1
|
Ferreira CM, Connell SD, Goldenberg SU, Leung JYS, Nagelkerken I. Resource homogenisation drives niche convergence between generalists and specialists in a future ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:177862. [PMID: 39647204 DOI: 10.1016/j.scitotenv.2024.177862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
When humans drive rapid environmental change, is it favourable to be a generalist or specialist? To address this question, we compare how specialist and generalist marine herbivores adjust their isotopic niches (used as proxy for trophic niche) in response to predicted resource alterations under the simulated effects of ocean warming and acidification (based on a 6-month mesocosm experiment). Here, we show that when exposed to multiple climate stressors, food resources homogenized towards dominance of turf algae and suspended organic matter, with generalists and specialists adjusting their trophic niches in opposing ways. Whilst the niche breath of most generalists narrowed under climate stressors, those of specialists generally broadened, causing increasing overlap between their niches. The magnitude of this change was such that some generalists turned into specialists, and vice versa. Under ocean acidification, there was a greater probability of generalists increasing and specialists maintaining their biomass, respectively, but under warming the biomass of both specialists and generalists had a greater probability of collapse. For specialists, this collapse occurred even though they had adequate thermal tolerance and the capacity to expand their trophic niche. Climate change constrains or liberates resources, but where they are homogenized, generalists and specialists are likely to converge their trophic niches so they can exploit transforming environments for their survival or adaptive advantage.
Collapse
Affiliation(s)
- Camilo M Ferreira
- Southern Seas Ecology Laboratories, School of Biological Sciences, DX 650 418, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, DX 650 418, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Silvan U Goldenberg
- Southern Seas Ecology Laboratories, School of Biological Sciences, DX 650 418, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jonathan Y S Leung
- Southern Seas Ecology Laboratories, School of Biological Sciences, DX 650 418, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences, DX 650 418, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
2
|
Urban MC. Climate change extinctions. Science 2024; 386:1123-1128. [PMID: 39636977 DOI: 10.1126/science.adp4461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Climate change is expected to cause irreversible changes to biodiversity, but predicting those risks remains uncertain. I synthesized 485 studies and more than 5 million projections to produce a quantitative global assessment of climate change extinctions. With increased certainty, this meta-analysis suggests that extinctions will accelerate rapidly if global temperatures exceed 1.5°C. The highest-emission scenario would threaten approximately one-third of species, globally. Amphibians; species from mountain, island, and freshwater ecosystems; and species inhabiting South America, Australia, and New Zealand face the greatest threats. In line with predictions, climate change has contributed to an increasing proportion of observed global extinctions since 1970. Besides limiting greenhouse gases, pinpointing which species to protect first will be critical for preserving biodiversity until anthropogenic climate change is halted and reversed.
Collapse
Affiliation(s)
- Mark C Urban
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Center of Biological Risk, University of Connecticut, Storrs, CT, USA
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
3
|
Bartra‐Cabré L, Hansen BB, Lee AM, Layton‐Matthews K, Loonen MJJE, Fuglei E, Loe LE, Grøtan V. The role of indirect interspecific effects in the stochastic dynamics of a simple trophic system. J Anim Ecol 2024; 93:1896-1909. [PMID: 39449504 PMCID: PMC11615271 DOI: 10.1111/1365-2656.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024]
Abstract
Indirect interspecific effects (IIEs) occur when one species affects another through a third intermediary species. Understanding the role of IIEs in population dynamics is key for predicting community-level impacts of environmental change. Yet, empirically teasing apart IIEs from other interactions and population drivers has proven challenging and data-demanding, particularly in species-rich communities. We used stochastic population models parameterized with long-term time series of individual data to simulate population trajectories and examine IIEs in a simple high-arctic vertebrate food chain consisting of the wild Svalbard reindeer, its scavenger (the Arctic fox) and the barnacle goose, a migratory prey of the fox. We used the simulated population trajectories to explore co-fluctuations between the species within the food chain. Additionally, we adjusted the model in two ways: first, to isolate the impact of fluctuations in the abundance of a species by keeping its abundance constant; and second, to isolate the impact of a trophic interaction on the dynamics of other species by setting the abundance of the influencing species to zero. We found that fluctuations in reindeer carcasses shaped fox abundance fluctuations, which subsequently affected goose population dynamics. Reindeer and goose population growth rates were nevertheless only weakly correlated, probably in part due to demographic and environmental stochasticity, density dependence and lagged dynamics in the geese. However, removing the fluctuations in reindeer abundance or setting reindeer abundance to zero indeed demonstrated strong underlying IIEs on goose population dynamics and extinction probability. This study thus highlights the importance of species interactions, including IIEs, on species coexistence and communities in the long-term, that is beyond immediate effects and covariation in short-term fluctuations.
Collapse
Affiliation(s)
- Laura Bartra‐Cabré
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Brage B. Hansen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Department of Terrestrial EcologyNorwegian Institute for Nature ResearchTrondheimNorway
- Gjærevoll Centre for Biodiversity Foresight AnalysesNorwegian University of Science and TechnologyTrondheimNorway
| | - Aline M. Lee
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Gjærevoll Centre for Biodiversity Foresight AnalysesNorwegian University of Science and TechnologyTrondheimNorway
| | | | | | | | - Leif E. Loe
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Vidar Grøtan
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
4
|
Sünnemann M, Barnes AD, Amyntas A, Ciobanu M, Jochum M, Lochner A, Potapov AM, Reitz T, Rosenbaum B, Schädler M, Zeuner A, Eisenhauer N. Sustainable Land Use Strengthens Microbial and Herbivore Controls in Soil Food Webs in Current and Future Climates. GLOBAL CHANGE BIOLOGY 2024; 30:e17554. [PMID: 39545329 DOI: 10.1111/gcb.17554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/17/2024]
Abstract
Climate change and land-use intensification are threatening soil communities and ecosystem functions. Understanding the combined effects of climate change and land use is crucial for predicting future impacts on soil biodiversity and ecosystem functioning in agroecosystems. Here, we used a field experiment to quantify the combined effects of climate change (warming and altered precipitation patterns) and land use (agricultural type and management intensity) on soil food webs across nematodes, micro-, and macroarthropods. Specifically, we investigated two types of agricultural systems-croplands and grasslands-under both high- and low-intensity management. We focused on assessing the functioning of soil food webs by investigating changes in energy flux to consumers in the main trophic groups: decomposers, microbivores, herbivores, and predators. While the total energy flux and detritivory, herbivory and predation in the soil food web remained unchanged across treatments, low-intensity land use-compared to high intensity-led to higher microbivory and microbial control under future climate conditions (i.e., warming and summer drought) in croplands and grasslands. At the same time, microbial and herbivore control were higher under low-intensity land use in croplands and grasslands. Overall, our results underscore the potential benefits of less intensive, more sustainable management practices for soil food-web functioning under current and future climate scenarios.
Collapse
Affiliation(s)
- Marie Sünnemann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Andrew D Barnes
- Te Aka Mātuatua-School of Science, University of Waikato, Hamilton, New Zealand
| | - Angelos Amyntas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Marcel Ciobanu
- Institute of Biological Research, Branch of the National Institute of Research and Development for Biological Sciences, Cluj, Romania
| | - Malte Jochum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Global Change Ecology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alfred Lochner
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Anton M Potapov
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Thomas Reitz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
| | - Benjamin Rosenbaum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
| | - Anja Zeuner
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
5
|
Lyu S, Alexander JM. Functional Traits Predict Outcomes of Current and Novel Competition Under Warmer Climate. GLOBAL CHANGE BIOLOGY 2024; 30:e17551. [PMID: 39491046 DOI: 10.1111/gcb.17551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024]
Abstract
Functional traits offer a potential avenue to generalize and forecast the impacts of changing competition on plant communities, including changing outcomes of competition among species that currently interact (current competition) or that will interact in the future following range shifts (novel competition). However, it remains unclear how well traits explain variation in the outcomes of current and novel competition as well as the underlying processes determining coexistence or competitive exclusion, under changing climate. Here, we interacted pairs of high and low-elevation species in three sites across an elevation gradient in the Swiss Alps. For each species pair, we quantified the population-level outcomes of competition (invasion growth rates), relative fitness differences, and niche overlap and related these to 15 functional traits that were measured in each site. Most traits were significantly associated with invasion growth rates at the low elevation, where species had greater relative fitness differences, but these associations were much weaker towards higher elevations. This appears to be because traits, particularly those associated with light competition, captured species' relative fitness differences at lower elevations, but not at the high elevation site, highlighting that the predictive ability of traits can depend on environmental context. The amplified relative fitness differences towards lower elevations suggest that climate warming may increase the likelihood of competitive exclusion. In addition, novel competitors tended to show greater niche overlap than current competitors, leading to stronger overall competitive effects. However, in general, trait differences predicted competitive outcomes of novel and current competitors similarly well, suggesting that traits can predict interactions between species that do not yet interact. Our study reinforces the importance of considering changing interactions for predicting species responses to climate change and provides experimental evidence supporting the usefulness of functional trait differences in forecasting the impacts of future plant interactions under changing climate.
Collapse
Affiliation(s)
- Shengman Lyu
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jake M Alexander
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Hubert DL, Bentz EJ, Mason RT. Increased offspring size and reduced gestation length in an ectothermic vertebrate under a worst-case climate change scenario. J Therm Biol 2024; 125:103990. [PMID: 39426089 DOI: 10.1016/j.jtherbio.2024.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
As global temperatures continue to rise, understanding the impacts of warming environments has become increasingly important. Temperature is especially relevant for ectothermic organisms which depend upon consistent and predictable annual temperature cycles for reproduction and development. However, additional research is required in this area to elucidate the potential impacts of climate change on future generations. To understand how projected increases in environmental temperatures may impact reproductive outcomes within natural populations of ectothermic vertebrates, we manipulated minimum ambient temperatures during gestation in Red-sided garter snakes (Thamnophis sirtalis parietalis). Wild snakes were collected in the Interlake region of Manitoba, Canada during their spring mating season and allowed to mate in controlled conditions. For the duration of gestation, mated females were placed into one of two ambient thermal conditions: temperatures emulating those found in the species' natural habitat or temperatures with a consistent 5 °C increase to match end-of-century climate change projections. We recorded observations for each litter and all neonates resulting from controlled mating trials. We observed no difference in litter sizes or birth rates between thermal conditions. However, we observed a significant reduction in gestation length and significant increase to neonate body mass and body condition associated with increased ambient temperatures. These results suggest that increased minimum temperatures during gestation may confer reproductive benefits for the northern populations of this species even under the most extreme current modeled warming predictions. We discuss the broader implications of this effect, including possible negative ecological outcomes.
