1
|
Zhang H, Meng X, Liu R, Li R, Wang Y, Ma Z, Liu Z, Duan S, Li G, Guo X. Heat shock factor ZmHsf17 positively regulates phosphatidic acid phosphohydrolase ZmPAH1 and enhances maize thermotolerance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:493-512. [PMID: 39324623 PMCID: PMC11714762 DOI: 10.1093/jxb/erae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Heat stress adversely impacts plant growth, development, and grain yield. Heat shock factors (Hsf), especially the HsfA2 subclass, play a pivotal role in the transcriptional regulation of genes in response to heat stress. In this study, the coding sequence of maize ZmHsf17 was cloned. ZmHsf17 contained conserved domains including a DNA binding domain, oligomerization domain, and transcriptional activation domain. The protein was nuclear localized and had transcription activation activity. Yeast two-hybrid and split luciferase complementation assays confirmed the interaction of ZmHsf17 with members of the maize HsfA2 subclass. Overexpression of ZmHsf17 in maize significantly increased chlorophyll content and net photosynthetic rate, and enhanced the stability of cellular membranes. Through integrative analysis of ChIP-seq and RNA-seq datasets, ZmPAH1, encoding phosphatidic acid phosphohydrolase of lipid metabolic pathways, was identified as a target gene of ZmHsf17. The promoter fragment of ZmPAH1 was bound by ZmHsf17 in protein-DNA interaction experiments in vivo and in vitro. Lipidomic data also indicated that the overexpression of ZmHsf17 increased levels of some critical membrane lipid components of maize leaves under heat stress. This research provides new insights into the role of the ZmHsf17-ZmPAH1 module in regulating thermotolerance in maize.
Collapse
Affiliation(s)
- Huaning Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Xiangzhao Meng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Ran Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Ran Li
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou 075000, P. R. China
| | - Yantao Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056000, P. R. China
| | - Zhenyu Ma
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Zihui Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Shuonan Duan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| |
Collapse
|
2
|
Peng J, Yu Y, Fang X. Stress sensing and response through biomolecular condensates in plants. PLANT COMMUNICATIONS 2024:101225. [PMID: 39702967 DOI: 10.1016/j.xplc.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Plants have developed intricate mechanisms for rapid and efficient stress perception and adaptation in response to environmental stressors. Recent research highlights the emerging role of biomolecular condensates in modulating plant stress perception and response. These condensates function through numerous mechanisms to regulate cellular processes such as transcription, translation, RNA metabolism, and signaling pathways under stress conditions. In this review, we provide an overview of current knowledge on stress-responsive biomolecular condensates in plants, including well-defined condensates such as stress granules, processing bodies, and the nucleolus, as well as more recently discovered plant-specific condensates. By briefly referring to findings from yeast and animal studies, we discuss mechanisms by which plant condensates perceive stress signals and elicit cellular responses. Finally, we provide insights for future investigations on stress-responsive condensates in plants. Understanding how condensates act as stress sensors and regulators will pave the way for potential applications in improving plant resilience through targeted genetic or biotechnological interventions.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yidan Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Casal JJ, Murcia G, Bianchimano L. Plant Thermosensors. Annu Rev Genet 2024; 58:135-158. [PMID: 38986032 DOI: 10.1146/annurev-genet-111523-102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Plants are exposed to temperature conditions that fluctuate over different time scales, including those inherent to global warming. In the face of these variations, plants sense temperature to adjust their functions and minimize the negative consequences. Transcriptome responses underlie changes in growth, development, and biochemistry (thermomorphogenesis and acclimation to extreme temperatures). We are only beginning to understand temperature sensation by plants. Multiple thermosensors convey complementary temperature information to a given signaling network to control gene expression. Temperature-induced changes in protein or transcript structure and/or in the dynamics of biomolecular condensates are the core sensing mechanisms of known thermosensors, but temperature impinges on their activities via additional indirect pathways. The diversity of plant responses to temperature anticipates that many new thermosensors and eventually novel sensing mechanisms will be uncovered soon.
Collapse
Affiliation(s)
- Jorge J Casal
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina; ,
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina;
| | - Germán Murcia
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina; ,
| | | |
Collapse
|
4
|
Li X, Tang H, Xu T, Wang P, Ma F, Wei H, Fang Z, Wu X, Wang Y, Xue Y, Zhang B. N-terminal acetylation orchestrates glycolate-mediated ROS homeostasis to promote rice thermoresponsive growth. THE NEW PHYTOLOGIST 2024; 243:1742-1757. [PMID: 38934055 DOI: 10.1111/nph.19928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Climate warming poses a significant threat to global crop production and food security. However, our understanding of the molecular mechanisms governing thermoresponsive development in crops remains limited. Here we report that the auxiliary subunit of N-terminal acetyltransferase A (NatA) in rice OsNAA15 is a prerequisite for rice thermoresponsive growth. OsNAA15 produces two isoforms OsNAA15.1 and OsNAA15.2, via temperature-dependent alternative splicing. Among the two, OsNAA15.1 is more likely to form a stable and functional NatA complex with the potential catalytic subunit OsNAA10, leading to a thermoresponsive N-terminal acetylome. Intriguingly, while OsNAA15.1 promotes plant growth under elevated temperatures, OsNAA15.2 exhibits an inhibitory effect. We identified two glycolate oxidases (GLO1/5) as major substrates from the thermoresponsive acetylome. These enzymes are involved in hydrogen peroxide (H2O2) biosynthesis via glycolate oxidation. N-terminally acetylated GLO1/5 undergo their degradation through the ubiquitin-proteasome system. This leads to reduced reactive oxygen species (ROS) production, thereby promoting plant growth, particularly under high ambient temperatures. Conclusively, our findings highlight the pivotal role of N-terminal acetylation in orchestrating the glycolate-mediated ROS homeostasis to facilitate thermoresponsive growth in rice.
Collapse
Affiliation(s)
- Xueting Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huashan Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pengfei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangfang Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haifang Wei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zi Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Biyao Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| |
Collapse
|
5
|
Feng Y, Li X, Qin Y, Li Y, Yang Z, Xiong X, Wan J, Qiu M, Hou Q, Zhang Z, Guo Z, Zhang X, Niu J, Zhou Q, Tang J, Fu Z. Identification of anther thermotolerance genes by the integration of linkage and association analysis in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1953-1966. [PMID: 38943629 DOI: 10.1111/tpj.16900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Maize is one of the world's most important staple crops, yet its production is increasingly threatened by the rising frequency of high-temperature stress (HTS). To investigate the genetic basis of anther thermotolerance under field conditions, we performed linkage and association analysis to identify HTS response quantitative trait loci (QTL) using three recombinant inbred line (RIL) populations and an association panel containing 375 diverse maize inbred lines. These analyses resulted in the identification of 16 co-located large QTL intervals. Among the 37 candidate genes identified in these QTL intervals, five have rice or Arabidopsis homologs known to influence pollen and filament development. Notably, one of the candidate genes, ZmDUP707, has been subject to selection pressure during breeding. Its expression is suppressed by HTS, leading to pollen abortion and barren seeds. We also identified several additional candidate genes potentially underly QTL previously reported by other researchers. Taken together, our results provide a pool of valuable candidate genes that could be employed by future breeding programs aiming at enhancing maize HTS tolerance.
Collapse
Affiliation(s)
- Yijian Feng
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinlong Li
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongtian Qin
- Hebi Academy of Agricultural Sciences, Hebi, 458030, Henan, China
| | - Yibo Li
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zeyuan Yang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuehang Xiong
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiong Wan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Meng Qiu
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qiuchan Hou
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jishan Niu
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qingqian Zhou
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
6
|
Li J, Song Y. Plant thermosensors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112025. [PMID: 38354752 DOI: 10.1016/j.plantsci.2024.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Plants dynamically regulate their genes expression and physiological outputs to adapt to changing temperatures. The underlying molecular mechanisms have been extensively studied in diverse plants and in multiple dimensions. However, the question of exactly how temperature is detected at molecular level to transform the physical information into recognizable intracellular signals remains continues to be one of the undetermined occurrences in plant science. Recent studies have provided the physical and biochemical mechanistic breakthrough of how temperature changes can influence molecular thermodynamically stability, thus changing molecular structures, activities, interaction and signaling transduction. In this review, we focus on the thermosensing mechanisms of recognized and potential plant thermosensors, to describe the multi-level thermal input system in plants. We also consider the attributes of a thermosensor on the basis of thermal-triggered changes in function, structure, and physical parameters. This study thus provides a reference for discovering more plant thermosensors and elucidating plant thermal adaptive mechanisms.
