1
|
Lyu J, Narum DE, Baldwin SL, Larsen SE, Bai X, Griffith DE, Dartois V, Naidoo T, Steyn AJC, Coler RN, Chan ED. Understanding the development of tuberculous granulomas: insights into host protection and pathogenesis, a review in humans and animals. Front Immunol 2024; 15:1427559. [PMID: 39717773 PMCID: PMC11663721 DOI: 10.3389/fimmu.2024.1427559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Granulomas, organized aggregates of immune cells which form in response to Mycobacterium tuberculosis (Mtb), are characteristic but not exclusive of tuberculosis (TB). Despite existing investigations on TB granulomas, the determinants that differentiate host-protective granulomas from granulomas that contribute to TB pathogenesis are often disputed. Thus, the goal of this narrative review is to help clarify the existing literature on such determinants. We adopt the a priori view that TB granulomas are host-protective organelles and discuss the molecular and cellular determinants that induce protective granulomas and those that promote their failure. While reports about protective TB granulomas and their failure may initially seem contradictory, it is increasingly recognized that either deficiencies or excesses of the molecular and cellular components in TB granuloma formation may be detrimental to the host. More specifically, insufficient or excessive expression/representation of the following components have been reported to skew granulomas toward the less protective phenotype: (i) epithelioid macrophages; (ii) type 1 adaptive immune response; (iii) type 2 adaptive immune response; (iv) tumor necrosis factor; (v) interleukin-12; (vi) interleukin-17; (vii) matrix metalloproteinases; (viii) hypoxia in the TB granulomas; (ix) hypoxia inducible factor-1 alpha; (x) aerobic glycolysis; (xi) indoleamine 2,3-dioxygenase activity; (xii) heme oxygenase-1 activity; (xiii) immune checkpoint; (xiv) leukotriene A4 hydrolase activity; (xv) nuclear-factor-kappa B; and (xvi) transforming growth factor-beta. Rather, more precise and timely coordinated immune responses appear essential for eradication or containment of Mtb infection. Since there are several animal models of infection with Mtb, other species within the Mtb complex, and the surrogate Mycobacterium marinum - whether natural (cattle, elephants) or experimental (zebrafish, mouse, guinea pig, rabbit, mini pig, goat, non-human primate) infections - we also compared the TB granulomatous response and other pathologic lung lesions in various animals infected with one of these mycobacteria with that of human pulmonary TB. Identifying components that dictate the formation of host-protective granulomas and the circumstances that result in their failure can enhance our understanding of the macrocosm of human TB and facilitate the development of novel remedies - whether they be direct therapeutics or indirect interventions - to efficiently eliminate Mtb infection and prevent its pathologic sequelae.
Collapse
Affiliation(s)
- Jiwon Lyu
- Division of Pulmonary and Critical Medicine, Soon Chun Hyang University Cheonan Hospital, Seoul, Republic of Korea
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Drew E. Narum
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Susan L. Baldwin
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Sasha E. Larsen
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Xiyuan Bai
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - David E. Griffith
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Threnesan Naidoo
- Departments of Forensic & Legal Medicine and Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rhea N. Coler
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Edward D. Chan
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
2
|
Alymenko MA, Kolchanova NE, Valiev RS, Valiev NR, Balobanova NP, Gavrilyuk EV, Polonikov AV, Kolomietz VM, Mal GS, Ragulina VA, Safono YA. Association of polymorphism of the glutathione-s-transferase M1 gene and tumor necrosis factor alpha with the formation and size of decay cavities in patients with pulmonary tuberculosis. HIV INFECTION AND IMMUNOSUPPRESSIVE DISORDERS 2024; 16:78-84. [DOI: 10.22328/2077-9828-2024-16-2-78-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The aim. To study the association of polymorphic variants of the GSTM1 (E/D) and TNF-s (308G>A (rs1800629) genes with the formation of decay cavity sizes in patients with pulmonary tuberculosis.Material and methods. The study group is represented by 335 patients suffering from pulmonary tuberculosis (212 people were diagnosed with pulmonary tuberculosis for the first time; 123 people with chronic pulmonary tuberculosis) aged 18 to 65 years; receiving an intensive phase of chemotherapy. To conduct molecular genetic studies; 335 people had whole blood taken from a vein into a test tube with EDTA. Genomic DNA was isolated using Arrow Blood DNA 500 reagent kits from whole blood (at the NorDiag Arrow station). After; the polymerase chain reaction was staged in real time using sets of reagents for genotyping SNPs: GSTM1 (E/D) and TNF-s (–308G>A (rs1800629).Results and discussion. In patients with pulmonary tuberculosis; the genotype DD of the gene GSTM1 (E/D) and the genotype GG of the gene TNF-s –308G>A (rs1800629) is most often associated with the formation of the size of decay cavities.Conclusion. It is advisable to introduce genotyping of the GSTM1 and TNF-s genes into the practice of a phthisiologist in order to predict the probability of the formation of the size of decay cavities in patients with pulmonary tuberculosis.
Collapse
Affiliation(s)
- M. A. Alymenko
- University «Synergy»;
Kazan State Medical Academy — branch of the institution of Additional Professional Education of the Russian Medical Academy of Continuing Professional Education
| | | | - R. Sh. Valiev
- Kazan State Medical Academy — branch of the institution of Additional Professional Education of the Russian Medical Academy of Continuing Professional Education
| | - N. R. Valiev
- Kazan State Medical Academy — branch of the institution of Additional Professional Education of the Russian Medical Academy of Continuing Professional Education
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Koyuncu D, Tavolara T, Gatti DM, Gower AC, Ginese ML, Kramnik I, Yener B, Sajjad U, Niazi MKK, Gurcan M, Alsharaydeh A, Beamer G. B cells in perivascular and peribronchiolar granuloma-associated lymphoid tissue and B-cell signatures identify asymptomatic Mycobacterium tuberculosis lung infection in Diversity Outbred mice. Infect Immun 2024; 92:e0026323. [PMID: 38899881 PMCID: PMC11238564 DOI: 10.1128/iai.00263-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/09/2024] [Indexed: 06/21/2024] Open
Abstract
Because most humans resist Mycobacterium tuberculosis infection, there is a paucity of lung samples to study. To address this gap, we infected Diversity Outbred mice with M. tuberculosis and studied the lungs of mice in different disease states. After a low-dose aerosol infection, progressors succumbed to acute, inflammatory lung disease within 60 days, while controllers maintained asymptomatic infection for at least 60 days, and then developed chronic pulmonary tuberculosis (TB) lasting months to more than 1 year. Here, we identified features of asymptomatic M. tuberculosis infection by applying computational and statistical approaches to multimodal data sets. Cytokines and anti-M. tuberculosis cell wall antibodies discriminated progressors vs controllers with chronic pulmonary TB but could not classify mice with asymptomatic infection. However, a novel deep-learning neural network trained on lung granuloma images was able to accurately classify asymptomatically infected lungs vs acute pulmonary TB in progressors vs chronic pulmonary TB in controllers, and discrimination was based on perivascular and peribronchiolar lymphocytes. Because the discriminatory lesion was rich in lymphocytes and CD4 T cell-mediated immunity is required for resistance, we expected CD4 T-cell genes would be elevated in asymptomatic infection. However, the significantly different, highly expressed genes were from B-cell pathways (e.g., Bank1, Cd19, Cd79, Fcmr, Ms4a1, Pax5, and H2-Ob), and CD20+ B cells were enriched in the perivascular and peribronchiolar regions of mice with asymptomatic M. tuberculosis infection. Together, these results indicate that genetically controlled B-cell responses are important for establishing asymptomatic M. tuberculosis lung infection.
Collapse
Affiliation(s)
- Deniz Koyuncu
- Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Thomas Tavolara
- Wake Forest University, School of Medicine, Winston Salem, North Carolina, USA
| | | | - Adam C. Gower
- Boston University Clinical and Translational Science Institute, Boston, Massachusetts, USA
| | - Melanie L. Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Igor Kramnik
- NIEDL, Boston University, Boston, Massachusetts, USA
| | - Bülent Yener
- Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Usama Sajjad
- Wake Forest University, School of Medicine, Winston Salem, North Carolina, USA
| | | | - Metin Gurcan
- Wake Forest University, School of Medicine, Winston Salem, North Carolina, USA
| | | | - Gillian Beamer
- Aiforia Inc., Cambridge, Massachusetts, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
4
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi MKK, Tavolara T, Gower A, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins KL, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. PLoS Pathog 2024; 20:e1011915. [PMID: 38861581 PMCID: PMC11195971 DOI: 10.1371/journal.ppat.1011915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/24/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024] Open
Abstract
Mycobacterium tuberculosis infects two billion people across the globe, and results in 8-9 million new tuberculosis (TB) cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. Here, we investigate the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using immune and inflammatory mediators; and clinical, microbiological, and granuloma correlates of disease identified five new loci on mouse chromosomes 1, 2, 4, 16; and three known loci on chromosomes 3 and 17. Further, multiple positively correlated traits shared loci on chromosomes 1, 16, and 17 and had similar patterns of allele effects, suggesting these loci contain critical genetic regulators of inflammatory responses to M. tuberculosis. To narrow the list of candidate genes, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks to generate scores representing functional relationships. The scores were used to rank candidates for each mapped trait, resulting in 11 candidate genes: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Although all candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling, and all contain single nucleotide polymorphisms (SNPs), SNPs in only four genes (S100a8, Itgb5, Fstl1, Zfp318) are predicted to have deleterious effects on protein functions. We performed methodological and candidate validations to (i) assess biological relevance of predicted allele effects by showing that Diversity Outbred mice carrying PWK/PhJ alleles at the H-2 locus on chromosome 17 QTL have shorter survival; (ii) confirm accuracy of predicted allele effects by quantifying S100A8 protein in inbred founder strains; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this body of work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and functionally relevant gene candidates that may be major regulators of complex host-pathogens interactions contributing to granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- Daniel M. Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Anna L. Tyler
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Bulent Yener
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Deniz Koyuncu
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Metin N. Gurcan
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - MK Khalid Niazi
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Thomas Tavolara
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Adam Gower
- Clinical and Translational Science Institute, Boston University, Boston, Massachusetts, United States of America
| | - Denise Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Emily McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Melanie L. Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Aubrey Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Anas Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Philipe A. Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - Sherry L. Kurtz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Karen L. Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Gillian Beamer
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
5
|
Alemayehu A, Wassie L, Neway S, Ayele S, Assefa A, Bobosha K, Petros B, Howe R. Clinical and Imaging Characteristics of Smear Negative Pulmonary Tuberculosis Patients: A Comparative Study. Pulm Med 2024; 2024:2182088. [PMID: 38487406 PMCID: PMC10937078 DOI: 10.1155/2024/2182088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/28/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Background Prevalence surveys in Ethiopia indicate smear negative pulmonary tuberculosis (SNPTB) taking the major share of the overall TB burden. It has also been a diagnostic dilemma worldwide leading to diagnostic delays and difficulty in monitoring treatment outcomes. This study determines and compares the clinical and imaging findings in SNPTB and smear positive PTB (SPPTB). Methodology. A case-control study was conducted on 313 PTB (173 SNPTB) patients. Data and sputum samples were collected from consented patients. Smear microscopy, GeneXpert, and culture analyses were performed on sputum samples. Data were analyzed using Stata version 17; a P value < 0.05 was considered statistically significant. Results Of the 173 SNPTB patients, 42% were culture positive with discordances between test results reported by health facilities and Armauer Hansen Research Institute laboratory using concentrated smear microscopy. A previous history of TB and fewer cavitary lesions were significantly associated with SNPTB. Conclusions Though overall clinical presentations of SNPTB patients resemble those seen in SPPTB patients, a prior history of TB was strongly associated with SNPTB. Subject to further investigations, the relatively higher discrepancies seen in TB diagnoses reflect the posed diagnostic challenges in SNPTB patients, as a higher proportion of these patients are also seen in Ethiopia.