Collapse
Affiliation(s)
- David L Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97333, USA.
| | - Ehren J Bentz
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Robert T Mason
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97333, USA
| |
Collapse
|
7
|
Rao X, Chen J, Wang S, Su H, Rao Q, Xia W, Liu J, Fan X, Deng X, Shen H, Xie P. Population asynchrony within and between trophic levels have contrasting effects on consumer community stability in a subtropical lake. J Anim Ecol 2024; 93:1593-1605. [PMID: 39268554 DOI: 10.1111/1365-2656.14176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/08/2024] [Indexed: 09/17/2024]
Abstract
Clarifying the effects of biodiversity on ecosystem stability in the context of global environmental change is crucial for maintaining ecosystem functions and services. Asynchronous changes between trophic levels over time (i.e. trophic community asynchrony) are expected to increase trophic mismatch and alter trophic interactions, which may consequently alter ecosystem stability. However, previous studies have often highlighted the stabilising mechanism of population asynchrony within a single trophic level, while rarely examining the mechanism of trophic community asynchrony between consumers and their food resources. In this study, we analysed the effects of population asynchrony within and between trophic levels on community stability under the disturbances of climate warming, fishery decline and de-eutrophication, based on an 18-year monthly monitoring dataset of 137 phytoplankton and 91 zooplankton in a subtropical lake. Our results showed that species diversity promoted community stability mainly by increasing population asynchrony both for phytoplankton and zooplankton. Trophic community asynchrony had a significant negative effect on zooplankton community stability rather than that of phytoplankton, which supports the match-mismatch hypothesis that trophic mismatch has negative effects on consumers. Furthermore, the results of the structural equation models showed that warming and top-down effects may simultaneously alter community stability through population dynamics processes within and between trophic levels, whereas nutrients act on community stability mainly through the processes within trophic levels. Moreover, we found that rising water temperature decreased trophic community asynchrony, which may challenge the prevailing idea that climate warming increases the trophic mismatch between primary producers and consumers. Overall, our study provides the first evidence that population and trophic community asynchrony have contrasting effects on consumer community stability, which offers a valuable insight for addressing global environmental change.
Collapse
Affiliation(s)
- Xiao Rao
- Donghu Experimental Station of Lake Ecosystems, CERN, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, CERN, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shaopeng Wang
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Haojie Su
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Qingyang Rao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Wulai Xia
- Donghu Experimental Station of Lake Ecosystems, CERN, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiarui Liu
- Donghu Experimental Station of Lake Ecosystems, CERN, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoyue Fan
- Donghu Experimental Station of Lake Ecosystems, CERN, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, CERN, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hong Shen
- Donghu Experimental Station of Lake Ecosystems, CERN, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, CERN, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
8
|
Belovsky GE, Slade JB. Climate Change and Herbivores: Forty Years in a Bunchgrass Prairie. Animals (Basel) 2024; 14:2647. [PMID: 39335237 PMCID: PMC11429164 DOI: 10.3390/ani14182647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Wild herbivore responses to anthropogenic climate change are often projected to be habitat and geographic range shifts as warmer conditions reduce the quantity and nutritional quality of forage plants, which makes species presence/absence a focus. Since 1978, herbivore abundances at the National Bison Range, MT, USA, were measured for grasshoppers (catch-effort), microtine rodents (runway density), and ungulates (drives and round-ups), along with climate and vegetation quantity (biomass) and quality (nitrogen content and chemical solubility related to digestibility). Counter to expectation with warming and drying, forage biomass increased as grass biomass increased more than dicot biomass decreased, and forage quality (solubility) increased. Consequently, herbivores that consume a grass diet (>25% grass: certain grasshoppers, microtines, bighorn sheep, elk, bison) increased in abundance, while herbivores consuming less grass declined (certain grasshoppers, pronghorn, whitetail, and mule deer). The result is an 18% increase in herbivore abundance and herbivory, counter to climate change expectations. Historically, grasshoppers consumed 46% more vegetation than mammals; now, they consume only 14% more, as grasshoppers did not increase as expected with climate change. Therefore, herbivores respond rapidly to climate-induced vegetation changes, and this is not a simple loss/addition of species, but changing trophic dynamics, which requires more knowledge of ecosystem dynamics.
Collapse
Affiliation(s)
- Gary E Belovsky
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jennifer B Slade
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
9
|
Emerson LD, Wittmer HU, Elbroch LM, Kostoglou K, Bannister KJ, Psaila JJ, Whisson D, Ritchie EG. A global assessment of large terrestrial carnivore kill rates. Biol Rev Camb Philos Soc 2024. [PMID: 39262094 DOI: 10.1111/brv.13143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Through killing and instilling fear in their prey, large terrestrial carnivores shape the structure and function of ecosystems globally. Most large carnivore species have experienced severe range and population declines due to human activities, and many are now threatened with extinction. Consequently, the impacts of these predators on food webs have been diminished or lost completely from many ecosystems. Kill rates provide a fundamental metric for understanding large carnivore ecology and assessing and comparing predation within and across ecological communities. Our systematic review of large terrestrial mammalian carnivore kill rates reveals significant positive geographic (North America, Europe, and Africa) and taxonomic (grey wolf Canis lupus, puma Puma concolor, lion Panthera leo, and Eurasian lynx Lynx lynx) bias, with most studies apparently motivated by human-carnivore conflict over access to ungulate prey and wildlife management objectives. Our current understanding of the behaviour and functional roles of many large carnivore species and populations thus remains limited. By synthesising and comparing kill rates, we show that solitary carnivores (e.g. brown bears Ursus arctos and most felids) exhibit higher per capita kill rates than social carnivores. However, ungulate predation by bears is typically limited to predation of neonates during a short period. Lower per capita kill rates by social carnivores suggests group living significantly reduces energetic demands, or, alternatively, that group-living carnivores defend and consume a greater proportion of large prey carcasses, or may acquire more food through other means (e.g. scavenging, kleptoparasitism) than solitary hunters. Kill and consumption rates for Canidae - measured as kilograms of prey per kilogram of carnivore per day - are positively correlated with body mass, consistent with increasing energy costs associated with a cursorial hunting strategy. By contrast, ambush predators such as felids show an opposite trend, and thus the potential energetic advantage of an ambush hunting strategy for carnivores as body mass increases. Additionally, ungulate kill rates remain relatively constant across solitary felid body sizes, indicative of energetic constraints and optimal foraging. Kill rate estimates also reveal potential insights into trophic structuring within carnivore guilds, with subordinate carnivores often killing more than their larger counterparts, which may be indicative of having to cope with food losses to scavengers and dominant competitors. Subordinate carnivores may thus serve an important role in provisioning food to other trophic levels within their respective ecosystems. Importantly, kill rates also clarify misconceptions around the predatory behaviour of carnivores (e.g. spotted hyaenas Crocuta crocuta and wolverines Gulo gulo are often considered scavengers rather than the capable hunters that they are) and thus the potential impacts of various carnivore species on their ecological communities. Despite the importance of kill rates in understanding predator-prey interactions, their utility is not widely recognised, and insufficient research limits our ability to fully appreciate and predict the consequences of modified predation regimes, justify current management actions affecting carnivores, or inform effective conservation measures. Together with other important research on predator-prey interactions, robust kill rate studies that address the research deficiencies we highlight will provide a deeper understanding of the foraging behaviours and potential ecosystem impacts of many of the world's carnivores, thus aiding effective conservation and management actions.
Collapse
Affiliation(s)
- Luke D Emerson
- Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Melbourne, Victoria, 3125, Australia
| | - Heiko U Wittmer
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - L Mark Elbroch
- Panthera, 8 West 40th Street 18th Floor, New York, New York, 10018, USA
| | - Kristal Kostoglou
- Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Melbourne, Victoria, 3125, Australia
| | - Kimberley J Bannister
- Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Melbourne, Victoria, 3125, Australia
| | - Jared J Psaila
- Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Melbourne, Victoria, 3125, Australia
| | - Desley Whisson
- Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Melbourne, Victoria, 3125, Australia
| | - Euan G Ritchie
- Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Melbourne, Victoria, 3125, Australia
| |
Collapse
|
10
|
Cipriani V, Goldenberg SU, Connell SD, Ravasi T, Nagelkerken I. Can niche plasticity mediate species persistence under ocean acidification? J Anim Ecol 2024; 93:1380-1391. [PMID: 39126185 DOI: 10.1111/1365-2656.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 07/13/2024] [Indexed: 08/12/2024]
Abstract
Global change stressors can modify ecological niches of species, thereby altering ecological interactions within communities and food webs. Yet, some species might take advantage of a fast-changing environment, allowing species with high niche plasticity to thrive under climate change. We used natural CO2 vents to test the effects of ocean acidification on niche modifications of a temperate rocky reef fish assemblage. We quantified three ecological niche traits (overlap, shift and breadth) across three key niche dimensions (trophic, habitat and behavioural). Only one species increased its niche width along multiple niche dimensions (trophic and behavioural), shifted its niche in the remaining (habitat) was the only species to experience a highly increased density (i.e. doubling) at vents. The other three species that showed slightly increased or declining densities at vents only displayed a niche width increase in one (habitat niche) out of seven niche metrics considered. This niche modification was likely in response to habitat simplification (transition to a system dominated by turf algae) under ocean acidification. We further showed that, at the vents, the less abundant fishes had a negligible competitive impact on the most abundant and common species. This species appeared to expand its niche space, overlapping with other species, which likely led to lower abundances of the latter under elevated CO2. We conclude that niche plasticity across multiple dimensions could be a potential adaptation in fishes to benefit from a changing environment in a high-CO2 world.
Collapse
Affiliation(s)
- Vittoria Cipriani
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Silvan U Goldenberg
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Marine Biogeochemistry, Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- Australian Research Council Centre of Excellence for Coral Reefs Studies, James Cook University, Townsville, Queensland, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
DeSimone JG, DeGroote LW, MacKenzie SA, Owen JC, Patterson AJ, Cohen EB. Persistent species relationships characterize migrating bird communities across stopover sites and seasons. Proc Natl Acad Sci U S A 2024; 121:e2322063121. [PMID: 39136989 PMCID: PMC11348330 DOI: 10.1073/pnas.2322063121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/04/2024] [Indexed: 08/15/2024] Open
Abstract
Global migrations of diverse animal species often converge along the same routes, bringing together seasonal assemblages of animals that may compete, prey on each other, and share information or pathogens. These interspecific interactions, when energetic demands are high and the time to complete journeys is short, may influence survival, migratory success, stopover ecology, and migratory routes. Numerous accounts suggest that interspecific co-migrations are globally distributed in aerial, aquatic, and terrestrial systems, although the study of migration to date has rarely investigated species interactions among migrating animals. Here, we test the hypothesis that migrating animals are communities engaged in networks of ecological interactions. We leverage over half a million records of 50 bird species from five bird banding sites collected over 8 to 23 y to test for species associations using social network analyses. We find strong support for persistent species relationships across sites and between spring and fall migration. These relationships may be ecologically meaningful: They are often stronger among phylogenetically related species with similar foraging behaviors and nonbreeding ranges even after accounting for the nonsocial contributions to associations, including overlap in migration timing and habitat use. While interspecific interactions could result in costly competition or beneficial information exchange, we find that relationships are largely positive, suggesting limited competitive exclusion at the scale of a banding station during migratory stopovers. Our findings support an understanding of animal migrations that consist of networked communities rather than random assemblages of independently migrating species, encouraging future studies of the nature and consequences of co-migrant interactions.