Collapse
Affiliation(s)
- Jihong Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuan Song
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China.
| |
Collapse
|
7
|
Ruan M, Zhao H, Wen Y, Chen H, He F, Hou X, Song X, Jiang H, Ruan YL, Wu L. The complex transcriptional regulation of heat stress response in maize. STRESS BIOLOGY 2024; 4:24. [PMID: 38668992 PMCID: PMC11052759 DOI: 10.1007/s44154-024-00165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/01/2024] [Indexed: 04/29/2024]
Abstract
As one of the most important food and feed crops worldwide, maize suffers much more tremendous damages under heat stress compared to other plants, which seriously inhibits plant growth and reduces productivity. To mitigate the heat-induced damages and adapt to high temperature environment, plants have evolved a series of molecular mechanisms to sense, respond and adapt high temperatures and heat stress. In this review, we summarized recent advances in molecular regulations underlying high temperature sensing, heat stress response and memory in maize, especially focusing on several important pathways and signals in high temperature sensing, and the complex transcriptional regulation of ZmHSFs (Heat Shock Factors) in heat stress response. In addition, we highlighted interactions between ZmHSFs and several epigenetic regulation factors in coordinately regulating heat stress response and memory. Finally, we laid out strategies to systematically elucidate the regulatory network of maize heat stress response, and discussed approaches for breeding future heat-tolerance maize.
Collapse
Affiliation(s)
- Mingxiu Ruan
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Heng Zhao
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yujing Wen
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Chen
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Feng He
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xingbo Hou
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoqin Song
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Haiyang Jiang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yong-Ling Ruan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, China.
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Leiming Wu
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
8
|
Roth L, Kronenberg L, Aasen H, Walter A, Hartung J, van Eeuwijk F, Piepho HP, Hund A. High-throughput field phenotyping reveals that selection in breeding has affected the phenology and temperature response of wheat in the stem elongation phase. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2084-2099. [PMID: 38134290 PMCID: PMC10967243 DOI: 10.1093/jxb/erad481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Crop growth and phenology are driven by seasonal changes in environmental variables, with temperature as one important factor. However, knowledge about genotype-specific temperature response and its influence on phenology is limited. Such information is fundamental to improve crop models and adapt selection strategies. We measured the increase in height of 352 European winter wheat varieties in 4 years to quantify phenology, and fitted an asymptotic temperature response model. The model used hourly fluctuations in temperature to parameterize the base temperature (Tmin), the temperature optimum (rmax), and the steepness (lrc) of growth responses. Our results show that higher Tmin and lrc relate to an earlier start and end of stem elongation. A higher rmax relates to an increased final height. Both final height and rmax decreased for varieties originating from the continental east of Europe towards the maritime west. A genome-wide association study (GWAS) indicated a quantitative inheritance and a large degree of independence among loci. Nevertheless, genomic prediction accuracies (GBLUPs) for Tmin and lrc were low (r≤0.32) compared with other traits (r≥0.59). As well as known, major genes related to vernalization, photoperiod, or dwarfing, the GWAS indicated additional, as yet unknown loci that dominate the temperature response.
Collapse
Affiliation(s)
- Lukas Roth
- ETH Zurich, Institute of Agricultural Sciences, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Lukas Kronenberg
- ETH Zurich, Institute of Agricultural Sciences, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Helge Aasen
- ETH Zurich, Institute of Agricultural Sciences, Universitätstrasse 2, 8092 Zurich, Switzerland
- Agroscope, Earth Observation of Agroecosystems Team, Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Achim Walter
- ETH Zurich, Institute of Agricultural Sciences, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Jens Hartung
- University of Hohenheim, Institute for Crop Science, Biostatistics Unit, Fruwirthstrasse 23, D-70593 Stuttgart, Germany
| | - Fred van Eeuwijk
- Wageningen University and Research, Biometris, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Hans-Peter Piepho
- University of Hohenheim, Institute for Crop Science, Biostatistics Unit, Fruwirthstrasse 23, D-70593 Stuttgart, Germany
| | - Andreas Hund
- ETH Zurich, Institute of Agricultural Sciences, Universitätstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
9
|
Zhang N, Venn B, Bailey CE, Xia M, Mattoon EM, Mühlhaus T, Zhang R. Moderate high temperature is beneficial or detrimental depending on carbon availability in the green alga Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:979-1003. [PMID: 37877811 DOI: 10.1093/jxb/erad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
High temperatures impair plant growth and reduce agricultural yields, but the underlying mechanisms remain elusive. The unicellular green alga Chlamydomonas reinhardtii is an excellent model to study heat responses in photosynthetic cells due to its fast growth rate, many similarities in cellular processes to land plants, simple and sequenced genome, and ample genetic and genomics resources. Chlamydomonas grows in light by photosynthesis and with externally supplied acetate as an organic carbon source. Understanding how organic carbon sources affect heat responses is important for the algal industry but remains understudied. We cultivated wild-type Chlamydomonas under highly controlled conditions in photobioreactors at 25 °C (control), 35 °C (moderate high temperature), or 40 °C (acute high temperature) with or without constant acetate supply for 1 or 4 day. Treatment at 35 °C increased algal growth with constant acetate supply but reduced algal growth without sufficient acetate. The overlooked and dynamic effects of 35 °C could be explained by induced acetate uptake and metabolism. Heat treatment at 40 °C for more than 2 day was lethal to algal cultures with or without constant acetate supply. Our findings provide insights to understand algal heat responses and help improve thermotolerance in photosynthetic cells.
Collapse
Affiliation(s)
- Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Benedikt Venn
- Computational Systems Biology, RPTU Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Ming Xia
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Erin M Mattoon
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Timo Mühlhaus
- Computational Systems Biology, RPTU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| |
Collapse
|
10
|
Seth P, Sebastian J. Plants and global warming: challenges and strategies for a warming world. PLANT CELL REPORTS 2024; 43:27. [PMID: 38163826 DOI: 10.1007/s00299-023-03083-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024]
Abstract
KEY MESSAGE In this review, we made an attempt to create a holistic picture of plant response to a rising temperature environment and its impact by covering all aspects from temperature perception to thermotolerance. This comprehensive account describing the molecular mechanisms orchestrating these responses and potential mitigation strategies will be helpful for understanding the impact of global warming on plant life. Organisms need to constantly recalibrate development and physiology in response to changes in their environment. Climate change-associated global warming is amplifying the intensity and periodicity of these changes. Being sessile, plants are particularly vulnerable to variations happening around them. These changes can cause structural, metabolomic, and physiological perturbations, leading to alterations in the growth program and in extreme cases, plant death. In general, plants have a remarkable ability to respond to these challenges, supported by an elaborate mechanism to sense and respond to external changes. Once perceived, plants integrate these signals into the growth program so that their development and physiology can be modulated befittingly. This multifaceted signaling network, which helps plants to establish acclimation and survival responses enabled their extensive geographical distribution. Temperature is one of the key environmental variables that affect all aspects of plant life. Over the years, our knowledge of how plants perceive temperature and how they respond to heat stress has improved significantly. However, a comprehensive mechanistic understanding of the process still largely elusive. This review explores how an increase in the global surface temperature detrimentally affects plant survival and productivity and discusses current understanding of plant responses to high temperature (HT) and underlying mechanisms. We also highlighted potential resilience attributes that can be utilized to mitigate the impact of global warming.
Collapse
Affiliation(s)
- Pratyay Seth
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India
| | - Jose Sebastian
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India.
| |
Collapse
|
11
|
Anbalagan S. Temperature-sensing riboceptors. RNA Biol 2024; 21:1-6. [PMID: 39016038 PMCID: PMC11259075 DOI: 10.1080/15476286.2024.2379118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Understanding how cells sense temperature is a fundamental question in biology and is pivotal for the evolution of life. In numerous organisms, temperature is not only sensed but also generated due to cellular processes. Consequently, the mechanisms governing temperature sensation in various organisms have been experimentally elucidated. Extending upon others' proposals and demonstration of protein- and nucleic acid-based thermosensors, and utilizing a colonial India 'punkah-wallahs' analogy, I present my rationale for the necessity of temperature sensing in every organelle in a cell. Finally, I propose temperature-sensing riboceptors (ribonucleic acid receptors) to integrate all the RNA molecules (mRNA, non-coding RNA, and so forth) capable of sensing temperature and triggering a signaling event, which I call as thermocrine signaling. This approach could enable the identification of riboceptors in every cell of almost every organism, not only for temperature but also for other classes of ligands, including gaseous solutes, and water.
