1
|
Chikhi B, Gouasmi M, Mounia A, Gasem L, Saadi A, Mekaoui N, Bachari K, Boudjemaa A. Propyl paraben removal using Cu 2O/ZnO-NPs photocatalyst elaborated via green method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2107-2122. [PMID: 39755860 DOI: 10.1007/s11356-024-35784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025]
Abstract
The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using Cu2O-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The Cu2O-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques. The XRD results showed that Cu2O-ZnO-NPs have a nanometer size of 24.13 nm. The DR-UV analysis showed that Cu2O-ZnO-NPs has an Eg of 2.35 eV which corresponds to the absorption of visible light. The SEM-EDX analysis showed that the ZnO has a hexagonal structure while the CuO has a monoclinic structure. The effect of variables such as propyl paraben concentration (PrP), hydrogen peroxide concentration (H2O2), catalyst dose, and the reaction temperature on the pseudo-first order reaction rate constant (kapp) of the reaction was evaluated. It was found that the degradation of PrP was governed by hydroxyl radical °OH attack and the pathways consisted of a cascade of reactions. The optimum photocatalytic degradation was obtained with an initial catalyst dose of 50 mg, pH 7, and PrP concentration of 10 mg/L. When the photocatalyst was irradiated, a significant PrP degradation was observed after 30 min of irradiation. The results suggest that Cu2O-ZnO-NPs act as a good photocatalyst for PrP degradation under visible light.
Collapse
Affiliation(s)
- Bilal Chikhi
- Laboratory of Natural Gas Chemistry, Faculty of Chemistry, USTHB University, Bab-Ezzouar 16111, Algiers, PoBox-32 El-alia, Algeria
- CPRAC Research Center, Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, Bou-Ismail CP, Tipaza, 42004, Algeria
| | - Meriem Gouasmi
- CPRAC Research Center, Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, Bou-Ismail CP, Tipaza, 42004, Algeria
- Department of Chemistry, Faculty of Science, Université de 20 août 1955, Skikda, Algeria
| | - Alaimia Mounia
- SAIDAL Pharmaceutical Group, Centre de Recherche et de Développement du Groupe INDUSTRIEL SAIDAL, Route de Baraki Gué de Constantine, Algiers, Algeria
| | - Lazhar Gasem
- CPRAC Research Center, Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, Bou-Ismail CP, Tipaza, 42004, Algeria
| | - Adel Saadi
- Laboratory of Natural Gas Chemistry, Faculty of Chemistry, USTHB University, Bab-Ezzouar 16111, Algiers, PoBox-32 El-alia, Algeria
- National School of Nanoscience and Nanotechnology, Scientific and Technological pole "Abdelhafid Ihaddadene" Sidi-Abdellah, Zeralda, Algiers, Algeria
| | - Nassima Mekaoui
- SAIDAL Pharmaceutical Group, Centre de Recherche et de Développement du Groupe INDUSTRIEL SAIDAL, Route de Baraki Gué de Constantine, Algiers, Algeria
| | - Khaldoun Bachari
- CPRAC Research Center, Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, Bou-Ismail CP, Tipaza, 42004, Algeria
| | - Amel Boudjemaa
- CPRAC Research Center, Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, Bou-Ismail CP, Tipaza, 42004, Algeria.
| |
Collapse
|
2
|
Li B, Qu R, Wang T, Guo R, Tian J, Li S, Abukhadra MR, Mahmoud RK, Wang Z. Experimental insights and modeling innovations: Deciphering Fe(VI) oxidation in imidazole ionic liquids through QSAR and RFR. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134980. [PMID: 38905978 DOI: 10.1016/j.jhazmat.2024.134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
In this investigation, we conducted a detailed analysis of the oxidation of 16 imidazole ionic liquid variants by Fe(VI) under uniform experimental setups, thereby securing a dataset of second-order reaction rate constants (kobs). This methodology ensures superior data consistency and comparability over traditional methods that amalgamate disparate data from varied studies. Utilizing 16 chemical structural parameters obtained via Density Functional Theory (DFT) as descriptors, we developed a Quantitative Structure Activity Relationship (QSAR) model. Through rigorous correlation analysis, Principal Component Analysis (PCA), Multiple Linear Regression (MLR), and Applicability Domain (AD) evaluation, we identified a pronounced negative correlation between the molecular orbital gap energy (Egap) and kobs. MLR analysis further underscored Egap as a pivotal predictive variable, with its lower values indicating heightened oxidative reactivity towards Fe(VI) in the ionic liquids, leading the QSAR model to achieve a predictive accuracy of 0.95. Furthermore, we integrated an advanced machine learning approach - Random Forest Regression (RFR), which adeptly highlighted the critical factors influencing the oxidation efficiency of imidazole ionic liquids by Fe(VI) through elaborate decision trees, feature importance assessment, Recursive Feature Elimination (RFE), and cross-validation strategies. The RFR model demonstrated a remarkable predictive performance of 0.98. Both QSAR and RFR models pinpointed Egap as a key descriptor significantly affecting oxidation efficiency, with the RFR model presenting lower root mean square errors, establishing it as a more reliable predictive tool. The application of the RFR model in this study significantly improved the model's stability and the intuitive display of key influencing factors, introducing promising advanced analytical tools to the field of environmental chemistry.
Collapse
Affiliation(s)
- Beibei Li
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Ting Wang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Jie Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Shuyi Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | | | | | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China.
| |
Collapse
|
3
|
Liu B, Zhang S, Liu M, Cao S, Qu R, Wang Z. Insights into enhanced oxidation of benzophenone-type UV filters (BPs) by ferrate(VI)/ferrihydrite: Increased conversion of Fe(VI) to Fe(V)/Fe(IV). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168860. [PMID: 38040358 DOI: 10.1016/j.scitotenv.2023.168860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
In this work, the oxidation performance of a new ferrate(VI)/ferrihydrite (Fe(VI)/Fh) system was systematically explored to degrade efficiently six kinds of benzophenone-type UV filters (BPs). Fe(VI)/Fh system not only had a superior degradation capacity towards different BPs, but also exhibited higher reactivity over a pH range of 6.0-9.0. The second-order kinetic model successfully described the process of BP-4 degradation by heterogeneous Fh catalyzed Fe(VI) system (R2 = 0.93), and the presence of Fh could increase the BP-4 degradation rate by Fe(VI) by an order of magnitude (198 M-1·s-1 v.s. 14.2 M-1·s-1). Remarkably, there are higher utilization efficiency and potential of Fe(VI) in Fe(VI)/Fh system than in Fe(VI) alone system. Moreover, characterization and recycling experiments demonstrated that Fh achieved certain long-term running performance, and the residual Fe content of solution after clarifying process meet World Health Organization (WHO) guidelines for drinking water. The contributions of reactive species could be ranked as Fe(V)/Fe(IV) > Fe(VI) > •OH. Fe(IV)/Fe(V) were the dominant species for the enhanced removal in the Fe(VI)/Fh system, whose percentage contribution (72 %-36 %) were much higher than those in Fe(VI) alone system (5 %-17 %). However, the contribution of Fe(VI) in oxidizing BP-4 should not be underestimated (20 %-56 %). These findings reasonably exploit available Fh resources to reduce the relatively high cost of Fe(VI), which offers a proper strategies for efficient utilization of high-valent iron species and may be used as a highly-efficient and cost-effective BPs purification method.
Collapse
Affiliation(s)
- Boying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Siyu Cao
- School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
4
|
Moreira ALP, Souza JACR, de Souza JF, Mamede JPM, Farias D, Luchiari AC. Long-term effects of embryonic exposure to benzophenone-3 on neurotoxicity and behavior of adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168403. [PMID: 37939945 DOI: 10.1016/j.scitotenv.2023.168403] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Benzophenone-3 (BP-3) is the most widely used ultraviolet filter (UV filter) in industries to avoid UV radiation damage. BP-3 is added to most sunscreens to protect the skin, hair, and lips from sun rays. It results in continuous discharge into aquatic environments, leading to aquatic biota and human's continuous exposure. Consequences of BP-3 exposure on the physiology and behavior of aquatic animals, mainly zebrafish, have been investigated, including their neurotoxic effects. However, little is known about its consequences in long-term developmental endpoints. This study aimed to investigate the long-term effects of embryonic BP-3 exposure on biomarkers of neurotoxicity in zebrafish. For this, we exposed embryos to 5, 10, and 20 μg∙L-1 BP-3 concentration and let fish grow to adulthood (5mpf). We evaluated anxiety-like behavior, social preference, aggressiveness, and enzymatic activity of the antioxidant defenses system and neurotoxic biomarkers (Glutathione S-transferase -GST, catalase -CAT, and acetylcholinesterase -AChE) in adult zebrafish. Enzymatic activities were also investigated in larvae immediately after BP-3 exposure. Animals early exposed to BP-3 presented anxiety-like behaviors and decreased social preference, but aggressiveness was not altered. In general, exposure to BP-3 leads to altered enzymatic activity, which persists into adulthood. GST activity increased in embryos and adults, while CAT activity decreased in both life stages. AChE activity enhanced only at the larval stage (96 hpf). The long-term behavioral and biochemical effects of BP-3 highlight the need for abolishing or restricting the compound from personal care products, which are continually disposed into the environment and threaten the biota and human health.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil.
