1
|
Sakai A, Singh G, Khoshbakht M, Bittner S, Löhr CV, Diaz-Tapia R, Warang P, White K, Luo LL, Tolbert B, Blanco M, Chow A, Guttman M, Li C, Bao Y, Ho J, Maurer-Stroh S, Chatterjee A, Chanda S, García-Sastre A, Schotsaert M, Teijaro JR, Moulton HM, Stein DA. Inhibition of SARS-CoV-2 growth in the lungs of mice by a peptide-conjugated morpholino oligomer targeting viral RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102331. [PMID: 39376996 PMCID: PMC11456799 DOI: 10.1016/j.omtn.2024.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Further development of direct-acting antiviral agents against human SARS-CoV-2 infections remains a public health priority. Here, we report that an antisense peptide-conjugated morpholino oligomer (PPMO) named 5'END-2, targeting a highly conserved sequence in the 5' UTR of SARS-CoV-2 genomic RNA, potently suppressed SARS-CoV-2 growth in vitro and in vivo. In HeLa-ACE 2 cells, 5'END-2 produced IC50 values of between 40 nM and 1.15 μM in challenges using six genetically disparate strains of SARS-CoV-2, including JN.1. In vivo, using K18-hACE2 mice and the WA-1/2020 virus isolate, two doses of 5'END-2 at 10 mg/kg, administered intranasally on the day before and the day after infection, produced approximately 1.4 log10 virus titer reduction in lung tissue at 3 days post-infection. Under a similar dosing schedule, intratracheal administration of 1.0-2.0 mg/kg 5'END-2 produced over 3.5 log10 virus growth suppression in mouse lungs. Electrophoretic mobility shift assays characterized specific binding of 5'END-2 to its complementary target RNA. Furthermore, using reporter constructs containing SARS-CoV-2 5' UTR leader sequence, in an in-cell system, we observed that 5'END-2 could interfere with translation in a sequence-specific manner. The results demonstrate that direct pulmonary delivery of 5'END-2 PPMO is a promising antiviral strategy against SARS-CoV-2 infections and warrants further development.
Collapse
Affiliation(s)
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahsa Khoshbakht
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Scott Bittner
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane V. Löhr
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Randy Diaz-Tapia
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kris White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luke Le Luo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Blanton Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mario Blanco
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amy Chow
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cuiping Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
| | - Yiming Bao
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joses Ho
- GISAID @ A∗STAR Bioinformatics Institute, Singapore 138632, Singapore
| | | | | | - Sumit Chanda
- Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Hong M. Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - David A. Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
2
|
Cruz Tleugabulova M, Melo SP, Wong A, Arlantico A, Liu M, Webster JD, Lau J, Lechner A, Corak B, Hodgins JJ, Garlapati VS, De Simone M, Korin B, Avraham S, Lund J, Jeet S, Reiss A, Bender H, Austin CD, Darmanis S, Modrusan Z, Brightbill H, Durinck S, Diamond MS, Schneider C, Shaw AS, Nitschké M. Induction of a distinct macrophage population and protection from lung injury and fibrosis by Notch2 blockade. Nat Commun 2024; 15:9575. [PMID: 39505846 PMCID: PMC11541919 DOI: 10.1038/s41467-024-53700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
Macrophages are pleiotropic and diverse cells that populate all tissues of the body. Besides tissue-specific resident macrophages such as alveolar macrophages, Kupffer cells, and microglia, multiple organs harbor at least two subtypes of other resident macrophages at steady state. During certain circumstances, like tissue insult, additional subtypes of macrophages are recruited to the tissue from the monocyte pool. Previously, a recruited macrophage population marked by expression of Spp1, Cd9, Gpnmb, Fabp5, and Trem2, has been described in several models of organ injury and cancer, and has been linked to fibrosis in mice and humans. Here, we show that Notch2 blockade, given systemically or locally, leads to an increase in this putative pro-fibrotic macrophage in the lung and that this macrophage state can only be adopted by monocytically derived cells and not resident alveolar macrophages. Using a bleomycin and COVID-19 model of lung injury and fibrosis, we find that the expansion of these macrophages before lung injury does not promote fibrosis but rather appears to ameliorate it. This suggests that these damage-associated macrophages are not, by themselves, drivers of fibrosis in the lung.
Collapse
Affiliation(s)
- Mayra Cruz Tleugabulova
- Department of Cancer Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Sandra P Melo
- Department of Bioinformatics, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| | - Aaron Wong
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Meizi Liu
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Joshua D Webster
- Department of Research Pathology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Julia Lau
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Antonie Lechner
- Department of Physiology, University of Zürich, Zürich, Switzerland
| | - Basak Corak
- Department of Physiology, University of Zürich, Zürich, Switzerland
| | - Jonathan J Hodgins
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Venkata S Garlapati
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Marco De Simone
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Ben Korin
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Shimrit Avraham
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Jessica Lund
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Surinder Jeet
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Alexander Reiss
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Hannah Bender
- Department of Research Pathology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Cary D Austin
- Department of Research Pathology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Spyros Darmanis
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Hans Brightbill
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Steffen Durinck
- Department of Bioinformatics, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Molecular Microbiology Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | | | - Andrey S Shaw
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| | - Maximilian Nitschké
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| |
Collapse
|
3
|
Lee P, Kim J, Oh H, Kim CU, Jeong AY, Lee MS, Jang MS, Hong JJ, Park JE, Kim DJ. Coronavirus nucleocapsid-based vaccine provides partial protection against hetero-species coronavirus in murine models. Antiviral Res 2024; 231:105991. [PMID: 39181216 DOI: 10.1016/j.antiviral.2024.105991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Most coronavirus vaccines focus on the spike (S) antigen, but the frequent mutations in S raise concerns about the vaccine efficacy against new variants. Although additional antigens with conserved sequences are have been tested, the extent to which these vaccines can provide immunity against different coronavirus species remains unclear. In this study, we assessed the potential of nucleocapsid (N) as a coronavirus vaccine antigen. Immunization with MERS-CoV N induced robust immune responses, providing significant protection against MERS-CoV. Notably, MERS-CoV N elicited cross-reactive T cell responses to SARS-CoV-2 N and significantly reduced lung inflammation following a SARS-CoV-2 challenge in the transient hACE2 mouse model. However, in K18-hACE transgenic mice, the vaccine showed limited protection. Collectively, our findings suggest that coronavirus N can be an effective vaccine antigen against homologous viruses, but its efficacy may vary across different coronaviruses, highlighting the need for further research on pan-coronavirus vaccines using conserved antigens.
Collapse
Affiliation(s)
- Pureum Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; University of Science and Technology (UST), Daejeon, South Korea
| | - Jihee Kim
- Chungnam National University College of Veterinary Medicine, Daejeon, South Korea
| | - Hanseul Oh
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Chungbuk National University College of Veterinary Medicine, Cheongju, South Korea
| | - Chang-Ung Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ahn Young Jeong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Princeton University, Princeton, NJ, USA
| | - Moo-Seung Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; University of Science and Technology (UST), Daejeon, South Korea
| | | | - Jung Joo Hong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
| | - Jung-Eun Park
- Chungnam National University College of Veterinary Medicine, Daejeon, South Korea.
| | - Doo-Jin Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Chungbuk National University College of Medicine, Cheongju, South Korea; Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, South Korea.
| |
Collapse
|
4
|
Herrmann A, Gege C, Wangen C, Wagner S, Kögler M, Cordsmeier A, Irrgang P, Ip WH, Weil T, Hunszinger V, Groß R, Heinen N, Pfaender S, Reuter S, Klopfleisch R, Uhlig N, Eberlein V, Issmail L, Grunwald T, Hietel B, Cynis H, Münch J, Sparrer KMJ, Ensser A, Tenbusch M, Dobner T, Vitt D, Kohlhof H, Hahn F. Orally bioavailable RORγ/DHODH dual host-targeting small molecules with broad-spectrum antiviral activity. Antiviral Res 2024; 231:106008. [PMID: 39306285 DOI: 10.1016/j.antiviral.2024.106008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
Host-directed antivirals (HDAs) represent an attractive treatment option and a strategy for pandemic preparedness, especially due to their potential broad-spectrum antiviral activity and high barrier to resistance development. Particularly, dual-targeting HDAs offer a promising approach for antiviral therapy by simultaneously disrupting multiple pathways essential for viral replication. Izumerogant (IMU-935) targets two host proteins, (i) the retinoic acid receptor-related orphan receptor γ isoform 1 (RORγ1), which modulates cellular cholesterol metabolism, and (ii) the enzyme dihydroorotate dehydrogenase (DHODH), which is involved in de novo pyrimidine synthesis. Here, we synthesized optimized derivatives of izumerogant and characterized their antiviral activity in comparison to a recently described structurally distinct RORγ/DHODH dual inhibitor. Cell culture-based infection models for enveloped and non-enveloped DNA and RNA viruses, as well as a retrovirus, demonstrated high potency and broad-spectrum activity against human viral pathogens for RORγ/DHODH dual inhibitors at nanomolar concentrations. Comparative analyses with equipotent single-target inhibitors in metabolite supplementation approaches revealed that the dual-targeting mode represents the mechanistic basis for the potent antiviral activity. For SARS-CoV-2, an optimized dual inhibitor completely blocked viral replication in human airway epithelial cells at 5 nM and displayed a synergistic drug interaction with the nucleoside analog molnupiravir. In a SARS-CoV-2 mouse model, treatment with a dual inhibitor alone, or in combination with molnupiravir, reduced the viral load by 7- and 58-fold, respectively. Considering the clinical safety, oral bioavailability, and tolerability of izumerogant in a recent Phase I study, izumerogant-like drugs represent potent dual-targeting antiviral HDAs with pronounced broad-spectrum activity for further clinical development.
Collapse
Affiliation(s)
| | | | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Melanie Kögler
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Arne Cordsmeier
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Pascal Irrgang
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Wing-Hang Ip
- Leibniz Institute of Virology, Hamburg, Germany.
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | - Victoria Hunszinger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | - Natalie Heinen
- Ruhr-University Bochum, Department of Molecular and Medical Virology, Bochum, Germany.
| | - Stephanie Pfaender
- Leibniz Institute of Virology, Hamburg, Germany; Ruhr-University Bochum, Department of Molecular and Medical Virology, Bochum, Germany; University of Luebeck, Department of Natural Sciences, Institute of Virology and Cell Biology, Lübeck, Germany.
| | - Sebastian Reuter
- University Hospital Essen - Ruhrlandklinik, Department of Pulmonary Medicine, Experimental Pneumology, Essen, Germany.
| | - Robert Klopfleisch
- Institute for Animal Pathology, Freie Universität Berlin, Berlin, Germany.
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Benjamin Hietel
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany.
| | - Holger Cynis
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany; Junior Research Group "Immunomodulation in Pathophysiological Processes", Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | | | - Armin Ensser
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Matthias Tenbusch
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
5
|
Puray-Chavez M, Eschbach JE, Xia M, LaPak KM, Zhou Q, Jasuja R, Pan J, Xu J, Zhou Z, Mohammed S, Wang Q, Lawson DQ, Djokic S, Hou G, Ding S, Brody SL, Major MB, Goldfarb D, Kutluay SB. A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models. Nat Commun 2024; 15:8394. [PMID: 39333139 PMCID: PMC11437049 DOI: 10.1038/s41467-024-52803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024] Open
Abstract
Host factors that define the cellular tropism of SARS-CoV-2 beyond the cognate ACE2 receptor are poorly defined. Here we report that SARS-CoV-2 replication is restricted at a post-entry step in a number of ACE2-positive airway-derived cell lines due to tonic activation of the cGAS-STING pathway mediated by mitochondrial DNA leakage and naturally occurring cGAS and STING variants. Genetic and pharmacological inhibition of the cGAS-STING and type I/III IFN pathways as well as ACE2 overexpression overcome these blocks. SARS-CoV-2 replication in STING knockout cell lines and primary airway cultures induces ISG expression but only in uninfected bystander cells, demonstrating efficient antagonism of the type I/III IFN-pathway in productively infected cells. Pharmacological inhibition of STING in primary airway cells enhances SARS-CoV-2 replication and reduces virus-induced innate immune activation. Together, our study highlights that tonic activation of the cGAS-STING and IFN pathways can impact SARS-CoV-2 cellular tropism in a manner dependent on ACE2 expression levels.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna E Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ming Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle M LaPak
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qianzi Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ria Jasuja
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiehong Pan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zixiang Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shawn Mohammed
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qibo Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dana Q Lawson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanja Djokic
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven L Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Ying B, Liang CY, Desai P, Scheaffer SM, Elbashir SM, Edwards DK, Thackray LB, Diamond MS. Ipsilateral or contralateral boosting of mice with mRNA vaccines confers equivalent immunity and protection against a SARS-CoV-2 Omicron strain. J Virol 2024; 98:e0057424. [PMID: 39194250 PMCID: PMC11406931 DOI: 10.1128/jvi.00574-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Boosting with mRNA vaccines encoding variant-matched spike proteins has been implemented to mitigate their reduced efficacy against emerging SARS-CoV-2 variants. Nonetheless, in humans, it remains unclear whether boosting in the ipsilateral or contralateral arm with respect to the priming doses impacts immunity and protection. Here, we boosted K18-hACE2 mice with either monovalent mRNA-1273 (Wuhan-1 spike) or bivalent mRNA-1273.214 (Wuhan-1 + BA.1 spike) vaccine in the ipsilateral or contralateral leg after a two-dose priming series with mRNA-1273. Boosting in the ipsilateral or contralateral leg elicited equivalent levels of serum IgG and neutralizing antibody responses against Wuhan-1 and BA.1. While contralateral boosting with mRNA vaccines resulted in the expansion of spike-specific B and T cells beyond the ipsilateral draining lymph node (DLN) to the contralateral DLN, administration of a third mRNA vaccine dose at either site resulted in similar levels of antigen-specific germinal center B cells, plasmablasts/plasma cells, T follicular helper cells, and CD8+ T cells in the DLNs and the spleen. Furthermore, ipsilateral and contralateral boosting with mRNA-1273 or mRNA-1273.214 vaccines conferred similar homologous or heterologous immune protection against SARS-CoV-2 BA.1 virus challenge with equivalent reductions in viral RNA and infectious virus in the nasal turbinates and lungs. Collectively, our data show limited differences in B and T cell immune responses after ipsilateral and contralateral site boosting by mRNA vaccines that do not substantively impact protection against an Omicron strain.IMPORTANCESequential boosting with mRNA vaccines has been an effective strategy to overcome waning immunity and neutralization escape by emerging SARS-CoV-2 variants. However, it remains unclear how the site of boosting relative to the primary vaccination series shapes optimal immune responses or breadth of protection against variants. In K18-hACE2 transgenic mice, we observed that intramuscular boosting with historical monovalent or variant-matched bivalent vaccines in the ipsilateral or contralateral limb elicited comparable levels of serum spike-specific antibody and antigen-specific B and T cell responses. Moreover, boosting on either side conferred equivalent protection against a SARS-CoV-2 Omicron challenge strain. Our data in mice suggest that the site of intramuscular boosting with an mRNA vaccine does not substantially impact immunity or protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Dmytrenko O, Das S, Kovacs A, Cicka M, Liu M, Scheaffer SM, Bredemeyer A, Mack M, Diamond MS, Lavine KJ. Infiltrating monocytes drive cardiac dysfunction in a cardiomyocyte-restricted mouse model of SARS-CoV-2 infection. J Virol 2024; 98:e0117924. [PMID: 39207134 PMCID: PMC11406924 DOI: 10.1128/jvi.01179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of Myh6-Cre Rosa26loxP-STOP-loxP-hACE2 mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology.IMPORTANCEHeart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19.
