1
|
Rodriguez MD, Bay RA, Ruegg KC. Telomere Length Differences Indicate Climate Change-Induced Stress and Population Decline in a Migratory Bird. Mol Ecol 2025:e17642. [PMID: 39754352 DOI: 10.1111/mec.17642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/21/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Genomic projections of (mal)adaptation under future climate change, known as genomic offset, faces limited application due to challenges in validating model predictions. Individuals inhabiting regions with high genomic offset are expected to experience increased levels of physiological stress as a result of climate change, but documenting such stress can be challenging in systems where experimental manipulations are not possible. One increasingly common method for documenting physiological costs associated with stress in individuals is to measure the relative length of telomeres-the repetitive regions on the caps of chromosomes that are known to shorten at faster rates in more adverse conditions. Here we combine models of genomic offsets with measures of telomere shortening in a migratory bird, the yellow warbler (Setophaga petechia), and find a strong correlation between genomic offset, telomere length and population decline. While further research is needed to fully understand these links, our results support the idea that birds in regions where climate change is happening faster are experiencing more stress and that such negative effects may help explain the observed population declines.
Collapse
Affiliation(s)
- Marina D Rodriguez
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Rachael A Bay
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Cooley LA, Hindle AG, Williams CL, Ponganis PJ, Hannah SM, Klinck H, Horning M, Costa DP, Holser RR, Crocker DE, McDonald BI. Physiological effects of research handling on the northern elephant seal (Mirounga angustirostris). Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111771. [PMID: 39491586 DOI: 10.1016/j.cbpa.2024.111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Wildlife researchers must balance the need to safely capture and handle their study animals to sample tissues, collect morphological measurements, and attach dataloggers while ensuring their results are not confounded by stress artifacts caused by handling. To determine the physiological effects of research activities including chemical immobilization, transport, instrumentation with biologgers, and overnight holding on a model marine mammal species, we collected hormone, blood chemistry, hematology, and heart rate data from 19 juvenile northern elephant seals (Mirounga angustirostris) throughout a translocation experiment. Across our six sampling timepoints, cortisol and aldosterone data revealed a moderate hormonal stress response to handling accompanied by minor changes in hematocrit and blood glucose, but not ketone bodies or erythrocyte sedimentation rate. We also examined heart rate as a stress indicator and found that interval heart rate, standard deviation of heart rate, and apnea-eupnea cycles were influenced by handling. However, when seals were recaptured after several days at sea, all hormonal and hematological parameters had returned to baseline levels. Furthermore, 100 % of study animals were resighted in the wild post-translocation, with some individuals observed over four years later. Together, these findings suggest that while northern elephant seals exhibit measurable physiological stress in response to handling, they recover rapidly and show no observable long-term deleterious effects, making them a robust species for ecological and physiological research.
Collapse
Affiliation(s)
- Lauren A Cooley
- Moss Landing Marine Laboratories, San José State University, 8272 Moss Landing Road, Moss Landing, CA 95039, United States.
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, United States
| | - Cassondra L Williams
- National Marine Mammal Foundation, 2240 Shelter Island Drive Suite 200, San Diego, CA 92106, United States
| | - Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive 0204, La Jolla, CA 92093, United States
| | - Shawn M Hannah
- Moss Landing Marine Laboratories, San José State University, 8272 Moss Landing Road, Moss Landing, CA 95039, United States
| | - Holger Klinck
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, United States
| | - Markus Horning
- Wildlife Technology Frontiers, PO Box 3473, Seward, AK 99664, United States
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, United States
| | - Rachel R Holser
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, United States
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, 1801 E. Cotati Avenue, Rohnert Park, CA 94928, United States
| | - Birgitte I McDonald
- Moss Landing Marine Laboratories, San José State University, 8272 Moss Landing Road, Moss Landing, CA 95039, United States
| |
Collapse
|
3
|
Blumstein DM, MacManes MD. Impacts of dietary fat on multi tissue gene expression in the desert-adapted cactus mouse. J Exp Biol 2024; 227:jeb247978. [PMID: 39676723 PMCID: PMC11698062 DOI: 10.1242/jeb.247978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024]
Abstract
Understanding the relationship between dietary fat and physiological responses is crucial in species adapted to arid environments where water scarcity is common. In this study, we present a comprehensive exploration of gene expression across five tissues (kidney, liver, lung, gastrointestinal tract and hypothalamus) and 17 phenotypic measurements, investigating the effects of dietary fat in the desert-adapted cactus mouse (Peromyscus eremicus). We show impacts on immune function, circadian gene regulation and mitochondrial function for mice fed a lower-fat diet compared with mice fed a higher-fat diet. In arid environments with severe water scarcity, even subtle changes in organismal health and water balance can affect physical performance, potentially impacting survival and reproductive success. This study sheds light on the complex interplay between diet, physiological processes and environmental adaptation, providing valuable insights into the multifaceted impacts of dietary choices on organismal well-being and adaptation strategies in arid habitats.
Collapse
Affiliation(s)
- Danielle M. Blumstein
- University of New Hampshire, Molecular, Cellular, and Biomedical Sciences Department, Durham, NH 03824, USA
| | - Matthew D. MacManes
- University of New Hampshire, Molecular, Cellular, and Biomedical Sciences Department, Durham, NH 03824, USA
| |
Collapse
|
4
|
Tajchman K, Janiszewski P, Staniszewska P, Hanzal V, Kasperek K, Strachecka A. The impact of stalking hunt season on long-term stress in big game. BMC Vet Res 2024; 20:549. [PMID: 39633375 PMCID: PMC11616240 DOI: 10.1186/s12917-024-04416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The frequent presence of hunters in hunting areas may have a negative impact on wild animals, which may disturb their welfare. Stressors may long affect individual animal species in different ways. Therefore, the study aimed to compare cortisol level in the hair of male mouflons, red deer, and wild boars harvested at the end of the stalking hunting season depending on the age and carcass mass. The cortisol level was determined using the DetectX® Cortisol ELISA Kits. RESULTS The concentration of cortisol in the hair of mouflons was almost six times lower than that of red deer and wild boars. Carcass mass and age researched animals did not affect cortisol levels. CONCLUSIONS Stalking hunts most likely do not impact the welfare of big game. There is probably habituation to long-term stress in the animals studied. Mouflons have the ability to respond effectively to specific stressors and are more resistant to long-term stress.
Collapse
Affiliation(s)
- Katarzyna Tajchman
- Department of Animal Ethology and Wildlife Management, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, Lublin, 20-950, Poland.
| | - Paweł Janiszewski
- Department of Fur-Bearing Animal Breeding and Game Management, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, Olsztyn, 10-719, Poland
| | - Patrycja Staniszewska
- Department of Invertebrate Ecophysiology and Experimental Biology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 50A Doświadczalna Street, Lublin, 20-280, Poland
| | - Vladimir Hanzal
- Faculty of Forestry and Wood Sciences, Czech University of Life Science, 165 21 Praha 6, Prague, Czech Republic
| | - Kornel Kasperek
- Institute of Biological Basis of Animal Production, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 13 Akademicka St, Lublin, 20-950, Poland
| | - Aneta Strachecka
- Department of Invertebrate Ecophysiology and Experimental Biology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 50A Doświadczalna Street, Lublin, 20-280, Poland
| |
Collapse
|
5
|
Udino E, Pessato A, Addison B, Crino OL, Buchanan KL, Mariette MM. Prenatal Acoustic Signals Influence Nestling Heat Shock Protein Response to Heat and Heterophil-to-Lymphocyte Ratio in a Desert Bird. Int J Mol Sci 2024; 25:12194. [PMID: 39596260 PMCID: PMC11595141 DOI: 10.3390/ijms252212194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Heat shock proteins (HSPs) are essential to cellular protection against heat stress. However, the causes of inter-individual variation in HSP regulation remain unclear. This study aimed to test the impact of early-life conditions on the HSP response to heat in zebra finches. In this arid-adapted bird, incubating parents emit "heat-calls" at high temperatures, which adaptively alter offspring's phenotypes. Embryos were exposed to heat-calls or control-calls, and at 13 days post-hatch nestlings were separated into two different experiments to test responses to either chronic nest temperature ("in-nest" experiment) or an acute "heat-challenge". Blood samples were collected to measure levels of heat shock cognate 70, heat shock protein 90α, corticosterone and the heterophil-to-lymphocyte (H/L) ratio. In the in-nest experiment, both HSPs were upregulated in response to increasing nest temperatures only in control-calls nestlings (HSC70: p = 0.010, HSP90α: p = 0.050), which also had a marginally higher H/L ratio overall than heat-call birds (p = 0.066). These results point to a higher heat sensitivity in control-call nestlings. Furthermore, comparing across experiments, only the H/L ratio differed, being higher in heat-challenged than in in-nest nestlings (p = 0.009). Overall, this study shows for the first time that a prenatal acoustic signal of heat affects the nestling HSP response to postnatal temperature.
Collapse
Affiliation(s)
- Eve Udino
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Anaïs Pessato
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Centre d’Écologie et des Sciences de la Conservation (CESCO), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, CP 135, 57 rue Cuvier, 75005 Paris, France
| | - BriAnne Addison
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Ondi L. Crino
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Katherine L. Buchanan
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Mylene M. Mariette
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Doñana Biological Station EBC-CSIC, Calle Américo-Vespucio 26, 41092 Sevilla, Spain
| |
Collapse
|
6
|
Arusha KS, Boadi KD, Ellah SS, Kim D, Bauer CM. Sibling presence during fostering ameliorates endocrine stress profile changes in a social rodent species (Octodon degus) in a sex-specific manner. Horm Behav 2024; 166:105660. [PMID: 39500218 DOI: 10.1016/j.yhbeh.2024.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
During early life, disruption of the parent-offspring bond can substantially impact development of offspring physiology and behavior. In rodents, it has been well-documented that parental separation, reduction in parental care, and cross-fostering can affect development of the endocrine stress response. For social species, however, several social factors may mitigate the stress of cross-fostering, such as remaining with other known adult caregivers or siblings. In this study, we cross-fostered a social rodent species (Octodon degus) with or without their siblings at postnatal day (PND) 8 and measured their endocrine stress response immediately after fostering (PND9) and at weaning (PND28). We found that female singly-fostered offspring displayed elevated baseline cortisol levels and reduced weight gain immediately after fostering. At weaning, female singly-fostered offspring continued to display elevated baseline cortisol levels compared to non-fostered female offspring, while singly-fostered males demonstrated weaker cortisol negative feedback strength compared to male offspring that were not fostered or were fostered with their siblings. These results suggest that sibling presence may help mitigate the stress of fostering, and that future studies should further examine other social conditions that may help reduce developmental consequences of long-term parental bond disruption.
Collapse
Affiliation(s)
- Kaja S Arusha
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Krystle D Boadi
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Sabrina S Ellah
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Daniela Kim
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Carolyn M Bauer
- Department of Biology, Swarthmore College, Swarthmore, PA, USA.
| |
Collapse
|
7
|
de Almeida Prado DM, de Figueiredo AC, Lima AS, Gomes FR, Madelaire CB. Corticosterone treatment results in fat deposition and body mass maintenance without effects on feeding behaviour or immunity in female lizards (Tropidurus catalanensis). Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111712. [PMID: 39084515 DOI: 10.1016/j.cbpa.2024.111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Throughout life, animals must maintain homeostasis while coping with challenging events. The period after reproduction can be challenging for oviparous females to maintain homeostasis since they direct most of their energy stores to vitellogenesis, possibly increasing the vulnerability to stressors. Changes in glucocorticoids' (GC) secretion promote various behavioural and physiological adjustments daily and to restore balance after facing stressors. However, when GC are elevated for extended periods, which usually occurs in response to chronic exposure to stressors, they can affect feeding behaviour and suppress the immune function. We aim to elucidate the effects of chronic corticosterone (CORT) exposure on feeding behaviour, body condition and immune function in female lizards, Tropidurus catalanensis, in the post-reproductive period. Thirty animals were divided into three groups: 1. Control (no experimental procedure performed); 2. Empty Implant (animals implanted with empty silastic tube); and 3. CORT Implant (animals implanted with silastic tube filled with CORT, with a chronic continuous release for at least a week). CORT plasma levels feeding behaviour, body condition (body index [BI] and fat index [FI]), leukocyte count, and several immune function variables (bacterial killing ability [BKA], hemagglutination titer, phytohemagglutinin [PHA] immune challenge and leukocyte count) were evaluated. After implantation, CORT treated animals maintained stable body mass through the experiment, while Control and Empty Implant groups displayed weight loss. In the CORT treated animals, there was also a positive relation between BI and FI, and higher FI when compared to groups 1 and 2. No effects of CORT were observed on feeding behaviour nor on the immune function.
Collapse
Affiliation(s)
- Débora Meyer de Almeida Prado
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil.
| | - Aymam Cobo de Figueiredo
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil
| | - Alan Siqueira Lima
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil
| | - Fernando Ribeiro Gomes
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil
| | - Carla Bonetti Madelaire
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, United States. https://twitter.com/carlamadelaire
| |
Collapse
|
8
|
Fiorini-Torrico R, De Vleeschouwer KM, Fuzessy L, Oliveira LDC. Glucocorticoids and behavior in non-human primates: A meta-analytic approach to unveil potential coping mechanisms. Horm Behav 2024; 166:105654. [PMID: 39522450 DOI: 10.1016/j.yhbeh.2024.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/07/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Glucocorticoids (GCs) mediate responses to energetic and psychosocial challenges and are associated with behavioral adjustments that form part of an adaptive vertebrate stress response. GCs and behavior can indirectly influence each other, leading to either an intensification or attenuation of stress responses. Exploring these GC-behavior relationships may offer insights into the beneficial aspects of behavior and help identify coping mechanisms that potentially enhance individual fitness. We conducted a systematic review of the relationship between GCs and several behavioral traits, as described in the literature on captive and wild primates, and evaluated the effect of different categorical factors on these relationships using a meta-analytic approach. According to the type of behavior, we grouped statistical measures into affiliative, agonistic, anxiety-like, and foraging domains which were further differentiated into behavioral subgroups. We also categorized measures based on setting, method, sex and age of individuals, and sample matrix involved in each primary study. Overall, we found that some affiliative and foraging behaviors are associated with lower GC levels, while agonistic and anxiety-like behaviors are linked to higher GC levels. Specifically, non-sexual affiliation and energetically inexpensive activities were negatively related to GCs. In contrast, inter- and intragroup aggression, noncommunicative and self-directed behaviors, and energetically expensive activities were positively related to GCs. By demonstrating how certain social, ecological and intrinsic factors affect the GC-behavior relationships, our study helps elucidate the contexts that may alleviate or intensify the stress responses in non-human primates.
