1
|
Emadikhiav A, Mafigholami R, Davood A, Mahvi A, Salimi L. A review on hazards and treatment methods of released antibiotics in hospitals wastewater during the COVID-19 pandemic. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:820. [PMID: 39154115 DOI: 10.1007/s10661-024-12938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
Drugs and related goods are widely used in order to promote public health and the quality of life. One of the most serious environmental challenges affecting public health is the ongoing presence of antibiotics in the effluents generated by pharmaceutical industries and hospitals. Antibiotics cannot be entirely removed from wastewater using the traditional wastewater treatment methods. Unmetabolized antibiotics generated by humans can be found in urban and livestock effluent. The antibiotic present in effluent contributes to issues with resistance to antibiotics and the creation of superbugs. Over the recent 2 years, the coronavirus disease 2019 pandemic has substantially boosted hospital waste volume. In this situation, a detailed literature review was conducted to highlight the harmful effects of untreated hospital waste and outline the best approaches to manage it. Approximately 50 to 70% of the emerging contaminants prevalent in the hospital wastewater can be removed using traditional treatment strategies. This paper emphasizes the numerous treatment approaches for effectively eliminating emerging contaminants and antibiotics from hospital wastewater and provides an overview of global hospital wastewater legislation and guidelines on hospital wastewater administration. Around 90% of ECs might be eliminated by biological or physical treatment techniques when used in conjunction with modern oxidation techniques. According to this research, hybrid methods are the best approach for removing antibiotics and ECs from hospital wastewater. The document outlines the many features of effective hospital waste management and might be helpful during and after the coronavirus disease 2019 outbreak, when waste creation on all hospitals throughout the globe has considerably increased.
Collapse
Affiliation(s)
- Amirali Emadikhiav
- Department of Environmental Science and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Roya Mafigholami
- Department of Environmental Science and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Asghar Davood
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research (CSWR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Lida Salimi
- Faculty of Marine Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Chen B, He J, Tian K, Qu J, Hong L, Lin Q, Yang K, Ma L, Xu X. Research Progress on Detection of Pathogens in Medical Wastewater by Electrochemical Biosensors. Molecules 2024; 29:3534. [PMID: 39124939 PMCID: PMC11314202 DOI: 10.3390/molecules29153534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The detection of pathogens in medical wastewater is crucial due to the high content of pathogenic microorganisms that pose significant risks to public health and the environment. Medical wastewater, which includes waste from infectious disease and tuberculosis facilities, as well as comprehensive medical institutions, contains a variety of pathogens such as bacteria, viruses, fungi, and parasites. Traditional detection methods like nucleic acid detection and immunological assays, while effective, are often time-consuming, expensive, and not suitable for rapid detection in underdeveloped areas. Electrochemical biosensors offer a promising alternative with advantages including simplicity, rapid response, portability, and low cost. This paper reviews the sources of pathogens in medical wastewater, highlighting specific bacteria (e.g., E. coli, Salmonella, Staphylococcus aureus), viruses (e.g., enterovirus, respiratory viruses, hepatitis virus), parasites, and fungi. It also discusses various electrochemical biosensing techniques such as voltammetry, conductometry, impedance, photoelectrochemical, and electrochemiluminescent biosensors. These technologies facilitate the rapid, sensitive, and specific detection of pathogens, thereby supporting public health and environmental safety. Future research may should pay more attention on enhancing sensor sensitivity and specificity, developing portable and cost-effective devices, and innovating detection methods for diverse pathogens to improve public health protection and environmental monitoring.
Collapse
Affiliation(s)
- Bangyao Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Jiahuan He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Kewei Tian
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Jie Qu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Lihui Hong
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Qin Lin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Keda Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing College of New Materials and Chemical Engineering, Institute of Petrochemical Technology, Beijing 102617, China
| | - Xiaoling Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| |
Collapse
|
3
|
Bleotu C, Matei L, Dragu LD, Necula LG, Pitica IM, Chivu-Economescu M, Diaconu CC. Viruses in Wastewater-A Concern for Public Health and the Environment. Microorganisms 2024; 12:1430. [PMID: 39065197 PMCID: PMC11278728 DOI: 10.3390/microorganisms12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/26/2024] Open
Abstract
Wastewater monitoring provides essential information about water quality and the degree of contamination. Monitoring these waters helps identify and manage risks to public health, prevent the spread of disease, and protect the environment. Standardizing the appropriate and most accurate methods for the isolation and identification of viruses in wastewater is necessary. This review aims to present the major classes of viruses in wastewater, as well as the methods of concentration, isolation, and identification of viruses in wastewater to assess public health risks and implement corrective measures to prevent and control viral infections. Last but not least, we propose to evaluate the current strategies in wastewater treatment as well as new alternative methods of water disinfection.
Collapse
Affiliation(s)
- Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
- The Academy of Romanian Scientist, 050711 Bucharest, Romania
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Denisa Dragu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Georgiana Necula
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Ioana Madalina Pitica
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Mihaela Chivu-Economescu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Carmen Cristina Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| |
Collapse
|
4
|
Tandukar S, Thakali O, Baral R, Tiwari A, Haramoto E, Tuladhar R, Joshi DR, Sherchan SP. Application of wastewater-based epidemiology for monitoring COVID-19 in hospital and housing wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:171877. [PMID: 38531458 DOI: 10.1016/j.scitotenv.2024.171877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
An alternative and complementary diagnostic method of surveillance is provided by wastewater-based surveillance (WBS), particularly in low-income nations like Nepal with scant wastewater treatment facilities and clinical testing infrastructure. In this study, a total of 146 water samples collected from two hospitals (n = 63) and three housing wastewaters (n = 83) from the Kathmandu Valley over the period of March 2021-Febraury 2022 were investigated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using quantitative reverse transcription TaqMan PCR assays targeting the N and E genes. Of the total, 67 % (98/146) samples were positive for SARS-CoV-2 RNA either by using N- or E-gene assay, with concentrations ranging from 3.6 to 9.1 log10 copies/L. There was a significant difference found between positive ratio (Chi-square test, p < 0.05) and concentration (t-test, p = 0.009) of SARS-CoV-2 RNA detected from hospital wastewater and housing waters. Wastewater data are correlated with COVID-19 active cases, indicating significance in specific areas like the Hospital (APFH) (p < 0.05). According to the application of a bivariate linear regression model (p < 0.05), the concentrations of N gene may be used to predict the COVID-19 cases in the APFH. Remarkably, SARS-CoV-2 RNA was detected prior to, during, and following clinical case surges, implying that wastewater surveillance could serve as an early warning system for public health decisions. The significance of WBS in tracking and managing pandemics is emphasized by this study, especially in resource-constrained settings.
Collapse
Affiliation(s)
- Sarmila Tandukar
- Organization for Public Health and Environment Management, Lalitpur, Nepal
| | - Ocean Thakali
- Organization for Public Health and Environment Management, Lalitpur, Nepal
| | - Rakshya Baral
- Center of Research Excellence in Wastewater based Epidemiology, Morgan State University, Baltimore, MD 21251, United States of America
| | - Ananda Tiwari
- Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, Kuopio 70701, Finland
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Samendra P Sherchan
- Organization for Public Health and Environment Management, Lalitpur, Nepal; Center of Research Excellence in Wastewater based Epidemiology, Morgan State University, Baltimore, MD 21251, United States of America; Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan; Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal; Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, United States of America.
| |
Collapse
|
5
|
Ibrahim C, Hammami S, Khelifi N, Pothier P, Hassen A. Activated sludge and UV-C 254 for Sapovirus, Aichivirus, Astrovirus, and Adenovirus processing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1995-2014. [PMID: 37086061 DOI: 10.1080/09603123.2023.2203906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
In this study, the detection rates of four enteric viruses, Human Astrovirus (HAstVs), Aichivirus (AiVs), Human Adenovirus (HAdVs), and Sapovirus (SaVs) are carried out to assess the virological quality of the treated wastewater. A total of 140 samples was collected from wastewater treatment plant WWTP of Tunis-City. Real-time RT-PCR and conventional RT-PCR results showed high frequencies of detection of the four enteric viruses investigated at the entry and exit of the biological activated sludge procedure and a significant reduction in viral titers after tertiary treatment with UV-C254 irradiation. These results revealed the ineffectiveness of the biological activated sludge treatment in removing viruses and the poor quality of the treated wastewater intended for recycling, agricultural reuse, and safe discharge into the natural environment. The UV-C254 irradiation, selected while considering the non-release of known disinfection by-products because of eventual reactions with the large organic and mineral load commonly present in the wastewater.
Collapse
Affiliation(s)
- Chourouk Ibrahim
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Tunisia
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, the University of Tunis El Manar, Tunis, Tunisia
- Microbiology Laboratory, Beja University Hospital, Beja,Tunisia
| | - Salah Hammami
- National School of Veterinary Medicine at Sidi Thabet, University of Manouba, Tunis, Tunisia
| | - Nesserine Khelifi
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Tunisia
| | - Pierre Pothier
- National Reference Center for Enteric Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France
| | - Abdennaceur Hassen
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Tunisia
| |
Collapse
|
6
|
Kallem P, Hegab HM, Alsafar H, Hasan SW, Banat F. SARS-CoV-2 detection and inactivation in water and wastewater: review on analytical methods, limitations and future research recommendations. Emerg Microbes Infect 2023; 12:2222850. [PMID: 37279167 PMCID: PMC10286680 DOI: 10.1080/22221751.2023.2222850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/03/2023] [Indexed: 06/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in wastewater. Wastewater-based epidemiology (WBE) is a practical and cost-effective tool for the assessment and controlling of pandemics and probably for examining SARS-CoV-2 presence. Implementation of WBE during the outbreaks is not without limitations. Temperature, suspended solids, pH, and disinfectants affect the stability of viruses in wastewater. Due to these limitations, instruments and techniques have been utilized to detect SARS-CoV-2. SARS-CoV-2 has been detected in sewage using various concentration methods and computer-aided analyzes. RT-qPCR, ddRT-PCR, multiplex PCR, RT-LAMP, and electrochemical immunosensors have been employed to detect low levels of viral contamination. Inactivation of SARS-CoV-2 is a crucial preventive measure against coronavirus disease 2019 (COVID-19). To better assess the role of wastewater as a transmission route, detection, and quantification methods need to be refined. In this paper, the latest improvements in quantification, detection, and inactivation of SARS-CoV-2 in wastewater are explained. Finally, limitations and future research recommendations are thoroughly described.
Collapse
Affiliation(s)
- Parashuram Kallem
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Environmental Health and Safety Program, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hanaa M Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Emirates Bio-research center, Ministry of Interior, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Qamsari EM, Mohammadi P. Evaluation of SARS-CoV-2 RNA Presence in Treated and Untreated Hospital Sewage. WATER, AIR, AND SOIL POLLUTION 2023; 234:273. [PMID: 37073306 PMCID: PMC10090750 DOI: 10.1007/s11270-023-06273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Wastewater-based epidemiology (WBE) is a potential approach for determining the viral prevalence in a community. In the wake of the COVID-19 pandemic, researchers have begun to pay close attention to the presence of SARS-COV-2 RNA in various wastewaters. The potential for detecting SARS-CoV-2 RNA in hospital sewage could make it an invaluable resource for epidemiological studies. In this regard, two specialized hospitals dedicated to COVID-19 patients were chosen for this investigation. Both hospitals utilize the same wastewater treatment systems. The influent and effluents of the two hospitals were sampled in May and June of 2021, and the samples were evaluated for their chemical properties. According to the findings of this study, the wastewater qualities of the two studied hospitals were within the standard ranges. The sewage samples were concentrated using ultrafiltration and PEG precipitation techniques. The E and S genes were studied with RT-qPCR commercial kits. We found E gene of SARS-CoV-2 in 83.3% (5/6) and 66.6% (4/6) of wastewater samples from hospital 1 and hospital 2, respectively, using ultrafiltration concentration method. Wastewater samples taken after chlorine treatment accounted for 16.6% of all positive results. In addition, due to the small sample size, there was no significant correlation (p > 0.05) between the presence of SARS-CoV-2 in wastewater and the number of COVID-19 cases. Hospitals may be a source of SARS-CoV-2 pollution, thus it is important to monitor and enhance wastewater treatment systems to prevent the spread of the virus and safeguard the surrounding environment.