Collapse
Affiliation(s)
- Oleksandr Dmytrenko
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shibali Das
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Attila Kovacs
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Markus Cicka
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Meizi Liu
- Department of Medicine, Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suzanne M Scheaffer
- Department of Medicine, Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea Bredemeyer
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Matthias Mack
- Department of Internal Medicine II, Division of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Michael S Diamond
- Department of Medicine, Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J Lavine
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Puray-Chavez M, Eschbach JE, Xia M, LaPak KM, Zhou Q, Jasuja R, Pan J, Xu J, Zhou Z, Mohammed S, Wang Q, Lawson DQ, Djokic S, Hou G, Ding S, Brody SL, Major MB, Goldfarb D, Kutluay SB. A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574522. [PMID: 38260460 PMCID: PMC10802478 DOI: 10.1101/2024.01.07.574522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Host factors that define the cellular tropism of SARS-CoV-2 beyond the cognate ACE2 receptor are poorly defined. Here we report that SARS-CoV-2 replication is restricted at a post-entry step in a number of ACE2-positive airway-derived cell lines due to tonic activation of the cGAS-STING pathway mediated by mitochondrial DNA leakage and naturally occurring cGAS and STING variants. Genetic and pharmacological inhibition of the cGAS-STING and type I/III IFN pathways as well as ACE2 overexpression overcome these blocks. SARS-CoV-2 replication in STING knockout cell lines and primary airway cultures induces ISG expression but only in uninfected bystander cells, demonstrating efficient antagonism of the type I/III IFN-pathway in productively infected cells. Pharmacological inhibition of STING in primary airway cells enhances SARS-CoV-2 replication and reduces virus-induced innate immune activation. Together, our study highlights that tonic activation of the cGAS-STING and IFN pathways can impact SARS-CoV-2 cellular tropism in a manner dependent on ACE2 expression levels.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ming Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle M. LaPak
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qianzi Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ria Jasuja
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiehong Pan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zixiang Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shawn Mohammed
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qibo Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dana Q. Lawson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanja Djokic
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael B. Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
9
|
Desai P, Karl CE, Ying B, Liang CY, Garcia-Salum T, Santana AC, Ten-Caten F, Joseph F Urban, Elbashir SM, Edwards DK, Ribeiro SP, Thackray LB, Sekaly RP, Diamond MS. Intestinal helminth infection impairs vaccine-induced T cell responses and protection against SARS-CoV-2 in mice. Sci Transl Med 2024; 16:eado1941. [PMID: 39167662 DOI: 10.1126/scitranslmed.ado1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Although vaccines have reduced the burden of COVID-19, their efficacy in helminth infection-endemic areas is not well characterized. We evaluated the impact of infection by Heligmosomoides polygyrus bakeri (Hpb), a murine intestinal roundworm, on the efficacy of an mRNA vaccine targeting the Wuhan-1 spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice. Although immunization generated similar B cell responses in Hpb-infected and uninfected mice, polyfunctional CD4+ and CD8+ T cell responses were markedly reduced in Hpb-infected mice. Hpb-infected and mRNA-vaccinated mice were protected against the ancestral SARS-CoV-2 strain WA1/2020, but control of lung infection was diminished against an Omicron variant compared with animals immunized without Hpb infection. Helminth-mediated suppression of spike protein-specific CD8+ T cell responses occurred independently of signal transducer and activator of transcription 6 (STAT6) signaling, whereas blockade of interleukin-10 (IL-10) rescued vaccine-induced CD8+ T cell responses. Together, these data show that, in mice, intestinal helminth infection impaired vaccine-induced T cell responses through an IL-10 pathway, which compromised protection against antigenically drifted SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Courtney E Karl
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Baoling Ying
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Tamara Garcia-Salum
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ana Carolina Santana
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Felipe Ten-Caten
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joseph F Urban
- US Department of Agriculture, Agricultural Research Services, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, and Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | | | | | - Susan P Ribeiro
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Rafick P Sekaly
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Lee J, Case JB, Park YJ, Ravichandran R, Asarnow D, Tortorici MA, Brown JT, Sanapala S, Carter L, Baker D, Diamond MS, Veesler D. A pan-variant miniprotein inhibitor protects against SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606885. [PMID: 39149384 PMCID: PMC11326246 DOI: 10.1101/2024.08.08.606885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The continued evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has compromised neutralizing antibody responses elicited by prior infection or vaccination and abolished the utility of most monoclonal antibody therapeutics. We previously described a computationally-designed, homotrimeric miniprotein inhibitor, designated TRI2-2, that protects mice against pre-Omicron SARS-CoV-2 variants. Here, we show that TRI2-2 exhibits pan neutralization of variants that evolved during the 4.5 years since the emergence of SARS-CoV-2 and protects mice against BQ.1.1, XBB.1.5 and BA.2.86 challenge when administered post-exposure by an intranasal route. The resistance of TRI2-2 to viral escape and its direct delivery to the upper airways rationalize a path toward clinical advancement.
Collapse
Affiliation(s)
- Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Jack T. Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Shilpa Sanapala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Simoneau CR, Chen PY, Xing GK, Hayashi JM, Chen IP, Khalid MM, Meyers NL, Taha TY, Leon KE, Suryawanshi RK, McCavitt-Malvido M, Ashuach T, Fontaine KA, Rodriguez L, Joehnk B, Walcott K, Vasudevan S, Fang X, Maishan M, Schultz S, Roose JP, Matthay MA, Sil A, Arjomandi M, Yosef N, Ott M. NF-κB inhibitor alpha controls SARS-CoV-2 infection in ACE2-overexpressing human airway organoids. Sci Rep 2024; 14:15351. [PMID: 38961189 PMCID: PMC11222426 DOI: 10.1038/s41598-024-66003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
As SARS-CoV-2 continues to spread worldwide, tractable primary airway cell models that recapitulate the cell-intrinsic response to arising viral variants are needed. Here we describe an adult stem cell-derived human airway organoid model overexpressing the ACE2 receptor (ACE2-OE) that supports robust viral replication while maintaining 3D architecture and cellular diversity of the airway epithelium. ACE2-OE organoids were infected with SARS-CoV-2 variants and subjected to single-cell RNA-sequencing. Interferon-lambda was upregulated in cells with low-level infection while the NF-kB inhibitor alpha gene (encoding IkBa) was consistently upregulated in infected cells, and its expression positively correlated with infection levels. Confocal microscopy showed more IkBa expression in infected than bystander cells, but found concurrent nuclear translocation of NF-kB that IkBa usually prevents. Overexpressing a nondegradable IkBa mutant reduced NF-kB translocation and increased viral infection. These data demonstrate the functionality of ACE2-OE organoids in SARS-CoV-2 research and underscore that the strength of the NF-kB feedback loop in infected cells controls viral replication.
Collapse
Affiliation(s)
- Camille R Simoneau
- Gladstone Institute of Virology, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Pei-Yi Chen
- Gladstone Institute of Virology, San Francisco, CA, USA
| | - Galen K Xing
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Irene P Chen
- Gladstone Institute of Virology, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Mir M Khalid
- Gladstone Institute of Virology, San Francisco, CA, USA
| | | | - Taha Y Taha
- Gladstone Institute of Virology, San Francisco, CA, USA
| | - Kristoffer E Leon
- Gladstone Institute of Virology, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Tal Ashuach
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Lauren Rodriguez
- ImmunoX CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Bastian Joehnk
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Keith Walcott
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | | | - Xiaohui Fang
- Department of Medicine and Department of Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Mazharul Maishan
- Department of Medicine and Department of Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Shawn Schultz
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Michael A Matthay
- Department of Medicine and Department of Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Anita Sil
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Mehrdad Arjomandi
- Medical Service, San Francisco VA Healthcare System, San Francisco, CA, USA
- Division of Pulmonary and Critical Care, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Melanie Ott
- Gladstone Institute of Virology, San Francisco, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Lim SA, Ho N, Chen S, Chung EJ. Natural Killer Cell‐Derived Extracellular Vesicles as Potential Anti‐Viral Nanomaterials. Adv Healthc Mater 2024; 13:e2304186. [PMID: 38676697 DOI: 10.1002/adhm.202304186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/19/2024] [Indexed: 04/29/2024]
Abstract
In viral infections, natural killer (NK) cells exhibit anti-viral activity by inducing apoptosis in infected host cells and impeding viral replication through heightened cytokine release. Extracellular vesicles derived from NK cells (NK-EVs) also contain the membrane composition, homing capabilities, and cargo that enable anti-viral activity. These characteristics, and their biocompatibility and low immunogenicity, give NK-EVs the potential to be a viable therapeutic platform. This study characterizes the size, EV-specific protein expression, cell internalization, biocompatibility, and anti-viral miRNA cargo to evaluate the anti-viral properties of NK-EVs. After 48 h of NK-EV incubation in inflamed A549 lung epithelial cells, or conditions that mimic lung viral infections such as during COVID-19, cells treated with NK-EVs exhibit upregulated anti-viral miRNA cargo (miR-27a, miR-27b, miR-369-3p, miR-491-5p) compared to the non-treated controls and cells treated with control EVs derived from lung epithelial cells. Additionally, NK-EVs effectively reduce expression of viral RNA and pro-inflammatory cytokine (TNF-α, IL-8) levels in SARS-CoV-2 infected Vero E6 kidney epithelial cells and in infected mice without causing tissue damage while significantly decreasing pro-inflammatory cytokine compared to non-treated controls. Herein, this work elucidates the potential of NK-EVs as safe, anti-viral nanomaterials, offering a promising alternative to conventional NK cell and anti-viral therapies.
Collapse
Affiliation(s)
- Siyoung A Lim
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nathan Ho
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sophia Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
- Bridge Institute, University of Southern California, Los Angeles, CA, 90089, USA
- Michelson Center for Convergent Bioscience, 1002 Childs Way, MCB 377, Los Angeles, CA, 90089, USA
| |
Collapse
|
13
|
Vanderheiden A, Hill JD, Jiang X, Deppen B, Bamunuarachchi G, Soudani N, Joshi A, Cain MD, Boon ACM, Klein RS. Vaccination reduces central nervous system IL-1β and memory deficits after COVID-19 in mice. Nat Immunol 2024; 25:1158-1171. [PMID: 38902519 DOI: 10.1038/s41590-024-01868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
Up to 25% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit postacute cognitive sequelae. Although millions of cases of coronavirus disease 2019 (COVID-19)-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1 (IL-1), a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of individuals with COVID-19. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 Beta variant leads to central nervous system infiltration of Ly6Chi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1β and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes postacute cognitive deficits. Vaccination with a low dose of adenoviral-vectored spike protein prevents hippocampal production of IL-1β during breakthrough SARS-CoV-2 infection, loss of neurogenesis and subsequent memory deficits. Our study identifies IL-1β as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new mouse model that is prevented by vaccination.