Collapse
Affiliation(s)
- Joely G. DeSimone
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD21532
| | - Lucaske W. DeGroote
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD21532
- Powdermill Nature Reserve, Carnegie Museum of Natural History, Rector, PA15677
| | | | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI48824
- Michigan State Bird Observatory, East Lansing, MI48823
| | | | - Emily B. Cohen
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD21532
| |
Collapse
|
12
|
Chen DV, Slowinski SP, Kido AK, Bruns EL. High temperatures reduce growth, infection, and transmission of a naturally occurring fungal plant pathogen. Ecology 2024; 105:e4373. [PMID: 38923499 DOI: 10.1002/ecy.4373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Climate change is rapidly altering the distribution of suitable habitats for many species as well as their pathogenic microbes. For many pathogens, including vector-borne diseases of humans and agricultural pathogens, climate change is expected to increase transmission and lead to pathogen range expansions. However, if pathogens have a lower heat tolerance than their host, increased warming could generate so-called thermal refugia for hosts. Predicting the outcomes of warming on disease transmission requires detailed knowledge of the thermal tolerances of both the host and the pathogen. Such thermal tolerance studies are generally lacking for fungal pathogens of wild plant populations, despite the fact that plants form the base of all terrestrial communities. Here, we quantified three aspects of the thermal tolerance (growth, infection, and propagule production) of the naturally occurring fungal pathogen Microbotryum lychnidis-dioicae, which causes a sterilizing anther-smut disease on the herbaceous plant Silene latifolia. We also quantified two aspects of host thermal tolerance: seedling survival and flowering rate. We found that temperatures >30°C reduced the ability of anther-smut spores to germinate, grow, and conjugate in vitro. In addition, we found that high temperatures (30°C) during or shortly after the time of inoculation strongly reduced the likelihood of infection in seedlings. Finally, we found that high summer temperatures in the field temporarily cured infected plants, likely reducing transmission. Notably, high temperatures did not reduce survival or flowering of the host plants. Taken together, our results show that the fungus is considerably more sensitive to high temperatures than its host plant. A warming climate could therefore result in reduced disease spread or even local pathogen extirpation, leading to thermal refugia for the host.
Collapse
Affiliation(s)
- Dalia V Chen
- Biology, University of Maryland at College Park, College Park, Maryland, USA
| | - Samuel P Slowinski
- Biology, University of Maryland at College Park, College Park, Maryland, USA
| | - Allyson K Kido
- Biology, University of Maryland at College Park, College Park, Maryland, USA
- Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Emily L Bruns
- Biology, University of Maryland at College Park, College Park, Maryland, USA
| |
Collapse
|
13
|
Kharouba HM, Williams JL. Forecasting species' responses to climate change using space-for-time substitution. Trends Ecol Evol 2024; 39:716-725. [PMID: 38744627 DOI: 10.1016/j.tree.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 05/16/2024]
Abstract
To anticipate species' responses to climate change, ecologists have largely relied on the space-for-time-substitution (SFTS) approach. However, the hypothesis and its underlying assumptions have been poorly tested. Here, we detail how the efficacy of using the SFTS approach to predict future locations will depend on species' traits, the ecological context, and whether the species is declining or introduced. We argue that the SFTS approach will be least predictive in the contexts where we most need it to be: forecasting the expansion of the range of introduced species and the recovery of threatened species. We highlight how evaluating the underlying assumptions, along with improved methods, will rapidly advance our understanding of the applicability of the SFTS approach, particularly in the context of modelling the distribution of species.
Collapse
Affiliation(s)
- Heather M Kharouba
- Department of Biology, University of Ottawa, Ontario, ON, K1N 6N5, Canada.
| | - Jennifer L Williams
- Department of Geography and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| |
Collapse
|
14
|
Segoli M, Kishinevsky M, Harvey JA. Climate change, temperature extremes, and impacts on hyperparasitoids. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101229. [PMID: 38944274 DOI: 10.1016/j.cois.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Anthropogenic climate change, including temperature extremes, is having a major impact on insect physiology, phenology, behavior, populations, and communities. Hyperparasitoids (insects whose offspring develop in, or on, the body of a primary parasitoid host) are expected to be especially impacted by such effects due to their typical life history traits (e.g. low fecundity and slow development), small populations (being high on the food chain), and cascading effects mediated via lower trophic levels. We review evidence for direct and indirect temperature and climate-related effects mediated via plants, herbivores, and the primary parasitoid host species on hyperparasitoid populations, focusing on higher temperatures. We discuss how hyperparasitoid responses may feed back to the community and affect biological control programs. We conclude that despite their great importance, very little is known about the potential effects of climate change on hyperparasitoids and make a plea for additional studies exploring such responses.
Collapse
Affiliation(s)
- Michal Segoli
- The Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, SIDEER, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Israel.
| | - Miriam Kishinevsky
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey A Harvey
- Netherlands Institute of Ecology, Wageningen, the Netherlands; Department of Ecological Sciences- Animal Ecology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Suding KN, Collins CG, Hallett LM, Larios L, Brigham LM, Dudney J, Farrer EC, Larson JE, Shackelford N, Spasojevic MJ. Biodiversity in changing environments: An external-driver internal-topology framework to guide intervention. Ecology 2024; 105:e4322. [PMID: 39014865 DOI: 10.1002/ecy.4322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 07/18/2024]
Abstract
Accompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant-plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external-driver internal-topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.
Collapse
Affiliation(s)
- Katharine N Suding
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
| | - Courtney G Collins
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren M Hallett
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
| | - Loralee Larios
- Department of Botany & Plant Sciences, University of California Riverside, Riverside, California, USA
| | - Laurel M Brigham
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Joan Dudney
- Environmental Studies Program, Santa Barbara, California, USA
- Bren School of Environmental Science & Management, UC Santa Barbara, Santa Barbara, California, USA
| | - Emily C Farrer
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Julie E Larson
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- USDA Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, Oregon, USA
| | - Nancy Shackelford
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Marko J Spasojevic
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
16
|
Fronhofer EA, Bonte D, Bestion E, Cote J, Deshpande JN, Duncan AB, Hovestadt T, Kaltz O, Keith SA, Kokko H, Legrand D, Malusare SP, Parmentier T, Saade C, Schtickzelle N, Zilio G, Massol F. Evolutionary ecology of dispersal in biodiverse spatially structured systems: what is old and what is new? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230142. [PMID: 38913061 PMCID: PMC11391287 DOI: 10.1098/rstb.2023.0142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 06/25/2024] Open
Abstract
Dispersal is a well-recognized driver of ecological and evolutionary dynamics, and simultaneously an evolving trait. Dispersal evolution has traditionally been studied in single-species metapopulations so that it remains unclear how dispersal evolves in metacommunities and metafoodwebs, which are characterized by a multitude of species interactions. Since most natural systems are both species-rich and spatially structured, this knowledge gap should be bridged. Here, we discuss whether knowledge from dispersal evolutionary ecology established in single-species systems holds in metacommunities and metafoodwebs and we highlight generally valid and fundamental principles. Most biotic interactions form the backdrop to the ecological theatre for the evolutionary dispersal play because interactions mediate patterns of fitness expectations across space and time. While this allows for a simple transposition of certain known principles to a multispecies context, other drivers may require more complex transpositions, or might not be transferred. We discuss an important quantitative modulator of dispersal evolution-increased trait dimensionality of biodiverse meta-systems-and an additional driver: co-dispersal. We speculate that scale and selection pressure mismatches owing to co-dispersal, together with increased trait dimensionality, may lead to a slower and more 'diffuse' evolution in biodiverse meta-systems. Open questions and potential consequences in both ecological and evolutionary terms call for more investigation. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Emanuel A Fronhofer
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35 , Ghent B-9000, Belgium
| | - Elvire Bestion
- Station d'Ecologie Théorique et Expérimentale, CNRS, UAR 2029 , Moulis F-09200, France
| | - Julien Cote
- Laboratoire Évolution & Diversité Biologique, CNRS, Université Toulouse III Paul Sabatier, IRD, UMR 5174, 118 route de Narbonne , Toulouse F-31062, France
| | - Jhelam N Deshpande
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - Alison B Duncan
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - Thomas Hovestadt
- Department Animal Ecology and Tropical Biology, Biozentrum, University of Würzburg , Würzburg 97074, Germany
| | - Oliver Kaltz
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - Sally A Keith
- Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ, UK
| | - Hanna Kokko
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz 55128, Germany
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, CNRS, UAR 2029 , Moulis F-09200, France
| | - Sarthak P Malusare
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - Thomas Parmentier
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35 , Ghent B-9000, Belgium
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur , Namur 5000, Belgium
| | - Camille Saade
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | | | - Giacomo Zilio
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - François Massol
- Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille , Lille 59000, France
| |
Collapse
|
17
|
Thierry M, Cote J, Bestion E, Legrand D, Clobert J, Jacob S. The interplay between abiotic and biotic factors in dispersal decisions in metacommunities. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230137. [PMID: 38913055 PMCID: PMC11391301 DOI: 10.1098/rstb.2023.0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 06/25/2024] Open
Abstract
Suitable conditions for species to survive and reproduce constitute their ecological niche, which is built by abiotic conditions and interactions with conspecifics and heterospecifics. Organisms should ideally assess and use information about all these environmental dimensions to adjust their dispersal decisions depending on their own internal conditions. Dispersal plasticity is often considered through its dependence on abiotic conditions or conspecific density and, to a lesser extent, with reference to the effects of interactions with heterospecifics, potentially leading to misinterpretation of dispersal drivers. Here, we first review the evidence for the effects of and the potential interplays between abiotic factors, biotic interactions with conspecifics and heterospecifics and phenotype on dispersal decisions. We then present an experimental test of these potential interplays, investigating the effects of density and interactions with conspecifics and heterospecifics on temperature-dependent dispersal in microcosms of Tetrahymena ciliates. We found significant differences in dispersal rates depending on the temperature, density and presence of another strain or species. However, the presence and density of conspecifics and heterospecifics had no effects on the thermal-dependency of dispersal. We discuss the causes and consequences of the (lack of) interplay between the different environmental dimensions and the phenotype for metacommunity assembly and dynamics. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Mélanie Thierry
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Julien Cote
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 CNRS-IRD-TINP-UT3 Université Toulouse III - Paul Sabatier, Bât. 4R1, 118 route de Narbonne , Toulouse Cedex 9 31062, France
| | - Elvire Bestion
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| |
Collapse
|
18
|
Coblentz KE, Treidel LA, Biagioli FP, Fragel CG, Johnson AE, Thilakarathne DD, Yang L, DeLong JP. A framework for understanding climate change impacts through non-compensatory intra- and interspecific climate change responses. GLOBAL CHANGE BIOLOGY 2024; 30:e17378. [PMID: 38923246 DOI: 10.1111/gcb.17378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Understanding and predicting population responses to climate change is a crucial challenge. A key component of population responses to climate change are cases in which focal biological rates (e.g., population growth rates) change in response to climate change due to non-compensatory effects of changes in the underlying components (e.g., birth and death rates) determining the focal rates. We refer to these responses as non-compensatory climate change effects. As differential responses of biological rates to climate change have been documented in a variety of systems and arise at multiple levels of organization within and across species, non-compensatory effects may be nearly ubiquitous. Yet, how non-compensatory climate change responses combine and scale to influence the demographics of populations is often unclear and requires mapping them to the birth and death rates underlying population change. We provide a flexible framework for incorporating non-compensatory changes in upstream rates within and among species and mapping their consequences for additional downstream rates across scales to their eventual effects on population growth rates. Throughout, we provide specific examples and potential applications of the framework. We hope this framework helps to enhance our understanding of and unify research on population responses to climate change.