Collapse
Affiliation(s)
- Elahe Mobarak Qamsari
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran
| |
Collapse
|
8
|
Santiago-Rodriguez TM, Hollister EB. Viral Metagenomics as a Tool to Track Sources of Fecal Contamination: A One Health Approach. Viruses 2023; 15:236. [PMID: 36680277 PMCID: PMC9863393 DOI: 10.3390/v15010236] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The One Health framework recognizes that human, animal, and environmental health are linked and highly interdependent. Fecal contamination of water, soil, foodstuff, and air may impact many aspects of One Health, and culture, PCR-based, and sequencing methods are utilized in the detection of fecal contamination to determine source, load, and risk to inform targeted mitigation strategies. Viruses, particularly, have been considered as fecal contamination indicators given the narrow host range many exhibit and their association with other biological contaminants. Culture- and molecular-based methods are considered the gold-standards for virus detection and for determining specific sources of fecal contamination via viral indicators. However, viral metagenomics is also being considered as a tool for tracking sources of fecal contamination. In the present review, studies tracking potential sources of fecal contamination in freshwaters, marine waters, foodstuff, soil, and air using viral metagenomics are discussed to highlight the potential of viral metagenomics for optimizing fecal source tracking. Limitations of the use of viral metagenomics to track fecal contamination sources, including sample processing, nucleic acid recovery, sequencing depth, and bioinformatics are also discussed. Finally, the present review discusses the potential of viral metagenomics as part of the toolbox of methods in a One Health approach.
Collapse
|
9
|
Takuissu GR, Kenmoe S, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Bowo-Ngandji A, Ndzie Ondigui JL, Kenfack-Momo R, Tchatchouang S, Kenfack-Zanguim J, Lontuo Fogang R, Zeuko’o Menkem E, Kame-Ngasse GI, Magoudjou-Pekam JN, Veneri C, Mancini P, Bonanno Ferraro G, Iaconelli M, Orlandi L, Del Giudice C, Suffredini E, La Rosa G. Occurrence of Hepatitis A Virus in Water Matrices: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1054. [PMID: 36673812 PMCID: PMC9859052 DOI: 10.3390/ijerph20021054] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Hepatitis A is a common form of viral hepatitis. It is usually transmitted through the ingestion of contaminated food and water. This systematic review was carried out to summarise the overall prevalence of Hepatitis A virus (HAV) in different water matrices: untreated and treated wastewater, surface water, groundwater, drinking water, and others (e.g., irrigation water and floodwater). The literature search was performed in four databases: PubMed, Web of Science, Global Index Medicus, and Excerpta Medica Database. Heterogeneity (I2) was assessed using the χ2 test on the Cochran Q statistic and H parameters. A total of 200 prevalence data from 144 articles were included in this meta-analysis. The overall prevalence of HAV in water matrices was 16.7% (95% CI: 13.4−20.3). The prevalence for individual matrix was as follows: 31.4% (95% CI: 23.0−40.4) untreated wastewater, 18.0% (95% CI: 9.5−28.2) treated wastewater, 15.0% (95% CI: 10.1−20.5) surface water, 2.3% (95% CI: 0.1−6.0) in groundwater, 0.3% (95% CI: 0.0−1.7) in drinking water, and 8.5% (95% CI: 3.1−15.6) in other matrices. The prevalence was higher in low-income economies (29.0%). Africa and Eastern Mediterranean were the regions with higher HAV prevalence values. This study showed a high heterogeneity (I2 > 75%) with a significant publication bias (p value Egger test < 0.001). The results of this review suggest that water matrices could be an important route of HAV transmission even in industrialized countries, despite the lower prevalence compared to less industrialized countries, and the availability of advanced water management systems. More effective water/wastewater treatment strategies are needed in developing countries to limit the environmental circulation of HAV.
Collapse
Affiliation(s)
- Guy Roussel Takuissu
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Sebastien Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Cyprien Kengne-Ndé
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Yaounde, Cameroon
| | | | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | | | | | | | | | - Ginette Irma Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Carolina Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Pamela Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giusy Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marcello Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Lidia Orlandi
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Claudia Del Giudice
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
10
|
von Mühlen L, Prestes OD, Ferrão MF, Sirtori C. Miniaturized Method for Chemical Oxygen Demand Determination Using the PhotoMetrix PRO Application. Molecules 2022; 27:molecules27154721. [PMID: 35897897 PMCID: PMC9331614 DOI: 10.3390/molecules27154721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
The analysis of chemical oxygen demand (COD) plays an important role in measuring water pollution, but it normally has a high ecological price. Advances in image acquisition and processing techniques enable the use of mobile devices for analytical purposes. Here, the PhotoMetrix PRO application was used for image acquisition and multivariate analysis. Statistical analysis showed no significant difference in the results compared to the standard method, with no adverse effect of the volume reduction. The cost of analysis and waste generation were reduced by one third, while the analysis time was reduced by one fifth. The miniaturized method was successfully employed in the analysis of several matrices and for the evaluation of advanced oxidation processes. The AGREE score was improved by 25% due to miniaturization. For these reasons, the miniaturized PhotoMetrix PRO method is a suitable option for COD analysis, being less hazardous to the environment due to reductions in the chemicals used and in waste generation.
Collapse
Affiliation(s)
- Lisandro von Mühlen
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (L.v.M.); (M.F.F.)
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria 97105-900, RS, Brazil;
| | - Osmar D. Prestes
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria 97105-900, RS, Brazil;
| | - Marco F. Ferrão
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (L.v.M.); (M.F.F.)
| | - Carla Sirtori
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (L.v.M.); (M.F.F.)
- Correspondence: ; Tel.: +55-51-3308-7796
| |
Collapse
|
11
|
Korajkic A, Kelleher J, Shanks OC, Herrmann MP, McMinn BR. Effectiveness of two wastewater disinfection strategies for the removal of fecal indicator bacteria, bacteriophage, and enteric viral pathogens concentrated using dead-end hollow fiber ultrafiltration (D-HFUF). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154861. [PMID: 35358531 PMCID: PMC9291237 DOI: 10.1016/j.scitotenv.2022.154861] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Primary influent and final effluent samples were collected from wastewater treatment plants using either chlorination or ultraviolet (UV) disinfection biweekly for one year. Paired measurements were determined for fecal indicator bacteria (Escherichia coli and enterococci), cultivated bacteriophages (somatic, F+, and CB-390 coliphage and GB-124 Bacteroides phage), human-associated viral markers (human polyomavirus [HPyV] and crAssphage), enteric pathogens (adenovirus, noroviruses genogroups I and II) as well as total infectious enteric virus. To increase the probability of detecting low concentration targets, both primary (10L) and final effluent wastewater samples (40-100 L) were concentrated using a dead-end hollow-fiber ultrafilter (D-HFUF). Despite seasonal temperature fluctuations, concentration shifts of FIB, bacteriophages, human-associated viruses, and viral pathogens measured in primary influent samples were minimal, while levels of infectious enteric virus were significantly higher in the spring and fall (P range: 0.0003-0.0409). FIB levels measured in primary influents were 1-2 log10 higher than bacteriophage, human-associated viral markers (except crAssphage) and viral pathogens measured. FIB displayed the greatest sensitivity to chlorine disinfection, while crAssphage, adenoviruses and infectious enteric viruses were significantly less sensitive (P ≤ 0.0096). During UV treatment, bacteriophages F+ and GB-124 were the most resistant of the culturable viruses measured (P ≤ 0.001), while crAssphage were the most resistant (P ≤ 0.0124) overall. When UV lamps were inactive, infectious enteric viruses were significantly more resilient to upstream treatment processes than all other targets measured (P ≤ 0.0257). Similar to infectious enteric viruses and adenoviruses; GB-124, F+, and crAssphages displayed the highest resistance to UV irradiation, signaling a potential applicability as pathogen surrogates in these systems. The use of D-HFUF enhanced the ability to estimate removal of viruses through wastewater treatment, with the expectation that future applications of this method will be used to better elucidate viral behavior within these systems.
Collapse
Affiliation(s)
- Asja Korajkic
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Julie Kelleher
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Orin C Shanks
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Michael P Herrmann
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Brian R McMinn
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States.
| |
Collapse
|
12
|
Li J, Liu J, Yu H, Zhao W, Xia X, You S, Zhang J, Tong H, Wei L. Sources, fates and treatment strategies of typical viruses in urban sewage collection/treatment systems: A review. DESALINATION 2022; 534:115798. [PMID: 35498908 PMCID: PMC9033450 DOI: 10.1016/j.desal.2022.115798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The ongoing coronavirus pandemic (COVID-19) throughout the world has severely threatened the global economy and public health. Due to receiving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a wide variety of sources (e.g., households, hospitals, slaughterhouses), urban sewage treatment systems are regarded as an important path for the transmission of waterborne viruses. This review presents a quantitative profile of the concentration distribution of typical viruses within wastewater collection systems and evaluates the influence of different characteristics of sewer systems on virus species and concentration. Then, the efficiencies and mechanisms of virus removal in the units of wastewater treatment plants (WWTPs) are summarized and compared, among which the inactivation efficiencies of typical viruses by typical disinfection approaches under varied operational conditions are elucidated. Subsequently, the occurrence and removal of viruses in treated effluent reuse and desalination, as well as that in sewage sludge treatment, are discussed. Potential dissemination of viruses is emphasized by occurrence via aerosolization from toilets, the collection system and WWTP aeration, which might have a vital role in the transmission and spread of viruses. Finally, the frequency and concentration of viruses in reclaimed water, the probability of infection are also reviewed for discussing the potential health risks.
Collapse
Affiliation(s)
- Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Geosciences, China University of Petroleum, Qingdao 266580, China
| | - Hang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hailong Tong
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
13
|
Parida VK, Sikarwar D, Majumder A, Gupta AK. An assessment of hospital wastewater and biomedical waste generation, existing legislations, risk assessment, treatment processes, and scenario during COVID-19. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114609. [PMID: 35101807 PMCID: PMC8789570 DOI: 10.1016/j.jenvman.2022.114609] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 05/23/2023]
Abstract
Hospitals release significant quantities of wastewater (HWW) and biomedical waste (BMW), which hosts a wide range of contaminants that can adversely affect the environment if left untreated. The COVID-19 outbreak has further increased hospital waste generation over the past two years. In this context, a thorough literature study was carried out to reveal the negative implications of untreated hospital waste and delineate the proper ways to handle them. Conventional treatment methods can remove only 50%-70% of the emerging contaminants (ECs) present in the HWW. Still, many countries have not implemented suitable treatment methods to treat the HWW in-situ. This review presents an overview of worldwide HWW generation, regulations, and guidelines on HWW management and highlights the various treatment techniques for efficiently removing ECs from HWW. When combined with advanced oxidation processes, biological or physical treatment processes could remove around 90% of ECs. Analgesics were found to be more easily removed than antibiotics, β-blockers, and X-ray contrast media. The different environmental implications of BMW have also been highlighted. Mishandling of BMW can spread infections, deadly diseases, and hazardous waste into the environment. Hence, the different steps associated with collection to final disposal of BMW have been delineated to minimize the associated health risks. The paper circumscribes the multiple aspects of efficient hospital waste management and may be instrumental during the COVID-19 pandemic when the waste generation from all hospitals worldwide has increased significantly.