Collapse
Affiliation(s)
- Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeremy D Hill
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoping Jiang
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ben Deppen
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gayan Bamunuarachchi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Cain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S Klein
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, London, Ontario, Canada.
- Schulich School of Medicine and Dentistry, Western Institute of Neuroscience, Western University, London, Ontario, Canada.
| |
Collapse
|
14
|
Bang LL, Tornby DR, Pham STD, Assing K, Möller S, Palarasah Y, Madsen LW, Thomsen KG, Johansen IS, Pedersen RM, Andersen TE. Culturing of SARS-CoV-2 from patient samples: Protocol for optimal virus recovery and assessment of infectious viral load. J Virol Methods 2024; 326:114912. [PMID: 38447645 DOI: 10.1016/j.jviromet.2024.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Optimal sampling, preservation, and culturing of SARS-CoV-2 from COVID-19 patients are critical for successful recovery of virus isolates and to accurately estimate contagiousness of the patient. In this study, we investigated the influence of the type of sampling media, storage time, freezing conditions, sterile filtration, and combinations of these to determine the optimal pre-analytic conditions for virus recovery and estimation of infectious viral load in COVID-19 patients. Further, we investigated the viral shedding kinetics and mucosal antibody response in 38 COVID-19 hospitalized patients. We found Universal Transport Medium (Copan) to be the most optimal medium for preservation of SARS-CoV-2 infectivity. Our data showed that the probability of a positive viral culture was strongly correlated to Ct values, however some samples did not follow the general trend. We found a significant correlation between plaque forming units and levels of mucosal antibodies and found that high levels of mucosal antibodies correlated with reduced chance of isolating the virus. Our data reveals essential parameters to consider from specimen collection over storage to culturing technique for optimal chance of isolating SARS-CoV-2 and accurately estimating patient contagiousness.
Collapse
Affiliation(s)
- Line L Bang
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ditte R Tornby
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Stephanie T D Pham
- Department of Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kristian Assing
- Department of Clinical Immunology, Odense University Hospital and Research Unit for Clinical Immunology, University of Southern Denmark, Odense, Denmark
| | - Sören Möller
- Open Patient Data Explorative Network (OPEN), Department of Clinical Research, University of Southern Denmark and Odense University Hospital, Odense 5000, Denmark
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lone W Madsen
- Department of Infectious Diseases, Odense University Hospital and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark; Department of Regional Health Research, University of Southern Denmark, Denmark; Unit for Infectious Diseases, Department of medicine, Sygehus Lillebælt, Kolding, Denmark
| | - Karina G Thomsen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
| | - Rune M Pedersen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Thomas E Andersen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
15
|
Antia A, Alvarado DM, Zeng Q, Casorla-Perez LA, Davis DL, Sonnek NM, Ciorba MA, Ding S. SARS-CoV-2 Omicron BA.1 Variant Infection of Human Colon Epithelial Cells. Viruses 2024; 16:634. [PMID: 38675974 PMCID: PMC11055019 DOI: 10.3390/v16040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The Omicron variant of SARS-CoV-2, characterized by multiple subvariants including BA.1, XBB.1.5, EG.5, and JN.1, became the predominant strain in early 2022. Studies indicate that Omicron replicates less efficiently in lung tissue compared to the ancestral strain. However, the infectivity of Omicron in the gastrointestinal tract is not fully defined, despite the fact that 70% of COVID-19 patients experience digestive disease symptoms. Here, using primary human colonoids, we found that, regardless of individual variability, Omicron infects colon cells similarly or less effectively than the ancestral strain or the Delta variant. The variant induced limited type III interferon expression and showed no significant impact on epithelial integrity. Further experiments revealed inefficient cell-to-cell spread and spike protein cleavage in the Omicron spike protein, possibly contributing to its lower infectious particle levels. The findings highlight the variant-specific replication differences in human colonoids, providing insights into the enteric tropism of Omicron and its relevance to long COVID symptoms.
Collapse
Affiliation(s)
- Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.A.); (Q.Z.)
| | - David M. Alvarado
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.A.); (Q.Z.)
| | - Luis A. Casorla-Perez
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Deanna L. Davis
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Naomi M. Sonnek
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Matthew A. Ciorba
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.A.); (Q.Z.)
| |
Collapse
|
16
|
Relich RF, Van Benten K, Lei GS, Robinson CM, Carozza M, Sahoo MK, Huang C, Solis D, Sibai M, Myers CA, Sikorski C, Balagot C, Yang D, Pinsky BA, Loeffelholz MJ. Determination of the cycle threshold value of the Xpert Xpress SARS-CoV-2/Flu/RSV test that corresponds to the presence of infectious SARS-CoV-2 in anterior nasal swabs. Microbiol Spectr 2024; 12:e0390823. [PMID: 38466093 PMCID: PMC10986483 DOI: 10.1128/spectrum.03908-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Despite having high analytical sensitivities and specificities, qualitative SARS-CoV-2 nucleic acid amplification tests (NAATs) cannot distinguish infectious from non-infectious virus in clinical samples. In this study, we determined the highest cycle threshold (Ct) value of the SARS-CoV-2 targets in the Xpert Xpress SARS-CoV-2/Flu/RSV (Xpert 4plex) test that corresponded to the presence of detectable infectious SARS-CoV-2 in anterior nasal swab samples. A total of 111 individuals with nasopharyngeal swab specimens that were initially tested by the Xpert Xpress SARS-CoV-2 test were enrolled. A healthcare worker subsequently collected anterior nasal swabs from all SARS-CoV-2-positive individuals, and those specimens were tested by the Xpert 4plex test, viral culture, and laboratory-developed assays for SARS-CoV-2 replication intermediates. SARS-CoV-2 Ct values from the Xpert 4plex test were correlated with data from culture and replication intermediate testing to determine the Xpert 4plex assay Ct value that corresponded to the presence of infectious virus. Ninety-eight of the 111 (88.3%) individuals initially tested positive by the Xpert Xpress SARS-CoV-2 test. An anterior nasal swab specimen collected from positive individuals a median of 2 days later (range, 0-9 days) tested positive for SARS-CoV-2 by the Xpert 4plex test in 39.8% (39/98) of cases. Of these samples, 13 (33.3%) were considered to contain infectious virus based on the presence of cultivable virus and replication intermediates, and the highest Ct value observed for the Xpert 4plex test in these instances was 26.3. Specimens that yielded Ct values of ≤26.3 when tested by the Xpert 4plex test had a likelihood of containing infectious SARS-CoV-2; however, no infectious virus was detected in specimens with higher Ct values.IMPORTANCEUnderstanding the correlation between real-time PCR test results and the presence of infectious SARS-CoV-2 may be useful for informing patient management and workforce return-to-work or -duty. Further studies in different patient populations are needed to correlate Ct values or other biomarkers of viral replication along with the presence of infectious virus in clinical samples.
Collapse
Affiliation(s)
- Ryan F. Relich
- Division of Clinical Microbiology, Indiana University Health, Indianapolis, Indiana, USA
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Guang-Sheng Lei
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christopher M. Robinson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Malaya K. Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - ChunHong Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Solis
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Mamdouh Sibai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Christopher A. Myers
- Operational Infectious Diseases, Naval Health Research Center, San Diego, California, USA
| | - Cynthia Sikorski
- Operational Infectious Diseases, Naval Health Research Center, San Diego, California, USA
| | - Caroline Balagot
- Operational Infectious Diseases, Naval Health Research Center, San Diego, California, USA
- General Dynamics Information Technology, Falls Church, Virginia, USA
| | | | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
17
|
Jacob IB, Gemmiti A, Xiong W, Reynolds E, Nicholas B, Thangamani S, Jia H, Wang G. Human surfactant protein A inhibits SARS-CoV-2 infectivity and alleviates lung injury in a mouse infection model. Front Immunol 2024; 15:1370511. [PMID: 38596675 PMCID: PMC11002091 DOI: 10.3389/fimmu.2024.1370511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction SARS coronavirus 2 (SARS-CoV-2) infects human angiotensin-converting enzyme 2 (hACE2)-expressing lung epithelial cells through its spike (S) protein. The S protein is highly glycosylated and could be a target for lectins. Surfactant protein A (SP-A) is a collagen-containing C-type lectin, expressed by mucosal epithelial cells and mediates its antiviral activities by binding to viral glycoproteins. Objective This study examined the mechanistic role of human SP-A in SARS-CoV-2 infectivity and lung injury in vitro and in vivo. Results Human SP-A can bind both SARS-CoV-2 S protein and hACE2 in a dose-dependent manner (p<0.01). Pre-incubation of SARS-CoV-2 (Delta) with human SP-A inhibited virus binding and entry and reduced viral load in human lung epithelial cells, evidenced by the dose-dependent decrease in viral RNA, nucleocapsid protein (NP), and titer (p<0.01). We observed significant weight loss, increased viral burden, and mortality rate, and more severe lung injury in SARS-CoV-2 infected hACE2/SP-A KO mice (SP-A deficient mice with hACE2 transgene) compared to infected hACE2/mSP-A (K18) and hACE2/hSP-A1 (6A2) mice (with both hACE2 and human SP-A1 transgenes) 6 Days Post-infection (DPI). Furthermore, increased SP-A level was observed in the saliva of COVID-19 patients compared to healthy controls (p<0.05), but severe COVID-19 patients had relatively lower SP-A levels than moderate COVID-19 patients (p<0.05). Discussion Collectively, human SP-A attenuates SARS-CoV-2-induced acute lung injury (ALI) by directly binding to the S protein and hACE2, and inhibiting its infectivity; and SP-A level in the saliva of COVID-19 patients might serve as a biomarker for COVID-19 severity.
Collapse
Affiliation(s)
- Ikechukwu B. Jacob
- Department of Surgery, the State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Amanda Gemmiti
- Department of Otolaryngology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Weichuan Xiong
- Department of Surgery, the State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Erin Reynolds
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Brian Nicholas
- Department of Otolaryngology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Saravanan Thangamani
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hongpeng Jia
- Department of Surgery, Johns-Hopkins University, Baltimore, MD, United States
| | - Guirong Wang
- Department of Surgery, the State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
18
|
Karim M, Pohane AA, Lo CW, Einav S, Garhyan J. Chemical inactivation strategies for SARS-CoV-2-infected cells and organoids. STAR Protoc 2024; 5:102906. [PMID: 38401122 PMCID: PMC10904193 DOI: 10.1016/j.xpro.2024.102906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/07/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024] Open
Abstract
Infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research, conducted in high-containment laboratories, requires transferring samples to lower containment labs for downstream applications, mandating sample inactivation. Here, we present a stepwise protocol for chemical inactivation of SARS-CoV-2 virus in culture supernatants or within infected cells and organoids, using eight chemical reagents validated via plaque assays. Additionally, we describe steps for troubleshooting virus inactivation, titer calculation, and log reduction. This protocol offers valuable resources for the COVID-19 research community, providing essential tools to advance research on this virus.
Collapse
Affiliation(s)
- Marwah Karim
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA.
| | - Amol Arunrao Pohane
- Stanford In Vitro Biosafety Level 3 Service Center, Stanford University, Stanford, CA, USA
| | - Chieh-Wen Lo
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Jaishree Garhyan
- Stanford In Vitro Biosafety Level 3 Service Center, Stanford University, Stanford, CA, USA.
| |
Collapse
|
19
|
Westberg M, Su Y, Zou X, Huang P, Rustagi A, Garhyan J, Patel PB, Fernandez D, Wu Y, Hao C, Lo CW, Karim M, Ning L, Beck A, Saenkham-Huntsinger P, Tat V, Drelich A, Peng BH, Einav S, Tseng CTK, Blish C, Lin MZ. An orally bioavailable SARS-CoV-2 main protease inhibitor exhibits improved affinity and reduced sensitivity to mutations. Sci Transl Med 2024; 16:eadi0979. [PMID: 38478629 PMCID: PMC11193659 DOI: 10.1126/scitranslmed.adi0979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/21/2024] [Indexed: 05/09/2024]
Abstract
Inhibitors of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) such as nirmatrelvir (NTV) and ensitrelvir (ETV) have proven effective in reducing the severity of COVID-19, but the presence of resistance-conferring mutations in sequenced viral genomes raises concerns about future drug resistance. Second-generation oral drugs that retain function against these mutants are thus urgently needed. We hypothesized that the covalent hepatitis C virus protease inhibitor boceprevir (BPV) could serve as the basis for orally bioavailable drugs that inhibit SARS-CoV-2 Mpro more efficiently than existing drugs. Performing structure-guided modifications of BPV, we developed a picomolar-affinity inhibitor, ML2006a4, with antiviral activity, oral pharmacokinetics, and therapeutic efficacy similar or superior to those of NTV. A crucial feature of ML2006a4 is a derivatization of the ketoamide reactive group that improves cell permeability and oral bioavailability. Last, ML2006a4 was found to be less sensitive to several mutations that cause resistance to NTV or ETV and occur in the natural SARS-CoV-2 population. Thus, anticipatory design can preemptively address potential resistance mechanisms to expand future treatment options against coronavirus variants.