Collapse
Affiliation(s)
- Alem Alemayehu
- College of Natural and Computational Sciences, Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute (AHRI), P.O. Box 1005, Addis Ababa, Ethiopia
- College of Health and Medical Sciences, School of Medical Laboratory Science, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Liya Wassie
- Armauer Hansen Research Institute (AHRI), P.O. Box 1005, Addis Ababa, Ethiopia
| | - Sebsib Neway
- Armauer Hansen Research Institute (AHRI), P.O. Box 1005, Addis Ababa, Ethiopia
| | - Samuel Ayele
- Armauer Hansen Research Institute (AHRI), P.O. Box 1005, Addis Ababa, Ethiopia
| | - Abraham Assefa
- Armauer Hansen Research Institute (AHRI), P.O. Box 1005, Addis Ababa, Ethiopia
| | - Kidist Bobosha
- Armauer Hansen Research Institute (AHRI), P.O. Box 1005, Addis Ababa, Ethiopia
| | - Beyene Petros
- College of Natural and Computational Sciences, Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Armauer Hansen Research Institute (AHRI), P.O. Box 1005, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi M, Tavolara T, Gower AC, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins K, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572738. [PMID: 38187647 PMCID: PMC10769337 DOI: 10.1101/2023.12.21.572738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mycobacterium tuberculosis, the bacillus that causes tuberculosis (TB), infects 2 billion people across the globe, and results in 8-9 million new TB cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. We investigated the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using clinical indicators of disease, granuloma histopathological features, and immune response traits identified five new loci on mouse chromosomes 1, 2, 4, 16 and three previously identified loci on chromosomes 3 and 17. Quantitative trait loci (QTLs) on chromosomes 1, 16, and 17, associated with multiple correlated traits and had similar patterns of allele effects, suggesting these QTLs contain important genetic regulators of responses to M. tuberculosis. To narrow the list of candidate genes in QTLs, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks, generating functional scores. The scores were then used to rank candidates for each mapped trait in each locus, resulting in 11 candidates: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Importantly, all 11 candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling. Further, all candidates contain single nucleotide polymorphisms (SNPs), and some but not all SNPs were predicted to have deleterious consequences on protein functions. Multiple methods were used for validation including (i) a statistical method that showed Diversity Outbred mice carrying PWH/PhJ alleles on chromosome 17 QTL have shorter survival; (ii) quantification of S100A8 protein levels, confirming predicted allele effects; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and new functionally relevant gene candidates that may be major regulators of granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- D M Gatti
- The Jackson Laboratory, Bar Harbor, ME
| | - A L Tyler
- The Jackson Laboratory, Bar Harbor, ME
| | | | | | - B Yener
- Rensselaer Polytechnic Institute, Troy, NY
| | - D Koyuncu
- Rensselaer Polytechnic Institute, Troy, NY
| | - M N Gurcan
- Wake Forest University School of Medicine, Winston Salem, NC
| | - Mkk Niazi
- Wake Forest University School of Medicine, Winston Salem, NC
| | - T Tavolara
- Wake Forest University School of Medicine, Winston Salem, NC
| | - A C Gower
- Clinical and Translational Science Institute, Boston University, Boston, MA
| | - D Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - E McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - M L Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, TX
| | - P A Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - S L Kurtz
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - K Elkins
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - I Kramnik
- NIEDL, Boston University, Boston, MA
| | - G Beamer
- Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
7
|
Hunter L, Ruedas-Torres I, Agulló-Ros I, Rayner E, Salguero FJ. Comparative pathology of experimental pulmonary tuberculosis in animal models. Front Vet Sci 2023; 10:1264833. [PMID: 37901102 PMCID: PMC10602689 DOI: 10.3389/fvets.2023.1264833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Research in human tuberculosis (TB) is limited by the availability of human tissues from patients, which is often altered by therapy and treatment. Thus, the use of animal models is a key tool in increasing our understanding of the pathogenesis, disease progression and preclinical evaluation of new therapies and vaccines. The granuloma is the hallmark lesion of pulmonary tuberculosis, regardless of the species or animal model used. Although animal models may not fully replicate all the histopathological characteristics observed in natural, human TB disease, each one brings its own attributes which enable researchers to answer specific questions regarding TB immunopathogenesis. This review delves into the pulmonary pathology induced by Mycobacterium tuberculosis complex (MTBC) bacteria in different animal models (non-human primates, rodents, guinea pigs, rabbits, cattle, goats, and others) and compares how they relate to the pulmonary disease described in humans. Although the described models have demonstrated some histopathological features in common with human pulmonary TB, these data should be considered carefully in the context of this disease. Further research is necessary to establish the most appropriate model for the study of TB, and to carry out a standard characterisation and score of pulmonary lesions.
Collapse
Affiliation(s)
- Laura Hunter
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Inés Ruedas-Torres
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus, Córdoba, Spain
| | - Irene Agulló-Ros
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus, Córdoba, Spain
| | - Emma Rayner
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Francisco J. Salguero
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| |
Collapse
|
8
|
Cleverley TL, Peddineni S, Guarner J, Cingolani F, Garcia PK, Koehler H, Mocarski ES, Kalman D. The host-directed therapeutic imatinib mesylate accelerates immune responses to Mycobacterium marinum infection and limits pathology associated with granulomas. PLoS Pathog 2023; 19:e1011387. [PMID: 37200402 PMCID: PMC10231790 DOI: 10.1371/journal.ppat.1011387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/31/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Infections caused by members of the mycobacterium tuberculosis complex [MTC] and nontuberculous mycobacteria [NTM] can induce widespread morbidity and mortality in people. Mycobacterial infections cause both a delayed immune response, which limits rate of bacterial clearance, and formation of granulomas, which contain bacterial spread, but also contribute to lung damage, fibrosis, and morbidity. Granulomas also limit access of antibiotics to bacteria, which may facilitate development of resistance. Bacteria resistant to some or all antibiotics cause significant morbidity and mortality, and newly developed antibiotics readily engender resistance, highlighting the need for new therapeutic approaches. Imatinib mesylate, a cancer drug used to treat chronic myelogenous leukemia [CML] that targets Abl and related tyrosine kinases, is a possible host-directed therapeutic [HDT] for mycobacterial infections, including those causing TB. Here, we use the murine Mycobacterium marinum [Mm] infection model, which induces granulomatous tail lesions. Based on histological measurements, imatinib reduces both lesion size and inflammation of surrounding tissue. Transcriptomic analysis of tail lesions indicates that imatinib induces gene signatures indicative of immune activation and regulation at early time points post infection that resemble those seen at later ones, suggesting that imatinib accelerates but does not substantially alter anti-mycobacterial immune responses. Imatinib likewise induces signatures associated with cell death and promotes survival of bone marrow-derived macrophages [BMDMs] in culture following infection with Mm. Notably, the capacity of imatinib to limit formation and growth of granulomas in vivo and to promote survival of BMDMs in vitro depends upon caspase 8, a key regulator of cell survival and death. These data provide evidence for the utility of imatinib as an HDT for mycobacterial infections in accelerating and regulating immune responses, and limiting pathology associated with granulomas, which may mitigate post-treatment morbidity.
Collapse
Affiliation(s)
- Tesia L. Cleverley
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Immunology and Molecular Pathogenesis Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Siri Peddineni
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeannette Guarner
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Francesca Cingolani
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Pamela K. Garcia
- Immunology and Molecular Pathogenesis Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Heather Koehler
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Edward S. Mocarski
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
9
|
Pulmonary Granuloma Is Not Always the Tuberculosis Hallmark: Pathology of Tuberculosis Stages in New World and Old World Monkeys Naturally Infected with the Mycobacterium tuberculosis Complex. J Comp Pathol 2022; 199:55-74. [DOI: 10.1016/j.jcpa.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
|
10
|
Alymenko MA, Valiev RS, Valiev NR, Polonikov AV, Tragira IN, Sheenkov NV. Association of Polymorphic Gene Variants of Xenobiotic Biotransformation Enzymes with Lung Tissue Destruction in Tuberculosis Patients. TUBERCULOSIS AND LUNG DISEASES 2022; 100:25-30. [DOI: 10.21292/2075-1230-2022-100-8-25-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The objective: to investigate the association of polymorphic gene variants of xenobiotic biotransformation enzymes (NAT2, CYP2E1, ABCB1, GSTM1, GSTT1) and cytokines (IL1B, IL-4, IL-10, TNF) with lung tissue destruction in pulmonary tuberculosis patients.Subjects and Methods. An ethnically homogeneous population sample of unrelated individuals of Slavic nationalities (mainly Russians) living in Kursk Oblast suffering from new pulmonary tuberculosis was examined.Results. New pulmonary tuberculosis with no destructive changes in the lungs was associated with the EE genotype of the GSTM1 gene (p < 0.0001) in 89.5%, while the DD genotype of the GSTM1 gene (p < 0.0001) was associated with the presence of destructive changes in the lungs in 56.1% of cases; the dominant GG genotype of the TNF-α gene was associated with destructive changes in the lungs in 93.3% (p = 0.027), and the recessive GA genotype of the TNF-α gene was associated with no destructive changes in the lungs in 71.9% (p = 0.027).
Collapse
Affiliation(s)
- M. A. Alymenko
- Kazan State Medical Academy, Branch of Russian Medical Academy of Continuing Professional Education
| | - R. Sh. Valiev
- Kazan State Medical Academy, Branch of Russian Medical Academy of Continuing Professional Education
| | - N. R. Valiev
- Kazan State Medical Academy, Branch of Russian Medical Academy of Continuing Professional Education
| | - A. V. Polonikov
- Research Institute of Genetic and Molecular Epidemiology, Kursk State Medical University
| | - I. N. Tragira
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases
| | - N. V. Sheenkov
- The Gamaleya National Center of Epidemiology and Microbiology
| |
Collapse
|
11
|
Borbora SM, Rajmani RS, Balaji KN. PRMT5 epigenetically regulates the E3 ubiquitin ligase ITCH to influence lipid accumulation during mycobacterial infection. PLoS Pathog 2022; 18:e1010095. [PMID: 35658060 PMCID: PMC9200362 DOI: 10.1371/journal.ppat.1010095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/15/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), triggers enhanced accumulation of lipids to generate foamy macrophages (FMs). This process has been often attributed to the surge in the expression of lipid influx genes with a concomitant decrease in those involved in lipid efflux. Here, we define an Mtb-orchestrated modulation of the ubiquitination of lipid accumulation markers to enhance lipid accretion during infection. We find that Mtb infection represses the expression of the E3 ubiquitin ligase, ITCH, resulting in the sustenance of key lipid accrual molecules viz. ADRP and CD36, that are otherwise targeted by ITCH for proteasomal degradation. In line, overexpressing ITCH in Mtb-infected cells was found to suppress Mtb-induced lipid accumulation. Molecular analyses including loss-of-function and ChIP assays demonstrated a role for the concerted action of the transcription factor YY1 and the arginine methyl transferase PRMT5 in restricting the expression of Itch gene by conferring repressive symmetrical H4R3me2 marks on its promoter. Consequently, siRNA-mediated depletion of YY1 or PRMT5 rescued ITCH expression, thereby compromising the levels of Mtb-induced ADRP and CD36 and limiting FM formation during infection. Accumulation of lipids within the host has been implicated as a pro-mycobacterial process that aids in pathogen persistence and dormancy. In line, we found that perturbation of PRMT5 enzyme activity resulted in compromised lipid levels and reduced mycobacterial survival in mouse peritoneal macrophages (ex vivo) and in a therapeutic mouse model of TB infection (in vivo). These findings provide new insights into the role of PRMT5 and YY1 in augmenting mycobacterial pathogenesis. Thus, we posit that our observations could help design novel adjunct therapies and combinatorial drug regimen for effective anti-TB strategies. Mycobacterium tuberculosis infection leads to the formation of lipid-laden cells (foamy macrophages-FMs) that offer a favorable shelter for its persistence. During infection, we observe a significant reduction in the expression of the E3 ubiquitin ligase, ITCH. This repression allows the sustenance of key lipid accretion molecules (ADRP and CD36), by curbing their proteasomal degradation. Further, we show the repression of ITCH to be dependent on the concerted action of the bifunctional transcription factor, YY1 and the arginine methyl transferase, PRMT5. NOTCH signaling pathway was identified as a master-regulator of YY1 expression. In vitro and in vivo analyses revealed the significance of PRMT5 in regulating FM formation and consequently mycobacterial burden.