Collapse
Affiliation(s)
- Roberto Fiorini-Torrico
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Applied Ecology and Conservation Lab, Universidade Estadual de Santa Cruz, Rod. Jorge Amado km. 16, 45662-900 Ilhéus, BA, Brazil; Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, B-2018 Antwerp, Belgium.
| | - Kristel Myriam De Vleeschouwer
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, B-2018 Antwerp, Belgium
| | - Lisieux Fuzessy
- CREAF - Centre for Ecological Research and Forestry Applications, 08193 Barcelona, Catalonia, Spain; UNESP - São Paulo State University, Institute of Biosciences, Av. 24 A 1515, 13506-900 Rio Claro, SP, Brazil
| | - Leonardo de Carvalho Oliveira
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Applied Ecology and Conservation Lab, Universidade Estadual de Santa Cruz, Rod. Jorge Amado km. 16, 45662-900 Ilhéus, BA, Brazil; Departamento de Ciências, Faculdade de Formação de Professores, Universidade do Estado do Rio de Janeiro, R. Francisco Portela 1470, 24435-005 São Gonçalo, RJ, Brazil; Bicho do Mato Instituto de Pesquisa, Av. Cônsul Antônio Cadar 600, 30360-082 Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Martín J, Rodríguez-Ruiz G, Navarro-Castilla Á, Barja I, López P. Blind date: female fossorial amphisbaenians prefer scent marks of large and healthy males. Integr Zool 2024; 19:1018-1033. [PMID: 38247017 DOI: 10.1111/1749-4877.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Selecting a good mate is a decision with important fitness consequences. For this reason, mate choice has promoted the evolution of sexual ornaments signaling the quality of an individual. In fossorial animals, inhabiting visually restricted underground environments, chemical senses should be very important for mate choice. We examined whether sexual chemical signals (substrate scent marks) produced by males of the Iberian worm lizard, Blanus cinereus, a strictly fossorial blind amphisbaenian, provide information to females on morphological traits and health state. We administered corticosterone (CORT) to males simulating a continuous stressor affecting their health. Females preferred settling at sites scent-marked by males in comparison with similar sites with female scent or unmarked sites, but the attractiveness of males' scent differed between individuals. Females preferred scent marks of larger/older males and with a higher immune response, while their body condition and CORT treatment were unrelated to female preferences. Chemical analyses showed that proportions of some compounds in precloacal secretions of males (used to produce scent marks) were correlated with the morphological (body size) and health state (immune response and body condition, but not CORT treatment) of these males. These results suggest that females may make site-selection decisions based on assessing the chemical characteristics of males' scent marks, which were reliably related to some of the traits of the male that produced the scent. Therefore, females might use chemical senses to increase the opportunities to find and mate with males of high quality, coping with the restrictions of the subterranean environment.
Collapse
Affiliation(s)
- José Martín
- Departmento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Gonzalo Rodríguez-Ruiz
- Departmento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Álvaro Navarro-Castilla
- Etho-Physiology Group, Unit of Zoology, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Autonomous University of Madrid, Madrid, Spain
| | - Isabel Barja
- Etho-Physiology Group, Unit of Zoology, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Autonomous University of Madrid, Madrid, Spain
| | - Pilar López
- Departmento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
10
|
Burraco P, Gabor C, Bryant A, Gardette V, Lengagne T, Bonzom JM, Orizaola G. Ionizing radiation has negligible effects on the age, telomere length and corticosterone levels of Chornobyl tree frogs. Biol Lett 2024; 20:20240287. [PMID: 39500371 PMCID: PMC11537762 DOI: 10.1098/rsbl.2024.0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 09/26/2024] [Indexed: 11/09/2024] Open
Abstract
The accident that occurred at the Chornobyl nuclear power plant (Ukraine, 1986) contaminated a large extension of territory after the deposition of radioactive material. It is still under debate whether the chronic exposure to the radiation levels currently present in the area has long-term effects on organisms, such as decreases in longevity. Here, we investigate whether current levels of radiation in Chornobyl negatively impact the age of the Eastern tree frog Hyla orientalis. We also explore whether radiation induces changes in an ageing marker, telomere length or the stress hormone corticosterone. We found no effect of total individual absorbed radiation (including both external and internal exposure) on frog age (n = 197 individuals sampled in 3 consecutive years). We also did not find any relationship between individual absorbed radiation and telomere length, nor between individual absorbed radiation and corticosterone levels. Our results suggest that radiation levels currently experienced by Chornobyl tree frogs may not be high enough to cause severe chronic damage to semi-aquatic vertebrates such as this species. This is the first study addressing age and stress hormones in Chornobyl wildlife, and thus future research will confirm if these results can be extended to other taxa.
Collapse
Affiliation(s)
- Pablo Burraco
- Doñana Biological Station, Spanish National Research Council (EBD-CSIC), Sevilla41092, Spain
| | - Caitlin Gabor
- Department of Biology, Texas State University, San Marcos, TX78666, USA
| | - Amanda Bryant
- Department of Biology, Texas State University, San Marcos, TX78666, USA
| | - Vanessa Gardette
- Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR 5023, CNRS, ENTPE, Université Claude Bernard Lyon 1, VilleurbanneF-69622, France
| | - Thierry Lengagne
- Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR 5023, CNRS, ENTPE, Université Claude Bernard Lyon 1, VilleurbanneF-69622, France
| | - Jean Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, Saint Paul Lez Durance13115, France
| | - Germán Orizaola
- Biodiversity Research Institute (IMIB), CSIC—University of Oviedo—Principality of Asturias, Mieres, Asturias33600, Spain
- Zoology Unit, Department of Biology of Organisms and Systems, University of Oviedo, Oviedo, Asturias33071, Spain
| |
Collapse
|
11
|
Brandl HB, Farine DR. Stress in the social environment: behavioural and social consequences of stress transmission in bird flocks. Proc Biol Sci 2024; 291:20241961. [PMID: 39533955 PMCID: PMC11558247 DOI: 10.1098/rspb.2024.1961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
The stress response helps individuals cope with challenges, yet how individual stress levels shape group-level processes and the behaviour of other group members has rarely been explored. In social groups, stress responses can be buffered by others or transmitted to members that have not even experienced the stressor first-hand. Stress transmission, in particular, can have profound consequences for the dynamics of social groups and the fitness of individuals therein. We experimentally induced chronic stress within replicated colonies of zebra finches and used fine-scale tracking to observe the consequences of stress-exposed colony members for the behaviour and reproduction of non-manipulated colony members. Non-manipulated individuals in colonies containing stress-exposed individuals exhibited reduced activity, and fewer-but more differentiated-social bonds. These effects were stronger in colonies with a greater proportion of stress-treated individuals, demonstrating that the impact of stressors can reach beyond directly exposed individuals by also affecting their group mates. We found no evidence that socially transmitted stress affected reproduction or long-term physiological measurement in unmanipulated birds, even though the stress-exposed demonstrators laid slightly fewer eggs and showed stressor-dependent changes in feather corticosterone. Social transmission of these effects, if occurring at all, might be more subtle.
Collapse
Affiliation(s)
- Hanja B. Brandl
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78457, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz78457, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich8057, Switzerland
| | - Damien R. Farine
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz78457, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich8057, Switzerland
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra2601, Australia
| |
Collapse
|
12
|
Bühler R, Riecke TV, Schalcher K, Roulin A, Almasi B. Individual quality and environmental factors interact to shape reproduction and survival in a resident bird of prey. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231934. [PMID: 39263448 PMCID: PMC11387063 DOI: 10.1098/rsos.231934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/12/2024] [Accepted: 07/17/2024] [Indexed: 09/13/2024]
Abstract
Investigating among-individual differences in reproductive success and survival is essential for understanding eco-evolutionary processes. We used 5 years of demographic data from 556 breeding barn owls (Tyto alba) to estimate associations between intrinsic and extrinsic covariates on survival and reproduction throughout the annual cycle. As males and females have distinct roles in reproduction, environmental conditions and individual quality may be differentially linked to their fitness at different time points. Males breeding early and inhabiting prey-rich areas experienced higher reproductive success but faced greater reproductive costs. Indeed, the number of offspring a male cared for was negatively associated with his body condition and survival. However, our results indicate that these influences can be mitigated in males experiencing favourable post-breeding environmental conditions. For female owls, early breeding and high food availability during the breeding period were linked with increased reproductive success. Prey availability during incubation and higher reproductive output were associated with higher survival into the next breeding period in females. Unlike males, females did not exhibit obvious trade-offs between reproductive success and survival. Our research demonstrates trade-offs between fecundity and survival, and that females paired with males able to provide sufficient food experience higher survival and reproduction.
Collapse
Affiliation(s)
- Roman Bühler
- Swiss Ornithological Institute, Seerose 1, Sempach CH-6204, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, Lausanne CH-1015, Switzerland
| | - Thomas V Riecke
- Swiss Ornithological Institute, Seerose 1, Sempach CH-6204, Switzerland
- Wildlife Biology Program, University of Montana, Missoula MT 59812, USA
| | - Kim Schalcher
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, Lausanne CH-1015, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, Lausanne CH-1015, Switzerland
| | - Bettina Almasi
- Swiss Ornithological Institute, Seerose 1, Sempach CH-6204, Switzerland
| |
Collapse
|
13
|
Benowitz-Fredericks ZM, Will AP, Pete SN, Whelan S, Kitaysky AS. Corticosterone release in very young siblicidal seabird chicks (Rissa tridactyla) is sensitive to environmental variability and responds rapidly and robustly to external challenges. Gen Comp Endocrinol 2024; 355:114545. [PMID: 38701975 DOI: 10.1016/j.ygcen.2024.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
In birds, patterns of development of the adrenocortical response to stressors vary among individuals, types of stressors, and species. Since there are benefits and costs of exposure to elevated glucocorticoids, this variation is presumably a product of selection such that animals modulate glucocorticoid secretion in contexts where doing so increases their fitness. In this study, we evaluated hypothalamo-pituitary-adrenal (HPA) activity in first-hatched free-living seabird nestlings that engage in intense sibling competition and facultative siblicide (black-legged kittiwakes, Rissa tridactyla). We sampled 5 day old chicks (of the ∼45 day nestling period), a critical early age when food availability drives establishment of important parent-offspring and intra-brood dynamics. We experimentally supplemented parents with food ("supplemented") and measured chick baseline corticosterone secretion and capacity to rapidly increase corticosterone in response to an acute challenge (handling and 15 min of restraint in a bag). We also used topical administration of corticosterone to evaluate the ability of chicks to downregulate physiologically relevant corticosterone levels on a short time scale (minutes). We found that 5 day old chicks are not hypo-responsive but release corticosterone in proportion to the magnitude of the challenge, showing differences in baseline between parental feeding treatments (supplemented vs non-supplemented), moderate increases in response to handling, and a larger response to restraint (comparable to adults) that also differed between chicks from supplemented and control nests. Topical application of exogenous corticosterone increased circulating levels nearly to restraint-induced levels and induced downregulation of HPA responsiveness to the acute challenge of handling. Parental supplemental feeding did not affect absorbance/clearance or negative feedback. Thus, while endogenous secretion of corticosterone in young chicks is sensitive to environmental context, other aspects of the HPA function, such as rapid negative feedback and/or the ability to clear acute elevations in corticosterone, are not. We conclude that 5 day old kittiwake chicks are capable of robust adrenocortical responses to novel challenges, and are sensitive to parental food availability, which may be transduced behaviorally, nutritionally, or via maternal effects. Questions remain about the function of such rapid, large acute stress-induced increases in corticosterone in very young chicks.
Collapse
Affiliation(s)
| | - A P Will
- World Wildlife Fund, US Arctic Program, United States; University of Alaska Fairbanks, Department of Biology and Wildlife, Institute of Arctic Biology, United States
| | - S N Pete
- Bucknell University, Department of Biology, 1 Dent Drive, Lewisburg, PA, United States
| | - S Whelan
- Institute for Seabird Research and Conservation, United States
| | - A S Kitaysky
- University of Alaska Fairbanks, Department of Biology and Wildlife, Institute of Arctic Biology, United States
| |
Collapse
|
14
|
Oduor S, Gichuki NN, Brown JL, Parker J, Kimata D, Murray S, Goldenberg SZ, Schutgens M, Wittemyer G. Adrenal and metabolic hormones demonstrate risk-reward trade-offs for African elephants foraging in human-dominated landscapes. CONSERVATION PHYSIOLOGY 2024; 12:coae051. [PMID: 39100509 PMCID: PMC11295215 DOI: 10.1093/conphys/coae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024]
Abstract
A key driver of the African savannah elephant population decline is the loss of habitat and associated human-elephant conflict. Elephant physiological responses to these pressures, however, are largely unknown. To address this knowledge gap, we evaluated faecal glucocorticoid metabolite (fGCM) concentrations as an indicator of adrenal activity and faecal thyroid metabolite (fT3) concentrations as an indicator of metabolic activity in relation to land use, livestock density, and human landscape modification, while controlling for the effects of seasonality and primary productivity (measured using the normalized difference vegetation index). Our best-fit model found that fGCM concentrations to be elevated during the dry season, in areas with higher human modification index values, and those with more agropastoral activities and livestock. There was also a negative relationship between primary productivity and fGCM concentrations. We found fT3 concentrations to be higher during the wet season, in agropastoral landscapes, in locations with higher human activity, and in areas with no livestock. This study highlights how elephants balance nutritional rewards and risks in foraging decisions when using human-dominated landscapes, results that can serve to better interpret elephant behaviour at the human-wildlife interface and contribute to more insightful conservation strategies.
