (by 4.5%), but the effect was not related to the toxicity of peptide isoform. The lifespan and relative levels of AMP gene expression in male flies as well as locomotor activity in both sexes were largely unaffected by Aβ42 peptide treatment. Regardless of the effects on lifespan, Aβ42 peptide treatment induced decrease in AMP genes expression in females, but the effects were not robust. Conclusions The results demonstrate that chronic treatment with Aβ42 peptides does not drastically affect fly aging or immunity.
Collapse
Affiliation(s)
- Mikhail V Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.,Institute of Biology of Komi Science Center of Ural Branch of RAS, 167982, Syktyvkar, Russia
| | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, 167982, Syktyvkar, Russia
| | - Lyubov А Koval
- Institute of Biology of Komi Science Center of Ural Branch of RAS, 167982, Syktyvkar, Russia
| | - Natalya R Minnikhanova
- Institute of Biology of Komi Science Center of Ural Branch of RAS, 167982, Syktyvkar, Russia
| | - Olga I Kechko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Alexey А Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia. .,Institute of Biology of Komi Science Center of Ural Branch of RAS, 167982, Syktyvkar, Russia.
| |
Collapse
|
49
|
Ågren JA, Munasinghe M, Clark AG. Mitochondrial-Y chromosome epistasis in Drosophila melanogaster. Proc Biol Sci 2020; 287:20200469. [PMID: 33081607 DOI: 10.1098/rspb.2020.0469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The coordination between mitochondrial and nuclear genes is crucial to eukaryotic organisms. Predicting the nature of these epistatic interactions can be difficult because of the transmission asymmetry of the genes involved. While autosomes and X-linked genes are transmitted through both sexes, genes on the Y chromosome and in the mitochondrial genome are uniparentally transmitted through males and females, respectively. Here, we generate 36 otherwise isogenic Drosophila melanogaster strains differing only in the geographical origin of their mitochondrial genome and Y chromosome, to experimentally examine the effects of the uniparentally inherited parts of the genome, as well as their interaction, in males. We assay longevity and gene expression through RNA-sequencing. We detect an important role for both mitochondrial and Y-linked genes, as well as extensive mitochondrial-Y chromosome epistasis. In particular, genes involved in male reproduction appear to be especially sensitive to such interactions, and variation on the Y chromosome is associated with differences in longevity. Despite these interactions, we find no evidence that the mitochondrial genome and Y chromosome are co-adapted within a geographical region. Overall, our study demonstrates a key role for the uniparentally inherited parts of the genome for male biology, but also that mito-nuclear interactions are complex and not easily predicted from simple transmission asymmetries.
Collapse
Affiliation(s)
- J Arvid Ågren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Manisha Munasinghe
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.,Department of Computational Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
50
|
Kiel C, Strunz T, Grassmann F, Weber BHF. Pleiotropic Locus 15q24.1 Reveals a Gender-Specific Association with Neovascular but Not Atrophic Age-Related Macular Degeneration (AMD). Cells 2020; 9:E2257. [PMID: 33050031 PMCID: PMC7650707 DOI: 10.3390/cells9102257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified an abundance of genetic loci associated with complex traits and diseases. In contrast, in-depth characterization of an individual genetic signal is rarely available. Here, we focus on the genetic variant rs2168518 in 15q24.1 previously associated with age-related macular degeneration (AMD), but only with suggestive evidence. In a two-step procedure, we initially conducted a series of association analyses to further delineate the association of rs2168518 with AMD but also with other complex phenotypes by using large independent datasets from the International AMD Genomics Consortium (IAMDGC) and the UK Biobank. We then performed a functional annotation with reference to gene expression regulation based on data from the Genotype-Tissue Expression (GTEx) project and RegulomeDB. Association analysis revealed a gender-specific association with male AMD patients and an association predominantly with choroidal neovascularization. Further, the AMD association colocalizes with an association signal of several blood pressure-related phenotypes and with the gene expression regulation of CYP1A1, a member of the cytochrome P450 superfamily of monooxygenases. Functional annotation revealed altered transcription factor (TF) binding sites for gender-specific TFs, including SOX9 and SRY. In conclusion, the pleiotropic 15q24.1 association signal suggests a shared mechanism between blood pressure regulation and choroidal neovascularization with a potential involvement of CYP1A1.
Collapse
Affiliation(s)
- Christina Kiel
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (T.S.); (F.G.)
| | - Tobias Strunz
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (T.S.); (F.G.)
| | | | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (T.S.); (F.G.)
- Institute of Medical Sciences, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (T.S.); (F.G.)
- Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|