Collapse
Affiliation(s)
- Vishal Kumar Parida
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Divyanshu Sikarwar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
14
|
Hrdy J, Vasickova P. Virus detection methods for different kinds of food and water samples – The importance of molecular techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Espinosa MF, Verbyla ME, Vassalle L, Leal C, Leroy-Freitas D, Machado E, Fernandes L, Rosa-Machado AT, Calábria J, Chernicharo C, Mota Filho CR. Reduction and liquid-solid partitioning of SARS-CoV-2 and adenovirus throughout the different stages of a pilot-scale wastewater treatment plant. WATER RESEARCH 2022; 212:118069. [PMID: 35077942 PMCID: PMC8759026 DOI: 10.1016/j.watres.2022.118069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 05/04/2023]
Abstract
Investigating waterborne viruses is of great importance to minimizing risks to public health. Viruses tend to adsorb to sludge particles from wastewater processes by electrostatic and hydrophobic interactions between virus, aquatic matrix, and particle surface. Sludge is often re-used in agriculture; therefore, its evaluation is also of great interest to public health. In the present study, a pilot scale system treating real domestic wastewater from a large city in Brazil was used to evaluate the removal, the overall reduction, and liquid-solid partitioning of human adenovirus (HAdV), the novel coronavirus (SARS-CoV-2) and fecal indicators (F-specific coliphages and E. coli). The system consists of a high-rate algal pond (HRAP) post-treating the effluent of an upflow anaerobic sludge blanket (UASB) reactor. Samples were collected from the influent and effluent of each unit, as well as from the sludge of the UASB and from the microalgae biomass in the HRAP. Pathogens and indicators were quantified by quantitative polymerase chain reaction (qPCR) (for HAdV), qPCR with reverse transcription (RTqPCR) (for SARS-CoV-2), the double agar plaque assay (for coliphages), and the most probable number (MPN) method (for E. coli). The removal and overall reduction of HAdV and SARS-CoV-2 was greater than 1-log10. Almost 60% of remaining SARS-CoV-2 RNA and more than 70% of remaining HAdV DNA left the system in the sludge, demonstrating that both viruses may have affinity for solids. Coliphages showed a much lower affinity to solids, with only 3.7% leaving the system in the sludge. The system performed well in terms of the removal of organic matter and ammoniacal nitrogen, however tertiary treatment would be necessary to provide further pathogen reduction, if the effluent is to be reused in agriculture. To our knowledge, this is the first study that evaluated the reduction and partitioning of SARS-CoV-2 and HAdV through the complete cycle of a wastewater treatment system consisting of a UASB reactor followed by HRAPs.
Collapse
Affiliation(s)
| | | | - Lucas Vassalle
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Cintia Leal
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Elayne Machado
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luyara Fernandes
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Juliana Calábria
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Carlos Chernicharo
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | |
Collapse
|
16
|
Huang Y, Zhou N, Zhang S, Yi Y, Han Y, Liu M, Han Y, Shi N, Yang L, Wang Q, Cui T, Jin H. Norovirus detection in wastewater and its correlation with human gastroenteritis: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22829-22842. [PMID: 35048346 PMCID: PMC8769679 DOI: 10.1007/s11356-021-18202-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Norovirus (NoV) is a major cause of sporadic cases and outbreaks of acute gastroenteritis (AGE), thereby imposing threat to health globally. It is unclear how quantitation of wastewater NoV reflects the incidence of human AGE infections; therefore, we conducted this systematic review and meta-analysis of published NoV wastewater surveillance studies. A literature search was performed, and all studies on NoV wastewater surveillance were identified. Quantitative results were evaluated. The results showed that the overall detection rate of NoV in wastewater was 82.10% (95% confidence interval [CI]: 74.22-89.92%); NoV concentration was statistically significant in terms of season (P < 0.001), with higher concentration in spring and winter. There were positive correlations between NoV GII concentration in wastewater and GII AGE cases (rs = 0.51, 95% CI: 0.18-0.74, I2 = 0%), total AGE cases (rs = 0.40, 95% CI: 0.15-0.61, I2 = 23%) and NoV outbreaks (rs = 0.47, 95% CI: 0.30-0.62, I2 = 0%). Results of cross-correlation analysis of partial data indicated that variations in GII concentration were consistent with or ahead of those in the number of AGE cases. The diversity of NoV genotypes in wastewater was elucidated, and the dominant strains in wastewater showed a consistent temporal distribution with those responsible for human AGE. Our study demonstrated the potential association of NoV detected in wastewater with AGE infections, and further studies are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Yue Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Nan Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shihan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Youqin Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Han
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Minqi Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yue Han
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Naiyang Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Liuqing Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qiang Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tingting Cui
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hui Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China.
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
17
|
Omatola CA, Olaniran AO. Epidemiological significance of the occurrence and persistence of rotaviruses in water and sewage: a critical review and proposal for routine microbiological monitoring. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:380-399. [PMID: 35174845 DOI: 10.1039/d1em00435b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Globally, waterborne gastroenteritis attributable to rotaviruses is on the increase due to the rapid increase in population growth, poor socioeconomic conditions, and drastic changes in climatic conditions. The burden of diarrhea is quite alarming in developing nations where the majority of the populations still rely on untreated surface water that is usually polluted for their immediate water needs. Humans and animals of all ages are affected by rotaviruses. In humans, the preponderance of cases occurs in children under 5 years. Global efforts in advancing water/wastewater treatment technologies have not yet realized the objective of complete viral removal from wastewater. Most times, surface waters are impacted heavily by inadequately treated wastewater run-offs thereby exposing people or animals to preventable health risks. The relative stability of rotaviruses in aquatic matrices during wastewater treatment, poor correlation of bacteriological indicators with the presence of rotaviruses, and their infectiousness at a low dose informed the proposal for inclusion in the routine microbiological water screening panel. Environmental monitoring data have been shown to provide early warnings that can complement clinical data used to monitor the impact of current rotavirus vaccination in a community. This review was therefore undertaken to critically appraise rotavirus excretion and emission pathways, and the existence, viability and persistence in the receiving aquatic milieu. The efficiency of the current wastewater treatment modality for rotavirus removal, correlation of the current bacteriological water quality assessment strategy, public health risks and current laboratory methods for an epidemiological study were also discussed.
Collapse
Affiliation(s)
- Cornelius A Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Republic of South Africa.
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Republic of South Africa.
| |
Collapse
|
18
|
Ricky R, Shanthakumar S. Phycoremediation integrated approach for the removal of pharmaceuticals and personal care products from wastewater - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113998. [PMID: 34717103 DOI: 10.1016/j.jenvman.2021.113998] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are of emerging concerns because of their large usage, persistent nature which promised their continuous disposal into the environment, as these pollutants are stable enough to pass through wastewater treatment plants causing hazardous effects on all the organisms through bioaccumulation, biomagnification, and bioconcentration. The available technologies are not capable of eliminating all the PPCPs along with their degraded products but phycoremediation has the advantage over these technologies by biodegrading the pollutants without developing resistant genes. Even though phycoremediation has many advantages, industries have found difficulty in adapting this technology as a single-stage treatment process. To overcome these drawbacks recent research studies have focused on developing technology that integrated phycoremediation with the commonly employed treatment processes that are in operation for treating the PPCPs effectively. This review paper focuses on such research approaches that focused on integrating phycoremediation with other technologies such as activated sludge process (ASP), advanced oxidation process (AOP), Up-flow anaerobic sludge blanket reactor (UASBR), UV irradiation, and constructed wetland (CW) with the advantages and limitations of each integration processes. Furthermore, augmenting phycoremediation by co-metabolic mechanism with the addition of sodium chloride, sodium acetate, and glucose for the removal of PPCPs has been highlighted in this review paper.
Collapse
Affiliation(s)
- R Ricky
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - S Shanthakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
19
|
Ahmad J, Ahmad M, Usman ARA, Al-Wabel MI. Prevalence of human pathogenic viruses in wastewater: A potential transmission risk as well as an effective tool for early outbreak detection for COVID-19. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113486. [PMID: 34391102 PMCID: PMC8352675 DOI: 10.1016/j.jenvman.2021.113486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 05/09/2023]
Abstract
Millions of human pathogenic viral particles are shed from infected individuals and introduce into wastewater, subsequently causing waterborne diseases worldwide. These viruses can be transmitted from wastewater to human beings via direct contact and/or ingestion/inhalation of aerosols. Even the advanced wastewater treatment technologies are unable to remove pathogenic viruses from wastewater completely, posing a serious health risk. Recently, coronavirus disease 2019 (COVID-19) has been urged globally due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has resulted in >4.1 million deaths until July 2021. A rapid human-to-human transmission, uncertainties in effective vaccines, non-specific medical treatments, and unclear symptoms compelled the world into complete lockdown, social distancing, air-travel suspension, and closure of educational institutions, subsequently damaging the global economy and trade. Although, few medical treatments, rapid detection tools, and vaccines have been developed so far to curb the spread of COVID-19; however, several uncertainties exist in their applicability. Further, the acceptance of vaccines among communities is lower owing to the fear of side effects such as blood-clotting and heart inflammation. SARS-CoV-2, an etiologic agent of COVID-19, has frequently been detected in wastewater, depicting a potential transmission risk to healthy individuals. Contrarily, the occurrence of SARS-CoV-2 in wastewater can be used as an early outbreak detection tool via water-based epidemiology. Therefore, the spread of SARS-CoV-2 through fecal-oral pathway can be reduced and any possible outbreak can be evaded by proper wastewater surveillance. In this review, wastewater recycling complications, potential health risks of COVID-19 emergence, and current epidemiological measures to control COVID-19 spread have been discussed. Moreover, the viability of SARS-CoV-2 in various environments and survival in wastewater has been reviewed. Additionally, the necessary actions (vaccination, face mask, social distancing, and hand sanitization) to limit the transmission of SARS-CoV-2 have been recommended. Therefore, wastewater surveillance can serve as a feasible, efficient, and reliable epidemiological measure to lessen the spread of COVID-19.
Collapse
Affiliation(s)
- Jahangir Ahmad
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Munir Ahmad
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Adel R A Usman
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Mohammad I Al-Wabel
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong.
| |
Collapse
|
20
|
Mackuľak T, Cverenkárová K, Vojs Staňová A, Fehér M, Tamáš M, Škulcová AB, Gál M, Naumowicz M, Špalková V, Bírošová L. Hospital Wastewater-Source of Specific Micropollutants, Antibiotic-Resistant Microorganisms, Viruses, and Their Elimination. Antibiotics (Basel) 2021; 10:1070. [PMID: 34572652 PMCID: PMC8471966 DOI: 10.3390/antibiotics10091070] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
Municipal wastewaters can generally provide real-time information on drug consumption, the incidence of specific diseases, or establish exposure to certain agents and determine some lifestyle consequences. From this point of view, wastewater-based epidemiology represents a modern diagnostic tool for describing the health status of a certain part of the population in a specific region. Hospital wastewater is a complex mixture of pharmaceuticals, illegal drugs, and their metabolites as well as different susceptible and antibiotic-resistant microorganisms, including viruses. Many studies pointed out that wastewater from healthcare facilities (including hospital wastewater), significantly contributes to higher loads of micropollutants, including bacteria and viruses, in municipal wastewater. In addition, such a mixture can increase the selective pressure on bacteria, thus contributing to the development and dissemination of antimicrobial resistance. Because many pharmaceuticals, drugs, and microorganisms can pass through wastewater treatment plants without any significant change in their structure and toxicity and enter surface waters, treatment technologies need to be improved. This short review summarizes the recent knowledge from studies on micropollutants, pathogens, antibiotic-resistant bacteria, and viruses (including SARS-CoV-2) in wastewater from healthcare facilities. It also proposes several possibilities for improving the wastewater treatment process in terms of efficiency as well as economy.