Collapse
Affiliation(s)
- Sandy Oduor
- Department of Biology, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
- Department of Reproductive Biology, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA
| | - Nathaniel N Gichuki
- Department of Biology, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
| | - Janine L Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA
| | - Jenna Parker
- Conservation Science and Wildlife Health, San Diego Zoo Wildlife Alliance, San Diego, CA 92027, USA
| | - Dennis Kimata
- Department of Biology, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
| | - Suzan Murray
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Shifra Z Goldenberg
- Conservation Science and Wildlife Health, San Diego Zoo Wildlife Alliance, San Diego, CA 92027, USA
| | - Maurice Schutgens
- Conservation Science Department, Space for Giants, PO Box 174-10400, Nanyuki, Kenya
| | - George Wittemyer
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
- Save the Elephants, P. O. Box, 54667 - 00200, Nairobi, Kenya
| |
Collapse
|
15
|
Hending D, Randrianarison H, Andriamavosoloarisoa NNM, Ranohatra-Hending C, McCabe G, Cotton S, Holderied M. Forest fragmentation and edge effects impact body condition, fur condition and ectoparasite prevalence in a nocturnal lemur community. CONSERVATION PHYSIOLOGY 2024; 12:coae042. [PMID: 38957844 PMCID: PMC11217907 DOI: 10.1093/conphys/coae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Forest fragmentation and edge effects are two major threats to primate populations. Primates inhabiting fragmented landscapes must survive in a more degraded environment, often with lower food availability compared to continuous forests. Such conditions can have deleterious effects on animal physiological health, yet some primates thrive in these habitats. Here, we assessed how forest fragmentation and associated edge effects impact three different components of physiological health in a nocturnal primate community in the Sahamalaza-Iles Radama National Park, northwest Madagascar. Over two periods, 6 March 2019-30 October 2019 and 10 January 2022-17 May 2022, we collected data on body condition, fur condition scores and ectoparasite prevalence for 125 Mirza zaza, 51 Lepilemur sahamalaza, 27 Cheirogaleus medius and 22 Microcebus sambiranensis individuals, and we compared these metrics between core and edge areas of continuous forest and fragmented forest. Body condition scores for all species varied between areas, with a positive response to fragmentation and edge effects observed for M. zaza and L. sahamalaza and a negative response for C. medius and M. sambiranensis. Fur condition scores and ectoparasite prevalence were less variable, although M. zaza and L. sahamalaza had a significantly negative response to fragmentation and edge effects for these two variables. Interestingly, the impacts of fragmentation and edge effects on physiological health were variable-specific. Our results suggest that lemur physiological responses to fragmentation and edge effects are species-specific, and body condition, fur condition and ectoparasite prevalence are impacted in different ways between species. As other ecological factors, including food availability and inter/intraspecific competition, likely also influence physiological health, additional work is required to determine why certain aspects of lemur physiology are affected by environmental stressors while others remain unaffected. Although many nocturnal lemurs demonstrate resilience to fragmented and degraded habitats, urgent conservation action is needed to safeguard the survival of their forest habitats.
Collapse
Affiliation(s)
- Daniel Hending
- Department of Biology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TH, UK
- Institute of Conservation Science & Learning, Bristol Zoological Society, Clifton, Bristol BS8 3HA, UK
| | | | | | - Christina Ranohatra-Hending
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TH, UK
- Institute of Conservation Science & Learning, Bristol Zoological Society, Clifton, Bristol BS8 3HA, UK
| | - Grainne McCabe
- Institute of Conservation Science & Learning, Bristol Zoological Society, Clifton, Bristol BS8 3HA, UK
- Wilder Institute, Calgary Zoo, 1300 Zoo Road NE, Calgary, AB T2E 7V6, Canada
| | - Sam Cotton
- Institute of Conservation Science & Learning, Bristol Zoological Society, Clifton, Bristol BS8 3HA, UK
| | - Marc Holderied
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TH, UK
| |
Collapse
|
16
|
Keele EC, Fiss CJ, McNeil DJ, Anderson M, Thomas N, Shaffer D, Larkin JL. Food availability aligns with contrasting demographics in populations of an at-risk songbird. Ecol Evol 2024; 14:e11557. [PMID: 38983707 PMCID: PMC11231935 DOI: 10.1002/ece3.11557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Golden-winged Warblers (Vermivora chrysoptera) have become rare across much of their historic breeding range and response to conservation efforts is variable. Evidence from several recent studies suggests that breeding output is a primary driver explaining responses to conservation and it is hypothesized that differences in food availability may be driving breeding output disparity between two subpopulations of the warbler's Appalachian breeding range. Herein, we studied two subpopulations: central Pennsylvania ("central subpopulation"), where breeding productivity is relatively low, and eastern Pennsylvania ("eastern subpopulation"), where breeding productivity is relatively high. To test the food-availability hypothesis in this system, we measured density of caterpillars, plasma lipid metabolites (triglycerides [TRIG; fat deposition] and glycerol [GLYC; fat breakdown]), body mass of adults males, and acquired body mass data for fledglings at 38 sites managed for nesting habitat. Consistent with our prediction, leaf-roller caterpillar density, the group upon which Golden-winged Warblers specialize, was 45× lower in the central subpopulation than the eastern subpopulation. TRIG concentrations were highest within the eastern subpopulation during breeding grounds arrival. The change in TRIG concentrations from the breeding-grounds-arrival stage to the nestling-rearing stage was subpopulation dependent: TRIG decreased in the eastern subpopulation and was constant in the central subpopulation, resulting in similar concentrations during the nestling-rearing stage. Furthermore, GLYC concentrations were higher in the eastern subpopulation, which suggests greater energy demands in this region. Despite this, adult male warblers in the eastern subpopulation maintained a higher average body mass. Finally, fledgling body mass was 16% greater in the eastern subpopulation than the central subpopulation before and after fledging. Collectively, our results suggest that poor breeding success of Golden-winged Warblers in the central subpopulation could be driven by lower availability of primary prey during the breeding season (leaf-roller caterpillars), and this, in turn, limits their response to conservation efforts.
Collapse
Affiliation(s)
- Emma C Keele
- Indiana University of Pennsylvania - Research Institute Indiana Pennsylvania USA
| | - Cameron J Fiss
- Department of Environmental and Forest Biology State University of New York College of Environmental Science and Forestry Syracuse New York USA
| | - Darin J McNeil
- Department of Forestry and Natural Resources University of Kentucky Lexington Kentucky USA
| | - Meredith Anderson
- Ecology and Evolutionary Biology Interdisciplinary Program, School of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas USA
| | - Nathan Thomas
- Department of Biology Shippensburg University Shippensburg Pennsylvania USA
| | - Dakotah Shaffer
- Department of Biology Indiana University of Pennsylvania Indiana Pennsylvania USA
| | - Jeffery L Larkin
- Department of Biology Indiana University of Pennsylvania Indiana Pennsylvania USA
- American Bird Conservancy The Plains Virginia USA
| |
Collapse
|
17
|
Stiffler WE, Hilton ML, Heinrich GL, Goessling JM. Relationships between Spatial Biology and Physiological Ecology in the Gopher Tortoise, Gopherus polyphemus. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:209-219. [PMID: 39270327 DOI: 10.1086/731340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
AbstractThe overlap between spatial and physiological ecology is generally understudied, yet both fields are fundamentally related in assessing how individuals balance limited resources. Herein, we quantified the relationships between spatial ecology using two parameters of home range (annual home range area and number of burrows used in 1 yr) and four measures of physiology that integrate stress and immunity (baseline plasma corticosterone [CORT] concentration, plasma lactate concentration, heterophil-to-lymphocyte [H∶L] ratio, and bactericidal ability [BA]) in a wild free-ranging population of the gopher tortoise (Gopherus polyphemus) to test the hypothesis that space usage is correlated with physiological state. We also used structural equation models (SEMs) to test for causative relationships between the spatial and physiological parameters. We predicted that larger home ranges would be negatively correlated with traditional biomarkers of stress and positively correlated with immunity, consistent with our hypothesis that home ranges are determined based on individual condition. Males had larger home ranges, used more burrows, and had higher baseline CORT than females. We found significant negative correlations between lactate and home range (r = -0.456 , df = 21 , P = 0.029 ). CORT was negatively correlated with the number of burrows used in both sexes (F = 7.322 , df = 2, 20 , P = 0.003 , adjusted R 2 = 0.383 ). No correlations were observed between space use and BA or, notably, H∶L ratio. SEMs suggested that variation in the number of burrows used was a result of variation in baseline CORT. The lack of a relationship between H∶L ratio and home range suggests that home range differences are not associated with differences in chronic stress, despite the pattern between baseline CORT and number of burrows used. Instead, this study indicates that animals balance trade-offs in energetics, likely by way of baseline corticosteroid, in such a way as to maintain function across continuously variable home range strategies.
Collapse
|
18
|
Thieltges DW, Johnson PTJ, van Leeuwen A, Koprivnikar J. Effects of predation risk on parasite-host interactions and wildlife diseases. Ecology 2024; 105:e4315. [PMID: 38679953 PMCID: PMC11147705 DOI: 10.1002/ecy.4315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/20/2024] [Indexed: 05/01/2024]
Abstract
Landscapes of fear can determine the dynamics of entire ecosystems. In response to perceived predation risk, prey can show physiological, behavioral, or morphological trait changes to avoid predation. This in turn can indirectly affect other species by modifying species interactions (e.g., altered feeding), with knock-on effects, such as trophic cascades, on the wider ecosystem. While such indirect effects stemming from the fear of predation have received extensive attention for herbivore-plant and predator-prey interactions, much less is known about how they alter parasite-host interactions and wildlife diseases. In this synthesis, we present a conceptual framework for how predation risk-as perceived by organisms that serve as hosts-can affect parasite-host interactions, with implications for infectious disease dynamics. By basing our approach on recent conceptual advances with respect to predation risk effects, we aim to expand this general framework to include parasite-host interactions and diseases. We further identify pathways through which parasite-host interactions can be affected, for example, through altered parasite avoidance behavior or tolerance of hosts to infections, and discuss the wider relevance of predation risk for parasite and host populations, including heuristic projections to population-level dynamics. Finally, we highlight the current unknowns, specifically the quantitative links from individual-level processes to population dynamics and community structure, and emphasize approaches to address these knowledge gaps.
Collapse
Affiliation(s)
- David W Thieltges
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Groningen Institute for Evolutionary Life-Sciences, GELIFES, University of Groningen, Groningen, The Netherlands
| | - Pieter T J Johnson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Anieke van Leeuwen
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Janet Koprivnikar
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Andong FA, Ejere VC, Agina OA, Ekere SO, Mayowa ES. Assessment of biometrics and stress indicators of the adult Village Weaver birds ( Ploceus cucullatus) during breeding and post-breeding seasons in Jos, Nigeria. Heliyon 2024; 10:e31196. [PMID: 38784561 PMCID: PMC11112311 DOI: 10.1016/j.heliyon.2024.e31196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In this era of climate change, some biological conservationists' concerns are based on seasonal studies that highlight how wild birds' physiological fitness are interconnected with the immediate environment to avoid population decline. We investigated how seasonal biometrics correlated to stress parameters of the adult Village Weavers (Ploceus cucullatus) during breeding and post-breeding seasons of the Weaver birds in Amurum Forest Reserve. Specifically, we explored the following objectives: (i) the seasonal number of birds captured; (ii) whether seasonal baseline corticosterone (CORT), packed cell volume (PCV), and heterophil to lymphocytes ratio (H:L) were sex-dependent; (iii) whether H:L ratio varied with baseline (CORT); (iv) whether phenotypic condition (post-breeding moult) and brood patch varied with baseline (CORT) and H:L ratio; and (v) how body biometrics co-varied birds' seasonal baseline (CORT), (PCV) and (H:L) ratio. Trapping of birds (May-November) coincided with breeding and post-breeding seasons. The birds (n = 53 males, 39 females) were ringed, morphologically assessed (body mass, wing length, moult, brood patch) and blood collected from their brachial vein was used to assess CORT, PCV and H:L ratio. Although our results indicated more male birds trapped during breeding, the multiple analyses of variance (MANOVA) indicated that the seasonal temperature of the trapping sites correlated (P < 0.05) significantly to baseline (CORT). The general linear mixed model analyses (GLMMs) indicated that the baseline (CORT) also correlated significantly to H:L ratio of the male and female birds. However, PCV correlated significantly to body size of the birds (wing length) and not body mass. Haematological parameters such as the baseline CORT and the H:L ratio as indicators of stress in wild birds. Hence, there is the possibility that the Village Weaver birds suffered from seasonally induced stress under the constrained effect of environmental temperature. Hence, future studies should investigate whether the effect observed is also attributable to other passerine species.
