1
|
Cheng S, Xu M, Li M, Feng Y, He L, Liu T, Ma L, Li X. Improving Anti-HIV activity and pharmacokinetics of enfuvirtide (T20) by modification with oligomannose. Eur J Med Chem 2024; 269:116299. [PMID: 38479167 DOI: 10.1016/j.ejmech.2024.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
Dendritic cells (DCs) play a pivotal role in controlling HIV-1 infections of CD4+ T cells. DC-SIGN, which is expressed on the surface of DCs, efficiently captures HIV-1 virions by binding to the highly mannosylated membrane protein, gp120, and then the DCs transport the virus to target T cells in lymphoid organs. This study explored the modification of T20, a peptide inhibitor of HIV-1 fusion, by conjugation of the N-terminus with varying sizes of oligomannose, which are DC-SIGN-specific carbohydrates, aiming to create dual-targeting HIV inhibitors. Mechanistic studies indicated the dual-target binding of the conjugates. Antiviral assays demonstrated that N-terminal mannosylation of T20 resulted in increased inhibition of the viral infection of TZM-b1 cells (EC50 = 0.3-0.8 vs. 1.4 nM). Pentamannosylated T20 (M5-T20) exhibited a stronger inhibitory effect on virus entry into DC-SIGN+ 293T cells compared with T20 (67% vs. 50% inhibition at 500 μM). M5-T20 displayed an extended half-life in rats relative to T20 (T1/2: 8.56 vs. 1.64 h, respectively). These conjugates represent a potential new treatment for HIV infections with improved antiviral activity and pharmacokinetics, and this strategy may prove useful in developing dual-target inhibitors for other pathogens that require DC-SIGN involvement for infection.
Collapse
Affiliation(s)
- Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China
| | - Mingyue Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China
| | - Mingli Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China
| | - Yong Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China
| | - Lin He
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Tong Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China
| | - Liying Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China.
| |
Collapse
|
2
|
Cramer J, Jiang X, Aliu B, Ernst B. Combating DC-SIGN-mediated SARS-CoV-2 dissemination by glycan-mimicking polymers. Arch Pharm (Weinheim) 2024; 357:e2300396. [PMID: 38086006 DOI: 10.1002/ardp.202300396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 04/05/2024]
Abstract
Many viruses exploit the human C-type lectin receptor dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN) for cell entry and virus dissemination. An inhibition of DC-SIGN-mediated virus attachment by glycan-derived ligands has, thus, emerged as a promising strategy toward broad-spectrum antiviral therapeutics. In this contribution, several cognate fragments of oligomannose- and complex-type glycans grafted onto a poly-l-lysine scaffold are evaluated as polyvalent DC-SIGN ligands. The range of selected carbohydrate epitopes encompasses linear (α- d-Man-(1→2)-α- d-Man, α- d-Man-(1→2)-α- d-Man-(1→2)-α- d-Man-(1→3)-α- d-Man) and branched (α- d-Man-(1→6)-[α- d-Man-(1→3)]-α- d-Man) oligomannosides, as well as α- l-Fuc. The thermodynamics of binding are investigated on a mono- and multivalent level to shed light on the molecular details of the interactions with the tetravalent receptor. Cellular models of virus attachment and DC-SIGN-mediated virus dissemination reveal a high potency of the presented glycopolymers in the low pico- and nanomolar ranges, respectively. The high activity of oligomannose epitopes in combination with the biocompatible properties of the poly- l-lysine scaffold highlights the potential for further preclinical development of polyvalent DC-SIGN ligands.
Collapse
Affiliation(s)
- Jonathan Cramer
- Department of Pharmaceutical Sciences, Group Molecular Pharmacy, Pharmazentrum, University of Basel, Basel, Switzerland
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Xiaohua Jiang
- Department of Pharmaceutical Sciences, Group Molecular Pharmacy, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Butrint Aliu
- Department of Pharmaceutical Sciences, Group Molecular Pharmacy, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences, Group Molecular Pharmacy, Pharmazentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Cheng S, Li M, Feng Y, Liu T, He L, Xu M, Ma L, Li X. Glycan-Modified Peptides for Dual Inhibition of Human Immunodeficiency Virus Entry into Dendritic Cells and T Cells. J Med Chem 2024; 67:4225-4233. [PMID: 38364308 DOI: 10.1021/acs.jmedchem.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Dendritic cells (DCs) play a crucial role in HIV-1 infection of CD4+ T cells. DC-SIGN, a lectin expressed on the surface of DCs, binds to the highly mannosylated viral membrane protein gp120 to capture HIV-1 virions and then transport them to target T cells. In this study, we modified peptide C34, an HIV-1 fusion inhibitor, at different sites using different sizes of the DC-SIGN-specific carbohydrates to provide dual-targeted HIV inhibition. The dual-target binding was confirmed by mechanistic studies. Pentamannose-modified C34 inhibited virus entry into both DC-SIGN+ 293T cells (52%-71% inhibition at 500 μM) and CD4+ TZM-b1 cells (EC50 = 0.7-1.7 nM). One conjugate, NC-M5, showed an extended half-life relative to C34 in rats (T1/2: 7.8 vs 1.02 h). These improvements in antiviral activity and pharmacokinetics have potential for HIV treatment and the development of dual-target inhibitors for pathogens that require the involvement of DC-SIGN for infection.
Collapse
Affiliation(s)
- Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing 101408, China
| | - Mingli Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing 101408, China
| | - Yong Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing 101408, China
| | - Tong Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing 101408, China
| | - Lin He
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Mingyue Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing 101408, China
| | - Liying Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing 101408, China
| |
Collapse
|
4
|
Bains A, Fischer K, Guan W, LiWang PJ. The Antiviral Activity of the Lectin Griffithsin against SARS-CoV-2 Is Enhanced by the Presence of Structural Proteins. Viruses 2023; 15:2452. [PMID: 38140693 PMCID: PMC10747160 DOI: 10.3390/v15122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Although COVID-19 transmission has been reduced by the advent of vaccinations and a variety of rapid monitoring techniques, the SARS-CoV-2 virus itself has shown a remarkable ability to mutate and persist. With this long track record of immune escape, researchers are still exploring prophylactic treatments to curtail future SARS-CoV-2 variants. Specifically, much focus has been placed on the antiviral lectin Griffithsin in preventing spike protein-mediated infection via the hACE2 receptor (direct infection). However, an oft-overlooked aspect of SARS-CoV-2 infection is viral capture by attachment receptors such as DC-SIGN, which is thought to facilitate the initial stages of COVID-19 infection in the lung tissue (called trans-infection). In addition, while immune escape is dictated by mutations in the spike protein, coronaviral virions also incorporate M, N, and E structural proteins within the particle. In this paper, we explored how several structural facets of both the SARS-CoV-2 virion and the antiviral lectin Griffithsin can affect and attenuate the infectivity of SARS-CoV-2 pseudovirus. We found that Griffithsin was a better inhibitor of hACE2-mediated direct infection when the coronaviral M protein is present compared to when it is absent (possibly providing an explanation regarding why Griffithsin shows better inhibition against authentic SARS-CoV-2 as opposed to pseudotyped viruses, which generally do not contain M) and that Griffithsin was not an effective inhibitor of DC-SIGN-mediated trans-infection. Furthermore, we found that DC-SIGN appeared to mediate trans-infection exclusively via binding to the SARS-CoV-2 spike protein, with no significant effect observed when other viral proteins (M, N, and/or E) were present. These results provide etiological data that may help to direct the development of novel antiviral treatments, either by leveraging Griffithsin binding to the M protein as a novel strategy to prevent SARS-CoV-2 infection or by narrowing efforts to inhibit trans-infection to focus on DC-SIGN binding to SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Arjan Bains
- Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Kathryn Fischer
- Quantitative and Systems Biology, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Wenyan Guan
- Materials and Biomaterials Science and Engineering, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Patricia J. LiWang
- Molecular Cell Biology, Health Sciences Research Institute, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| |
Collapse
|
5
|
Upadhyay C, Rao PG, Feyznezhad R. Dual Role of HIV-1 Envelope Signal Peptide in Immune Evasion. Viruses 2022; 14:v14040808. [PMID: 35458538 PMCID: PMC9030904 DOI: 10.3390/v14040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
HIV-1 Env signal peptide (SP) is an important contributor to Env functions. Env is generated from Vpu/Env encoded bicistronic mRNA such that the 5′ end of Env-N-terminus, that encodes for Env-SP overlaps with 3′ end of Vpu. Env SP displays high sequence diversity, which translates into high variability in Vpu sequence. This study aimed to understand the effect of sequence polymorphism in the Vpu-Env overlapping region (VEOR) on the functions of two vital viral proteins: Vpu and Env. We used infectious molecular clone pNL4.3-CMU06 and swapped its SP (or VEOR) with that from other HIV-1 isolates. Swapping VEOR did not affect virus production in the absence of tetherin however, presence of tetherin significantly altered the release of virus progeny. VEOR also altered Vpu’s ability to downregulate CD4 and tetherin. We next tested the effect of these swaps on Env functions. Analyzing the binding of monoclonal antibodies to membrane embedded Env revealed changes in the antigenic landscape of swapped Envs. These swaps affected the oligosaccharide composition of Env-N-glycans as shown by changes in DC-SIGN-mediated virus transmission. Our study suggests that genetic diversity in VEOR plays an important role in the differential pathogenesis and also assist in immune evasion by altering Env epitope exposure.
Collapse
|
6
|
HIV-1 and HTLV-1 Transmission Modes: Mechanisms and Importance for Virus Spread. Viruses 2022; 14:v14010152. [PMID: 35062355 PMCID: PMC8779814 DOI: 10.3390/v14010152] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
So far, only two retroviruses, human immunodeficiency virus (HIV) (type 1 and 2) and human T-cell lymphotropic virus type 1 (HTLV-1), have been recognized as pathogenic for humans. Both viruses mainly infect CD4+ T lymphocytes. HIV replication induces the apoptosis of CD4 lymphocytes, leading to the development of acquired immunodeficiency syndrome (AIDS). After a long clinical latency period, HTLV-1 can transform lymphocytes, with subsequent uncontrolled proliferation and the manifestation of a disease called adult T-cell leukemia (ATLL). Certain infected patients develop neurological autoimmune disorder called HTLV-1-associated myelopathy, also known as tropical spastic paraparesis (HAM/TSP). Both viruses are transmitted between individuals via blood transfusion, tissue/organ transplantation, breastfeeding, and sexual intercourse. Within the host, these viruses can spread utilizing either cell-free or cell-to-cell modes of transmission. In this review, we discuss the mechanisms and importance of each mode of transmission for the biology of HIV-1 and HTLV-1.
Collapse
|
7
|
Pappalardo JS, Salmaso S, Levchenko TS, Mastrotto F, Bersani S, Langellotti CA, Vermeulen M, Ghersa F, Quattrocchi V, Zamorano PI, Hartner WC, Toniutti M, Musacchio T, Torchilin VP. Characterization of a Nanovaccine Platform Based on an α1,2-Mannobiose Derivative Shows Species-non-specific Targeting to Human, Bovine, Mouse, and Teleost Fish Dendritic Cells. Mol Pharm 2021; 18:2540-2555. [PMID: 34106726 DOI: 10.1021/acs.molpharmaceut.1c00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dendritic cells serve as the main immune cells that trigger the immune response. We developed a simple and cost-effective nanovaccine platform based on the α1',2-mannobiose derivative for dendritic cell targeting. In previous work, we have formulated the α1,2-mannobiose-based nanovaccine platform with plasmid DNA and tested it in cattle against BoHV-1 infection. There, we have shown that the dendritic cell targeting using this nanovaccine platform in vivo can boost the immunogenicity, resulting in a long-lasting immunity. In this work, we aim to characterize the α1',2-mannobiose derivative, which is key in the nanovaccine platform. This DC-targeting strategy takes advantage of the specific receptor known as DC-SIGN and exploits its capacity to bind α1,2-mannobiose that is present at terminal ends of oligosaccharides in certain viruses, bacteria, and other pathogens. The oxidative conjugation of α1',2-mannobiose to NH2-PEG2kDa-DSPE allowed us to preserve the chemical structure of the non-reducing mannose of the disaccharide and the OH groups and the stereochemistry of all carbons of the reducing mannose involved in the binding to DC-SIGN. Here, we show specific targeting to DC-SIGN of decorated micelles incubated with the Raji/DC-SIGN cell line and uptake of targeted liposomes that took place in human, bovine, mouse, and teleost fish DCs in vitro, by flow cytometry. Specific targeting was found in all cultures, demonstrating a species-non-specific avidity for this ligand, which opens up the possibility of using this nanoplatform to develop new vaccines for various species, including humans.