| | - Juliana Alves Costa Ribeiro Souza
- Laboratory for Risk Assessment of Novel Technologies - LabRisk, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Jéssica Ferreira de Souza
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| | - João Paulo Medeiros Mamede
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies - LabRisk, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Ana Carolina Luchiari
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| |
Collapse
|
5
|
Niu L, Lin J, Chen W, Zhang Q, Yu X, Feng M. Ferrate(VI)/Periodate System: Synergistic and Rapid Oxidation of Micropollutants via Periodate/Iodate-Modulated Fe(IV)/Fe(V) Intermediates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7051-7062. [PMID: 37074844 DOI: 10.1021/acs.est.2c08965] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The presence of organic micropollutants in water sources worldwide has created a need for the development of effective and selective oxidation methods in complex water matrices. This study is the first report of the combination of ferrate(VI) (Fe(VI)) and periodate (PI) for synergistic, rapid, and selective elimination of multiple micropollutants. This combined system was found to outperform other Fe(VI)/oxidant systems (e.g., H2O2, peroxydisulfate, and peroxymonosulfate) in rapid water decontamination. Scavenging, probing, and electron spin resonance experiments showed that high-valent Fe(IV)/Fe(V) intermediates, rather than hydroxyl radicals, superoxide radicals, singlet oxygen, and iodyl radicals, played a dominant role in the process. Further, the generation of Fe(IV)/Fe(V) was evidenced directly by the 57Fe Mössbauer spectroscopic test. Surprisingly, the reactivity of PI toward Fe(VI) is rather low (0.8223 M-1 s-1) at pH 8.0, implying that PI was not acting as an activator. Besides, as the only iodine sink of PI, iodate also played an enhanced role in micropollutant abatement by Fe(VI) oxidation. Further experiments proved that PI and/or iodate might function as the Fe(IV)/Fe(V) ligands, causing the utilization efficiency of Fe(IV)/Fe(V) intermediates for pollutant oxidation to outcompete their auto-decomposition. Finally, the oxidized products and plausible transformation pathways of three different micropollutants by single Fe(VI) and Fe(VI)/PI oxidation were characterized and elucidated. Overall, this study proposed a novel selective oxidation strategy (i.e., Fe(VI)/PI system) that could efficiently eliminate water micropollutants and clarified the unexpected interactions between PI/iodate and Fe(VI) for accelerated oxidation.
Collapse
Affiliation(s)
- Lijun Niu
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Jiang Lin
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Wenzheng Chen
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Qian Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| |
Collapse
|
6
|
Qi X, Liu N, Tang Z, Ou W, Jian C, Lei Y. Quantitative structure-activity relationship models for predicting apparent rate constants of organic compounds with ferrate (VI). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162043. [PMID: 36754322 DOI: 10.1016/j.scitotenv.2023.162043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Ferrate (VI) (Fe (VI)) is a promising, environmentally friendly multifunctional oxidant widely applied in organic compound degradation. Oxidative kinetics of the apparent second-order rate constants (kapp) of Fe (VI) with organic compounds are critical for modeling oxidation processes. Herein, a quantitative structure-activity relationship (QSAR) model was developed using particle swarm optimization and an extreme learning machine to better understand the laws of the kapp values of organic compounds, including 33 aliphatic and aromatic hydrocarbon derivatives, during degradation by Fe (VI). Seven components-electronic hardness (H), electronic softness (S), ratio of oxygen to carbon atoms (On/Cn), energy of the highest occupied molecular orbital (EHOMO), vertical ionization potential (VIP), maximum nucleophilic reaction index (f(+)x), and minimum relative electrophilicity index (REn) constitute the critical molecular parameters. The developed QSAR model was verified on the basis of the coefficient of determination (R2) and the root mean square error (RMSE): for the training set, R2 = 0.924 and RMSE = 1.186, whereas for the test set, R2 = 0.996, and RMSE = 0.352. The applicability, reliability, and predictability of the model were verified by estimating the applicability domain (AD) of the model. Furthermore, QSAR models constructed using different methods were compared, and the main impact descriptors and conclusions obtained from previous studies were theoretically analyzed. Results indicate that constructing the QSAR model facilitates kapp prediction for Fe (VI) in the degradation of various organic compounds, improves the understanding of the degradation mechanism, and reduces the pressure on human and material resources caused by experiments.
Collapse
Affiliation(s)
- Xiaochen Qi
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, Guangdong, China
| | - Na Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhongen Tang
- Anew Global Consulting Limited, Guangzhou 510075, Guangdong, China
| | - Wenjuan Ou
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Chuanqi Jian
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yutao Lei
- South China Institute of Environmental Sciences, Guangzhou 510655, Guangdong, China.
| |
Collapse
|
7
|
Teng X, Qi Y, Qin C, Tang X, Yan C, Wang Z, Qu R. Mixed oxidation of chlorophene and 4-tert-butylphenol by ferrate(VI): Reaction kinetics, cross-coupling products and improved utilization efficiency of ferrate(VI). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Wu N, Liu M, Tian B, Wang Z, Sharma VK, Qu R. A Comparative Study on the Oxidation Mechanisms of Substituted Phenolic Pollutants by Ferrate(VI) through Experiments and Density Functional Theory Calculations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022. [PMID: 36241607 DOI: 10.1021/acs.est.2c06491] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, the oxidation of five phenolic contaminants by ferrate(VI) was comparatively investigated to explore the possible reaction mechanisms by combined experimental results and theoretical calculations. The second-order rate constants were positively correlated with the energy of the highest occupied molecular orbital. Considering electronic effects of different substituents, the easy oxidation of phenols by ferrate(VI) could be ranked as the electron-donating group (-R) > weak electron-withdrawing group (-X) > strong electron-withdrawing group (-(C═O)-). The contributions of reactive species (Fe(VI), Fe(V)/(IV), and •OH) were determined, and Fe(VI) was found to dominate the reaction process. Four main reaction mechanisms including single-oxygen transfer (SOT), double-oxygen transfer (DOT), •OH attack, and electron-transfer-mediated coupling reaction were proposed for the ferrate(VI) oxidation process. According to density functional theory calculation results, the presence of -(C═O)- was more conducive for the occurrence of DOT and •OH attack reactions than -R and -X, while the tendency of SOT for different substituents was -R > -(C═O)- > -X and that of e--transfer reaction was -R > -X > -(C═O)-. Moreover, the DOT pathway was found in the oxidation of all four substituted phenols, indicating that it may be a common reaction mechanism during the ferrate(VI) oxidation of phenolic compounds.
Collapse
Affiliation(s)
- Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, P. R. China
| | - Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, P. R. China
| | - Bingru Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, P. R. China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, P. R. China
| | - Virender K Sharma
- Program of Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas77843, United States
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, P. R. China
| |
Collapse
|
9
|
Mai J, Yang T, Ma J. Novel solar-driven ferrate(VI) activation system for micropollutant degradation: Elucidating the role of Fe(IV) and Fe(V). JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129428. [PMID: 35897188 DOI: 10.1016/j.jhazmat.2022.129428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
This paper presents a novel process of solar-ferrate(VI) [Fe(VI)] for micropollutant degradation. The solar-Fe(VI) process promoted micropollutant degradation compared with Fe(VI) alone and solar. The radical scavenging and probing experiment results suggested that Fe(V) and Fe(IV) but not reactive oxygen species were most likely involved in the solar-Fe(VI) process. Through building a kinetic model, Fe(IV) and Fe(V) were observed to play an equally significant role in the solar-Fe(VI) process. Afterward, the reaction mechanism of the photochemistry of Fe(VI) was elaborated. Fe(IV) formed from Fe(VI) photolysis and then decomposed to Fe(II) which reacted with Fe(VI) to form Fe(V). Furthermore, the effect of pH on carbamazepine (CBZ) degradation was studied and the quantum yields of Fe(VI) were determined, with (1.98 ± 0.16)× 10-3 mol∙einstein-1, (5.90 ± 0.27)× 10-4 mol∙einstein-1, and (1.66 ± 0.14)× 10-4 mol∙einstein-1 at pH 7.0, 8.0, and 9.0, respectively. Inorganic ions, including Cl-, HCO3-, and Br- displayed negligible influence on the CBZ degradation, whereas humic acid inhibited the CBZ degradation. Finally, the solar-Fe(VI) process exhibited good applicability in authentic waters and under different irradiation (natural sunlight, ultraviolet light, and visible light from solar cut-off emission). Overall, this study provides a new routine for efficient micropollutant elimination and reveals the photochemistry of Fe(VI).
Collapse
Affiliation(s)
- Jiamin Mai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
10
|
Ren S, Dong F, Liu J, Bekele TG, Wang Y, Zhao H, Chen J, Tan F, Wang X. Development of diffusive gradients in thin film technique for seasonal monitoring of benzophenone-type UV filters in coastal waters. WATER RESEARCH 2022; 222:118944. [PMID: 35963135 DOI: 10.1016/j.watres.2022.118944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Benzophenone(BP)-type UV filters are continuously released into various aquatic environments via the effluent discharge of wastewater treatment plants (WWTPs) and recreational activities in coastal beaches. In this study, we developed a robust and reliable sampling approach, diffusive gradients in thin-films (DGT), for seasonal monitoring of six BP derivatives in coastal waters to investigate their occurrence and environmental risk. The binding capacities of both XAD-2 and HLB gels for test BPs were over 252 μg with no significant deterioration in marine environment, suggesting that theoretically, DGT is capable of sampling for at least 3 months effectively. The diffusion coefficients of BPs in freshwater and seawater were determined for the first time. The sampling performance showed no dependence on environmental conditions including pH (4.0-8.5), ionic strength (0.0001-0.5 M) and dissolved organic matter (0-20 mg L-1). The developed DGT samplers were successfully applied in a river estuary linked to a WWTP and a bathing beach at different periods of one year. Results showed that the concentrations of BPs in the coastal waters were dependent on seasonal variation. The highest level in summer and the ecological risk should be considered based on the risk quotient values. These results demonstrated that the present DGT method is suitable for measuring, characterization, and risk assessment of BPs in freshwater and marine environment.