Collapse
Affiliation(s)
- Felix A. Andong
- Department of Zoology and Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
- AP Leventis Ornithological Research Institute, Faculty of Natural Sciences, University of Jos, Plateau State, Nigeria
| | - Vincent C. Ejere
- Department of Zoology and Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Onyinyechukwu A. Agina
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Samuel O. Ekere
- Department of Veterinary Theriogenology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ezekiel S. Mayowa
- AP Leventis Ornithological Research Institute, Faculty of Natural Sciences, University of Jos, Plateau State, Nigeria
| |
Collapse
|
20
|
McCollum SE, Canter O, Fasanello VJ, Gronsky S, Haussmann MF. Birds of a feather age together: telomere dynamics and social behavior predict life span in female Japanese quail (Coturnix japonica). Front Endocrinol (Lausanne) 2024; 15:1363468. [PMID: 38808110 PMCID: PMC11130416 DOI: 10.3389/fendo.2024.1363468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Social support is vital for mental and physical health and is linked to lower rates of disease and early mortality. Conversely, anti-social behavior can increase mortality risks, both for the initiator and target of the behavior. Chronic stress, which also can increase mortality, may serve as an important link between social behavior and healthy lifespan. There is a growing body of literature in both humans, and model organisms, that chronic social stress can result in more rapid telomere shortening, a measure of biological aging. Here we examine the role of anti-social behavior and social support on physiological markers of stress and aging in the social Japanese quail, Coturnix Japonica. Birds were maintained in groups for their entire lifespan, and longitudinal measures of antisocial behavior (aggressive agonistic behavior), social support (affiliative behavior), baseline corticosterone, change in telomere length, and lifespan were measured. We found quail in affiliative relationships both committed less and were the targets of less aggression compared to birds who were not in these relationships. In addition, birds displaying affiliative behavior had longer telomeres, and longer lifespans. Our work suggests a novel pathway by which social support may buffer against damage at the cellular level resulting in telomere protection and subsequent longer lifespans.
Collapse
Affiliation(s)
- Shannon E. McCollum
- Department of Biology, Bucknell University, Lewisburg, PA, United States
- Cellular and Molecular Biology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Olivia Canter
- Department of Chemistry, Duke University, Durham, NC, United States
| | | | - Sarah Gronsky
- Department of Biology, Bucknell University, Lewisburg, PA, United States
| | - Mark F. Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA, United States
| |
Collapse
|
21
|
Blumstein DM, MacManes MD. Impacts of dietary fat on multi tissue gene expression in the desert-adapted cactus mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592397. [PMID: 38746252 PMCID: PMC11092757 DOI: 10.1101/2024.05.03.592397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Understanding the relationship between dietary fat and physiological responses is crucial in species adapted to arid environments where water scarcity is common. In this study, we present a comprehensive exploration of gene expression across five tissues (kidney, liver, lung, gastrointestinal tract, and hypothalamus) and 19 phenotypic measurements, investigating the effects of dietary fat in the desert-adapted cactus mouse ( Peromyscus eremicus ). We show impacts on immune function, circadian gene regulation, and mitochondrial function for mice fed a lower-fat diet compared to mice fed a higher-fat diet. In arid environments with severe water scarcity, even subtle changes in organismal health and water balance can affect physical performance, potentially impacting survival and reproductive success. The study sheds light on the complex interplay between diet, physiological processes, and environmental adaptation, providing valuable insights into the multifaceted impacts of dietary choices on organismal well-being and adaptation strategies in arid habitats.
Collapse
|
22
|
O'Dwyer K, Milotic D, Milotic M, Koprivnikar J. Behave yourself: effects of exogenous-glucocorticoid exposure on larval amphibian anti-parasite behaviour and physiology. Oecologia 2024; 205:95-106. [PMID: 38689180 DOI: 10.1007/s00442-024-05547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 03/30/2024] [Indexed: 05/02/2024]
Abstract
Parasites represent a ubiquitous threat for most organisms, requiring potential hosts to invest in a range of strategies to defend against infection-these include both behavioural and physiological mechanisms. Avoidance is an essential first line of defence, but this behaviour may show a trade-off with host investment in physiological immunity. Importantly, while environmental stressors can lead to elevated hormones in vertebrates, such as glucocorticoids, that can reduce physiological immunity in certain contexts, behavioural defences may also be compromised. Here, we investigate anti-parasite behaviour and immune responses against a trematode (flatworm) parasite by larval amphibians (tadpoles) exposed or not to a simulated general stressor in the form of exogenous corticosterone. Tadpoles that were highly active in the presence of the trematode infectious stage (cercariae) had lower infection loads, and parasite loads from tadpoles treated only with dechlorinated water were significantly lower than those exposed to corticosterone or the solvent control. However, treatment did not affect immunity as measured through white blood-cell profiles, and there was no relationship between the latter and anti-parasite behaviour. Our results suggest that a broad range of stressors could increase host susceptibility to infection through altered anti-parasite behaviours if they elevate endogenous glucocorticoids, irrespective of physiological immunity effects. How hosts defend themselves against parasitism in the context of multiple challenges represents an important topic for future research, particularly as the risk posed by infectious diseases is predicted to increase in response to ongoing environmental change.
Collapse
Affiliation(s)
- Katie O'Dwyer
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada.
- Marine and Freshwater Research Centre, Atlantic Technological University, Old Dublin Road, Co., Galway, Ireland.
| | - Dino Milotic
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
- Harry Butler Institute, Murdoch University, Perth, WA, Australia
| | - Marin Milotic
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
- Harry Butler Institute, Murdoch University, Perth, WA, Australia
| | - Janet Koprivnikar
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| |
Collapse
|
23
|
Kilgour DAV, Romero LM, Reed JM. Feather corticosterone is lower in translocated and historical populations of the endangered Laysan duck ( Anas laysanensis). Proc Biol Sci 2024; 291:20240330. [PMID: 38772417 DOI: 10.1098/rspb.2024.0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 05/23/2024] Open
Abstract
Identifying reliable bioindicators of population status is a central goal of conservation physiology. Physiological stress measures are often used as metrics of individual health and can assist in managing endangered species if linked to fitness traits. We analysed feather corticosterone, a cumulative physiological stress metric, of individuals from historical, translocated, and source populations of an endangered endemic Hawaiian bird, the Laysan duck (Anas laysanensis). We hypothesized that feather corticosterone would reflect the improved reproduction and survival rates observed in populations translocated to Midway and Kure Atolls from Laysan Island. We also predicted less physiological stress in historical Laysan birds collected before ecological conditions deteriorated and the population bottleneck. All hypotheses were supported: we found lower feather corticosterone in the translocated populations and historical samples than in those from recent Laysan samples. This suggests that current Laysan birds are experiencing greater physiological stress than historical Laysan and recently translocated birds. Our initial analysis suggests that feather corticosterone may be an indicator of population status and could be used as a non-invasive physiological monitoring tool for this species with further validation. Furthermore, these preliminary results, combined with published demographic data, suggest that current Laysan conditions may not be optimal for this species.
Collapse
Affiliation(s)
| | | | - J Michael Reed
- Department of Biology, Tufts University , , MA 02155, USA
| |
Collapse
|
24
|
Shephard AM, Lagon SR, Jacobsen S, Millar K, Ledón-Rettig CC. Corticosterone Contributes to Diet-Induced Reprogramming of Post-Metamorphic Behavior in Spadefoot Toads. Integr Org Biol 2024; 6:obae012. [PMID: 38707679 PMCID: PMC11067961 DOI: 10.1093/iob/obae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Stressful experiences in early life can have phenotypic effects that persist into, or manifest during, adulthood. In vertebrates, such carryover effects can be driven by stress-induced secretion of glucocorticoid hormones, such as corticosterone, which can lead to developmental reprogramming of hypothalamic-pituitary-adrenal/interrenal axis activity and behavior. Nutritional stress in the form of early life nutrient restriction is well known to modify later life behaviors and stress activity through corticosterone-related mechanisms. However, it is not known whether corticosterone is also mechanistically involved in carryover effects induced by a different form of nutritional variation: the use of alternate or entirely novel types of dietary resources. The plains spadefoot (Spea bombifrons) presents an excellent system for testing this question, since larvae of this species have evolved to use 2 alternate diet types: an ancestral detritus-based diet and a more novel diet of live shrimp. While previous work has shown that feeding on the novel shrimp diet influences juvenile (i.e., post-metamorphic) behavior and corticosterone levels, it is unclear whether these diet-induced carryover effects are mediated by diet-induced corticosterone itself. To test for the mechanistic role of corticosterone in diet-induced carryover effects, we experimentally treated S. bombifrons larvae with exogenous corticosterone and measured subsequent effects on juvenile behavior and corticosterone levels. We found that while shrimp-fed larvae had elevated corticosterone levels, treatment of larvae with corticosterone itself had effects on juvenile behavior that partially resembled those carryover effects induced by the shrimp diet, such as altered food seeking and higher locomotor activity. However, unlike carryover effects caused by the shrimp diet, larval corticosterone exposure did not affect juvenile corticosterone levels. Overall, our study shows that corticosterone-related mechanisms are likely involved in carryover effects induced by a novel diet, yet such diet-induced carryover effects are not driven by corticosterone alone.
Collapse
Affiliation(s)
- A M Shephard
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - S R Lagon
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - S Jacobsen
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - K Millar
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - C C Ledón-Rettig
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| |
Collapse
|
25
|
Lewden A, Ward C, Noiret A, Avril S, Abolivier L, Gérard C, Hammer TL, Raymond É, Robin JP, Viblanc VA, Bize P, Stier A. Surface temperatures are influenced by handling stress independently of corticosterone levels in wild king penguins (Aptenodytes patagonicus). J Therm Biol 2024; 121:103850. [PMID: 38608548 DOI: 10.1016/j.jtherbio.2024.103850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 04/14/2024]
Abstract
Assessing the physiological stress responses of wild animals opens a window for understanding how organisms cope with environmental challenges. Since stress response is associated with changes in body temperature, the use of body surface temperature through thermal imaging could help to measure acute and chronic stress responses non-invasively. We used thermal imaging, acute handling-stress protocol and an experimental manipulation of corticosterone (the main glucocorticoid hormone in birds) levels in breeding king penguins (Aptenodytes patagonicus), to assess: 1. The potential contribution of the Hypothalamo-Pituitary-Adrenal (HPA) axis in mediating chronic and acute stress-induced changes in adult surface temperature, 2. The influence of HPA axis manipulation on parental investment through thermal imaging of eggs and brooded chicks, and 3. The impact of parental treatment on offspring thermal's response to acute handling. Maximum eye temperature (Teye) increased and minimum beak temperature (Tbeak) decreased in response to handling stress in adults, but neither basal nor stress-induced surface temperatures were significantly affected by corticosterone implant. While egg temperature was not significantly influenced by parental treatment, we found a surprising pattern for chicks: chicks brooded by the (non-implanted) partner of corticosterone-implanted individuals exhibited higher surface temperature (both Teye and Tbeak) than those brooded by glucocorticoid-implanted or control parents. Chick's response to handling in terms of surface temperature was characterized by a drop in both Teye and Tbeak independently of parental treatment. We conclude that the HPA axis seems unlikely to play a major role in determining chronic or acute changes in surface temperature in king penguins. Changes in surface temperature may primarily be mediated by the Sympathetic-Adrenal-Medullary (SAM) axis in response to stressful situations. Our experiment did not reveal a direct impact of parental HPA axis manipulation on parental investment (egg or chick temperature), but a potential influence on the partner's brooding behaviour.
Collapse
Affiliation(s)
- Agnès Lewden
- Faculty of Biological Sciences, University of Leeds, Leeds, UK; Université de Brest - UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'environnement Marin - IUEM, Rue Dumont D'Urville, 29280, Plouzané, France.
| | - Chelsea Ward
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Aude Noiret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Sandra Avril
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Lucie Abolivier
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Caroline Gérard
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Tracey L Hammer
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Émilie Raymond
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France; Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Jean-Patrice Robin
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; Swiss Ornithological Institute, CH-6204, Sempach, Switzerland
| | - Antoine Stier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France; Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France; Department of Biology, University of Turku, Turku, Finland.
| |
Collapse
|
26
|
Abstract
In recent years, the impact of prenatal sound on development, notably for programming individual phenotypes for postnatal conditions, has increasingly been revealed. However, the mechanisms through which sound affects physiology and development remain mostly unexplored. Here, I gather evidence from neurobiology, developmental biology, cellular biology and bioacoustics to identify the most plausible modes of action of sound on developing embryos. First, revealing often-unsuspected plasticity, I discuss how prenatal sound may shape auditory system development and determine individuals' later capacity to receive acoustic information. I also consider the impact of hormones, including thyroid hormones, glucocorticoids and androgen, on auditory plasticity. Second, I review what is known about sound transduction to other - non-auditory - brain regions, and its potential to input on classical developmental programming pathways. Namely, the auditory pathway has direct anatomical and functional connectivity to the hippocampus, amygdala and/or hypothalamus, in mammals, birds and anurans. Sound can thus trigger both immediate and delayed responses in these limbic regions, which are specific to the acoustic stimulus and its biological relevance. Third, beyond the brain, I briefly consider the possibility for sound to directly affect cellular functioning, based on evidence in earless organisms (e.g. plants) and cell cultures. Together, the multi-disciplinary evidence gathered here shows that the brain is wired to allow multiple physiological and developmental effects of sound. Overall, there are many unexplored, but possible, pathways for sound to impact even primitive or immature organisms. Throughout, I identify the most promising research avenues for unravelling the processes of acoustic developmental programming.
Collapse
Affiliation(s)
- Mylene M Mariette
- Doñana Biological Station EBD-CSIC, 41092 Seville, Spain
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
27
|
Veyrunes F, Perez J, Heitzmann LD, Saunders PA, Givalois L. Hormone profiles of the African pygmy mouse Mus minutoides, a species with XY female sex reversal. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:130-137. [PMID: 38059664 DOI: 10.1002/jez.2767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
In mammals, most sex differences in phenotype are controlled by gonadal hormones, but recent work on transgenic mice has shown that sex chromosomes can have a direct influence on sex-specific behaviors. In this study, we take advantage of the naturally occurring sex reversal in a mouse species, Mus minutoides, to investigate for the first time the relationship between sex chromosomes, hormones, and behaviors in a wild species. In this model, a feminizing variant of the X chromosome, named X*, produces three types of females with different sex chromosome complements (XX, XX*, and X*Y), associated with alternative behavioral phenotypes, while all males are XY. We thus compared the levels of three major circulating steroid hormones (testosterone, corticosterone, and estradiol) in the four sex genotypes to disentangle the influence of sex chromosomes and sex hormones on behavior. First, we did not find any difference in testosterone levels in the three female genotypes, although X*Y females are notoriously more aggressive. Second, in agreement with their lower anxiety-related behaviors, X*Y females and XY males display lower baseline corticosterone concentration than XX and XX* females. Instead of a direct hormonal influence, this result rather suggests that sex chromosomes may have an impact on the baseline corticosterone level, which in turn may influence behaviors. Third, estradiol concentrations do not explain the enhanced reproductive performance and maternal care behavior of the X*Y females compared to the XX and XX* females. Overall, this study highlights that most of the behaviors varying along with sex chromosome complement of this species are more likely driven by genetic factors rather than steroid hormone concentrations.