Collapse
Affiliation(s)
- Juan Sebastian Pappalardo
- Veterinary Nanomedicine Group, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA-CONICET), EEA Bariloche, Instituto Nacional de Tecnología Agropecuaria, Bote Modesta Victoria 4450, San Carlos de Bariloche, Río Negro R8403DVZ, Argentina.,Immunology and Immunomodulators Group, Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), IV, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto 2799, William Morris, Buenos Aires B1681FUU, Argentina.,Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo, 5, Padova 35121, Padova, Italy
| | - Tatyana S Levchenko
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo, 5, Padova 35121, Padova, Italy
| | - Sara Bersani
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo, 5, Padova 35121, Padova, Italy
| | - Cecilia A Langellotti
- Immunology and Immunomodulators Group, Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), IV, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto 2799, William Morris, Buenos Aires B1681FUU, Argentina.,National Council of Scientific and Technical Research (CONICET), Avenida Rivadavia 1917, Ciudad de Buenos Aires C1033AAJ, Argentina
| | - Monica Vermeulen
- National Council of Scientific and Technical Research (CONICET), Avenida Rivadavia 1917, Ciudad de Buenos Aires C1033AAJ, Argentina.,Institute of Experimental Medicine (IMEX, ANM-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, Ciudad de Buenos Aires C1425AUM, Argentina
| | - Federica Ghersa
- Veterinary Nanomedicine Group, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA-CONICET), EEA Bariloche, Instituto Nacional de Tecnología Agropecuaria, Bote Modesta Victoria 4450, San Carlos de Bariloche, Río Negro R8403DVZ, Argentina.,Parasitology Laboratory, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNCo-CONICET) Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, Río Negro R8400FRF, Argentina
| | - Valeria Quattrocchi
- Immunology and Immunomodulators Group, Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), IV, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto 2799, William Morris, Buenos Aires B1681FUU, Argentina
| | - Patricia I Zamorano
- Immunology and Immunomodulators Group, Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), IV, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto 2799, William Morris, Buenos Aires B1681FUU, Argentina.,National Council of Scientific and Technical Research (CONICET), Avenida Rivadavia 1917, Ciudad de Buenos Aires C1033AAJ, Argentina
| | - William C Hartner
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Micaela Toniutti
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Tiziana Musacchio
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Wabnitz GH, Honus S, Habicht J, Orlik C, Kirchgessner H, Samstag Y. LFA-1 cluster formation in T-cells depends on L-plastin phosphorylation regulated by P90 RSK and PP2A. Cell Mol Life Sci 2021; 78:3543-3564. [PMID: 33449151 PMCID: PMC11072591 DOI: 10.1007/s00018-020-03744-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 11/21/2020] [Accepted: 12/15/2020] [Indexed: 10/25/2022]
Abstract
The integrin LFA-1 is crucial for T-cell/ APC interactions and sensitive recognition of antigens. Precise nanoscale organization and valency regulation of LFA-1 are mandatory for an appropriate function of the immune system. While the inside-out signals regulating the LFA-1 affinity are well described, the molecular mechanisms controlling LFA-1 avidity are still not fully understood. Here, we show that activation of the actin-bundling protein L-plastin (LPL) through phosphorylation at serine-5 enables the formation of clusters containing LFA-1 in high-affinity conformation. Phosphorylation of LPL is induced by an nPKC-MEK-p90RSK pathway and counter-regulated by the serine-threonine phosphatase PP2A. Interestingly, recruitment of LFA-1 into the T-cell/APC contact zone is not affected by LPL phosphorylation. Instead, for this process, activation of the actin-remodeling protein cofilin through dephosphorylation is essential. Together, this study reveals a dichotomic spatial regulation of LFA-1 clustering and microscale movement in T-cells by two different actin-binding proteins, LPL and cofilin.
Collapse
Affiliation(s)
- Guido H Wabnitz
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.
| | - Sibylle Honus
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Jüri Habicht
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Christian Orlik
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Henning Kirchgessner
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Yvonne Samstag
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Brouwer PJM, Antanasijevic A, de Gast M, Allen JD, Bijl TPL, Yasmeen A, Ravichandran R, Burger JA, Ozorowski G, Torres JL, LaBranche C, Montefiori DC, Ringe RP, van Gils MJ, Moore JP, Klasse PJ, Crispin M, King NP, Ward AB, Sanders RW. Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. NPJ Vaccines 2021; 6:24. [PMID: 33563983 PMCID: PMC7873233 DOI: 10.1038/s41541-021-00285-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/07/2021] [Indexed: 01/09/2023] Open
Abstract
The HIV-1 envelope glycoprotein trimer is poorly immunogenic because it is covered by a dense glycan shield. As a result, recombinant Env glycoproteins generally elicit inadequate antibody levels that neutralize clinically relevant, neutralization-resistant (Tier-2) HIV-1 strains. Multivalent antigen presentation on nanoparticles is an established strategy to increase vaccine-driven immune responses. However, due to nanoparticle instability in vivo, the display of non-native Env structures, and the inaccessibility of many neutralizing antibody (NAb) epitopes, the effects of nanoparticle display are generally modest for Env trimers. Here, we generate two-component self-assembling protein nanoparticles presenting twenty SOSIP trimers of the clade C Tier-2 genotype 16055. We show in a rabbit immunization study that these nanoparticles induce 60-fold higher autologous Tier-2 NAb titers than the corresponding SOSIP trimers. Epitope mapping studies reveal that the presentation of 16055 SOSIP trimers on these nanoparticle focuses antibody responses to an immunodominant apical epitope. Thus, these nanoparticles are a promising platform to improve the immunogenicity of Env trimers with apex-proximate NAb epitopes.
Collapse
Affiliation(s)
- Philip J M Brouwer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marlon de Gast
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Tom P L Bijl
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Judith A Burger
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - Rajesh P Ringe
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
- Institute of Microbial Technology, Chandigarh, India
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
10
|
Cadima-Couto I, Tauzin A, Freire JM, Figueira TN, Silva RDM, Pérez-Peinado C, Cunha-Santos C, Bártolo I, Taveira N, Gano L, Correia JDG, Goncalves J, Mammano F, Andreu D, Castanho MARB, Veiga AS. Anti-HIV-1 Activity of pepRF1, a Proteolysis-Resistant CXCR4 Antagonist Derived from Dengue Virus Capsid Protein. ACS Infect Dis 2021; 7:6-22. [PMID: 33319557 DOI: 10.1021/acsinfecdis.9b00507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is an urgent need for the development of new anti-HIV drugs that can complement existing medicines to be used against resistant strains. Here, we report the anti-HIV-1 peptide pepRF1, a human serum-resistant peptide derived from the Dengue virus capsid protein. In vitro, pepRF1 shows a 50% inhibitory concentration of 1.5 nM with a potential therapeutic window higher than 53 000. This peptide is specific for CXCR4-tropic strains, preventing viral entry into target cells by binding to the viral coreceptor CXCR4, acting as an antagonist of this receptor. pepRF1 is more effective than T20, the only peptide-based HIV-1 entry inhibitor approved, and excels in inhibiting a HIV-1 strain resistant to T20. Potentially, pepRF1 can be used alone or in combination with other anti-HIV drugs. Furthermore, one can also envisage its use as a novel therapeutic strategy for other CXCR4-related diseases.
Collapse
Affiliation(s)
- Iris Cadima-Couto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Alexandra Tauzin
- INSERM UMR 1124, Université de Paris, 45 rue des Saints Pères, F-75006 Paris, France
| | - João M. Freire
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Tiago N. Figueira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Rúben D. M. Silva
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Clara Pérez-Peinado
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Catarina Cunha-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês Bártolo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Taveira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Monte de Caparica, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Joao Goncalves
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Fabrizio Mammano
- INSERM UMR 1124, Université de Paris, 45 rue des Saints Pères, F-75006 Paris, France
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
11
|
Abstract
The innate immune system is comprised of both cellular and humoral players that recognise and eradicate invading pathogens. Therefore, the interplay between retroviruses and innate immunity has emerged as an important component of viral pathogenesis. HIV-1 infection in humans that results in hematologic abnormalities and immune suppression is well represented by changes in the CD4/CD8 T cell ratio and consequent cell death causing CD4 lymphopenia. The innate immune responses by mucosal barriers such as complement, DCs, macrophages, and NK cells as well as cytokine/chemokine profiles attain great importance in acute HIV-1 infection, and thus, prevent mucosal capture and transmission of HIV-1. Conversely, HIV-1 has evolved to overcome innate immune responses through RNA-mediated rapid mutations, pathogen-associated molecular patterns (PAMPs) modification, down-regulation of NK cell activity and complement receptors, resulting in increased secretion of inflammatory factors. Consequently, epithelial tissues lining up female reproductive tract express innate immune sensors including anti-microbial peptides responsible for forming primary barriers and have displayed an effective potent anti-HIV activity during phase I/II clinical trials.
Collapse
|
12
|
Relaño-Rodríguez I, Muñoz-Fernández MÁ. Emergence of Nanotechnology to Fight HIV Sexual Transmission: The Trip of G2-S16 Polyanionic Carbosilane Dendrimer to Possible Pre-Clinical Trials. Int J Mol Sci 2020; 21:ijms21249403. [PMID: 33321835 PMCID: PMC7764023 DOI: 10.3390/ijms21249403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Development of new, safe, and effective microbicides to prevent human immunodeficiency virus HIV sexual transmission is needed. Unfortunately, most microbicides proved ineffective to prevent the risk of HIV-infection in clinical trials. We are working with G2-S16 polyanionic carbosilane dendrimer (PCD) as a new possible vaginal topical microbicide, based on its short reaction times, wide availability, high reproducibility, and quantitative yields of reaction. G2-S16 PCD exerts anti-HIV activity at an early stage of viral replication, by blocking gp120/CD4/CCR5 interaction, and providing a barrier against infection for long periods of time. G2-S16 PCD was stable at different pH values, as well as in the presence of seminal fluids. It maintained the anti-HIV activity against R5/X4 HIV over time, did not generate any type of drug resistance, and retained the anti-HIV effect when exposed to semen-enhanced viral infection. Importantly, G2-S16 PCD did not modify vaginal microbiota neither in vitro or in vivo. Histopathological examination did not show vaginal irritation, inflammation, lesions, or damage in the vaginal mucosa, after administration of G2-S16 PCD at different concentrations and times in female mice and rabbit animal models. Based on these promising data, G2-S16 PCD could become a good, safe, and readily available candidate to use as a topical vaginal microbicide against HIV.
Collapse
Affiliation(s)
- Ignacio Relaño-Rodríguez
- Head Section of Immunology, Molecular Immunology Laboratory, General Universitary Hospital Gregorio Marañón, C/Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Maria Ángeles Muñoz-Fernández
- Head Section of Immunology, Molecular Immunology Laboratory, General Universitary Hospital Gregorio Marañón, C/Dr. Esquerdo 46, 28007 Madrid, Spain;
- Health Research Institute Gregorio Marañon (IiSGM), C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-586-8565
| |
Collapse
|
13
|
Marelli S, Williamson JC, Protasio AV, Naamati A, Greenwood EJD, Deane JE, Lehner PJ, Matheson NJ. Antagonism of PP2A is an independent and conserved function of HIV-1 Vif and causes cell cycle arrest. eLife 2020; 9:e53036. [PMID: 32292164 PMCID: PMC7920553 DOI: 10.7554/elife.53036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
The seminal description of the cellular restriction factor APOBEC3G and its antagonism by HIV-1 Vif has underpinned two decades of research on the host-virus interaction. We recently reported that HIV-1 Vif is also able to degrade the PPP2R5 family of regulatory subunits of key cellular phosphatase PP2A (PPP2R5A-E; Greenwood et al., 2016; Naamati et al., 2019). We now identify amino acid polymorphisms at positions 31 and 128 of HIV-1 Vif which selectively regulate the degradation of PPP2R5 family proteins. These residues covary across HIV-1 viruses in vivo, favouring depletion of PPP2R5A-E. Through analysis of point mutants and naturally occurring Vif variants, we further show that degradation of PPP2R5 family subunits is both necessary and sufficient for Vif-dependent G2/M cell cycle arrest. Antagonism of PP2A by HIV-1 Vif is therefore independent of APOBEC3 family proteins, and regulates cell cycle progression in HIV-infected cells.