Collapse
Affiliation(s)
- Tomáš Mackuľak
- Department of Environmental Engineering, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (T.M.); (M.F.); (M.T.); (A.B.Š.)
| | - Klára Cverenkárová
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Andrea Vojs Staňová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - Miroslav Fehér
- Department of Environmental Engineering, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (T.M.); (M.F.); (M.T.); (A.B.Š.)
| | - Michal Tamáš
- Department of Environmental Engineering, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (T.M.); (M.F.); (M.T.); (A.B.Š.)
| | - Andrea Bútor Škulcová
- Department of Environmental Engineering, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (T.M.); (M.F.); (M.T.); (A.B.Š.)
| | - Miroslav Gál
- Department of Inorganic Technology, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (M.G.); (V.Š.)
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245 Bialystok, Poland;
| | - Viera Špalková
- Department of Inorganic Technology, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (M.G.); (V.Š.)
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Praha, Czech Republic
| | - Lucia Bírošová
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| |
Collapse
|
21
|
Ali W, Zhang H, Wang Z, Chang C, Javed A, Ali K, Du W, Niazi NK, Mao K, Yang Z. Occurrence of various viruses and recent evidence of SARS-CoV-2 in wastewater systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125439. [PMID: 33684818 PMCID: PMC7894103 DOI: 10.1016/j.jhazmat.2021.125439] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 05/17/2023]
Abstract
Viruses are omnipresent and persistent in wastewater, which poses a risk to human health. In this review, we summarise the different qualitative and quantitative methods for virus analysis in wastewater and systematically discuss the spatial distribution and temporal patterns of various viruses (i.e., enteric viruses, Caliciviridae (Noroviruses (NoVs)), Picornaviridae (Enteroviruses (EVs)), Hepatitis A virus (HAV)), and Adenoviridae (Adenoviruses (AdVs))) in wastewater systems. Then we critically review recent SARS-CoV-2 studies to understand the ongoing COVID-19 pandemic through wastewater surveillance. SARS-CoV-2 genetic material has been detected in wastewater from France, the Netherlands, Australia, Italy, Japan, Spain, Turkey, India, Pakistan, China, and the USA. We then discuss the utility of wastewater-based epidemiology (WBE) to estimate the occurrence, distribution, and genetic diversity of these viruses and generate human health risk assessment. Finally, we not only promote the prevention of viral infectious disease transmission through wastewater but also highlight the potential use of WBE as an early warning system for public health assessment.
Collapse
Affiliation(s)
- Waqar Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Zhenglu Wang
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, College of Oceanography, Hohai University, Nanjing 210098, PR China
| | - Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Asif Javed
- Department of Earth and Environmental Sciences, Bahria University Islamabad, Pakistan
| | - Kamran Ali
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Wei Du
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, PR China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom
| |
Collapse
|
22
|
Oliveira TJJ, Santiago ADF, Lanna MCDS, Fongaro G, Milagres NL, Cunha TR, Corrêa ALI. Rural blackwater treatment by a full-scale Brazilian Biodigester Septic Tank: microbial indicators and pathogen removal efficiency. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23235-23242. [PMID: 33442807 DOI: 10.1007/s11356-020-12229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The Brazilian Biodigester Septic Tank (BBST) is an on-site appropriate technology for blackwater treatment, which was developed to yield an effluent suitable for agricultural use. Although several studies have proven its efficacy for secondary blackwater treatment, there are few published studies about the microbiological quality of its effluent, and most of them focus on the quantification of total or thermotolerant coliforms. This study evaluates the performance of a BBST for the removal of human adenovirus (HAdV), Enterococcus spp., Salmonella sp., and Escherichia coli. The results further clarify the safety and risks associated with the reuse of the obtained effluent. The full-scale system consists of three 1.2 m3 interconnected reactors, with a blackwater input of 0.045 m3/day, and hydraulic retention time of 80 days. Six sample campaigns were performed at different stages of the monthly operating cycle. The system presented an average removal efficiency of 5.09 log10 for E. coli, 3.22 log10 for Enterococcus spp., 1.2 log10 for Salmonella sp., and 3.0 log10 for HAdV. According to the World Health Organization standards, the obtained effluent is suitable for subsurface irrigation, and for use in crops that develop distant from the soil or highly mechanized crop systems.
Collapse
Affiliation(s)
- Thaíssa Jucá Jardim Oliveira
- Laboratório de Saneamento Ambiental, Escola de Minas, Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, 35400-000, Brazil.
| | - Aníbal da Fonseca Santiago
- Laboratório de Saneamento Ambiental, Escola de Minas, Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, 35400-000, Brazil
| | - Maria Célia da Silva Lanna
- Instituto de Ciências Exatas e Biológicas, Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, 35400-000, Brazil
| | - Gislaine Fongaro
- Laboratório de Virologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia (MIP), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, 88037-000, Brazil
| | - Natália Ladeira Milagres
- Laboratório de Saneamento Ambiental, Escola de Minas, Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, 35400-000, Brazil
| | - Thalita Ramos Cunha
- Laboratório de Saneamento Ambiental, Escola de Minas, Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, 35400-000, Brazil
| | | |
Collapse
|
23
|
Majumder A, Gupta AK, Ghosal PS, Varma M. A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:104812. [PMID: 33251108 PMCID: PMC7680650 DOI: 10.1016/j.jece.2020.104812] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 05/05/2023]
Abstract
The hospital wastewater imposes a potent threat to the security of human health concerning its high vulnerability towards the outbreak of several diseases. Furthermore, the outbreak of COVID-19 pandemic demanded a global attention towards monitoring viruses and other infectious pathogens in hospital wastewater and their removal. Apart from that, the presence of various recalcitrant organics, pharmaceutically active compounds (PhACs), etc. imparts a complex pollution load to water resources and ecosystem. In this review, an insight into the occurrence, persistence and removal of drug-resistant microorganisms and infectious viruses as well as other micro-pollutants have been documented. The performance of various pilot/full-scale studies have been evaluated in terms of removal of biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), PhACs, pathogens, etc. It was found that many biological processes, such as membrane bioreactor, activated sludge process, constructed wetlands, etc. provided more than 80% removal of BOD, COD, TSS, etc. However, the removal of several recalcitrant organic pollutants are less responsive to those processes and demands the application of tertiary treatments, such as adsorption, ozone treatment, UV treatment, etc. Antibiotic-resistant microorganisms, viruses were found to be persistent even after the treatment of hospital wastewater, and high dose of chlorination or UV treatment was required to inactivate them. This article circumscribes the various emerging technologies, which have been used to treat PhACs and pathogens. The present review also emphasized the global concern of the presence of SARS-CoV-2 RNA in hospital wastewater and its removal by the existing treatment facilities.
Collapse
Affiliation(s)
- Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahesh Varma
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
24
|
Achak M, Alaoui Bakri S, Chhiti Y, M'hamdi Alaoui FE, Barka N, Boumya W. SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143192. [PMID: 33153744 PMCID: PMC7585361 DOI: 10.1016/j.scitotenv.2020.143192] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 05/17/2023]
Abstract
Currently, the apparition of new SARS-CoV, known as SARS-CoV-2, affected more than 34 million people and causing high death rates worldwide. Recently, several studies reported SARS-CoV-2 ribonucleic acid (RNA) in hospital wastewater. SARS-CoV-2 can be transmitted between humans via respiratory droplets, close contact and fomites. Fecal-oral transmission is considered also as a potential route of transmission since several scientists confirmed the presence of SARS-CoV-2 RNA in feces of infected patients, therefore its transmission via feces in aquatic environment, particularly hospital wastewater. Hospitals are one of the important classes of polluting sectors around the world. It was identified that hospital wastewater contains hazardous elements and a wide variety of microbial pathogens and viruses. Therefore, this may potentially pose a significant risk of public health and environment infection. This study reported an introduction about the Physical-chemical and microbiological characterization of hospital wastewater, which can be a route to identify potential technology to reduce the impact of hospital contaminants before evacuation. The presence of SARS-CoV-2 in aqueous environment was reviewed. The knowledge of the detection and survival of SARS-CoV-2 in wastewater and hospital wastewater were described to understand the different routes of SARS-CoV-2 transmission, which is also useful to avoid the outbreak of CoV-19. In addition, disinfection technologies used commonly for deactivation of SARS-CoV-2 were highlighted. It was revealed that, chlorine-containing disinfectants are the most commonly used disinfectants in this field of research. Meanwhile, other efficient technologies must be developed and improved to avoid another wave of the pandemic of COVID-19 infections.
Collapse
Affiliation(s)
- Mounia Achak
- Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco; Chemical & Biochemical Sciences, Green Process Engineering, CBS, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Soufiane Alaoui Bakri
- Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco
| | - Younes Chhiti
- Advanced Materials and Process Engineering Laboratory, National School of Chemistry, Ibn Tofail University, Kenitra, Morocco; Mohamed VI Polytechnic University, Ben Guerir, Morocco
| | - Fatima Ezzahrae M'hamdi Alaoui
- Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco
| | - Noureddine Barka
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Khouribga, Morocco
| | - Wafaa Boumya
- Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco; Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Khouribga, Morocco
| |
Collapse
|
25
|
Bedi JS, Vijay D, Dhaka P, Singh Gill JP, Barbuddhe SB. Emergency preparedness for public health threats, surveillance, modelling & forecasting. Indian J Med Res 2021; 153:287-298. [PMID: 33906991 PMCID: PMC8204835 DOI: 10.4103/ijmr.ijmr_653_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/04/2022] Open
Abstract
In the interconnected world, safeguarding global health security is vital for maintaining public health and economic upliftment of any nation. Emergency preparedness is considered as the key to control the emerging public health challenges at both national as well as international levels. Further, the predictive information systems based on routine surveillance, disease modelling and forecasting play a pivotal role in both policy building and community participation to detect, prevent and respond to potential health threats. Therefore, reliable and timely forecasts of these untoward events could mobilize swift and effective public health responses and mitigation efforts. The present review focuses on the various aspects of emergency preparedness with special emphasis on public health surveillance, epidemiological modelling and capacity building approaches. Global coordination and capacity building, funding and commitment at the national and international levels, under the One Health framework, are crucial in combating global public health threats in a holistic manner.
Collapse
Affiliation(s)
- Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Sukhadeo B. Barbuddhe
- Department of Meat Safety, ICAR-National Research Centre on Meat, Chengicherla, Hyderabad, Telangana, India
| |
Collapse
|
26
|
Ahile UJ, Wuana RA, Itodo AU, Sha'Ato R, Malvestiti JA, Dantas RF. Are iron chelates suitable to perform photo-Fenton at neutral pH for secondary effluent treatment? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111566. [PMID: 33130405 DOI: 10.1016/j.jenvman.2020.111566] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/23/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
There have been concerns about which iron chelate is most suitable for application in the photo-Fenton process as well as the fate of these chelates after application. In this study, five chelating agents, i.e. citric acid (CA), oxalic acid (OA), ethylenediamine disuccinic acid (EDDS), ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), representing the most used iron chelates were assessed for suitability of application in homogeneous photo-Fenton-like process at pH of 7. The efficiency of the iron chelates were assessed in the disinfection of secondary effluent. The results for the disinfection and bacteria regrowth followed the order EDTA>OA>NTA>CA>OA. All the iron chelates were observed to have increased the COD of the effluent with EDDS having the highest COD contribution. The ability of the chelates to remove aromaticity was measured by the UV254 measurement. The efficiency of the chelates to remove aromaticity decreased in the order CA>EDDS>NTA>CA>OA. To determine the fate of the chelates, toxicity tests were conducted on the chelates before and after irradiation and the results revealed a decrease in toxicity after photoirradiation, implying the chelates were degraded and the products/intermediates produced were of less toxicity as compared to the parent compounds.