Collapse
Affiliation(s)
- Savani Anbalagan
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
12
|
Xu J, Wang C, Wang F, Liu Y, Li M, Wang H, Zheng Y, Zhao K, Ji Z. PWL1, a G-type lectin receptor-like kinase, positively regulates leaf senescence and heat tolerance but negatively regulates resistance to Xanthomonas oryzae in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2525-2545. [PMID: 37578160 PMCID: PMC10651159 DOI: 10.1111/pbi.14150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023]
Abstract
Plant leaf senescence, caused by multiple internal and environmental factors, has an important impact on agricultural production. The lectin receptor-like kinase (LecRLK) family members participate in plant development and responses to biotic and abiotic stresses, but their roles in regulating leaf senescence remain elusive. Here, we identify and characterize a rice premature withered leaf 1 (pwl1) mutant, which exhibits premature leaf senescence throughout the plant life cycle. The pwl1 mutant displayed withered and whitish leaf tips, decreased chlorophyll content, and accelerated chloroplast degradation. Map-based cloning revealed an amino acid substitution (Gly412Arg) in LOC_Os03g62180 (PWL1) was responsible for the phenotypes of pwl1. The expression of PWL1 was detected in all tissues, but predominantly in tillering and mature leaves. PWL1 encodes a G-type LecRLK with active kinase and autophosphorylation activities. PWL1 is localized to the plasma membrane and can self-associate, mainly mediated by the plasminogen-apple-nematode (PAN) domain. Substitution of the PAN domain significantly diminished the self-interaction of PWL1. Moreover, the pwl1 mutant showed enhanced reactive oxygen species (ROS) accumulation, cell death, and severe DNA fragmentation. RNA sequencing analysis revealed that PWL1 was involved in the regulation of multiple biological processes, like carbon metabolism, ribosome, and peroxisome pathways. Meanwhile, interfering of biological processes induced by the PWL1 mutation also enhanced heat sensitivity and resistance to bacterial blight and bacterial leaf streak with excessive accumulation of ROS and impaired chloroplast development in rice. Natural variation analysis indicated more variations in indica varieties, and the vast majority of japonica varieties harbour the PWL1Hap1 allele. Together, our results suggest that PWL1, a member of LecRLKs, exerts multiple roles in regulating plant growth and development, heat-tolerance, and resistance to bacterial pathogens.
Collapse
Affiliation(s)
- Jiangmin Xu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Fujun Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- Institute of Rice Research, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Yapei Liu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Man Li
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Hongjie Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuhan Zheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
13
|
Yang X, Guan H, Yang Y, Zhang Y, Su W, Song S, Liu H, Chen R, Hao Y. Extra- and intranuclear heat perception and triggering mechanisms in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1276649. [PMID: 37860244 PMCID: PMC10582638 DOI: 10.3389/fpls.2023.1276649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
The escalating impact of global warming on crop yield and quality poses a significant threat to future food supplies. Breeding heat-resistant crop varieties holds promise, but necessitates a deeper understanding of the molecular mechanisms underlying plant heat tolerance. Recent studies have shed light on the initial events of heat perception in plants. In this review, we provide a comprehensive summary of the recent progress made in unraveling the mechanisms of heat perception and response in plants. Calcium ion (Ca2+), hydrogen peroxide (H2O2), and nitric oxide (NO) have emerged as key participants in heat perception. Furthermore, we discuss the potential roles of the NAC transcription factor NTL3, thermo-tolerance 3.1 (TT3.1), and Target of temperature 3 (TOT3) as thermosensors associated with the plasma membrane. Additionally, we explore the involvement of cytoplasmic HISTONE DEACETYLASE 9 (HDA9), mRNA encoding the phytochrome-interacting factor 7 (PIF7), and chloroplasts in mediating heat perception. This review also highlights the role of intranuclear transcriptional condensates formed by phytochrome B (phyB), EARLY FLOWERING 3 (ELF3), and guanylate-binding protein (GBP)-like GTPase 3 (GBPL3) in heat perception. Finally, we raise the unresolved questions in the field of heat perception that require further investigation in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Kan Y, Mu XR, Gao J, Lin HX, Lin Y. The molecular basis of heat stress responses in plants. MOLECULAR PLANT 2023; 16:1612-1634. [PMID: 37740489 DOI: 10.1016/j.molp.2023.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Global warming impacts crop production and threatens food security. Elevated temperatures are sensed by different cell components. Temperature increases are classified as either mild warm temperatures or excessively hot temperatures, which are perceived by distinct signaling pathways in plants. Warm temperatures induce thermomorphogenesis, while high-temperature stress triggers heat acclimation and has destructive effects on plant growth and development. In this review, we systematically summarize the heat-responsive genetic networks in Arabidopsis and crop plants based on recent studies. In addition, we highlight the strategies used to improve grain yield under heat stress from a source-sink perspective. We also discuss the remaining issues regarding the characteristics of thermosensors and the urgency required to explore the basis of acclimation under multifactorial stress combination.
Collapse
Affiliation(s)
- Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiao-Rui Mu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Youshun Lin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Xu X, Fonseca de Lima CF, Vu LD, De Smet I. When drought meets heat - a plant omics perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1250878. [PMID: 37674736 PMCID: PMC10478009 DOI: 10.3389/fpls.2023.1250878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Changes in weather patterns with emerging drought risks and rising global temperature are widespread and negatively affect crop growth and productivity. In nature, plants are simultaneously exposed to multiple biotic and abiotic stresses, but most studies focus on individual stress conditions. However, the simultaneous occurrence of different stresses impacts plant growth and development differently than a single stress. Plants sense the different stress combinations in the same or in different tissues, which could induce specific systemic signalling and acclimation responses; impacting different stress-responsive transcripts, protein abundance and modifications, and metabolites. This mini-review focuses on the combination of drought and heat, two abiotic stress conditions that often occur together. Recent omics studies indicate common or independent regulators involved in heat or drought stress responses. Here, we summarize the current research results, highlight gaps in our knowledge, and flag potential future focus areas.
Collapse
Affiliation(s)
- Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca de Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
16
|
Jung JH, Seo PJ, Oh E, Kim J. Temperature perception by plants. TRENDS IN PLANT SCIENCE 2023; 28:924-940. [PMID: 37045740 DOI: 10.1016/j.tplants.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Plants constantly face fluctuating ambient temperatures and must adapt to survive under stressful conditions. Temperature affects many aspects of plant growth and development through a complex network of transcriptional responses. Although temperature sensing is a crucial primary step in initiating transcriptional responses via Ca2+ and/or reactive oxygen species signaling, an understanding of how plants perceive temperature has remained elusive. However, recent studies have yielded breakthroughs in our understanding of temperature sensors and thermosensation mechanisms. We review recent findings on potential temperature sensors and emerging thermosensation mechanisms, including biomolecular condensate formation through phase separation in plants. We also compare the temperature perception mechanisms of plants with those of other organisms to provide insights into understanding temperature sensing by plants.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea; Department of Integrative Food, Bioscience, and Technology, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
17
|
Rani V, Joshi DC, Joshi P, Singh R, Yadav D. "Millet Models" for harnessing nuclear factor-Y transcription factors to engineer stress tolerance in plants: current knowledge and emerging paradigms. PLANTA 2023; 258:29. [PMID: 37358736 DOI: 10.1007/s00425-023-04186-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION The main purpose of this review is to shed light on the role of millet models in imparting climate resilience and nutritional security and to give a concrete perspective on how NF-Y transcription factors can be harnessed for making cereals more stress tolerant. Agriculture faces significant challenges from climate change, bargaining, population, elevated food prices, and compromises with nutritional value. These factors have globally compelled scientists, breeders, and nutritionists to think of some options that can combat the food security crisis and malnutrition. To address these challenges, mainstreaming the climate-resilient and nutritionally unparalleled alternative crops like millet is a key strategy. The C4 photosynthetic pathway and adaptation to low-input marginal agricultural systems make millets a powerhouse of important gene and transcription factor families imparting tolerance to various kinds of biotic and abiotic stresses. Among these, the nuclear factor-Y (NF-Y) is one of the prominent transcription factor families that regulate diverse genes imparting stress tolerance. The primary purpose of this article is to shed light on the role of millet models in imparting climate resilience and nutritional security and to give a concrete perspective on how NF-Y transcription factors can be harnessed for making cereals more stress tolerant. Future cropping systems could be more resilient to climate change and nutritional quality if these practices were implemented.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - D C Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, 263601, India
| | - Priyanka Joshi
- Plant and Environmental Sciences, 113 Biosystems Research Complex, Clemson University, Clemson, South Carolina, 29634, USA
| | - Rajesh Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| |
Collapse
|
18
|
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic Stress in Crop Production. Int J Mol Sci 2023; 24:ijms24076603. [PMID: 37047573 PMCID: PMC10095105 DOI: 10.3390/ijms24076603] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors—drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants—wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
Collapse
Affiliation(s)
- Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
19
|
Wang J, Xu J, Wang L, Zhou M, Nian J, Chen M, Lu X, Liu X, Wang Z, Cen J, Liu Y, Zhang Z, Zeng D, Hu J, Zhu L, Dong G, Ren D, Gao Z, Shen L, Zhang Q, Li Q, Guo L, Yu S, Qian Q, Zhang G. SEMI-ROLLED LEAF 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice (Oryza sativa L.). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:819-838. [PMID: 36597711 PMCID: PMC10037157 DOI: 10.1111/pbi.13999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Plant architecture and stress tolerance play important roles in rice breeding. Specific leaf morphologies and ideal plant architecture can effectively improve both abiotic stress resistance and rice grain yield. However, the mechanism by which plants simultaneously regulate leaf morphogenesis and stress resistance remains elusive. Here, we report that SRL10, which encodes a double-stranded RNA-binding protein, regulates leaf morphology and thermotolerance in rice through alteration of microRNA biogenesis. The srl10 mutant had a semi-rolled leaf phenotype and elevated sensitivity to high temperature. SRL10 directly interacted with catalase isozyme B (CATB), and the two proteins mutually increased one other's stability to enhance hydrogen peroxide (H2 O2 ) scavenging, thereby contributing to thermotolerance. The natural Hap3 (AGC) type of SRL10 allele was found to be present in the majority of aus rice accessions, and was identified as a thermotolerant allele under high temperature stress in both the field and the growth chamber. Moreover, the seed-setting rate was 3.19 times higher and grain yield per plant was 1.68 times higher in near-isogenic line (NIL) carrying Hap3 allele compared to plants carrying Hap1 allele under heat stress. Collectively, these results reveal a new locus of interest and define a novel SRL10-CATB based regulatory mechanism for developing cultivars with high temperature tolerance and stable yield. Furthermore, our findings provide a theoretical basis for simultaneous breeding for plant architecture and stress resistance.