Collapse
Affiliation(s)
- Suyu Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fan Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jinghua Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xiaochun Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
11
|
Yu J, Jiao R, Sun H, Xu H, He Y, Wang D. Removal of microorganic pollutants in aquatic environment: The utilization of Fe(VI). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115328. [PMID: 35658263 DOI: 10.1016/j.jenvman.2022.115328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Microorganic pollutants (MOPs) in aquatic environment with low levels but high toxicity are harmful to ecosystem and human health. Fe(VI) has a dual-functional role in oxidation and coagulation, and can effectively remove MOPs, heavy metal, phosphate, particulates and colloids. Moreover, Fe(VI) can combine with traditional coagulants, or use as a pretreatment for membrane treatment because of its characters to generate nanoparticles by degradation in water. Based on the relevant toxicity experiments, Fe(VI) had been proved to be safe for the efficient treatment of MOPs. For better utilization of Fe(VI), its oxidation and coagulation mechanisms are summarized, and the knowledge about the control parameters, utilization methods, and toxicity effect for Fe(VI) application are reviewed in this paper. pH, different valences of iron, environmental substances, and other parameters are summarized in this study to clarify the important factors in the treatment of MOPs with Fe(VI). In the future study, aiming at cost reduction in Fe(VI) preparation, transportation and storage, enhancement of oxidation in the intermediate state, and better understanding the mechanism between interface and Fe(VI) oxidation will help promote the application of Fe(VI) in the removal of MOPs. This study offers guidelines for the application and development of Fe(VI) for the treatment of MOPs in aquatic environment.
Collapse
Affiliation(s)
- Junjie Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruyuan Jiao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu City, Zhejiang Province, 322000, China.
| | - Hongyan Sun
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Hui Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yi He
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Fei Y, Liu Z, Meng L, Liu G, Kong D, Pan X, Zhu F, Lu J, Chen J. Experimental and theoretical study on Fe(VI) oxidative degradation of dichlorophen in water: Kinetics and reaction mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119394. [PMID: 35525513 DOI: 10.1016/j.envpol.2022.119394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Dichlorophenol (DCP), a commonly used fungicide and insecticide, is widely found in waters and wastewaters. Herein, the degradation of DCP by Ferrate (Fe(VI)) in different matrices was comprehensively investigated. In pure water, a complete removal of DCP was achieved in 300 s at [Fe(VI)]:[DCP] molar ratio of 2:1. The presence of HA (10 mg L-1) inhibited DCP degradation to a certain extent. A total of twenty degradation products were identified by HPLC/MS analysis. Based on these products, reaction pathways including the cleavage of C-C bridge bond, hydroxylation, and radical coupling were proposed. These reaction mechanisms were further rationalized by theoretical calculations. The analyses of Wiberg bond orders and transition state indicated that C7-C8 bond was the most vulnerable site for cleavage, and C12 site was the most likely site for hydroxyl addition. Mulliken atomic spin densities distribution suggested that self-coupling products was easily generated via C-O-C coupling ways. Finally, the feasibility of applying Fe(VI) to degrade DCP (20 μM) in a municipal wastewater effluent and a lake water was evaluated and verified. The findings in this study are of relevance in designing Fe(VI)-based treatment strategy for chlorine-containing persistent pesticides.
Collapse
Affiliation(s)
- Yi Fei
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuangzhuang Liu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Meng
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guoqiang Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, 210042, China
| | - Deyang Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, 210042, China
| | - Xiaoxue Pan
- School of Resources and Environmental Engineering, Anhui University, Anhui, 230601, China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210023, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Chen
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Shi Z, Wang D, Gao Z, Ji X, Zhang J, Jin C. Enhanced ferrate oxidation of organic pollutants in the presence of Cu(II) Ion. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128772. [PMID: 35358813 DOI: 10.1016/j.jhazmat.2022.128772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
In this study, we found that the introduction of Cu(II) (several μM, close to the concentration level of some real water/wastewater) in ferrate (Fe(VI)) oxidation can remarkably accelerate the abatement of various organic pollutants under slightly alkaline conditions. The results show that 5 μM sulfamethoxazole (SMX) can be completely degraded by Fe(VI) (50 μM) in the presence of 20 μM Cu(II) within 10 min at pH 8.0, which was 1.65 times higher than that by Fe(VI) alone. High-valent iron intermediates (i.e. Fe(V), Fe(IV)) and Cu(III) were generated as reactive species in the Cu(II)/Fe(VI) system, all of which contributed to the enhanced oxidation of SMX. Common water components, except for HCO3- and humic acid, exhibited no influence on SMX removal. Additionally, the enhanced removal of SMX by Cu(II)/Fe(VI) was also observed in real water with the benefit of total removal of Cu(II) by the ferrate resultant particles. Due to the presence of highly reactive and selective oxidant, the Cu(II)/Fe(VI) system could react readily with organic pollutants containing electron-rich moieties, such as phenol, olefin or amino groups. This study provided a simple, selective, and practical strategy for the abatement of organic pollutants and a simultaneous removal of Cu(II).
Collapse
Affiliation(s)
- Zhenyu Shi
- Environment Monitoring Center of Jiangsu Province, Nanjing 210036, PR China
| | - Dingxiang Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhanqi Gao
- Environment Monitoring Center of Jiangsu Province, Nanjing 210036, PR China
| | - Xin Ji
- Environment Monitoring Center of Jiangsu Province, Nanjing 210036, PR China
| | - Jing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Can Jin
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material of Jiangsu Province, Nanjing 210042, PR China.
| |
Collapse
|
14
|
Carstensen L, Beil S, Börnick H, Stolte S. Structure-related endocrine-disrupting potential of environmental transformation products of benzophenone-type UV filters: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128495. [PMID: 35739676 DOI: 10.1016/j.jhazmat.2022.128495] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
Benzophenone-type UV filters (BPs) represent a very diverse group of chemicals that are used across a range of industrial sectors around the world. They are found within different environmental compartments (e.g. surface water, groundwater, wastewater, sediments and biota) at concentrations ranging from ng/L to mg/L. Some are known as endocrine disruptors and are currently within the scope of international regulations. A structural alert for high potential of endocrine disrupting activity was assigned to 11 BP derivatives. Due to the widespread use, distribution and disruptive effects of some BPs, knowledge of their elimination pathways is required. This review demonstrates that biodegradation and photolytic decomposition are the major elimination processes for BP-type UV filters in the environment. Under aerobic conditions, transformation pathways have only been reported for BP, BP-3 and BP-4, which are also the most common derivatives. Primary biodegradation mainly results in the formation of hydroxylated BPs, which exhibit a structure-related increase in endocrine activity when compared to their parent substances. By combining 76 literature-based transformation products (TPs) with in silico results relating to their receptor activity, it is demonstrated that 32 TPs may retain activity and that further knowledge of the degradation of BPs in the environment is needed.
Collapse
Affiliation(s)
- Lale Carstensen
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Hilmar Börnick
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| |
Collapse
|
15
|
Liu M, Wu N, Tian B, Zhou D, Yan C, Huo Z, Qu R. Experimental and theoretical study on the degradation of Benzophenone-1 by Ferrate(VI): New insights into the oxidation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127877. [PMID: 34883381 DOI: 10.1016/j.jhazmat.2021.127877] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The oxidation of Benzophenone-1 (BP-1) by ferrate (Fe(VI)) was systemically investigated in this study. Neutral pH and high oxidant dose were favorable for the reaction, and the second order rate constant was 1.03 × 103 M-1·s-1 at pH = 7.0 and [Fe(VI)]0:[BP-1]0 = 10:1. The removal efficiency of BP-1 was enhanced by cations (K+, Ca2+, Mg2+, Cu2+, and Fe3+), while inhibited by high concentrations of anions (Cl- and HCO3-) and low concentrations of humic acid. Moreover, intermediates were identified by LC-MS, and five dominating reaction pathways were predicted, involving single hydroxylation, dioxygen transfer, bond breaking, polymerization and carboxylation. Theoretical calculations showed the dioxygen transfer could occur by Fe(VI) attacking the CC double-bond in benzene ring of BP-1 to form a five-membered ring intermediate, which was hydrolyzed twice followed by H-abstraction to generate the dihydroxy-added product directly from the parent compound. Dissolved CO2 or HCO3- might be fixed to produce carboxylated products, and Cl- led to the formation of two chlorinated products. In addition, the toxicity assessments showed the reaction reduced the environmental risk of BP-1. This work illustrates Fe(VI) could remove BP-1 in water environments efficiently, and the newly proposed dioxygen transfer mechanism herein may contribute to the development of Fe(VI) chemistry.
Collapse
Affiliation(s)
- Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Bingru Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Chao Yan
- School of the Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210023, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
16
|
Wang K, Shu J, Sharma VK, Liu C, Xu X, Nesnas N, Wang H. Unveiling the mechanism of imidacloprid removal by ferrate(VI): Kinetics, role of oxidation and adsorption, reaction pathway and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150383. [PMID: 34818785 DOI: 10.1016/j.scitotenv.2021.150383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Imidacloprid (IMI), an emerging pollutant, has high toxicity to non-target organisms. This paper presents the kinetics of IMI removal by ferrate(VI) at different pH (6.0-9.0), molar ratios ([ferrate(VI)]:[IMI]) and added Fe(III) ions. The apparent second-order rate constant (kapp) decreased with increase in pH from pH 6.0 to 9.0 (i.e., (1.2 ± 0.1) × 102 M-1 s-1 to (8.3 ± 0.3) M-1 s-1). The species-specific rate constants were obtained as k (HFeO4-) = 1.3 × 102 M-1 s-1 and k (FeO42-) = 6.9 M-1 s-1. The decreases in the concentration of HFeO4- with increase in pH caused the observed pH dependence in kapp. At pH 7.0, the removal of IMI increased with the molar ratio from 1.0 to 10.0 with complete removal at the highest ratio. The variation in pH from 6.0 to 9.0 had no obvious effect on removal of IMI. Experiments indicate that IMI removal is mainly by ferrate(VI) oxidation and to a lesser extent by Fe(III) adsorption. Mineralization of IMI was also observed (20-26%). The addition of Fe(III) ions to ferrate(VI)-IMI at pH 7.0 and 8.0 resulted in enhanced removal of IMI, but the presence of Ca2+, SO42-, HCO3-, and humic acid (HA) has negative effects. The presence of coexisting substances in river water slightly decreased IMI removal by ferrate(VI) by less than 10%. Identification of products and frontier electron density (FED) calculations demonstrated involvement of opening of the five-membered heterocyclic moiety of IMI by ferrate(VI). Toxicity assessment with NIH 3T3 fibroblasts and ECOSAR analysis indicated lower toxicity of oxidized products than parent IMI.