Collapse
Affiliation(s)
- Kyle E Coblentz
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lisa A Treidel
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Francis P Biagioli
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Christina G Fragel
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Allison E Johnson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Liuqingqing Yang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - John P DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
19
|
Bovay B, Descombes P, Chittaro Y, Glauser G, Nomoto H, Rasmann S. Adapting to change: Exploring the consequences of climate-induced host plant shifts in two specialist Lepidoptera species. Ecol Evol 2024; 14:e11596. [PMID: 38932969 PMCID: PMC11199125 DOI: 10.1002/ece3.11596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Asynchronous migration of insect herbivores and their host plants towards higher elevations following climate warming is expected to generate novel plant-insect interactions. While the disassociation of specialised interactions can challenge species' persistence, consequences for specialised low-elevation insect herbivores encountering novel high-elevation plants under climate change remain largely unknown. To explore the ability of two low-elevation Lepidoptera species, Melitaea celadussa and Zygaena filipendulae, to undergo shifts from low- to high-elevation host plants, we combined a translocation experiment performed at two elevations in the Swiss Alps with experiments conducted under controlled conditions. Specifically, we exposed M. celadussa and Z. filipendulae to current low- and congeneric high-elevation host plants, to test how shifts in host plant use impact oviposition probability, number of eggs clutches laid, caterpillar feeding preference and growth, pupation rate and wing size. While our study shows that both M. celadussa and Z. filipendulae can oviposit and feed on novel high-elevation host plants, we reveal strong preferences towards ovipositing and feeding on current low-elevation host plants. In addition, shifts from current low- to novel high-elevation host plants reduced pupation rates as well as wing size for M. celadussa, while caterpillar growth was unaffected by host plant identity for both species. Our study suggests that populations of M. celadussa and Z. filipendulae have the ability to undergo host plant shifts under climate change. However, these shifts may impact the ability of populations to respond to rapid climate change by altering developmental processes and morphology. Our study highlights the importance of considering altered biotic interactions when predicting consequences for natural populations facing novel abiotic and biotic environments.
Collapse
Affiliation(s)
- Baptiste Bovay
- Faculty of Science, Institute of BiologyUniversity of NeuchâtelNeuchatelSwitzerland
| | - Patrice Descombes
- Département de BotaniqueMuséum cantonal des sciences naturellesLausanneSwitzerland
| | | | - Gaëtan Glauser
- Faculty of Science, Neuchâtel Platform of Analytical ChemistryUniversity of NeuchâtelNeuchatelSwitzerland
| | - Hanna Nomoto
- Faculty of Science, Institute of BiologyUniversity of NeuchâtelNeuchatelSwitzerland
| | - Sergio Rasmann
- Faculty of Science, Institute of BiologyUniversity of NeuchâtelNeuchatelSwitzerland
| |
Collapse
|
20
|
Mateos DM, Bhatnagar JM. Restoring ecological complexity in a changing environment. Curr Biol 2024; 34:R365-R371. [PMID: 38714167 DOI: 10.1016/j.cub.2024.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
As land use leaves massive tracts of land vacant for recovery, restoration must undergo a substantial shift to incorporate a complexity perspective beyond the traditional community, biodiversity or functional views. With an interaction-function perspective, we may be able to achieve ecosystems with better chances to adapt to current environmental changes and, especially, to climate change. We explore combined approaches that include still unused and underexplored techniques that will soon go mainstream and produce massive amounts of information to address the complexity gap. As we understand how complexity reassembles after the end of agriculture, we will be able to design actions to restore or enhance it at unprecedented spatial scales while increasing its adaptability to environmental changes.
Collapse
Affiliation(s)
- David Moreno Mateos
- School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK; Basque Centre for Climate Change (BC3), Leioa 48940, Spain; Ikerbasque Foundation, Bilbao 48009, Spain.
| | | |
Collapse
|
21
|
Miloch D, Cecchetto NR, Lescano JN, Leynaud GC, Perotti MG. Is thermal sensitivity affected by predation risk? A case study in tadpoles from ephemeral environments. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:400-409. [PMID: 38356256 DOI: 10.1002/jez.2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Changes in environmental temperature may induce variations in thermal tolerance and sensitivity in ectotherm organisms. These variations generate plastic responses that can be analyzed by examining their Thermal Performance Curves (TPCs). Additionally, some performance traits, like locomotion, could be affected by other factors such as biological interactions (e.g., predator-prey interaction). Here, we evaluate if the risk of predation modifies TPCs in Mendoza four-eyed frog (Pleurodema nebulosum, Burmeister, 1861) and Guayapa's four-eyed frog (Pleurodema guayapae, Barrio, 1964), two amphibian species that occur in ephemeral ponds in arid environments. We measured thermal tolerances and maximum swimming velocity at six different temperatures in tadpoles under three situations: control, exposure to predator chemical cues, and exposure to conspecific alarm cues. TPCs were fitted using General Additive Mixed Models. We found that curves of tadpoles at risk of predation differed from those of control mainly in thermal sensitivity parameters. Our work confirms the importance of biotic interactions have in thermal physiology.
Collapse
Affiliation(s)
- Daniela Miloch
- Facultad de Ciencias Exactas, Físicas, y Naturales, Centro de Zoología Aplicada, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Nicolas R Cecchetto
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente, Consejo Nacional de Investigaciones Científicas y Técnicas, Bariloche, Río Negro, Argentina
| | - Julián N Lescano
- Facultad de Ciencias Exactas, Físicas, y Naturales, Centro de Zoología Aplicada, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Gerardo C Leynaud
- Facultad de Ciencias Exactas, Físicas, y Naturales, Centro de Zoología Aplicada, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - María Gabriela Perotti
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente, Consejo Nacional de Investigaciones Científicas y Técnicas, Bariloche, Río Negro, Argentina
| |
Collapse
|
22
|
Ma W, Hu J, Zhang B, Guo J, Zhang X, Wang Z. Later-melting rather than thickening of snowpack enhance the productivity and alter the community composition of temperate grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171440. [PMID: 38442763 DOI: 10.1016/j.scitotenv.2024.171440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Snowpack is closely related to vegetation green-up in water-limited ecosystems, and has effects on growing-season ecosystem processes. However, we know little about how changes in snowpack depth and melting timing affect primary productivity and plant community structure during the growing season. Here, we conducted a four-year snow manipulation experiment exploring how snow addition, snowmelt delay and their combination affect aboveground net primary productivity (ANPP), species diversity, community composition and plant reproductive phenology in seasonally snow-covered temperate grassland in northern China. Snow addition alone increased soil moisture and nutrient availability during early spring, while did not change plant community structure and ANPP. Instead, snowmelt delay alone postponed plant reproductive phenology, and increased ANPP, decreased species diversity and altered species composition. Grasses are more sensitive to changes in snowmelt timing than forbs, and early-flowering forbs showed a higher sensitivity compared to late-flowering forbs. The effect of snowmelt delay on ANPP and species diversity was offset by snow addition, probably because the added snow unnecessarily lengthens the snow-covering duration. The disparate effects of changes in snowpack depth and snowmelt timing necessitate their discrimination for more mechanistic understanding on the effects of snowpack changes on ecosystems. Our study suggests that it is essential to incorporate non-growing-season climate change events (in particular, snowfall and snowpack changes) to comprehensively disclose the effects of climate change on community structure and ecosystem functions.
Collapse
Affiliation(s)
- Wang Ma
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Jiaxin Hu
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bingchuan Zhang
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Jia Guo
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Zhang
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhengwen Wang
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
| |
Collapse
|
23
|
Tennakoon S, Apan A, Maraseni T. Unravelling the impact of climate change on honey bees: An ensemble modelling approach to predict shifts in habitat suitability in Queensland, Australia. Ecol Evol 2024; 14:e11300. [PMID: 38638367 PMCID: PMC11024685 DOI: 10.1002/ece3.11300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Honey bees play a vital role in providing essential ecosystem services and contributing to global agriculture. However, the potential effect of climate change on honey bee distribution is still not well understood. This study aims to identify the most influential bioclimatic and environmental variables, assess their impact on honey bee distribution, and predict future distribution. An ensemble modelling approach using the biomod2 package in R was employed to develop three models: a climate-only model, an environment-only model, and a combined climate and environment model. By utilising bioclimatic data (radiation of the wettest and driest quarters and temperature seasonality) from 1990 to 2009, combined with observed honey bee presence and pseudo absence data, this model predicted suitable locations for honey bee apiaries for two future time spans: 2020-2039 and 2060-2079. The climate-only model exhibited a true skill statistic (TSS) value of 0.85, underscoring the pivotal role of radiation and temperature seasonality in shaping honey bee distribution. The environment-only model, incorporating proximity to floral resources, foliage projective cover, and elevation, demonstrated strong predictive performance, with a TSS of 0.88, emphasising the significance of environmental variables in determining habitat suitability for honey bees. The combined model had a higher TSS of 0.96, indicating that the combination of climate and environmental variables enhances the model's performance. By the 2020-2039 period, approximately 88% of highly suitable habitats for honey bees are projected to transition from their current state to become moderate (14.84%) to marginally suitable (13.46%) areas. Predictions for the 2060-2079 period reveal a concerning trend: 100% of highly suitable land transitions into moderately (0.54%), marginally (17.56%), or not suitable areas (81.9%) for honey bees. These results emphasise the critical need for targeted conservation efforts and the implementation of policies aimed at safeguarding honey bees and the vital apiary industry.
Collapse
Affiliation(s)
- Sarasie Tennakoon
- School of Surveying and Built EnvironmentUniversity of Southern QueenslandToowoombaQueenslandAustralia
| | - Armando Apan
- School of Surveying and Built EnvironmentUniversity of Southern QueenslandToowoombaQueenslandAustralia
- Institute of Environmental Science and MeteorologyUniversity of the Philippines DilimanQuezon CityPhilippines
| | - Tek Maraseni
- Institute for Life Sciences and the EnvironmentUniversity of Southern QueenslandToowoombaQueenslandAustralia
- Chinese Academy of SciencesNorthwest Institute of Eco‐Environment and ResourcesLanzhouChina
| |
Collapse
|
24
|
Comte L, Bertrand R, Diamond S, Lancaster LT, Pinsky ML, Scheffers BR, Baecher JA, Bandara RMWJ, Chen IC, Lawlor JA, Moore NA, Oliveira BF, Murienne J, Rolland J, Rubenstein MA, Sunday J, Thompson LM, Villalobos F, Weiskopf SR, Lenoir J. Bringing traits back into the equation: A roadmap to understand species redistribution. GLOBAL CHANGE BIOLOGY 2024; 30:e17271. [PMID: 38613240 DOI: 10.1111/gcb.17271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Ecological and evolutionary theories have proposed that species traits should be important in mediating species responses to contemporary climate change; yet, empirical evidence has so far provided mixed evidence for the role of behavioral, life history, or ecological characteristics in facilitating or hindering species range shifts. As such, the utility of trait-based approaches to predict species redistribution under climate change has been called into question. We develop the perspective, supported by evidence, that trait variation, if used carefully can have high potential utility, but that past analyses have in many cases failed to identify an explanatory value for traits by not fully embracing the complexity of species range shifts. First, we discuss the relevant theory linking species traits to range shift processes at the leading (expansion) and trailing (contraction) edges of species distributions and highlight the need to clarify the mechanistic basis of trait-based approaches. Second, we provide a brief overview of range shift-trait studies and identify new opportunities for trait integration that consider range-specific processes and intraspecific variability. Third, we explore the circumstances under which environmental and biotic context dependencies are likely to affect our ability to identify the contribution of species traits to range shift processes. Finally, we propose that revealing the role of traits in shaping species redistribution may likely require accounting for methodological variation arising from the range shift estimation process as well as addressing existing functional, geographical, and phylogenetic biases. We provide a series of considerations for more effectively integrating traits as well as extrinsic and methodological factors into species redistribution research. Together, these analytical approaches promise stronger mechanistic and predictive understanding that can help society mitigate and adapt to the effects of climate change on biodiversity.