Collapse
Affiliation(s)
- Ungwanen J Ahile
- Department of Chemistry, Faculty of Science, Benue State University, P.M.B., 102119, Makurdi, Nigeria
| | - Raymond A Wuana
- Department of Chemistry, University of Agriculture, PMB, 2373, Makurdi, Nigeria
| | - Adams U Itodo
- Department of Chemistry, University of Agriculture, PMB, 2373, Makurdi, Nigeria
| | - Rufus Sha'Ato
- Department of Chemistry, University of Agriculture, PMB, 2373, Makurdi, Nigeria
| | - Jacqueline A Malvestiti
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332, Limeira, SP, Brazil
| | - Renato F Dantas
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332, Limeira, SP, Brazil.
| |
Collapse
|
27
|
Corpuz MVA, Buonerba A, Vigliotta G, Zarra T, Ballesteros F, Campiglia P, Belgiorno V, Korshin G, Naddeo V. Viruses in wastewater: occurrence, abundance and detection methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140910. [PMID: 32758747 PMCID: PMC7368910 DOI: 10.1016/j.scitotenv.2020.140910] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 04/14/2023]
Abstract
This paper presents an updated and comprehensive review on the different methods used for detection and quantification of viruses in wastewater treatment systems. The analysis of viability of viruses in wastewater and sludge is another thrust of this review. Recent studies have mostly focused on determining the abundance and diversity of viruses in wastewater influents, in samples from primary, secondary, and tertiary treatment stages, and in final effluents. A few studies have also examined the occurrence and diversity of viruses in raw and digested sludge samples. Recent efforts to improve efficiency of virus detection and quantification methods in the complex wastewater and sludge matrices are highlighted in this review. A summary and a detailed comparison of the pre-treatment methods that have been utilized for wastewater and sludge samples are also presented. The role of metagenomics or sequencing analysis in monitoring wastewater systems to predict disease outbreaks, to conduct public health surveillance, to assess the efficiency of existing treatment systems in virus removal, and to re-evaluate current regulations regarding pathogenic viruses in wastewater is discussed in this paper. Challenges and future perspectives in the detection of viruses, including emerging and newly emerged viruses such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), in wastewater systems are discussed in this review.
Collapse
Affiliation(s)
- Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines.
| | - Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| | - Giovanni Vigliotta
- Laboratory of Microbiology, University of Salerno, 84084 Fisciano, Italy.
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines; Department of Chemical Engineering, College of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines.
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| | - Gregory Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98105-2700, United States.
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| |
Collapse
|
28
|
Elmahdy EM, Shaheen MNF, Rizk NM, Saad-Hussein A. Quantitative Detection of Human Adenovirus and Human Rotavirus Group A in Wastewater and El-Rahawy Drainage Canal Influencing River Nile in the North of Giza, Egypt. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:218-225. [PMID: 32388732 DOI: 10.1007/s12560-020-09429-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Environmental monitoring is critical in a developing country like Egypt where there is an insufficient framework for recording and tracking outbreaks. In this study, the prevalence of human adenovirus (HAdV), rotavirus group A (RVA) was determined in urban sewage, activated sludge, drainage water, drainage sediment, Nile water, and Nile sediment, using quantitative polymerase chain reaction (qPCR) analysis. HAdV was detected in 50% of urban sewage with viral concentrations ranging from 103 to 107 genome copies/liter (GC/L), 33% of activated sludge with viral concentrations ranging from 103 to 107 GC/kilogram (GC/kg), 95% of drainage water with viral concentrations ranging from 103 to 107 GC/L, 75% of drainage sediment with viral concentrations ranging from 103 to 107 GC/L, 50% of Nile water with viral concentrations ranging from 103 to 107 GC/L, and 45% of Nile sediment with viral concentrations ranging from 103 to 107 GC/kg. RVA was detected in 50% of urban sewage with viral concentrations ranging from 103 to 107 GC/L, 75% of activated sludge with viral concentrations ranging from 103 to 107 GC/L, 58% of drainage water with viral concentrations ranging from 103 to 107 GC/L, 50% of drainage sediment with viral concentrations ranging from 103 to 107 GC/L, and 45% of Nile water with viral concentrations ranging from 103 to 107 GC/kg. In conclusion, Abu-Rawash WWTP acts as a source of HAdV and RVA, releasing them into El-Rahawy drain then to the River Nile Rosetta branch.
Collapse
Affiliation(s)
- Elmahdy M Elmahdy
- Environmental Virology Laboratory, Department of Water Pollution Research, Environmental Research Division, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Mohamed N F Shaheen
- Environmental Virology Laboratory, Department of Water Pollution Research, Environmental Research Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Neveen M Rizk
- Environmental Virology Laboratory, Department of Water Pollution Research, Environmental Research Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Amal Saad-Hussein
- Environmental & Occupational Medicine Department, National Research Center, Cairo, Egypt
| |
Collapse
|
29
|
Petrovich ML, Zilberman A, Kaplan A, Eliraz GR, Wang Y, Langenfeld K, Duhaime M, Wigginton K, Poretsky R, Avisar D, Wells GF. Microbial and Viral Communities and Their Antibiotic Resistance Genes Throughout a Hospital Wastewater Treatment System. Front Microbiol 2020; 11:153. [PMID: 32140141 PMCID: PMC7042388 DOI: 10.3389/fmicb.2020.00153] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance poses a serious threat to global public health, and antibiotic resistance determinants can enter natural aquatic systems through discharge of wastewater effluents. Hospital wastewater in particular is expected to contain high abundances of antibiotic resistance genes (ARGs) compared to municipal wastewater because it contains human enteric bacteria that may include antibiotic-resistant organisms originating from hospital patients, and can also have high concentrations of antibiotics and antimicrobials relative to municipal wastewater. Viruses also play an important role in wastewater treatment systems since they can influence the bacterial community composition through killing bacteria, facilitating transduction of genetic material between organisms, and modifying the chromosomal content of bacteria as prophages. However, little is known about the fate and connections between ARGs, viruses, and their associated bacteria in hospital wastewater systems. To address this knowledge gap, we characterized the composition and persistence of ARGs, dsDNA viruses, and bacteria from influent to effluent in a pilot-scale hospital wastewater treatment system in Israel using shotgun metagenomics. Results showed that ARGs, including genes conferring resistance to antibiotics of high clinical relevance, were detected in all sampling locations throughout the pilot-scale system, with only 16% overall depletion of ARGs per genome equivalent between influent and effluent. The most common classes of ARGs detected throughout the system conferred resistance to aminoglycoside, cephalosporin, macrolide, penam, and tetracycline antibiotics. A greater proportion of total ARGs were associated with plasmid-associated genes in effluent compared to in influent. No strong associations between viral sequences and ARGs were identified in viral metagenomes from the system, suggesting that phage may not be a significant vector for ARG transfer in this system. The majority of viruses in the pilot-scale system belonged to the families Myoviridae, Podoviridae, and Siphoviridae. Gammaproteobacteria was the dominant class of bacteria harboring ARGs and the most common putative viral host in all samples, followed by Bacilli and Betaproteobacteria. In the total bacterial community, the dominant class was Betaproteobacteria for each sample. Overall, we found that a variety of different types of ARGs and viruses were persistent throughout this hospital wastewater treatment system, which can be released to the environment through effluent discharge.
Collapse
Affiliation(s)
- Morgan L. Petrovich
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| | - Adi Zilberman
- The Water Research Center, School of The Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aviv Kaplan
- The Water Research Center, School of The Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gefen R. Eliraz
- The Water Research Center, School of The Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yubo Wang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| | - Kathryn Langenfeld
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Melissa Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - Krista Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Rachel Poretsky
- Department of Biological Sciences, The University of Illinois at Chicago, Chicago, IL, United States
| | - Dror Avisar
- The Water Research Center, School of The Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - George F. Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
30
|
Ibrahim C, Hammami S, Pothier P, Khelifi N, Hassen A. The performance of biological and tertiary wastewater treatment procedures for rotaviruses A removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5718-5729. [PMID: 31177419 PMCID: PMC7223008 DOI: 10.1007/s11356-019-05487-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 05/14/2019] [Indexed: 05/19/2023]
Abstract
Enteric viruses, generally found in sewage, are recognized as the main cause of waterborne and foodborne public health outbreaks. Among leading enteric viruses, the Rotavirus A (RVA) detection in wastewater appeared to be a novel approach to monitor the emergence of these viruses in some countries where the viral gastroenteritis surveillance is almost absent such as in Tunisia. The RVA detection and quantification in an industrial sewage purification plant of Charguia I (Tunis, Tunisia) were achieved to evaluate the performance of activated sludge procedures coupled to a macrofiltration monolamp ultraviolet irradiation type C (UV-C254) disinfection reactor. This UV-C254 system was preceded by a fiberglass cartridge filter system with an average porosity of 45 μm to clarify the water and thus increase its UV transmittance. A total of 140 composite sewage samples was collected from this line of treatment and analyzed for RVA detection. The detection and the viral load quantification of RVA were performed using real-time reverse transcription polymerase chain reaction (RT-PCR). The virological results showed in general that RVA were detected at high frequency of 98% (137/140). In fact, the RVA detection rates at the exit of the two studied wastewater treatment were about 100% at the exit of the activated sludge procedure. It means that all wastewater sampled at this last step of treatment was positive for RVA detection. On the other hand, 92.5% of the wastewater samples taken at the exit of the monolamp UV-C254 reactor were positive for the RVA. However, the RVA quantification results expressed as viral load showed a significant reduction in the means of RVA viral loads at the exit of the biological activated sludge procedure and the tertiary UV-C254 treatment, showing in general an improved treated wastewater virological quality. Therefore, the RVA load removal rates recorded at the two successive stages of treatment, the activated sludge and the UV-C254 treatment, were around 85% and 73%, respectively, as compared to the one with 100% registered for the raw wastewater. In addition, good physical-chemical and bacteriological qualities of the treated sewage were found at the exit of the two considered wastewater treatment procedures. The present investigation represents the first Tunisian environmental report showing the good effectiveness and performance of the biological and the tertiary treatments for RVA removal. Therefore, an improved and an optimized tertiary disinfection treatment was needed since it could be a good means for getting better viral water quality and for minimizing the transmission and dissemination of human infectious viral diseases.
Collapse
Affiliation(s)
- Chourouk Ibrahim
- Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Centre of Research and Water Technologies (CERTE), 8020 Techno Park of Borj Cédria, Borj Cédria, Tunisia
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Salah Hammami
- National School of Veterinary Medicine at Sidi-Thabet, IRESA, University of Manouba, 2020 Tunis, Tunisia
| | - Pierre Pothier
- National Reference Centre for Enteric Viruses, Laboratory of Virology, University Hospital of Dijon, 21070 Dijon, France
| | - Nesserine Khelifi
- Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Centre of Research and Water Technologies (CERTE), 8020 Techno Park of Borj Cédria, Borj Cédria, Tunisia
| | - Abdennaceur Hassen
- Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Centre of Research and Water Technologies (CERTE), 8020 Techno Park of Borj Cédria, Borj Cédria, Tunisia
| |
Collapse
|
31
|
Khan NA, Khan SU, Ahmed S, Farooqi IH, Yousefi M, Mohammadi AA, Changani F. Recent trends in disposal and treatment technologies of emerging-pollutants- A critical review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115744] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Kumari A, Maurya NS, Tiwari B. Hospital wastewater treatment scenario around the globe. CURRENT DEVELOPMENTS IN BIOTECHNOLOGY AND BIOENGINEERING 2020. [PMCID: PMC7252247 DOI: 10.1016/b978-0-12-819722-6.00015-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wastewaters generated from hospitals contain pharmaceuticals residues, pathogens, chemical reagents, radionuclide, and other harmful matter. The wastewater characteristics, quantity, and handling methods have not only variations among countries but also within a country. Some hazardous substances of hospital wastewaters (HWWs) may have a regulatory status and should be treated accordingly while others have characteristics similar to that of domestic sewage. At a global level, guidelines do exist for treatment of these HWWs. But literatures have shown that legislation has various loopholes in implementation. This chapter outlines the current status of management and handling of HWWs around the major industrial hubs of worlds in two categories of developed (the United States, United Kingdom, and Europe) and developing (India, China, Iran, and Bangladesh) countries. Various literatures and guidelines of these countries have been referred which mainly highlight different treatment scenarios and status of coverage of HWW management guidelines.