Collapse
Affiliation(s)
- Salik Miskat Borbora
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raju S. Rajmani
- Center for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
12
|
Nishiuchi Y, Tateishi Y, Hirano H, Ozeki Y, Yamaguchi T, Miki M, Kitada S, Maruyama F, Matsumoto S. Direct Attachment with Erythrocytes Augments Extracellular Growth of Pathogenic Mycobacteria. Microbiol Spectr 2022; 10:e0245421. [PMID: 35293805 PMCID: PMC9045221 DOI: 10.1128/spectrum.02454-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Pathogenic intracellular mycobacteria, such as Mycobacterium tuberculosis and Mycobacterium avium, which cause lung diseases, can grow in macrophages. Extracellular mycobacteria have been reported in the lungs, blood, and sputum of patients, indicating the involvement of these pathogens in disease progression. Erythrocytes are involved in the symptoms associated with pulmonary mycobacterial diseases, such as bloody sputum and hemoptysis; however, little attention has been paid to the role of erythrocytes in mycobacterial diseases. Herein, we found that Mycobacterium avium subsp. hominissuis (MAH) and Mycobacterium intracellulare colocalized with erythrocytes at the sites of lung infection, inside capillaries and necrotic areas of granulomas, using histopathological examinations. Electron microscopy showed that MAH adhered and entered human erythrocytes when they were cocultured in vitro. MAH adhered to erythrocytes through complement receptor 1 and cell-surface sialo-glycoproteins. Importantly, MAH grew vigorously without causing any pronounced damage to erythrocytes. This erythrocyte-mediated enhancement of MAH growth occurred extracellularly depending on its direct attachment to erythrocytes. In contrast, MAH failed to multiply inside erythrocytes. Similarly, erythrocytes augmented the growth of other pathogenic mycobacteria, such as M. intracellulare and M. tuberculosis. THP-1 cell-derived human macrophages preferentially phagocytosed erythrocytes that were attached to mycobacteria (compared to bacteria alone), suggesting that erythrocyte-attached mycobacteria are an efficient infectious source for macrophages. Our findings provide new insights into the pathogenesis of mycobacterial diseases and offer an alternative and useful strategy for treating mycobacterial disease. IMPORTANCE Pathogenic mycobacteria, such as Mycobacterium tuberculosis, Mycobacterium avium subsp. hominissuis (MAH), and Mycobacterium intracellulare, cause pulmonary infections as intracellular parasites of lung macrophages and epithelial cells. Here, using histopathological examinations we found that MAH and M. intracellulare colocalized with erythrocytes in lung infection sites. Subsequent studies demonstrated that direct interaction with erythrocytes enhances the extracellular proliferation of mycobacteria based on the following results: 1. MAH adhered and invaded human erythrocytes upon coculture in vitro; 2. MAH adhered to erythrocytes through complement receptor 1 and cell-surface sialo-glycoproteins; 3. MAH rapidly proliferated when directly attached to erythrocytes but not within them; 4. other mycobacteria, such as M. intracellulare and M. tuberculosis, also proliferated in the same way as MAH. The finding that pathogenic mycobacteria grow extracellularly in an erythrocyte-dependent manner is of considerable clinical importance for understanding disease progression and latent infection.
Collapse
Affiliation(s)
- Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Graduate School of Medicine, Toyonaka, Japan
- Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Hiroshi Hirano
- Department of Diagnostic Pathology, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Takehiro Yamaguchi
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mari Miki
- National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Seigo Kitada
- National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Fumito Maruyama
- Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, Higashi-Hiroshima, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
13
|
Agarwal P, Gordon S, Martinez FO. Foam Cell Macrophages in Tuberculosis. Front Immunol 2022; 12:775326. [PMID: 34975863 PMCID: PMC8714672 DOI: 10.3389/fimmu.2021.775326] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis infects primarily macrophages in the lungs. Infected macrophages are surrounded by other immune cells in well organised structures called granulomata. As part of the response to TB, a type of macrophage loaded with lipid droplets arises which we call Foam cell macrophages. They are macrophages filled with lipid laden droplets, which are synthesised in response to increased uptake of extracellular lipids, metabolic changes and infection itself. They share the appearance with atherosclerosis foam cells, but their lipid contents and roles are different. In fact, lipid droplets are immune and metabolic organelles with emerging roles in Tuberculosis. Here we discuss lipid droplet and foam cell formation, evidence regarding the inflammatory and immune properties of foam cells in TB, and address gaps in our knowledge to guide further research.
Collapse
Affiliation(s)
- Pooja Agarwal
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Fernando O Martinez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
14
|
Abstract
Pulmonary granulomas are widely considered the epicenters of the immune response to Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Recent animal studies have revealed factors that either promote or restrict TB immunity within granulomas. These models, however, typically ignore the impact of preexisting immunity on cellular organization and function, an important consideration because most TB probably occurs through reinfection of previously exposed individuals. Human postmortem research from the pre-antibiotic era showed that infections in Mtb-naïve individuals (primary TB) versus those with prior Mtb exposure (postprimary TB) have distinct pathologic features. We review recent animal findings in TB granuloma biology, which largely reflect primary TB. We also discuss our current understanding of postprimary TB lesions, about which much less is known. Many knowledge gaps remain, particularly regarding how preexisting immunity shapes granuloma structure and local immune responses at Mtb infection sites. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sara B. Cohen
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Benjamin H. Gern
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Kevin B. Urdahl
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Wilburn KM, Montague CR, Qin B, Woods AK, Love MS, McNamara CW, Schultz PG, Southard TL, Huang L, Petrassi HM, VanderVen BC. Pharmacological and genetic activation of cAMP synthesis disrupts cholesterol utilization in Mycobacterium tuberculosis. PLoS Pathog 2022; 18:e1009862. [PMID: 35134095 PMCID: PMC8856561 DOI: 10.1371/journal.ppat.1009862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/18/2022] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
There is a growing appreciation for the idea that bacterial utilization of host-derived lipids, including cholesterol, supports Mycobacterium tuberculosis (Mtb) pathogenesis. This has generated interest in identifying novel antibiotics that can disrupt cholesterol utilization by Mtb in vivo. Here we identify a novel small molecule agonist (V-59) of the Mtb adenylyl cyclase Rv1625c, which stimulates 3', 5'-cyclic adenosine monophosphate (cAMP) synthesis and inhibits cholesterol utilization by Mtb. Similarly, using a complementary genetic approach that induces bacterial cAMP synthesis independent of Rv1625c, we demonstrate that inducing cAMP synthesis is sufficient to inhibit cholesterol utilization in Mtb. Although the physiological roles of individual adenylyl cyclase enzymes in Mtb are largely unknown, here we demonstrate that the transmembrane region of Rv1625c is required during cholesterol metabolism. Finally, the pharmacokinetic properties of Rv1625c agonists have been optimized, producing an orally-available Rv1625c agonist that impairs Mtb pathogenesis in infected mice. Collectively, this work demonstrates a role for Rv1625c and cAMP signaling in controlling cholesterol metabolism in Mtb and establishes that cAMP signaling can be pharmacologically manipulated for the development of new antibiotic strategies.
Collapse
Affiliation(s)
- Kaley M. Wilburn
- Microbiology & Immunology, Cornell University, Ithaca, New York, United States of America
| | - Christine R. Montague
- Microbiology & Immunology, Cornell University, Ithaca, New York, United States of America
| | - Bo Qin
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Ashley K. Woods
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Melissa S. Love
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Case W. McNamara
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Peter G. Schultz
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Teresa L. Southard
- Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Lu Huang
- Microbiology & Immunology, Cornell University, Ithaca, New York, United States of America
| | - H. Michael Petrassi
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Brian C. VanderVen
- Microbiology & Immunology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
16
|
Chen Y, Peng A, Chen Y, Kong X, Li L, Tang G, Li H, Chen Y, Jiang F, Li P, Zhang Q. Association of TyG Index with CT Features in Patients with Tuberculosis and Diabetes Mellitus. Infect Drug Resist 2022; 15:111-125. [PMID: 35068934 PMCID: PMC8767160 DOI: 10.2147/idr.s347089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
Background The purpose of this study was to investigate the association of the triglyceride glucose (TyG) index, a surrogate marker of insulin resistance (IR) with a high sensitivity of 96.5% and a specificity of 85.0% for the diagnosis of IR, with computed tomography (CT) features in patients with tuberculosis and diabetes mellitus. Methods A total of 247 subjects were enrolled from July, 2020 to May, 2021. The basic clinical features and CT features were analyzed. In addition, multivariate logistic regression analysis models were employed to evaluate the association of the TyG indicator with CT features in participants. Results In the quartile groups of TyG index, air bronchial sign detection rate was 11.7%, 14.5%, 23.2%, and 44.1%; large segmented leafy shadow detection rate was 27.9%, 40.6%, 46.4%, and 66.2%; thick-walled cavity was found in 38.2%, 43.4%, 57.9%, and 69.1%; the rate of multiple cavities was 17.6%, 27.5%, 36.2%, 52.9%; the rate of lymph node enlargement was 22.1%, 17.4%, 28.9%, and 38.2%, respectively. In addition, the positive relation with the TyG index and the prevalence of abnormal CT signs was observed in the fully adjusted model: TyG, per one-unit increase: air bronchial sign: adjusted odds ratio (AOR) 3.92, 95% CI 1–15.35, P = 0.049; multiple cavities: AOR 4.1, 95% CI 1.26–13.31, P = 0.019; thick-walled cavity: AOR 2.89, 95% CI 1.05–8.03, P = 0.041. In quartile of TyG index, compared with patients in quartile 1, the AOR (95% CI) values for air bronchial sign in quartile 4 was 8.1 (1.7–44), p = 0.011; multiple cavities was 7.1 (1.7–32), p = 0.008; thick-walled cavity was 7.8 (1.9–34.7), p = 0.005. Conclusion The present study showed that an increased TyG index was positively related to the severity of patients with T2DM-PTB.
Collapse
Affiliation(s)
- Yong Chen
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
| | - Anzhou Peng
- Department of the Fifth Tuberculosis, Chongqing Public Health Medical Center, Chongqing, People’s Republic of China
| | - Yiqing Chen
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
| | - Xianghua Kong
- Department of the Fifth Tuberculosis, Chongqing Public Health Medical Center, Chongqing, People’s Republic of China
| | - Linyang Li
- Department of the Fifth Tuberculosis, Chongqing Public Health Medical Center, Chongqing, People’s Republic of China
| | - Guangxiao Tang
- Department of Radiology, Chongqing Public Health Medical Center, Chongqing, People’s Republic of China
| | - Huifen Li
- Department of the Fifth Tuberculosis, Chongqing Public Health Medical Center, Chongqing, People’s Republic of China
| | - Yu Chen
- Department of Medical Record Statistics Room, Chongqing Public Health Medical Center, Chongqing, People’s Republic of China
| | - Fan Jiang
- Department of the Fifth Tuberculosis, Chongqing Public Health Medical Center, Chongqing, People’s Republic of China
| | - Peibo Li
- Department of Physician Assistant, Chongqing Public Health Medical Center, Chongqing, People’s Republic of China
| | - Qiu Zhang
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
- Correspondence: Qiu Zhang; Peibo Li Tel +8613965015060; +8618709843713 Email ;
| |
Collapse
|
17
|
Brown RE, Hunter RL. Early Lesion of Post-Primary Tuberculosis: Subclinical Driver of Disease and Target for Vaccines and Host-Directed Therapies. Pathogens 2021; 10:pathogens10121572. [PMID: 34959527 PMCID: PMC8708170 DOI: 10.3390/pathogens10121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The characteristic lesion of primary tuberculosis is the granuloma as is widely studied in human tissues and animal models. Post-primary tuberculosis is different. It develops only in human lungs and begins as a prolonged subclinical obstructive lobular pneumonia that slowly accumulates mycobacterial antigens and host lipids in alveolar macrophages with nearby highly sensitized T cells. After several months, the lesions undergo necrosis to produce a mass of caseous pneumonia large enough to fragment and be coughed out to produce a cavity or be retained as the focus of a post-primary granuloma. Bacteria grow massively on the cavity wall where they can be coughed out to infect new people. Here we extend these findings with the demonstration of secreted mycobacterial antigens, but not acid fast bacilli (AFB) of M. tuberculosis in the cytoplasm of ciliated bronchiolar epithelium and alveolar pneumocytes in association with elements of the programmed death ligand 1 (PD-L1), cyclo-oxygenase (COX)-2, and fatty acid synthase (FAS) pathways in the early lesion. This suggests that M. tuberculosis uses its secreted antigens to coordinate prolonged subclinical development of the early lesions in preparation for a necrotizing reaction sufficient to produce a cavity, post-primary granulomas, and fibrocaseous disease.