Collapse
Affiliation(s)
- Lise Comte
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
- Conservation Science Partners, Inc., Truckee, California, USA
| | - Romain Bertrand
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE UMR5300), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
| | - Sarah Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Brett R Scheffers
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - J Alex Baecher
- School of Natural Resources and Environment, University of Florida, Gainesville, Florida, USA
| | - R M W J Bandara
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - I-Ching Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jake A Lawlor
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Nikki A Moore
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Brunno F Oliveira
- Fondation pour la Recherche sur la Biodiversité (FRB), Centre de Synthèse et d'Analyse sur la Biodiversité (CESAB), Montpellier, France
| | - Jerome Murienne
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE UMR5300), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
| | - Jonathan Rolland
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE UMR5300), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
| | - Madeleine A Rubenstein
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, Virginia, USA
| | - Jennifer Sunday
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Laura M Thompson
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, Virginia, USA
- School of Natural Resources, University of Tennessee, Knoxville, Tennessee, USA
| | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología A.C. - INECOL, Veracruz, Mexico
| | - Sarah R Weiskopf
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, Virginia, USA
| | - Jonathan Lenoir
- UMR CNRS 7058, Ecologie et Dynamique Des Systèmes Anthropisés (EDYSAN), Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
25
|
Levine JI, Pacala SW, Levine JM. Competition for time: Evidence for an overlooked, diversity-maintaining competitive mechanism. Ecol Lett 2024; 27:e14422. [PMID: 38549235 DOI: 10.1111/ele.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024]
Abstract
Understanding how diversity is maintained in plant communities requires that we first understand the mechanisms of competition for limiting resources. In ecology, there is an underappreciated but fundamental distinction between systems in which the depletion of limiting resources reduces the growth rates of competitors and systems in which resource depletion reduces the time available for competitors to grow, a mechanism we call 'competition for time'. Importantly, modern community ecology and our framing of the coexistence problem are built on the implicit assumption that competition reduces the growth rate. However, recent theoretical work suggests competition for time may be the predominant competitive mechanism in a broad array of natural communities, a significant advance given that when species compete for time, diversity-maintaining trade-offs emerge organically. In this study, we first introduce competition for time conceptually using a simple model of interacting species. Then, we perform an experiment in a Mediterranean annual grassland to determine whether competition for time is an important competitive mechanism in a field system. Indeed, we find that species respond to increased competition through reductions in their lifespan rather than their rate of growth. In total, our study suggests competition for time may be overlooked as a mechanism of biodiversity maintenance.
Collapse
Affiliation(s)
- Jacob I Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Stephen W Pacala
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Jonathan M Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
26
|
Walberg PB. Competition Increases Risk of Species Extinction during Extreme Warming. Am Nat 2024; 203:323-334. [PMID: 38358815 DOI: 10.1086/728672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractTemperature and interspecific competition are fundamental drivers of community structure in natural systems and can interact to affect many measures of species performance. However, surprisingly little is known about the extent to which competition affects extinction temperatures during extreme warming. This information is important for evaluating future threats to species from extreme high-temperature events and heat waves, which are rising in frequency and severity around the world. Using experimental freshwater communities of rotifers and ciliates, this study shows that interspecific competition can lower the threshold temperature at which local extinction occurs, reducing time to extinction during periods of sustained warming by as much as 2 weeks. Competitors may lower extinction temperatures by altering biochemical characteristics of the natural environment that affect temperature tolerance (e.g., levels of dissolved oxygen, nutrients, and metabolic wastes) or by accelerating population decline through traditional effects of resource depletion on life history parameters that affect population growth rates. The results suggest that changes in community structure in space and time could drive variability in upper thermal limits.
Collapse
|
27
|
Bernatchez L, Ferchaud AL, Berger CS, Venney CJ, Xuereb A. Genomics for monitoring and understanding species responses to global climate change. Nat Rev Genet 2024; 25:165-183. [PMID: 37863940 DOI: 10.1038/s41576-023-00657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/22/2023]
Abstract
All life forms across the globe are experiencing drastic changes in environmental conditions as a result of global climate change. These environmental changes are happening rapidly, incur substantial socioeconomic costs, pose threats to biodiversity and diminish a species' potential to adapt to future environments. Understanding and monitoring how organisms respond to human-driven climate change is therefore a major priority for the conservation of biodiversity in a rapidly changing environment. Recent developments in genomic, transcriptomic and epigenomic technologies are enabling unprecedented insights into the evolutionary processes and molecular bases of adaptation. This Review summarizes methods that apply and integrate omics tools to experimentally investigate, monitor and predict how species and communities in the wild cope with global climate change, which is by genetically adapting to new environmental conditions, through range shifts or through phenotypic plasticity. We identify advantages and limitations of each method and discuss future research avenues that would improve our understanding of species' evolutionary responses to global climate change, highlighting the need for holistic, multi-omics approaches to ecosystem monitoring during global climate change.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
- Parks Canada, Office of the Chief Ecosystem Scientist, Protected Areas Establishment, Quebec City, Quebec, Canada.
| | - Chloé Suzanne Berger
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
28
|
Sannassy Pilly S, Roche RC, Richardson LE, Turner JR. Depth variation in benthic community response to repeated marine heatwaves on remote Central Indian Ocean reefs. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231246. [PMID: 38545610 PMCID: PMC10966399 DOI: 10.1098/rsos.231246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 04/26/2024]
Abstract
Coral reefs are increasingly impacted by climate-induced warming events. However, there is limited empirical evidence on the variation in the response of shallow coral reef communities to thermal stress across depths. Here, we assess depth-dependent changes in coral reef benthic communities following successive marine heatwaves from 2015 to 2017 across a 5-25 m depth gradient in the remote Chagos Archipelago, Central Indian Ocean. Our analyses show an overall decline in hard and soft coral cover and an increase in crustose coralline algae, sponge and reef pavement following successive marine heatwaves on the remote reef system. Our findings indicate that the changes in benthic communities in response to elevated seawater temperatures varied across depths. We found greater changes in benthic group cover at shallow depths (5-15 m) compared with deeper zones (15-25 m). The loss of hard coral cover was better predicted by initial thermal stress, while the loss of soft coral was associated with repeated thermal stress following successive warming events. Our study shows that benthic communities extending to 25 m depth were impacted by successive marine heatwaves, supporting concerns about the resilience of shallow coral reef communities to increasingly severe climate-driven warming events.
Collapse
Affiliation(s)
| | - Ronan C. Roche
- School of Ocean Sciences, Bangor University, BangorLL59 5AB, UK
| | | | - John R. Turner
- School of Ocean Sciences, Bangor University, BangorLL59 5AB, UK
| |
Collapse
|
29
|
Hill JL, Grisnik M, Hanscom RJ, Sukumaran J, Higham TE, Clark RW. The past, present, and future of predator-prey interactions in a warming world: Using species distribution modeling to forecast ectotherm-endotherm niche overlap. Ecol Evol 2024; 14:e11067. [PMID: 38435021 PMCID: PMC10905248 DOI: 10.1002/ece3.11067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Climate change has the potential to disrupt species interactions across global ecosystems. Ectotherm-endotherm interactions may be especially prone to this risk due to the possible mismatch between the species in physiological response and performance. However, few studies have examined how changing temperatures might differentially impact species' niches or available suitable habitat when they have very different modes of thermoregulation. An ideal system for studying this interaction is the predator-prey system. In this study, we used ecological niche modeling to characterize the niche overlap and examine biogeography in past and future climate conditions of prairie rattlesnakes (Crotalus viridis) and Ord's kangaroo rats (Dipodomys ordii), an endotherm-ectotherm pair typifying a predator-prey species interaction. Our models show a high niche overlap between these two species (D = 0.863 and I = 0.979) and further affirm similar paleoecological distributions during the last glacial maximum (LGM) and mid-Holocene (MH). Under future climate change scenarios, we found that prairie rattlesnakes may experience a reduction in overall suitable habitat (RCP 2.6 = -1.82%, 4.5 = -4.62%, 8.5 = -7.34%), whereas Ord's kangaroo rats may experience an increase (RCP 2.6 = 9.8%, 4.5 = 11.71%, 8.5 = 8.37%). We found a shared trend of stable suitable habitat at northern latitudes but reduced suitability in southern portions of the range, and we propose future monitoring and conservation be focused on those areas. Overall, we demonstrate a biogeographic example of how interacting ectotherm-endotherm species may have mismatched responses under climate change scenarios and the models presented here can serve as a starting point for further investigation into the biogeography of these systems.
Collapse
Affiliation(s)
- Jessica L. Hill
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Matthew Grisnik
- Department of Agricultural and Environmental SciencesTennessee State UniversityNashvilleTennesseeUSA
- Department of BiologyCoastal Carolina UniversityConwaySouth CarolinaUSA
| | - Ryan J. Hanscom
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Jeet Sukumaran
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Timothy E. Higham
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Rulon W. Clark
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
30
|
Russo D, Jones G, Polizzi M, Meola V, Cistrone L. Higher and bigger: How riparian bats react to climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169733. [PMID: 38171455 DOI: 10.1016/j.scitotenv.2023.169733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
The altitudinal distribution of animals and changes in their body size are effective indicators of climate change. Bats are sensitive to climate change due to their dependence on temperature during critical life stages. However, long-term studies documenting responses over extended periods are rare. We present a 24-year investigation of Myotis daubentonii, a riparian bat known for altitudinal sexual segregation, along a river course in Central Italy. While males occupy the entire river course, females are confined to downstream warmer areas supporting successful reproduction due to improved foraging site productivity. In 2000, females were absent above 900 m a.s.l in our study area. We hypothesise that a) this altitude threshold is now higher, due to thermal gradient changes along the river course; and b) thermoregulatory costs for reproductive females have declined, leading to increased energy investment in offspring and subsequent generational growth in bat body size. Confirming our hypotheses, females exhibited a 175-m upward shift in altitude limit. Furthermore, we found a concurrent increase in body size (but not condition). Temperatures increased in the 24 years, likely allowing females to extend their range to higher elevations and favouring an increase in newborn body mass. Riparian vegetation remained unchanged, excluding habitat quality changes as the cause for the observed responses. The rapid female elevation rise might imply future disruption of established social structures, altering intra- and intersexual competition for roosts and food. Given the global decline in insect populations, larger bats might face future difficulties in finding food to sustain their body size, increasing mortality. However, the full impact of such changes on bat fitness remains unexplored and warrants further investigation, including other bat populations. This knowledge is crucial for informing conservation in the face of ongoing climate change and preserving the ecosystem services bats deliver in riparian ecosystems.
Collapse
Affiliation(s)
- Danilo Russo
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università, 100, 80055 Portici, Napoli, Italy; University of Bristol, School of Biological Sciences, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Gareth Jones
- University of Bristol, School of Biological Sciences, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Marta Polizzi
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro, 00185 Roma, Italy
| | - Vincenzo Meola
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università, 100, 80055 Portici, Napoli, Italy
| | - Luca Cistrone
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università, 100, 80055 Portici, Napoli, Italy
| |
Collapse
|
31
|
Bommarito C, Noè S, Díaz-Morales DM, Lukić I, Hiebenthal C, Rilov G, Guy-Haim T, Wahl M. Co-occurrence of native and invasive macroalgae might be facilitated under global warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169087. [PMID: 38056641 DOI: 10.1016/j.scitotenv.2023.169087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Climate change is driving compositional shifts in ecological communities directly by affecting species and indirectly through changes in species interactions. For example, competitive hierarchies can be inversed when competitive dominants are more susceptible to climate change. The brown seaweed Fucus vesiculosus is a foundation species in the Baltic Sea, experiencing novel interactions with the invasive red seaweed Gracilaria vermiculophylla, which is known for its high tolerance to environmental stress. We investigated the direct and interactive effects of warming and co-occurrence of the two algal species on their performance, by applying four climate change-relevant temperature scenarios: 1) cooling ) 2 °C below ambient - representing past conditions), 2) ambient summer temperature (18 °C), 3) IPCC RCP2.6 warming scenario (1 °C above ambient), and 4) RCP8.5 warming (3 °C above ambient) for 30 days and two compositional levels (mono and co-cultured algae) in a fully-crossed design. The RCP8.5 warming scenario increased photosynthesis, respiration, and nutrients' uptake rates of mono- and co-cultured G. vermiculophylla while growth was reduced. An increase in photosynthesis and essential nutrients' uptake and, at the same time, a growth reduction might result from increasing stress and energy demand of G. vermiculophylla under warming. In contrast, the growth of mono-cultured F. vesiculosus significantly increased in the highest warming treatment (+3 °C). The cooling treatment (-2 °C) exerted a slight negative effect only on co-cultured F. vesiculosus photosynthesis, compared to the ambient treatment. Interestingly, at ambient and warming (RCP2.6 and RCP8.5 scenarios) treatments, both F. vesiculosus and G. vermiculophylla appear to benefit from the presence of each other. Our results suggest that short exposure of F. vesiculosus to moderate or severe global warming scenarios may not directly affect or even slightly enhance its performance, while G. vermiculophylla net performance (growth) could be directly hampered by warming.