Collapse
Affiliation(s)
- Sara Marelli
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - James C Williamson
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - Anna V Protasio
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - Adi Naamati
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - Edward JD Greenwood
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - Janet E Deane
- Department of Clinical Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute for Medical Research (CIMR), University of CambridgeCambridgeUnited Kingdom
| | - Paul J Lehner
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - Nicholas J Matheson
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
14
|
Lumngwena EN, Abrahams B, Shuping L, Cicala C, Arthos J, Woodman Z. Selective transmission of some HIV-1 subtype C variants might depend on Envelope stimulating dendritic cells to secrete IL-10. PLoS One 2020; 15:e0227533. [PMID: 31978062 PMCID: PMC6980567 DOI: 10.1371/journal.pone.0227533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/20/2019] [Indexed: 11/21/2022] Open
Abstract
Envelope (Env) phenotype(s) that provide transmitted founders (TF) with a selective advantage during HIV-1 transmission would be the ideal target for preventative therapy. We generated Env clones from four individuals infected with a single virus and one participant infected with multiple variants at transmission and compared phenotype with matched Envs from chronic infection (CI). When we determined whether pseudovirus (PSV) of the five TF and thirteen matched CI Env clones differed in their ability to 1) enter TZM-bl cells, 2) bind DC-SIGN, and 3) trans-infect CD4+ cells there was no association between time post-infection and variation in Env phenotype. However, when we compared the ability of PSV to induce monocyte-derived dendritic cells (MDDCs) to secrete Interleukin-10 (IL-10), we found that only TF Envs from single variant transmission cases induced MDDCs to secrete either higher or similar levels of IL-10 as the CI clones. Furthermore, interaction between MDDC DC-SIGN and Env was required for secretion of IL-10. When variants were grouped according to time post-infection, TF PSV induced the release of higher levels of IL-10 than their CI counterparts although this relationship varied across MDDC donors. The selection of variants during transmission is therefore likely a complex event dependent on both virus and host genetics. Our findings suggest that, potentially due to overall variation in N-glycosylation across variants, nuanced differences in binding of TF Env to DC-SIGN might trigger alternative DC immune responses (IRs) in the female genital tract (FGT) that favour HIV-1 survival and facilitate transmission.
Collapse
Affiliation(s)
- Evelyn Ngwa Lumngwena
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute for Medical Research and Medicinal Plants studies (IMPM), Ministry of Scientific Research and Innovation (MINRESI), Yaounde, Cameroon
- * E-mail: (ZW); (ENL)
| | - Bianca Abrahams
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Liliwe Shuping
- National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Claudia Cicala
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, United States of America
| | - James Arthos
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, United States of America
| | - Zenda Woodman
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail: (ZW); (ENL)
| |
Collapse
|
15
|
Al‐Shaya HM, Li H, Beg OU, Hamama AA, Witiak SM, Kaseloo P, Siddiqui RA. Phytochemical profile and antioxidation activity of annona fruit and its effect on lymphoma cell proliferation. Food Sci Nutr 2020; 8:58-68. [PMID: 31993132 PMCID: PMC6977502 DOI: 10.1002/fsn3.1228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 12/24/2022] Open
Abstract
Cancers of the lymphatic system are broadly classified into Hodgkin and non-Hodgkin types. Although lymphomas can be effectively treated with chemotherapy, this approach is associated with the risk of adverse side effects. High intake of certain vegetables and fruits is associated with a reduced risk of cancer development. We hypothesized that Annona fruit, which is rich in fibers and phytochemicals that are known to possess anticancer properties, can be effective in inhibiting lymphoma growth. The Annona fruit's fractions were extracted with water, methanol, or chloroform and then assayed for total phenolic, flavonoids, and tannins content; antioxidation activities; and inhibition of in vitro cell proliferation using the Ramos-1 lymphoma cells. The methanol fractions contained the highest phenolics, flavonoids, and tannins content, and antioxidation activity. However, the methanol extracts of skin, pulp, and seeds had a moderate whereas the chloroform extracts of pulp and seeds had strong effects on Ramos-1 cell proliferation. Our findings suggest that Annona fruits may be effective in the prevention or treatment of lymphoma.
Collapse
Affiliation(s)
- Huda Mohammed Al‐Shaya
- Food Chemistry and Nutrition Science Research LaboratoryVirginia State UniversityPetersburgVirginia
- Department of BiologyCollege of Natural and Health SciencesVirginia State UniversityPetersburgVirginia
- Princess Nourah Bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Haiwen Li
- Food Chemistry and Nutrition Science Research LaboratoryVirginia State UniversityPetersburgVirginia
| | - Obaid U. Beg
- Food Chemistry and Nutrition Science Research LaboratoryVirginia State UniversityPetersburgVirginia
| | - Anwar A. Hamama
- Common Research LaboratoryAgricultural Research StationCollege of AgricultureVirginia State UniversityPetersburgVirginia
| | - Sarah Melissa Witiak
- Department of BiologyCollege of Natural and Health SciencesVirginia State UniversityPetersburgVirginia
| | - Paul Kaseloo
- Department of BiologyCollege of Natural and Health SciencesVirginia State UniversityPetersburgVirginia
| | - Rafat A. Siddiqui
- Food Chemistry and Nutrition Science Research LaboratoryVirginia State UniversityPetersburgVirginia
| |
Collapse
|
16
|
Abstract
Multivalent protein-protein interactions serve central roles in many essential biological processes, ranging from cell signaling and adhesion to pathogen recognition. Uncovering the rules that govern these intricate interactions is important not only to basic biology and chemistry but also to the applied sciences where researchers are interested in developing molecules to promote or inhibit these interactions. Here we report the synthesis and application of atomically precise inorganic cluster nanomolecules consisting of an inorganic core and a covalently linked densely packed layer of saccharides. These hybrid agents are stable under biologically relevant conditions and exhibit multivalent binding capabilities, which enable us to study the complex interactions between glycosylated structures and a dendritic cell lectin receptor. Importantly, we find that subtle changes in the molecular structure lead to significant differences in the nanomolecule's protein-binding properties. Furthermore, we demonstrate an example of using these hybrid nanomolecules to effectively inhibit protein-protein interactions in a human cell line. Ultimately, this work reveals an intricate interplay between the structural design of multivalent agents and their biological activities toward protein surfaces.
Collapse
|
17
|
Toro-Ascuy D, Rojas-Araya B, García-de-Gracia F, Rojas-Fuentes C, Pereira-Montecinos C, Gaete-Argel A, Valiente-Echeverría F, Ohlmann T, Soto-Rifo R. A Rev-CBP80-eIF4AI complex drives Gag synthesis from the HIV-1 unspliced mRNA. Nucleic Acids Res 2019; 46:11539-11552. [PMID: 30239828 PMCID: PMC6265489 DOI: 10.1093/nar/gky851] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Gag synthesis from the full-length unspliced mRNA is critical for the production of the viral progeny during human immunodeficiency virus type-1 (HIV-1) replication. While most spliced mRNAs follow the canonical gene expression pathway in which the recruitment of the nuclear cap-binding complex (CBC) and the exon junction complex (EJC) largely stimulates the rates of nuclear export and translation, the unspliced mRNA relies on the viral protein Rev to reach the cytoplasm and recruit the host translational machinery. Here, we confirm that Rev ensures high levels of Gag synthesis by driving nuclear export and translation of the unspliced mRNA. These functions of Rev are supported by the CBC subunit CBP80, which binds Rev and the unspliced mRNA in the nucleus and the cytoplasm. We also demonstrate that Rev interacts with the DEAD-box RNA helicase eIF4AI, which translocates to the nucleus and cooperates with the viral protein to promote Gag synthesis. Finally, we show that the Rev/RRE axis is important for the assembly of a CBP80-eIF4AI complex onto the unspliced mRNA. Together, our results provide further evidence towards the understanding of the molecular mechanisms by which Rev drives Gag synthesis from the unspliced mRNA during HIV-1 replication.
Collapse
Affiliation(s)
- Daniela Toro-Ascuy
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Bárbara Rojas-Araya
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco García-de-Gracia
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Rojas-Fuentes
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Camila Pereira-Montecinos
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Théophile Ohlmann
- INSERM U1111, CIRI, Lyon F-69364, France.,Ecole Normale Supérieure de Lyon, Lyon F-69364, France
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
A Naturally Occurring Polymorphism in the HIV-1 Tat Basic Domain Inhibits Uptake by Bystander Cells and Leads to Reduced Neuroinflammation. Sci Rep 2019; 9:3308. [PMID: 30824746 PMCID: PMC6397180 DOI: 10.1038/s41598-019-39531-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 01/07/2019] [Indexed: 01/28/2023] Open
Abstract
HIV-1 Tat protein contributes to HIV-neuropathogenesis in several ways including its ability to be taken up by uninfected bystander CNS cells and to activate inflammatory host genes causing synaptic injury. Here, we report that in the globally dominant HIV-1 clade C, Tat displays a naturally occurring polymorphism, R57S, in its basic domain, which mediates cellular uptake. We examined the effect of this polymorphism on Tat uptake and its consequences for cellular gene transactivation. In decapeptides corresponding to the basic domain, a R57S substitution caused up to a 70% reduction in uptake. We also used a transcellular Tat transactivation assay, where we expressed Tat proteins of HIV-1 clade B (Tat-B) or C (Tat-C) or their position 57 variants in HeLa cells. We quantified the secreted Tat proteins and measured their uptake by TZM-bl cells, which provide readout via an HIV-1 Tat-responsive luciferase gene. Transactivation by Tat-B was significantly reduced by R57S substitution, while that of Tat-C was enhanced by the reciprocal S57R substitution. Finally, we exposed microglia to Tat variants and found that R57 is required for maximal neuroinflammation. The R57S substitution dampened this response. Thus, genetic variations can modulate the ability of HIV-1 Tat to systemically disseminate neuroinflammation.
Collapse
|
19
|
Lange MJ, Burke DH, Chaput JC. Activation of Innate Immune Responses by a CpG Oligonucleotide Sequence Composed Entirely of Threose Nucleic Acid. Nucleic Acid Ther 2018; 29:51-59. [PMID: 30526333 DOI: 10.1089/nat.2018.0751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent advances in synthetic biology have led to the development of nucleic acid polymers with backbone structures distinct from those found in nature, termed xeno-nucleic acids (XNAs). Several unique properties of XNAs make them attractive as nucleic acid therapeutics, most notably their high resistance to serum nucleases and ability to form Watson-Crick base pairing with DNA and RNA. The ability of XNAs to induce immune responses has not been investigated. Threose nucleic acid (TNA), a type of XNA, is recalcitrant to nuclease digestion and capable of undergoing Darwinian evolution to produce high affinity aptamers; thus, TNA is an attractive candidate for diverse applications, including nucleic acid therapeutics. In this study, we evaluated a TNA oligonucleotide derived from a cytosine-phosphate-guanine oligonucleotide sequence known to activate toll-like receptor 9-dependent immune signaling in B cell lines. We observed a slight induction of relevant mRNA signals, robust B cell line activation, and negligible effects on cellular proliferation.