Collapse
Affiliation(s)
- Jiajia Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene ResearchCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Jing Xu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang ProvinceResearch Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhouChina
| | - Li Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Mengyu Zhou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jinqiang Nian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Minmin Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Xueli Lu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Xiong Liu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zian Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jiangsu Cen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yiting Liu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zhihai Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Dali Zeng
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jiang Hu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Li Zhu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Guojun Dong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Deyong Ren
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zhenyu Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Lan Shen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Qiang Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Qing Li
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Longbiao Guo
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene ResearchCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanyaChina
| | - Guangheng Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanyaChina
| |
Collapse
|
20
|
Ren H, Bao J, Gao Z, Sun D, Zheng S, Bai J. How rice adapts to high temperatures. FRONTIERS IN PLANT SCIENCE 2023; 14:1137923. [PMID: 37008476 PMCID: PMC10063981 DOI: 10.3389/fpls.2023.1137923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
High-temperature stress affects crop yields worldwide. Identifying thermotolerant crop varieties and understanding the basis for this thermotolerance would have important implications for agriculture, especially in the face of climate change. Rice (Oryza sativa) varieties have evolved protective strategies to acclimate to high temperature, with different thermotolerance levels. In this review, we examine the morphological and molecular effects of heat on rice in different growth stages and plant organs, including roots, stems, leaves and flowers. We also explore the molecular and morphological differences among thermotolerant rice lines. In addition, some strategies are proposed to screen new rice varieties for thermotolerance, which will contribute to the improvement of rice for agricultural production in the future.
Collapse
Affiliation(s)
- Huimin Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingpei Bao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhenxian Gao
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Wheat Research Center, Shijiazhuang, China
| | - Daye Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
21
|
Kim J, Bordiya Y, Xi Y, Zhao B, Kim DH, Pyo Y, Zong W, Ricci WA, Sung S. Warm temperature-triggered developmental reprogramming requires VIL1-mediated, genome-wide H3K27me3 accumulation in Arabidopsis. Development 2023; 150:dev201343. [PMID: 36762655 PMCID: PMC10110417 DOI: 10.1242/dev.201343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Changes in ambient temperature immensely affect developmental programs in many species. Plants adapt to high ambient growth temperature in part by vegetative and reproductive developmental reprogramming, known as thermo-morphogenesis. Thermo-morphogenesis is accompanied by massive changes in the transcriptome upon temperature change. Here, we show that transcriptome changes induced by warm ambient temperature require VERNALIZATION INSENSITIVE 3-LIKE 1 (VIL1), a facultative component of the Polycomb repressive complex PRC2, in Arabidopsis. Warm growth temperature elicits genome-wide accumulation of H3K27me3 and VIL1 is necessary for the warm temperature-mediated accumulation of H3K27me3. Consistent with its role as a mediator of thermo-morphogenesis, loss of function of VIL1 results in hypo-responsiveness to warm ambient temperature. Our results show that VIL1 is a major chromatin regulator in responses to high ambient temperature.
Collapse
Affiliation(s)
- Junghyun Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yogendra Bordiya
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yanpeng Xi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bo Zhao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dong-Hwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Youngjae Pyo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Wei Zong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - William A. Ricci
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
22
|
Mattoon EM, McHargue W, Bailey CE, Zhang N, Chen C, Eckhardt J, Daum CG, Zane M, Pennacchio C, Schmutz J, O'Malley RC, Cheng J, Zhang R. High-throughput identification of novel heat tolerance genes via genome-wide pooled mutant screens in the model green alga Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2023; 46:865-888. [PMID: 36479703 PMCID: PMC9898210 DOI: 10.1111/pce.14507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Different high temperatures adversely affect crop and algal yields with various responses in photosynthetic cells. The list of genes required for thermotolerance remains elusive. Additionally, it is unclear how carbon source availability affects heat responses in plants and algae. We utilized the insertional, indexed, genome-saturating mutant library of the unicellular, eukaryotic green alga Chlamydomonas reinhardtii to perform genome-wide, quantitative, pooled screens under moderate (35°C) or acute (40°C) high temperatures with or without organic carbon sources. We identified heat-sensitive mutants based on quantitative growth rates and identified putative heat tolerance genes (HTGs). By triangulating HTGs with heat-induced transcripts or proteins in wildtype cultures and MapMan functional annotations, we presented a high/medium-confidence list of 933 Chlamydomonas genes with putative roles in heat tolerance. Triangulated HTGs include those with known thermotolerance roles and novel genes with little or no functional annotation. About 50% of these high-confidence HTGs in Chlamydomonas have orthologs in green lineage organisms, including crop species. Arabidopsis thaliana mutants deficient in the ortholog of a high-confidence Chlamydomonas HTG were also heat sensitive. This work expands our knowledge of heat responses in photosynthetic cells and provides engineering targets to improve thermotolerance in algae and crops.
Collapse
Affiliation(s)
- Erin M. Mattoon
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, Missouri 63130, USA
| | - William McHargue
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | - Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - James Eckhardt
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Chris G. Daum
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matt Zane
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christa Pennacchio
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy Schmutz
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ronan C. O'Malley
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| |
Collapse
|
23
|
Inada N. A Guide to Plant Intracellular Temperature Imaging using Fluorescent Thermometers. PLANT & CELL PHYSIOLOGY 2023; 64:7-18. [PMID: 36039974 DOI: 10.1093/pcp/pcac123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/06/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
All aspects of plant physiology are influenced by temperature. Changes in environmental temperature alter the temperatures of plant tissues and cells, which then affect various cellular activities, such as gene expression, protein stability and enzyme activities. In turn, changes in cellular activities, which are associated with either exothermic or endothermic reactions, can change the local temperature in cells and tissues. In the past 10 years, a number of fluorescent probes that detect temperature and enable intracellular temperature imaging have been reported. Intracellular temperature imaging has revealed that there is a temperature difference >1°C inside cells and that the treatment of cells with mitochondrial uncoupler or ionomycin can cause more than a 1°C intracellular temperature increase in mammalian cultured cells. Thermogenesis mechanisms in brown adipocytes have been revealed with the aid of intracellular temperature imaging. While there have been no reports on plant intracellular temperature imaging thus far, intracellular temperature imaging is expected to provide a new way to analyze the mechanisms underlying the various activities of plant cells. In this review, I will first summarize the recent progress in the development of fluorescent thermometers and their biological applications. I will then discuss the selection of fluorescent thermometers and experimental setup for the adaptation of intracellular temperature imaging to plant cells. Finally, possible applications of intracellular temperature imaging to investigate plant cell functions will be discussed.
Collapse
Affiliation(s)
- Noriko Inada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka, 599-8531 Japan
- School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka, 599-8531 Japan
| |
Collapse
|
24
|
Saeed F, Chaudhry UK, Raza A, Charagh S, Bakhsh A, Bohra A, Ali S, Chitikineni A, Saeed Y, Visser RGF, Siddique KHM, Varshney RK. Developing future heat-resilient vegetable crops. Funct Integr Genomics 2023; 23:47. [PMID: 36692535 PMCID: PMC9873721 DOI: 10.1007/s10142-023-00967-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Climate change seriously impacts global agriculture, with rising temperatures directly affecting the yield. Vegetables are an essential part of daily human consumption and thus have importance among all agricultural crops. The human population is increasing daily, so there is a need for alternative ways which can be helpful in maximizing the harvestable yield of vegetables. The increase in temperature directly affects the plants' biochemical and molecular processes; having a significant impact on quality and yield. Breeding for climate-resilient crops with good yields takes a long time and lots of breeding efforts. However, with the advent of new omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, the efficiency and efficacy of unearthing information on pathways associated with high-temperature stress resilience has improved in many of the vegetable crops. Besides omics, the use of genomics-assisted breeding and new breeding approaches such as gene editing and speed breeding allow creation of modern vegetable cultivars that are more resilient to high temperatures. Collectively, these approaches will shorten the time to create and release novel vegetable varieties to meet growing demands for productivity and quality. This review discusses the effects of heat stress on vegetables and highlights recent research with a focus on how omics and genome editing can produce temperature-resilient vegetables more efficiently and faster.