Collapse
Affiliation(s)
- Kanming Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ji Shu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX 77843, USA
| | - Cong Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiping Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nasri Nesnas
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
17
|
Yang T, Mai J, Cheng H, Zhu M, Wu S, Tang L, Liang P, Jia J, Ma J. UVA-LED-Assisted Activation of the Ferrate(VI) Process for Enhanced Micropollutant Degradation: Important Role of Ferrate(IV) and Ferrate(V). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1221-1232. [PMID: 34961311 DOI: 10.1021/acs.est.1c03725] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper investigated ultraviolet A light-emitting diode (UVA-LED) irradiation to activate Fe(VI) for the degradation of micropollutants (e.g., sulfamethoxazole (SMX), enrofloxacin, and trimethoprim). UVA-LED/Fe(VI) could significantly promote the degradation of micropollutants, with rates that were 2.6-7.2-fold faster than for Fe(VI) alone. Comparatively, UVA-LED alone hardly degraded selected micropollutants. The degradation performance was further evaluated in SMX degradation via different wavelengths (365-405 nm), light intensity, and pH. Increased wavelengths led to linearly decreased SMX degradation rates because Fe(VI) has a lower molar absorption coefficient at higher wavelengths. Higher light intensity caused faster SMX degradation, owing to the enhanced level of reactive species by stronger photolysis of Fe(VI). Significantly, SMX degradation was gradually suppressed from pH 7.0 to 9.0 due to the changing speciation of Fe(VI). Scavenging and probing experiments for identifying oxidative species indicated that high-valent iron species (Fe(V)/Fe(IV)) were responsible for the enhanced degradation. A kinetic model involving target compound (TC) degradation by Fe(VI), Fe(V), and Fe(IV) was employed to fit the TC degradation kinetics by UVA-LED/Fe(VI). The fitted results revealed that Fe(IV) and Fe(V) primarily contributed to TC degradation in this system. In addition, transformation products of SMX degradation by Fe(VI) and UVA-LED/Fe(VI) were identified and the possible pathways included hydroxylation, self-coupling, bond cleavage, and oxidation reactions. Removal of SMX in real water also showed remarkable promotion by UVA-LED/Fe(VI). Overall, these findings could shed light on the understanding and application of UVA-LED/Fe(VI) for eliminating micropollutants in water treatments.
Collapse
Affiliation(s)
- Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jiamin Mai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Mengyang Zhu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Sisi Wu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Liuyan Tang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Ping Liang
- School of Applied and Physics Materials, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jianbo Jia
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
18
|
Dong F, Li J, Lin Q, Wang D, Li C, Shen Y, Zeng T, Song S. Oxidation of chloroquine drug by ferrate: Kinetics, reaction mechanism and antibacterial activity. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 428:131408. [PMID: 36570598 PMCID: PMC9760377 DOI: 10.1016/j.cej.2021.131408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 05/13/2023]
Abstract
Chloroquine (CLQ) is required to manufacture on a larger scale to combat COVID-19. The wastewater containing CLQ will be discharged into the natural water, which was resistant to environmental degradation. Herein, the degradation of CLQ by ferrate (Fe(VI)) was investigated, and the biodegradability of the oxidation products was examined to evaluate the potential application in natural water treatment. The reaction between CLQ and Fe(VI) was pH-dependent and followed second-order kinetics. The species-specific rate constant of protonated Fe(VI) species (HFeO4 -) was higher than that of the FeO4 2- species. Moreover, increasing the reaction temperature could increase the degradation rate of CLQ. Besides, HCO3 - had positive effect on CLQ removal, while HA had negative effect on CLQ removal. But the experiments shows Fe(VI) could be used as an efficient technique to degrade co-existing CLQ in natural waters. During the oxidation, Fe(VI) attack could lead to aromatic ring dealkylation and chloride ion substitution to form seven intermediate products by liquid chromatography-time-of-flight-mass spectrometry (LC-TOF-MS) determination. Finally, a pure culture test showed that the oxidation of CLQ by Fe(VI) could slightly increase the antimicrobial effect towards Escherichia coli (E.coli) and reduce the toxicity risk of intermediates. These findings might provide helpful information for the environmental elimination of CLQ.
Collapse
Affiliation(s)
- Feilong Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jinzhe Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Da Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200433, China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Tao Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
19
|
Dar AA, Pan B, Qin J, Zhu Q, Lichtfouse E, Usman M, Wang C. Sustainable ferrate oxidation: Reaction chemistry, mechanisms and removal of pollutants in wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117957. [PMID: 34425373 DOI: 10.1016/j.envpol.2021.117957] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
This review is intended to evaluate the use of ferrate (Fe(VI)), being a green coagulant, sustainable and reactive oxidant, to remove micro pollutants especially pharmaceutical pollutants in contaminated water. After a brief description of advanced oxidation processes, fundamental dimensions regarding the nature, reactivity, and chemistry of this oxidant are summarized. The degradation of contaminants by Fe(VI) involves several mechanisms and reactive agents which are critically evaluated. The efficiency and chemistry of Fe(VI) oxidation differs according to the reaction conditions and activation agent, such as soluble Fe(VI) processes, which involve Fe(VI), UV light, and electro-Fe(VI) oxidation. Fe(VI) application methods (including single dose, multiple doses, chitosan coating etc), and Fe(VI) with activating agents (including sulfite, thiosulfate, and UV) are also described to degrade the micro pollutants. Besides, application of Fe(VI) to remove pharmaceuticals in wastewater are intensely studied. Electrochemical prepared Fe(VI) has more wide application than wet oxidation method. Meanwhile, we elaborated Fe(VI) performance, limitations, and proposed innovative aspects to improve its stability, such as the generation of Fe(III), synergetic effects, nanopores entrapment, and nanopores capsules. This study provides conclusive direction for synergetic oxidative technique to degrade the micro pollutants.
Collapse
Affiliation(s)
- Afzal Ahmed Dar
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Bao Pan
- School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Jiani Qin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Qiuhui Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Eric Lichtfouse
- Aix-Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, 13100, France
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, PR China.
| |
Collapse
|
20
|
Ma J, Feng Y, Yang X, Wu Y, Wang S, Zhang C, Shi Q. Sulphate radical oxidation of benzophenone: kinetics, mechanisms and influence of water matrix anions. ENVIRONMENTAL TECHNOLOGY 2021; 42:4324-4332. [PMID: 32292125 DOI: 10.1080/09593330.2020.1756422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Benzophenone (BP) is an emerging contaminant that is widely distributed in soil, groundwater, sediment and surface water. In this study, the degradation kinetics, mechanisms, and influence of anions on thermally activated persulphate (TAP) oxidation of BP were systematically investigated. BP degradation was promoted by elevated temperature. The BP degradation data fitted well to the Arrhenius equation with calculated activation energy of 122.8 kJ/mol. BP degradation was also promoted by alkaline pH and high persulphate concentrations. Radical scavenging experiments suggested that both SO4•- and HO• were involved in BP oxidation. Ultra-high-performance liquid chromatography coupled to Orbitrap mass spectrometry (UHPLC-Orbitrap-MS) identified six degradation intermediates. Based on these results, two possible reaction pathways were proposed. Water matrix anions had complex impacts on BP degradation by TAP. Cl- had dual effects on the reaction: low concentration promoted it while high concentration inhibited it. Br- strongly suppressed the reaction. SO42- and NO3- did not affect the reaction. Overall, this study shows that thermally activated persulphate can effectively remove BP and water matrix anions greatly influence the reaction.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Yuan Feng
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Yongxin Wu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Shuo Wang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Congchao Zhang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| |
Collapse
|
21
|
Wang S, Deng Y, Shao B, Zhu J, Hu Z, Guan X. Three Kinetic Patterns for the Oxidation of Emerging Organic Contaminants by Fe(VI): The Critical Roles of Fe(V) and Fe(IV). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11338-11347. [PMID: 34351131 DOI: 10.1021/acs.est.1c03813] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For the first time, this study showed that the apparent second-order rate constants (kapp) of six selected emerging organic contaminants (EOCs) oxidation by Fe(VI) increased, remained constant, or declined with time, depending on [EOC]0/[Fe(VI)]0, pH, and EOCs species. Employing excess caffeine as the quenching reagent for Fe(V) and Fe(IV), it was found that Fe(V)/Fe(IV) contributed to 20-30% of phenol and bisphenol F degradation by Fe(VI), and the contributions of Fe(V)/Fe(IV) remained nearly constant with time under all the tested conditions. However, the contributions of Fe(V)/Fe(IV) accounted for over 50% during the oxidation of sulfamethoxazole, bisphenol S, and iohexol by Fe(VI), and the variation trends of kapp of their degradation by Fe(VI) with time displayed three different patterns, which coincided with those of the contributions of Fe(V)/Fe(IV) to their decomposition with time. Results of the quenching experiments were validated by simulating the oxidation kinetic data of methyl phenyl sulfoxide by Fe(VI), which revealed that the variation trends of kapp with time were significantly determined by the change in the molar ratio of Fe(V) to Fe(VI) with time, highlighting the key role of Fe(V) in the oxidative process. This study provides comprehensive and insightful information on the roles of Fe(V)/Fe(IV) during EOC oxidation by Fe(VI).