Collapse
Affiliation(s)
- Michael Westberg
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
- Department of Chemistry, Aarhus University; 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University; 8000 Aarhus C, Denmark
| | - Yichi Su
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xinzhi Zou
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
| | - Pinghan Huang
- Department of Microbiology and Immunology, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Jaishree Garhyan
- Stanford In Vitro Biosafety Level 3 Service Center, Stanford University; Stanford, CA 94305, USA
| | - Puja Bhavesh Patel
- Stanford In Vitro Biosafety Level 3 Service Center, Stanford University; Stanford, CA 94305, USA
| | - Daniel Fernandez
- Program in Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University; Stanford, CA 94305, USA
- Sarafan ChEM-H, Macromolecular Structure Knowledge Center, Stanford University; Stanford, CA 94305, USA
| | - Yan Wu
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
| | - Chenzhou Hao
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
| | - Chieh-Wen Lo
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Marwah Karim
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Lin Ning
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
| | - Aimee Beck
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | | | - Vivian Tat
- Department of Pathology, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Shirit Einav
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University; Stanford, CA 94305, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, The University of Texas Medical Branch; Galveston, TX 77555, USA
- Department of Pathology, The University of Texas Medical Branch; Galveston, TX 77555, USA
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Catherine Blish
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Michael Z. Lin
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
20
|
Ying B, Darling TL, Desai P, Liang CY, Dmitriev IP, Soudani N, Bricker T, Kashentseva EA, Harastani H, Raju S, Liu M, Schmidt AG, Curiel DT, Boon ACM, Diamond MS. Mucosal vaccine-induced cross-reactive CD8 + T cells protect against SARS-CoV-2 XBB.1.5 respiratory tract infection. Nat Immunol 2024; 25:537-551. [PMID: 38337035 PMCID: PMC10907304 DOI: 10.1038/s41590-024-01743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.
Collapse
Affiliation(s)
- Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamarand L Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Traci Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Houda Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Saravanan Raju
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meizi Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aaron G Schmidt
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
Nisa A, Kumar R, Ramasamy S, Kolloli A, Olejnik J, Jalloh S, Gummuluru S, Subbian S, Bushkin Y. Modulations of Homeostatic ACE2, CD147, GRP78 Pathways Correlate with Vascular and Endothelial Performance Markers during Pulmonary SARS-CoV-2 Infection. Cells 2024; 13:432. [PMID: 38474396 PMCID: PMC10930588 DOI: 10.3390/cells13050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The pathologic consequences of Coronavirus Disease-2019 (COVID-19) include elevated inflammation and dysregulated vascular functions associated with thrombosis. In general, disruption of vascular homeostasis and ensuing prothrombotic events are driven by activated platelets, monocytes, and macrophages, which form aggregates (thrombi) attached to the endothelium lining of vessel walls. However, molecular pathways underpinning the pathological interactions between myeloid cells and endothelium during COVID-19 remain undefined. Here, we tested the hypothesis that modulations in the expression of cellular receptors angiotensin-converting enzyme 2 (ACE2), CD147, and glucose-regulated protein 78 (GRP78), which are involved in homeostasis and endothelial performance, are the hallmark responses induced by SARS-CoV-2 infection. Cultured macrophages and lungs of hamster model systems were used to test this hypothesis. The results indicate that while macrophages and endothelial cells are less likely to support SARS-CoV-2 proliferation, these cells may readily respond to inflammatory stimuli generated by the infected lung epithelium. SARS-CoV-2 induced modulations of tested cellular receptors correlated with corresponding changes in the mRNA expression of coagulation cascade regulators and endothelial integrity components in infected hamster lungs. Among these markers, tissue factor (TF) had the best correlation for prothrombotic events during SARS-CoV-2 infection. Furthermore, the single-molecule fluorescence in situ hybridization (smFISH) method alone was sufficient to determine the peak and resolution phases of SARS-CoV-2 infection and enabled screening for cellular markers co-expressed with the virus. These findings suggest possible molecular pathways for exploration of novel drugs capable of blocking the prothrombotic shift events that exacerbate COVID-19 pathophysiology and control the disease.
Collapse
Affiliation(s)
- Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Ranjeet Kumar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Santhamani Ramasamy
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Afsal Kolloli
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Judith Olejnik
- Department of Virology, Immunology & Microbiology, Boston University School of Medicine, Boston, MA 02130, USA; (J.O.); (S.J.); (S.G.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Sallieu Jalloh
- Department of Virology, Immunology & Microbiology, Boston University School of Medicine, Boston, MA 02130, USA; (J.O.); (S.J.); (S.G.)
| | - Suryaram Gummuluru
- Department of Virology, Immunology & Microbiology, Boston University School of Medicine, Boston, MA 02130, USA; (J.O.); (S.J.); (S.G.)
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Yuri Bushkin
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| |
Collapse
|
22
|
Dhanushkodi NR, Prakash S, Quadiri A, Zayou L, Srivastava R, Shaik AM, Suzer B, Ibraim IC, Landucci G, Tifrea DF, Singer M, Jamal L, Edwards RA, Vahed H, Brown L, BenMohamed L. Antiviral and Anti-Inflammatory Therapeutic Effect of RAGE-Ig Protein against Multiple SARS-CoV-2 Variants of Concern Demonstrated in K18-hACE2 Mouse and Syrian Golden Hamster Models. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:576-585. [PMID: 38180084 DOI: 10.4049/jimmunol.2300392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
SARS-CoV-2 variants of concern (VOCs) continue to evolve and reemerge with chronic inflammatory long COVID sequelae, necessitating the development of anti-inflammatory therapeutic molecules. Therapeutic effects of the receptor for advanced glycation end products (RAGE) were reported in many inflammatory diseases. However, a therapeutic effect of RAGE in COVID-19 has not been reported. In the present study, we investigated whether and how the RAGE-Ig fusion protein would have an antiviral and anti-inflammatory therapeutic effect in the COVID-19 system. The protective therapeutic effect of RAGE-Ig was determined in vivo in K18-hACE2 transgenic mice and Syrian golden hamsters infected with six VOCs of SARS-CoV-2. The underlying antiviral mechanism of RAGE-Ig was determined in vitro in SARS-CoV-2-infected human lung epithelial cells (BEAS-2B). Following treatment of K18-hACE2 mice and hamsters infected with various SARS-CoV-2 VOCs with RAGE-Ig, we demonstrated (1) significant dose-dependent protection (i.e., greater survival, less weight loss, lower virus replication in the lungs); (2) a reduction of inflammatory macrophages (F4/80+/Ly6C+) and neutrophils (CD11b+/Ly6G+) infiltrating the infected lungs; (3) a RAGE-Ig dose-dependent increase in the expression of type I IFNs (IFN-α and IFN-β) and type III IFN (IFNλ2) and a decrease in the inflammatory cytokines (IL-6 and IL-8) in SARS-CoV-2-infected human lung epithelial cells; and (4) a dose-dependent decrease in the expression of CD64 (FcgR1) on monocytes and lung epithelial cells from symptomatic COVID-19 patients. Our preclinical findings revealed type I and III IFN-mediated antiviral and anti-inflammatory therapeutic effects of RAGE-Ig protein against COVID-19 caused by multiple SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Izabela Coimbra Ibraim
- High Containment Facility, University of California, Irvine, School of Medicine, Irvine, CA
| | - Gary Landucci
- High Containment Facility, University of California, Irvine, School of Medicine, Irvine, CA
| | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine School of Medicine, Irvine, CA
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Leila Jamal
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine School of Medicine, Irvine, CA
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA
| | | | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, School of Medicine, Irvine, CA
- Institute for Immunology, University of California, Irvine, School of Medicine, Irvine, CA
| |
Collapse
|
23
|
Zimmerman O, Altman Doss AM, Ying B, Liang CY, Mackin SR, Davis-Adams HG, Adams LJ, VanBlargan LA, Chen RE, Scheaffer SM, Desai P, Raju S, Mantia TL, O’Shaughnessy CC, Monroy JM, Wedner HJ, Rigell CJ, Kau AL, Dy TB, Ren Z, Turner JS, O’Halloran JA, Presti RM, Kendall PL, Fremont DH, Ellebedy AH, Diamond MS. Immunoglobulin replacement products protect against SARS-CoV-2 infection in vivo despite poor neutralizing activity. JCI Insight 2024; 9:e176359. [PMID: 38175703 PMCID: PMC10967375 DOI: 10.1172/jci.insight.176359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Immunoglobulin (IG) replacement products are used routinely in patients with immune deficiency and other immune dysregulation disorders who have poor responses to vaccination and require passive immunity conferred by commercial antibody products. The binding, neutralizing, and protective activity of intravenously administered IG against SARS-CoV-2 emerging variants remains unknown. Here, we tested 198 different IG products manufactured from December 2019 to August 2022. We show that prepandemic IG had no appreciable cross-reactivity or neutralizing activity against SARS-CoV-2. Anti-spike antibody titers and neutralizing activity against SARS-CoV-2 WA1/2020 D614G increased gradually after the pandemic started and reached levels comparable to vaccinated healthy donors 18 months after the diagnosis of the first COVID-19 case in the United States in January 2020. The average time between production to infusion of IG products was 8 months, which resulted in poor neutralization of the variant strain circulating at the time of infusion. Despite limited neutralizing activity, IG prophylaxis with clinically relevant dosing protected susceptible K18-hACE2-transgenic mice against clinical disease, lung infection, and lung inflammation caused by the XBB.1.5 Omicron variant. Moreover, following IG prophylaxis, levels of XBB.1.5 infection in the lung were higher in FcγR-KO mice than in WT mice. Thus, IG replacement products with poor neutralizing activity against evolving SARS-CoV-2 variants likely confer protection to patients with immune deficiency disorders through Fc effector function mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew L. Kau
- Department of Medicine, and
- Department of Molecular Microbiology
- Center for Women’s Infectious Disease Research
| | | | | | | | | | - Rachel M. Presti
- Department of Medicine, and
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, and
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Ali H. Ellebedy
- Department of Pathology and Immunology
- Department of Molecular Microbiology
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, and
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S. Diamond
- Department of Medicine, and
- Department of Pathology and Immunology
- Department of Molecular Microbiology
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, and
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Prakash S, Dhanushkodi NR, Zayou L, Ibraim IC, Quadiri A, Coulon PG, Tifrea DF, Suzer B, Shaik AM, Chilukuri A, Edwards RA, Singer M, Vahed H, Nesburn AB, Kuppermann BD, Ulmer JB, Gil D, Jones TM, BenMohamed L. Cross-protection induced by highly conserved human B, CD4 +, and CD8 + T-cell epitopes-based vaccine against severe infection, disease, and death caused by multiple SARS-CoV-2 variants of concern. Front Immunol 2024; 15:1328905. [PMID: 38318166 PMCID: PMC10839970 DOI: 10.3389/fimmu.2024.1328905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has decreased significantly, the long-term outlook of COVID-19 remains a serious cause of morbidity and mortality worldwide, with the mortality rate still substantially surpassing even that recorded for influenza viruses. The continued emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, has prolonged the COVID-19 pandemic and underscores the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. Methods We designed a multi-epitope-based coronavirus vaccine that incorporated B, CD4+, and CD8+ T- cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-variant SARS-CoV-2 vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. Results The pan-variant SARS-CoV-2 vaccine (i) is safe , (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells , and (iii) provides robust protection against morbidity and virus replication. COVID-19-related lung pathology and death were caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2), and Omicron (B.1.1.529). Conclusion A multi-epitope pan-variant SARS-CoV-2 vaccine bearing conserved human B- and T- cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that facilitated virus clearance, and reduced morbidity, COVID-19-related lung pathology, and death caused by multiple SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Nisha R Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Izabela Coimbra Ibraim
- High Containment Facility, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Pierre Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Amruth Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Anthony B Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Baruch D Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Jeffrey B Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Trevor M Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
- Division of Infectious Diseases and Hospitalist Program, Department of Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
- Institute for Immunology; University of California Irvine, School of Medicine, Irvine, CA, United States
| |
Collapse
|
25
|
Desai P, Karl CE, Ying B, Liang CY, Garcia-Salum T, Santana AC, Caten FT, Urban JF, Elbashir SM, Edwards DK, Ribeiro SP, Thackray LB, Sekaly RP, Diamond MS. Intestinal helminth infection impairs vaccine-induced T cell responses and protection against SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.575588. [PMID: 38293221 PMCID: PMC10827110 DOI: 10.1101/2024.01.14.575588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Although vaccines have reduced COVID-19 disease burden, their efficacy in helminth infection endemic areas is not well characterized. We evaluated the impact of infection by Heligmosomoides polygyrus bakeri (Hpb), a murine intestinal hookworm, on the efficacy of an mRNA vaccine targeting the Wuhan-1 spike protein of SARS-CoV-2. Although immunization generated similar B cell responses in Hpb-infected and uninfected mice, polyfunctional CD4+ and CD8+ T cell responses were markedly reduced in Hpb-infected mice. Hpb-infected and mRNA vaccinated mice were protected against the ancestral SARS-CoV-2 strain WA1/2020, but control of lung infection was diminished against an Omicron variant compared to animals immunized without Hpb infection. Helminth mediated suppression of spike-specific CD8+ T cell responses occurred independently of STAT6 signaling, whereas blockade of IL-10 rescued vaccine-induced CD8+ T cell responses. In mice, intestinal helminth infection impairs vaccine induced T cell responses via an IL-10 pathway and compromises protection against antigenically shifted SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Courtney E. Karl
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Baoling Ying
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Tamara Garcia-Salum
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ana Carolina Santana
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Felipe Ten Caten
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Joseph F. Urban
- US Department of Agriculture, Agricultural Research Services, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, and Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | | | | | - Susan P. Ribeiro
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Larissa B. Thackray
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Rafick P. Sekaly
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
26
|
Baid K, Chiok KR, Banerjee A. Median Tissue Culture Infectious Dose 50 (TCID 50) Assay to Determine Infectivity of Cytopathic Viruses. Methods Mol Biol 2024; 2813:117-123. [PMID: 38888774 DOI: 10.1007/978-1-0716-3890-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The emergence of zoonotic viruses like severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 have significantly impacted global health and economy. The discovery of other viruses in wildlife reservoir species present a threat for future emergence in humans and animals. Therefore, assays that are less reliant on virus-specific information, such as neutralization assays, are crucial to rapidly develop diagnostics, understand virus replication and pathogenicity, and assess the efficacy of therapeutics against newly emerging viruses. Here, we describe the discontinuous median tissue culture infectious dose 50 (TCID50) assay to quantitatively determine the titer of any virus that can produce a visible cytopathic effect in infected cells.