Collapse
Affiliation(s)
- Margaret J Lange
- 1 Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri.,2 Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Donald H Burke
- 1 Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri.,2 Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,3 Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - John C Chaput
- 4 Department of Pharmaceutical Sciences, University of California, Irvine, California.,5 Department of Chemistry, University of California, Irvine, California.,6 Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| |
Collapse
|
20
|
Valiant WG, Huang YJS, Vanlandingham DL, Higgs S, Lewis MG, Mattapallil JJ. Zika convalescent macaques display delayed induction of anamnestic cross-neutralizing antibody responses after dengue infection. Emerg Microbes Infect 2018; 7:130. [PMID: 30006514 PMCID: PMC6045599 DOI: 10.1038/s41426-018-0132-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/12/2018] [Accepted: 06/23/2018] [Indexed: 01/16/2023]
Abstract
Structural similarities between Zika (ZIKV) and dengue virus (DENV) leads to the induction of cross-reactive responses. We have previously demonstrated that ZIKV exposed macaques significantly enhance DENV viremia. Here we show that this enhancement of DENV infection occurred in the presence of high levels of DENV cross-reactive IgG1 subclass of binding antibodies (bAb) with low DENV neutralizing antibody (nAb) activity (<1:10). The DENV-2 nAb titres after ZIKV infection were, however, higher than those induced in DENV-2 only infected animals suggesting that ZIKV induced low titres of cross-nAb against DENV. Surprisingly, DENV-2 infection of animals previously infected with ZIKV was not accompanied by an anamnestic increase in cross-nAb titres till about 1 week after DENV-2 infection. This delay coincided with enhanced DENV-2 viremia indicating that high levels of cross-bAb in the absence of high nAb contributes to enhancement of DENV infection. Serum collected 8 weeks after DENV-2 infection had high levels of nAb and showed delayed antibody dependent enhancement (ADE) of infection (1:100 dilution) as compared with serum that was collected from ZIKV infected animals prior to DENV-2 infection (1:10 dilution). Examination of serum from macaques that were simultaneously infected with both ZIKV and DENV-2 showed high levels of nAb and delayed ADE responses raising the possibility that the low levels of cross-nAb induced by ZIKV infection could be overcome by co-immunization against ZIKV and DENV infection. Taken together, our results provide additional insights into the nature and kinetics of cross-reactive antibody responses and identify a critical correlate that could potentially prevent enhancement of DENV infection during ZIKV convalescence.
Collapse
Affiliation(s)
- William G Valiant
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Yan-Jang S Huang
- Biosecurity Research Institute, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Dana L Vanlandingham
- Biosecurity Research Institute, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Stephen Higgs
- Biosecurity Research Institute, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | - Joseph J Mattapallil
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
21
|
Nyambura LW, Jarmalavicius S, Walden P. Impact of Leishmania donovani infection on the HLA I self peptide repertoire of human macrophages. PLoS One 2018; 13:e0200297. [PMID: 30001391 PMCID: PMC6042751 DOI: 10.1371/journal.pone.0200297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/23/2018] [Indexed: 02/07/2023] Open
Abstract
Macrophages are specialized antigen-presenting cells that process and present self-antigens for induction of tolerance, and foreign antigens to initiate T cell-mediated immunity. Despite this, Leishmania donovani (LD) are able to parasitize the macrophages and persist. The impact of this parasitizing and persistence on antigen processing and presentation by macrophages remains poorly defined. To gain insight into this, we analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) and compared the HLA-I self-peptidomes, proteasome compositions, HLA expression and activation states of non-infected and LD-infected THP1-derived macrophages. We found that, though both HLA-I peptidomes were dominated by nonapeptides, they were heterogeneous and individualized, with differences in HLA binding affinities and anchor residues. Non-infected and LD-infected THP1-derived macrophages were able to sample peptides from source proteins of almost all subcellular locations and involved in various cellular functions, but in different proportions. In the infected macrophages, there was increased sampling of plasma membrane and extracellular proteins, and those involved in immune responses, cell communication/signal transduction and metabolism/energy pathways, and decreased sampling of nuclear and cytoplasmic proteins and those involved in protein metabolism, RNA binding and cell growth and/or maintenance. Though the activation state of infected macrophages was unchanged, their proteasome composition was altered.
Collapse
Affiliation(s)
- Lydon Wainaina Nyambura
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Clinical Research Group 'Tumor Immunology', Berlin, Germany
- Humboldt Universität zu Berlin, Lebenswissenschaftliche Fakultät, Institut für Biologie, Berlin, Germany
| | - Saulius Jarmalavicius
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Clinical Research Group 'Tumor Immunology', Berlin, Germany
| | - Peter Walden
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Clinical Research Group 'Tumor Immunology', Berlin, Germany
- * E-mail:
| |
Collapse
|
22
|
Upadhyay C, Feyznezhad R, Yang W, Zhang H, Zolla-Pazner S, Hioe CE. Alterations of HIV-1 envelope phenotype and antibody-mediated neutralization by signal peptide mutations. PLoS Pathog 2018; 14:e1006812. [PMID: 29370305 PMCID: PMC5800646 DOI: 10.1371/journal.ppat.1006812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 02/06/2018] [Accepted: 12/14/2017] [Indexed: 11/18/2022] Open
Abstract
HIV-1 envelope glycoprotein (Env) mediates virus attachment and entry into the host cells. Like other membrane-bound and secreted proteins, HIV-1 Env contains at its N terminus a signal peptide (SP) that directs the nascent Env to the endoplasmic reticulum (ER) where Env synthesis and post-translational modifications take place. SP is cleaved during Env biosynthesis but potentially influences the phenotypic traits of the Env protein. The Env SP sequences of HIV-1 isolates display high sequence variability, and the significance of such variability is unclear. We postulate that changes in the Env SP influence Env transport through the ER-Golgi secretory pathway and Env folding and/or glycosylation that impact on Env incorporation into virions, receptor binding and antibody recognition. We first evaluated the consequences of mutating the charged residues in the Env SP in the context of infectious molecular clone HIV-1 REJO.c/2864. Results show that three different mutations affecting histidine at position 12 affected Env incorporation into virions that correlated with reduction of virus infectivity and DC-SIGN-mediated virus capture and transmission. Mutations at positions 8, 12, and 15 also rendered the virus more resistant to neutralization by monoclonal antibodies against the Env V1V2 region. These mutations affected the oligosaccharide composition of N-glycans as shown by changes in Env reactivity with specific lectins and by mass spectrometry. Increased neutralization resistance and N-glycan composition changes were also observed when analogous mutations were introduced to another HIV-1 strain, JRFL. To the best of our knowledge, this is the first study showing that certain residues in the HIV-1 Env SP can affect virus neutralization sensitivity by modulating oligosaccharide moieties on the Env N-glycans. The HIV-1 Env SP sequences thus may be under selective pressure to balance virus infectiousness with virus resistance to the host antibody responses. (289 words) HIV-1 envelope glycoprotein (Env) is indispensable for virus infection. HIV-1 Env contains at its N terminus a signal peptide (SP) that directs the protein to the endoplasmic reticulum. The SP sequences exhibits high variability among HIV-1 isolates, and the significance of such variability is unclear. We hypothesize that changes in the Env SP influence the Env biogenesis, Env folding and/or glycosylation and the phenotypic traits of the virus. This study evaluated the consequences of mutations in the Env SP of infectious molecular clone HIV-1 REJO.c/2864. Results show that three different mutations affecting histidine at position 12 impacted on the Env incorporation into virions that correlated with virus infectivity and transmission. Additionally, Env SP mutations at positions 8, 12, and 15 increased virus resistance to neutralization by Env monoclonal antibodies. These mutations also altered the oligosaccharide composition of N-glycans on Env as shown by changes in the Env reactivity with lectins and by mass spectrometry. Similar phenotypic changes were observed when analogous SP mutations were introduced to another virus strain, JRFL. Thus, the HIV-1 Env SP controls Env expression and glycosylation that affect virus infectivity, transmission, and sensitivity to neutralization by antibodies. (191 words)
Collapse
Affiliation(s)
- Chitra Upadhyay
- Icahn School of Medicine at Mount Sinai, Division of Infectious Diseases, New York, New York, United States of America
- * E-mail: (CU); (CEH)
| | - Roya Feyznezhad
- Icahn School of Medicine at Mount Sinai, Division of Infectious Diseases, New York, New York, United States of America
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Susan Zolla-Pazner
- Icahn School of Medicine at Mount Sinai, Division of Infectious Diseases, New York, New York, United States of America
| | - Catarina E. Hioe
- Icahn School of Medicine at Mount Sinai, Division of Infectious Diseases, New York, New York, United States of America
- James J. Peters Veterans Affairs Medical Center, Research Service, Bronx, New York, United States of America
- * E-mail: (CU); (CEH)
| |
Collapse
|
23
|
Neidleman JA, Chen JC, Kohgadai N, Müller JA, Laustsen A, Thavachelvam K, Jang KS, Stürzel CM, Jones JJ, Ochsenbauer C, Chitre A, Somsouk M, Garcia MM, Smith JF, Greenblatt RM, Münch J, Jakobsen MR, Giudice LC, Greene WC, Roan NR. Mucosal stromal fibroblasts markedly enhance HIV infection of CD4+ T cells. PLoS Pathog 2017; 13:e1006163. [PMID: 28207890 PMCID: PMC5312882 DOI: 10.1371/journal.ppat.1006163] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/02/2017] [Indexed: 01/13/2023] Open
Abstract
Understanding early events of HIV transmission within mucosal tissues is vital for developing effective prevention strategies. Here, we report that primary stromal fibroblasts isolated from endometrium, cervix, foreskin, male urethra, and intestines significantly increase HIV infection of CD4+ T cells-by up to 37-fold for R5-tropic HIV and 100-fold for X4-tropic HIV-without themselves becoming infected. Fibroblasts were more efficient than dendritic cells at trans-infection and mediate this response in the absence of the DC-SIGN and Siglec-1 receptors. In comparison, mucosal epithelial cells secrete antivirals and inhibit HIV infection. These data suggest that breaches in the epithelium allow external or luminal HIV to escape an antiviral environment to access the infection-favorable environment of the stromal fibroblasts, and suggest that resident fibroblasts have a central, but previously unrecognized, role in HIV acquisition at mucosal sites. Inhibiting fibroblast-mediated enhancement of HIV infection should be considered as a novel prevention strategy.
Collapse
Affiliation(s)
- Jason A. Neidleman
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Joseph C. Chen
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, United States of America
| | - Nargis Kohgadai
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Janis A. Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Anders Laustsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Karen S. Jang
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States of America
| | | | - Jennifer J. Jones
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Avantika Chitre
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Ma Somsouk
- Department of Medicine, Division of Gastroenterology, San Francisco General Hospital and University of California, San Francisco, San Francisco, CA, United States of America
| | - Maurice M. Garcia
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States of America
| | - James F. Smith
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Ruth M. Greenblatt
- Departments of Clinical Pharmacy, Medicine, Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA United States of America
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Martin R. Jakobsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Aarhus Research Centre for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Linda C. Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, United States of America
| | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, San Francisco, CA, United States of America
- Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Nadia R. Roan
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
24
|
Mauro N, Ferruti P, Ranucci E, Manfredi A, Berzi A, Clerici M, Cagno V, Lembo D, Palmioli A, Sattin S. Linear biocompatible glyco-polyamidoamines as dual action mode virus infection inhibitors with potential as broad-spectrum microbicides for sexually transmitted diseases. Sci Rep 2016; 6:33393. [PMID: 27641362 PMCID: PMC5027566 DOI: 10.1038/srep33393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023] Open
Abstract
The initial steps of viral infections are mediated by interactions between viral proteins and cellular receptors. Blocking the latter with high-affinity ligands may inhibit infection. DC-SIGN, a C-type lectin receptor expressed by immature dendritic cells and macrophages, mediates human immunodeficiency virus (HIV) infection by recognizing mannose clusters on the HIV-1 gp120 envelope glycoprotein. Mannosylated glycodendrimers act as HIV entry inhibitors thanks to their ability to block this receptor. Previously, an amphoteric, but prevailingly cationic polyamidoamine named AGMA1 proved effective as infection inhibitor for several heparan sulfate proteoglycan-dependent viruses, such as human papilloma virus HPV-16 and herpes simplex virus HSV-2. An amphoteric, but prevailingly anionic PAA named ISA23 proved inactive. It was speculated that the substitution of mannosylated units for a limited percentage of AGMA1 repeating units, while imparting anti-HIV activity, would preserve the fundamentals of its HPV-16 and HSV-2 infection inhibitory activity. In this work, four biocompatible linear PAAs carrying different amounts of mannosyl-triazolyl pendants, Man-ISA7, Man-ISA14, Man-AGMA6.5 and Man-AGMA14.5, were prepared by reaction of 2-(azidoethyl)-α-D-mannopyranoside and differently propargyl-substituted AGMA1 and ISA23. All mannosylated PAAs inhibited HIV infection. Both Man-AGMA6.5 and Man-AGMA14.5 maintained the HPV-16 and HSV-2 activity of the parent polymer, proving broad-spectrum, dual action mode virus infection inhibitors.