Collapse
Affiliation(s)
- Shuchang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, United States
| | - Binbin Shao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
| | - Jiahui Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
| | - Zixin Hu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
22
|
Cao W, Wu N, Qu R, Sun C, Huo Z, Ajarem JS, Allam AA, Wang Z, Zhu F. Oxidation of benzophenone-3 in aqueous solution by potassium permanganate: kinetics, degradation products, reaction pathways, and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31301-31311. [PMID: 33599933 DOI: 10.1007/s11356-021-12913-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Benzophenone-3 (BP-3) is used in a wide range of personal care products and plastics to resist ultraviolet light, which has aroused considerable public concern due to its endocrine-disrupting effects. In this work, we systematically investigated the chemical oxidation process of BP-3 by KMnO4. The influences of several factors, such as pH, oxidant dose, temperature, coexisting water constituents, and water matrices, on BP-3 degradation efficiency were evaluated. The removal rate of 10 μM BP-3 could reach 91.3% in 2 h under the conditions of pH = 8.0, [BP-3]0:[KMnO4]0 = 1:20, and T = 25 °C, with the observed rate constant (kobs) value of 0.0202 min-1. The presence of typical anions (Cl-, NO3-, SO42-) and HA could slightly increase BP-3 removal, while HCO3- caused a relatively significant promotion of BP-3 degradation. On the basis of mass spectrometry and theoretical calculations, hydroxylation, direct oxidation, and carbon-carbon bridge bond cleavage were mainly involved in the oxidation process. Toxicity assessment revealed that the acute and chronic toxicities were reduced significantly, which suggested KMnO4 is a promising technique for BP-3 removal.
Collapse
Affiliation(s)
- Wanming Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Zongli Huo
- Jiangsu Province Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni Suef University, Beni Suef, 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Feng Zhu
- Jiangsu Province Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
23
|
Enhanced Photo–Fenton Removal Efficiency with Core-Shell Magnetic Resin Catalyst for Textile Dyeing Wastewater Treatment. WATER 2021. [DOI: 10.3390/w13070968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heterogeneous photo–Fenton reactions have been regarded as important technologies for the treatment of textile dyeing wastewaters. In this work, an efficient core-shell magnetic anion exchange resin (MAER) was prepared through in situ polymerization and used to remove reactive brilliant red (X-3B) in a UV–Fenton system. The MAER exhibited satisfactory removal efficiency for X-3B because of its highly effective catalytic activity. More than 99% of the X-3B (50 mg/L) was removed within 20 min in the UV–Fenton reaction. This is because the uniformly dispersed core-shell magnetic microsphere resin could suppress the aggregation of Fe3O4 nanoparticles and, thus, enhance the exposure of Fe reaction sites for catalytic reaction with H2O2. The good adsorption capacity of MAER also played an important role in promoting contact between X-3B and reactive radicals during the reaction. Mechanism research showed that hydroxyl radical (•OH) was the main reactive radicals for the removal of X-3B in the MAER UV–Fenton system. The MAER can be easily separated by a magnet after catalytic reactions. Moreover, the matrix effects of different substrates (Cl−, NO3−, SO42−, and humic acid) were investigated. The results showed that SO42− could be beneficial to improve the removal of X-3B but that the others decrease the removal. The MAER UV–Fenton also removed significant amounts of total organic carbon (TOC) for the X-3B solution and an actual textile dyeing industrial wastewater. The heterogeneous oxidation system established in this work may suggest prospects for practical applications in the treatment of textile dyeing wastewater.
Collapse
|
24
|
Zheng Q, Wu N, Qu R, Albasher G, Cao W, Li B, Alsultan N, Wang Z. Kinetics and reaction pathways for the transformation of 4-tert-butylphenol by ferrate(VI). JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123405. [PMID: 32659589 DOI: 10.1016/j.jhazmat.2020.123405] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
4-tert-butylphenol (4-tBP) is a phenolic endocrine disrupting chemical that has attracted great attention due to its wide occurrence, environmental persistence, and possible toxic effects. In this study, we systematically investigated the transformation of 4-tBP in ferrate (VI) oxidation process. The second-order reaction rate constant (kapp) of Fe(VI) with 4-tBP decreases with solution pH, and the kapp value was determined as 295 M-1·s-1 at pH 8.0. The removal efficiency of 4-tBP was slightly decreased by Mg2+ and HCO3-, while accelerated at varying degrees by the presence of Cu2+ and humic acid. Product analysis revealed that 4-tBP was mainly transformed into hydroxylation products, benzene-ring cleavage products, dimers and higher polymerization products via oxygen atom transfer, ring-opening of the benzene ring and radical coupling reaction. Furthermore, initial reactions of 4-tBP were rationalized by theoretical analysis of atom partial charges, frontier electron densities, and spin densities. Nearly complete removal of 4-tBP (20 μM) was achieved after 5 min of reaction in both ultrapure water and natural waters, demonstrating the feasibility of this Fe(VI) oxidation method in treating phenols-contaminated waters.
Collapse
Affiliation(s)
- Qing Zheng
- School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224003, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu Nanjing 210023, PR China.
| | - Gadah Albasher
- King Saud University, College of Science, Zoology Department, P.O. Box 2455, 10, Riyadh 11451, Saudi Arabia
| | - Wanming Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Beibei Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Nouf Alsultan
- King Saud University, College of Science, Zoology Department, P.O. Box 2455, 10, Riyadh 11451, Saudi Arabia
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| |
Collapse
|
25
|
Kaushal J, Khatri M, Arya SK. A treatise on Organophosphate pesticide pollution: Current strategies and advancements in their environmental degradation and elimination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111483. [PMID: 33120277 DOI: 10.1016/j.ecoenv.2020.111483] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 05/27/2023]
Abstract
Pesticides have been used in the field of agriculture ever since their role in protection of crops from pests which include four different categories namely insects, mites, rodents and animals has been identified. Organophosphate pesticides are one of the most extensively applied insecticides in the field of agriculture such that around 40% of all the pesticides that are produced and used commercially belong to this category. The main toxicological effect of these pesticides when exposed to a living being encompasses the irremediable inhibition of the acetylcholinesterase (AChE) enzyme which is involved in the neurotransmission of signals and hence its inhibition causes impairment of the respiratory tract and neuromuscular transmission. Apart from being used as a pesticide, organophosphates have also been applied as herbicides to some extent. The residues of these highly toxic chemicals have found route into the underground water system by seeping into the ground, in rivers where the agricultural run off water is disposed, and in the air when sprayed on the crops hence posing a threat to all the living strata exposed to these chemicals in various ways which are discussed further. Many significant studies have been carried out in order to evaluate the health risks associated with these pesticides which commonly include acute neurological disorders. This review emphasizes on the toxicological effects of organophosphate pesticides and the recent methods of detection that are used to identify trace amounts of organophosphate pesticides along with strategies which are used for their degradation.
Collapse
Affiliation(s)
- Jyoti Kaushal
- Department of Biotechnology, University Institute of Engineering Technology, Panjab University, Chandigarh, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering Technology, Panjab University, Chandigarh, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
26
|
Lu J, Cui Z, Deng X, Liang Z, Chai S, Fan J, Zhang Z, Zhao Z. Rapid degradation of dimethoate and simultaneous removal of total phosphorus by acid-activated Fe(VI) under simulated sunlight. CHEMOSPHERE 2020; 258:127265. [PMID: 32540534 DOI: 10.1016/j.chemosphere.2020.127265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Ferrate (Fe(VI)) is usually effective for oxidizing a variety of organic pollutants within a few seconds, but some recalcitrant asorganophosphorus pesticides such as dimethoate require higher dose of Fe(VI) and inorganic phosphorus produced by mineralization is difficult to remove. In this study, acid-activated ferrate (Fe(VI)) was firstly used to degrade organophosphorus pesticides dimethoate and simultaneously remove total phosphorus (TP) from solution under simulated sunlight. At a Fe(VI):dimethoate molar radio of 15:1, dimethoate was almost completely removed within 20 min and 47% of TP in the solution was removed by the reduction product of Fe(VI) within 240 min. Electron paramagnetic resonance (EPR) and terephthalic acid (TA) fluorescence experiments showed that •OH radicals were continuously generated in the system, and •OH formation pathway was proposed. Importantly, the involvement of •OH in acid-activated Fe(VI) process was confirmed for the first time by EPR. In the acid-activated Fe(VI)/simulated sunlight system, the removal of dimethoate and TP gradually increased with the decrement of activation pH, whereas the increase of molar ratio of Fe(VI):dimethoate enhanced the removal of dimethoate and TP. The addition of inorganic anions (HCO3- and NO2-) had obvious inhibitory effects on dimethoate and TP removal. Eight degradation products including O,O,S-trimethylphosphorothiate, omethoate and 2-S-methyl-(N-methyl) acetamide were determined by gas chromatography mass spectrometry (GC-MS) analysis, and two possible degradation pathways were proposed. The insights gained from this study open a new avenue to simultaneously degrade and remove organic contaminants.
Collapse
Affiliation(s)
- Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zhanguo Cui
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaoyong Deng
- School of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zhijie Liang
- School of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Shouning Chai
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Junyu Fan
- Department of Military Facilities, Army Logistics University, Chongqing, 401311, China
| | - Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhiwei Zhao
- School of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
27
|
Acosta-Rangel A, Sánchez-Polo M, Rozalen M, Rivera-Utrilla J, Polo AMS, Berber-Mendoza MS, López-Ramón MV. Oxidation of sulfonamides by ferrate(VI): Reaction kinetics, transformation byproducts and toxicity assesment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109927. [PMID: 32063308 DOI: 10.1016/j.jenvman.2019.109927] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/10/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
This study was aimed at the degradation of sulfonamides (SNs) via oxidation with Fe(VI). The reaction kinetics, identification of degradation byproducts and their toxicity were investigated. The pH solution and Fe(VI) loading had significant effects on the degradation of the sulfonamides. The maximum degradation rate occurred at pH 3.0 with a 6:1 ratio Fe(VI): sulfonamide, obtaining 100% degradation of 15 mg L-1 SN within 5 min. Although Fe(VI) also showed an appreciable reactivity towards SNs (kapp = 9.85-19.63 × 102 M-1 s-1) at pH 7. The influence of solution pH on the values of kapp can be explained considering the specific reaction between Fe(VI) and SNs. Degradation rates are also influenced by the presence of inorganic ions in different water matrixes. For this reason, ions present in groundwater enhanced the SNs degradation through a synergistic effect among carbonates, sulfates and Fe(VI). Degradation byproducts identified, through UPLC analysis, allowed us to proposed three degradation pathways depending on pH. At acid pH there is a cleavage of C-S and S-N bonds. At neutral pH nitroso and nitro-derivates are formed. At basic pH hydroxylation is the main reaction. The cytotoxicity assay of HEK-293 and J774 cell lines exposed to Fe(VI) indicated that transformation byproducts had a lower toxicity than SNs as baseline products. Accordingly, this research suggests that Fe(VI) can act as a chemical oxidant to remove SNs antibiotics and it can be used to treat antibiotic pollution in wastewater.