Collapse
Affiliation(s)
- Kaushal Baid
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kim R Chiok
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
27
|
Cohen M, Laux J, Douagi I. Cytometry in High-Containment Laboratories. Methods Mol Biol 2024; 2779:425-456. [PMID: 38526798 DOI: 10.1007/978-1-0716-3738-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The emergence of new pathogens continues to fuel the need for advanced high-containment laboratories across the globe. Here we explore challenges and opportunities for integration of cytometry, a central technology for cell analysis, within high-containment laboratories. We review current applications in infectious disease, vaccine research, and biosafety. Considerations specific to cytometry within high-containment laboratories, such as biosafety requirements, and sample containment strategies are also addressed. We further tour the landscape of emerging technologies, including combination of cytometry with other omics, the application of automation, and artificial intelligence. Finally, we propose a framework to fast track the immersion of advanced technologies into the high-containment research setting to improve global preparedness for new emerging diseases.
Collapse
Affiliation(s)
- Melanie Cohen
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie Laux
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Zayou L, Prakash S, Dhanushkodi NR, Quadiri A, Ibraim IC, Singer M, Salem A, Shaik AM, Suzer B, Chilukuri A, Tran J, Nguyen PC, Sun M, Hormi-Carver KK, Belmouden A, Vahed H, Gil D, Ulmer JB, BenMohamed L. A multi-epitope/CXCL11 prime/pull coronavirus mucosal vaccine boosts the frequency and the function of lung-resident memory CD4 + and CD8 + T cells and enhanced protection against COVID-19-like symptoms and death caused by SARS-CoV-2 infection. J Virol 2023; 97:e0109623. [PMID: 38038432 PMCID: PMC10734477 DOI: 10.1128/jvi.01096-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Although the current rate of SARS-CoV-2 infections has decreased significantly, COVID-19 still ranks very high as a cause of death worldwide. As of October 2023, the weekly mortality rate is still at 600 deaths in the United States alone, which surpasses even the worst mortality rates recorded for influenza. Thus, the long-term outlook of COVID-19 is still a serious concern outlining the need for the next-generation vaccine. This study found that a prime/pull coronavirus vaccine strategy increased the frequency of functional SARS-CoV-2-specific CD4+ and CD8+ memory T cells in the lungs of SARS-CoV-2-infected triple transgenic HLA-DR*0101/HLA-A*0201/hACE2 mouse model, thereby resulting in low viral titer and reduced COVID-19-like symptoms.
Collapse
Affiliation(s)
- Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Izabela Coimbra Ibraim
- High containment facility, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Amirah Salem
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Amruth Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Jennifer Tran
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Pauline Chau Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Miyo Sun
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Kathy K. Hormi-Carver
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Ahmed Belmouden
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
- Institute for Immunology, School of Medicine, University of California Irvine, Irvine, California, USA
| |
Collapse
|
29
|
Adams LJ, VanBlargan LA, Liu Z, Gilchuk P, Zhao H, Chen RE, Raju S, Chong Z, Whitener BM, Shrihari S, Jethva PN, Gross ML, Crowe JE, Whelan SPJ, Diamond MS, Fremont DH. A broadly reactive antibody targeting the N-terminal domain of SARS-CoV-2 spike confers Fc-mediated protection. Cell Rep Med 2023; 4:101305. [PMID: 38039973 PMCID: PMC10772349 DOI: 10.1016/j.xcrm.2023.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/21/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Most neutralizing anti-SARS-CoV-2 monoclonal antibodies (mAbs) target the receptor binding domain (RBD) of the spike (S) protein. Here, we characterize a panel of mAbs targeting the N-terminal domain (NTD) or other non-RBD epitopes of S. A subset of NTD mAbs inhibits SARS-CoV-2 entry at a post-attachment step and avidly binds the surface of infected cells. One neutralizing NTD mAb, SARS2-57, protects K18-hACE2 mice against SARS-CoV-2 infection in an Fc-dependent manner. Structural analysis demonstrates that SARS2-57 engages an antigenic supersite that is remodeled by deletions common to emerging variants. In neutralization escape studies with SARS2-57, this NTD site accumulates mutations, including a similar deletion, but the addition of an anti-RBD mAb prevents such escape. Thus, our study highlights a common strategy of immune evasion by SARS-CoV-2 variants and how targeting spatially distinct epitopes, including those in the NTD, may limit such escape.
Collapse
Affiliation(s)
- Lucas J Adams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Haiyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rita E Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhenlu Chong
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley M Whitener
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Swathi Shrihari
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Prashant N Jethva
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
30
|
de Vries M, Ciabattoni GO, Rodriguez-Rodriguez BA, Crosse KM, Papandrea D, Samanovic MI, Dimartino D, Marier C, Mulligan MJ, Heguy A, Desvignes L, Duerr R, Dittmann M. Generation of quality-controlled SARS-CoV-2 variant stocks. Nat Protoc 2023; 18:3821-3855. [PMID: 37833423 DOI: 10.1038/s41596-023-00897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/28/2023] [Indexed: 10/15/2023]
Abstract
One of the main challenges in the fight against coronavirus disease 2019 (COVID-19) stems from the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into multiple variants. To address this hurdle, research groups around the world have independently developed protocols to isolate these variants from clinical samples. These isolates are then used in translational and basic research-for example, in vaccine development, drug screening or characterizing SARS-CoV-2 biology and pathogenesis. However, over the course of the COVID-19 pandemic, we have learned that the introduction of artefacts during both in vitro isolation and subsequent propagation to virus stocks can lessen the validity and reproducibility of data. We propose a rigorous pipeline for the generation of high-quality SARS-CoV-2 variant clonal isolates that minimizes the acquisition of mutations and introduces stringent controls to detect them. Overall, the process includes eight stages: (i) cell maintenance, (ii) isolation of SARS-CoV-2 from clinical specimens, (iii) determination of infectious virus titers by plaque assay, (iv) clonal isolation by plaque purification, (v) whole-virus-genome deep-sequencing, (vi and vii) amplification of selected virus clones to master and working stocks and (viii) sucrose purification. This comprehensive protocol will enable researchers to generate reliable SARS-CoV-2 variant inoculates for in vitro and in vivo experimentation and will facilitate comparisons and collaborative work. Quality-controlled working stocks for most applications can be generated from acquired biorepository virus within 1 month. An additional 5-8 d are required when virus is isolated from clinical swab material, and another 6-7 d is needed for sucrose-purifying the stocks.
Collapse
Affiliation(s)
- Maren de Vries
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Grace O Ciabattoni
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Keaton M Crosse
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Dominick Papandrea
- High Containment Laboratories-Office of Science and Research, NYU Langone Health, New York, NY, USA
| | - Marie I Samanovic
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Dacia Dimartino
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY, USA
| | - Christian Marier
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY, USA
| | - Mark J Mulligan
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Adriana Heguy
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ludovic Desvignes
- High Containment Laboratories-Office of Science and Research, NYU Langone Health, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Ralf Duerr
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Meike Dittmann
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
31
|
Khatun O, Sharma M, Narayan R, Tripathi S. SARS-CoV-2 ORF6 protein targets TRIM25 for proteasomal degradation to diminish K63-linked RIG-I ubiquitination and type-I interferon induction. Cell Mol Life Sci 2023; 80:364. [PMID: 37982908 PMCID: PMC11073288 DOI: 10.1007/s00018-023-05011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Evasion and antagonism of host cellular immunity upon SARS-CoV-2 infection provide replication advantage to the virus and contribute to COVID-19 pathogenesis. We explored the ability of different SARS-CoV-2 proteins to antagonize the host's innate immune system and found that the ORF6 protein mitigated type-I Interferon (IFN) induction and downstream IFN signaling. Our findings also corroborated previous reports that ORF6 blocks the nuclear import of IRF3 and STAT1 to inhibit IFN induction and signaling. Here we show that ORF6 directly interacts with RIG-I and blocks downstream type-I IFN induction and signaling by reducing the levels of K63-linked ubiquitinated RIG-I. This involves ORF6-mediated targeting of E3 ligase TRIM25 for proteasomal degradation, which was also observed during SARS-CoV-2 infection. The type-I IFN antagonistic activity of ORF6 was mapped to its C-terminal cytoplasmic tail, specifically to amino acid residues 52-61. Overall, we provide new insights into how SARS-CoV-2 inhibits type-I IFN induction and signaling through distinct actions of the viral ORF6 protein.
Collapse
Affiliation(s)
- Oyahida Khatun
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology and Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Mansi Sharma
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology and Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Rohan Narayan
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology and Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India.
- Microbiology and Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
32
|
Rudramurthy GR, Naveenkumar CN, Bharathkumar K, Shandil RK, Narayanan S. Genomic Mutations in SARS-CoV-2 Genome following Infection in Syrian Golden Hamster and Associated Lung Pathologies. Pathogens 2023; 12:1328. [PMID: 38003792 PMCID: PMC10674674 DOI: 10.3390/pathogens12111328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The continuous evolution of the SARS-CoV-2 virus led to constant developments and efforts in understanding the significance and impacts of SARS-CoV-2 variants on human health. Our study aimed to determine the accumulation of genetic mutations and associated lung pathologies in male and female hamsters infected with the ancestral Wuhan strain of SARS-CoV-2. The present study showed no significant difference in the viral load between male and female hamsters and peak infection was found to be on day four post infection in both sexes of the animals. Live virus particles were detected up to 5 days post infection (dpi) through the TCID-50 assay, while qRT-PCR could detect viral RNA up to 14 dpi from all the infected animals. Further, the determination of the neutralizing antibody titer showed the onset of the humoral immune response as early as 4 dpi in both sexes against SARS-CoV-2, and a significant cross-protection against the delta variant of SARS-CoV-2 was observed. Histopathology showed edema, inflammation, inflammatory cell infiltration, necrosis, and degeneration of alveolar and bronchial epithelium cells from 3 dpi to 14 dpi in both sexes. Furthermore, next-generation sequencing (NGS) showed up to 10 single-nucleotide polymorphisms (SNPs) in the SARS-CoV-2 (ancestral Wuhan strain) genome isolated from both male and female hamsters. The mutation observed at the 23014 position (Glu484Asp) in the SARS-CoV-2 genome isolated from both sexes of the hamsters plays a significant role in the antiviral efficacy of small molecules, vaccines, and the Mabs-targeting S protein. The present study shows that either of the genders can be used in the pre-clinical efficacy of antiviral agents against SARS-CoV-2 in hamsters. However, considering the major mutation in the S protein, the understanding of the genetic mutation in SARS-CoV-2 after passing through hamsters is crucial in deciding the efficacy of the antiviral agents targeting the S protein. Importance: Our study findings indicate the accumulation of genomic mutations in SARS-CoV-2 after passing through the Syrian golden hamsters. Understanding the genomic mutations showed that either of the hamster genders can be used in the pre-clinical efficacy of antiviral agents and vaccines.
Collapse
Affiliation(s)
- Gudepalya Renukaiah Rudramurthy
- Foundation for Neglected Disease Research (FNDR), Plot No. 20A, KIADB Industrial Area, Bengaluru 561203, Karnataka, India; (C.N.N.); (K.B.); (R.K.S.); (S.N.)
| | | | | | | | | |
Collapse
|
33
|
Mahé D, Bourgeau S, da Silva J, Schlederer J, Satie AP, Kuassivi N, Mathieu R, Guillou YM, Le Tortorec A, Guivel-Benhassine F, Schwartz O, Plotton I, Dejucq-Rainsford N. SARS-CoV-2 replicates in the human testis with slow kinetics and has no major deleterious effects ex vivo. J Virol 2023; 97:e0110423. [PMID: 37830818 PMCID: PMC10653996 DOI: 10.1128/jvi.01104-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE SARS-CoV-2 is a new virus responsible for the Covid-19 pandemic. Although SARS-CoV-2 primarily affects the lungs, other organs are infected. Alterations of testosteronemia and spermatozoa motility in infected men have raised questions about testicular infection, along with high level in the testis of ACE2, the main receptor used by SARS-CoV-2 to enter host cells. Using an organotypic culture of human testis, we found that SARS-CoV-2 replicated with slow kinetics in the testis. The virus first targeted testosterone-producing Leydig cells and then germ-cell nursing Sertoli cells. After a peak followed by the upregulation of antiviral effectors, viral replication in the testis decreased and did not induce any major damage to the tissue. Altogether, our data show that SARS-CoV-2 replicates in the human testis to a limited extent and suggest that testicular damages in infected patients are more likely to result from systemic infection and inflammation than from viral replication in the testis.