Collapse
Affiliation(s)
- Faisal Saeed
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey
| | - Usman Khalid Chaudhry
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey
| | - Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6150, Australia
| | - Sumbul Ali
- Akhuwat Faisalabad Institute of Research Science and Technology, Faisalabad, Pakistan
| | - Annapurna Chitikineni
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6150, Australia
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Yasir Saeed
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, 15, Wageningen, The Netherlands
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6001, Australia
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6150, Australia.
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| |
Collapse
|
25
|
Shen Q, Xie Y, Qiu X, Yu J. The era of cultivating smart rice with high light efficiency and heat tolerance has come of age. FRONTIERS IN PLANT SCIENCE 2022; 13:1021203. [PMID: 36275525 PMCID: PMC9585279 DOI: 10.3389/fpls.2022.1021203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
How to improve the yield of crops has always been the focus of breeding research. Due to the population growth and global climate change, the demand for food has increased sharply, which has brought great challenges to agricultural production. In order to make up for the limitation of global cultivated land area, it is necessary to further improve the output of crops. Photosynthesis is the main source of plant assimilate accumulation, which has a profound impact on the formation of its yield. This review focuses on the cultivation of high light efficiency plants, introduces the main technical means and research progress in improving the photosynthetic efficiency of plants, and discusses the main problems and difficulties faced by the cultivation of high light efficiency plants. At the same time, in view of the frequent occurrence of high-temperature disasters caused by global warming, which seriously threatened plant normal production, we reviewed the response mechanism of plants to heat stress, introduced the methods and strategies of how to cultivate heat tolerant crops, especially rice, and briefly reviewed the progress of heat tolerant research at present. Given big progress in these area, the era of cultivating smart rice with high light efficiency and heat tolerance has come of age.
Collapse
Affiliation(s)
- Qiuping Shen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Yujun Xie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Xinzhe Qiu
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Jinsheng Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
26
|
Wang S, Steed G, Webb AAR. Circadian entrainment in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:981-993. [PMID: 35512209 PMCID: PMC9516740 DOI: 10.1093/plphys/kiac204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Circadian clocks coordinate physiology and development as an adaption to the oscillating day/night cycle caused by the rotation of Earth on its axis and the changing length of day and night away from the equator caused by orbiting the sun. Circadian clocks confer advantages by entraining to rhythmic environmental cycles to ensure that internal events within the plant occur at the correct time with respect to the cyclic external environment. Advances in determining the structure of circadian oscillators and the pathways that allow them to respond to light, temperature, and metabolic signals have begun to provide a mechanistic insight to the process of entrainment in Arabidopsis (Arabidopsis thaliana). We describe the concepts of entrainment and how it occurs. It is likely that a thorough mechanistic understanding of the genetic and physiological basis of circadian entrainment will provide opportunities for crop improvement.
Collapse
Affiliation(s)
- Shouming Wang
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- School of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Gareth Steed
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | |
Collapse
|
27
|
Delker C, Quint M, Wigge PA. Recent advances in understanding thermomorphogenesis signaling. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102231. [PMID: 35636376 DOI: 10.1016/j.pbi.2022.102231] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 05/26/2023]
Abstract
Plants show remarkable phenotypic plasticity and are able to adjust their morphology and development to diverse environmental stimuli. Morphological acclimation responses to elevated ambient temperatures are collectively termed thermomorphogenesis. In Arabidopsis thaliana, morphological changes are coordinated to a large extent by the transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), which in turn is regulated by several thermosensing mechanisms and modulators. Here, we review recent advances in the identification of factors that regulate thermomorphogenesis of Arabidopsis seedlings by affecting PIF4 expression and PIF4 activity. We summarize newly identified thermosensing mechanisms and highlight work on the emerging topic of organ- and tissue-specificity in the regulation of thermomorphogenesis.
Collapse
Affiliation(s)
- Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany.
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
28
|
Koza NA, Adedayo AA, Babalola OO, Kappo AP. Microorganisms in Plant Growth and Development: Roles in Abiotic Stress Tolerance and Secondary Metabolites Secretion. Microorganisms 2022; 10:1528. [PMID: 36013946 PMCID: PMC9415082 DOI: 10.3390/microorganisms10081528] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Crops aimed at feeding an exponentially growing population are often exposed to a variety of harsh environmental factors. Although plants have evolved ways of adjusting their metabolism and some have also been engineered to tolerate stressful environments, there is still a shortage of food supply. An alternative approach is to explore the possibility of using rhizosphere microorganisms in the mitigation of abiotic stress and hopefully improve food production. Several studies have shown that rhizobacteria and mycorrhizae organisms can help improve stress tolerance by enhancing plant growth; stimulating the production of phytohormones, siderophores, and solubilizing phosphates; lowering ethylene levels; and upregulating the expression of dehydration response and antioxidant genes. This article shows the secretion of secondary metabolites as an additional mechanism employed by microorganisms against abiotic stress. The understanding of these mechanisms will help improve the efficacy of plant-growth-promoting microorganisms.
Collapse
Affiliation(s)
- Ntombikhona Appear Koza
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Afeez Adesina Adedayo
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology Group, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
29
|
The intersection between circadian and heat-responsive regulatory networks controls plant responses to increasing temperatures. Biochem Soc Trans 2022; 50:1151-1165. [PMID: 35758233 PMCID: PMC9246330 DOI: 10.1042/bst20190572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Increasing temperatures impact plant biochemistry, but the effects can be highly variable. Both external and internal factors modulate how plants respond to rising temperatures. One such factor is the time of day or season the temperature increase occurs. This timing significantly affects plant responses to higher temperatures altering the signaling networks and affecting tolerance levels. Increasing overlaps between circadian signaling and high temperature responses have been identified that could explain this sensitivity to the timing of heat stress. ELF3, a circadian clock component, functions as a thermosensor. ELF3 regulates thermoresponsive hypocotyl elongation in part through its cellular localization. The temperature sensitivity of ELF3 depends on the length of a polyglutamine region, explaining how plant temperature responses vary between species. However, the intersection between the circadian system and increased temperature stress responses is pervasive and extends beyond this overlap in thermosensing. Here, we review the network responses to increased temperatures, heat stress, and the impacts on the mechanisms of gene expression from transcription to translation, highlighting the intersections between the elevated temperature and heat stress response pathways and circadian signaling, focusing on the role of ELF3 as a thermosensor.
Collapse
|
30
|
Zhang H, Zhou JF, Kan Y, Shan JX, Ye WW, Dong NQ, Guo T, Xiang YH, Yang YB, Li YC, Zhao HY, Yu HX, Lu ZQ, Guo SQ, Lei JJ, Liao B, Mu XR, Cao YJ, Yu JJ, Lin Y, Lin HX. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science 2022; 376:1293-1300. [PMID: 35709289 DOI: 10.1126/science.abo5721] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
How the plasma membrane senses external heat-stress signals to communicate with chloroplasts to orchestrate thermotolerance remains elusive. We identified a quantitative trait locus, Thermo-tolerance 3 (TT3), consisting of two genes, TT3.1 and TT3.2, that interact together to enhance rice thermotolerance and reduce grain-yield losses caused by heat stress. Upon heat stress, plasma membrane-localized E3 ligase TT3.1 translocates to the endosomes, on which TT3.1 ubiquitinates chloroplast precursor protein TT3.2 for vacuolar degradation, implying that TT3.1 might serve as a potential thermosensor. Lesser accumulated, mature TT3.2 proteins in chloroplasts are essential for protecting thylakoids from heat stress. Our findings not only reveal a TT3.1-TT3.2 genetic module at one locus that transduces heat signals from plasma membrane to chloroplasts but also provide the strategy for breeding highly thermotolerant crops.
Collapse
Affiliation(s)
- Hai Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.,University of the Chinese Academy of Sciences, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ji-Fu Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Tao Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - You-Huang Xiang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Bing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Chao Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of the Chinese Academy of Sciences, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuang-Qin Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jie-Jie Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Rui Mu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Jie Cao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Jun Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Youshun Lin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.,University of the Chinese Academy of Sciences, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
31
|
Noguchi M, Kodama Y. Temperature Sensing in Plants: On the Dawn of Molecular Thermosensor Research. PLANT & CELL PHYSIOLOGY 2022; 63:737-743. [PMID: 35348773 DOI: 10.1093/pcp/pcac033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/05/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Although many studies on plant growth and development focus on the effects of light, a growing number of studies dissect plant responses to temperature and the underlying signaling pathways. The identity of plant thermosensing molecules (thermosensors) acting upstream of the signaling cascades in temperature responses was elusive until recently. During the past six years, a set of plant thermosensors has been discovered, representing a major turning point in the research on plant temperature responses and signaling. Here, we review these newly discovered plant thermosensors, which can be classified as sensors of warmth or cold. We compare between plant thermosensors and those from other organisms and attempt to define the subcellular thermosensing compartments in plants. In addition, we discuss the notion that photoreceptive thermosensors represent a novel class of thermosensors, the roles of which have yet to be described in non-plant systems.