Collapse
Affiliation(s)
- A Acosta-Rangel
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain; Center of Postgraduate Research and Studies, Faculty of Engineering, University Autonomous of San Luis Potosí, Av. Dr. M. Nava No. 8, San Luis Potosí, 78290, Mexico
| | - M Sánchez-Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain.
| | - M Rozalen
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain
| | - J Rivera-Utrilla
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain
| | - A M S Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain
| | - M S Berber-Mendoza
- Center of Postgraduate Research and Studies, Faculty of Engineering, University Autonomous of San Luis Potosí, Av. Dr. M. Nava No. 8, San Luis Potosí, 78290, Mexico
| | - M V López-Ramón
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Science, University of Jaén, 23071, Jaén, Spain.
| |
Collapse
|
28
|
Han Q, Dong W, Wang H, Ma H, Gu Y, Tian Y. Degradation of tetrabromobisphenol A by a ferrate(vi)-ozone combination process: advantages, optimization, and mechanistic analysis. RSC Adv 2019; 9:41783-41793. [PMID: 35541608 PMCID: PMC9076470 DOI: 10.1039/c9ra07774j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 01/28/2023] Open
Abstract
This study systematically investigated the ferrate(vi)-ozone combination process for TBBPA degradation. Firstly, the advantages of a ferrate(vi)-ozone combination process were assessed as compared with a sole ozone and ferrate(vi) oxidation process. Then, the performance of the ferrate(vi)-ozone combination process was investigated under different experimental conditions, including the dosing orders of oxidants, dosing concentrations of oxidants, and the initial solution pH. At the same time, toxicity control (including the acute and chronic toxicity) and mineralization were analyzed after optimization. Finally, a mechanism was proposed about the synergetic effects of the ferrate(vi)-ozone combination process for decontamination. The ferrate(vi)-ozone combination process proved to be an efficient and promising technology for removing TBBPA from water. After being pre-oxidized by ferrate(vi) for 3 min and then co-oxidized by the two oxidants, TBBPA of 1.84 μmol L-1 could be completely degraded by dosing only 0.51 μmol L-1 of ferrate(vi) and 10.42 μmol L-1 of ozone within 10 min in wide ranges of pH (5.0-11.0). Up to 91.3% of debromination rate and 80.5% of mineralization rate were obtained, respectively. In addition, no bromate was detected and the acute and chronic toxicity were effectively controlled. The analysis of the proposed mechanism showed that there might exist a superposition effect of the oxidation pathways. In addition, the interactions between the two oxidants were beneficial for the oxidation efficiency of ferrate(vi) and ozone, including the catalytic effect of ferrate(vi) intermediates on ozone and the oxidation of low-valent iron compounds by ozone and the generated ·OH radical.
Collapse
Affiliation(s)
- Qi Han
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China +86 755 26033482 +86 755 26033482
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China +86 755 26033482 +86 755 26033482.,Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control Shenzhen 518055 China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China +86 755 26033482 +86 755 26033482.,Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control Shenzhen 518055 China
| | - Hang Ma
- School of Architecture, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Yurong Gu
- School of Construction and Environmental Engineering, Shenzhen Polytechnic Shenzhen 518055 China
| | - Yu Tian
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China +86 755 26033482 +86 755 26033482
| |
Collapse
|
29
|
Taguchi Method and Response Surface Methodology in the Treatment of Highly Contaminated Tannery Wastewater Using Commercial Potassium Ferrate. MATERIALS 2019; 12:ma12223784. [PMID: 31752134 PMCID: PMC6888326 DOI: 10.3390/ma12223784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022]
Abstract
The potential implementation of Envifer®, a commercial product containing potassium ferrate (40.1% K2FeO4), for the purification of highly contaminated tannery wastewater from leather dyeing processes was proposed. The employment of the Taguchi method for optimization of experiments allowed the discoloration (98.4%), chemical oxygen demand (77.2%), total organic carbon (75.7%), and suspended solids (96.9%) values to be lowered using 1.200 g/L K2FeO4 at pH 3 within 9 min. The application of the central composite design (CCD) and the response surface methodology (RSM) with the use of 1.400 g/L K2FeO4 at pH 4.5 diminished the discoloration, the chemical oxygen demand, the total organic carbon, and suspended solids within 9 min. The Taguchi method is suitable for the initial implementation, while the RSM is superior for the extended optimization of wastewater treatment processes.
Collapse
|
30
|
Chen J, Qi Y, Pan X, Wu N, Zuo J, Li C, Qu R, Wang Z, Chen Z. Mechanistic insights into the reactivity of Ferrate(VI) with phenolic compounds and the formation of coupling products. WATER RESEARCH 2019; 158:338-349. [PMID: 31051378 DOI: 10.1016/j.watres.2019.04.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
In this paper, the removal of 2-benzylphenol (2-BP), phenol (Ph), chlorophene (CP), and 4-chlorophenol (4-CP) by Fe(VI) have been examined at pH 8.0. The second-order rate constant (k) for substrates degradation at a Fe(VI) concentration of 0.2 mM was in the order of kCP (353 M-1 s-1) > k4-CP (131 M-1 s-1) > k2-BP (102 M-1 s-1) > kPh (40 M-1 s-1), indicating that the presence of chlorine and benzyl groups in benzene ring can enhance the reactivity of the phenolic compounds with Fe(VI). Reaction products were identified by a liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS), and four reaction mechanisms, including hydroxylation of benzene ring, cleavage of C-C bridge bond, substitution of chlorine atom by hydroxyl group, and the single-electron coupling mechanism were proposed for phenols degradation by Fe(VI). The extracted peak areas of the degradation products showed that the single-electron coupling reaction is the main degradation mechanism in Fe(VI) oxidation processes. In addition to direct attack by Fe(VI), hydroxyl radical, as detected by electron paramagnetic resonance (EPR) spectra, also plays a role in phenols degradation. The •OH initiated reactions and single-electron coupling reactions were further explored by total charges distribution, transition state calculations and potential energy profiles. In addition, Fe(VI) could also work as a highly effective oxidant for substrates removal from real waters.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR, China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR, China
| | - Xiaoxue Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR, China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR, China
| | - Jialiang Zuo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR, China
| | - Chenguang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR, China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR, China.
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR, China
| | - Zhaoxu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR, China
| |
Collapse
|
31
|
Xie X, Cheng H. A simple treatment method for phenylarsenic compounds: Oxidation by ferrate (VI) and simultaneous removal of the arsenate released with in situ formed Fe(III) oxide-hydroxide. ENVIRONMENT INTERNATIONAL 2019; 127:730-741. [PMID: 31003056 DOI: 10.1016/j.envint.2019.03.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
p-Arsanilic acid (p-ASA) and roxarsone (ROX) are two major phenylarsenic feed additives that are still widely used in many countries, and the land application of animal waste containing these compounds could introduce large quantities of arsenic into the environment. In this study, we proposed a treatment scheme for animal waste that involves leaching of p-ASA/ROX out of the manure first by water, then oxidation by ferrate (Fe(VI)) and removal of the arsenate released by in situ formed Fe(III) oxide-hydroxide. The effects of solution pH, dosage of Fe(VI), solution ionic strength, and matrix species on the treatment performance were systematically evaluated. Initial solution pH values of 4.1 and 2.0 were chosen for the oxidation of p-ASA and ROX, respectively, while efficient arsenate removal could be achieved with relatively small adjustment of the final solution pH (to 4.0). The pH-dependent second-order rate constants for the reactions between ferrate and p-ASA and ROX over the pH range of 2.0-12.0 were estimated to be 7.13 × 105-2.01 × 10-1 and 8.91 × 103-1.65 × 10-1 M-1 s-1, respectively. The degradation pathways of p-ASA/ROX during ferrate oxidation were proposed based on the inorganic and organic intermediates identified. Depending on the levels of p-ASA/ROX, effective treatment could be achieved through flexible adjustment of the Fe(VI) dosage. p-ASA/ROX (10 mg-As/L) in swine manure leachate could be efficiently treated by ferrate oxidation within 5 min, with the overall arsenic removal efficiency higher than 99.2%. The treatment performance was barely affected by the presence of common ions (K+, Ca2+, Na+, Mg2+, SO42-, NO3-, and Cl-), while humic acid, Mn2+, Ni2+, Fe3+, and Co2+ inhibited p-ASA/ROX oxidation. The presence of PO43- and NH4+ could accelerate the oxidation of p-ASA/ROX, but PO43- and humic acid compromised sorptive removal of the released arsenate due to their competitive sorption on the Fe(III) oxide-hydroxide precipitate. Ferrate oxidation is green and fast, and the operation is simple, thus it could serve as a promising and environment-friendly option for mitigating the risk of phenylarsenic feed additives in animal waste.