Collapse
|
33
|
Abstract
The study of hospital wastewater (HWW) microbiology is important to understand the pollution load, growth of particular pathogenic microbes, shift and drift in microbial community, development and spread of antibiotic resistance in microbes, and subsequent change in treatment efficiencies. This chapter investigates the potential microbes such as bacteria, viruses, fungi, and parasites present in HWW along with the diseases associated and methods of treatment used. Due to the indiscriminate release of antibiotics from hospitals, HWW serves as a hotspot for emergence of antibiotic-resistance genes (ARGs) and antibiotic-resistance bacteria. This chapter discusses the ARGs occurrence in HWW, their prevalence in the environment, the molecular tools used for identification, and different mechanisms of horizontal gene transfer. Thus better understanding of the microbiology of HWW could further help in development of advanced treatment technologies for effective removal of microbes and their bioproducts (toxins and infectious nucleic acid) from HWW and contaminated water.
Collapse
|
34
|
Petrovich ML, Ben Maamar S, Hartmann EM, Murphy BT, Poretsky RS, Wells GF. Viral composition and context in metagenomes from biofilm and suspended growth municipal wastewater treatment plants. Microb Biotechnol 2019; 12:1324-1336. [PMID: 31410982 PMCID: PMC6801142 DOI: 10.1111/1751-7915.13464] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/05/2019] [Indexed: 11/30/2022] Open
Abstract
Wastewater treatment plants (WWTPs) contain high density and diversity of viruses which can significantly impact microbial communities in aquatic systems. While previous studies have investigated viruses in WWTP samples that have been specifically concentrated for viruses and filtered to exclude bacteria, little is known about viral communities associated with bacterial communities throughout wastewater treatment systems. Additionally, differences in viral composition between attached and suspended growth wastewater treatment bioprocesses are not well characterized. Here, shotgun metagenomics was used to analyse wastewater and biomass from transects through two full-scale WWTPs for viral composition and associations with bacterial hosts. One WWTP used a suspended growth activated sludge bioreactor and the other used a biofilm reactor (trickling filter). Myoviridae, Podoviridae and Siphoviridae were the dominant viral families throughout both WWTPs, which are all from the order Caudovirales. Beta diversity analysis of viral sequences showed that samples clustered significantly both by plant and by specific sampling location. For each WWTP, the overall bacterial community structure was significantly different than community structure of bacterial taxa associated with viral sequences. These findings highlight viral community composition in transects through different WWTPs and provide context for dsDNA viral sequences in bacterial communities from these systems.
Collapse
Affiliation(s)
- Morgan L. Petrovich
- Department of Civil and Environmental EngineeringNorthwestern University2145 Sheridan Rd., Tech A236EvanstonIL60208USA
| | - Sarah Ben Maamar
- Department of Civil and Environmental EngineeringNorthwestern University2145 Sheridan Rd., Tech A236EvanstonIL60208USA
| | - Erica M. Hartmann
- Department of Civil and Environmental EngineeringNorthwestern University2145 Sheridan Rd., Tech A236EvanstonIL60208USA
| | - Brian T. Murphy
- Department of Medicinal Chemistry and PharmacognosyUniversity of Illinois at Chicago900 S. Ashland Ave, MBRB Room 3120; MC 870ChicagoIL60607USA
| | - Rachel S. Poretsky
- Department of Biological SciencesUniversity of Illinois at Chicago950 S. Halsted Street, SEL 4100ChicagoIL60607USA
| | - George F. Wells
- Department of Civil and Environmental EngineeringNorthwestern University2145 Sheridan Rd., Tech A236EvanstonIL60208USA
| |
Collapse
|
35
|
Célia da Silva Lanna M, Viancelli A, Michelon W, Castro Carvalho SV, de Almeida Dos Reis D, Fernandez de Salles LA, Sant'Anna IH, Resende LT, de Souza Ferreira C, Aparecido das Chagas I, Hernández M, Treichel H, Rodríguez-Lázaro D, Fongaro G. Household-based biodigesters promote reduction of enteric virus and bacteria in vulnerable and poverty rural area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:8-13. [PMID: 31146241 DOI: 10.1016/j.envpol.2019.05.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 05/03/2023]
Abstract
The present study evaluated the river water quality improvement by implementation of household-based biodigesters in vulnerability and poverty rural area, in Minas Gerais State-Brazil. For that, 78 household-based biodigesters were installed for domestic wastewater treatment. Wastewater was collected before and after treatment and the physicochemical parameters and pathogens removal (human adenovirus (HAdV), hepatitis A (HAV) virus, Salmonella sp. and Escherichia coli) were evaluated; Additionally, river water was sampled before and after the household-based biodigesters implementation, to verify the contamination reduction and the positive impact of domestic wastewater treatment on waterborne pathogen reduction, considering HAdV, HAV, Salmonella sp. and E. coli quantification. The applicability in real-scale of decentralized treatment systems using household-based biodigesters promoted reduction of 90, 99, 99.99 and 99.999% from HAV, Salmonella sp., E. coli and HAdV from domestic wastewater, respectively; The river water quality improvement before the wastewater treatment application was highlight in the present study, considering that the reduction of waterborne pathogens in this water in 90, 99.99 and 99.999% of E. coli, HAV and HAdV, respectively (Salmonella sp. was not detected in river water). In general, this is an important study for encouraging the decentralized sanitation in vulnerable and poverty area, as well in rural sites, considering the positive impact of this implementation on public health.
Collapse
Affiliation(s)
- Maria Célia da Silva Lanna
- Laboratory of Microbiology and Technological Bioprospection, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Aline Viancelli
- Universidade do Contestado - UNC, PMPECSA, Concórdia, SC, Brazil
| | - Wiliam Michelon
- Universidade do Contestado - UNC, PMPECSA, Concórdia, SC, Brazil
| | | | - Deyse de Almeida Dos Reis
- Laboratory of Microbiology and Technological Bioprospection, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Iago Hashimoto Sant'Anna
- Laboratory of Microbiology and Technological Bioprospection, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Letícia Teresinha Resende
- Laboratory of Microbiology and Technological Bioprospection, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Clovis de Souza Ferreira
- Laboratory of Microbiology and Technological Bioprospection, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Igor Aparecido das Chagas
- Laboratory of Microbiology and Technological Bioprospection, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Marta Hernández
- Laboratory of Molecular Biology and Microbiology, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain; Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Universidade Federal da Fronteira Sul (UFFS), Erechim, RS, Brazil
| | | | - Gislaine Fongaro
- Laboratory of Applied Virology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
36
|
Lun JH, Crosbie ND, White PA. Genetic diversity and quantification of human mastadenoviruses in wastewater from Sydney and Melbourne, Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:305-312. [PMID: 31030137 DOI: 10.1016/j.scitotenv.2019.04.162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 05/27/2023]
Abstract
Human mastadenoviruses (HAdVs) are DNA viruses that can cause a wide range of clinical diseases, including gastroenteritis, respiratory illnesses, conjunctivitis, and in more severe cases hepatitis, pancreatitis and disseminated diseases. HAdV infections are generally asymptomatic or self-limiting, but can cause adverse outcomes within vulnerable populations. Since most HAdV serotypes replicate within the human gastrointestinal tract, high levels of HAdV DNA are excreted into wastewater systems. In this study, we identified the genetic diversity of HAdV at a population level using wastewater samples collected from Sydney and Melbourne from 2016 to 2017, with the use of next generation sequencing (NGS) technologies. In addition, HAdV DNA levels were quantified using quantitative polymerase chain reaction (qPCR) based methods to better understand the health risks involved if wastewater contamination occurs. An average of 1.8 × 107 genome copies of HAdV DNA was detected in one litre of wastewater collected in Sydney and Melbourne, over the two-year study period. A total of six major groups of HAdV were identified in wastewater samples using MiSeq, which included 19 different serotypes. Of those, the most prevalent was F41 (83.5%), followed by F40 (11.0%) and A31 (3.7%). In contrast, five groups of HAdV were identified in clinical samples with F41 as the most dominant serotype, (52.5% of gastroenteritis cases), followed by C1 and C2 (each responsible for 15.0%), and B3 was the fourth most common serotype (7.5%). This study demonstrated the practicability of using amplicon based NGS to identify HAdV diversity and quantify HAdV genome levels in environmental water samples, as well as broadening our current understanding of circulating HAdV in the Australian population.
Collapse
Affiliation(s)
- Jennifer H Lun
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia.
| | - Nicholas D Crosbie
- Melbourne Water Corporation, Docklands, VIC, Australia; School of Civil and Environmental Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
37
|
Abstract
The immense global burden of infectious disease outbreaks and the need to establish prediction and prevention systems have been recognized by the World Health Organization (WHO), the National Institutes of Health (NIH), the United States Agency of International Development (USAID), the Bill and Melinda Gates Foundation, and the international scientific community. Despite multiple efforts, this infectious burden is still increasing. For example, it has been reported that between 1.5 and 12 million people die each year from waterborne diseases and diarrheal diseases are listed within the top 15 leading causes of death worldwide. Rapid population growth, climate change, natural disasters, immigration, globalization, and the corresponding sanitation and waste management challenges are expected to intensify the problem in the years to come.
Collapse
|
38
|
García-Aljaro C, Blanch AR, Campos C, Jofre J, Lucena F. Pathogens, faecal indicators and human-specific microbial source-tracking markers in sewage. J Appl Microbiol 2019; 126:701-717. [PMID: 30244503 DOI: 10.1111/jam.14112] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
The objective of this review is to assess the current state of knowledge of pathogens, general faecal indicators and human-specific microbial source tracking markers in sewage. Most of the microbes present in sewage are from the microbiota of the human gut, including pathogens. Bacteria and viruses are the most abundant groups of microbes in the human gut microbiota. Most reports on this topic show that raw sewage microbiological profiles reflect the human gut microbiota. Human and animal faeces share many commensal microbes as well as pathogens. Faecal-orally transmitted pathogens constitute a serious public health problem that can be minimized through sanitation. Assessing both the sanitation processes and the contribution of sewage to the faecal contamination of water bodies requires knowledge of the content of pathogens in sewage, microbes indicating general faecal contamination and microbes that are only present in human faecal remains, which are known as the human-specific microbial source-tracking (MST) markers. Detection of pathogens would be the ideal option for managing sanitation and determining the microbiological quality of waters contaminated by sewage; but at present, this is neither practical nor feasible in routine testing. Traditionally, faecal indicator bacteria have been used as surrogate indicators of general faecal residues. However, in many water management circumstances, it becomes necessary to detect both the origin of faecal contamination, for which MST is paramount, and live micro-organisms, for which molecular methods are not suitable. The presence and concentrations of pathogens, general faecal indicators and human-specific MST markers most frequently reported in different areas of the world are summarized in this review.