Collapse
Affiliation(s)
- Minoru Noguchi
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, 321-8505 Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi, 321-8505 Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, 321-8505 Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi, 321-8505 Japan
| |
Collapse
|
32
|
He NY, Chen LS, Sun AZ, Zhao Y, Yin SN, Guo FQ. A nitric oxide burst at the shoot apex triggers a heat-responsive pathway in Arabidopsis. NATURE PLANTS 2022; 8:434-450. [PMID: 35437002 DOI: 10.1038/s41477-022-01135-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
When confronted with heat stress, plants depend on the timely activation of cellular defences to survive by perceiving the rising temperature. However, how plants sense heat at the whole-plant level has remained unanswered. Here we demonstrate that shoot apical nitric oxide (NO) bursting under heat stress as a signal triggers cellular heat responses at the whole-plant level on the basis of our studies mainly using live-imaging of transgenic plants harbouring pHsfA2::LUC, micrografting, NO accumulation mutants and liquid chromatography-tandem mass spectrometry analysis in Arabidopsis. Furthermore, we validate that S-nitrosylation of the trihelix transcription factor GT-1 by S-nitrosoglutathione promotes its binding to NO-responsive elements in the HsfA2 promoter and that loss of function of GT-1 disrupts the activation of HsfA2 and heat tolerance, revealing that GT-1 is the long-sought mediator linking signal perception to the activation of cellular heat responses. These findings uncover a heat-responsive mechanism that determines the timing and execution of cellular heat responses at the whole-plant level.
Collapse
Affiliation(s)
- Ning-Yu He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Sha Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ai-Zhen Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yao Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shui-Ning Yin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fang-Qing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
33
|
Burks DJ, Sengupta S, De R, Mittler R, Azad RK. The Arabidopsis gene co-expression network. PLANT DIRECT 2022; 6:e396. [PMID: 35492683 PMCID: PMC9039629 DOI: 10.1002/pld3.396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Identifying genes that interact to confer a biological function to an organism is one of the main goals of functional genomics. High-throughput technologies for assessment and quantification of genome-wide gene expression patterns have enabled systems-level analyses to infer pathways or networks of genes involved in different functions under many different conditions. Here, we leveraged the publicly available, information-rich RNA-Seq datasets of the model plant Arabidopsis thaliana to construct a gene co-expression network, which was partitioned into clusters or modules that harbor genes correlated by expression. Gene ontology and pathway enrichment analyses were performed to assess functional terms and pathways that were enriched within the different gene modules. By interrogating the co-expression network for genes in different modules that associate with a gene of interest, diverse functional roles of the gene can be deciphered. By mapping genes differentially expressing under a certain condition in Arabidopsis onto the co-expression network, we demonstrate the ability of the network to uncover novel genes that are likely transcriptionally active but prone to be missed by standard statistical approaches due to their falling outside of the confidence zone of detection. To our knowledge, this is the first A. thaliana co-expression network constructed using the entire mRNA-Seq datasets (>20,000) available at the NCBI SRA database. The developed network can serve as a useful resource for the Arabidopsis research community to interrogate specific genes of interest within the network, retrieve the respective interactomes, decipher gene modules that are transcriptionally altered under certain condition or stage, and gain understanding of gene functions.
Collapse
Affiliation(s)
- David J. Burks
- Department of Biological Sciences and BioDiscovery Institute, College of ScienceUniversity of North TexasDentonTexasUSA
| | - Soham Sengupta
- Department of Biological Sciences and BioDiscovery Institute, College of ScienceUniversity of North TexasDentonTexasUSA
| | - Ronika De
- Department of Biological Sciences and BioDiscovery Institute, College of ScienceUniversity of North TexasDentonTexasUSA
| | - Ron Mittler
- The Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural ResourcesChristopher S. Bond Life Sciences Center University of MissouriColumbiaMissouriUSA
- Department of SurgeryUniversity of Missouri School of MedicineColumbiaMissouriUSA
| | - Rajeev K. Azad
- Department of Biological Sciences and BioDiscovery Institute, College of ScienceUniversity of North TexasDentonTexasUSA
- Department of MathematicsUniversity of North TexasDentonTexasUSA
| |
Collapse
|
34
|
Hendrix S, Verbruggen N, Cuypers A, Meyer AJ. Essential trace metals in plant responses to heat stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1775-1788. [PMID: 35018415 DOI: 10.1093/jxb/erab507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Essential trace metals function as structural components or cofactors in many proteins involved in a wide range of physiological processes in plants. Hence, trace metal deficiency can significantly hamper plant growth and development. On the other hand, excess concentrations of trace metals can also induce phytotoxicity, for example via an enhanced production of reactive oxygen species. Besides their roles in plant growth under favourable environmental conditions, trace metals also contribute to plant responses to biotic and abiotic stresses. Heat is a stress factor that will become more prevalent due to increasing climate change and is known to negatively affect crop yield and quality, posing a severe threat to food security for future generations. Gaining insight into heat stress responses is essential to develop strategies to optimize plant growth and quality under unfavourable temperatures. In this context, trace metals deserve particular attention as they contribute to defence responses and are important determinants of plant nutritional value. Here, we provide an overview of heat-induced effects on plant trace metal homeostasis and the involvement of trace metals and trace metal-dependent enzymes in plant responses to heat stress. Furthermore, avenues for future research on the interactions between heat stress and trace metals are discussed.
Collapse
Affiliation(s)
- Sophie Hendrix
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| |
Collapse
|
35
|
Brightbill CM, Sung S. Temperature-mediated regulation of flowering time in Arabidopsis thaliana. ABIOTECH 2022; 3:78-84. [PMID: 36304200 PMCID: PMC9590518 DOI: 10.1007/s42994-022-00069-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
Throughout a plant's life cycle, temperature plays a major role in development. Regulatory modules use temperature cues to control gene expression, facilitating physiological change from germination to flowering. These regulatory modules control morphological and molecular responses to temperature changes caused by seasonal changes or by temporary fluctuations, providing a versatile plasticity of plants. In this review, we outline how temperature changes affect the regulatory modules that induce and repress flowering, in addition to general temperature regulation. Recent studies have identified several regulatory modules by which floral transition and growth responses are controlled in a temperature-dependent manner. This review will report on recent studies related to floral transition and ambient temperature response.
Collapse
Affiliation(s)
- C. Maddie Brightbill
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
36
|
Shi J, Zhu Z. Seedling morphogenesis: when ethylene meets high ambient temperature. ABIOTECH 2022; 3:40-48. [PMID: 36311540 PMCID: PMC9590463 DOI: 10.1007/s42994-021-00063-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
Unlike animals, plant development is plastic and sensitive to environmental changes. For example, Arabidopsis thaliana seedlings display distinct growth patterns when they are grown under different light or temperature conditions. Moreover, endogenous plant hormone such as ethylene also impacts seedling morphology. Ethylene induces hypocotyl elongation in light-grown seedlings but strongly inhibits hypocotyl elongation in etiolated (dark-grown) seedlings. Another characteristic ethylene response in etiolated seedlings is the formation of exaggerated apical hooks. Although it is well known that high ambient temperature promotes hypocotyl elongation in light-grown seedlings (thermomorphogenesis), ethylene suppresses thermomorphogenesis. On another side, high ambient temperature also inhibits the ethylene-responsive hypocotyl shortening and exaggerated hook formation in etiolated seedlings. Therefore, the simplest phytohormone ethylene exhibits almost the most complicated responses, depending on temperature and/or light conditions. In this review, we will focus on two topics related to the main theme of this special issue (response to high temperature): (1) how does high temperature suppress ethylene-induced seedling morphology in dark-grown seedlings, and (2) how does ethylene inhibit high temperature-induced seedling growth in light-grown seedlings. Controlling ethylene biosynthesis through antisense technology was the hallmark event in plant genetic engineering in 1990, we assume that manipulations on plant ethylene signaling in agricultural plants may pave the way for coping with climate change in future.
Collapse
Affiliation(s)
- Junjie Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
37
|
Chen Z, Galli M, Gallavotti A. Mechanisms of temperature-regulated growth and thermotolerance in crop species. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102134. [PMID: 34749068 DOI: 10.1016/j.pbi.2021.102134] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Temperature is a major environmental factor affecting the development and productivity of crop species. The ability to cope with periods of high temperatures, also known as thermotolerance, is becoming an increasingly indispensable trait for the future of agriculture owing to the current trajectory of average global temperatures. From temperature sensing to downstream transcriptional changes, here, we review recent findings involving the thermal regulation of plant growth and the effects of heat on hormonal pathways, reactive oxygen species, and epigenetic regulation. We also highlight recent approaches and strategies that could be integrated to confront the challenges in sustaining crop productivity in future decades.