Collapse
Affiliation(s)
- Xiande Xie
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
32
|
Liu H, Chen J, Wu N, Xu X, Qi Y, Jiang L, Wang X, Wang Z. Oxidative degradation of chlorpyrifos using ferrate(VI): Kinetics and reaction mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:259-266. [PMID: 30529921 DOI: 10.1016/j.ecoenv.2018.11.132] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
In this study, we investigated the degradation kinetics of chlorpyrifos, an organophosphorus (OP) compound, using ferrate(VI), and investigated the potential of this iron-based chemical oxidant on chlorpyrifos removal from water and wastewater treatments. A series of kinetic experiments were conducted to evaluate the influence of various environmental factors, such as pH, oxidant dosages, as well as the presence of anions, cations, humic acid (HA), and different water matrices. Chlorpyrifos was completely removed within 300 s under the following optimum conditions: [chlorpyrifos]0 = 1 μM, [Fe(VI)]0:[chlorpyrifos]0 = 100:1, T = 25 °C, and pH = 7.0. Anions such as Cl-, SO42-, NO3-, and HCO3- and cations such as Fe3+, Cu2+, and NH4+ did not appear to influence the removal of chlorpyrifos. However, the presence of Ca2+, Mg2+, and HA in water inhibited the degradation of chlorpyrifos. Experiments on removing chlorpyrifos from tap water, river water, and synthetic wastewater were performed to demonstrate the practical applications of Fe(VI). Ten oxidation products of chlorpyrifos were identified using liquid chromatography-quadrupole-time-of flight-mass spectrometry (LC-Q-TOF-MS), and their structures were further elucidated using MS/MS spectra. Then, two degradation pathways were preliminarily proposed including the oxidation of the P = S bond, cleavage of C-O bond, and hydroxyl substitution reaction. In general, Fe(VI) could be used as an efficient technology for chlorpyrifos removal from water and wastewater treatments.
Collapse
Affiliation(s)
- Hongxia Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Nanhu College, Jiaxing University, Jiaxing 314001, Zhejiang, PR China
| | - Jing Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xinxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Lijuan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Xinghao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
33
|
Yang T, Liu Y, Wang L, Jiang J, Huang Z, Pang SY, Cheng H, Gao D, Ma J. Highly effective oxidation of roxarsone by ferrate and simultaneous arsenic removal with in situ formed ferric nanoparticles. WATER RESEARCH 2018; 147:321-330. [PMID: 30317041 DOI: 10.1016/j.watres.2018.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/08/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Roxarsone (ROX) is used in breeding industry to prevent infection by parasites, stimulate livestock growth and improve pigmentation of livestock meat. After being released into environment, ROX could be bio-degraded with the formation of carcinogenic inorganic arsenic (As) species. Here, ferrate oxidation of ROX was reported, in which we studied total-As removal, determined reaction kinetics, identified oxidation products, and proposed a reaction mechanism. It was found that the apparent second-order rate constant (kapp) of ferrate with ROX was 305 M-1s-1 at pH 7.0, 25 °C, and over 95% of total As was removed within 10 min when ferrate/ROX molar ratio was 20:1. Species-specific rate constants analysis showed that HFeO4- was the dominant species reacting with ROX. Ferrate initially attacked AsC bond of ROX and resulted in the formation of arsenate and 2-nitrohydroquinone. The arsenate was simultaneously removed by ferric nanoparticles formed in the reduction of ferrate, while 2-nitrohydroquinone was further oxidized into nitro-1,4-benzoquinone. These results suggest that ferrate treatment can be an effective method for the control of ROX in water treatment.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Yulei Liu
- Technology R & D Center for Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jin Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhuangsong Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Su-Yan Pang
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
34
|
Moradi N, Amin MM, Fatehizadeh A, Ghasemi Z. Degradation of UV-filter Benzophenon-3 in aqueous solution using TiO 2 coated on quartz tubes. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2018; 16:213-228. [PMID: 30728993 PMCID: PMC6277332 DOI: 10.1007/s40201-018-0309-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/28/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Benzophenone-3 (BP-3), one of the emerging pollutants, is commercially synthesized as UV filter used in cosmetics and other personal care products and its occurrence in the aquatic environment has widely been reported. The goal of this study was to enhance an AOP method for degradation of UV filter Benzophenone-3 in aqueous solutions. METHOD In this study, sol-gel method was applied to synthesis TiO2 nanoparticles. Subsequently, the nanoparticles were successfully coated on quartz tubes. The synthesized catalyst was characterized using XRD, FE-SEM and EDX analysis. Then, the efficiency of photocatalytic process using TiO2 coated quartz tubes for BP-3 degradation from synthetic and real aqueous solution was assessed. RESULT The optimum contact time and solution pH for the highest BP-3 degradation in the synthetic solution were found at 15 min and 10, respectively. The maximum degradation (98%) of BP-3 by photocatalytic process was observed at 1 mg/L initial BP-3 concentration using 225 cm2 of catalyst surface area. Among the three applied kinetic models, the experimental data were found to follow the first-order equation more closely with the rate constant of 0.2, 0.048 and 0.035 1/min for 1, 3 and 5 mg/L of initial BP-3 concentration, respectively. In order to investigate the potential of this process for real effluent, the treatment of swimming pool water and wastewater treatment plant was examined and BP-3 degradation close to 88% and 32.1 was achieved, respectively. CONCLUSION Based on the obtained data, the photocatalytic process could successfully be applied for water treatment in swimming pools and other effluent containing BP-3 with low turbidity. The advantage of this study is that the synthesized catalyst can be used repeatedly needless to remove catalyst from the treated solution. In addition, AOPs can effectively eliminate organic compounds in aqueous phase, rather than transferring pollutants into another phase. The limitation of this study is that in solution with high turbidity photocatalytic degradation can be hampered and pre- treatment is needed to reduce turbidity.
Collapse
Affiliation(s)
- Nazanin Moradi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Ghasemi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
35
|
Ziarrusta H, Mijangos L, Montes R, Rodil R, Anakabe E, Izagirre U, Prieto A, Etxebarria N, Olivares M, Zuloaga O. Study of bioconcentration of oxybenzone in gilt-head bream and characterization of its by-products. CHEMOSPHERE 2018; 208:399-407. [PMID: 29885506 DOI: 10.1016/j.chemosphere.2018.05.154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
The widespread occurrence of UV filters such as oxybenzone (OXY) in the aquatic ecosystems has raised social and scientific concern due to their high bioaccumulation potential and possible adverse effects in organisms. Within this context, the aim of the present work was to study the uptake, distribution, metabolization and elimination of OXY in different tissues (liver, gill and muscle) and biofluids (bile and plasma) of gilt-head bream (Sparus aurata) in a controlled seawater ecosystem (50 ng/mL OXY) within a 14-day exposure. The highest OXY concentrations in all the tissue/biofluids were found at the end of the experiment. The highest OXY levels were found in bile (1.8-17 μg/mL). In the case of liver, the concentrations found (9-160 ng/g) were lower than those expected for a lipidic matrix, which could be explained by a high OXY metabolization. Up to 20 Phase I and Phase II by-products of OXY were annotated by means of liquid chromatography-high resolution mass spectrometry, of which 12 were reported for the first time. In addition to OXY, its by-products might also cause adverse effects and their biomonitoring is advisable in order to fully characterize OXY exposure.
Collapse
Affiliation(s)
- Haizea Ziarrusta
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - Leire Mijangos
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Rosa Montes
- Department of Analytical Chemistry, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Eneritz Anakabe
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - Urtzi Izagirre
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Ailette Prieto
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
36
|
An J, Xia C, He J, Feng H. Oxidation of propyl paraben by ferrate(VI): Kinetics, products, and toxicity assessment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:873-882. [PMID: 29672207 DOI: 10.1080/10934529.2018.1459074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Propyl paraben (propyl 4-hydroxybenzoate, PPB), one of the typically used paraben species in various pharmaceutical and personal care products, has been found in different aquatic environment, which could affect the water quality and human health. In this paper, the degradation of PPB by aqueous ferrate (Fe(VI)) was investigated in different water matrix and reaction kinetics as a function of pH was determined. Intermediate products of the degradation process were isolated and characterized by the high performance liquid chromatography/mass spectrometry/mass spectrometry techniques. Acute and chronic toxicities during water treatment of PPB using Fe(VI) were calculated using the ECOSAR program at three trophic levels. The obtained apparent second-order rate constant (kapp) for PPB reaction with Fe(VI) ranged from 99.6 ± 0.4 M-1 s-1 to 15.0 ± 0.1 M-1 s-1 with the half-life (t1/2) ranging from 154 s to 1026 s at pH 6.5-10.0 for an Fe(VI) concentration of 600 μM. The proposed pathway for the oxidation of PPB by Fe(VI) involves one electron transfer of phenoxyl radical and breaking of the ether bond. In general, the oxidation of PPB by ferrate resulted in a significant decrease in toxicity at three trophic levels.