Collapse
Affiliation(s)
- C García-Aljaro
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,The Water Research Institute, University of Barcelona, Barcelona, Spain
| | - A R Blanch
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,The Water Research Institute, University of Barcelona, Barcelona, Spain
| | - C Campos
- Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - J Jofre
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,The Water Research Institute, University of Barcelona, Barcelona, Spain
| | - F Lucena
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,The Water Research Institute, University of Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Aydin S, Aydin ME, Ulvi A, Kilic H. Antibiotics in hospital effluents: occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:544-558. [PMID: 30406596 DOI: 10.1007/s11356-018-3563-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/22/2018] [Indexed: 05/25/2023]
Abstract
The study presented the occurrence of antibiotics in 16 different hospital effluents, the removal of antibiotics in urban wastewater treatment plant (WWTP), and the potential ecotoxicological risks of the effluent discharge on the aquatic ecosystem. The total concentration of antibiotics in hospital effluents was ranged from 21.2 ± 0.13 to 4886 ± 3.80 ng/L in summer and from 497 ± 3.66 to 322,735 ± 4.58 ng/L in winter. Azithromycin, clarithromycin, and ciprofloxacin were detected the highest concentrations among the investigated antibiotics. The total antibiotic load to the influent of the WWTP from hospitals was 3.46 g/day in summer and 303.2 g/day in winter. The total antibiotic contribution of hospitals to the influent of the WWTP was determined as 13% in summer and 28% in winter. The remaining 87% in summer and 72% in winter stems from the households. The total antibiotic removal by conventional physical and biological treatment processes was determined as 79% in summer, whereas it decreased to 36% in winter. When the environmental risk assessment was performed, azithromycin and clarithromycin in the effluent from the treatment plant in winter posed a high risk (RQ > 10) for the aquatic organisms (algae and fish) in the receiving environment. According to these results, the removal efficiency of antibiotics at the WWTP is inadequate and plant should be improved to remove antibiotics by advanced treatment processes.
Collapse
Affiliation(s)
- Senar Aydin
- Environmental Engineering Department, Necmettin Erbakan University, Konya, Turkey.
| | - Mehmet Emin Aydin
- Environmental Engineering Department, Necmettin Erbakan University, Konya, Turkey
| | - Arzu Ulvi
- Environmental Engineering Department, Necmettin Erbakan University, Konya, Turkey
| | - Havva Kilic
- Environmental Engineering Department, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
40
|
Assis ASF, Fumian TM, Miagostovich MP, Drumond BP, da Rosa E Silva ML. Adenovirus and rotavirus recovery from a treated effluent through an optimized skimmed-milk flocculation method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17025-17032. [PMID: 29633189 DOI: 10.1007/s11356-018-1873-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Sewage treatment may be insufficient for the complete removal of enteric viruses, such as human adenoviruses (HAdV) and group A rotavirus (RVA). The differences in the efficiency of the treatment methodologies used may interfere with the detection of these viruses. The objective of this study was to optimize a skimmed-milk flocculation technique for the recovery of HAdV and RVA in the samples of treated effluent. The treated effluent collected at the wastewater treatment plant (WWTP) was processed via four protocols including modifications in the initial centrifugation step and the final concentration of skimmed-milk. The viral load and recovery rate were determined by quantitative PCR TaqMan® System. The highest recovery rates of HAdV, RVA, and bacteriophage PP7 (internal control process) were obtained when the concentration of skimmed-milk was doubled and no centrifugation step was used for the sample clarification. The optimized protocol was assessed in a field study conducted with 24 treated effluent samples collected bi-monthly during 2015. HAdV and RVA were detected in 50.0% (12/24) and 33.3% (08/24) of the samples tested, respectively, throughout the year, without seasonal variation (p > 0.05). This study corroborates the use of the organic flocculation method for virus recovery in environmental samples with the adaptation of the protocols to different aquatic matrices.
Collapse
Affiliation(s)
- Andrêssa Silvino Ferreira Assis
- Laboratory of Virology, Department of Parasitology, Microbiology and Immunology, Institute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Betânia Paiva Drumond
- Laboratory of Virology, Department of Parasitology, Microbiology and Immunology, Institute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
- Laboratory of Virus, Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Maria Luzia da Rosa E Silva
- Laboratory of Virology, Department of Parasitology, Microbiology and Immunology, Institute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
41
|
Pennino F, Nardone A, Montuori P, Aurino S, Torre I, Battistone A, Delogu R, Buttinelli G, Fiore S, Amato C, Triassi M. Large-Scale Survey of Human Enteroviruses in Wastewater Treatment Plants of a Metropolitan Area of Southern Italy. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:187-192. [PMID: 29248990 DOI: 10.1007/s12560-017-9331-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/07/2017] [Indexed: 05/21/2023]
Abstract
Human enteroviruses (HEVs) occur in high concentrations in wastewater and can contaminate receiving environmental waters, constituting a major cause of acute waterborne disease worldwide. In this study, we investigated the relative abundance, occurrence, and seasonal distribution of polio and other enteroviruses at three wastewater treatment plants (WWTPs) in Naples, Southern Italy, from January 2010 to December 2014. Influent and effluent samples from the three WWTPs were collected monthly. One hundred and sixty-one of the 731 wastewater samples collected (22.0%) before and after water treatment were CPE positive on RD cells; while no samples were positive on L20B cells from any WWTPs. Among the 140 non-polio enterovirus isolated from inlet sewage, 69.3% were Coxsackieviruses type B and 30.7% were Echoviruses. Among these, CVB3 and CVB5 were most prevalent, followed by CVB4 and Echo6. The twenty-one samples tested after treatment contained 6 CVB4, 5 CVB3, 3 Echo11, and 2 Echo6; while other serotypes were isolated less frequently. Data on viral detection in treated effluents of WWTPs confirmed the potential environmental contamination by HEVs and could be useful to establish standards for policies on wastewater management.
Collapse
Affiliation(s)
- Francesca Pennino
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini No 5, 80131, Naples, Italy
| | - Antonio Nardone
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini No 5, 80131, Naples, Italy
| | - Paolo Montuori
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini No 5, 80131, Naples, Italy.
| | - Sara Aurino
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini No 5, 80131, Naples, Italy
| | - Ida Torre
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini No 5, 80131, Naples, Italy
| | - Andrea Battistone
- National Center for the Control and Evaluation of Medicines (CNCF), Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Delogu
- National Center for the Control and Evaluation of Medicines (CNCF), Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele Buttinelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Fiore
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Concetta Amato
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini No 5, 80131, Naples, Italy
| |
Collapse
|
42
|
Ethica SN, Saptaningtyas R, Muchlissin SI, Sabdono A. The development method of bioremediation of hospital biomedical waste using hydrolytic bacteria. HEALTH AND TECHNOLOGY 2018. [DOI: 10.1007/s12553-018-0232-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Ibrahim C, Hassen A, Pothier P, Mejri S, Hammami S. Molecular detection and genotypic characterization of enteric adenoviruses in a hospital wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10977-10987. [PMID: 29404949 DOI: 10.1007/s11356-018-1399-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/25/2018] [Indexed: 04/16/2023]
Abstract
Hospital wastewater (HWW) represents a major source of the diffusion of many antibiotics and some toxic pathogenic microorganisms in the aquatic environment. Sanitation services play a critical role in controlling transmission of numerous waterborne pathogens, especially enteric human adenoviruses (HAdVs) that can cause acute gastroenteritis. This study intended to evaluate the human adenoviruses (HAdVs) detection rates, to determine the genotype of these viruses and to assess the efficiency of HAdVs removal in hospital pilot wastewater treatment plant (PWWTP) in Tunis City, Tunisia. Therefore, hospital wastewater samples (n = 102) were collected during the study year from the two biological wastewater treatment techniques: natural oxidizing ponds and the rotating biological disks or biodisks. Nested polymerase chain reaction (Nested PCR) was used to evaluate the HAdVs detection rates. The genotype of HAdVs positive samples was achieved by the sequencing of the PCR products. HAdVs were detected in 64% (65/102) of positive wastewater samples. A substantial increase in the frequencies of HAdVs was observed at the exit of the two wastewater treatment techniques studied. The typing of HAdVs species F showed the occurrence of only HAdVs type 41. This data acquired for the first time in Tunisia showed high persistence and survival of HAdVs in the two biological wastewater treatment techniques experienced, and mainly highlighted the poor virological quality of the treated wastewater intended for recycling, agriculture reuse, and discharges into the natural receiving environments. Consequently, tertiary wastewater treatment appeared necessary in this case to decrease the load of enteric viruses flowing in the water environment.
Collapse
Affiliation(s)
- Chourouk Ibrahim
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
- Laboratory of Treatment and Wastewater Valorization, Centre of Research and Water Technologies (CERTE), 8020, Techno Park of Borj-Cédria, Tunisia.
| | - Abdennaceur Hassen
- Laboratory of Treatment and Wastewater Valorization, Centre of Research and Water Technologies (CERTE), 8020, Techno Park of Borj-Cédria, Tunisia
| | - Pierre Pothier
- Laboratory of Virology, National Reference Centre for Enteric Viruses, University Hospital of Dijon, 21070, Dijon, France
| | - Selma Mejri
- Laboratory of Virology, University of Tunis El Manar, IRESA, Veterinary Research Institute of Tunisia, 1006, La Rabta, Tunis, Tunisia
| | - Salah Hammami
- Laboratory of Microbiology, University of Manouba, IRESA, National School of Veterinary Medicine at Sidi Thabet, 2020, Tunis, Tunisia
| |
Collapse
|
44
|
Fernandez-Cassi X, Timoneda N, Martínez-Puchol S, Rusiñol M, Rodriguez-Manzano J, Figuerola N, Bofill-Mas S, Abril JF, Girones R. Metagenomics for the study of viruses in urban sewage as a tool for public health surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:870-880. [PMID: 29108696 DOI: 10.1016/j.scitotenv.2017.08.249] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 04/14/2023]
Abstract
The application of next-generation sequencing (NGS) techniques for the identification of viruses present in urban sewage has not been fully explored. This is partially due to a lack of reliable and sensitive protocols for studying viral diversity and to the highly complex analysis required for NGS data processing. One important step towards this goal is finding methods that can efficiently concentrate viruses from sewage samples. Here the application of a virus concentration method based on skimmed milk organic flocculation (SMF) using 10L of sewage collected in different seasons enabled the detection of many viruses. However, some viruses, such as human adenoviruses, could not always be detected using metagenomics, even when quantitative PCR (qPCR) assessments were positive. A targeted metagenomic assay for adenoviruses was conducted and 59.41% of the obtained reads were assigned to murine adenoviruses. However, up to 20 different human adenoviruses (HAdV) were detected by this targeted assay being the most abundant HAdV-41 (29.24%) and HAdV-51 (1.63%). To improve metagenomics' sensitivity, two different protocols for virus concentration were comparatively analysed: an ultracentrifugation protocol and a lower-volume SMF protocol. The sewage virome contained 41 viral families, including pathogenic viral species from families Caliciviridae, Adenoviridae, Astroviridae, Picornaviridae, Polyomaviridae, Papillomaviridae and Hepeviridae. The contribution of urine to sewage metavirome seems to be restricted to a few specific DNA viral families, including the polyomavirus and papillomavirus species. In experimental infections with sewage in a rhesus macaque model, infective human hepatitis E and JC polyomavirus were identified. Urban raw sewage consists of the excreta of thousands of inhabitants; therefore, it is a representative sample for epidemiological surveillance purposes. The knowledge of the metavirome is of significance to public health, highlighting the presence of viral strains that are circulating within a population while acting as a complex matrix for viral discovery.