Collapse
Affiliation(s)
- Dominique Mahé
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | - Salomé Bourgeau
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
- University of CAS, Beijing, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China
| | - Janaina da Silva
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | - Julie Schlederer
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | - Anne-Pascale Satie
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | - Nadège Kuassivi
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | - Romain Mathieu
- Service d‘Urologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Yves-Marie Guillou
- Service de Coordination des prélèvements, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Anna Le Tortorec
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | | | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR3569, Paris, France
| | - Ingrid Plotton
- Institut National de la Santé et de la Recherche Médicale, Institut Cellules Souche et Cerveau (SBRI), UMR_S1208, Bron, France
| | - Nathalie Dejucq-Rainsford
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| |
Collapse
|
34
|
Case JB, Scheaffer SM, Darling TL, Bricker TL, Adams LJ, Harastani HH, Trende R, Sanapala S, Fremont DH, Boon ACM, Diamond MS. Characterization of the SARS-CoV-2 BA.5.5 and BQ.1.1 Omicron variants in mice and hamsters. J Virol 2023; 97:e0062823. [PMID: 37676002 PMCID: PMC10537574 DOI: 10.1128/jvi.00628-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023] Open
Abstract
The continued evolution and emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have resulted in challenges to vaccine and antibody efficacy. The emergence of each new variant necessitates the need to re-evaluate and refine animal models used for countermeasure testing. Here, we tested a recently circulating SARS-CoV-2 Omicron lineage variant, BQ.1.1, in multiple rodent models including K18-human ACE2 (hACE2) transgenic, C57BL/6J, and 129S2 mice, and Syrian golden hamsters. In contrast to a previously dominant BA.5.5 Omicron variant, inoculation of K18-hACE2 mice with BQ.1.1 resulted in substantial weight loss, a characteristic seen in pre-Omicron variants. BQ.1.1 also replicated to higher levels in the lungs of K18-hACE2 mice and caused greater lung pathology than the BA.5.5 variant. However, in C57BL/6J mice, 129S2 mice, and Syrian hamsters, BQ.1.1 did not cause increased respiratory tract infection or disease compared to animals administered BA.5.5. Moreover, the rates of direct contact or airborne transmission in hamsters were not significantly different after BQ.1.1 and BA.5.5 infections. Taken together, these data suggest that the BQ.1.1 Omicron variant has increased virulence in rodent species that express hACE2, possibly due to the acquisition of unique spike mutations relative to earlier Omicron variants. IMPORTANCE As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, there is a need to rapidly assess the efficacy of vaccines and antiviral therapeutics against newly emergent variants. To do so, the commonly used animal models must also be re-evaluated. Here, we determined the pathogenicity of the BQ.1.1 SARS-CoV-2 variant in multiple SARS-CoV-2 animal models including transgenic mice expressing human ACE2 (hACE2), two strains of conventional laboratory mice, and Syrian hamsters. While BQ.1.1 and BA.5.5 infection resulted in similar levels of viral burden and clinical disease in hamsters and the conventional strains of laboratory mice tested, increases in lung infection were detected in hACE2-expressing transgenic mice, which corresponded with greater levels of pro-inflammatory cytokines and lung pathology. Taken together, our data highlight important differences in two closely related Omicron SARS-CoV-2 variant strains and provide a foundation for evaluating countermeasures.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suzanne M. Scheaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lucas J. Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Houda H. Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Reed Trende
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shilpa Sanapala
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adrianus C. M. Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
35
|
Vanderheiden A, Hill J, Jiang X, Deppen B, Bamunuarachchi G, Soudani N, Joshi A, Cain MD, Boon ACM, Klein RS. Vaccination prevents IL-1β-mediated cognitive deficits after COVID-19. RESEARCH SQUARE 2023:rs.3.rs-3353171. [PMID: 37790551 PMCID: PMC10543322 DOI: 10.21203/rs.3.rs-3353171/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Up to 25% of SARS-CoV-2 patients exhibit post-acute cognitive sequelae. Although millions of cases of COVID-19-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1, a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of COVID-19 patients. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 beta variant, leads to CNS infiltration of Ly6Chi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1β and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes post-acute cognitive deficits. Breakthrough infection after vaccination with a low dose of adenoviral vectored Spike protein prevents hippocampal production of IL-1β during breakthrough SARS-CoV-2 infection, loss of neurogenesis, and subsequent memory deficits. Our study identifies IL-1β as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new murine model that is prevented by vaccination.
Collapse
Affiliation(s)
- Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeremy Hill
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoping Jiang
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ben Deppen
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gayan Bamunuarachchi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Cain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S Klein
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
36
|
Goncheva MI, Heinrichs DE. Protocol for studying co-infection between SARS-CoV-2 and Staphylococcus aureus in vitro. STAR Protoc 2023; 4:102411. [PMID: 37393614 PMCID: PMC10258577 DOI: 10.1016/j.xpro.2023.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Bacterial co-infection is one of the most common complications of SARS CoV-2 infection. Here, we present a protocol for the in vitro study of co-infection between SARS CoV-2 and Staphylococcus aureus. We describe steps for quantifying viral and bacterial replication kinetics in the same sample, with the optional extraction of host RNA and proteins. This protocol is applicable to many viral and bacterial strains and can be performed in different cell types. For complete details on the use and execution of this protocol, please refer to Goncheva et al.1.
Collapse
Affiliation(s)
- Mariya I Goncheva
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
37
|
Stewart-Jones GBE, Elbashir SM, Wu K, Lee D, Renzi I, Ying B, Koch M, Sein CE, Choi A, Whitener B, Garcia-Dominguez D, Henry C, Woods A, Ma L, Montes Berrueta D, Avena LE, Quinones J, Falcone S, Hsiao CJ, Scheaffer SM, Thackray LB, White P, Diamond MS, Edwards DK, Carfi A. Domain-based mRNA vaccines encoding spike protein N-terminal and receptor binding domains confer protection against SARS-CoV-2. Sci Transl Med 2023; 15:eadf4100. [PMID: 37703353 DOI: 10.1126/scitranslmed.adf4100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 08/17/2023] [Indexed: 09/15/2023]
Abstract
With the success of messenger RNA (mRNA) vaccines against coronavirus disease 2019, strategies can now focus on improving vaccine potency, breadth, and stability. We designed and evaluated domain-based mRNA vaccines encoding the wild-type spike protein receptor binding domain (RBD) or N-terminal domain (NTD) alone or in combination. An NTD-RBD-linked candidate vaccine, mRNA-1283, showed improved antigen expression, antibody responses, and stability at refrigerated temperatures (2° to 8°C) compared with the clinically available mRNA-1273, which encodes the full-length spike protein. In BALB/c mice administered mRNA-1283 as a primary series, booster, or variant-specific booster, similar or greater immune responses from viral challenge were observed against wild-type, beta, delta, or omicron (BA.1) viruses compared with mRNA-1273-immunized mice, especially at lower vaccine dosages. K18-hACE2 mice immunized with mRNA-1283 or mRNA-1273 as a primary series demonstrated similar degrees of protection from challenge with SARS-CoV-2 Delta and Omicron variants at all vaccine dosages. These results support clinical assessment of mRNA-1283, which has now entered clinical trials (NCT05137236).
Collapse
Affiliation(s)
| | | | - Kai Wu
- Moderna, Inc., Cambridge, MA 02139, USA
| | - Diana Lee
- Moderna, Inc., Cambridge, MA 02139, USA
| | | | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | - Bradley Whitener
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | |
Collapse
|
38
|
Grosche VR, Souza LPF, Ferreira GM, Guevara-Vega M, Carvalho T, Silva RRDS, Batista KLR, Abuna RPF, Silva JS, Calmon MDF, Rahal P, da Silva LCN, Andrade BS, Teixeira CS, Sabino-Silva R, Jardim ACG. Mannose-Binding Lectins as Potent Antivirals against SARS-CoV-2. Viruses 2023; 15:1886. [PMID: 37766292 PMCID: PMC10536204 DOI: 10.3390/v15091886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The SARS-CoV-2 entry into host cells is mainly mediated by the interactions between the viral spike protein (S) and the ACE-2 cell receptor, which are highly glycosylated. Therefore, carbohydrate binding agents may represent potential candidates to abrogate virus infection. Here, we evaluated the in vitro anti-SARS-CoV-2 activity of two mannose-binding lectins isolated from the Brazilian plants Canavalia brasiliensis and Dioclea violacea (ConBR and DVL). These lectins inhibited SARS-CoV-2 Wuhan-Hu-1 strain and variants Gamma and Omicron infections, with selectivity indexes (SI) of 7, 1.7, and 6.5, respectively for ConBR; and 25, 16.8, and 22.3, for DVL. ConBR and DVL inhibited over 95% of the early stages of the viral infection, with strong virucidal effect, and also protected cells from infection and presented post-entry inhibition. The presence of mannose resulted in the complete lack of anti-SARS-CoV-2 activity by ConBR and DVL, recovering virus titers. ATR-FTIR, molecular docking, and dynamic simulation between SARS-CoV-2 S and either lectins indicated molecular interactions with predicted binding energies of -85.4 and -72.0 Kcal/Mol, respectively. Our findings show that ConBR and DVL lectins possess strong activities against SARS-CoV-2, potentially by interacting with glycans and blocking virus entry into cells, representing potential candidates for the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Victória Riquena Grosche
- Laboratory of Antiviral Research, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (V.R.G.); (G.M.F.)
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | - Leandro Peixoto Ferreira Souza
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (L.P.F.S.); (M.G.-V.)
| | - Giulia Magalhães Ferreira
- Laboratory of Antiviral Research, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (V.R.G.); (G.M.F.)
| | - Marco Guevara-Vega
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (L.P.F.S.); (M.G.-V.)
| | - Tamara Carvalho
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | | | | | - Rodrigo Paolo Flores Abuna
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (R.P.F.A.); (J.S.S.)
- Oswaldo Cruz Foundation (Fiocruz), Bi-Institutional Platform for Translational Medicine, Ribeirão Preto 14049-900, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (R.P.F.A.); (J.S.S.)
- Oswaldo Cruz Foundation (Fiocruz), Bi-Institutional Platform for Translational Medicine, Ribeirão Preto 14049-900, Brazil
| | - Marília de Freitas Calmon
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | - Paula Rahal
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | | | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, State University of Southwest of Bahia, Jequié 45205-490, Brazil;
| | - Claudener Souza Teixeira
- Center of Agrarian Science and Biodiversity, Federal University of Cariri (UFCA), Crato 63130-025, Brazil; (R.R.d.S.S.); (C.S.T.)
| | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (L.P.F.S.); (M.G.-V.)
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (V.R.G.); (G.M.F.)
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| |
Collapse
|
39
|
Addetia A, Piccoli L, Case JB, Park YJ, Beltramello M, Guarino B, Dang H, de Melo GD, Pinto D, Sprouse K, Scheaffer SM, Bassi J, Silacci-Fregni C, Muoio F, Dini M, Vincenzetti L, Acosta R, Johnson D, Subramanian S, Saliba C, Giurdanella M, Lombardo G, Leoni G, Culap K, McAlister C, Rajesh A, Dellota E, Zhou J, Farhat N, Bohan D, Noack J, Chen A, Lempp FA, Quispe J, Kergoat L, Larrous F, Cameroni E, Whitener B, Giannini O, Cippà P, Ceschi A, Ferrari P, Franzetti-Pellanda A, Biggiogero M, Garzoni C, Zappi S, Bernasconi L, Kim MJ, Rosen LE, Schnell G, Czudnochowski N, Benigni F, Franko N, Logue JK, Yoshiyama C, Stewart C, Chu H, Bourhy H, Schmid MA, Purcell LA, Snell G, Lanzavecchia A, Diamond MS, Corti D, Veesler D. Neutralization, effector function and immune imprinting of Omicron variants. Nature 2023; 621:592-601. [PMID: 37648855 PMCID: PMC10511321 DOI: 10.1038/s41586-023-06487-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023]
Abstract
Currently circulating SARS-CoV-2 variants have acquired convergent mutations at hot spots in the receptor-binding domain1 (RBD) of the spike protein. The effects of these mutations on viral infection and transmission and the efficacy of vaccines and therapies remains poorly understood. Here we demonstrate that recently emerged BQ.1.1 and XBB.1.5 variants bind host ACE2 with high affinity and promote membrane fusion more efficiently than earlier Omicron variants. Structures of the BQ.1.1, XBB.1 and BN.1 RBDs bound to the fragment antigen-binding region of the S309 antibody (the parent antibody for sotrovimab) and human ACE2 explain the preservation of antibody binding through conformational selection, altered ACE2 recognition and immune evasion. We show that sotrovimab binds avidly to all Omicron variants, promotes Fc-dependent effector functions and protects mice challenged with BQ.1.1 and hamsters challenged with XBB.1.5. Vaccine-elicited human plasma antibodies cross-react with and trigger effector functions against current Omicron variants, despite a reduced neutralizing activity, suggesting a mechanism of protection against disease, exemplified by S309. Cross-reactive RBD-directed human memory B cells remained dominant even after two exposures to Omicron spikes, underscoring the role of persistent immune imprinting.