Collapse
Affiliation(s)
- Frederic Veyrunes
- ISEM, Institut des Sciences de l'Evolution de Montpellier UMR 5554, CNRS, Université Montpellier, IRD, Montpellier, France
| | - Julie Perez
- ISEM, Institut des Sciences de l'Evolution de Montpellier UMR 5554, CNRS, Université Montpellier, IRD, Montpellier, France
| | - Louise D Heitzmann
- ISEM, Institut des Sciences de l'Evolution de Montpellier UMR 5554, CNRS, Université Montpellier, IRD, Montpellier, France
| | - Paul A Saunders
- ISEM, Institut des Sciences de l'Evolution de Montpellier UMR 5554, CNRS, Université Montpellier, IRD, Montpellier, France
| | - Laurent Givalois
- MMDN, Molecular Mechanisms in Neurodegenerative Dementia Laboratory, Université Montpellier, EPHE-PSL, INSERM U1198, Montpellier, France
- Department of Psychiatry and Neurosciences, CR-CHUQ, Faculty of Medicine, Laval University, Québec City, Canada
- CNRS, Paris, France
| |
Collapse
|
28
|
Miltiadous A, Callahan DL, Dujon AM, Buchanan KL, Rollins LA. Maternally derived avian corticosterone affects offspring genome-wide DNA methylation in a passerine species. Mol Ecol 2024; 33:e17283. [PMID: 38288572 DOI: 10.1111/mec.17283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/13/2023] [Indexed: 03/07/2024]
Abstract
Avian embryos develop in an egg composition which reflects both maternal condition and the recent environment of their mother. In birds, yolk corticosterone (CORT) influences development by impacting pre- and postnatal growth, as well as nestling stress responses and development. One possible mechanism through which maternal CORT may affect offspring development is via changes to offspring DNA methylation. We sought to investigate this, for the first time in birds, by quantifying the impact of manipulations to maternal CORT on offspring DNA methylation. We non-invasively manipulated plasma CORT concentrations of egg-laying female zebra finches (Taeniopygia castanotis) with an acute dose of CORT administered around the time of ovulation and collected their eggs. We then assessed DNA methylation in the resulting embryonic tissue and in their associated vitelline membrane blood vessels, during early development (5 days after lay), using two established methods - liquid chromatography-mass spectrometry (LC-MS) and methylation-sensitive amplification fragment length polymorphism (MS-AFLP). LC-MS analysis showed that global DNA methylation was lower in embryos from CORT-treated mothers, compared to control embryos. In contrast, blood vessel DNA from eggs from CORT-treated mothers showed global methylation increases, compared to control samples. There was a higher proportion of global DNA methylation in the embryonic DNA of second clutches, compared to first clutches. Locus-specific analyses using MS-AFLP did not reveal a treatment effect. Our results indicate that an acute elevation of maternal CORT around ovulation impacts DNA methylation patterns in their offspring. This could provide a mechanistic understanding of how a mother's experience can affect her offspring's phenotype.
Collapse
Affiliation(s)
- Anna Miltiadous
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Damien L Callahan
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Antoine M Dujon
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Katherine L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Lee A Rollins
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Piscopo N, Matera R, Cotticelli A, Trapanese L, Tamburis O, Cimmino R, Salzano A. Investigation of Climate Effects on the Physiological Parameters of Dairy Livestock (Cow vs. Buffalo). SENSORS (BASEL, SWITZERLAND) 2024; 24:1164. [PMID: 38400322 PMCID: PMC10891940 DOI: 10.3390/s24041164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Nowadays climate change is affecting the planet's biodiversity, and livestock practices must adapt themselves to improve production without affecting animal welfare. This work investigates the influence that some climatic parameters such as Environment Temperature, Relative Humidity, Thermal excursion and Temperature-Humidity Index (THI), can have on milk quantity and quality in two different dairy species (buffaloes and cows) raised on the same farm. A further aim was to understand if THI threshold used for cows could also be used for buffaloes. The climatic parameters were recorded daily through a meteorological station located inside the farm. Milk quantity (converted into ECM) and quality (Fat Percentage-FP; Protein Percentage-PP; Somatic Cell Count-SCC) were measured. Data were analyzed with Spearman's correlation index, separately for buffaloes and cows. The results indicate a greater sensitivity of cows to heat stress and a strong negative correlation of the ECM with meteorological data (p < 0.01). The results of this study may stimulate the use of integrated technologies (sensors, software) in the dairy sector, since the IoT (sensors, software) helps to enhance animal well-being and to optimize process costs, with a precision livestock farming approach.
Collapse
Affiliation(s)
- Nadia Piscopo
- Department of Veterinary Medicine and Animal Production, Federico II University, 80137 Naples, Italy; (N.P.); (R.M.); (A.C.); (A.S.)
| | - Roberta Matera
- Department of Veterinary Medicine and Animal Production, Federico II University, 80137 Naples, Italy; (N.P.); (R.M.); (A.C.); (A.S.)
| | - Alessio Cotticelli
- Department of Veterinary Medicine and Animal Production, Federico II University, 80137 Naples, Italy; (N.P.); (R.M.); (A.C.); (A.S.)
| | - Lucia Trapanese
- Department of Electrical Engineering and Information Technologies, Federico II University, 80125 Naples, Italy
| | - Oscar Tamburis
- Institute of Biostructures and Bioimaging National Research Council, 80145 Naples, Italy;
| | - Roberta Cimmino
- Associazione Nazionale Allevatori Specie Bufalina (ANASB), 81100 Caserta, Italy;
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Production, Federico II University, 80137 Naples, Italy; (N.P.); (R.M.); (A.C.); (A.S.)
| |
Collapse
|
30
|
Supanta J, Brown JL, Bansiddhi P, Thitaram C, Punyapornwithaya V, Punturee K, Towiboon P, Somboon N, Khonmee J. Physiological changes in captive elephants in northern Thailand as a result of the COVID-19 tourism ban-stress biomarkers. Front Vet Sci 2024; 11:1351361. [PMID: 38406629 PMCID: PMC10884277 DOI: 10.3389/fvets.2024.1351361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
The international travel ban instituted by the Thai government in March 2020 in response to the COVID-19 pandemic greatly affected how tourist camp elephants were managed, with reductions in exercise opportunities, longer chaining hours, and diminished food provisioning. This study was conducted to determine how those changes affected health and welfare biomarkers in individual elephants over the 2 years of the countrywide lockdown (April 2020-April 2022). Blood and fecal samples were collected from 58 elephants at six camps (monthly in Year 1, quarterly in Year 2) and analyzed for stress biomarkers - fecal glucocorticoid metabolites (fGCM), serum oxidative stress [malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG)], and stress leukograms. Overall, fGCM concentrations increased within the first few months and remained higher than pre-COVID levels, as did the H/L ratio, a measure affected by cortisol. Serum 8-OHdG, an indicator of DNA oxidative damage, also increased over time, while monocytosis and lymphopenia further suggested alterations in immune function as a result of stress. By contrast, another marker of oxidative stress, serum MDA, declined, possibly in response to reduced roughage and supplement intake. A notable finding was a seasonal pattern of fGCM that was significantly different from previous studies. Whereas higher fGCM during the rainy season were observed in this study, previously, concentrations were highest during the winter, high tourist season. Thus, ironically, both the presence and absence of tourists have been associated with increased fGCM concentrations, albeit for different reasons. Camp management factors negatively affecting stress outcomes included shorter chain lengths, longer chain hours, lack of exercise, and reduced roughage and supplements. Overall, it was clear that camps struggled to maintain adequate care for elephants during the COVID-19 pandemic, highlighting the importance of tourist income and need for contingency plans to cope with potential future disruptions to tourism.
Collapse
Affiliation(s)
- Jarawee Supanta
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai University, Chiang Mai, Thailand
| | - Janine L. Brown
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai University, Chiang Mai, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai, Thailand
- Smithsonian Conservation Biology Institute, Center for Species Survival, Front Royal, VA, United States
| | - Pakkanut Bansiddhi
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai University, Chiang Mai, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchote Thitaram
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai University, Chiang Mai, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai, Thailand
| | | | - Khanittha Punturee
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharapa Towiboon
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai University, Chiang Mai, Thailand
| | - Nopphamas Somboon
- Small Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jaruwan Khonmee
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai University, Chiang Mai, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
31
|
Bello KO, Irekhore OT, Adeitan OO, Yusuf AO, Bada BS. Physiological Response, Haematology and Stress Condition of Scavenging Chickens in Cement Production Areas. J APPL ANIM WELF SCI 2024; 27:21-32. [PMID: 35034535 DOI: 10.1080/10888705.2021.2021531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study investigated the physiological and stress indices of scavenging chickens in LAFARGE and Dangote cement factories located at Ewekoro and Ibese, respectively and respective adjourning communities of Ogun State, Nigeria. One hundred adult scavenging chickens comprising of 25 from each location were used. The birds were caught at night on their perch and kept in furnished cages till the next morning. Data were collected on their rectal temperature, pulse rate, and respiratory rate . Also 5 mL blood was collected through the wing vein of each chicken. Highest (p < 0.05) pulse rate (215.64 beat/minute) and respiratory rate (19.90 breath/minute) were recorded among the chickens at LAFARGE area. Highest (p < 0.05) packed cell volume (28.06%), hemoglobin (4.01 g/dL), monocyte (4.28%) and glucose (256.53 g/dL) were recorded among ones at Ibese (Dangote). White blood cell (6488.89 × 103µL) was highest (p < 0.05) in chickens at Ewekoro (LAFARGE). The study concluded that cement factories infringe on health status of scavenging chickens in the domains. Effective environmental mitigation programme should be put in place for enhanced welfare of the birds.
Collapse
Affiliation(s)
- Kazeem O Bello
- Institute of Food Security, Environmental Resources and Agricultural Research, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - Oluwakemi T Irekhore
- Agricultural Media and Extension Centre, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - Onaopepo O Adeitan
- Department of Animal Production and Health, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - Azeez O Yusuf
- Department of Animal Production and Health, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - Babatunde S Bada
- Department of Environmental Management and Toxicology, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| |
Collapse
|
32
|
Madison FN, Bingman VP, Smulders TV, Lattin CR. A bird's eye view of the hippocampus beyond space: Behavioral, neuroanatomical, and neuroendocrine perspectives. Horm Behav 2024; 157:105451. [PMID: 37977022 DOI: 10.1016/j.yhbeh.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Although the hippocampus is one of the most-studied brain regions in mammals, research on the avian hippocampus has been more limited in scope. It is generally agreed that the hippocampus is an ancient feature of the amniote brain, and therefore homologous between the two lineages. Because birds and mammals are evolutionarily not very closely related, any shared anatomy is likely to be crucial for shared functions of their hippocampi. These functions, in turn, are likely to be essential if they have been conserved for over 300 million years. Therefore, research on the avian hippocampus can help us understand how this brain region evolved and how it has changed over evolutionary time. Further, there is a strong research foundation in birds on hippocampal-supported behaviors such as spatial navigation, food caching, and brood parasitism that scientists can build upon to better understand how hippocampal anatomy, network circuitry, endocrinology, and physiology can help control these behaviors. In this review, we summarize our current understanding of the avian hippocampus in spatial cognition as well as in regulating anxiety, approach-avoidance behavior, and stress responses. Although there are still some questions about the exact number of subdivisions in the avian hippocampus and how that might vary in different avian families, there is intriguing evidence that the avian hippocampus might have complementary functional profiles along the rostral-caudal axis similar to the dorsal-ventral axis of the rodent hippocampus, where the rostral/dorsal hippocampus is more involved in cognitive processes like spatial learning and the caudal/ventral hippocampus regulates emotional states, anxiety, and the stress response. Future research should focus on elucidating the cellular and molecular mechanisms - including endocrinological - in the avian hippocampus that underlie behaviors such as spatial navigation, spatial memory, and anxiety-related behaviors, and in so doing, resolve outstanding questions about avian hippocampal function and organization.