Collapse
|
18
|
Yang HJ, Wang D, Wen X, Weiner DM, Via LE. One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Front Cell Infect Microbiol 2021; 11:613149. [PMID: 33796474 PMCID: PMC8008060 DOI: 10.3389/fcimb.2021.613149] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) remains a global health problem despite almost universal efforts to provide patients with highly effective chemotherapy, in part, because many infected individuals are not diagnosed and treated, others do not complete treatment, and a small proportion harbor Mycobacterium tuberculosis (Mtb) strains that have become resistant to drugs in the standard regimen. Development and approval of new drugs for TB have accelerated in the last 10 years, but more drugs are needed due to both Mtb's development of resistance and the desire to shorten therapy to 4 months or less. The drug development process needs predictive animal models that recapitulate the complex pathology and bacterial burden distribution of human disease. The human host response to pulmonary infection with Mtb is granulomatous inflammation usually resulting in contained lesions and limited bacterial replication. In those who develop progressive or active disease, regions of necrosis and cavitation can develop leading to lasting lung damage and possible death. This review describes the major vertebrate animal models used in evaluating compound activity against Mtb and the disease presentation that develops. Each of the models, including the zebrafish, various mice, guinea pigs, rabbits, and non-human primates provides data on number of Mtb bacteria and pathology resolution. The models where individual lesions can be dissected from the tissue or sampled can also provide data on lesion-specific bacterial loads and lesion-specific drug concentrations. With the inclusion of medical imaging, a compound's effect on resolution of pathology within individual lesions and animals can also be determined over time. Incorporation of measurement of drug exposure and drug distribution within animals and their tissues is important for choosing the best compounds to push toward the clinic and to the development of better regimens. We review the practical aspects of each model and the advantages and limitations of each in order to promote choosing a rational combination of them for a compound's development.
Collapse
Affiliation(s)
- Hee-Jeong Yang
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Decheng Wang
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Xin Wen
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Danielle M Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Park JH, Shim D, Kim KES, Lee W, Shin SJ. Understanding Metabolic Regulation Between Host and Pathogens: New Opportunities for the Development of Improved Therapeutic Strategies Against Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2021; 11:635335. [PMID: 33796480 PMCID: PMC8007978 DOI: 10.3389/fcimb.2021.635335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) causes chronic granulomatous lung disease in humans. Recently, novel strategies such as host-directed therapeutics and adjunctive therapies that enhance the effect of existing antibiotics have emerged to better control Mtb infection. Recent advances in understanding the metabolic interplay between host immune cells and pathogens have provided new insights into how their interactions ultimately influence disease outcomes and antibiotic-treatment efficacy. In this review, we describe how metabolic cascades in immune environments and relevant metabolites produced from immune cells during Mtb infection play critical roles in the progression of diseases and induction of anti-Mtb protective immunity. In addition, we introduce how metabolic alterations in Mtb itself can lead to the development of persister cells that are resistant to host immunity and can eventually evade antibiotic attacks. Further understanding of the metabolic link between host cells and Mtb may contribute to not only the prevention of Mtb persister development but also the optimization of host anti-Mtb immunity together with enhanced efficacy of existing antibiotics. Overall, this review highlights novel approaches to improve and develop host-mediated therapeutic strategies against Mtb infection by restoring and switching pathogen-favoring metabolic conditions with host-favoring conditions.
Collapse
Affiliation(s)
- Ji-Hae Park
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Dahee Shim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Keu Eun San Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Pathak L, Das B. Initiation of Post-Primary Tuberculosis of the Lungs: Exploring the Secret Role of Bone Marrow Derived Stem Cells. Front Immunol 2021; 11:594572. [PMID: 33584661 PMCID: PMC7873989 DOI: 10.3389/fimmu.2020.594572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative organism of pulmonary tuberculosis (PTB) now infects more than half of the world population. The efficient transmission strategy of the pathogen includes first remaining dormant inside the infected host, next undergoing reactivation to cause post-primary tuberculosis of the lungs (PPTBL) and then transmit via aerosol to the community. In this review, we are exploring recent findings on the role of bone marrow (BM) stem cell niche in Mtb dormancy and reactivation that may underlie the mechanisms of PPTBL development. We suggest that pathogen's interaction with the stem cell niche may be relevant in potential inflammation induced PPTBL reactivation, which need significant research attention for the future development of novel preventive and therapeutic strategies for PPTBL, especially in a post COVID-19 pandemic world. Finally, we put forward potential animal models to study the stem cell basis of Mtb dormancy and reactivation.
Collapse
Affiliation(s)
- Lekhika Pathak
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
- KaviKrishna Telemedicine Care, Sualkuchi, India
| | - Bikul Das
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
- KaviKrishna Telemedicine Care, Sualkuchi, India
- Department of Stem Cell and Infection, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| |
Collapse
|
21
|
Mycobacterium tuberculosis infection is exacerbated in mice lacking lecithin:retinol acyltransferase. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165909. [PMID: 32768676 DOI: 10.1016/j.bbadis.2020.165909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
|
22
|
Hunter RL. The Pathogenesis of Tuberculosis-The Koch Phenomenon Reinstated. Pathogens 2020; 9:E813. [PMID: 33020397 PMCID: PMC7601602 DOI: 10.3390/pathogens9100813] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/24/2022] Open
Abstract
Research on the pathogenesis of tuberculosis (TB) has been hamstrung for half a century by the paradigm that granulomas are the hallmark of active disease. Human TB, in fact, produces two types of granulomas, neither of which is involved in the development of adult type or post-primary TB. This disease begins as the early lesion; a prolonged subclinical stockpiling of secreted mycobacterial antigens in foamy alveolar macrophages and nearby highly sensitized T cells in preparation for a massive necrotizing hypersensitivity reaction, the Koch Phenomenon, that produces caseous pneumonia that is either coughed out to form cavities or retained to become the focus of post-primary granulomas and fibrocaseous disease. Post-primary TB progresses if the antigens are continuously released and regresses when they are depleted. This revised paradigm is supported by nearly 200 years of research and suggests new approaches and animal models to investigate long standing mysteries of human TB and vaccines that inhibit the early lesion to finally end its transmission.
Collapse
Affiliation(s)
- Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
23
|
Genoula M, Marín Franco JL, Maio M, Dolotowicz B, Ferreyra M, Milillo MA, Mascarau R, Moraña EJ, Palmero D, Matteo M, Fuentes F, López B, Barrionuevo P, Neyrolles O, Cougoule C, Lugo-Villarino G, Vérollet C, Sasiain MDC, Balboa L. Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation. PLoS Pathog 2020; 16:e1008929. [PMID: 33002063 PMCID: PMC7553279 DOI: 10.1371/journal.ppat.1008929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/13/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to persist inside host cells relies on metabolic adaptation, like the accumulation of lipid bodies (LBs) in the so-called foamy macrophages (FM), which are favorable to Mtb. The activation state of macrophages is tightly associated to different metabolic pathways, such as lipid metabolism, but whether differentiation towards FM differs between the macrophage activation profiles remains unclear. Here, we aimed to elucidate whether distinct macrophage activation states exposed to a tuberculosis-associated microenvironment or directly infected with Mtb can form FM. We showed that the triggering of signal transducer and activator of transcription 6 (STAT6) in interleukin (IL)-4-activated human macrophages (M(IL-4)) prevents FM formation induced by pleural effusion from patients with tuberculosis. In these cells, LBs are disrupted by lipolysis, and the released fatty acids enter the β-oxidation (FAO) pathway fueling the generation of ATP in mitochondria. Accordingly, murine alveolar macrophages, which exhibit a predominant FAO metabolism, are less prone to become FM than bone marrow derived-macrophages. Interestingly, direct infection of M(IL-4) macrophages with Mtb results in the establishment of aerobic glycolytic pathway and FM formation, which could be prevented by FAO activation or inhibition of the hypoxia-inducible factor 1-alpha (HIF-1α)-induced glycolytic pathway. In conclusion, our results demonstrate that Mtb has a remarkable capacity to induce FM formation through the rewiring of metabolic pathways in human macrophages, including the STAT6-driven alternatively activated program. This study provides key insights into macrophage metabolism and pathogen subversion strategies.
Collapse
Affiliation(s)
- Melanie Genoula
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
| | - José Luis Marín Franco
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
| | - Mariano Maio
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Belén Dolotowicz
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Malena Ferreyra
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - M. Ayelén Milillo
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Rémi Mascarau
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Eduardo José Moraña
- Instituto Prof. Dr. Raúl Vaccarezza, Hospital de Infecciosas Dr. F.J. Muñiz, Buenos Aires, Argentina
| | - Domingo Palmero
- Instituto Prof. Dr. Raúl Vaccarezza, Hospital de Infecciosas Dr. F.J. Muñiz, Buenos Aires, Argentina
| | - Mario Matteo
- Laboratorio de Tuberculosis y Micobacteriosis “Dr. Abel Cetrángolo”, Hospital de Infecciosas Dr. F.J. Muñiz, Buenos Aires, Argentina
| | - Federico Fuentes
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Beatriz López
- Instituto Nacional de Enfermedades Infecciosas (INEI), ANLIS "Carlos G. Malbrán, Buenos Aires, Argentina
| | - Paula Barrionuevo
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Olivier Neyrolles
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Céline Cougoule
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christel Vérollet
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - María del Carmen Sasiain
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
| | - Luciana Balboa
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
| |
Collapse
|
24
|
Agarwal P, Combes TW, Shojaee-Moradie F, Fielding B, Gordon S, Mizrahi V, Martinez FO. Foam Cells Control Mycobacterium tuberculosis Infection. Front Microbiol 2020; 11:1394. [PMID: 32754123 PMCID: PMC7381311 DOI: 10.3389/fmicb.2020.01394] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects macrophages and macrophage-derived foam cells, a hallmark of granulomata in tuberculous lesions. We analyzed the effects of lipid accumulation in human primary macrophages and quantified strong triglyceride and phospholipid remodeling which depended on the dietary fatty acid used for the assay. The enrichment of >70% in triglyceride and phospholipids can alter cell membrane properties, signaling and phagocytosis in macrophages. In conventional macrophage cultures, cells are heterogeneous, small or large macrophages. In foam cells, a third population of 30% of cells with increased granularity can be detected. We found that foam cell formation is heterogenous and that lipid accumulation and foam cell formation reduces the phagocytosis of Mtb. Under the conditions tested, cell death was highly prevalent in macrophages, whereas foam cells were largely protected from this effect. Foam cells also supported slower Mtb replication, yet this had no discernible impact on the intracellular efficacy of four different antitubercular drugs. Foam cell formation had a significant impact in the inflammatory potential of the cells. TNF-α, IL-1β, and prototypical chemokines were increased. The ratio of inflammatory IL-1β, TNF-α, and IL-6 vs. anti-inflammatory IL-10 was significantly higher in response to Mtb vs. LPS, and was increased in foam cells compared to macrophages, suggestive of increased pro-inflammatory properties. Cytokine production correlated with NF-κB activation in our models. We conclude that foam cell formation reduces the host cell avidity for, and phagocytosis of, Mtb while protecting the cells from death. This protective effect is associated with enhanced inflammatory potential of foam cells and restricted intracellular growth of Mtb.