Collapse
Affiliation(s)
- Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA; Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
38
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
39
|
Wang CF, Han GL, Yang ZR, Li YX, Wang BS. Plant Salinity Sensors: Current Understanding and Future Directions. FRONTIERS IN PLANT SCIENCE 2022; 13:859224. [PMID: 35463402 PMCID: PMC9022007 DOI: 10.3389/fpls.2022.859224] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 05/07/2023]
Abstract
Salt stress is a major limiting factor for plant growth and crop yield. High salinity causes osmotic stress followed by ionic stress, both of which disturb plant growth and metabolism. Understanding how plants perceive salt stress will help efforts to improve salt tolerance and ameliorate the effect of salt stress on crop growth. Various sensors and receptors in plants recognize osmotic and ionic stresses and initiate signal transduction and adaptation responses. In the past decade, much progress has been made in identifying the sensors involved in salt stress. Here, we review current knowledge of osmotic sensors and Na+ sensors and their signal transduction pathways, focusing on plant roots under salt stress. Based on bioinformatic analyses, we also discuss possible structures and mechanisms of the candidate sensors. With the rapid decline of arable land, studies on salt-stress sensors and receptors in plants are critical for the future of sustainable agriculture in saline soils. These studies also broadly inform our overall understanding of stress signaling in plants.
Collapse
|
40
|
Kerchev PI, Van Breusegem F. Improving oxidative stress resilience in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:359-372. [PMID: 34519111 DOI: 10.1111/tpj.15493] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 05/22/2023]
Abstract
Originally conceived as harmful metabolic byproducts, reactive oxygen species (ROS) are now recognized as an integral part of numerous cellular programs. Thanks to their diverse physicochemical properties, compartmentalized production, and tight control exerted by the antioxidant machinery they activate signaling pathways that govern plant growth, development, and defense. Excessive ROS levels are often driven by adverse changes in environmental conditions, ultimately causing oxidative stress. The associated negative impact on cellular constituents have been a major focus of decade-long research efforts to improve the oxidative stress resilience by boosting the antioxidant machinery in model and crop species. We highlight the role of enzymatic and non-enzymatic antioxidants as integral factors of multiple signaling cascades beyond their mere function to prevent oxidative damage under adverse abiotic stress conditions.
Collapse
Affiliation(s)
- Pavel I Kerchev
- Phytophthora Research Centre, Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300, Brno, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Gent, Belgium
| |
Collapse
|
41
|
Choi J, Roy Choudhury A, Walitang DI, Lee Y, Sa T. ACC deaminase-producing Brevibacterium linens RS16 enhances heat-stress tolerance of rice (Oryza sativa L.). PHYSIOLOGIA PLANTARUM 2022; 174:e13584. [PMID: 34625965 DOI: 10.1111/ppl.13584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
The rapid rise in global temperature has adverse effects on rice productivity. The lack of eminent resources for heat stress alleviation is threatening the agricultural sector. Heat stress alleviation by endophytic plant growth-promoting bacteria (PGPB) can be a sustainable and eco-friendly approach. The present study was conducted to check the colonization of Brevibacterium linens RS16 producing ACC (1-aminocyclopropane-1-carboxylate) deaminase in the rice endosphere and to characterize its efficiency in enhancing stress tolerance. The ethylene emission pathway, reactive oxygen species (ROS) concentrations, proline accumulation, expression of glutathione S-transferase (GST), and small heat shock proteins (sHSPs) were monitored at two different levels of heat stress (40°C and 45°C). Bacterial inoculation decreased ethylene emission levels by 26.9% and 24.4% in rice plants exposed to 40°C and 45°C, respectively, compared with the non-inoculated plants. B. linens RS16 also enhanced the expression profiles of glutathione S-transferase. The collective effect of GST expression profiles and decrease in ethylene emission due to bacterial ACC deaminase activity subsequently resulted in a decrease in ROS concentrations. Additionally, HSP16 and HSP26 increased expression in heat-stressed plants inoculated with B. linens RS16 resulted in enhanced stress tolerance (i.e., lesser proline accumulation) than non-inoculated plants. Hence, this study demonstrates the bacteria-mediated tolerance against heat stress by regulating the ethylene emission pathway and upregulating antioxidant enzymes and heat shock proteins.
Collapse
Affiliation(s)
- Jeongyun Choi
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Aritra Roy Choudhury
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Denver I Walitang
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
- College of Agriculture, Fisheries, and Forestry, Romblon State University, Romblon, Philippines
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
- The Korean Academy of Science and Technology, Seongnam, Republic of Korea
| |
Collapse
|
42
|
Lu HP, Wang JJ, Wang MJ, Liu JX. Roles of plant hormones in thermomorphogenesis. STRESS BIOLOGY 2021; 1:20. [PMID: 37676335 PMCID: PMC10441977 DOI: 10.1007/s44154-021-00022-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/01/2021] [Indexed: 09/08/2023]
Abstract
Global warming has great impacts on plant growth and development, as well as ecological distribution. Plants constantly perceive environmental temperatures and adjust their growth and development programs accordingly to cope with the environment under non-lethal warm temperature conditions. Plant hormones are endogenous bioactive chemicals that play central roles in plant growth, developmental, and responses to biotic and abiotic stresses. In this review, we summarize the important roles of plant hormones, including auxin, brassinosteroids (BRs), Gibberellins (GAs), ethylene (ET), and jasmonates (JAs), in regulating plant growth under warm temperature conditions. This provides a picture on how plants sense and transduce the warm temperature signals to regulate downstream gene expression for controlling plant growth under warm temperature conditions via hormone biosynthesis and signaling pathways.
Collapse
Affiliation(s)
- Hai-Ping Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jing-Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Mei-Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
43
|
Ahmad M, Waraich EA, Skalicky M, Hussain S, Zulfiqar U, Anjum MZ, Habib ur Rahman M, Brestic M, Ratnasekera D, Lamilla-Tamayo L, Al-Ashkar I, EL Sabagh A. Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:767150. [PMID: 34975951 PMCID: PMC8714756 DOI: 10.3389/fpls.2021.767150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 05/16/2023]
Abstract
Temperature is one of the decisive environmental factors that is projected to increase by 1. 5°C over the next two decades due to climate change that may affect various agronomic characteristics, such as biomass production, phenology and physiology, and yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower, canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are widely grown. Specific importance is the vulnerability of oil synthesis in these crops against the rise in climatic temperature, threatening the stability of yield and quality. The natural defense system in these crops cannot withstand the harmful impacts of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a proper understanding of underlying mechanisms of genotype-environment interactions that could affect oil synthesis pathways is a prime requirement in developing stable cultivars. Heat stress tolerance is a complex quantitative trait controlled by many genes and is challenging to study and characterize. However, heat tolerance studies to date have pointed to several sophisticated mechanisms to deal with the stress of high temperatures, including hormonal signaling pathways for sensing heat stimuli and acquiring tolerance to heat stress, maintaining membrane integrity, production of heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of antioxidants, accumulation of compatible solutes, modified gene expression to enable changes, intelligent agricultural technologies, and several other agronomic techniques for thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance and exploring their high expressions greatly impacts their potential application using CRISPR/Cas genome editing and OMICS technology. This review highlights the latest outcomes on the response and tolerance to heat stress at the cellular, organelle, and whole plant levels describing numerous approaches applied to enhance thermos-tolerance in oilseed crops. We are attempting to critically analyze the scattered existing approaches to temperature tolerance used in oilseeds as a whole, work toward extending studies into the field, and provide researchers and related parties with useful information to streamline their breeding programs so that they can seek new avenues and develop guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance in oilseeds.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
- Horticultural Sciences Department, Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL, United States
| | | | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zohaib Anjum
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Habib ur Rahman
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University Bonn, Bonn, Germany
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Disna Ratnasekera
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - Laura Lamilla-Tamayo
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Ayman EL Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
44
|
Zhang LL, Luo A, Davis SJ, Liu JX. Timing to grow: roles of clock in thermomorphogenesis. TRENDS IN PLANT SCIENCE 2021; 26:1248-1257. [PMID: 34404586 DOI: 10.1016/j.tplants.2021.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 05/23/2023]
Abstract
Plants coordinate their growth and developmental programs with changes in temperature. This process is termed thermomorphogenesis. The underlying molecular mechanisms have begun to emerge in these nonstressful responses to adjustments in prevailing temperature. The circadian clock is an internal timekeeper that ensures growth, development, and fitness across a wide range of environmental conditions and it responds to thermal changes. Here, we highlight how the circadian clock gates thermoresponsive hypocotyl growth in plants, with an emphasis on different action mode of evening complex (EC) in thermomorphogenesis. We also discuss the biochemical and molecular mechanisms of EC in transducing temperature signals to the key integrator PIF4. This provides future perspectives on unanswered questions on EC-associated thermomorphogenesis.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Anni Luo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Seth Jon Davis
- Department of Biology, University of York, Heslington, York, YO105DD, UK; Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
45
|
Haider S, Iqbal J, Naseer S, Yaseen T, Shaukat M, Bibi H, Ahmad Y, Daud H, Abbasi NL, Mahmood T. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives. PLANT CELL REPORTS 2021; 40:2247-2271. [PMID: 33890138 DOI: 10.1007/s00299-021-02696-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events. The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.