Collapse
Affiliation(s)
- Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | | | - Ha Dang
- Vir Biotechnology, San Francisco, CA, USA
| | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | | | - Kaitlin Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA, USA
| | | | - Dana Bohan
- Vir Biotechnology, San Francisco, CA, USA
| | | | - Alex Chen
- Vir Biotechnology, San Francisco, CA, USA
| | | | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | - Florence Larrous
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | | | - Bradley Whitener
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Olivier Giannini
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Department of Medicine, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Pietro Cippà
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Department of Medicine, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Alessandro Ceschi
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Paolo Ferrari
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Maira Biggiogero
- Clinical Research Unit, Clinica Luganese Moncucco, Lugano, Switzerland
| | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, Lugano, Switzerland
| | - Stephanie Zappi
- Division of Nephrology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Min Jeong Kim
- Division of Nephrology, Cantonal Hospital Aarau, Aarau, Switzerland
| | | | | | | | | | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Jennifer K Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | | | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Helen Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | | | | | | | | | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
40
|
Zhurinov MZ, Miftakhova AF, Keyer V, Shulgau ZT, Solodova EV, Kalykberdiyev MK, Abilmagzhanov AZ, Talgatov ET, Ait S, Shustov AV. Glycyrrhiza glabra L. Extracts and Other Therapeutics against SARS-CoV-2 in Central Eurasia: Available but Overlooked. Molecules 2023; 28:6142. [PMID: 37630394 PMCID: PMC10458004 DOI: 10.3390/molecules28166142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
In Central Eurasia, the availability of drugs that are inhibitors of the SARS-CoV-2 virus and have proven clinical efficacy is still limited. The aim of this study was to evaluate the activity of drugs that were available in Kazakhstan during the acute phase of the epidemic against SARS-CoV-2. Antiviral activity is reported for Favipiravir, Tilorone, and Cridanimod, which are registered drugs used for the treatment of respiratory viral infections in Kazakhstan. A licorice (Glycyrrhiza glabra) extract was also incorporated into this study because it offered an opportunity to develop plant-derived antivirals. The Favipiravir drug, which had been advertised in local markets as an anti-COVID cure, showed no activity against SARS-CoV-2 in cell cultures. On the contrary, Cridanimod showed impressive high activity (median inhibitory concentration 66 μg/mL) against SARS-CoV-2, justifying further studies of Cridanimod in clinical trials. Tilorone, despite being in the same pharmacological group as Cridanimod, stimulated SARS-CoV-2 replication in cultures. The licorice extract inhibited SARS-CoV-2 replication in cultures, with a high median effective concentration of 16.86 mg/mL. Conclusions: The synthetic, low-molecular-weight compound Cridanimod suppresses SARS-CoV-2 replication at notably low concentrations, and this drug is not toxic to cells at therapeutic concentrations. In contrast to its role as an inducer of interferons, Cridanimod is active in cells that have a genetic defect in interferon production, suggesting a different mechanism of action. Cridanimod is an attractive drug for inclusion in clinical trials against SARS-CoV-2 and, presumably, other coronaviruses. The extract from licorice shows low activity against SARS-CoV-2. At the same time, high doses of 2 g/kg of this plant extract show little or no acute toxicity in animal studies; for this reason, licorice products can still be considered for further development as a safe, orally administered adjunctive therapy.
Collapse
Affiliation(s)
- Murat Zh. Zhurinov
- “D.V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry” JSC, Almaty 050010, Kazakhstan
| | - Alfira F. Miftakhova
- “D.V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry” JSC, Almaty 050010, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Viktoriya Keyer
- Laboratory for Genetic Engineering, RSE “National Center for Biotechnology”, Astana 010000, Kazakhstan
| | - Zarina T. Shulgau
- Laboratory for Genetic Engineering, RSE “National Center for Biotechnology”, Astana 010000, Kazakhstan
| | - Elena V. Solodova
- “D.V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry” JSC, Almaty 050010, Kazakhstan
- Department of Biochemical Engineering, International Engineering Technological University, Almaty 050040, Kazakhstan
| | - Maxat K. Kalykberdiyev
- “D.V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry” JSC, Almaty 050010, Kazakhstan
| | - Arlan Z. Abilmagzhanov
- “D.V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry” JSC, Almaty 050010, Kazakhstan
| | - Eldar T. Talgatov
- “D.V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry” JSC, Almaty 050010, Kazakhstan
| | - Sauyk Ait
- “D.V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry” JSC, Almaty 050010, Kazakhstan
| | - Alexandr V. Shustov
- Laboratory for Genetic Engineering, RSE “National Center for Biotechnology”, Astana 010000, Kazakhstan
| |
Collapse
|
41
|
Narayan R, Sharma M, Yadav R, Biji A, Khatun O, Kaur S, Kanojia A, Joy CM, Rajmani R, Sharma PR, Jeyasankar S, Rani P, Shandil RK, Narayanan S, Rao DC, Satchidanandam V, Das S, Agarwal R, Tripathi S. Picolinic acid is a broad-spectrum inhibitor of enveloped virus entry that restricts SARS-CoV-2 and influenza A virus in vivo. Cell Rep Med 2023; 4:101127. [PMID: 37463584 PMCID: PMC10439173 DOI: 10.1016/j.xcrm.2023.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 02/06/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
The COVID-19 pandemic highlights an urgent need for effective antivirals. Targeting host processes co-opted by viruses is an attractive antiviral strategy with a high resistance barrier. Picolinic acid (PA) is a tryptophan metabolite endogenously produced in mammals. Here, we report the broad-spectrum antiviral activity of PA against enveloped viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), flaviviruses, herpes simplex virus, and parainfluenza virus. Mechanistic studies reveal that PA inhibits enveloped virus entry by compromising viral membrane integrity, inhibiting virus-cellular membrane fusion, and interfering with cellular endocytosis. More importantly, in pre-clinical animal models, PA exhibits promising antiviral efficacy against SARS-CoV-2 and IAV. Overall, our data establish PA as a broad-spectrum antiviral with promising pre-clinical efficacy against pandemic viruses SARS-CoV-2 and IAV.
Collapse
Affiliation(s)
- Rohan Narayan
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Mansi Sharma
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Rajesh Yadav
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Abhijith Biji
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Oyahida Khatun
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Sumandeep Kaur
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Aditi Kanojia
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Christy Margrat Joy
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Raju Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Pallavi Raj Sharma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Sharumathi Jeyasankar
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Priya Rani
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Radha Krishan Shandil
- Foundation for Neglected Disease Research, KIADB Industrial Area, Doddaballapur, Bengaluru 561203, India
| | - Shridhar Narayanan
- Foundation for Neglected Disease Research, KIADB Industrial Area, Doddaballapur, Bengaluru 561203, India
| | - Durga Chilakalapudi Rao
- Department of Biological Sciences, School of Engineering and Sciences, SRM University, Andhra Pradesh 522240, India
| | - Vijaya Satchidanandam
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Rachit Agarwal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
42
|
Lee KS, Rader NA, Miller-Stump OA, Cooper M, Wong TY, Shahrier Amin M, Barbier M, Bevere JR, Ernst RK, Heath Damron F. Intranasal VLP-RBD vaccine adjuvanted with BECC470 confers immunity against Delta SARS-CoV-2 challenge in K18-hACE2-mice. Vaccine 2023; 41:5003-5017. [PMID: 37407405 PMCID: PMC10300285 DOI: 10.1016/j.vaccine.2023.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
As the COVID-19 pandemic transitions into endemicity, seasonal boosters are a plausible reality across the globe. We hypothesize that intranasal vaccines can provide better protection against asymptomatic infections and more transmissible variants of SARS-CoV-2. To formulate a protective intranasal vaccine, we utilized a VLP-based platform. Hepatitis B surface antigen-based virus like particles (VLP) linked with receptor binding domain (RBD) antigen were paired with the TLR4-based agonist adjuvant, BECC 470. K18-hACE2 mice were primed and boosted at four-week intervals with either VLP-RBD-BECC or mRNA-1273. Both VLP-RBD-BECC and mRNA-1273 vaccination resulted in production of RBD-specific IgA antibodies in serum. RBD-specific IgA was also detected in the nasal wash and lung supernatants and were highest in VLP-RBD-BECC vaccinated mice. Interestingly, VLP-RBD-BECC vaccinated mice showed slightly lower levels of pre-challenge IgG responses, decreased RBD-ACE2 binding inhibition, and lower neutralizing activity in vitro than mRNA-1273 vaccinated mice. Both VLP-RBD-BECC and mRNA-1273 vaccinated mice were protected against challenge with a lethal dose of Delta variant SARS-CoV-2. Both vaccines limited viral replication and viral RNA burden in the lungs of mice. CXCL10 is a biomarker of severe SARS-CoV-2 infection and we observed both vaccines limited expression of serum and lung CXCL10. Strikingly, VLP-RBD-BECC when administered intranasally, limited lung inflammation at early timepoints that mRNA-1273 vaccination did not. VLP-RBD-BECC immunization elicited antibodies that do recognize SARS-CoV-2 Omicron variant. However, VLP-RBD-BECC immunized mice were protected from Omicron challenge with low viral burden. Conversely, mRNA-1273 immunized mice had low to no detectable virus in the lungs at day 2. Together, these data suggest that VLP-based vaccines paired with BECC adjuvant can be used to induce protective mucosal and systemic responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Katherine S Lee
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Nathaniel A Rader
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Olivia A Miller-Stump
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Melissa Cooper
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Md Shahrier Amin
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Justin R Bevere
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA.
| |
Collapse
|
43
|
Tamburello M, Salamone S, Anceschi L, Governa P, Brighenti V, Morellini A, Rossini G, Manetti F, Gallinella G, Pollastro F, Pellati F. Antiviral Activity of Cannabidiolic Acid and Its Methyl Ester against SARS-CoV-2. JOURNAL OF NATURAL PRODUCTS 2023; 86:1698-1707. [PMID: 37402317 DOI: 10.1021/acs.jnatprod.3c00111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
In the present study, the antiviral activity of cannabinoids isolated from Cannabis sativa L. was assessed in vitro against a panel of SARS-CoV-2 variants, indicating cannabidiolic acid (CBDA) was the most active. To overcome the instability issue of CBDA, its methyl ester was synthesized and tested for the first time for its antiviral activity. CBDA methyl ester showed a neutralizing effect on all the SARS-CoV-2 variants tested with greater activity than the parent compound. Its stability in vitro was confirmed by ultra-high-performance liquid chromatography (UHPLC) analysis coupled with high-resolution mass spectrometry (HRMS). In addition, the capacity of both CBDA and its derivative to interact with the virus spike protein was assessed in silico. These results showed that CBDA methyl ester can be considered as a lead compound to be further developed as a new effective drug against COVID-19 infection.
Collapse
Affiliation(s)
- Martina Tamburello
- Section of Microbiology, Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem srls, Via A. Canobio 4/6, 28100 Novara, Italy
| | - Lisa Anceschi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio, Via Giuseppe Campi 287, 41125 Modena, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy
| | - Alice Morellini
- Section of Microbiology, Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Giada Rossini
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem srls, Via A. Canobio 4/6, 28100 Novara, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy
| |
Collapse
|
44
|
Boley PA, Dennis PM, Faraone JN, Xu J, Liu M, Niu X, Gibson S, Hale V, Wang Q, Liu SL, Saif LJ, Kenney SP. SARS-CoV-2 Serological Investigation of White-Tailed Deer in Northeastern Ohio. Viruses 2023; 15:1603. [PMID: 37515289 PMCID: PMC10385782 DOI: 10.3390/v15071603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Coronaviruses are known to cross species barriers, and spill over among animals, from animals to humans, and vice versa. SARS-CoV-2 emerged in humans in late 2019. It is now known to infect numerous animal species, including companion animals and captive wildlife species. Experimental infections in other animals have established that many species are susceptible to infection, with new ones still being identified. We have developed an enzyme-linked immunosorbent assay (ELISA) for detecting antibodies to SARS-CoV-2 nucleocapsid (N) and spike (S) proteins, that is both sensitive and specific. It can detect S antibodies in sera at dilutions greater than 1:10,000, and does not cross-react with antibodies to the other coronaviruses tested. We used the S antibody ELISA to test serum samples collected from 472 deer from ten sites in northeastern Ohio between November 2020 and March 2021, when the SARS-CoV-2 pandemic was first peaking in humans in Ohio, USA. Antibodies to SARS-CoV-2 were found in serum samples from every site, with an overall positivity rate of 17.2%; we further compared the viral neutralizing antibody titers to our ELISA results. These findings demonstrate the need to establish surveillance programs to monitor deer and other susceptible wildlife species globally.