Collapse
Affiliation(s)
- Pooja Agarwal
- South African Medical Research Council/National Health Laboratory Service/University of Cape Town, Molecular Mycobacteriology Research Unit, Division of Medical Microbiology, Department of Pathology, Department of Science and Innovation/National Research Foundation, Centre of Excellence for Biomedical TB Research and Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Theo W Combes
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Barbara Fielding
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Valerie Mizrahi
- South African Medical Research Council/National Health Laboratory Service/University of Cape Town, Molecular Mycobacteriology Research Unit, Division of Medical Microbiology, Department of Pathology, Department of Science and Innovation/National Research Foundation, Centre of Excellence for Biomedical TB Research and Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Fernando O Martinez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
25
|
The Echo of Pulmonary Tuberculosis: Mechanisms of Clinical Symptoms and Other Disease-Induced Systemic Complications. Clin Microbiol Rev 2020; 33:33/4/e00036-20. [PMID: 32611585 DOI: 10.1128/cmr.00036-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clinical symptoms of active tuberculosis (TB) can range from a simple cough to more severe reactions, such as irreversible lung damage and, eventually, death, depending on disease progression. In addition to its clinical presentation, TB has been associated with several other disease-induced systemic complications, such as hyponatremia and glucose intolerance. Here, we provide an overview of the known, although ill-described, underlying biochemical mechanisms responsible for the clinical and systemic presentations associated with this disease and discuss novel hypotheses recently generated by various omics technologies. This summative update can assist clinicians to improve the tentative diagnosis of TB based on a patient's clinical presentation and aid in the development of improved treatment protocols specifically aimed at restoring the disease-induced imbalance for overall homeostasis while simultaneously eradicating the pathogen. Furthermore, future applications of this knowledge could be applied to personalized diagnostic and therapeutic options, bettering the treatment outcome and quality of life of TB patients.
Collapse
|
26
|
Sarathy JP, Dartois V. Caseum: a Niche for Mycobacterium tuberculosis Drug-Tolerant Persisters. Clin Microbiol Rev 2020; 33:e00159-19. [PMID: 32238365 PMCID: PMC7117546 DOI: 10.1128/cmr.00159-19] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Caseum, the central necrotic material of tuberculous lesions, is a reservoir of drug-recalcitrant persisting mycobacteria. Caseum is found in closed nodules and in open cavities connecting with an airway. Several commonly accepted characteristics of caseum were established during the preantibiotic era, when autopsies of deceased tuberculosis (TB) patients were common but methodologies were limited. These pioneering studies generated concepts such as acidic pH, low oxygen tension, and paucity of nutrients being the drivers of nonreplication and persistence in caseum. Here we review widely accepted beliefs about the caseum-specific stress factors thought to trigger the shift of Mycobacterium tuberculosis to drug tolerance. Our current state of knowledge reveals that M. tuberculosis is faced with a lipid-rich diet rather than nutrient deprivation in caseum. Variable caseum pH is seen across lesions, possibly transiently acidic in young lesions but overall near neutral in most mature lesions. Oxygen tension is low in the avascular caseum of closed nodules and high at the cavity surface, and a gradient of decreasing oxygen tension likely forms toward the cavity wall. Since caseum is largely made of infected and necrotized macrophages filled with lipid droplets, the microenvironmental conditions encountered by M. tuberculosis in foamy macrophages and in caseum bear many similarities. While there remain a few knowledge gaps, these findings constitute a solid starting point to develop high-throughput drug discovery assays that combine the right balance of oxygen tension, pH, lipid abundance, and lipid species to model the profound drug tolerance of M. tuberculosis in caseum.
Collapse
Affiliation(s)
- Jansy P Sarathy
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| |
Collapse
|
27
|
Moopanar K, Mvubu NE. Lineage-specific differences in lipid metabolism and its impact on clinical strains of Mycobacterium tuberculosis. Microb Pathog 2020; 146:104250. [PMID: 32407863 DOI: 10.1016/j.micpath.2020.104250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023]
Abstract
Mycobacterium tuberculosis (M. tb) is the causative agent of TB and its incidences has been on the rise since 1993. Lipid metabolism is an imperative metabolic process, which grants M. tb the ability to utilize host-derived lipids as a secondary source of nutrition during infection. In addition to degrading host lipids, M. tb is proficient at using lipids, such as cholesterol, to facilitate its entry into macrophages. Mycolic acids, constituents of the mycobacterial cell wall, offer protection and aid in persistence of the bacterium. These are effectively synthesized using a complex fatty acid synthase system. Many pathogenesis studies have reported differences in lipid-metabolism of clinical strains of M. tb that belongs to diverse lineages of the Mycobacterium tuberculosis complex (MTBC). East-Asian and Euro-American lineages possess "unique" cell wall-associated lipids compared to the less transmissible Ethiopian lineage, which may offer these lineages a competitive advantage. Therefore, it is crucial to comprehend the complexities among the MTBC lineages with lipid metabolism and their impact on virulence, transmissibility and pathogenesis. Thus, this review provides an insight into lipid metabolism in various lineages of the MTBC and their impact on virulence and persistence during infection, as this may provide critical insight into developing novel therapeutics to combat TB.
Collapse
Affiliation(s)
- K Moopanar
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa.
| | - N E Mvubu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa.
| |
Collapse
|
28
|
Seto S, Morimoto K, Yoshida T, Hiramatsu M, Hijikata M, Nagata T, Kikuchi F, Shiraishi Y, Kurashima A, Keicho N. Proteomic Profiling Reveals the Architecture of Granulomatous Lesions Caused by Tuberculosis and Mycobacterium avium Complex Lung Disease. Front Microbiol 2020; 10:3081. [PMID: 32010116 PMCID: PMC6978656 DOI: 10.3389/fmicb.2019.03081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis (TB) and Mycobacterium avium complex lung disease (MAC-LD) are both characterized pathologically by granuloma lesions, which are typically composed of a necrotic caseum at the center surrounded by fibrotic cells and lymphocytes. Although the histological characterization of TB and MAC-LD granulomas has been well-documented, their molecular signatures have not been fully evaluated. In this research we applied mass spectrometry-based proteomics combined with laser microdissection to investigate the unique protein markers in human mycobacterial granulomatous lesions. Comparing the protein abundance between caseous and cellular sub-compartments of mycobacterial granulomas, we found distinct differences. Proteins involved in cellular metabolism in transcription and translation were abundant in cellular regions, while in caseous regions proteins related to antimicrobial response accumulated. To investigate the determinants of their heterogeneity, we compared the protein abundance in caseous regions between TB and MAC-LD granulomas. We found that several proteins were significantly abundant in the MAC-LD caseum of which proteomic profiles were different from those of the TB caseum. Immunohistochemistry demonstrated that one of these proteins, Angiogenin, specifically localized to the caseous regions of selected MAC-LD granulomas. We also detected peptides derived from mycobacterial proteins in the granulomas of both diseases. This study provides new insights into the architecture of granulomatous lesions in TB and MAC-LD.
Collapse
Affiliation(s)
- Shintaro Seto
- Department of Pathophysiology and Host Defense, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Tsutomu Yoshida
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Miyako Hiramatsu
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Toshi Nagata
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Fumihito Kikuchi
- Department of Pathology, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yuji Shiraishi
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Atsuyuki Kurashima
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Naoto Keicho
- Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
29
|
Gergert VJ, Averbakh MM, Ergeshov AE. [Immunological aspects of tuberculosis pathogenesis]. TERAPEVT ARKH 2019; 91:90-97. [PMID: 32598618 DOI: 10.26442/00403660.2019.11.000262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
The morphological aspects of TB pathogenesis are well described in the publications. Much is also known about the main stages of development and formation of specific adaptive immunity. However, from our point of view, not enough attention is being paid to the involvement of the immune system in the pathogenesis of clinically relevant TB abnormalities, as well as various forms of the disease. Nevertheless, there is no doubt that the variety of clinical manifestations of any disease associated with the penetration of a foreign agent into the body, and Mycobacterium tuberculosis (MTB) in particular, is due to the collective interaction of the infectious agent and the individual response of the macroorganism to this infectious agent. The mosaic of such interactions usually imposes its own adjustments on the development of different forms of the process, its speed and direction, as well as the outcomes. Certainly, the response of a macroorganism to MTB is an integral part of pathogenesis and consists of many general components including the responses associated with the mechanisms of natural and acquired immunity. Intensity of these reactions depends on the characteristics of an agent (MTB) and a macroorganism. For the development of TB disease, massiveness of TB infection, dose and duration of MTB exposure to the human body, as well as virulence of MTB and the level of body's protection during the exposure play a very important role. TB pathogenesis is somewhat different in primary MTB infection and re - infection. With primary infection, 88-90% of individuals do not have clinical manifestations, and only the tuberculin skin test conversion signals the onset of infection. In some cases, without any use of anti-TB drugs limited abnormalities may result in spontaneous cure with the minimal residual changes in the lungs, intrathoracic lymph nodes and tissues of other organs, often in the form of calcifications and limited areas of fibrosis in more advanced cases. Only 10-12% of newly infected individuals develop TB with severe clinical manifestations requiring TB therapy. The absence of clinical manifestations of primary TB infection can be explained by a high level of natural resistance of the human body to tuberculosis, and sometimes can be an effect of acquired protection due to BCG vaccination. This review attempts to discuss the role of immune mechanisms in the pathogenesis both at the beginning of disease development, and in the process of its various manifestations. Issues of genetically determined resistance or susceptibility to TB are not being covered in detail in this manuscript.
Collapse
Affiliation(s)
- V J Gergert
- Central TB Research Institute Department of Immunology
| | - M M Averbakh
- Central TB Research Institute Department of Immunology
| | - A E Ergeshov
- Central TB Research Institute Department of Immunology
| |
Collapse
|
30
|
Bragina EY, Babushkina NP, Garaeva AF, Rudko AA, Tsitrikov DY, Gomboeva DE, Freidin MB. Impact of the Polymorphism of the PACRG and CD80 Genes on the Development of the Different Stages of Tuberculosis Infection. IRANIAN JOURNAL OF MEDICAL SCIENCES 2019; 44:236-244. [PMID: 31182890 PMCID: PMC6525733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND Tuberculosis (TB) is one of the most significant health-care problems worldwide. The host's genetics play an important role in the development of TB in humans. The disease progresses through several stages, each of which can be under the control of different genes. The precise genes influencing the different stages of the disease are not yet identified. The aim of the current study was to determine the associations between primary and secondary TB and the polymorphisms of novel candidate genes for TB susceptibility, namely CD79A, HCST, CXCR4, CD4, CD80, CP, PACRG, and CD69. METHODS A total of 357 patients with TB (130 cases with primary TB and 227 cases with secondary TB) from the Siberian region of Russia as well as 445 healthy controls were studied. The study was performed at the Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia, between July 2015 and November 2016. Genotyping was carried out using MALDI-TOF mass spectrometry and PCR-RFLP. The associations between the single-nucleotide polymorphisms and TB were assessed using logistic regression adjusting for covariates (age and gender). Multiple testing was addressed via the experiment-wise permutation approach. The statistical significance threshold was a P value less than 0.05 for the permutation P values. The analyses were done in R 3.2 statistical software. RESULTS An association was established between the rs1880661 variant of the CD80 gene and secondary TB and the rs10945890 variant of the PACRG gene and both primary and secondary TB. However, the same allele of PACRG appeared to be both a risk factor for reactivation (secondary TB) and a protector against primary infection. CONCLUSION The results suggested that the CD80 and PACRG genes were associated with susceptibility to different forms of TB infection in the Russian population.