Collapse
Affiliation(s)
- Farrah N Madison
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Verner P Bingman
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Tom V Smulders
- Centre for Behaviour and Evolution, School of Psychology, Newcastle University, Newcastle upon Tyne NE2 4DR, UK
| | - Christine R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70808, USA.
| |
Collapse
|
33
|
Kelly TR, Cannon AL, Stansberry KR, Kimball MG, Lattin CR. Changes in hypothalamic-pituitary-adrenal axis function, immunity, and glucose during acute Plasmodium relictum infection in house sparrows (Passer domesticus). Gen Comp Endocrinol 2024; 345:114388. [PMID: 37802425 DOI: 10.1016/j.ygcen.2023.114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Hosts of the same species vary in physiological responses to the same parasite, and some groups of individuals can disproportionately affect disease dynamics; however, the underlying pathophysiology of host-parasite interactions is poorly understood in wildlife. We tested the hypothesis that the hypothalamic-pituitary-adrenal (HPA) axis mediates host resistance and tolerance to avian malaria during the acute phase of infection by evaluating whether individual variation in circulating glucocorticoids predicted resistance to avian malaria in a songbird. We experimentally inoculated wild-caught house sparrows (Passer domesticus) with naturally sourced Plasmodium relictum and quantified baseline and restraint-induced circulating corticosterone, negative feedback ability, cellular and humoral immune function, and baseline and restraint-induced glycemia, prior to and during acute malaria infection. During peak parasitemia, we also evaluated the expression of several liver cytokines that are established pathological hallmarks of malaria in mammals: two pro-inflammatory (IFN-γ and TNF-α) and two anti-inflammatory (IL-10 and TGF-β). Although most of the host metrics we evaluated were not correlated with host resistance or tolerance to avian malaria, this experiment revealed novel relationships between malarial parasites and the avian immune system that further our understanding of the pathology of malaria infection in birds. Specifically, we found that: (1) TNF-α liver expression was positively correlated with parasitemia; (2) sparrows exhibited an anti-inflammatory profile during malaria infection; and (3) IFN-γ and circulating glucose were associated with several immune parameters, but only in infected sparrows. We also found that, during the acute phase of infection, sparrows increased the strength of corticosterone negative feedback at the level of the pituitary. In the context of our results, we discuss future methodological considerations and aspects of host physiology that may confer resistance to avian malaria, which can help inform conservation and rehabilitation strategies for avifauna at risk.
Collapse
Affiliation(s)
- T R Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - A L Cannon
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - K R Stansberry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - M G Kimball
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - C R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
34
|
Albery GF, Sweeny AR, Webber Q. How behavioural ageing affects infectious disease. Neurosci Biobehav Rev 2023; 155:105426. [PMID: 37839673 PMCID: PMC10842249 DOI: 10.1016/j.neubiorev.2023.105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Ageing is associated with profound changes in behaviour that could influence exposure and susceptibility to infectious disease. As well as determining emergent patterns of infection across individuals of different ages, behavioural ageing could interact with, confound, or counteract age-related changes in other traits. Here, we examine how behavioural ageing can manifest and influence patterns of infection in wild animals. We discuss a range of age-related changes that involve interactions between behaviour and components of exposure and susceptibility to infection, including social ageing and immunosenescence, acquisition of novel parasites and pathogens with age, changes in spatial behaviours, and age-related hygiene and sickness behaviours. Overall, most behavioural changes are expected to result in a reduced exposure rate, but there is relatively little evidence for this phenomenon, emerging largely from a rarity of explicit tests of exposure changes over the lifespan. This review offers a framework for understanding how ageing, behaviour, immunity, and infection interact, providing a series of hypotheses and testable predictions to improve our understanding of health in ageing societies.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, Scotland, UK; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| | - Amy R Sweeny
- School of Biosciences, University of Sheffield, Sheffield, England, UK
| | - Quinn Webber
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
35
|
Cohen H, Matar MA, Todder D, Cohen C, Zohar J, Hawlena H, Abramsky Z. Sounds of danger and post-traumatic stress responses in wild rodents: ecological validity of a translational model of post-traumatic stress disorder. Mol Psychiatry 2023; 28:4719-4728. [PMID: 37674017 PMCID: PMC10914612 DOI: 10.1038/s41380-023-02240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
In the wild, animals face a highly variable world full of predators. Most predator attacks are unsuccessful, and the prey survives. According to the conventional perspective, the fear responses elicited by predators are acute and transient in nature. However, the long-term, non-lethal effects of predator exposure on prey behavioral stress sequelae, such as anxiety and post-traumatic symptoms, remain poorly understood. Most experiments on animal models of anxiety-related behavior or post-traumatic stress disorder have been carried out using commercial strains of rats and mice. A fundamental question is whether laboratory rodents appropriately express the behavioral responses of wild species in their natural environment; in other words, whether behavioral responses to stress observed in the laboratory can be generalized to natural behavior. To further elucidate the relative contributions of the natural selection pressures influences, this study investigated the bio-behavioral and morphological effects of auditory predator cues (owl territorial calls) in males and females of three wild rodent species in a laboratory set-up: Acomys cahirinus; Gerbillus henleyi; and Gerbillus gerbillus. Our results indicate that owl territorial calls elicited not only "fight or flight" behavioral responses but caused PTSD-like behavioral responses in wild rodents that have never encountered owls in nature and could cause, in some individuals, enduring physiological and morphological responses that parallel those seen in laboratory rodents or traumatized people. In all rodent species, the PTSD phenotype was characterized by a blunting of fecal cortisol metabolite response early after exposure and by a lower hypothalamic orexin-A level and lower total dendritic length and number in the dentate gyrus granule cells eight days after predator exposure. Phenotypically, this refers to a significant functional impairment that could affect reproduction and survival and thus fitness and population dynamics.
Collapse
Affiliation(s)
- Hagit Cohen
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel & Ministry of Health, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Beer-Sheva, Israel.
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Michael A Matar
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel & Ministry of Health, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Beer-Sheva, Israel
| | - Doron Todder
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel & Ministry of Health, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Beer-Sheva, Israel
| | - Carmit Cohen
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel & Ministry of Health, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Beer-Sheva, Israel
| | - Joseph Zohar
- Post-Trauma Center, Sheba Medical Center, Tel Aviv University, Tel Aviv, 52621, Israel
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion Israel, Sde Boker, 8499000, Israel
| | - Zvika Abramsky
- Department of Life Sciences and Ramon Science Center, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
36
|
Jimeno B, Gerritsma Y, Mulder E, Verhulst S. Glucocorticoid receptor expression in blood, but not across brain regions, reveals long-term effects of early life adversity in zebra finches. Physiol Behav 2023; 271:114310. [PMID: 37543106 DOI: 10.1016/j.physbeh.2023.114310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/12/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Early-life environment can affect organisms for life on many levels. The glucocorticoid receptor (GR) gene has a pivotal role mediating organismal physiological and behavioral responses to environmental change, and is sensitive to early-life environmental conditions and epigenetic programming. Longitudinal studies require non-lethal sampling of peripheral tissues (e.g. blood), but this approach is dependent on the extent to which GR expression in peripheral tissues covaries with GR expression in central tissues. To test for the long-term effects of early life adversity on GR expression across brain and peripheral tissues, we manipulated developmental conditions of captive zebra finches (n = 45), rearing them in either benign or harsh conditions through manipulation of parental foraging costs. We measured relative GR mRNA expression in blood and five brain regions in adulthood: hippocampus, hypothalamus, amygdala, ventral striatum, and the nidopallium caudolaterale (analogous to the mammalian prefrontal cortex), using qPCR. We further tested whether GR expression was modulated by natal brood size (which affected growth), age at sampling, and sex. GR expression correlations among tissues varied widely in magnitude and direction, ranging from -0.27 to +0.80, indicating that our understanding of developmental effects on GR expression and associated phenotypes needs to be region specific rather than organism wide. A more consistent pattern was that GR expression increased with age in blood, ventral striatum and hippocampus; GR expression was independent of age in other tissues. Developmental treatment did not affect GR expression in any of the tissues measured directly, but in blood and ventral striatum of adult females we found a positive correlation between nestling mass and GR expression. Thus, GR expression in blood was affected by early life conditions as reflected in growth in adult females, a pattern also found in one brain tissue, but not ubiquitous across brain regions. These results point at sex-dependent physiological constraints during development, shaping early life effects on GR expression in females only. Further study is required to investigate whether these tissue-dependent effects more generally reflect tissue-dependent long-term effects of early life adversity. This, together with investigating the physiological consequences of GR expression levels on individual performance and coping abilities, will be fundamental towards understanding the mechanisms mediating long-term impacts of early life, and the extent to which these can be quantified through non-lethal sampling.
Collapse
Affiliation(s)
- Blanca Jimeno
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real; Instituto Pirenaico de Ecologia (IPE), CSIC, Avda. Nuestra Señora de la Victoria, 16, Jaca, Spain.
| | - Yoran Gerritsma
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Ellis Mulder
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| |
Collapse
|
37
|
Jimeno B, Verhulst S. Meta-analysis reveals glucocorticoid levels reflect variation in metabolic rate, not 'stress'. eLife 2023; 12:RP88205. [PMID: 37889839 PMCID: PMC10611431 DOI: 10.7554/elife.88205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
Glucocorticoid (GC) variation has long been thought to reflect variation in organismal 'stress,' but associations between GCs and Darwinian fitness components are diverse in magnitude, direction, and highly context-dependent. This paradox reveals our poor understanding of the causes of GC variation, contrasting with the detailed knowledge of the functional consequences of GC variation. Amongst an array of effects in many physiological systems, GCs orchestrate energy availability to anticipate and recover from predictable and unpredictable environmental fluctuations and challenges. Although this is mechanistically well-known, the extent to which GC levels are quantitatively explained by energy metabolism is unresolved. We investigated this association through meta-analysis, selecting studies of endotherms in which (1) an experiment was performed that affected metabolic rate and (2) metabolic rate and GC levels were measured simultaneously. We found that an increase in metabolic rate was associated with an increase in GC levels in 20 out of 21 studies (32 out of 35 effect sizes). More importantly, there was a strong positive correlation between the increases in metabolic rate and GCs (p=0.003). This pattern was similar in birds and mammals, and independent of the nature of the experimental treatment. We conclude that metabolic rate is a major driver of GC variation within individuals. Stressors often affect metabolic rate, leading us to question whether GC levels provide information on 'stress' beyond the stressor's effect on metabolic rate.
Collapse
Affiliation(s)
- Blanca Jimeno
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCC, Ciudad Real, Spain
- Instituto Pirenaico de Ecologia (IPE), CSIC, Avda. Nuestra Señora de la Victoria, Jaca, Spain
| | | |
Collapse
|
38
|
Alquezar RD, Arregui L, Macedo RH, Gil D. Birds living near airports do not show consistently higher levels of feather corticosterone. CONSERVATION PHYSIOLOGY 2023; 11:coad079. [PMID: 37869263 PMCID: PMC10588694 DOI: 10.1093/conphys/coad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 07/29/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Noise represents a threat to human and wildlife health, triggering physiological and behavioral challenges to individuals living close to sources of extreme noise. Here, we considered airport environments as sources of potentially stressful stimuli for birds and tested if those living near airports are under higher physiological stress than birds living in quiet sites. We used measurements of CORT in feathers (CORTf) as a proxy of chronic stress. We evaluated 14 passerine and 1 non-passerine species, living near three Brazilian airports. We found that, across species, individuals with a better body condition had lower CORTf concentration. At the species level, we found that CORTf concentration was not consistently affected by airport noise. Comparing individuals living in quiet sites with those living near airports, we found that 2 species had higher and 2 had lower CORTf concentrations near airports, while 11 species presented no significant differences between sites. At the population level, model selection indicated that the direction and strength of these differences are weakly related to species' song frequency (peak frequency), as lower-frequency singers tended to present higher CORTf levels at airport-affected sites. In summary, we were unable to find a consistent response among species, probably due to species-specific differences in their response to anthropogenic disturbances. Instead, we found that species might be affected differently according to their singing spectral frequency and that individuals in good body condition show lower CORTf, suggesting that this measure is consistent with lower physiological stress.
Collapse
Affiliation(s)
- Renata D Alquezar
- PG em Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70919-970, Brasília, DF, Brasil
| | - Lucía Arregui
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Regina H Macedo
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900, Brasília, DF, Brasil
| | - Diego Gil
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| |
Collapse
|
39
|
Jarwan B, Tawalbeh J, Malkawi R. Assessment of Phenol and Antioxidant Content of Olive Varieties and Their Potential Health Benefits for Colon Health. ScientificWorldJournal 2023; 2023:9165902. [PMID: 37868295 PMCID: PMC10586902 DOI: 10.1155/2023/9165902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
In this study, four different olive fruit and leaf varieties collected in Jordan were assessed for quality using both chemical and biological methods. To quantify the phenol and antioxidant content in the olive fruit and leaf extracts, a validated UV method was employed. The antioxidant activity and total phenolic content of fruit and leaf extracts of the olive varieties were measured using the DPPH radical scavenging assay and Folin-Ciocalteu colorimetric method, respectively. The researchers also conducted a biological assay against colon cells to examine the potential health benefits of the olive extracts. The results showed that the phenol content of the samples varied depending on the region they were collected from and that they contained a significant amount of antioxidants. Additionally, it was observed that the samples with higher antioxidant content had lower cell viability against colon cells. Overall, this study suggests that olive extracts may have potential health benefits for colon health and that the phenol and antioxidant content of the extracts can vary depending on the source of the olives.
Collapse
Affiliation(s)
- Baraa Jarwan
- School of Pharmacy, Jadara University, P.O. Box 733, Irbid 21110, Jordan
| | - Jawad Tawalbeh
- School of Business, Teesside University, Campus Heart, Southfield Rd, Middlesbrough TS1 3BX, Middlesbrough, UK
| | - Ruba Malkawi
- School of Pharmacy, Jadara University, P.O. Box 733, Irbid 21110, Jordan
| |
Collapse
|
40
|
Chancellor S, Grasse B, Sakmar T, Scheel D, Brown JS, Santymire RM. Exploring the Effect of Age on the Reproductive and Stress Physiology of Octopus bimaculoides Using Dermal Hormones. Animals (Basel) 2023; 13:3115. [PMID: 37835721 PMCID: PMC10571824 DOI: 10.3390/ani13193115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Our goal was to validate the use of dermal swabs to evaluate both reproductive and stress physiology in the California two-spot octopus, Octopus bimaculoides. Our objectives were to (1) use dermal swabs to evaluate glucocorticoids and reproductive hormones of O. bimaculoides; (2) determine the influence of life stage on hormone production (glucocorticoids in all individuals; testosterone, estrogen, and progesterone in females; and testosterone in males) of reproductive (n = 4) and senescent (n = 8) individuals to determine the effect of age on hormonal patterns; and (3) determine whether these hormones change significantly in response to an acute stressor. For the stress test, individuals were first swabbed for a baseline and then chased around the aquarium with a net for 5 min. Afterward, individuals were swabbed for 2 h at 15 min intervals to compare to the pre-stress test swab. Reproductive individuals responded to the stressor with a 2-fold increase in dermal cortisol concentrations at 15 and 90 min. Six of the eight senescent individuals did not produce a 2-fold increase in dermal cortisol concentrations. Reproductive individuals had significantly higher sex hormone concentrations compared to senescent individuals (progesterone and estradiol measured in females, and testosterone for both sexes). After the stressor, only reproductive males produced a 2-fold increase in dermal testosterone concentrations, while sex hormones in females showed no change. The stress hormone cortisol was significantly higher in senescent than in reproductive individuals, independent of sex. Dermal corticosterone concentrations were highest in senescent females followed by senescent males, and lowest in reproductive individuals regardless of sex. Dermal swabs provide an effective and noninvasive means for evaluating octopus hormones. Application of these indicators may be imperative as cephalopods are more commonly cultured in captivity for experimentation, display, and consumption.