Collapse
Affiliation(s)
- Patricia A. Boley
- Center for Food Animal Health, The Ohio State University College of Food, Agriculture and Environmental Sciences, Wooster, OH 44691, USA
| | - Patricia M. Dennis
- Veterinary Preventative Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA (J.N.F.); (S.-L.L.)
- Cleveland Metroparks Zoo, Cleveland, OH 44109, USA
| | - Julia N. Faraone
- Veterinary Preventative Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA (J.N.F.); (S.-L.L.)
| | - Jiayu Xu
- Center for Food Animal Health, The Ohio State University College of Food, Agriculture and Environmental Sciences, Wooster, OH 44691, USA
| | - Mingde Liu
- Center for Food Animal Health, The Ohio State University College of Food, Agriculture and Environmental Sciences, Wooster, OH 44691, USA
| | - Xiaoyu Niu
- Center for Food Animal Health, The Ohio State University College of Food, Agriculture and Environmental Sciences, Wooster, OH 44691, USA
| | - Stormy Gibson
- Ohio Department of Natural Resources Division of Wildlife, Columbus, OH 43299, USA
| | - Vanessa Hale
- Veterinary Preventative Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA (J.N.F.); (S.-L.L.)
| | - Qiuhong Wang
- Center for Food Animal Health, The Ohio State University College of Food, Agriculture and Environmental Sciences, Wooster, OH 44691, USA
| | - Shan-Lu Liu
- Veterinary Preventative Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA (J.N.F.); (S.-L.L.)
| | - Linda J. Saif
- Center for Food Animal Health, The Ohio State University College of Food, Agriculture and Environmental Sciences, Wooster, OH 44691, USA
| | - Scott P. Kenney
- Center for Food Animal Health, The Ohio State University College of Food, Agriculture and Environmental Sciences, Wooster, OH 44691, USA
- Veterinary Preventative Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA (J.N.F.); (S.-L.L.)
| |
Collapse
|
45
|
Wickramage I, VanWye J, Max K, Lockhart JH, Hortu I, Mong EF, Canfield J, Lamabadu Warnakulasuriya Patabendige HM, Guzeloglu-Kayisli O, Inoue K, Ogura A, Lockwood CJ, Akat KM, Tuschl T, Kayisli UA, Totary-Jain H. SINE RNA of the imprinted miRNA clusters mediates constitutive type III interferon expression and antiviral protection in hemochorial placentas. Cell Host Microbe 2023; 31:1185-1199.e10. [PMID: 37315561 PMCID: PMC10524649 DOI: 10.1016/j.chom.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/23/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Hemochorial placentas have evolved defense mechanisms to prevent the vertical transmission of viruses to the immunologically underdeveloped fetus. Unlike somatic cells that require pathogen-associated molecular patterns to stimulate interferon production, placental trophoblasts constitutively produce type III interferons (IFNL) through an unknown mechanism. We demonstrate that transcripts of short interspersed nuclear elements (SINEs) embedded in miRNA clusters within the placenta trigger a viral mimicry response that induces IFNL and confers antiviral protection. Alu SINEs within primate-specific chromosome 19 (C19MC) and B1 SINEs within rodent-specific microRNA cluster on chromosome 2 (C2MC) produce dsRNAs that activate RIG-I-like receptors (RLRs) and downstream IFNL production. Homozygous C2MC knockout mouse trophoblast stem (mTS) cells and placentas lose intrinsic IFN expression and antiviral protection, whereas B1 RNA overexpression restores C2MCΔ/Δ mTS cell viral resistance. Our results uncover a convergently evolved mechanism whereby SINE RNAs drive antiviral resistance in hemochorial placentas, placing SINEs as integral players in innate immunity.
Collapse
Affiliation(s)
- Ishani Wickramage
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Jeffrey VanWye
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Klaas Max
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - John H Lockhart
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ismet Hortu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ezinne F Mong
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - John Canfield
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kimiko Inoue
- Bioresource Engineering Division, BioResource Research Center, RIKEN, Tsukuba 305-0074, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, BioResource Research Center, RIKEN, Tsukuba 305-0074, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kemal M Akat
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA; Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas Tuschl
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Hana Totary-Jain
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Heart Institute, University of South Florida, Tampa, FL 33602, USA.
| |
Collapse
|
46
|
Tsuji M, Nair MS, Masuda K, Castagna C, Chong Z, Darling TL, Seehra K, Hwang Y, Ribeiro ÁL, Ferreira GM, Corredor L, Coelho-Dos-Reis JGA, Tsuji Y, Mori M, Boon ACM, Diamond MS, Huang Y, Ho DD. An immunostimulatory glycolipid that blocks SARS-CoV-2, RSV, and influenza infections in vivo. Nat Commun 2023; 14:3959. [PMID: 37402814 DOI: 10.1038/s41467-023-39738-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
Prophylactic vaccines for SARS-CoV-2 have lowered the incidence of severe COVID-19, but emergence of viral variants that are antigenically distinct from the vaccine strains are of concern and additional, broadly acting preventive approaches are desirable. Here, we report on a glycolipid termed 7DW8-5 that exploits the host innate immune system to enable rapid control of viral infections in vivo. This glycolipid binds to CD1d on antigen-presenting cells and thereby stimulates NKT cells to release a cascade of cytokines and chemokines. The intranasal administration of 7DW8-5 prior to virus exposure significantly blocked infection by three different authentic variants of SARS-CoV-2, as well as by respiratory syncytial virus and influenza virus, in mice or hamsters. We also found that this protective antiviral effect is both host-directed and mechanism-specific, requiring both the CD1d molecule and interferon-[Formula: see text]. A chemical compound like 7DW8-5 that is easy to administer and cheap to manufacture may be useful not only in slowing the spread of COVID-19 but also in responding to future pandemics long before vaccines or drugs are developed.
Collapse
Affiliation(s)
- Moriya Tsuji
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Kazuya Masuda
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Candace Castagna
- Institute of Comparative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Zhenlu Chong
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tamarand L Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kuljeet Seehra
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Youngmin Hwang
- Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Ágata Lopes Ribeiro
- Basic and Applied Virology Laboratory, Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Geovane Marques Ferreira
- Basic and Applied Virology Laboratory, Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laura Corredor
- Institute of Comparative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Yukiko Tsuji
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Munemasa Mori
- Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
47
|
Hein S, Sabino C, Benz NI, Görgülü E, Maier TJ, Oberle D, Hildt E. The fourth vaccination with a non-SARS-CoV-2 variant adapted vaccine fails to increase the breadth of the humoral immune response. Sci Rep 2023; 13:10820. [PMID: 37402816 PMCID: PMC10319856 DOI: 10.1038/s41598-023-38077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/03/2023] [Indexed: 07/06/2023] Open
Abstract
Escape mutations in the spike protein of SARS-CoV-2 are a major reason for Omicron breakthrough infections. After basal vaccination only very low titers of Omicron neutralizing antibodies are present. However, booster vaccinations induce higher titers against the Omicron variant. The neutralization of the Delta and Omicron variants by sera obtained 6 months after 3rd vaccination and 2 weeks or 6 months after 4th vaccination with a monovalent RNA vaccine (Spikevax) was analyzed. It was observed for the Omicron variant that 6 months after the fourth vaccination, the titer returns to the same very low neutralizing capacity as 6 months after the third vaccination. The Delta variant neutralizing capacity wanes with a comparable kinetic although the titers are higher as compared to the Omicron variant. This indicates that the fourth vaccination with a monovalent vaccine based on the ancestral isolate neither affects the kinetic of the waning nor the breadth of the humoral response.
Collapse
Affiliation(s)
- Sascha Hein
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Street 51-59, 63225, Langen, Germany.
| | - Catarina Sabino
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Street 51-59, 63225, Langen, Germany
| | - Nuka Ivalu Benz
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Street 51-59, 63225, Langen, Germany
| | - Esra Görgülü
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Street 51-59, 63225, Langen, Germany
| | - Thorsten Jürgen Maier
- Division of Pharmacovigilance, Paul-Ehrlich-Institut, Paul-Ehrlich Street 51-59, 63325, Langen, Germany
| | - Doris Oberle
- Division of Pharmacovigilance, Paul-Ehrlich-Institut, Paul-Ehrlich Street 51-59, 63325, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Street 51-59, 63225, Langen, Germany.
| |
Collapse
|
48
|
Zhang J, Tang W, Gao H, Lavine CL, Shi W, Peng H, Zhu H, Anand K, Kosikova M, Kwon HJ, Tong P, Gautam A, Rits-Volloch S, Wang S, Mayer ML, Wesemann DR, Seaman MS, Lu J, Xiao T, Xie H, Chen B. Structural and functional characteristics of the SARS-CoV-2 Omicron subvariant BA.2 spike protein. Nat Struct Mol Biol 2023; 30:980-990. [PMID: 37430064 DOI: 10.1038/s41594-023-01023-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/17/2023] [Indexed: 07/12/2023]
Abstract
The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. Here, we have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and an animal model with previously prevalent variants. BA.2 S can fuse membranes slightly more efficiently than Omicron BA.1, but still less efficiently than other previous variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lungs than the early G614 (B.1) strain in the absence of pre-existing immunity, possibly explaining the increased transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces, leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility of the Omicron subvariants.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Weichun Tang
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Hailong Gao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Wei Shi
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA, USA
| | - Krishna Anand
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA, USA
| | - Matina Kosikova
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Hyung Joon Kwon
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Pei Tong
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Avneesh Gautam
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | | | | | - Megan L Mayer
- The Harvard Cryo-EM Center for Structural Biology, Boston, MA, USA
| | - Duane R Wesemann
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., Rockville, MD, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA.
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Subhadra B, Agrawal R, Pal VK, Chenine AL, Mattathil JG, Singh A. Significant Broad-Spectrum Antiviral Activity of Bi121 against Different Variants of SARS-CoV-2. Viruses 2023; 15:1299. [PMID: 37376598 DOI: 10.3390/v15061299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has so far infected 762 million people with over 6.9 million deaths worldwide. Broad-spectrum viral inhibitors that block the initial stages of infection by reducing virus binding and proliferation, thereby reducing disease severities, are still an unmet global medical need. We studied Bi121, which is a standardized polyphenolic-rich compound isolated from Pelargonium sidoides, against recombinant vesicular stomatitis virus (rVSV)-pseudotyped SARS-CoV-2S (mutations in the spike protein) of six different variants of SARS-CoV-2. Bi121 was effective at neutralizing all six rVSV-ΔG-SARS-CoV-2S variants. The antiviral activity of Bi121 was also assessed against SARS-CoV-2 variants (USA WA1/2020, Hongkong/VM20001061/2020, B.1.167.2 (Delta), and Omicron) in Vero cells and HEK-ACE2 cell lines using RT-qPCR and plaque assays. Bi121 showed significant antiviral activity against all the four SARS-CoV-2 variants tested, suggesting a broad-spectrum activity. Bi121 fractions generated using HPLC showed antiviral activity in three fractions out of eight against SARS-CoV-2. The dominant compound identified in all three fractions using LC/MS/MS analysis was Neoilludin B. In silico structural modeling studies with Neoilludin B showed that it has a novel RNA-intercalating activity toward RNA viruses. In silico findings and the antiviral activity of this compound against several SARS-CoV-2 variants support further evaluation as a potential treatment of COVID-19.
Collapse
Affiliation(s)
- Bobban Subhadra
- Biom Pharmaceutical Corporation, 2203 Industrial Blvd, Sarasota, FL 34234, USA
| | - Ragini Agrawal
- Department of Microbiology and Cell Biology, Center for Infectious Disease Research, Indian Institute of Science (IISc), CV Raman Ave., Bengaluru 560012, India
| | - Virender Kumar Pal
- Department of Microbiology and Cell Biology, Center for Infectious Disease Research, Indian Institute of Science (IISc), CV Raman Ave., Bengaluru 560012, India
| | | | | | - Amit Singh
- Department of Microbiology and Cell Biology, Center for Infectious Disease Research, Indian Institute of Science (IISc), CV Raman Ave., Bengaluru 560012, India
| |
Collapse
|
50
|
García-Murria MJ, Gadea-Salom L, Moreno S, Rius-Salvador M, Zaragoza O, Brun A, Mingarro I, Martínez-Gil L. Identification of small molecules capable of enhancing viral membrane fusion. Virol J 2023; 20:99. [PMID: 37226231 DOI: 10.1186/s12985-023-02068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Several approaches have been developed to analyze the entry of highly pathogenic viruses. In this study, we report the implementation of a Bimolecular Multicellular Complementation (BiMuC) assay to safely and efficiently monitor SARS-CoV-2 S-mediated membrane fusion without the need for microscopy-based equipment. Using BiMuC, we screened a library of approved drugs and identified compounds that enhance S protein-mediated cell-cell membrane fusion. Among them, ethynylestradiol promotes the growth of SARS-CoV-2 and Influenza A virus in vitro. Our findings demonstrate the potential of BiMuC for identifying small molecules that modulate the life cycle of enveloped viruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Mª Jesús García-Murria
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain
| | - Laura Gadea-Salom
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
| | - Marina Rius-Salvador
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC, Health Institute Carlos III, CB21/13/00105), Madrid, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain
| | - Luis Martínez-Gil
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain.
| |
Collapse
|