Collapse
Affiliation(s)
- Nicolò Mauro
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
- Consorzio Interuniversitario di Scienza e Tecnologia dei Materiali, via G. Giusti 9, 56121 Firenze, Italy
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Angela Berzi
- Department of Biomedical and Clinical Sciences “Sacco”, University of Milan, via G. B. Grassi 74, 20157 Milan, Italy
| | - Mario Clerici
- Department of Medical, Surgical and Transplants Physiopathology, University of Milan, via Fratelli Cervi 93, 20090 Segrate, Milan, and Don C. Gnocchi Foundation IRCCS, Via Capecelatro 66, 20148 Milan, Italy
| | - Valeria Cagno
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Azienda Ospedaliero Universitaria S. Luigi Gonzaga, via Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - David Lembo
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Azienda Ospedaliero Universitaria S. Luigi Gonzaga, via Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Alessandro Palmioli
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Sara Sattin
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
| |
Collapse
|
25
|
Characterization of new RNA polymerase III and RNA polymerase II transcriptional promoters in the Bovine Leukemia Virus genome. Sci Rep 2016; 6:31125. [PMID: 27545598 PMCID: PMC4992882 DOI: 10.1038/srep31125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022] Open
Abstract
Bovine leukemia virus latency is a viral strategy used to escape from the host immune system and contribute to tumor development. However, a highly expressed BLV micro-RNA cluster has been reported, suggesting that the BLV silencing is not complete. Here, we demonstrate the in vivo recruitment of RNA polymerase III to the BLV miRNA cluster both in BLV-latently infected cell lines and in ovine BLV-infected primary cells, through a canonical type 2 RNAPIII promoter. Moreover, by RPC6-knockdown, we showed a direct functional link between RNAPIII transcription and BLV miRNAs expression. Furthermore, both the tumor- and the quiescent-related isoforms of RPC7 subunits were recruited to the miRNA cluster. We showed that the BLV miRNA cluster was enriched in positive epigenetic marks. Interestingly, we demonstrated the in vivo recruitment of RNAPII at the 3′LTR/host genomic junction, associated with positive epigenetic marks. Functionally, we showed that the BLV LTR exhibited a strong antisense promoter activity and identified cis-acting elements of an RNAPII-dependent promoter. Finally, we provided evidence for an in vivo collision between RNAPIII and RNAPII convergent transcriptions. Our results provide new insights into alternative ways used by BLV to counteract silencing of the viral 5′LTR promoter.
Collapse
|
26
|
Nyambura LW, Jarmalavicius S, Baleeiro RB, Walden P. Diverse HLA-I Peptide Repertoires of the APC Lines MUTZ3-Derived Immature and Mature Dendritic Cells and THP1-Derived Macrophages. THE JOURNAL OF IMMUNOLOGY 2016; 197:2102-9. [PMID: 27543614 DOI: 10.4049/jimmunol.1600762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) and macrophages are specialized APCs that process and present self-Ags for induction of tolerance and foreign Ags to initiate T cell-mediated immunity. Related to differentiation states they have specific phenotypes and functions. However, the impact of these differentiations on Ag processing and presentation remains poorly defined. To gain insight into this, we analyzed and compared the HLA-I peptidomes of MUTZ3-derived human immature and mature DC lines and THP1-derived macrophages by liquid chromatography tandem mass spectrometry. We found that the HLA-I peptidomes were heterogeneous and individualized and were dominated by nonapeptides with similar HLA-I binding affinities and anchor residues. MUTZ3-derived DCs and THP1-derived macrophages were able to sample peptides from source proteins of almost all subcellular locations and were involved in various cellular functions in similar proportion, with preference to proteins involved in cell communication, signal transduction, protein metabolism, and transcription factor/regulator activity.
Collapse
Affiliation(s)
- Lydon Wainaina Nyambura
- Klinische Forschergruppe Tumorimmunologie, Klinik für Dermatologie, Venerologie and Allergologie, Charité-Universitätsmedizin Berlin, 10098 Berlin, Germany; and Humboldt Universität zu Berlin, Institut für Biologie, Lebenswissenschaftliche Fakultät, 10115 Berlin, Germany
| | - Saulius Jarmalavicius
- Klinische Forschergruppe Tumorimmunologie, Klinik für Dermatologie, Venerologie and Allergologie, Charité-Universitätsmedizin Berlin, 10098 Berlin, Germany; and
| | - Renato Brito Baleeiro
- Klinische Forschergruppe Tumorimmunologie, Klinik für Dermatologie, Venerologie and Allergologie, Charité-Universitätsmedizin Berlin, 10098 Berlin, Germany; and
| | - Peter Walden
- Klinische Forschergruppe Tumorimmunologie, Klinik für Dermatologie, Venerologie and Allergologie, Charité-Universitätsmedizin Berlin, 10098 Berlin, Germany; and
| |
Collapse
|
27
|
Tirumuru N, Zhao BS, Lu W, Lu Z, He C, Wu L. N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. eLife 2016; 5. [PMID: 27371828 PMCID: PMC4961459 DOI: 10.7554/elife.15528] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022] Open
Abstract
The internal N6-methyladenosine (m6A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1–3) bind to m6A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1–3 proteins recognize m6A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4+ T-cells. We further mapped the YTHDF1–3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1–3 in cells had the opposite effects. Moreover, silencing the m6A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m6A erasers increased Gag expression. Our findings suggest an important role of m6A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. DOI:http://dx.doi.org/10.7554/eLife.15528.001 HIV infection is a global health challenge. The antiviral drugs that are currently available limit the ability of the virus to multiply in infected individuals, but they rarely eliminate the virus entirely. A better understanding of how HIV behaves in the cell would help researchers to find a cure for persistent HIV infection. When HIV enters an immune cell, its genetic material – in the form of molecules of ribonucleic acid (RNA) – is used as a template to make molecules of DNA. This viral DNA can integrate into the host cell’s DNA, where it is used as a template to make more viral RNA molecules, which are then used to make viral proteins. Some of the viral RNAs are also packaged into new virus particles. In cells, RNA molecules are often subject to a chemical modification called adenosine methylation, which regulates how that RNA is translated into proteins. Specific enzymes add molecules called methyl tags to particular locations on the RNA, while other enzymes remove them. A family of proteins called YTHDF1–3 recognize and bind to these methyl tags on the RNA and influence how much protein is produced from the target RNA. There is evidence to suggest that the cell can add methyl tags to HIV RNA. However, the extent to which this happens, and what effects this modification has on HIV replication and viral protein production, are not clear. Tirumuru et al. addressed these questions by analyzing how changing the levels of YTHDF1–3 proteins and the enzymes that add or remove methyl tags in human cells affected HIV infection. The experiments show that YTHDF1–3 proteins inhibited HIV infection in immune cells called T-lymphocytes by recognizing HIV RNA that had been methylated, mainly by targeting the step where the viral RNA is copied into DNA. Altering the levels of the enzymes that add or remove methyl tags in the cells can change the amount of methyl tags attached to RNA molecules, which alters the amount of HIV protein produced. For example, when more RNA molecules had methyl tags, the cells produced more HIV proteins. These findings suggest that adenosine methylation plays an important role in regulating the ability of HIV to thrive and multiply in T-lymphocytes, which are an important target for HIV. Since the RNAs of other human viruses, such as influenza virus, can also be modified by adenosine methylation, drugs that target this pathway could have the potential to be used to fight a variety of viral illnesses. DOI:http://dx.doi.org/10.7554/eLife.15528.002
Collapse
Affiliation(s)
- Nagaraja Tirumuru
- Center for Retrovirus Research, The Ohio State University, Columbus, United States.,Department of Veterinary Biosciences, The Ohio State University, Columbus, United States
| | - Boxuan Simen Zhao
- Department of Chemistry, The University of Chicago, Chicago, United States.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States.,Howard Hughes Medical Institute, The University of Chicago, Chicago, United States
| | - Wuxun Lu
- Center for Retrovirus Research, The Ohio State University, Columbus, United States.,Department of Veterinary Biosciences, The Ohio State University, Columbus, United States
| | - Zhike Lu
- Department of Chemistry, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States.,Howard Hughes Medical Institute, The University of Chicago, Chicago, United States.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States.,Howard Hughes Medical Institute, The University of Chicago, Chicago, United States.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Li Wu
- Center for Retrovirus Research, The Ohio State University, Columbus, United States.,Department of Veterinary Biosciences, The Ohio State University, Columbus, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, United States.,Comprehensive Cancer Center, The Ohio State University, Columbus, United States
| |
Collapse
|
28
|
Vacas-Córdoba E, Maly M, De la Mata FJ, Gómez R, Pion M, Muñoz-Fernández MÁ. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1. Int J Nanomedicine 2016; 11:1281-94. [PMID: 27103798 PMCID: PMC4827595 DOI: 10.2147/ijn.s96352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Nanotechnology-derived platforms, such as dendrimers, are very attractive in several biological applications. In the case of human immunodeficiency virus (HIV) infection, polyanionic carbosilane dendrimers have shown great potential as antiviral agents in the development of novel microbicides to prevent the sexual transmission of HIV-1. In this work, we studied the mechanism of two sulfated and naphthylsulfonated functionalized carbosilane dendrimers, G3-S16 and G2-NF16. They are able to inhibit viral infection at fusion and thus at the entry step. Both compounds impede the binding of viral particles to target cell surface and membrane fusion through the blockage of gp120–CD4 interaction. In addition, and for the first time, we demonstrate that dendrimers can inhibit cell-to-cell HIV transmission and difficult infectious synapse formation. Thus, carbosilane dendrimers’ mode of action is a multifactorial process targeting several proteins from viral envelope and from host cells that could block HIV infection at different stages during the first step of infection.
Collapse
Affiliation(s)
- Enrique Vacas-Córdoba
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Madrid, Spain; Health Research Institute Gregorio Marañon, Madrid, Spain; Spanish HIV HGM BioBanK, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Marek Maly
- Faculty of Science, Jan Evangelista Purkyně University, Ústí nad Labem, Czech Republic; Laboratory of Applied Mathematics and Physics (LaMFI), University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Francisco J De la Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Rafael Gómez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Marjorie Pion
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Madrid, Spain; Health Research Institute Gregorio Marañon, Madrid, Spain; Spanish HIV HGM BioBanK, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - M Ángeles Muñoz-Fernández
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Madrid, Spain; Health Research Institute Gregorio Marañon, Madrid, Spain; Spanish HIV HGM BioBanK, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
29
|
Psoralen Inactivation of Viruses: A Process for the Safe Manipulation of Viral Antigen and Nucleic Acid. Viruses 2015; 7:5875-88. [PMID: 26569291 PMCID: PMC4664985 DOI: 10.3390/v7112912] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 02/04/2023] Open
Abstract
High consequence human pathogenic viruses must be handled at biosafety level 2, 3 or 4 and must be rendered non-infectious before they can be utilized for molecular or immunological applications at lower biosafety levels. Here we evaluate psoralen-inactivated Arena-, Bunya-, Corona-, Filo-, Flavi- and Orthomyxoviruses for their suitability as antigen in immunological processes and as template for reverse transcription PCR and sequencing. The method of virus inactivation using a psoralen molecule appears to have broad applicability to RNA viruses and to leave both the particle and RNA of the treated virus intact, while rendering the virus non-infectious.