Collapse
Affiliation(s)
| | - Bret Grasse
- Marine Biological Laboratory, Woods Hole, MA 02543, USA; (B.G.); (T.S.)
| | - Taylor Sakmar
- Marine Biological Laboratory, Woods Hole, MA 02543, USA; (B.G.); (T.S.)
| | - David Scheel
- Institute of Culture and the Environment, Alaska Pacific University, Anchorage, AK 99508, USA;
| | - Joel S. Brown
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | | |
Collapse
|
41
|
Dupont SM, Barbraud C, Chastel O, Delord K, Pallud M, Parenteau C, Weimerskirch H, Angelier F. How does maternal age influence reproductive performance and offspring phenotype in the snow petrel (Pagodroma nivea)? Oecologia 2023; 203:63-78. [PMID: 37833549 DOI: 10.1007/s00442-023-05451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
In wild vertebrates, the increase of breeding success with advancing age has been extensively studied through laying date, clutch size, hatching success, and fledging success. However, to better evaluate the influence of age on reproductive performance in species with high reproductive success, assessing not only reproductive success but also other proxies of reproductive performance appear crucial. For example, the quality of developmental conditions and offspring phenotype can provide robust and complementary information on reproductive performance. In long-lived vertebrate species, several proxies of developmental conditions can be used to estimate the quality of the produced offspring (i.e., body size, body condition, corticosterone levels, and telomere length), and therefore, their probability to survive. By sampling chicks reared by known-aged mothers, we investigated the influence of maternal age on reproductive performance and offspring quality in a long-lived bird species, the snow petrel (Pagodroma nivea). Older females bred and left their chick alone earlier. Moreover, older females had larger chicks that grew faster, and ultimately, those chicks had a higher survival probability at the nest. In addition, older mothers produced chicks with a higher sensitivity to stress, as shown by moderately higher stress-induced corticosterone levels. Overall, our study demonstrated that maternal age is correlated to reproductive performance (hatching date, duration of the guarding period and survival) and offspring quality (body size, growth rate and sensitivity to stress), suggesting that older individuals provide better parental cares to their offspring. These results also demonstrate that maternal age can affect the offspring phenotype with potential long-term consequences.
Collapse
Affiliation(s)
- Sophie M Dupont
- Laboratoire de Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS UMR8067, SU, IRD207, UCN, UA, 97275, Schoelcher Cedex, Martinique, France.
- Institut du Littoral, Environnement et Sociétés (LIENSs), CNRS UMR7266, La Rochelle Université, 17000, La Rochelle, France.
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS UMR7372, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS UMR7372, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Karine Delord
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS UMR7372, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Marie Pallud
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS UMR7372, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS UMR7372, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS UMR7372, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS UMR7372, La Rochelle Université, 79360, Villiers-en-Bois, France
| |
Collapse
|
42
|
Pérez-Ortega B, Hendry AP. A meta-analysis of human disturbance effects on glucocorticoid hormones in free-ranging wild vertebrates. Biol Rev Camb Philos Soc 2023; 98:1459-1471. [PMID: 37095625 DOI: 10.1111/brv.12962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
Free-ranging wild vertebrates need to cope with natural and anthropogenic stressors that cause short and/or long-term behavioural and physiological responses. In areas of high human disturbance, the use of glucocorticoid (GC) hormones as biomarkers to measure stress responses is an increasingly common tool for understanding how animals cope with human disturbance. We conducted a meta-analysis to investigate how human disturbances such as habitat conversion, habitat degradation, and ecotourism influence baseline GC hormones of free-ranging wild vertebrates, and we further test the role of protected areas in reducing the impact of such disturbances on these hormones. A total of 58 studies met the inclusion criteria, providing 152 data points for comparing levels of GC hormones under disturbed and undisturbed conditions. The overall effect size suggests that human disturbance does not cause a consistent increase in levels of GC hormones (Hedges' g = 0.307, 95% CI = -0.062 to 0.677). However, when the data were analysed by disturbance type, living in unprotected areas or in areas with habitat conversion were found to increase GC hormone levels compared to living in protected or undisturbed areas. By contrast, we found no evidence that ecotourism or habitat degradation generates a consistent increase in baseline GC hormone levels. Among taxonomic groups, mammals appeared more sensitive to human disturbance than birds. We advocate the use of GC hormones for inferring major human-caused contributors to the stress levels of free-ranging wild vertebrates - although such information needs to be combined with other measures of stress and interpreted in the context of an organism's life history, behaviour, and history of interactions with human disturbance.
Collapse
Affiliation(s)
- Betzi Pérez-Ortega
- McGill University, Redpath Museum and Department of Biology, 859 Sherbrooke Street West, Montreal, Quebec, H3A 0C4, Canada
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Panama, Republic of Panama
| | - Andrew P Hendry
- McGill University, Redpath Museum and Department of Biology, 859 Sherbrooke Street West, Montreal, Quebec, H3A 0C4, Canada
| |
Collapse
|
43
|
Hukkanen M, Hsu B, Cossin‐Sevrin N, Crombecque M, Delaunay A, Hollmen L, Kaukonen R, Konki M, Lund R, Marciau C, Stier A, Ruuskanen S. From maternal glucocorticoid and thyroid hormones to epigenetic regulation of offspring gene expression: An experimental study in a wild bird species. Evol Appl 2023; 16:1753-1769. [PMID: 38020869 PMCID: PMC10660793 DOI: 10.1111/eva.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 12/01/2023] Open
Abstract
Offspring phenotype at birth is determined by its genotype and the prenatal environment including exposure to maternal hormones. Variation in both maternal glucocorticoids and thyroid hormones can affect offspring phenotype, but the underlying molecular mechanisms, especially those contributing to long-lasting effects, remain unclear. Epigenetic changes (such as DNA methylation) have been postulated as mediators of long-lasting effects of early-life environment. In this study, we determined the effects of elevated prenatal glucocorticoid and thyroid hormones on handling stress response (breath rate) as well as DNA methylation and gene expression of glucocorticoid receptor (GR) and thyroid hormone receptor (THR) in great tits (Parus major). Eggs were injected before incubation onset with corticosterone (the main avian glucocorticoid) and/or thyroid hormones (thyroxine and triiodothyronine) to simulate variation in maternal hormone deposition. Breath rate during handling and gene expression of GR and THR were evaluated 14 days after hatching. Methylation status of GR and THR genes was analyzed from the longitudinal blood cells sampled 7 and 14 days after hatching, as well as the following autumn. Elevated prenatal corticosterone level significantly increased the breath rate during handling, indicating an enhanced metabolic stress response. Prenatal corticosterone manipulation had CpG-site-specific effects on DNA methylation at the GR putative promoter region, while it did not significantly affect GR gene expression. GR expression was negatively associated with earlier hatching date and chick size. THR methylation or expression did not exhibit any significant relationship with the hormonal treatments or the examined covariates, suggesting that TH signaling may be more robust due to its crucial role in development. This study provides some support to the hypothesis suggesting that maternal corticosterone may influence offspring metabolic stress response via epigenetic alterations, yet their possible adaptive role in optimizing offspring phenotype to the prevailing conditions, context-dependency, and the underlying molecular interplay needs further research.
Collapse
Affiliation(s)
- Mikaela Hukkanen
- Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
| | - Bin‐Yan Hsu
- Department of BiologyUniversity of TurkuTurkuFinland
| | | | | | - Axelle Delaunay
- Institut des Sciences de l'Evolution de Montpellier (ISEM)Université de Montpellier, CNRS, IRD, EPHEMontpellierFrance
| | - Lotta Hollmen
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Riina Kaukonen
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Mikko Konki
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Turku Doctoral Programme of Molecular MedicineUniversity of TurkuTurkuFinland
| | - Riikka Lund
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Coline Marciau
- Department of BiologyUniversity of TurkuTurkuFinland
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Antoine Stier
- Department of BiologyUniversity of TurkuTurkuFinland
- Institut Pluridisciplinaire Hubert Curien, UMR 7178University of Strasbourg, CNRSStrasbourgFrance
| | - Suvi Ruuskanen
- Department of BiologyUniversity of TurkuTurkuFinland
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
44
|
Clarke E, Heugten KAV, Tollefson TN, Ridgley FN, Smith D, Brown JL, Scott H, Minter LJ. Comparison of Corticosterone Concentrations in Dermal Secretions and Urine in Free-Ranging Marine Toads ( Rhinella marina) in Human Care. Vet Med Int 2023; 2023:1467549. [PMID: 37766874 PMCID: PMC10522434 DOI: 10.1155/2023/1467549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Corticosterone concentrations have been measured in amphibians by collecting blood or urine samples. However, blood sampling is invasive, and urine can be difficult to collect. A novel method of swabbing the skin of an amphibian has been utilized in numerous species but has not been verified in marine toads (Rhinella marina). This pilot study tested dermal swabs as a noninvasive method for collecting and measuring dermal corticosterone secretions. Swabs were used to collect dermal secretion samples from sixty-six free-ranging marine toads collected on Zoo Miami grounds. The subsequent day the toads were shipped to the North Carolina Zoo where dermal samples were collected again. Additional dermal and urine samples were collected on days 9, 15, 32, and 62 under human care to measure corticosterone concentrations. There was no significant correlation (P ≥ 0.05) noted between corticosterone concentrations reported in dermal swabs and those in urine samples at all four of the euthanasia time points or between the corticosterone concentrations reported in either urine or dermal swabs and the weight of the toads. Dermal swab concentrations (ng/mL) were significantly higher (P ≤ 0.05) on the day of capture (0.64 ± 0.03) and the day of arrival (0.67 ± 0.03) than on day 15 (0.47 ± 0.03). The urine corticosterone concentrations decreased while the toads were in human care with a significant decrease (P ≤ 0.05) between days 9 (0.45 ± 0.07) and 32 (0.21 ± 0.06). This study demonstrated that dermal swabs can be used to collect marine toad corticosterone concentration samples.
Collapse
Affiliation(s)
- Emma Clarke
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Dr., Raleigh, NC 27607, USA
| | - Kimberly Ange-van Heugten
- Department of Animal Science, North Carolina State University, 120 W. Broughton Dr., Raleigh, NC 27695, USA
- Environment Medicine Consortium, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA
| | - Troy N. Tollefson
- Mazuri® Exotic Animal Nutrition, PMI Nutrition, 4001 Lexington Ave. North, Arden Hills, MN 55126, USA
| | - Frank N. Ridgley
- The Conservation and Research Department, Zoo Miami, 12400 SW 152nd St., Miami, FL 33177, USA
| | - Dustin Smith
- North Carolina Zoo, 4401 Zoo Pkwy, Asheboro, NC 27205, USA
| | - Janine L. Brown
- Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA
| | - Heather Scott
- North Carolina Zoo, 4401 Zoo Pkwy, Asheboro, NC 27205, USA
| | - Larry J. Minter
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Dr., Raleigh, NC 27607, USA
- Environment Medicine Consortium, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA
- North Carolina Zoo, 4401 Zoo Pkwy, Asheboro, NC 27205, USA
| |
Collapse
|
45
|
Schull Q, Beauvieux A, Viblanc VA, Metral L, Leclerc L, Romero D, Pernet F, Quéré C, Derolez V, Munaron D, McKindsey CW, Saraux C, Bourjea J. An integrative perspective on fish health: Environmental and anthropogenic pathways affecting fish stress. MARINE POLLUTION BULLETIN 2023; 194:115318. [PMID: 37542925 DOI: 10.1016/j.marpolbul.2023.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Multifactorial studies assessing the cumulative effects of natural and anthropogenic stressors on individual stress response are crucial to understand how organisms and populations cope with environmental change. We tested direct and indirect causal pathways through which environmental stressors affect the stress response of wild gilthead seabream in Mediterranean costal lagoons using an integrative PLS-PM approach. We integrated information on 10 environmental variables and 36 physiological variables into seven latent variables reflecting lagoons features and fish health. These variables concerned fish lipid reserves, somatic structure, inorganic contaminant loads, and individual trophic and stress response levels. This modelling approach allowed explaining 30 % of the variance within these 46 variables considered. More importantly, 54 % of fish stress response was explained by the dependent lagoon features, fish age, fish diet, fish reserve, fish structure and fish contaminant load latent variables included in our model. This integrative study sheds light on how individuals deal with contrasting environments and multiple ecological pressures.