Collapse
Affiliation(s)
- C Bommarito
- Benthic and Experimental Ecology Department, GEOMAR, Helmholtz-Centre for Ocean Research, 24118 Kiel, Germany; ISEM, Université de Montpellier, CNRS, IRD, Place Eugene Bataillon, Bat 22, 34095 Montpellier, France.
| | - S Noè
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, 31080 Haifa, Israel; Anton Dohrn Zoological Station, Integrative Marine Ecology Department, Villa Comunale, 80121 Naples, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - D M Díaz-Morales
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Germany.
| | - I Lukić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - C Hiebenthal
- Benthic and Experimental Ecology Department, GEOMAR, Helmholtz-Centre for Ocean Research, 24118 Kiel, Germany.
| | - G Rilov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, 31080 Haifa, Israel.
| | - T Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, 31080 Haifa, Israel.
| | - M Wahl
- Benthic and Experimental Ecology Department, GEOMAR, Helmholtz-Centre for Ocean Research, 24118 Kiel, Germany.
| |
Collapse
|
32
|
Sharma MK, Hopak NE, Chawla A. Alpine plant species converge towards adopting elevation-specific resource-acquisition strategy in response to experimental early snow-melting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167906. [PMID: 37858830 DOI: 10.1016/j.scitotenv.2023.167906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Snow-melt is one of the important factors limiting growth and survival of alpine plants. Changes in snow-melt timing have profound effects on eco-physiological characteristics of alpine plant species through alterations in growing season length. Here, we conducted a field experiment and studied species response to experimentally induced early snow-melting (ES) (natural vs. early) at an alpine site (Rohtang) in the western Himalaya region. Eco-physiological response of eight snow-bed restricted alpine plant species from different elevations (lower: 3850 m and upper: 4150 m amsl) and belonging to contrasting resource acquisition strategies (conservative and acquisitive) were studied after 2-years (2019 & 2020) of initiating ES field experiment. We estimated the functional traits related to leaf economic spectrum and physiological performance and assessed their pattern of phenotypic plasticity. Analysis by linear mixed effect model showed that both the 'conservative' and 'acquisitive' species had responded to ES with significant effects on species specific leaf area, leaf dry matter content, leaf thickness, leaf water content and sugar content. Our results also revealed that ES treatment induced significant increase in leaf C/N ratio (10.57 % to 13.65 %) and protein content (15.85 % to 20.76 %) at both the elevations, irrespective of species groups. The phenotypic plasticity was found to be low and was essentially species-specific. However, for leaf protein content, the upper elevation species exhibited a higher phenotypic plasticity (0.43 ± 0.18) than the lower elevation species (0.31 ± 0.21). Interestingly, we found that irrespective of species unique functional strategy, species adapt to perform more conservative at lower elevation and more acquisitive at upper elevation, in response to ES. We conclude that plants occurring at contrasting elevations respond differentially to ES. However, species showed capacity for short-term acclimation to future environmental conditions, but may be vulnerable, if their niche is occupied by new species with greater phenotypic plasticity and a superior competitive ability.
Collapse
Affiliation(s)
- Manish K Sharma
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India; Centre for High Altitude Biology (CeHAB), Research Centre of CSIR-IHBT, Ribling, P.O. Tandi, District Lahaul and Spiti, Himachal Pradesh 175132, India
| | - Nang Elennie Hopak
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India; Centre for High Altitude Biology (CeHAB), Research Centre of CSIR-IHBT, Ribling, P.O. Tandi, District Lahaul and Spiti, Himachal Pradesh 175132, India
| | - Amit Chawla
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India; Centre for High Altitude Biology (CeHAB), Research Centre of CSIR-IHBT, Ribling, P.O. Tandi, District Lahaul and Spiti, Himachal Pradesh 175132, India.
| |
Collapse
|
33
|
Lepori VJ, Loeuille N, Rohr RP. Robustness versus productivity during evolutionary community assembly: short-term synergies and long-term trade-offs. Proc Biol Sci 2024; 291:20232495. [PMID: 38196359 PMCID: PMC10777152 DOI: 10.1098/rspb.2023.2495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
The realization that evolutionary feedbacks need to be considered to fully grasp ecological dynamics has sparked interest in the effect of evolution on community properties like coexistence and productivity. However, little is known about the evolution of community robustness and productivity along diversification processes in species-rich systems. We leverage the recent structural approach to coexistence together with adaptive dynamics to study such properties and their relationships in a general trait-based model of competition on a niche axis. We show that the effects of coevolution on coexistence are two-fold and contrasting depending on the time scale considered. In the short term, evolution of niche differentiation strengthens coexistence, while long-term diversification leads to niche packing and decreased robustness. Moreover, we find that coevolved communities tend to be on average more robust and more productive than non-evolutionary assemblages. We illustrate how our theoretical predictions echo in observed empirical patterns and the implications of our results for empiricists and applied ecologists. We suggest that some of our results such as the improved robustness of Evolutionarily Stable Communities could be tested experimentally in suitable model systems.
Collapse
Affiliation(s)
- Vasco J. Lepori
- Department of Biology – Ecology and Evolution, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Nicolas Loeuille
- Institute of Ecology and Environmental Sciences, IEES, Sorbonne Université, UPEC, CNRS, IRD, INRA, 75005 Paris, France
| | - Rudolf P. Rohr
- Department of Biology – Ecology and Evolution, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
34
|
Halsch CA, Shapiro AM, Thorne JH, Rodman KC, Parra A, Dyer LA, Gompert Z, Smilanich AM, Forister ML. Thirty-six years of butterfly monitoring, snow cover, and plant productivity reveal negative impacts of warmer winters and increased productivity on montane species. GLOBAL CHANGE BIOLOGY 2024; 30:e17044. [PMID: 37994481 DOI: 10.1111/gcb.17044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/28/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023]
Abstract
Climate change is contributing to declines of insects through rising temperatures, altered precipitation patterns, and an increasing frequency of extreme events. The impacts of both gradual and sudden shifts in weather patterns are realized directly on insect physiology and indirectly through impacts on other trophic levels. Here, we investigated direct effects of seasonal weather on butterfly occurrences and indirect effects mediated by plant productivity using a temporally intensive butterfly monitoring dataset, in combination with high-resolution climate data and a remotely sensed indicator of plant primary productivity. Specifically, we used Bayesian hierarchical path analysis to quantify relationships between weather and weather-driven plant productivity on the occurrence of 94 butterfly species from three localities distributed across an elevational gradient. We found that snow pack exerted a strong direct positive effect on butterfly occurrence and that low snow pack was the primary driver of reductions during drought. Additionally, we found that plant primary productivity had a consistently negative effect on butterfly occurrence. These results highlight mechanisms of weather-driven declines in insect populations and the nuances of climate change effects involving snow melt, which have implications for ecological theories linking topographic complexity to ecological resilience in montane systems.
Collapse
Affiliation(s)
- Christopher A Halsch
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Nevada, USA
| | - Arthur M Shapiro
- Center for Population Biology, University of California, Davis, California, USA
| | - James H Thorne
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| | - Kyle C Rodman
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Adriana Parra
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA
| | - Lee A Dyer
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Nevada, USA
| | | | - Angela M Smilanich
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Nevada, USA
| | - Matthew L Forister
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
35
|
Ravaglioli C, De Marchi L, Giannessi J, Pretti C, Bulleri F. Seagrass meadows as ocean acidification refugia for sea urchin larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167465. [PMID: 37778543 DOI: 10.1016/j.scitotenv.2023.167465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Foundation species have been widely documented to provide suitable habitats for other species by ameliorating stressful environmental conditions. Nonetheless, their role in rescuing stress-sensitive species from adverse conditions due to climate change remains often unexplored. Here, we performed a mesocosm experiment to assess whether the seagrass, Posidonia oceanica, through its photosynthetic activity, could mitigate the negative effects of ocean acidification on larval development and growth of the calcifying sea urchin, Paracentrotus lividus. Sea urchin larvae at early and late developmental stages that are generally associated to benthic habitats, were grown in aquaria with or without P. oceanica plants, under ambient or low pH conditions predicted by the end of the century under the worst climate scenario (RCP8.5). The percentage of abnormal larvae and their total body length under different experimental conditions were assessed on early- (i.e., pluteus; 72 h post-fertilization) and final-developmental stages (i.e., echinopluteus; 30 days post-fertilization), respectively. The presence of P. oceanica increased mean daily pH values of ∼0.1 and ∼0.15 units at ambient and low pH conditions, respectively, compared with tanks without plants. When grown at low pH in association with P. oceanica, plutei showed a ∼23 % reduction of malformations and echinoplutei a ∼34 % increase in total body length, respectively, compared with larvae developing in tanks without plants. Our results suggest that P. oceanica, by increasing pH and altering seawater carbonate chemistry through its metabolic activity, could buffer the negative effects of ocean acidification on calcifying organisms and could, thus, represent a tool against climate-driven loss of biodiversity.
Collapse
Affiliation(s)
- C Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy.
| | - L De Marchi
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte) - 56122 San Piero a Grado, Pisa, Italy.
| | - J Giannessi
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte) - 56122 San Piero a Grado, Pisa, Italy.
| | - C Pretti
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte) - 56122 San Piero a Grado, Pisa, Italy; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N.Sauro 4, 57128 Livorno, Italy.
| | - F Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy; Centro interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Italy.
| |
Collapse
|
36
|
Lapiedra O, Morales N, Yang LH, Fernández-Bellon D, Michaelides SN, Giery ST, Piovia-Scott J, Schoener TW, Kolbe JJ, Losos JB. Predator-driven behavioural shifts in a common lizard shape resource-flow from marine to terrestrial ecosystems. Ecol Lett 2024; 27:e14335. [PMID: 37972585 DOI: 10.1111/ele.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 11/19/2023]
Abstract
Foraging decisions shape the structure of food webs. Therefore, a behavioural shift in a single species can potentially modify resource-flow dynamics of entire ecosystems. To examine this, we conducted a field experiment to assess foraging niche dynamics of semi-arboreal brown anole lizards in the presence/absence of predatory ground-dwelling curly-tailed lizards in a replicated set of island ecosystems. One year after experimental translocation, brown anoles exposed to these predators had drastically increased perch height and reduced consumption of marine-derived food resources. This foraging niche shift altered marine-to-terrestrial resource-flow dynamics and persisted in the diets of the first-generation offspring. Furthermore, female lizards that displayed more risk-taking behaviours consumed more marine prey on islands with predators present. Our results show how predator-driven rapid behavioural shifts can alter food-web connectivity between oceanic and terrestrial ecosystems and underscore the importance of studying behaviour-mediated niche shifts to understand ecosystem functioning in rapidly changing environments.