Collapse
|
30
|
St. Gelais C, Roger J, Wu L. Non-POU Domain-Containing Octamer-Binding Protein Negatively Regulates HIV-1 Infection in CD4(+) T Cells. AIDS Res Hum Retroviruses 2015; 31:806-16. [PMID: 25769457 DOI: 10.1089/aid.2014.0313] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
HIV-1 interacts with numerous cellular proteins during viral replication. Identifying such host proteins and characterizing their roles in HIV-1 infection can deepen our understanding of the dynamic interplay between host and pathogen. We previously identified non-POU domain-containing octamer-binding protein (NonO or p54nrb) as one of host factors associated with catalytically active preintegration complexes (PIC) of HIV-1 in infected CD4(+) T cells. NonO is involved in nuclear processes including transcriptional regulation and RNA splicing. Although NonO has been identified as an HIV-1 interactant in several recent studies, its role in HIV-1 replication has not been characterized. We investigated the effect of NonO on the HIV-1 life cycle in CD4(+) T cell lines and primary CD4(+) T cells using single-cycle and replication-competent HIV-1 infection assays. We observed that short hairpin RNA (shRNA)-mediated stable NonO knockdown in a CD4(+) Jurkat T cell line and primary CD4(+) T cells did not affect cell viability or proliferation, but enhanced HIV-1 infection. The enhancement of HIV-1 infection in Jurkat T cells correlated with increased viral reverse transcription and gene expression. Knockdown of NonO expression in Jurkat T cells modestly enhanced HIV-1 gag mRNA expression and Gag protein synthesis, suggesting that viral gene expression and RNA regulation are the predominantly affected events causing enhanced HIV-1 replication in NonO knockdown (KD) cells. Furthermore, overexpression of NonO in Jurkat T cells reduced HIV-1 single-cycle infection by 41% compared to control cells. Our data suggest that NonO negatively regulates HIV-1 infection in CD4(+) T cells, albeit it has modest effects on early and late stages of the viral life cycle, highlighting the importance of host proteins associated with HIV-1 PIC in regulating viral replication.
Collapse
Affiliation(s)
- Corine St. Gelais
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Jonathan Roger
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
31
|
Virus particle release from glycosphingolipid-enriched microdomains is essential for dendritic cell-mediated capture and transfer of HIV-1 and henipavirus. J Virol 2014; 88:8813-25. [PMID: 24872578 DOI: 10.1128/jvi.00992-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) exploits dendritic cells (DCs) to promote its transmission to T cells. We recently reported that the capture of HIV-1 by mature dendritic cells (MDCs) is mediated by an interaction between the glycosphingolipid (GSL) GM3 on virus particles and CD169/Siglec-1 on MDCs. Since HIV-1 preferentially buds from GSL-enriched lipid microdomains on the plasma membrane, we hypothesized that the virus assembly and budding site determines the ability of HIV-1 to interact with MDCs. In support of this hypothesis, mutations in the N-terminal basic domain (29/31KE) or deletion of the membrane-targeting domain of the HIV-1 matrix (MA) protein that altered the virus assembly and budding site to CD63(+)/Lamp-1-positive intracellular compartments resulted in lower levels of virion incorporation of GM3 and attenuation of virus capture by MDCs. Furthermore, MDC-mediated capture and transmission of MA mutant viruses to T cells were decreased, suggesting that HIV-1 acquires GSLs via budding from the plasma membrane to access the MDC-dependent trans infection pathway. Interestingly, MDC-mediated capture of Nipah and Hendra virus (recently emerged zoonotic paramyxoviruses) M (matrix) protein-derived virus-like particles that bud from GSL-enriched plasma membrane microdomains was also dependent on interactions between virion-incorporated GSLs and CD169. Moreover, capture and transfer of Nipah virus envelope glycoprotein-pseudotyped lentivirus particles by MDCs were severely attenuated upon depletion of GSLs from virus particles. These results suggest that GSL incorporation into virions is critical for the interaction of diverse enveloped RNA viruses with DCs and that the GSL-CD169 recognition nexus might be a conserved viral mechanism of parasitization of DC functions for systemic virus dissemination. IMPORTANCE Dendritic cells (DCs) can capture HIV-1 particles and transfer captured virus particles to T cells without establishing productive infection in DCs, a mechanism of HIV-1 trans infection. We have recently identified CD169-mediated recognition of GM3, a host-derived glycosphingolipid (GSL) incorporated into the virus particle membrane, as the receptor and ligand for the DC-HIV trans infection pathway. In this study, we have identified the matrix (MA) domain of Gag to be the viral determinant that governs incorporation of GM3 into HIV-1 particles, a previously unappreciated function of the HIV-1 MA. In addition, we demonstrate that the GSL-CD169-dependent trans infection pathway is also utilized as a dissemination mechanism by henipaviruses. GSL incorporation in henipaviruses was also dependent on the viral capsid (M) protein-directed assembly and budding from GSL-enriched lipid microdomains. These findings provide evidence of a conserved mechanism of retrovirus and henipavirus parasitization of cell-to-cell recognition pathways for systemic virus dissemination.
Collapse
|
32
|
Jin W, Li C, Du T, Hu K, Huang X, Hu Q. DC-SIGN plays a stronger role than DCIR in mediating HIV-1 capture and transfer. Virology 2014; 458-459:83-92. [PMID: 24928041 DOI: 10.1016/j.virol.2014.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/11/2014] [Accepted: 04/12/2014] [Indexed: 10/25/2022]
Abstract
The C-type lectin receptors (CLRs) expressed on dendritic cells (DCs), in particular DC-SIGN and DCIR, likely play an important role in HIV-1 early infection. Here, we systematically compared the capture and transfer capability of DC-SIGN and DCIR using a wide range of HIV-1 isolates. Our results indicated that DC-SIGN plays a stronger role than DCIR in DC-mediated HIV-1 capture and transfer. This was further strengthened by the data from transient and stable transfectants, showing that DC-SIGN had better capability, compared with DCIR in HIV-1 capture and transfer. Following constructing and analyzing a series of soluble DC-SIGN and DCIR truncates and chimeras, we demonstrated that the neck domain, but not the CRD, renders DC-SIGN higher binding affinity to gp120 likely via the formation of tetramerization. Our findings provide insights into CLR-mediated HIV-1 capture and transfer, highlighting potential targets for intervention strategies against gp120-CLR interactions.
Collapse
Affiliation(s)
- Wei Jin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Du
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China
| | - Xin Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; Center for Infection and Immunity, St George׳s University of London, London SW17 0RE, UK.
| |
Collapse
|
33
|
Ren XX, Ma L, Liu QW, Li C, Huang Z, Wu L, Xiong SD, Wang JH, Wang HB. The molecule of DC-SIGN captures enterovirus 71 and confers dendritic cell-mediated viral trans-infection. Virol J 2014; 11:47. [PMID: 24620896 PMCID: PMC3995660 DOI: 10.1186/1743-422x-11-47] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/06/2014] [Indexed: 12/12/2022] Open
Abstract
Background Enterovirus 71 (EV71) is the main causative agent of hand, foot and mouth disease that occurs in young children. Neither antiviral agents nor vaccines are available for efficiently combating viral infection. Study of EV71–host interplay is important for understanding viral infection and developing strategies for prevention and therapy. Here the interactions of EV71 with human dendritic cells were analyzed. Methods EV71 capture, endocytosis, infection, and degradation in monocyte-derived dendritic cells (MDDCs) were detected by Flow cytometry or real-time (RT-) PCR, and MDDCs-mediated EV71 trans-infection of RD cells was determined via coculture system. Cell morphology or viability was monitored with microscopy or flow cytometry. SiRNA interference was used to knock down gene expression. Results MDDCs can bind EV71, but these loaded-EV71 particles in MDDCs underwent a rapid degradation in the absence of efficient replication; once the captured EV71 encountered susceptible cells, MDDCs efficiently transferred surface-bound viruses to target cells. The molecule of DC-SIGN (DC-specific intercellular adhesion molecule-3 grabbing nonintegrin) mediated viral binding and transfer, because interference of DC-SIGN expression with specific siRNAs reduced EV71 binding and impaired MDDC-mediated viral trans-infection, and exogenous expression of DC-SIGN molecule on Raji cell initiated viral binding and subsequent transmission. Conclusion MDDCs could bind efficiently EV71 viruses through viral binding to DC-SIGN molecule, and these captured-viruses could be transferred to susceptible cells for robust infection. The novel finding of DC-mediated EV71 dissemination might facilitate elucidation of EV71 primary infection and benefit searching for new clues for preventing viruses from initial infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hai-Bo Wang
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
34
|
Mates JM, Kumar SB, Bazan J, Mefford M, Voronkin I, Handelman S, Mwapasa V, Ackerman W, Janies D, Kwiek JJ. Genotypic and phenotypic heterogeneity in the U3R region of HIV type 1 subtype C. AIDS Res Hum Retroviruses 2014; 30:102-12. [PMID: 23826737 PMCID: PMC3887403 DOI: 10.1089/aid.2013.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Approximately 20% of all HIV-1 mother-to-child transmission (MTCT) occurs in utero (IU). In a chronic HIV infection, HIV-1 exists as a complex swarm of genetic variants, and following IU MTCT, viral genomic diversity is restricted through a mechanism that remains to be described. The 5' U3R region of the HIV-1 long terminal repeat (LTR) contains multiple transcription factor (TF) binding sites and regulates viral transcription. In this study, we tested the hypothesis that sequence polymorphisms in the U3R region of LTR are associated with IU MTCT. To this end, we used single template amplification to isolate 517 U3R sequences from maternal, placental, and infant plasma derived from 17 HIV-infected Malawian women: eight whose infants remained HIV uninfected (NT) and nine whose infants became HIV infected IU. U3R sequences show pairwise diversities ranging from 0.2% to 2.3%. U3R sequences from one participant contained two, three, or four putative NF-κB binding sites. Phylogenetic reconstructions indicated that U3R sequences from eight of nine IU participants were consistent with placental compartmentalization of HIV-1 while only one of eight NT cases was consistent with such compartmentalization. Specific TF sequence polymorphisms were not significantly associated with IU MTCT. To determine if replication efficiency of the U3R sequences was associated with IU MTCT, we cloned 90 U3R sequences and assayed promoter activity in multiple cell lines. Although we observed significant, yet highly variable promoter activity and TAT induction of promoter activity in the cell lines tested, there was no association between measured promoter activity and MTCT status. Thus, we were unable to detect a promoter genotype or phenotype associated with IU MTCT.
Collapse
Affiliation(s)
- Jessica M. Mates
- Department of Microbiology, The Ohio State University, Columbus, Ohio
| | - Surender B. Kumar
- College of Veterinary Biosciences and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio
| | - Jose Bazan
- The Division of Infectious Diseases, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Megan Mefford
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio
| | - Igor Voronkin
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Samuel Handelman
- Department of Pharmacology, The Ohio State University, Columbus, Ohio
| | - Victor Mwapasa
- Department of Community Health, Malawi College of Medicine, Blantyre, Malawi
| | - William Ackerman
- Department of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research), The Ohio State University, Columbus, Ohio
| | - Daniel Janies
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Jesse J. Kwiek
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio
| |
Collapse
|
35
|
Dendritic cell immunoreceptor is a new target for anti-AIDS drug development: identification of DCIR/HIV-1 inhibitors. PLoS One 2013; 8:e67873. [PMID: 23874461 PMCID: PMC3706466 DOI: 10.1371/journal.pone.0067873] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/23/2013] [Indexed: 11/28/2022] Open
Abstract
The HIV-1 pandemic continues to expand while no effective vaccine or cure is yet available. Existing therapies have managed to limit mortality and control viral proliferation, but are associated with side effects, do not cure the disease and are subject to development of resistance. Finding new therapeutic targets and drugs is therefore crucial. We have previously shown that the dendritic cell immunoreceptor (DCIR), a C-type lectin receptor expressed on dendritic cells (DCs), acts as an attachment factor for HIV-1 to DCs and contributes to HIV-1 transmission to CD4+ T lymphocytes (CD4TL). Directly involved in HIV-1 infection, DCIR is expressed in apoptotic or infected CD4TL and promotes trans-infection to bystander cells. Here we report the 3D modelling of the extracellular domain of DCIR. Based on this structure, two surface accessible pockets containing the carbohydrate recognition domain and the EPS binding motif, respectively, were targeted for screening of chemicals that will disrupt normal interaction with HIV-1 particle. Preliminary screening using Raji-CD4-DCIR cells allowed identification of two inhibitors that decreased HIV-1 attachment and propagation. The impact of these inhibitors on infection of DCs and CD4TL was evaluated as well. The results of this study thus identify novel molecules capable of blocking HIV-1 transmission by DCs and CD4TL.