Collapse
|
31
|
Hunter R, Actor J. The pathogenesis of post-primary tuberculosis. A game changer for vaccine development. Tuberculosis (Edinb) 2019; 116S:S114-S117. [PMID: 31076321 PMCID: PMC6626673 DOI: 10.1016/j.tube.2019.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 10/26/2022]
Abstract
A vaccine that prevents transmission of infection is urgently needed in the fight against tuberculosis (TB). Results of clinical trials have been disappointing. Major problems include lack of biomarkers and understanding of the mechanisms of disease and protection. A more fundamental problem is that the scientific community seldom recognizes that primary and post-primary TB are distinct disease entities. Nearly all vaccine candidates have been designed and tested in models of primary TB, while transmission of infection is mediated by post-primary TB. Post-primary TB is seldom studied because no animal develop complete symptoms of the disease as it exists in humans. Nevertheless, mice, guinea pigs and rabbits all develop infections that at certain points appear to be models of human post-primary TB. Slowly progressive pulmonary TB in immunocompetent mice is an example. It is characterized by an alveolitis with infected foamy macrophages that have multiple characteristics of the human disease. We demonstrated that inclusion of an immune modulating agent, lactoferrin, with a BCG vaccine in this model induced a sustained reduction in lung pathology, but not numbers of organisms in tissue. Since the animals die of expanding pathology, this demonstrates the feasibility of using selected animal models for studies of vaccines against post-primary TB.
Collapse
Affiliation(s)
- Robert Hunter
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Sciences Center at Houston, MSB 2.136, 6431 Fannin, Houston TX,77030, USA.
| | - Jeffrey Actor
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Sciences Center at Houston, MSB 2.136, 6431 Fannin, Houston TX,77030, USA
| |
Collapse
|
32
|
Li Y, Di Santo JP. Modeling Infectious Diseases in Mice with a "Humanized" Immune System. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0019-2019. [PMID: 30953434 PMCID: PMC11590424 DOI: 10.1128/microbiolspec.bai-0019-2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 01/07/2023] Open
Abstract
Human immune system (HIS) mice are created by transplanting human immune cells or their progenitor cells into highly immunodeficient recipient mouse hosts, thereby "humanizing" their immune systems. Over past decades, the field of HIS mice has evolved rapidly, as modifications of existing immunodeficient mouse strains have been developed, resulting in increasing levels of human tissue engraftment as humanization is optimized. Current HIS mouse models not only permit elevated levels of human cell engraftment but also demonstrate graft stability. As such, HIS mice are being extensively used to study the human innate and adaptive immune response against microbial infections in vivo. Compared to nonhumanized animal models, which are frequently infected with surrogate or adapted microbes, the HIS mouse models allow the analysis of interactions between human immune cells and bona fide pathogenic microbes, making them a more clinically relevant model. This article reviews the development of HIS mice and covers the different strategies used to humanize mice, as well as discussing the use of HIS mice for studying bacterial infections that cause human disease.
Collapse
Affiliation(s)
- Yan Li
- Innate Immunity Unit, Immunology Department, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Immunology Department, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| |
Collapse
|
33
|
Hodge PJ, Sandy JR, Noormohammadi AH. Avian mycobacteriosis in captive brolgas (Antigone rubicunda). Aust Vet J 2019; 97:81-86. [DOI: 10.1111/avj.12784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/19/2018] [Accepted: 01/06/2019] [Indexed: 11/29/2022]
Affiliation(s)
- PJ Hodge
- Faculty of Veterinary and Agricultural Sciences; The University of Melbourne; 250 Princes Highway, Werribee Victoria 3030 Australia
| | - JR Sandy
- Faculty of Veterinary and Agricultural Sciences; The University of Melbourne; 250 Princes Highway, Werribee Victoria 3030 Australia
- City University of Hong Kong College of Veterinary Medicine and Life Sciences; Kowloon Hong Kong
| | - AH Noormohammadi
- Faculty of Veterinary and Agricultural Sciences; The University of Melbourne; 250 Princes Highway, Werribee Victoria 3030 Australia
| |
Collapse
|
34
|
Nazarova EV, Montague CR, Huang L, La T, Russell D, VanderVen BC. The genetic requirements of fatty acid import by Mycobacterium tuberculosis within macrophages. eLife 2019; 8:e43621. [PMID: 30735132 PMCID: PMC6368401 DOI: 10.7554/elife.43621] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) imports and metabolizes fatty acids to maintain infection within human macrophages. Although this is a well-established paradigm, the bacterial factors required for fatty acid import are poorly understood. Previously, we found that LucA and Mce1 are required for fatty acid import in Mtb (Nazarova et al., 2017). Here, we identified additional Mtb mutants that have a reduced ability to import a fluorescent fatty acid substrate during infection within macrophages. This screen identified the novel genes as rv2799 and rv0966c as be necessary for fatty acid import and confirmed the central role for Rv3723/LucA and putative components of the Mce1 fatty acid transporter (Rv0200/OmamB, Rv0172/Mce1D, and Rv0655/MceG) in this process.
Collapse
Affiliation(s)
- Evgeniya V Nazarova
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Christine R Montague
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Lu Huang
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Thuy La
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - David Russell
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| |
Collapse
|
35
|
A new model for chronic and reactivation tuberculosis: Infection with genetically attenuated Mycobacterium tuberculosis in mice with polar susceptibility. Tuberculosis (Edinb) 2018; 113:130-138. [PMID: 30514495 DOI: 10.1016/j.tube.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 12/30/2022]
Abstract
TB infection in mice develops relatively rapidly which interferes with experimental dissection of immune responses and lung pathology features that differ between genetically susceptible and resistant hosts. Earlier we have shown that the M. tuberculosis strain lacking four of five Rpf genes (ΔACDE) is seriously attenuated for growth in vivo. Using this strain, we assessed key parameters of lung pathology, immune and inflammatory responses in chronic and reactivation TB infections in highly susceptible I/St and more resistant B6 mice. ΔACDE mycobacteria progressively multiplied only in I/St lungs, whilst in B6 lung CFU counts decreased with time. Condensed TB foci apeared in B6 lungs at week 4 of infection, whilst in I/St their formation was delayed. At the late phase of infection, in I/St lungs TB foci fused resulting in extensive pneumonia, whereas in B6 lungs pathology was limited to condensed foci. Macrophage and neutrophil populations characteristically differed between I/St and B6 mice at early and late stages of infection: more neutrophils accumulated in I/St and more macrophages in B6 lungs. The expression level of chemokine genes involved in neutrophil influx was higher in I/St compared to B6 lungs. B6 lung cells produced more IFN-γ, IL-6 and IL-11 at the early and late phases of infection. Overall, using a new mouse model of slow TB progression, we demonstrate two important features of ineffective infection control underlined by shifts in lung inflammation: delay in early granuloma formation and fusion of granulomas resulting in consolidated pneumonia late in the infectious course.
Collapse
|
36
|
Hunter RL. The Pathogenesis of Tuberculosis: The Early Infiltrate of Post-primary (Adult Pulmonary) Tuberculosis: A Distinct Disease Entity. Front Immunol 2018; 9:2108. [PMID: 30283448 PMCID: PMC6156532 DOI: 10.3389/fimmu.2018.02108] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/28/2018] [Indexed: 11/30/2022] Open
Abstract
It has long been recognized that tuberculosis (TB) induces both protective and tissue damaging immune responses. This paper reviews nearly two centuries of evidence that protection and tissue damage are mediated by separate disease entities in humans. Primary TB mediates protective immunity to disseminated infection while post-primary TB causes tissue damage that results in formation of cavities. Both are necessary for continued survival of Mycobacterium tuberculosis (MTB). Primary TB has been extensively studied in humans and animals. Post-primary TB, in contrast, is seldom recognized or studied. It begins as an asymptomatic early infiltrate that may resolve or progress by bronchogenic spread to caseous pneumonia that either fragments to produce cavities or is retained to produce post-primary granulomas and fibrocaseous disease. Primary and post-primary TB differ in typical age of onset, histopathology, organ distribution, x-ray appearance, genetic predisposition, immune status of the host, clinical course and susceptibility to protection by BCG. MTB is a highly successful human parasite because it produces both primary and post-primary TB as distinct disease entities in humans. No animal reproduces this sequence of lesions. Recognition of these facts immediately suggests plausible solutions, animal models and testable hypotheses to otherwise inaccessible questions of the immunity and pathogenesis of TB.
Collapse
Affiliation(s)
- Robert L. Hunter
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
37
|
Delineating the Physiological Roles of the PE and Catalytic Domains of LipY in Lipid Consumption in Mycobacterium-Infected Foamy Macrophages. Infect Immun 2018; 86:IAI.00394-18. [PMID: 29986895 DOI: 10.1128/iai.00394-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/03/2018] [Indexed: 12/29/2022] Open
Abstract
Within tuberculous granulomas, a subpopulation of Mycobacterium tuberculosis resides inside foamy macrophages (FM) that contain abundant cytoplasmic lipid bodies (LB) filled with triacylglycerol (TAG). Upon fusion of LB with M. tuberculosis-containing phagosomes, TAG is hydrolyzed and reprocessed by the bacteria into their own lipids, which accumulate as intracytosolic lipid inclusions (ILI). This phenomenon is driven by many mycobacterial lipases, among which LipY participates in the hydrolysis of host and bacterial TAG. However, the functional contribution of LipY's PE domain to TAG hydrolysis remains unclear. Here, enzymatic studies were performed to compare the lipolytic activities of recombinant LipY and its truncated variant lacking the N-terminal PE domain, LipY(ΔPE). Complementarily, an FM model was used where bone marrow-derived mouse macrophages were infected with M. bovis BCG strains either overexpressing LipY or LipY(ΔPE) or carrying a lipY deletion mutation prior to being exposed to TAG-rich very-low-density lipoprotein (VLDL). Results indicate that truncation of the PE domain correlates with increased TAG hydrolase activity. Quantitative electron microscopy analyses showed that (i) in the presence of lipase inhibitors, large ILI (ILI+3) were not formed because of an absence of LB due to inhibition of VLDL-TAG hydrolysis or inhibition of LB-neutral lipid hydrolysis by mycobacterial lipases, (ii) ILI+3 profiles in the strain overexpressing LipY(ΔPE) were reduced, and (iii) the number of ILI+3 profiles in the ΔlipY mutant was reduced by 50%. Overall, these results delineate the role of LipY and its PE domain in host and mycobacterial lipid consumption and show that additional mycobacterial lipases take part in these processes.