Collapse
Affiliation(s)
- Saqlain Haider
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201, Pakistan.
| | - Sana Naseer
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muzaffar Shaukat
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Haleema Bibi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yumna Ahmad
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hina Daud
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nayyab Laiba Abbasi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Mahmood
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
46
|
Plasma Membrane Fluidity: An Environment Thermal Detector in Plants. Cells 2021; 10:cells10102778. [PMID: 34685758 PMCID: PMC8535034 DOI: 10.3390/cells10102778] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022] Open
Abstract
The lipid matrix in cell membranes is a dynamic, bidimensional array of amphipathic molecules exhibiting mesomorphism, which contributes to the membrane fluidity changes in response to temperature fluctuation. As sessile organisms, plants must rapidly and accurately respond to environmental thermal variations. However, mechanisms underlying temperature perception in plants are poorly understood. We studied the thermal plasticity of membrane fluidity using three fluorescent probes across a temperature range of −5 to 41 °C in isolated microsomal fraction (MF), vacuolar membrane (VM), and plasma membrane (PM) vesicles from Arabidopsis plants. Results showed that PM were highly fluid and exhibited more phase transitions and hysteresis, while VM and MF lacked such attributes. These findings suggest that PM is an important cell hub with the capacity to rapidly undergo fluidity modifications in response to small changes of temperatures in ranges spanning those experienced in natural habitats. PM fluidity behaves as an ideal temperature detector: it is always present, covers the whole cell, responds quickly and with sensitivity to temperature variations, functions with a cell free-energy cost, and it is physically connected with potential thermal signal transducers to elicit a cell response. It is an optimal alternative for temperature detection selected for the plant kingdom.
Collapse
|
47
|
John S, Olas JJ, Mueller-Roeber B. Regulation of alternative splicing in response to temperature variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6150-6163. [PMID: 34028544 PMCID: PMC8483784 DOI: 10.1093/jxb/erab232] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
Plants have evolved numerous molecular strategies to cope with perturbations in environmental temperature, and to adjust growth and physiology to limit the negative effects of extreme temperature. One of the strategies involves alternative splicing of primary transcripts to encode alternative protein products or transcript variants destined for degradation by nonsense-mediated decay. Here, we review how changes in environmental temperature-cold, heat, and moderate alterations in temperature-affect alternative splicing in plants, including crops. We present examples of the mode of action of various temperature-induced splice variants and discuss how these alternative splicing events enable favourable plant responses to altered temperatures. Finally, we point out unanswered questions that should be addressed to fully utilize the endogenous mechanisms in plants to adjust their growth to environmental temperature. We also indicate how this knowledge might be used to enhance crop productivity in the future.
Collapse
Affiliation(s)
- Sheeba John
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
| | - Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Correspondence: or
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
- Correspondence: or
| |
Collapse
|
48
|
Luo L, Zhang S, Wu J, Sun X, Ma A. Heat stress in macrofungi: effects and response mechanisms. Appl Microbiol Biotechnol 2021; 105:7567-7576. [PMID: 34536103 DOI: 10.1007/s00253-021-11574-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
Temperature is one of the key factors that affects the growth and development of macrofungi. Heat stress not only negatively affects the morphology and growth rate of macrofungi, but also destroys cell structures and influences cell metabolism. Due to loosed structure of cell walls and increased membrane fluidity, which caused by heat stress, the outflow of intracellular nutrients makes macrofungi more vulnerable to invasion by pathogens. Macrofungi accumulate reactive oxygen species (ROS), Ca2+, and nitric oxide (NO) when heat-stressed, which transmit and amplify the heat stimulation signal through intracellular signal transduction pathways. Through regulation of some transcription factors including heat response factors (HSFs), POZCP26 and MYB, macrofungi respond to heat stress by different mechanisms. In this paper, we present mechanisms used by macrofungi to adapt and survive under heat stress conditions, including antioxidant defense systems that eliminate the excess ROS, increase in trehalose levels that prevent enzymes and proteins deformation, and stabilize cell structures and heat shock proteins (HSPs) that repair damaged proteins and synthesis of auxins, which increase the activity of antioxidant enzymes. All of these help macrofungi resist and adapt to heat stress. KEY POINTS: • The effects of heat stress on macrofungal growth and development were described. • The respond mechanisms to heat stress in macrofungi were summarized. • The further research directions of heat stress in macrofungi were discussed.
Collapse
Affiliation(s)
- Lu Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junyue Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
49
|
Reis LP, de Lima E Borges EE, Brito DS, Bernardes RC, Dos Santos Araújo R. Heat stress-mediated effects on the morphophysiological, biochemical, and ultrastructural parameters of germinating Melanoxylon brauna Schott. seeds. PLANT CELL REPORTS 2021; 40:1773-1787. [PMID: 34181045 DOI: 10.1007/s00299-021-02740-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The present study showed that the heat stress (40 °C) caused changes in morphophysiological, biochemical, and ultrastructural parameters to the seeds Melanoxylon brauna, ultimately leading to loss of germination capacity. Temperature is an abiotic factor that influences seed germination. In the present study, we investigated morphophysiological, biochemical, and ultrastructural changes during the germination of Melanoxylon brauna seeds under heat stress. Seed germination was evaluated at constant temperatures of 25 and 40 °C. The samples consisted of seeds soaked in distilled and ionized water for 48 and 96 h at both temperatures. For the evaluation of internal morphology, the seeds were radiographed. Ultrastructural parameters were assessed using transmission electron microscopy (TEM). The production of reactive oxygen species (ROS), content of malondialdehyde (MDA) and glucose, carbonylated proteins, and activity of the enzymes (superoxide dismutase-SOD, ascorbate peroxidase-APX, catalase-CAT, peroxidase-POX, glucose-6-phosphate dehydrogenase-G6PDH, lipase, α- and β-amylase, and protease) were measured by spectrophotometric analysis. An 82% reduction in the germination of M. brauna seeds was observed at 25 °C, and 0% at 40 °C. TEM showed that seeds submitted to heat stress (40 °C) had poorly developed mitochondria and significantly reduced respiration rates. The content of ROS and protein carbonylation in seeds subjected to 40 °C increased compared to that at 25 °C. The activity of antioxidant enzymes, namely SOD, APX, CAT, and POX, was significantly reduced in seeds subjected to heat stress. Glucose content, G6PDH, and lipase activity also decreased when the seeds were exposed to heat stress. Conversely, α- and β-amylase enzymes and the protease increased due to the increase in temperature. Our data showed that the increase in temperature caused an accumulation of ROS, increasing the oxidative damage to the seeds, which led to mitochondrial dysfunction, ultimately leading to loss of germination.
Collapse
Affiliation(s)
- Luciane Pereira Reis
- Departamento de Engenharia Florestal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - Danielle S Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | |
Collapse
|
50
|
Role of Reactive Oxygen Species and Hormones in Plant Responses to Temperature Changes. Int J Mol Sci 2021; 22:ijms22168843. [PMID: 34445546 PMCID: PMC8396215 DOI: 10.3390/ijms22168843] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Temperature stress is one of the major abiotic stresses that adversely affect agricultural productivity worldwide. Temperatures beyond a plant's physiological optimum can trigger significant physiological and biochemical perturbations, reducing plant growth and tolerance to stress. Improving a plant's tolerance to these temperature fluctuations requires a deep understanding of its responses to environmental change. To adapt to temperature fluctuations, plants tailor their acclimatory signal transduction events, and specifically, cellular redox state, that are governed by plant hormones, reactive oxygen species (ROS) regulatory systems, and other molecular components. The role of ROS in plants as important signaling molecules during stress acclimation has recently been established. Here, hormone-triggered ROS produced by NADPH oxidases, feedback regulation, and integrated signaling events during temperature stress activate stress-response pathways and induce acclimation or defense mechanisms. At the other extreme, excess ROS accumulation, following temperature-induced oxidative stress, can have negative consequences on plant growth and stress acclimation. The excessive ROS is regulated by the ROS scavenging system, which subsequently promotes plant tolerance. All these signaling events, including crosstalk between hormones and ROS, modify the plant's transcriptomic, metabolomic, and biochemical states and promote plant acclimation, tolerance, and survival. Here, we provide a comprehensive review of the ROS, hormones, and their joint role in shaping a plant's responses to high and low temperatures, and we conclude by outlining hormone/ROS-regulated plant responsive strategies for developing stress-tolerant crops to combat temperature changes.
Collapse
|