Collapse
Affiliation(s)
- Oriol Lapiedra
- CREAF, Edifici C Campus de Bellaterra, Cerdanyola del Valles, Spain
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nina Morales
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Louie H Yang
- Department of Entomology and Nematology, University of California, Davis, California, USA
| | - Darío Fernández-Bellon
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland
| | | | - Sean T Giery
- Department of Biology, Ohio University, Athens, Ohio, USA
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, Washington, USA
| | - Thomas W Schoener
- Department of Entomology, University of California, Davis, California, USA
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Jonathan B Losos
- Department of Biology, Washington University of St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
37
|
Colwell RK. Discordant upslope range shifts shuffle parasitoid-host species interactions. Proc Natl Acad Sci U S A 2023; 120:e2318022120. [PMID: 38079561 PMCID: PMC10740365 DOI: 10.1073/pnas.2318022120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Affiliation(s)
- Robert K. Colwell
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT06269
- Section of Entomology, University of Colorado Museum of Natural History, Boulder, CO80309
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen O2100, Denmark
- Departamento de Ecologia, Universidade Federal de Goiás, CP 131, 74.001-970 Goiânia, Goiás, Brazil
| |
Collapse
|
38
|
Zhu Y, Xu X, Xi Z, Liu J. Conservation priorities for endangered trees facing multiple threats around the world. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14142. [PMID: 37424365 DOI: 10.1111/cobi.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 05/03/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
Trees are vital to the survival of numerous species and to forest ecosystem functioning. However, the current distribution, vulnerability to extinction, and conservation priorities of globally endangered trees are not well known. We mapped the global distribution of 1686 tree species listed as endangered on the International Union for the Conservation of Nature Red List and identified conservation priority for them based on species richness, life-history traits, evolutionary distinctiveness, future climate change, and intensity of human activities. We also evaluated the impacts of various threats to these endangered tree species and evaluated the effectiveness of their protection based on the percentage of the species' range inside protected areas. The worldwide distribution of endangered trees, from the tropics through temperate zones, was uneven. Most endangered tree species were not protected in their native ranges, and only 153 species were fully protected. Hotspots of tree diversity occurred primarily in the tropics, and 79.06% of these were highly vulnerable to threats. We identified 253 areas of high priority for the conservation of endangered trees that are highly threatened and insufficiently protected. In particular, 43.42% of unprotected tree species in priority areas lacked recommended conservation measures or had no associated conservation plan. The priority conservation areas and unprotected trees we identified serve as a guideline for future management underpinning the post-2020 global biodiversity framework.
Collapse
Affiliation(s)
- Yingying Zhu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu, P. R. China
| | - Xiaoting Xu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu, P. R. China
| | - Zhenxiang Xi
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu, P. R. China
| | - Jianquan Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
39
|
Ficetola GF, Taberlet P. Towards exhaustive community ecology via DNA metabarcoding. Mol Ecol 2023; 32:6320-6329. [PMID: 36762839 DOI: 10.1111/mec.16881] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Exhaustive biodiversity data, covering all the taxa in an environment, would be fundamental to understand how global changes influence organisms living at different trophic levels, and to evaluate impacts on interspecific interactions. Molecular approaches such as DNA metabarcoding are boosting our ability to perform biodiversity inventories. Nevertheless, even though a few studies have recently attempted exhaustive reconstructions of communities, holistic assessments remain rare. The majority of metabarcoding studies published in the last years used just one or two markers and analysed a limited number of taxonomic groups. Here, we provide an overview of emerging approaches that can allow all-taxa biological inventories. Exhaustive biodiversity assessments can be attempted by combining a large number of specific primers, by exploiting the power of universal primers, or by combining specific and universal primers to obtain good information on key taxa while limiting the overlooked biodiversity. Multiplexes of primers, shotgun sequencing and capture enrichment may provide a better coverage of biodiversity compared to standard metabarcoding, but still require major methodological advances. Here, we identify the strengths and limitations of different approaches, and suggest new development lines that might improve broad scale biodiversity analyses in the near future. More holistic reconstructions of ecological communities can greatly increase the value of metabarcoding studies, improving understanding of the consequences of ongoing environmental changes on the multiple components of biodiversity.
Collapse
Affiliation(s)
- Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Écologie Alpine, Grenoble, France
| | - Pierre Taberlet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Écologie Alpine, Grenoble, France
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| |
Collapse
|
40
|
Tang B, Roberts SM, Clark JS, Gelfand AE. Mechanistic modeling of climate effects on redistribution and population growth in a community of fish species. GLOBAL CHANGE BIOLOGY 2023; 29:6399-6414. [PMID: 37789712 DOI: 10.1111/gcb.16963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Understanding community responses to climate is critical for anticipating the future impacts of global change. However, despite increased research efforts in this field, models that explicitly include important biological mechanisms are lacking. Quantifying the potential impacts of climate change on species is complicated by the fact that the effects of climate variation may manifest at several points in the biological process. To this end, we extend a dynamic mechanistic model that combines population dynamics, such as species interactions, with species redistribution by allowing climate to affect both processes. We examine their relative contributions in an application to the changing biomass of a community of eight species in the Gulf of Maine using over 30 years of fisheries data from the Northeast Fishery Science Center. Our model suggests that the mechanisms driving biomass trends vary across space, time, and species. Phase space plots demonstrate that failing to account for the dynamic nature of the environmental and biologic system can yield theoretical estimates of population abundances that are not observed in empirical data. The stock assessments used by fisheries managers to set fishing targets and allocate quotas often ignore environmental effects. At the same time, research examining the effects of climate change on fish has largely focused on redistribution. Frameworks that combine multiple biological reactions to climate change are particularly necessary for marine researchers. This work is just one approach to modeling the complexity of natural systems and highlights the need to incorporate multiple and possibly interacting biological processes in future models.
Collapse
Affiliation(s)
- Becky Tang
- Department of Mathematics and Statistics, Middlebury College, Middlebury, Vermont, USA
- Department of Statistical Science, Duke University, Durham, North Carolina, USA
| | - Sarah M Roberts
- Department of Earth, Marine, and Environmental Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James S Clark
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Alan E Gelfand
- Department of Statistical Science, Duke University, Durham, North Carolina, USA
| |
Collapse
|
41
|
Chen J, Lewis OT. Experimental heatwaves facilitate invasion and alter species interactions and composition in a tropical host-parasitoid community. GLOBAL CHANGE BIOLOGY 2023; 29:6261-6275. [PMID: 37733768 DOI: 10.1111/gcb.16937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/22/2023] [Accepted: 08/13/2023] [Indexed: 09/23/2023]
Abstract
As mean temperatures increase and heatwaves become more frequent, species are expanding their distributions to colonise new habitats. The resulting novel species interactions will simultaneously shape the temperature-driven reorganization of resident communities. The interactive effects of climate change and climate change-facilitated invasion have rarely been studied in multi-trophic communities, and are likely to differ depending on the nature of the climatic driver (i.e., climate extremes or constant warming). We re-created under laboratory conditions a host-parasitoid community typical of high-elevation rainforest sites in Queensland, Australia, comprising four Drosophila species and two associated parasitoid species. We subjected these communities to an equivalent increase in average temperature in the form of periodic heatwaves or constant warming, in combination with an invasion treatment involving a novel host species from lower-elevation habitats. The two parasitoid species were sensitive to both warming and heatwaves, while the demographic responses of Drosophila species were highly idiosyncratic, reflecting the combined effects of thermal tolerance, parasitism, competition, and facilitation. After multiple generations, our heatwave treatment promoted the establishment of low-elevation species in upland communities. Invasion of the low-elevation species correlated negatively with the abundance of one of the parasitoid species, leading to cascading effects on its hosts and their competitors. Our study, therefore, reveals differing, sometimes contrasting, impacts of extreme temperatures and constant warming on community composition. It also highlights how the scale and direction of climate impacts could be further modified by invading species within a bi-trophic community network.
Collapse
Affiliation(s)
- Jinlin Chen
- Department of Biology, University of Oxford, Oxford, UK
| | - Owen T Lewis
- Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Xing K, Li H, Kong D, Chen C. Editorial: Plant responses to environmental stresses based on physiological and functional ecology. FRONTIERS IN PLANT SCIENCE 2023; 14:1290405. [PMID: 37885662 PMCID: PMC10599134 DOI: 10.3389/fpls.2023.1290405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Affiliation(s)
- Kaixiong Xing
- School of Life Science, Hainan Normal University, Haikou, China
| | - Hongbo Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Deliang Kong
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Chen Chen
- PostDoc Position of Laval University, Quebec City, QC, Canada
| |
Collapse
|
43
|
Ni M, Luo H, Xu H, Chu C, Fang S. High temperature can improve the performance of invasive plants by facilitating root growth. AMERICAN JOURNAL OF BOTANY 2023; 110:e16227. [PMID: 37561668 DOI: 10.1002/ajb2.16227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
PREMISE The ever-increasing temperatures of the Anthropocene may facilitate plant invasions. To date, studies of temperature effects on alien plants have mainly focused on aboveground plant traits but ignored belowground traits, which may confound predictions of plant invasion risks. METHODS The temperature effects on the root growth dynamics of two alien shrubs, invasive Mimosa sepiaria and naturalized Corchorus capsulari, were studied using a 3D, transparent growth system under five temperature treatments (day/night: 18°C/13°C to 34°C/29°C) that cover the present and future warming temperature scenarios in China. We measured root depth and width growth in response to temperature treatments over 84 days. We also investigated intra- and interspecific competition of paired plants of the two species grown together at the five temperatures. RESULTS Shoot growth of M. sepiaria and C. capsularis was optimal at the mid-range temperature. Root growth, however, was faster at the highest temperature (34°C/29°C) for M. sepiaria, but decreased for C. capsularis as temperatures increased. Root depth growth was more sensitive than root width for both species during neighbor competition. Compared to C. capsularis, M. sepiaria had relatively greater advantage during intra- and interspecific competition with increasing temperature, possibly because of its better root growth at high temperatures. CONCLUSIONS These results suggest that temperature increases can improve the performance of some alien plants by facilitating width and depth growth of their roots. This enhancement requires serious attention when managing and predicting invasion risk.
Collapse
Affiliation(s)
- Ming Ni
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongxia Luo
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Han Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Chengjin Chu
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Suqin Fang
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Geldart EA, Love OP, Barnas AF, Harris CM, Gilchrist HG, Semeniuk CAD. A colonial-nesting seabird shows limited heart rate responses to natural variation in threats of polar bears. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221108. [PMID: 37800157 PMCID: PMC10548096 DOI: 10.1098/rsos.221108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
Several predator-prey systems are in flux as an indirect result of climate change. In the Arctic, earlier sea-ice loss is driving polar bears (Ursus maritimus) onto land when many colonial nesting seabirds are breeding. The result is a higher threat of nest predation for birds with potential limited ability to respond. We quantified heart rate change in a large common eider (Somateria mollissima) breeding colony in the Canadian Arctic to explore their adaptive capacity to keep pace with the increasing risk of egg predation by polar bears. Eiders displayed on average higher heart rates from baseline when polar bears were within their field of view. Moreover, eiders were insensitive to variation in the distance bears were to their nests, but exhibited mild bradycardia (lowered heart rate) the longer the eider was exposed to the bear given the hen's visibility. Results indicate that a limited ability to assess the risks posed by polar bears may result in long-term fitness consequences for eiders from the increasing frequency in interactions with this predator.