Collapse
|
38
|
Reddy VP, Chinta KC, Saini V, Glasgow JN, Hull TD, Traylor A, Rey-Stolle F, Soares MP, Madansein R, Rahman MA, Barbas C, Nargan K, Naidoo T, Ramdial PK, George JF, Agarwal A, Steyn AJC. Ferritin H Deficiency in Myeloid Compartments Dysregulates Host Energy Metabolism and Increases Susceptibility to Mycobacterium tuberculosis Infection. Front Immunol 2018; 9:860. [PMID: 29774023 PMCID: PMC5943674 DOI: 10.3389/fimmu.2018.00860] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
Iron is an essential factor for the growth and virulence of Mycobacterium tuberculosis (Mtb). However, little is known about the mechanisms by which the host controls iron availability during infection. Since ferritin heavy chain (FtH) is a major intracellular source of reserve iron in the host, we hypothesized that the lack of FtH would cause dysregulated iron homeostasis to exacerbate TB disease. Therefore, we used knockout mice lacking FtH in myeloid-derived cell populations to study Mtb disease progression. We found that FtH plays a critical role in protecting mice against Mtb, as evidenced by increased organ burden, extrapulmonary dissemination, and decreased survival in Fth-/- mice. Flow cytometry analysis showed that reduced levels of FtH contribute to an excessive inflammatory response to exacerbate disease. Extracellular flux analysis showed that FtH is essential for maintaining bioenergetic homeostasis through oxidative phosphorylation. In support of these findings, RNAseq and mass spectrometry analyses demonstrated an essential role for FtH in mitochondrial function and maintenance of central intermediary metabolism in vivo. Further, we show that FtH deficiency leads to iron dysregulation through the hepcidin-ferroportin axis during infection. To assess the clinical significance of our animal studies, we performed a clinicopathological analysis of iron distribution within human TB lung tissue and showed that Mtb severely disrupts iron homeostasis in distinct microanatomic locations of the human lung. We identified hemorrhage as a major source of metabolically inert iron deposition. Importantly, we observed increased iron levels in human TB lung tissue compared to healthy tissue. Overall, these findings advance our understanding of the link between iron-dependent energy metabolism and immunity and provide new insight into iron distribution within the spectrum of human pulmonary TB. These metabolic mechanisms could serve as the foundation for novel host-directed strategies.
Collapse
Affiliation(s)
- Vineel P. Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Krishna C. Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joel N. Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Travis D. Hull
- Division of Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amie Traylor
- Nephrology Research and Training Center, University of Alabama at Birmingham and Birmingham VA Medical Center, Birmingham, AL, United States
| | - Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | | | - Rajhmun Madansein
- Inkosi Albert Luthuli Central Hospital, University of KwaZulu-Natal, Durban, South Africa
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Kievershen Nargan
- Department of Anatomical Pathology, National Health Laboratory Service, University of KwaZulu-Natal, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Threnesan Naidoo
- Department of Anatomical Pathology, National Health Laboratory Service, University of KwaZulu-Natal, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Pratistadevi K. Ramdial
- Department of Anatomical Pathology, National Health Laboratory Service, University of KwaZulu-Natal, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - James F. George
- Division of Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anupam Agarwal
- Nephrology Research and Training Center, University of Alabama at Birmingham and Birmingham VA Medical Center, Birmingham, AL, United States
| | - Adrie J. C. Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Africa Health Research Institute (AHRI), Durban, South Africa
- UAB Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
39
|
Stüve P, Minarrieta L, Erdmann H, Arnold-Schrauf C, Swallow M, Guderian M, Krull F, Hölscher A, Ghorbani P, Behrends J, Abraham WR, Hölscher C, Sparwasser TD, Berod L. De Novo Fatty Acid Synthesis During Mycobacterial Infection Is a Prerequisite for the Function of Highly Proliferative T Cells, But Not for Dendritic Cells or Macrophages. Front Immunol 2018; 9:495. [PMID: 29675017 PMCID: PMC5895737 DOI: 10.3389/fimmu.2018.00495] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, is able to efficiently manipulate the host immune system establishing chronic infection, yet the underlying mechanisms of immune evasion are not fully understood. Evidence suggests that this pathogen interferes with host cell lipid metabolism to ensure its persistence. Fatty acid metabolism is regulated by acetyl-CoA carboxylase (ACC) 1 and 2; both isoforms catalyze the conversion of acetyl-CoA into malonyl-CoA, but have distinct roles. ACC1 is located in the cytosol, where it regulates de novo fatty acid synthesis (FAS), while ACC2 is associated with the outer mitochondrial membrane, regulating fatty acid oxidation (FAO). In macrophages, mycobacteria induce metabolic changes that lead to the cytosolic accumulation of lipids. This reprogramming impairs macrophage activation and contributes to chronic infection. In dendritic cells (DCs), FAS has been suggested to underlie optimal cytokine production and antigen presentation, but little is known about the metabolic changes occurring in DCs upon mycobacterial infection and how they affect the outcome of the immune response. We therefore determined the role of fatty acid metabolism in myeloid cells and T cells during Mycobacterium bovis BCG or Mtb infection, using novel genetic mouse models that allow cell-specific deletion of ACC1 and ACC2 in DCs, macrophages, or T cells. Our results demonstrate that de novo FAS is induced in DCs and macrophages upon M. bovis BCG infection. However, ACC1 expression in DCs and macrophages is not required to control mycobacteria. Similarly, absence of ACC2 did not influence the ability of DCs and macrophages to cope with infection. Furthermore, deletion of ACC1 in DCs or macrophages had no effect on systemic pro-inflammatory cytokine production or T cell priming, suggesting that FAS is dispensable for an intact innate response against mycobacteria. In contrast, mice with a deletion of ACC1 specifically in T cells fail to generate efficient T helper 1 responses and succumb early to Mtb infection. In summary, our results reveal ACC1-dependent FAS as a crucial mechanism in T cells, but not DCs or macrophages, to fight against mycobacterial infection.
Collapse
Affiliation(s)
- Philipp Stüve
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Lucía Minarrieta
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Hanna Erdmann
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Catharina Arnold-Schrauf
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Melanie Guderian
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Freyja Krull
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | | | - Peyman Ghorbani
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, Borstel, Germany
| | - Wolf-Rainer Abraham
- Department of Chemical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Tim D Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| |
Collapse
|
40
|
Genoula M, Marín Franco JL, Dupont M, Kviatcovsky D, Milillo A, Schierloh P, Moraña EJ, Poggi S, Palmero D, Mata-Espinosa D, González-Domínguez E, León Contreras JC, Barrionuevo P, Rearte B, Córdoba Moreno MO, Fontanals A, Crotta Asis A, Gago G, Cougoule C, Neyrolles O, Maridonneau-Parini I, Sánchez-Torres C, Hernández-Pando R, Vérollet C, Lugo-Villarino G, Sasiain MDC, Balboa L. Formation of Foamy Macrophages by Tuberculous Pleural Effusions Is Triggered by the Interleukin-10/Signal Transducer and Activator of Transcription 3 Axis through ACAT Upregulation. Front Immunol 2018; 9:459. [PMID: 29593722 PMCID: PMC5854656 DOI: 10.3389/fimmu.2018.00459] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/20/2018] [Indexed: 12/18/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to persist in its human host relies on numerous immune evasion strategies, such as the deregulation of the lipid metabolism leading to the formation of foamy macrophages (FM). Yet, the specific host factors leading to the foamy phenotype of Mtb-infected macrophages remain unknown. Herein, we aimed to address whether host cytokines contribute to FM formation in the context of Mtb infection. Our approach is based on the use of an acellular fraction of tuberculous pleural effusions (TB-PE) as a physiological source of local factors released during Mtb infection. We found that TB-PE induced FM differentiation as observed by the increase in lipid bodies, intracellular cholesterol, and expression of the scavenger receptor CD36, as well as the enzyme acyl CoA:cholesterol acyl transferase (ACAT). Importantly, interleukin-10 (IL-10) depletion from TB-PE prevented the augmentation of all these parameters. Moreover, we observed a positive correlation between the levels of IL-10 and the number of lipid-laden CD14+ cells among the pleural cells in TB patients, demonstrating that FM differentiation occurs within the pleural environment. Downstream of IL-10 signaling, we noticed that the transcription factor signal transducer and activator of transcription 3 was activated by TB-PE, and its chemical inhibition prevented the accumulation of lipid bodies and ACAT expression in macrophages. In terms of the host immune response, TB-PE-treated macrophages displayed immunosuppressive properties and bore higher bacillary loads. Finally, we confirmed our results using bone marrow-derived macrophage from IL-10-/- mice demonstrating that IL-10 deficiency partially prevented foamy phenotype induction after Mtb lipids exposure. In conclusion, our results evidence a role of IL-10 in promoting the differentiation of FM in the context of Mtb infection, contributing to our understanding of how alterations of the host metabolic factors may favor pathogen persistence.
Collapse
Affiliation(s)
- Melanie Genoula
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| | - José Luis Marín Franco
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| | - Maeva Dupont
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Denise Kviatcovsky
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| | - Ayelén Milillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Pablo Schierloh
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| | - Eduardo Jose Moraña
- Instituto Prof. Dr. Raúl Vaccarezza, Hospital de Infecciosas Dr. F. J. Muñiz, Buenos Aires, Argentina
| | - Susana Poggi
- Instituto Prof. Dr. Raúl Vaccarezza, Hospital de Infecciosas Dr. F. J. Muñiz, Buenos Aires, Argentina
| | - Domingo Palmero
- Instituto Prof. Dr. Raúl Vaccarezza, Hospital de Infecciosas Dr. F. J. Muñiz, Buenos Aires, Argentina
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Erika González-Domínguez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan Carlos León Contreras
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Paula Barrionuevo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Bárbara Rearte
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marlina Olyissa Córdoba Moreno
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | - Agostina Crotta Asis
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Céline Cougoule
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carmen Sánchez-Torres
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Christel Vérollet
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - María Del Carmen Sasiain
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| | - Luciana Balboa
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| |
Collapse
|
41
|
Ravimohan S, Kornfeld H, Weissman D, Bisson GP. Tuberculosis and lung damage: from epidemiology to pathophysiology. Eur Respir Rev 2018; 27:27/147/170077. [PMID: 29491034 PMCID: PMC6019552 DOI: 10.1183/16000617.0077-2017] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/28/2017] [Indexed: 12/12/2022] Open
Abstract
A past history of pulmonary tuberculosis (TB) is a risk factor for long-term respiratory impairment. Post-TB lung dysfunction often goes unrecognised, despite its relatively high prevalence and its association with reduced quality of life. Importantly, specific host and pathogen factors causing lung impairment remain unclear. Host immune responses probably play a dominant role in lung damage, as excessive inflammation and elevated expression of lung matrix-degrading proteases are common during TB. Variability in host genes that modulate these immune responses may determine the severity of lung impairment, but this hypothesis remains largely untested. In this review, we provide an overview of the epidemiological literature on post-TB lung impairment and link it to data on the pathogenesis of lung injury from the perspective of dysregulated immune responses and immunogenetics. Host factors driving lung injury in TB likely contribute to variable patterns of pulmonary impairment after TBhttp://ow.ly/a3of30hBsxB
Collapse
Affiliation(s)
- Shruthi Ravimohan
- Dept of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hardy Kornfeld
- Dept of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Drew Weissman
- Dept of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory P Bisson
- Dept of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Dept of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Abstract
Necrosis is a hallmark of several widespread diseases or their direct complications. In the past decade, we learned that necrosis can be a regulated process that is potentially druggable. RIPK3- and MLKL-mediated necroptosis represents by far the best studied pathway of regulated necrosis. During necroptosis, the release of damage-associated molecular patterns (DAMPs) drives a phenomenon referred to as necroinflammation, a common consequence of necrosis. However, most studies of regulated necrosis investigated cell lines in vitro in a cell autonomous manner, which represents a non-physiological situation. Conclusions based on such work might not necessarily be transferrable to disease states in which synchronized, non-cell autonomous effects occur. Here, we summarize the current knowledge of the pathophysiological relevance of necroptosis in vivo, and in light of this understanding, we reassess the morphological classification of necrosis that is generally used by pathologists. Along these lines, we discuss the paucity of data implicating necroptosis in human disease. Finally, the in vivo relevance of non-necroptotic forms of necrosis, such as ferroptosis, is addressed.