Collapse
|
36
|
Rinaldo CR. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. SCIENTIFICA 2013; 2013:164203. [PMID: 24278768 PMCID: PMC3820354 DOI: 10.1155/2013/164203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Since the 1990s we have known of the fascinating ability of a complex set of professional antigen presenting cells (APCs; dendritic cells, monocytes/macrophages, and B lymphocytes) to mediate HIV-1 trans infection of CD4(+) T cells. This results in a burst of virus replication in the T cells that is much greater than that resulting from direct, cis infection of either APC or T cells, or trans infection between T cells. Such APC-to-T cell trans infection first involves a complex set of virus subtype, attachment, entry, and replication patterns that have many similarities among APC, as well as distinct differences related to virus receptors, intracellular trafficking, and productive and nonproductive replication pathways. The end result is that HIV-1 can sequester within the APC for several days and be transmitted via membrane extensions intracellularly and extracellularly to T cells across the virologic synapse. Virus replication requires activated T cells that can develop concurrently with the events of virus transmission. Further research is essential to fill the many gaps in our understanding of these trans infection processes and their role in natural HIV-1 infection.
Collapse
Affiliation(s)
- Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
37
|
Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is dependent on Siglec-1/CD169. PLoS Pathog 2013; 9:e1003291. [PMID: 23593001 PMCID: PMC3623718 DOI: 10.1371/journal.ppat.1003291] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/21/2013] [Indexed: 01/12/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) interactions with myeloid dendritic cells (DCs) can result in virus dissemination to CD4+ T cells via a trans infection pathway dependent on virion incorporation of the host cell derived glycosphingolipid (GSL), GM3. The mechanism of DC-mediated trans infection is extremely efficacious and can result in infection of multiple CD4+ T cells as these cells make exploratory contacts on the DC surface. While it has long been appreciated that activation of DCs with ligands that induce type I IFN signaling pathway dramatically enhances DC-mediated T cell trans infection, the mechanism by which this occurs has remained unclear until now. Here, we demonstrate that the type I IFN-inducible Siglec-1, CD169, is the DC receptor that captures HIV in a GM3-dependent manner. Selective downregulation of CD169 expression, neutralizing CD169 function, or depletion of GSLs from virions, abrogated DC-mediated HIV-1 capture and trans infection, while exogenous expression of CD169 in receptor-naïve cells rescued GSL-dependent capture and trans infection. HIV-1 particles co-localized with CD169 on DC surface immediately following capture and subsequently within non-lysosomal compartments that redistributed to the DC – T cell infectious synapses upon initiation of T cell contact. Together, these findings describe a novel mechanism of pathogen parasitization of host encoded cellular recognition machinery (GM3 – CD169 interaction) for DC-dependent HIV dissemination. Dendritic cells (DCs) are one of the initial cellular targets of HIV-1 and can play a crucial role in determining the course of virus infection in vivo. While sentinel functions of DCs are essential for establishment of an antiviral state, HIV-1 can subvert DC function for its dissemination. One of the mechanisms by which DCs can mediate virus spread is via the trans infection pathway whereby DCs capture HIV-1 particles and retain them in an infectious state without getting infected, and pass these infectious particles to CD4+ T cells upon initiation of cellular contacts. In this report, we demonstrate that expression of Siglec-1or CD169, on DC surface is responsible for capture of HIV-1 particles by binding the ganglioside, GM3, present in the virion lipid bilayer. This interaction between CD169 and GM3 targets captured virus particles to non-degradative compartments and resulted in retention of virus particle infectivity within DCs. Upon initiation of T cell contacts with virus-laden DCs, HIV-1 particles were trafficked to the DC – T synaptic junctions and transferred to T cells for establishment of productive infection. These studies define a novel host-encoded receptor – ligand interaction that drives HIV-1 dissemination and can be used for development of novel anti-viral therapeutics.
Collapse
|
38
|
Borggren M, Navér L, Casper C, Ehrnst A, Jansson M. R5 human immunodeficiency virus type 1 with efficient DC-SIGN use is not selected for early after birth in vertically infected children. J Gen Virol 2013; 94:767-773. [DOI: 10.1099/vir.0.043620-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The binding of human immunodeficiency virus (HIV) to C-type lectin receptors may result in either enhanced trans-infection of T-cells or virus degradation. We have investigated the efficacy of HIV-1 utilization of DC-SIGN, a C-type lectin receptor, in the setting of intrauterine or intrapartum mother-to-child transmission (MTCT). Viruses isolated from HIV-1-infected mothers at delivery and from their vertically infected children both shortly after birth and later during the progression of the disease were analysed for their use of DC-SIGN, binding and ability to trans-infect. DC-SIGN use of a child’s earlier virus isolate tended to be reduced as compared with that of the corresponding maternal isolate. Furthermore, the children’s later isolate displayed enhanced DC-SIGN utilization compared with that of the corresponding earlier virus. These results were also supported in head-to-head competition assays and suggest that HIV-1 variants displaying efficient DC-SIGN use are not selected for during intrauterine or intrapartum MTCT. However, viruses with increased DC-SIGN use may evolve later in paediatric HIV-1 infections.
Collapse
Affiliation(s)
- Marie Borggren
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lars Navér
- Department of Clinical Science, Interventions and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte Casper
- INSERM U1043, Hospital Purpan, Paul Sabatier University, Toulouse, France
| | - Anneka Ehrnst
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Jansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
39
|
Requirement of cholesterol in the viral envelope for dengue virus infection. Virus Res 2013; 174:78-87. [PMID: 23517753 DOI: 10.1016/j.virusres.2013.03.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/10/2013] [Accepted: 03/12/2013] [Indexed: 12/27/2022]
Abstract
The role of cholesterol in the virus envelope or in the cellular membranes for dengue virus (DENV) infection was examined by depletion with methyl-beta-cyclodextrin (MCD) or nystatin. Pretreatment of virions with MCD or nystatin significantly reduced virus infectivity in a dose-dependent manner. By contrast, pre-treatment of diverse human cell lines with MCD or nystatin did not affect DENV infection. The four DENV serotypes were similarly inactivated by cholesterol-extracting drugs and infectivity was partially rescued when virion suspensions were treated with MCD in the presence of bovine serum. The addition of serum or exogenous water-soluble cholesterol after MCD treatment did not produce a reversion of MCD inactivating effect. Furthermore, virion treatment with extra cholesterol exerted also a virucidal effect. Binding and uptake of cholesterol-deficient DENV into the host cell were not impaired, whereas the next step of fusion between virion envelope and endosome membrane leading to virion uncoating and release of nucleocapsids to the cytoplasm appeared to be prevented, as determined by the retention of capsid protein in cells infected with MCD inactivated-DENV virions. Thereafter, the infection was almost completely inhibited, given the failure of viral RNA synthesis and viral protein expression in cells infected with MCD-treated virions. These data suggest that envelope cholesterol is a critical factor in the fusion process for DENV entry.
Collapse
|
40
|
de Silva S, Hoy H, Hake TS, Wong HK, Porcu P, Wu L. Promoter methylation regulates SAMHD1 gene expression in human CD4+ T cells. J Biol Chem 2013; 288:9284-92. [PMID: 23426363 DOI: 10.1074/jbc.m112.447201] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The retrovirus restriction factor SAMHD1 is the first identified mammalian dNTP triphosphohydrolase that is highly expressed in human myeloid lineage cells and CD4(+) T lymphocytes. Although SAMHD1 expression is variable in human cell lines and tissue types, mechanisms underlying SAMHD1 gene regulation have not been defined. Recent studies showed that SAMHD1 is highly expressed in human primary CD4(+) T lymphocytes, but not in some CD4(+) T cell lines. Here, we report that SAMHD1 expression varies among four CD4(+) T cell lines and is transcriptionally regulated. Cloning and sequence analysis of the human SAMHD1 promoter revealed a CpG island that is methylated in CD4(+) T cell lines (such as Jurkat and Sup-T1), resulting in transcriptional repression of SAMHD1. We also found that the SAMHD1 promoter is unmethylated in primary CD4(+) T lymphocytes, which express high levels of SAMHD1, indicating a direct correlation between the methylation of the SAMHD1 promoter and transcriptional repression. SAMHD1 expression was induced in CD4(+) T cell lines by blocking DNA methyltransferase activity, suggesting that promoter methylation is one of the key epigenetic mechanisms by which SAMHD1 expression is regulated.
Collapse
Affiliation(s)
- Suresh de Silva
- Center for Retrovirus Research, Department of Veterinary Biosciences, The OhioState University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
41
|
Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol 2013; 87:4384-94. [PMID: 23388721 DOI: 10.1128/jvi.02628-12] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel bunyavirus that recently emerged in China. Infection with SFTSV is associated with case-fatality rates of up to 30%, and neither antivirals nor vaccines are available at present. Development of antiviral strategies requires the elucidation of virus-host cell interactions. Here, we analyzed host cell entry of SFTSV. Employing lentiviral and rhabdoviral vectors, we found that the Gn/Gc glycoproteins (Gn/Gc) of SFTSV mediate entry into a broad range of human and animal cell lines, as well as human macrophages and dendritic cells. The Gn/Gc proteins of La Crosse virus (LACV) and Rift Valley Fever Virus (RVFV), other members of the bunyavirus family, facilitated entry into an overlapping but not identical range of cell lines, suggesting that SFTSV, LACV, and RVFV might differ in their receptor requirements. Entry driven by SFTSV Gn/Gc was dependent on low pH but did not require the activity of the pH-dependent endosomal/lysosomal cysteine proteases cathepsins B and L. Instead, the activity of a cellular serine protease was required for infection driven by SFTSV and LACV Gn/Gc. Sera from convalescent SFTS patients inhibited SFTSV Gn/Gc-driven host cell entry in a dose-dependent fashion, demonstrating that the vector system employed is suitable to detect neutralizing antibodies. Finally, the C-type lectin DC-SIGN was found to serve as a receptor for SFTSV Gn/Gc-driven entry into cell lines and dendritic cells. Our results provide initial insights into cell tropism, receptor usage, and proteolytic activation of SFTSV and will aid in the understanding of viral spread and pathogenesis.
Collapse
|
42
|
Rouhanifard SH, Xie R, Zhang G, Sun X, Chen X, Wu P. Detection and isolation of dendritic cells using Lewis X-functionalized magnetic nanoparticles. Biomacromolecules 2012; 13:3039-45. [PMID: 22901307 PMCID: PMC3470862 DOI: 10.1021/bm3007506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
dendritic cell (DC)-specific intracellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) is a receptor found on DCs that recognizes antigens bearing mannose-rich or fucosylated glycans, including Lewis X (Le(X)). Here, we report the fabrication of magnetic nanoparticles coated with multivalent Le(X) glycans using Cu (I)-catalyzed azide-alkyne cycloaddition. The resulting nanoparticles are selective and biocompatible, serving as a highly efficient tool for DC detection and enrichment.
Collapse
Affiliation(s)
- Sara H. Rouhanifard
- Department of Biochemistry Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Ave, Bronx, NY 10461
| | - Ran Xie
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Guoxin Zhang
- State Key Laboratory of Chemical Resource Engineering, P.O. Box 98, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, P.O. Box 98, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xing Chen
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Peng Wu
- Department of Biochemistry Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Ave, Bronx, NY 10461
| |
Collapse
|
43
|
Prost LR, Grim JC, Tonelli M, Kiessling LL. Noncarbohydrate glycomimetics and glycoprotein surrogates as DC-SIGN antagonists and agonists. ACS Chem Biol 2012; 7:1603-8. [PMID: 22747463 DOI: 10.1021/cb300260p] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An understanding of the biological roles of lectins will be advanced by ligands that can inhibit or even recruit lectin function. To this end, glycomimetics, noncarbohydrate ligands that function analogously to endogenous carbohydrates, are being sought. The advantage of having such ligands is illustrated by the many roles of the protein DC-SIGN. DC-SIGN is a C-type lectin displayed on dendritic cells, where it binds to mannosides and fucosides to mediate interactions with other host cells or bacterial or viral pathogens. DC-SIGN engagement can modulate host immune responses (e.g., suppress autoimmunity) or benefit pathogens (e.g., promote HIV dissemination). DC-SIGN can bind to glycoconjugates, internalize glycosylated cargo for antigen processing, and transduce signals. DC-SIGN ligands can serve as inhibitors as well as probes of the lectin's function, so they are especially valuable for elucidating and controlling DC-SIGN's roles in immunity. We previously reported a small molecule that embodies key features of the carbohydrates that bind DC-SIGN. Here, we demonstrate that this noncarbohydrate ligand acts as a true glycomimetic. Using NMR HSQC experiments, we found that the compound mimics saccharide ligands: It occupies the same carbohydrate-binding site and interacts with the same amino acid residues on DC-SIGN. The glycomimetic also is functional. It had been shown previously to antagonize DC-SIGN function, but here we use it to generate DC-SIGN agonists. Specifically, appending this glycomimetic to a protein scaffold affords a conjugate that elicits key cellular signaling responses. Thus, the glycomimetic can give rise to functional glycoprotein surrogates that elicit lectin-mediated signaling.