Collapse
Affiliation(s)
- Quentin Schull
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France.
| | | | | | - Luisa Metral
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France
| | - Lina Leclerc
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France
| | - Diego Romero
- Área de Toxicología, Facultad de Veterinaria, Campus Regional de Excelencia Internacional Campus Mare Nostrum, Universidad de Murcia, Espinardo, 30071, Murcia, Spain
| | - Fabrice Pernet
- Ifremer/LEMAR UMR 6539, Technopole de Brest-Iroise, Plouzané, France
| | - Claudie Quéré
- Ifremer/LEMAR UMR 6539, Technopole de Brest-Iroise, Plouzané, France
| | | | | | | | - Claire Saraux
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France; Université de Strasbourg, CNRS, IPHC, UMR, 7178 Strasbourg, France
| | - Jerôme Bourjea
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France
| |
Collapse
|
46
|
Ruthsatz K, Rico-Millan R, Eterovick PC, Gomez-Mestre I. Exploring water-borne corticosterone collection as a non-invasive tool in amphibian conservation physiology: benefits, limitations and future perspectives. CONSERVATION PHYSIOLOGY 2023; 11:coad070. [PMID: 37663928 PMCID: PMC10472495 DOI: 10.1093/conphys/coad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/03/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Global change exposes wildlife to a variety of environmental stressors and is affecting biodiversity worldwide, with amphibian population declines being at the forefront of the global biodiversity crisis. The use of non-invasive methods to determine the physiological state in response to environmental stressors is therefore an important advance in the field of conservation physiology. The glucocorticoid hormone corticosterone (CORT) is one useful biomarker to assess physiological stress in amphibians, and sampling water-borne (WB) CORT is a novel, non-invasive collection technique. Here, we tested whether WB CORT can serve as a valid proxy of organismal levels of CORT in larvae of the common frog (Rana temporaria). We evaluated the association between tissue and WB CORT levels sampled from the same individuals across ontogenetic stages, ranging from newly hatched larvae to froglets at 10 days after metamorphosis. We also investigated how both tissue and WB CORT change throughout ontogeny. We found that WB CORT is a valid method in pro-metamorphic larvae as values for both methods were highly correlated. In contrast, there was no correlation between tissue and WB CORT in newly hatched, pre-metamorphic larvae, metamorphs or post-metamorphic froglets probably due to ontogenetic changes in respiratory and skin morphology and physiology affecting the transdermal CORT release. Both collection methods consistently revealed a non-linear pattern of ontogenetic change in CORT with a peak at metamorphic climax. Thus, our results indicate that WB CORT sampling is a promising, non-invasive conservation tool for studies on late-stage amphibian larvae. However, we suggest considering that different contexts might affect the reliability of WB CORT and consequently urge future studies to validate this method whenever it is used in new approaches. We conclude proposing some recommendations and perspectives on the use of WB CORT that will aid in broadening its application as a non-invasive tool in amphibian conservation physiology.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Rafael Rico-Millan
- Ecology, Evolution, and Development Group, Doñana Biological Station – CSIC, Calle Américo Vespucio 26, 41092 Seville, Spain
| | - Paula Cabral Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Ivan Gomez-Mestre
- Ecology, Evolution, and Development Group, Doñana Biological Station – CSIC, Calle Américo Vespucio 26, 41092 Seville, Spain
| |
Collapse
|
47
|
Tamian A, Edwards PD, Neuhaus P, Boonstra R, Ruckstuhl AN, Emmanuel P, Pardonnet S, Palme R, Filippi D, Dobson FS, Saraux C, Viblanc VA. Weathering the storm: Decreased activity and glucocorticoid levels in response to inclement weather in breeding Columbian ground squirrels. Horm Behav 2023; 155:105426. [PMID: 37716083 DOI: 10.1016/j.yhbeh.2023.105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Inclement weather can rapidly modify the thermal conditions experienced by animals, inducing changes in their behavior, body condition, and stress physiology, and affecting their survival and breeding success. For animals living in variable environments, the extent to which they have adapted to cope with inclement weather is not established, especially for hibernating species with a short active season that are constrained temporally to breed and store energy for subsequent hibernation. We examined behavioral (foraging activity) and physiological (body mass and fecal cortisol metabolites) responses of Columbian ground squirrels (Urocitellus columbianus), small hibernating rodents inhabiting open meadows in Rocky Mountains, to 3 events of inclement weather (two snow storms in May 2021 and May 2022, one heavy rainfall in June 2022). We found that individuals adapted to inclement weather conditions by (1) reducing above-ground activity, including foraging, (2) decreasing the mobilization of stored resources as indicated by a decrease in the activity of the hypothalamo-pituitary-adrenal (HPA) axis and lower fecal cortisol metabolites in the hours/days following periods of inclement weather; and (3) compensating through increased foraging and more local activity when favorable conditions resumed. As a result, body mass and growth did not decrease following short periods of inclement weather. Columbian ground squirrels were well-adapted to short periods of inclement weather, coping via modifications of their behavior and the activity of the HPA axis.
Collapse
Affiliation(s)
- Anouch Tamian
- Institut Pluridisciplinaire Hubert Curien, CNRS, Département Ecologie, Physiologie et Ethologie, 23 Rue du Loess, 67037 Strasbourg, France.
| | - Phoebe D Edwards
- Department of Biological Sciences, University of Toronto Scarborough, ON M1C 1A4, Canada
| | - Peter Neuhaus
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, ON M1C 1A4, Canada
| | | | - Patience Emmanuel
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sylvia Pardonnet
- Institut Pluridisciplinaire Hubert Curien, CNRS, Département Ecologie, Physiologie et Ethologie, 23 Rue du Loess, 67037 Strasbourg, France
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Dominique Filippi
- Sextant Technology Ltd., 131 Tutaenui Rd, RD2, 4788 Marton, New Zealand
| | - F Stephen Dobson
- Institut Pluridisciplinaire Hubert Curien, CNRS, Département Ecologie, Physiologie et Ethologie, 23 Rue du Loess, 67037 Strasbourg, France; Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Claire Saraux
- Institut Pluridisciplinaire Hubert Curien, CNRS, Département Ecologie, Physiologie et Ethologie, 23 Rue du Loess, 67037 Strasbourg, France
| | - Vincent A Viblanc
- Institut Pluridisciplinaire Hubert Curien, CNRS, Département Ecologie, Physiologie et Ethologie, 23 Rue du Loess, 67037 Strasbourg, France
| |
Collapse
|
48
|
Sun F, Chen X, Li Y, Zhao G, Gu X. Evaluation of Holstein cows with different tongue-rolling frequencies: stress immunity, rumen environment and general behavioural activity. J Anim Sci Biotechnol 2023; 14:104. [PMID: 37563681 PMCID: PMC10416447 DOI: 10.1186/s40104-023-00906-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/12/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The tongue-rolling behaviour of cows is regarded as an outward sign of stressed animals in a low welfare status. The primary aim of this observational study was to evaluate the association between the frequency of tongue-rolling behaviour and its physiological function. The secondary aim was to explore the relationship between general activities and the frequency of tongue-rolling behaviour of cows. A total of 126 scan sampling behavioural observations were collected over 7 d on 348 Holstein cows with the same lactation stage in the same barn. The tongue-rolling frequency was defined as the number of tongue-rolling observations as a percentage to the total observations per individual cow. According to their tongue-rolling frequency, the cows were grouped into the CON (no tongue-rolling), LT (frequency 1%), MT (frequency 5%), and HT (frequency 10%) groups. Six cows from each group were randomly selected for sampling. Serum samples, rumen fluid, milk yield, and background information were collected. The general behaviour data during 72 continuous hours of dairy cows, including eating time, rumination time, food time (eating time + rumination time), and lying time, were recorded by the collar sensor. RESULTS Cortisol (P = 0.012), γ-hydroxybutyric acid (P = 0.008), epinephrine (P = 0.030), and dopamine (P = 0.047) levels were significantly higher in tongue-rolling groups than in the CON group. Cortisol levels and tongue-rolling frequency had a moderate positive correlation (linearly r = 0.363). With the increase in tongue-rolling frequency, the rumen pH decreased first and then increased (P = 0.013), comparing to the CON group. HT cows had significantly less food time than CON cows (P = 0.035). The frequency of tongue-rolling had a moderate negative relationship with rumination time (r = -0.384) and food time (r = -0.492). CONCLUSIONS The tongue-rolling behaviour is considered as a passive coping mechanism, as the stress response in cows with high tongue-rolling frequency increased. Food intake and rumination activities were all closely related to the occurrence of tongue-rolling behaviour.
Collapse
Affiliation(s)
- Fuyu Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Haidian District, No.2 Yuanmingyuan West Road, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Haidian District, No.2 Yuanmingyuan West Road, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Haidian District, No.2 Yuanmingyuan West Road, Beijing, China
| | - Yongfeng Li
- Agricultural Information Institute, Chinese Academy of Agriculture Sciences, Haidian District, No.12 Zhongguancun South Street, Beijing, China
| | - Guangyong Zhao
- College of Animal Science and Technology, China Agricultural University, Haidian District, No.2 Yuanmingyuan West Road, Beijing, China
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Haidian District, No.2 Yuanmingyuan West Road, Beijing, China.
| |
Collapse
|
49
|
Pal G, Mishra HP, Suvvari TK, Tanwar A, Ghosh T, Verma P, Pal A, Patial K, Mahapatra C, Amanullah NA, Shukoor SA, Kamal S, Rohil V. Oxidative Stress in Wistar Rats Under Acute Restraint Stress and Its Modulation by Antioxidants and Nitric Oxide Modulators. Cureus 2023; 15:e43333. [PMID: 37701013 PMCID: PMC10493075 DOI: 10.7759/cureus.43333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Several pathogenic conditions leading to morbidity, including cancer, aging, diabetes, reperfusion injury, cardiovascular disease, and neurological disorders, are known to be exacerbated by oxidative stress. Antioxidant therapy is effective in the treatment of such disorders and appears to be a potential therapeutic technique to reduce oxidative stress. The aim of our study is to investigate the antioxidant effects of L-ascorbic acid and nitric oxide (NO) modulators on rats suffering from oxidative stress induced by acute restraint stress (RSx1). METHODOLOGY In this in vivo study, Wistar rats were subjected to one hour of restraint stress on day 21 to induce oxidative stress. Superoxide dismutase (SOD), total antioxidant capacity (TAC), catalase, glutathione (GSH), and malondialdehyde (MDA) were used to assess the antioxidant effects. IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp. was used for data analysis. RESULTS Compared to vehicle groups, acute restraint stress (RSx1) dramatically increased MDA levels while decreasing GSH, SOD, total antioxidant capacity, and catalase. L-NAME, 7-NI, AG (50 mg/kg each), and L-ascorbic acid (200 mg/kg) reversed the changes in SOD, MDA, GSH, total antioxidant capacity, and catalase levels. The NO precursor L-arginine (1000 mg/kg) and NO synthase inhibitors followed the same trend. CONCLUSION Our study findings highlight the complex role of antioxidants and NO modulators in the pathogenesis of diseases, as evidenced by the reversal of oxidative stress indicators. Antioxidant therapy, with its potential to mitigate oxidative stress, emerges as a viable treatment option for a range of pathological conditions associated with oxidative stress.
Collapse
Affiliation(s)
- Giridhari Pal
- Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, IND
| | - Hara Prasad Mishra
- Clinical Trial, All India Institute of Medical Sciences, New Delhi, Delhi, IND
- Pharmacology and Therapeutics, University College of Medical Sciences, University of Delhi, Delhi, IND
| | - Tarun Kumar Suvvari
- Medicine and Surgery, Squad Medicine and Research (SMR), Visakhapatnam, IND
- General Medicine, Rangaraya Medical College, Kakinada, IND
| | - Anshul Tanwar
- Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, IND
| | - Tamoghna Ghosh
- Medicine, All India Institute of Medical Sciences, New Delhi, Delhi, IND
| | - Pankaj Verma
- Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, IND
| | - Abhilasha Pal
- Zoology, Miranda House, University of Delhi, Delhi, IND
| | - Kuldeep Patial
- Sleep Medicine Division, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, IND
| | | | - Nidhal A Amanullah
- Psychiatry and Behavioral Sciences, Sree Ramakrishna Mission Hospital, Thiruvananthapuram, IND
| | - Sara A Shukoor
- Psychiatry, Government Medical College Trivandrum, Trivandrum, IND
| | - Sibin Kamal
- Pain and Palliative Medicine, IQRAA International Hospital & Research Centre, Kandhla, IND
| | - Vishwajeet Rohil
- Biochemistry, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, IND
| |
Collapse
|
50
|
Magierecka A, Cooper B, Sloman KA, Metcalfe NB. Unpredictability of maternal environment shapes offspring behaviour without affecting stress-induced cortisol in an annual vertebrate. Horm Behav 2023; 154:105396. [PMID: 37399780 DOI: 10.1016/j.yhbeh.2023.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Exposure of females to stressful conditions during pregnancy or oogenesis has a profound effect on the phenotype of their offspring. For example, offspring behavioural phenotype may show altered patterns in terms of the consistency of behavioural patterns and their average level of performance. Maternal stress can also affect the development of the stress axis in offspring leading to alterations in their physiological stress response. However, the majority of evidence comes from studies utilising acute stressors or exogenous glucocorticoids, and little is known about the effect of chronic maternal stress, particularly in the context of stress lasting throughout entire reproductive lifespan. To bridge this knowledge gap, we exposed female sticklebacks to stressful and unpredictable environmental conditions throughout the breeding season. We quantified the activity, sheltering and anxiety-like behaviour of offspring from three successive clutches of these females, and calculated Intra-class Correlation Coefficients for these behaviours in siblings and half-siblings. We also exposed offspring to an acute stressor and measured their peak cortisol levels. An unpredictable maternal environment had no modifying effect on inter-clutch acute stress responsivity, but resulted in diversification of offspring behaviour, indicated by an increased between-individual variability within families. This may represent a bet-hedging strategy, whereby females produce offspring differing in behavioural phenotype, to increase the chance that some of these offspring will be better at coping with the anticipated conditions.
Collapse
Affiliation(s)
- Agnieszka Magierecka
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK.
| | - Ben Cooper
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK
| | - Katherine A Sloman
- Institute for Biomedical and Environmental Health Research, University of the West of Scotland, Lanarkshire, UK
| | - Neil B Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK
| |
Collapse
|