Collapse
Affiliation(s)
- Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
43
|
Pathogenesis and Animal Models of Post-Primary (Bronchogenic) Tuberculosis, A Review. Pathogens 2018; 7:pathogens7010019. [PMID: 29415434 PMCID: PMC5874745 DOI: 10.3390/pathogens7010019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/30/2022] Open
Abstract
Primary and post-primary tuberculosis (TB) are different diseases caused by the same organism. Primary TB produces systemic immunity. Post-primary TB produces cavities to support massive proliferation of organisms for transmission of infection to new hosts from a person with sufficient immunity to prevent systemic infection. Post-primary, also known as bronchogenic, TB begins in humans as asymptomatic bronchial spread of obstructive lobular pneumonia, not as expanding granulomas. Most lesions regress spontaneously. However, some undergo caseation necrosis that is coughed out through the necrotic bronchi to form cavities. Caseous pneumonia that is not expelled through the bronchi is retained to become the focus of fibrocaseous disease. No animal reproduces this entire process. However, it appears that many mammals utilize similar mechanisms, but fail to coordinate them as do humans. Understanding this makes it possible to use human tuberculous lung sections to guide manipulation of animals to produce models of particular human lesions. For example, slowly progressive and reactivation TB in mice resemble developing human bronchogenic TB. Similarly, bronchogenic TB and cavities resembling those in humans can be induced by bronchial infection of sensitized rabbits. Granulomas in guinea pigs have characteristics of both primary and post primary TB. Mice can be induced to produce a spectrum of human like caseating granulomas. There is evidence that primates can develop bronchogenic TB. We are optimistic that such models developed by coordinated study of human and animal tissues can be used with modern technologies to finally address long-standing questions about host/parasite relationships in TB, and support development of targeted therapeutics and vaccines.
Collapse
|
44
|
Ufimtseva E, Eremeeva N, Petrunina E, Umpeleva T, Karskanova S, Bayborodin S, Vakhrusheva D, Kravchenko M, Skornyakov S. Ex vivo expansion of alveolar macrophages with Mycobacterium tuberculosis from the resected lungs of patients with pulmonary tuberculosis. PLoS One 2018; 13:e0191918. [PMID: 29401466 PMCID: PMC5798839 DOI: 10.1371/journal.pone.0191918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/12/2018] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis (TB), with the Mycobacterium tuberculosis (Mtb) as the causative agent, remains to be a serious world health problem. Traditional methods used for the study of Mtb in the lungs of TB patients do not provide information about the number and functional status of Mtb, especially if Mtb are located in alveolar macrophages. We have developed a technique to produce ex vivo cultures of cells from different parts of lung tissues surgically removed from patients with pulmonary TB and compared data on the number of cells with Mtb inferred by the proposed technique to the results of bacteriological and histological analyses used for examination of the resected lungs. The ex vivo cultures of cells obtained from the resected lungs of all patients were largely composed of CD14-positive alveolar macrophages, foamy or not, with or without Mtb. Lymphocytes, fibroblasts, neutrophils, and multinucleate Langhans giant cells were also observed. We found alveolar macrophages with Mtb in the ex vivo cultures of cells from the resected lungs of even those TB patients, whose sputum smears and lung tissues did not contain acid-fast Mtb or reveal growing Mtb colonies on dense medium. The detection of alveolar macrophages with Mtb in ex vivo culture as soon as 16-18 h after isolation of cells from the resected lungs of all TB patients suggests that the technique proposed for assessing the level of infection in alveolar macrophages of TB patients has higher sensitivity than do prolonged bacteriological or pathomorphological methods. The proposed technique allowed us to rapidly (in two days after surgery) determine the level of infection with Mtb in the cells of the resected lungs of TB patients and, by the presence or absence of Mtb colonies, including those with cording morphology, the functional status of the TB agent at the time of surgery.
Collapse
Affiliation(s)
- Elena Ufimtseva
- Laboratory of Medical Biotechnology, Research Institute of Biochemistry, Novosibirsk, Russia
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| | - Natalya Eremeeva
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| | - Ekaterina Petrunina
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| | - Tatiana Umpeleva
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| | - Svetlana Karskanova
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| | - Sergey Bayborodin
- Shared Center for Microscopic Analysis of Biological Objects, Federal Research Center Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Diana Vakhrusheva
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| | - Marionella Kravchenko
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| | - Sergey Skornyakov
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| |
Collapse
|
45
|
Abstract
A review of pulmonary infections of all types with diagnostic and morphological features.
Collapse
|
46
|
Dong Z, Shi J, Dorhoi A, Zhang J, Soodeen-Lalloo AK, Tan W, Yin H, Sha W, Li W, Zheng R, Liu Z, Yang H, Qin L, Wang J, Huang X, Wu C, Kaufmann SHE, Feng Y. Hemostasis and Lipoprotein Indices Signify Exacerbated Lung Injury in TB With Diabetes Comorbidity. Chest 2017; 153:1187-1200. [PMID: 29224833 DOI: 10.1016/j.chest.2017.11.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/08/2017] [Accepted: 11/20/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Exacerbated immunopathology is a frequent consequence of TB that is complicated by diabetes mellitus (DM); however, the underlying mechanisms are still poorly defined. METHODS In the two groups of age- and sex-matched patients with TB and DM (DM-TB) and with TB and without DM, we microscopically evaluated the areas of caseous necrosis and graded the extent of perinecrotic fibrosis in lung biopsies from the sputum smear-negative (SN) patients. We scored acid-fast bacilli in sputum smear-positive (SP) patients and compiled CT scan data from both the SN and SP patients. We compared inflammatory biomarkers and routine hematologic and biochemical parameters. Binary logistic regression analyses were applied to define the indices associated with the extent of lung injury. RESULTS Enlarged caseous necrotic areas with exacerbated fibrotic encapsulations were found in SN patients with DM-TB, consistent with the higher ratio of thick-walled cavities and more bacilli in the sputum from SP patients with DM-TB. Larger necrotic foci were detected in men compared with women within the SN TB groups. Significantly higher fibrinogen and lower high-density lipoprotein cholesterol (HDL-C) were observed in SN patients with DM-TB. Regression analyses revealed that diabetes, activation of the coagulation pathway (shown by increased platelet distribution width, decreased mean platelet volume, and shortened prothrombin time), and dyslipidemia (shown by decreased low-density lipoprotein cholesterol, HDL-C, and apolipoprotein A) are risk factors for severe lung lesions in both SN and SP patients with TB. CONCLUSIONS Hemostasis and dyslipidemia are associated with granuloma necrosis and fibroplasia leading to exacerbated lung damage in TB, especially in patients with DM-TB.
Collapse
Affiliation(s)
- Zhengwei Dong
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China; Department of Pathology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jingyun Shi
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China; Department of Radiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jie Zhang
- Department of Epidemiology and Biostatistics, Tongji University, School of Medicine, Shanghai, China
| | - Adiilah K Soodeen-Lalloo
- Department of Radiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - WenLing Tan
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Hongyun Yin
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Weitong Li
- Department of Radiology, Shishi Hospital, Fujian, China
| | - Ruijuan Zheng
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Zhonghua Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Hua Yang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Lianhua Qin
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jie Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Xiaochen Huang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Chunyan Wu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China; Department of Pathology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Yonghong Feng
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China.
| |
Collapse
|
47
|
Wong KW. Trick or tween: An inflammatory surprise when M. tuberculosis knocks a cell's door and no tween is provided. Virulence 2017; 8:632-634. [PMID: 27820666 DOI: 10.1080/21505594.2016.1257460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ka-Wing Wong
- a Shanghai Public Health Clinical Center , Key Laboratory of Medical Molecular Virology , School of Basic Medical Sciences , Fudan University , Shanghai , China
| |
Collapse
|
48
|
Abstract
The granuloma is the hallmark of tuberculosis and simultaneously signifies acquisition of an infection and induction of a host immune response. But who benefits more from the development of the granuloma, the host or the pathogen? Is microbe or man dictating disease course and progression? Mycobacterial diseases affect humans and animals alike, and the concepts presented in this review reflect host-pathogen interactions that influence not only mycobacterial granulomas in humans and animals but also other infectious granulomatous diseases that are encountered in veterinary medicine. Current dogma supports that an organized granuloma is a mark of an adequate and “restrictive” host immune response. However, the formation of a granuloma also provides a niche for the maturation, growth, and persistence of numerous infectious agents, and these pathogens devote some portion of their genetic machinery to ensuring these structures’ form. An understanding of pathogens’ contributions to granuloma formation can aid the development of host-directed therapies and other antimicrobial and antiparasitic therapies that can tip this balance in favor of a restrictive host response and elimination—not just containment—of the infectious organism. This review discusses animal models that have aided our understanding of pathogens’ contribution to the host response and how mycobacterial virulence genes direct host pathology in ways that may aid disease transmission and/or persistence in the form of latent infection.
Collapse
Affiliation(s)
- Amanda J. Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Abstract
This article provides an overview of the animal models currently used in tuberculosis research, both for understanding the basic science of the disease process and also for practical issues such as testing new vaccine candidates and evaluating the activity of potential new drugs. Animals range in size, from zebrafish to cattle, and in degrees of similarity to the human disease from both an immunological and pathologic perspective. These models have provided a great wealth of information (impossible to obtain simply from observing infected humans), but we emphasize here that one must use care in interpreting or applying this information, and indeed the true art of animal modeling is in deciding what is pertinent information and what might not be. These ideas are discussed in the context of current approaches in vaccine and drug development, including a discussion of certain limitations the field is currently facing in such studies.
Collapse
|
50
|
Gong W, Yang Y, Luo Y, Li N, Bai X, Liu Y, Zhang J, Chen M, Zhang C, Wu X. An alert of Mycobacterium tuberculosis infection of rhesus macaques in a wild zoo in China. Exp Anim 2017; 66:357-365. [PMID: 28659540 PMCID: PMC5682348 DOI: 10.1538/expanim.16-0095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mycobacterium tuberculosis, the pathogen that causes tuberculosis (TB),
is becoming increasingly recognized as an important cause of fatal chronic illnesses in
China. In this study, we report an infectious disease among 84 rhesus macaques at a
Chinese zoo. Their clinical signs and symptoms were very similar with the manifestations
of TB in humans. To determine the potential pathogens of this outbreak, many methods were
used. First, tuberculin skin tests showed that none of the monkeys displayed significant
skin reactions. Subsequently, the sera were tested for specific antibody IgG; 29 (34.5%)
and 39 (46.4%) blood samples tested positive by TB-IgG and TB-DOT, respectively.
Radiographic examination showed characteristic imageology changes in 14 (16.7%) monkeys.
One individual determined as positive by the above three methods was euthanized, and
histopathological analysis demonstrated typical granulomas and caseous necrosis in the
lung, liver, spleen, and intestine. Furthermore, the pathogenic mycobacteria were isolated
from lung lobe, cultured on acidic Lowenstein-Jensen culture medium, and identified as
M. tuberculosis by real-time PCR and DNA sequencing. Nevertheless, the
origin of the infection remained unknown. These findings emphasize the need to strengthen
the management and training of staff, especially those working at animal shelters.
Collapse
Affiliation(s)
- Wenping Gong
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 309th Hospital of Chinese PLA, Heishanhu Road 17#, Haidian District, Beijing 100091, P.R. China
| | - Yourong Yang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 309th Hospital of Chinese PLA, Heishanhu Road 17#, Haidian District, Beijing 100091, P.R. China
| | - Yi Luo
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Xizhimen Street 137#, Xicheng District, Beijing 100044, P.R. China
| | - Ning Li
- Department of Pathology, the 309th Hospital of Chinese PLA, Heishanhu Road 17#, Haidian District, Beijing 100091, P.R. China
| | - Xuejuan Bai
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 309th Hospital of Chinese PLA, Heishanhu Road 17#, Haidian District, Beijing 100091, P.R. China
| | - Yinping Liu
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 309th Hospital of Chinese PLA, Heishanhu Road 17#, Haidian District, Beijing 100091, P.R. China
| | - Junxian Zhang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 309th Hospital of Chinese PLA, Heishanhu Road 17#, Haidian District, Beijing 100091, P.R. China
| | - Ming Chen
- Department of Pharmacy, the 309th Hospital of Chinese PLA, Heishanhu Road 17#, Haidian District, Beijing 100091, P.R. China
| | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Xizhimen Street 137#, Xicheng District, Beijing 100044, P.R. China
| | - Xueqiong Wu
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 309th Hospital of Chinese PLA, Heishanhu Road 17#, Haidian District, Beijing 100091, P.R. China
| |
Collapse
|