Collapse
Affiliation(s)
- X Fernandez-Cassi
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain.
| | - N Timoneda
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain; Computational Genomics Lab, University of Barcelona and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Catalonia, Spain
| | - S Martínez-Puchol
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - M Rusiñol
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - J Rodriguez-Manzano
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - N Figuerola
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - S Bofill-Mas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - J F Abril
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain; Computational Genomics Lab, University of Barcelona and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Catalonia, Spain
| | - R Girones
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
45
|
Xie Y, Qiu N, Wang G. Toward a better guard of coastal water safety-Microbial distribution in coastal water and their facile detection. MARINE POLLUTION BULLETIN 2017; 118:5-16. [PMID: 28215556 DOI: 10.1016/j.marpolbul.2017.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/19/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
Prosperous development in marine-based tourism has raised increasing concerns over the sanitary quality of coastal waters with potential microbial contamination. The World Health Organization has set stringent standards over a list of pathogenic microorganisms posing potential threats to people with frequent coastal water exposure and has asked for efficient detection procedures for pathogen facile identification. Inspection of survey events regarding the occurrence of marine pathogens in recreational beaches in recent years has reinforced the need for the development of a rapid identification procedure. In this review, we examine the possibility of recruiting uniform molecular assays to identify different marine pathogens and the feasibility of appropriate biomarkers, including enterochelin biosynthetic genes, for general toxicity assays. The focus is not only on bacterial pathogens but also on other groups of infectious pathogens. The ultimate goal is the development of a handy method to more efficiently and rapidly detect marine pathogens.
Collapse
Affiliation(s)
- Yunxuan Xie
- Tianjin University Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Ning Qiu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Guangyi Wang
- Tianjin University Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
46
|
Assis ASF, Otenio MH, Drumond BP, Fumian TM, Miagostovich MP, da Rosa E Silva ML. Optimization of the skimmed-milk flocculation method for recovery of adenovirus from sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 583:163-168. [PMID: 28094048 DOI: 10.1016/j.scitotenv.2017.01.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 05/21/2023]
Abstract
Return of treated sludge to the environment poses concerns and has stimulated the development of studies on viral monitoring in this matrix, in order to assess its potential risks for public health. Human adenovirus (HAdV) has been identified as a putative viral marker of faecal contamination due to its stability and resistance to the sewage treatment process. The aim of this study was to optimize the organic flocculation procedure in order to establish an appropriate methodology for HAdV recovery from sewage sludge samples. Four protocols (A-D) have been proposed, with changes in the initial sample dilution, in the stirring time and in the final concentration of skimmed-milk. A single sludge sample was obtained in Wastewater Treatment Plant (WWTP) and divided into aliquots. In each protocol, three aliquots were inoculated with HAdV and bacteriophage PP7 and a non-inoculated one was used as negative control. Viral load and recovery rate were determined by quantitative PCR. HAdV recovery rate varied between the protocols tested (p=0.016) and the best result was obtained through the protocol C. In order to confirm this result a field study with activated, thickened and digested sludge samples was carried out. Different types of sludge were obtained in two WWTPs and processed using protocol C. HAdV was detected in all samples, with a similar or higher viral load than those obtained with other concentration techniques already applied to sludge. Protocol C proved to be really efficient, with the advantage of showing low cost and practicability in routine laboratories.
Collapse
Affiliation(s)
- Andrêssa S F Assis
- Laboratory of Virology, Microbiology Department, Institute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Marcelo Henrique Otenio
- Brazilian Agricultural Research Corporation, Embrapa Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Betânia P Drumond
- Laboratory of Virology, Microbiology Department, Institute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Tulio M Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marize P Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Luzia da Rosa E Silva
- Laboratory of Virology, Microbiology Department, Institute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
47
|
Cross-Comparison of Human Wastewater-Associated Molecular Markers in Relation to Fecal Indicator Bacteria and Enteric Viruses in Recreational Beach Waters. Appl Environ Microbiol 2017; 83:AEM.00028-17. [PMID: 28159789 DOI: 10.1128/aem.00028-17] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/25/2017] [Indexed: 11/20/2022] Open
Abstract
Detection of human wastewater contamination in recreational waters is of critical importance to regulators due to the risks posed to public health. To identify such risks, human wastewater-associated microbial source tracking (MST) markers have been developed. At present, however, a greater understanding of the suitability of these markers for the detection of diluted human wastewater in environmental waters is necessary to predict risk. Here, we compared the process limit of detection (PLOD) and process limit of quantification (PLOQ) of six human wastewater-associated MST markers (Bacteroides HF183 [HF183], Escherichia coli H8 [EC H8], Methanobrevibacter smithiinifH, human adenovirus [HAdV], human polyomavirus [HPyV], and pepper mild mottle virus [PMMoV]) in relation to a fecal indicator bacterium (FIB), Enterococcus sp. 23S rRNA (ENT 23S), and three enteric viruses (human adenovirus serotypes 40/41 [HAdV 40/41], human norovirus [HNoV], and human enterovirus [EV]) in beach water samples seeded with raw and secondary-treated wastewater. Among the six MST markers tested, HF183 was the most sensitive measure of human fecal pollution and was quantifiable up to dilutions of 10-6 and 10-4 for beach water samples seeded with raw and secondary-treated wastewater, respectively. Other markers and enteric viruses were detected at various dilutions (10-1 to 10-5). These MST markers, FIB, and enteric viruses were then quantified in beach water (n = 12) and sand samples (n = 12) from South East Queensland (SEQ), Australia, to estimate the levels of human fecal pollution. Of the 12 sites examined, beach water and sand samples from several sites had quantifiable concentrations of HF183 and PMMoV markers. Overall, our results indicate that while HF183 is the most sensitive measure of human fecal pollution, it should be used in conjunction with a conferring viral marker to avoid overestimating the risk of gastrointestinal illness.IMPORTANCE MST is an effective tool to help utilities and regulators improve recreational water quality around the globe. Human fecal pollution poses significant public health risks compared to animal fecal pollution. Several human wastewater-associated markers have been developed and used for MST field studies. However, a head-to-head comparison in terms of their performance to detect diluted human fecal pollution in recreational water is lacking. In this study, we cross-compared the performance of six human wastewater-associated markers in relation to FIB and enteric viruses in beach water samples seeded with raw and secondary-treated wastewater. The results of this study will provide guidance to regulators and utilities on the appropriate application of MST markers for tracking the sources of human fecal pollution in environmental waters and confer human health risks.
Collapse
|
48
|
O'Brien E, Munir M, Marsh T, Heran M, Lesage G, Tarabara VV, Xagoraraki I. Diversity of DNA viruses in effluents of membrane bioreactors in Traverse City, MI (USA) and La Grande Motte (France). WATER RESEARCH 2017; 111:338-345. [PMID: 28107747 DOI: 10.1016/j.watres.2017.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 05/03/2023]
Abstract
This study assesses diversity of DNA viruses in the effluents of two membrane bioreactor (MBR) wastewater treatment plants (WWTPs): an MBR in the United States and an MBR in France. Viral diversity of these effluents is compared to that of a conventional activated sludge WWTP in the U.S. Diversity analysis indicates Herpesvirales to be the most abundant order of potentially pathogenic human DNA viruses in wastewater treated effluent in all utilities. Other potentially pathogenic human viruses detected include Adenoviridae, Parvoviridae, and Polyomaviridae. Bacteriophage order Caudovirales comprises the majority of DNA virus sequences in the effluent of all utilities. The choice of treatment process (MBR versus activated sludge reactor) utilized had no impact on effluent DNA viral diversity. In contrast, the type of disinfection applied had an impact on the viral diversity present in the effluent.
Collapse
Affiliation(s)
- Evan O'Brien
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Mariya Munir
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Terence Marsh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48823, USA
| | - Marc Heran
- Institut Européen des Membranes, IEM, UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Volodymyr V Tarabara
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
49
|
Iaconelli M, Muscillo M, Della Libera S, Fratini M, Meucci L, De Ceglia M, Giacosa D, La Rosa G. One-year Surveillance of Human Enteric Viruses in Raw and Treated Wastewaters, Downstream River Waters, and Drinking Waters. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:79-88. [PMID: 27682315 DOI: 10.1007/s12560-016-9263-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/23/2016] [Indexed: 05/22/2023]
Abstract
Human enteric viruses are a major cause of waterborne diseases, and can be transmitted by contaminated water of all kinds, including drinking and recreational water. The objectives of the present study were to assess the occurrence of enteric viruses (enterovirus, norovirus, adenovirus, hepatitis A and E virus) in raw and treated wastewaters, in rivers receiving wastewater discharges, and in drinking waters. Wastewater treatment plants' (WWTP) pathogen removal efficiencies by adenovirus quantitative real-time PCR and the presence of infectious enterovirus, by cell culture assays, in treated wastewaters and in surface waters were also evaluated. A total of 90 water samples were collected: raw and treated wastewaters (treated effluents and ultrafiltered water reused for industrial purposes), water from two rivers receiving treated discharges, and drinking water. Nested PCR assays were used for the identification of viral DNA/RNA, followed by direct amplicon sequencing. All raw sewage samples (21/21), 61.9 % of treated wastewater samples (13/21), and 25 % of ultrafiltered water samples (3/12) were contaminated with at least one viral family. Multiple virus families and genera were frequently detected. Mean positive PCRs per sample decreased significantly from raw to treated sewage and to ultrafiltered waters. Moreover, quantitative adenovirus data showed a reduction in excess of 99 % in viral genome copies following wastewater treatment. In surface waters, 78.6 % (22/28) of samples tested positive for one or more viruses by molecular methods, but enterovirus-specific infectivity assays did not reveal infectious particles in these samples. All drinking water samples tested negative for all viruses, demonstrating the effectiveness of treatment in removing viral pathogens from drinking water. Integrated strategies to manage water from all sources are crucial to ensure water quality.
Collapse
Affiliation(s)
- M Iaconelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - M Muscillo
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - S Della Libera
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - M Fratini
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L Meucci
- Centro Ricerche SMAT, Società Metropolitana Acque Torino, Turin, Italy
| | - M De Ceglia
- Centro Ricerche SMAT, Società Metropolitana Acque Torino, Turin, Italy
| | - D Giacosa
- Centro Ricerche SMAT, Società Metropolitana Acque Torino, Turin, Italy
| | - G La Rosa
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
50
|
Motayo BO, Adeniji AJ, Faneye AO. FIRST MOLECULAR DETECTION AND VP7 (G) GENOTYPING OF GROUP A ROTAVIRUS BY SEMI-NESTED RT-PCR FROM SEWAGE IN NIGERIA. Rev Inst Med Trop Sao Paulo 2016; 58:74. [PMID: 27828615 PMCID: PMC5096628 DOI: 10.1590/s1678-9946201658074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 05/10/2016] [Indexed: 11/23/2022] Open
Abstract
Rotavirus is the leading cause of viral gastroenteritis worldwide, and sewage is a
major source of the virus dissemination in the environment. Our aim was to detect and
genotype rotaviruses from sewages in Nigeria. One hundred and ninety sewage samples
were collected between June 2014 and January 2015. The two phase concentration method
using PEG 6000 and dextran was used to concentrate sewage samples following WHO
protocols. Molecular detection was performed by RT-PCR, and VP7 genotyping by
semi-nested multiplex PCR. A total of 14.2% (n = 27) samples tested positive. Monthly
distribution showed that June to September had a lower rate (3.7% to 7.4%), while
October to January recorded 11% to 26%. Genotype G1 predominated followed by G8, G9,
G4 and lastly G2, 7.4% (n = 2) of isolates were nontypeable. This is the first report
of rotavirus detection in sewages from Nigeria. Genotype G1 remains the most
prevalent genotype. This observation calls for an effort by the governmental
authorities to implement a molecular surveillance, both clinical and environmental,
in order to provide vital information for the control and the vaccine efficacy not
only in Nigeria, but globally.
Collapse
Affiliation(s)
| | - Adekunle Johnson Adeniji
- University of Ibadan, College of Medicine, Department of Virology. Nigeria. E-mail: ; ; .,University of Ibadan, National Poliovirus laboratory, Department of Virology. Nigeria. E-mail:
| | | |
Collapse
|