Collapse
Affiliation(s)
- Lynne R. Prost
- Departments of †Biochemistry and ‡Chemistry, University of Wisconsin−Madison, Madison, Wisconsin
53706, United States
| | - Joseph C. Grim
- Departments of †Biochemistry and ‡Chemistry, University of Wisconsin−Madison, Madison, Wisconsin
53706, United States
| | - Marco Tonelli
- Departments of †Biochemistry and ‡Chemistry, University of Wisconsin−Madison, Madison, Wisconsin
53706, United States
| | - Laura L. Kiessling
- Departments of †Biochemistry and ‡Chemistry, University of Wisconsin−Madison, Madison, Wisconsin
53706, United States
| |
Collapse
|
44
|
Ectopic ATP synthase facilitates transfer of HIV-1 from antigen-presenting cells to CD4(+) target cells. Blood 2012; 120:1246-53. [PMID: 22753871 DOI: 10.1182/blood-2011-12-399063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antigen-presenting cells (APCs) act as vehicles that transfer HIV to their target CD4(+) cells through an intercellular junction, termed the virologic synapse. The molecules that are involved in this process remain largely unidentified. In this study, we used photoaffinity labeling and a proteomic approach to identify new proteins that facilitate HIV-1 transfer. We identified ectopic mitochondrial ATP synthase as a factor that mediates HIV-1 transfer between APCs and CD4(+) target cells. Monoclonal antibodies against the β-subunit of ATP synthase inhibited APC-mediated transfer of multiple strains HIV-1 to CD4(+) target cells. Likewise, the specific inhibitors of ATPase, citreoviridin and IF1, completely blocked APC-mediated transfer of HIV-1 at the APC-target cell interaction step. Confocal fluorescent microscopy showed localization of extracellular ATP synthase at junctions between APC and CD4(+) target cells. We conclude that ectopic ATP synthase could be an accessible molecular target for inhibiting HIV-1 proliferation in vivo.
Collapse
|
45
|
de Silva S, Planelles V, Wu L. Differential effects of Vpr on single-cycle and spreading HIV-1 infections in CD4+ T-cells and dendritic cells. PLoS One 2012; 7:e35385. [PMID: 22570689 PMCID: PMC3343049 DOI: 10.1371/journal.pone.0035385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/15/2012] [Indexed: 01/20/2023] Open
Abstract
The Vpr protein of human immunodeficiency virus type 1 (HIV-1) contributes to viral replication in non-dividing cells, specifically those of the myeloid lineage. However, the effects of Vpr in enhancing HIV-1 infection in dendritic cells have not been extensively investigated. Here, we evaluated the role of Vpr during infection of highly permissive peripheral blood mononuclear cells (PBMCs) and CD4(+) T-cells and compared it to that of monocyte-derived dendritic cells (MDDCs), which are less susceptible to HIV-1 infection. Infections of dividing PBMCs and non-dividing MDDCs were carried out with single-cycle and replication-competent HIV-1 encoding intact Vpr or Vpr-defective mutants. In contrast to previous findings, we observed that single-cycle HIV-1 infection of both PBMCs and MDDCs was significantly enhanced in the presence of Vpr when the viral stocks were carefully characterized and titrated. HIV-1 DNA quantification revealed that Vpr only enhanced the reverse transcription and nuclear import processes in single-cycle HIV-1 infected MDDCs, but not in CD4(+) T-cells. However, a significant enhancement in HIV-1 gag mRNA expression was observed in both CD4(+) T-cells and MDDCs in the presence of Vpr. Furthermore, Vpr complementation into HIV-1 virions did not affect single-cycle viral infection of MDDCs, suggesting that newly synthesized Vpr plays a significant role to facilitate single-cycle HIV-1 infection. Over the course of a spreading infection, Vpr significantly enhanced replication-competent HIV-1 infection in MDDCs, while it modestly promoted viral infection in activated PBMCs. Quantification of viral DNA in replication-competent HIV-1 infected PBMCs and MDDCs revealed similar levels of reverse transcription products, but increased nuclear import in the presence of Vpr independent of the cell types. Taken together, our results suggest that Vpr has differential effects on single-cycle and spreading HIV-1 infections, which are dependent on the permissiveness of the target cell.
Collapse
Affiliation(s)
- Suresh de Silva
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
46
|
St. Gelais C, Coleman CM, Wang JH, Wu L. HIV-1 Nef enhances dendritic cell-mediated viral transmission to CD4+ T cells and promotes T-cell activation. PLoS One 2012; 7:e34521. [PMID: 22479639 PMCID: PMC3316695 DOI: 10.1371/journal.pone.0034521] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/02/2012] [Indexed: 02/06/2023] Open
Abstract
HIV-1 Nef enhances dendritic cell (DC)-mediated viral transmission to CD4(+) T cells, but the underlying mechanism is not fully understood. It is also unknown whether HIV-1 infected DCs play a role in activating CD4(+) T cells and enhancing DC-mediated viral transmission. Here we investigated the role of HIV-1 Nef in DC-mediated viral transmission and HIV-1 infection of primary CD4(+) T cells using wild-type HIV-1 and Nef-mutated viruses. We show that HIV-1 Nef facilitated DC-mediated viral transmission to activated CD4(+) T cells. HIV-1 expressing wild-type Nef enhanced the activation and proliferation of primary resting CD4(+) T cells. However, when co-cultured with HIV-1-infected autologous DCs, there was no significant trend for infection- or Nef-dependent proliferation of resting CD4(+) T cells. Our results suggest an important role of Nef in DC-mediated transmission of HIV-1 to activated CD4(+) T cells and in the activation and proliferation of resting CD4(+) T cells, which likely contribute to viral pathogenesis.
Collapse
Affiliation(s)
- Corine St. Gelais
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher M. Coleman
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Jian-Hua Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
47
|
Abstract
The C-type lectin dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) can serve as a docking site for pathogens on the surface of dendritic cells. Pathogen binding to DC-SIGN can have diverse consequences for the host. DC-SIGN can facilitate HIV-1 dissemination, but the interaction of Mycobacterium tuberculosis with DC-SIGN is important for host immunity. The ability of pathogens to target DC-SIGN provides impetus to identify ligands that can perturb these interactions. Here, we describe the first stable small molecule inhibitors of DC-SIGN. These inhibitors were derived from a collection of quinoxalinones, which were assembled using a tandem cross metathesis-hydrogenation sequence. To assess the ability of these small molecules to block DC-SIGN-mediated glycan adhesion and internalization, we developed a sensitive flow cytometry assay. Our results reveal that the quinoxalinones are effective inhibitors of DC-SIGN-glycan interactions. These compounds block both glycan binding to cells and glycan internalization. We anticipate that these non-carbohydrate inhibitors can be used to elucidate the role of DC-SIGN in pathogenesis and immune function.
Collapse
Affiliation(s)
- Shane L. Mangold
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lynne R. Prost
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
48
|
A glycomimetic compound inhibits DC-SIGN-mediated HIV infection in cellular and cervical explant models. AIDS 2012; 26:127-37. [PMID: 22045343 DOI: 10.1097/qad.0b013e32834e1567] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Dendritic cell-specific intercellular adhesion molecule (ICAM)-3 grabbing nonintegrin (DC-SIGN) participates in the initial stages of sexually transmitted HIV-1 infection by recognizing highly mannosylated structures presented in multiple copies on HIV-1 gp120 and promoting virus dissemination. Inhibition of HIV interaction with DC-SIGN thus represents a potential therapeutic approach for viral entry inhibition at the mucosal level. DESIGN Herein we evaluate the efficacy in inhibiting HIV-1 infection and the potential toxicity of a multimeric glycomimetic DC-SIGN ligand (Dendron 12). METHODS The ability of Dendron 12 to block HIV-1 infection was assessed in cellular and human cervical explant models. Selectivity of Dendron 12 towards DC-SIGN and langerin was evaluated by surface plasmon resonance studies. β chemokine production following stimulation with Dendron 12 was also analyzed. Toxicity of the compound was evaluated in cellular and tissue models. RESULTS Dendron 12 averted HIV-1 trans infection of CD4(+) T lymphocytes in presence of elevated viral loads and prevented HIV-1 infection of human cervical tissues, under conditions mimicking compromised epithelial integrity, by multiple clades of R5 and X4 tropic viruses. Treatment with Dendron 12 did not interfere with the activity of langerin and also significantly elicited the production of the β chemokines MIP-1α, MIP-1β and RANTES. CONCLUSION Dendron 12 thus inhibits HIV-1 infection by competition with binding of HIV to DC-SIGN and stimulation of β-chemokine production. Dendron 12 represents a promising lead compound for the development of anti-HIV topical microbicides.
Collapse
|
49
|
Ahmed Z, Czubala M, Blanchet F, Piguet V. HIV impairment of immune responses in dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:201-38. [PMID: 22975877 DOI: 10.1007/978-1-4614-4433-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Dendritic cells and their subsets are diverse populations of immune cells in the skin and mucous membranes that possess the ability to sense the presence of microbes and orchestrate an efficient and adapted immune response. Dendritic cells (DC) have the unique ability to act as a bridge between the innate and adaptive immune responses. These cells are composed of a number of subsets behaving with preferential and specific features depending on their location and surrounding environment. Langerhans cells (LC) or dermal DC (dDC) are readily present in mucosal areas. Other DC subsets such as plasmacytoid DC (pDC), myeloid DC (myDC), or monocyte-derived DC (MDDC) are thought to be recruited or differentiated in sites of pathogenic challenge. Upon HIV infection, DC and their subsets are likely among the very first immune cells to encounter incoming pathogens and initiate innate and adaptive immune responses. However, as evidenced during HIV infection, some pathogens have evolved subtle strategies to hijack key cellular machineries essential to generate efficient antiviral responses and subvert immune responses for spread and survival.In this chapter, we review recent research aimed at investigating the involvement of DC subtypes in HIV transmission at mucosal sites, concentrating on HIV impact on cellular signalling and trafficking pathways in DC leading to DC-mediated immune response alterations and viral immune evasion. We also address some aspects of DC functions during the chronic immune pathogenesis and conclude with an overview of the current and novel therapeutic and prophylactic strategies aimed at improving DC-mediated immune responses, thus to potentially tackle the early events of mucosal HIV infection and spread.
Collapse
Affiliation(s)
- Zahra Ahmed
- Department of Dermatology and Wound Healing, Cardiff University School of Medicine, Cardiff, Wales, UK
| | | | | | | |
Collapse
|
50
|
Cellular and viral mechanisms of HIV-1 transmission mediated by dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:109-30. [PMID: 22975873 DOI: 10.1007/978-1-4614-4433-6_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) play a key role in the initial infection and cell-to-cell transmission events that occur upon HIV-1 infection. DCs interact closely with CD4(+) T cells, the main target of HIV-1 replication. HIV-1 challenged DCs and target CD4(+) T cells form a virological synapse that allows highly efficient transmission of HIV-1 to the target CD4(+) T cells, in the absence of productive HIV-1 replication in the DCs. Immature and subsets of mature DCs show distinct patterns of HIV-1 replication and cell-to-cell transmission, depending upon the maturation stimulus that is used. The cellular and viral mechanisms that promote formation of the virological synapse have been the subject of intense study and the most recent progress is discussed here. Characterizing the cellular and viral factors that affect DC-mediated cell-to-cell transmission of HIV-1 to CD4(+) T cells is vitally important to understanding, and potentially blocking, the initial dissemination of HIV-1 in vivo.
Collapse
|