Collapse
Affiliation(s)
- Erica A. Geldart
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Oliver P. Love
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Andrew F. Barnas
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | | | - H. Grant Gilchrist
- National Wildlife Research Center, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Christina A. D. Semeniuk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
45
|
Albecker MA, Strobel SM, Womack MC. Developmental Plasticity in Anurans: Meta-analysis Reveals Effects of Larval Environments on Size at Metamorphosis And Timing of Metamorphosis. Integr Comp Biol 2023; 63:714-729. [PMID: 37279893 DOI: 10.1093/icb/icad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Many anuran amphibians (frogs and toads) rely on aquatic habitats during their larval stage. The quality of this environment can significantly impact lifetime fitness and population dynamics. Over 450 studies have been published on environmental impacts on anuran developmental plasticity, yet we lack a synthesis of these effects across different environments. We conducted a meta-analysis and used a comparative approach to understand whether developmental plasticity in response to different larval environments produces predictable changes in metamorphic phenotypes. We analyzed data from 124 studies spanning 80 anuran species and six larval environments and showed that intraspecific variation in mass at metamorphosis and the duration of the larval period is partly explained by the type of environment experienced during the larval period. Changes in larval environments tended to reduce mass at metamorphosis relative to control conditions, with the degree of change depending on the identity and severity of environmental change. Higher temperatures and lower water levels shortened the duration of the larval period, whereas less food and higher densities increased the duration of the larval period. Phylogenetic relationships among species were not associated with interspecific variation in mass at metamorphosis plasticity or duration of the larval period plasticity. Our results provide a foundation for future studies on developmental plasticity, especially in response to global changes. This study provides motivation for additional work that links developmental plasticity with fitness consequences within and across life stages, as well as how the outcomes described here are altered in compounding environments.
Collapse
Affiliation(s)
- Molly A Albecker
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd, Houston Texas, 77004, USA
- Department of Biology, Utah State University, Logan Utah, 84322, USA
| | | | - Molly C Womack
- Department of Biology, Utah State University, Logan Utah, 84322, USA
| |
Collapse
|
46
|
Thompson PL, Nephin J, Davies SC, Park AE, Lyons DA, Rooper CN, Angelica Peña M, Christian JR, Hunter KL, Rubidge E, Holdsworth AM. Groundfish biodiversity change in northeastern Pacific waters under projected warming and deoxygenation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220191. [PMID: 37246387 DOI: 10.1098/rstb.2022.0191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/11/2023] [Indexed: 05/30/2023] Open
Abstract
In the coming decades, warming and deoxygenation of marine waters are anticipated to result in shifts in the distribution and abundance of fishes, with consequences for the diversity and composition of fish communities. Here, we combine fisheries-independent trawl survey data spanning the west coast of the USA and Canada with high-resolution regional ocean models to make projections of how 34 groundfish species will be impacted by changes in temperature and oxygen in British Columbia (BC) and Washington. In this region, species that are projected to decrease in occurrence are roughly balanced by those that are projected to increase, resulting in considerable compositional turnover. Many, but not all, species are projected to shift to deeper depths as conditions warm, but low oxygen will limit how deep they can go. Thus, biodiversity will likely decrease in the shallowest waters (less than 100 m), where warming will be greatest, increase at mid-depths (100-600 m) as shallow species shift deeper, and decrease at depths where oxygen is limited (greater than 600 m). These results highlight the critical importance of accounting for the joint role of temperature, oxygen and depth when projecting the impacts of climate change on marine biodiversity. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Patrick L Thompson
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada V8L 5T5
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jessica Nephin
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada V8L 5T5
| | - Sarah C Davies
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada V9T 6N7
| | - Ashley E Park
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada V8L 5T5
| | - Devin A Lyons
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada B2Y 4A2
| | - Christopher N Rooper
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada V9T 6N7
| | - M Angelica Peña
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada V8L 5T5
| | - James R Christian
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada V8L 5T5
| | - Karen L Hunter
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada V9T 6N7
| | - Emily Rubidge
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada V8L 5T5
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Amber M Holdsworth
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada V8L 5T5
| |
Collapse
|
47
|
Cruz AR, Davidowitz G, Moore CM, Bronstein JL. Mutualisms in a warming world. Ecol Lett 2023. [PMID: 37303268 DOI: 10.1111/ele.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
Predicting the impacts of global warming on mutualisms poses a significant challenge given the functional and life history differences that usually exist among interacting species. However, this is a critical endeavour since virtually all species on Earth depend on other species for survival and/or reproduction. The field of thermal ecology can provide physiological and mechanistic insights, as well as quantitative tools, for addressing this challenge. Here, we develop a conceptual and quantitative framework that connects thermal physiology to species' traits, species' traits to interacting mutualists' traits and interacting traits to the mutualism. We first identify the functioning of reciprocal mutualism-relevant traits in diverse systems as the key temperature-dependent mechanisms driving the interaction. We then develop metrics that measure the thermal performance of interacting mutualists' traits and that approximate the thermal performance of the mutualism itself. This integrated approach allows us to additionally examine how warming might interact with resource/nutrient availability and affect mutualistic species' associations across space and time. We offer this framework as a synthesis of convergent and critical issues in mutualism science in a changing world, and as a baseline to which other ecological complexities and scales might be added.
Collapse
Affiliation(s)
- Austin R Cruz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
| | - Goggy Davidowitz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| | | | - Judith L Bronstein
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
48
|
Wilson EC, Cousins S, Etter DR, Humphreys JM, Roloff GJ, Carter NH. Habitat and climatic associations of climate-sensitive species along a southern range boundary. Ecol Evol 2023; 13:e10083. [PMID: 37214615 PMCID: PMC10191803 DOI: 10.1002/ece3.10083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Climate change and habitat loss are recognized as important drivers of shifts in wildlife species' geographic distributions. While often considered independently, there is considerable overlap between these drivers, and understanding how they contribute to range shifts can predict future species assemblages and inform effective management. Our objective was to evaluate the impacts of habitat, climatic, and anthropogenic effects on the distributions of climate-sensitive vertebrates along a southern range boundary in Northern Michigan, USA. We combined multiple sources of occurrence data, including harvest and citizen-science data, then used hierarchical Bayesian spatial models to determine habitat and climatic associations for four climate-sensitive vertebrate species (American marten [Martes americana], snowshoe hare [Lepus americanus], ruffed grouse [Bonasa umbellus] and moose [Alces alces]). We used total basal area of at-risk forest types to represent habitat, and temperature and winter habitat indices to represent climate. Marten associated with upland spruce-fir and lowland riparian forest types, hares with lowland conifer and aspen-birch, grouse with lowland riparian hardwoods, and moose with upland spruce-fir. Species differed in climatic drivers with hares positively associated with cooler annual temperatures, moose with cooler summer temperatures and grouse with colder winter temperatures. Contrary to expectations, temperature variables outperformed winter habitat indices. Model performance varied greatly among species, as did predicted distributions along the southern edge of the Northwoods region. As multiple species were associated with lowland riparian and upland spruce-fir habitats, these results provide potential for efficient prioritization of habitat management. Both direct and indirect effects from climate change are likely to impact the distribution of climate-sensitive species in the future and the use of multiple data types and sources in the modelling of species distributions can result in more accurate predictions resulting in improved management at policy-relevant scales.
Collapse
Affiliation(s)
- Evan C. Wilson
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Stella Cousins
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | | | - John M. Humphreys
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichiganUSA
- United States Department of Agriculture, Agricultural Research ServiceSidneyMontanaUSA
| | - Gary J. Roloff
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichiganUSA
| | - Neil H. Carter
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
49
|
Whalen MA, Starko S, Lindstrom SC, Martone PT. Heatwave restructures marine intertidal communities across a stress gradient. Ecology 2023; 104:e4027. [PMID: 36897574 DOI: 10.1002/ecy.4027] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Significant questions remain about how ecosystems that are structured by abiotic stress will be affected by climate change. Warmer temperatures are hypothesized to shift species along abiotic gradients such that distributions track changing environments where physical conditions allow. However, community-scale impacts of extreme warming in heterogeneous landscapes are likely to be more complex. We investigated the impacts of a multiyear marine heatwave on intertidal community dynamics and zonation on a wave-swept rocky coastline along the Central Coast of British Columbia, Canada. Leveraging an 8-year time series with high seaweed taxonomic resolution (116 taxa) that was established 3 years prior to the heatwave, we document major shifts in zonation and abundance of populations that led to substantial reorganization at the community level. The heatwave was associated with shifts in primary production away from upper elevations through declines in seaweed cover and partial replacement by invertebrates. At low elevations, seaweed cover remained stable or recovered rapidly following decline, being balanced by increases in some species and decreases in others. These results illustrate that, rather than shifting community zonation uniformly along abiotic stress gradients, intense and lasting warming events may restructure patterns of ecological dominance and reduce total habitability of ecosystems, especially at extreme ends of pre-existing abiotic gradients.
Collapse
Affiliation(s)
- Matthew A Whalen
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC, Canada
| | - Samuel Starko
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- UWA Ocean Institute and School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Sandra C Lindstrom
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC, Canada
| | - Patrick T Martone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC, Canada
| |
Collapse
|
50
|
Ferrari G, Scaravelli D, Mustoni A, Armanini M, Zibordi F, Devineau O, Cagnacci F, Grasso DA, Ossi F. A Comparison of Small Rodent Assemblages after a 20 Year Interval in the Alps. Animals (Basel) 2023; 13:ani13081407. [PMID: 37106970 PMCID: PMC10135415 DOI: 10.3390/ani13081407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Human-induced environmental alterations in the Alps may importantly affect small mammal species, but evidence in this sense is limited. We live-trapped small rodents in the Central-Eastern Italian Alps in three close-by habitat types (rocky scree, alpine grassland, and heath) at 2100 m a.s.l. during summer-fall, in 1997 and 2016. We compared small rodent assemblages through a Redundancy Detrended Analysis (RDA). In both surveys, we detected two specialist species, i.e., the common vole (Microtus arvalis) and the snow vole (Chionomys nivalis), and, unexpectedly, the forest generalist bank vole (Myodes glareolus). In 1997, grassland was mainly occupied by the common vole, while the bank vole and the snow vole were sympatric in the other habitats. In 2016, the snow vole was detected only in the scree, while other species did not show distribution changes. We discuss a series of hypotheses that might have driven the differences observed across decades, among which is a species-specific response to abiotic and biotic environmental alterations, with the alpine habitat specialist moving out of sub-optimal habitats. We encourage further research on this topic, e.g., via long-term longitudinal studies.
Collapse
Affiliation(s)
- Giulia Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
- Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Evenstad, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
- Research and Innovation Centre, Edmund Mach Foundation, Via Mach 1, 38098 San Michele all'Adige, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Dino Scaravelli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Andrea Mustoni
- Research and Environmental Education, Adamello Brenta Nature Park, Via Nazionale 24, 38080 Strembo, Italy
| | - Marco Armanini
- Research and Environmental Education, Adamello Brenta Nature Park, Via Nazionale 24, 38080 Strembo, Italy
| | | | - Olivier Devineau
- Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Evenstad, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
| | - Francesca Cagnacci
- Research and Innovation Centre, Edmund Mach Foundation, Via Mach 1, 38098 San Michele all'Adige, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Donato A Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Federico Ossi
- Research and Innovation Centre, Edmund Mach Foundation, Via Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|