Collapse
Affiliation(s)
- Jibin An
- a Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences , Yongchuan , Chongqing , China
| | - Chunqiu Xia
- a Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences , Yongchuan , Chongqing , China
| | - Jiahong He
- a Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences , Yongchuan , Chongqing , China
| | - Huixia Feng
- b School of Petrochemical Engineering, Lanzhou University of Technology , LanZhou , China
| |
Collapse
|
37
|
Zhao J, Wang Q, Fu Y, Peng B, Zhou G. Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe 3+, Fe 2+, and Mn 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22998-23008. [PMID: 29858998 DOI: 10.1007/s11356-018-2375-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
In this study, the effect of Fe3+, Fe2+, and Mn2+ dose, solution pH, reaction temperature, background water matrix (i.e., inorganic anions, cations, and natural organic matters (NOM)), and the kinetics and mechanism for the reaction system of Fe(VI)/Fe3+, Fe(VI)/Fe2+, and Fe(VI)/Mn2+ were investigated systematically. Traces of Fe3+, Fe2+, and Mn2+ promoted the DCF removal by Fe(VI) significantly. The pseudo-first-order rate constant (kobs) of DCF increased with decreasing pH (9-6) and increasing temperature (10-30 °C) due to the gradually reduced stability and enhanced reactivity of Fe(VI). Cu2+ and Zn2+ ions evidently improved the DCF removal, while CO32- restrained it. Besides, SO42-, Cl-, NO3-, Mg2+, and Ca2+ almost had no influence on the degradation of DCF by Fe(VI)/Fe3+, Fe(VI)/Fe2+, and Fe(VI)/Mn2+ within the tested concentration. The addition of 5 or 20 mg L-1 NOM decreased the removal efficiency of DCF. Moreover, Fe2O3 and Fe(OH)3, the by-products of Fe(VI), slightly inhibited the DCF removal, while α-FeOOH, another by-product of Fe(VI), showed no influence at pH 7. In addition, MnO2 and MnO4-, the by-products of Mn2+, enhanced the DCF degradation due to catalysis and superposition of oxidation capacity, respectively. This study indicates that Fe3+ and Fe2+ promoted the DCF removal mainly via the self-catalysis for Fe(VI), and meanwhile, the catalysis of Mn2+ and the effect of its by-products (i.e., MnO2 and MnO4-) contributed synchronously for DCF degradation. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Junfeng Zhao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qun Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Bo Peng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Gaofeng Zhou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
38
|
Zhu P, Zhu K, Puzey R, Ren X. Degradation analysis of A 2 /O combined with AgNO 3 + K 2 FeO 4 on coking wastewater. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Han Q, Dong W, Wang H, Liu T, Tian Y, Song X. Degradation of tetrabromobisphenol A by ferrate(VI) oxidation: Performance, inorganic and organic products, pathway and toxicity control. CHEMOSPHERE 2018; 198:92-102. [PMID: 29421765 DOI: 10.1016/j.chemosphere.2018.01.117] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
This study systematically investigated the degradation of tetrabromobisphenol A (TBBPA) by ferrate (VI) oxidation. The reaction kinetics between ferrate (VI) with TBBPA were studied under pseudo-first-order conditions in the pH range 5.5-10.5. Then, a series of batch experiments were carried out to investigate other factors, including the ferrate (VI) dosage, temperature and interfering ions. Additionally, the generation of inorganic products (bromide ion and bromate) was evaluated. The organic intermediates were identified, and possible pathways were proposed. In addition, the toxicity variation was analyzed with marine luminous bacteria (V. fischeri). Degradation of TBBPA by ferrate (VI) oxidation was confirmed to be an effective and environmentally friendly technique. The reaction was fitted with a second-order rate model. With a ferrate (VI) dosage of 25.25 μmol/L, TBBPA concentration of 1.84 μmol/L, an initial pH of 7.0, and a temperature of 25 °C, a 99.06% TBBPA removal was achieved within 30 min. The evaluation of inorganic products showed that the capacity of ferrate (VI) oxidation to yield bromide ions was relatively strong and could prevent the formation of bromate compared to photocatalytic and mechanochemical techniques. Eleven intermediates were identified, and the proposed degradation pathway indicated that TBBPA might undergo debromination, beta scission, substitution, deprotonation and oxidation. The results of toxicity testing showed that ferrate (VI) could effectively control the toxicity of the treated samples, although the toxicity increased in the initial reaction stage due to the accumulation and destruction of more toxic intermediates.
Collapse
Affiliation(s)
- Qi Han
- School of Civil and Environment Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Wenyi Dong
- School of Civil and Environment Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China.
| | - Hongjie Wang
- School of Civil and Environment Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China.
| | - Tongzhou Liu
- School of Civil and Environment Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China
| | - Yu Tian
- School of Civil and Environment Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xin Song
- School of Civil and Environment Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
40
|
Feng M, Wang Z, Dionysiou DD, Sharma VK. Metal-mediated oxidation of fluoroquinolone antibiotics in water: A review on kinetics, transformation products, and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:1136-1154. [PMID: 28919428 DOI: 10.1016/j.jhazmat.2017.08.067] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 05/29/2023]
Abstract
Fluoroquinolones (FQs) are among the most potent antimicrobial agents, which have seen their increasing use as human and veterinary medicines to control bacterial infections. FQs have been extensively found in surface water and municipal wastewaters, which has raised great concerns due to their negative impacts to humans and ecological health. It is of utmost importance that FQs are treated before their release into the environment. This paper reviews oxidative removal of FQs using reactive oxygen (O3 and OH), sulfate radicals (SO4-), and high-valent transition metal (MnVII and FeVI) species. The role of metals in enhancing the performance of reactive oxygen and sulfur species is presented. The catalysts can significantly enhance the production of OH and/or SO4- radicals. At neutral pH, the second-order rate constants (k, M-1s-1) of the reactions between FQs and oxidants follow the order as k(OH)>k(O3)>k(FeVI)>k(MnVII). Moieties involved to transform target FQs to oxidized products and participation of the catalysts in the reaction pathways are discussed. Generally, the piperazinyl ring of FQs was found as the preferential attack site by each oxidant. Meanwhile, evaluation of aquatic ecotoxicity of the transformation products of FQs by these treatments is summarized.
Collapse
Affiliation(s)
- Mingbao Feng
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DCEE), University of Cincinnati, Cincinnati, OH 45221, USA
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
41
|
Chen F, Huber C, Schröder P. Fate of the sunscreen compound oxybenzone in Cyperus alternifolius based hydroponic culture: Uptake, biotransformation and phytotoxicity. CHEMOSPHERE 2017; 182:638-646. [PMID: 28527417 DOI: 10.1016/j.chemosphere.2017.05.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Oxybenzone (OBZ), a common ingredient in sunscreens and personal care products, has been frequently detected in effluents from municipal wastewater treatment plants and also in surface waters. OBZ is an emerging contaminant due to its adverse impacts on marine/aquatic ecosystems. To investigate the removal and degradation capacity of phytotreatment for OBZ, the common wetland plant species Cyperus alternifolius L. was exposed to this compound at 5, 25 and 50 μM for 120 h, respectively. Continuous uptake by roots and accumulation in plant tissues was observed over the exposure time, and depletion of spiked OBZ from the aqueous medium exceeded 73.9 ± 9.1% after 120 h. Similar to its fate in mammalian cells, OBZ is activated in a phase I reaction resulting in the hydroxylated metabolite 2,4-dihydroxybenzophenone (DHB). Independently, two phase II metabolites were identified as oxybenzone-glucoside (OBZ-Glu) and oxybenzone-(6-O-malonyl)-glucoside (OBZ-Mal-Glu) by LC-MS/MS. Formation of these metabolites increased over the experimental period. To our knowledge this is the first time that DHB, OBZ-Glu and OBZ-Mal-Glu are shown to be formed in higher plant tissues. Furthermore, plant defense systems-antioxidative enzymes (SOD, CAT, APOX and POX) were found to be elevated to counteract stress caused by exposure to OBZ. This study presents the huge potential of aquatic plants to cope with benzophenone type UV filters in contaminated water bodies.
Collapse
Affiliation(s)
- Feiran Chen
- Helmholtz Zentrum München, GmbH, German Research Center for Environmental Health, Research Unit Comparative Microbiome Analysis, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Christian Huber
- Helmholtz Zentrum München, GmbH, German Research Center for Environmental Health, Research Unit Comparative Microbiome Analysis, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Peter Schröder
- Helmholtz Zentrum München, GmbH, German Research Center for Environmental Health, Research Unit Comparative Microbiome Analysis, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany.
| |
Collapse
|
42
|
Dong H, Qiang Z, Lian J, Qu J. Promoted oxidation of diclofenac with ferrate (Fe(VI)): Role of ABTS as the electron shuttle. JOURNAL OF HAZARDOUS MATERIALS 2017; 336:65-70. [PMID: 28472710 DOI: 10.1016/j.jhazmat.2017.04.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Reaction of Fe(VI) with 2,2'-azino-bis-(3-ethylbenzothiazoline -6-sulfonate) (ABTS) is widely adopted to determine aqueous ferrate (Fe(VI)) concentration based on ABTS+ formation. Interestingly, this study found that the addition of ABTS could accelerate the oxidation of diclofenac (DCF) by Fe(VI) significantly. Observed first-order rate constant of DCF in the presence of 30μM ABTS was found to be 36.2 folds of that without ABTS, with values of 3.08 and 0.085min-1, respectively. It was partly attributed to the formation of ABTS+. The apparent second-order rate constant (kapp) for the oxidation of ABTS by Fe(VI) at pH7.0 was determined to be 1.1×106M-1s-1, which was 3-5 orders of magnitude higher than those for the reactions of ABTS+ with DCF (kapp,ABTS+-DCF=2.8×103M-1s-1) and Fe(VI) with DCF (kapp,Fe(VI)-DCF=17.7M-1s-1). Both the kapp,Fe(VI)-ABTS and kapp,Fe(VI)-DCF decreased obviously with increasing pH, while the kapp,ABTS+-DCF exhibited little pH dependency. By acting as the electron shuttle, ABTS could enhance the removal efficiency of DCF over wide pH and natural organic matter concentration ranges. This study provides new insights to reconsider the role of organic matter during Fe(VI) oxidation and highlights the potential for increasing the reactivity of Fe(VI).
Collapse
Affiliation(s)
- Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences,18 Shuang-qing Road, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences,18 Shuang-qing Road, Beijing 100085, China.
| | - Junfeng Lian
- School of Architectural, Surveying and Mapping Engineering, Jiangxi University of Science and Technology,86 Hong-qi Road, Ganzhou 341000, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences,18 Shuang-qing Road, Beijing 100085, China
| |
Collapse
|
43
|
Yang W, Liu Y, Xu W, Wang Q, Zhao L, Pan J. Oxidation-separation kinetics of nitric oxide from flue gas using ferrate (VI) reagent in a spraying reactor. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.22778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Yang
- School of Energy and Power Engineering; Jiangsu University; Zhenjiang Jiangsu 212013 China
| | - Yangxian Liu
- School of Energy and Power Engineering; Jiangsu University; Zhenjiang Jiangsu 212013 China
| | - Wen Xu
- School of Energy and Power Engineering; Jiangsu University; Zhenjiang Jiangsu 212013 China
| | - Qian Wang
- School of Energy and Power Engineering; Jiangsu University; Zhenjiang Jiangsu 212013 China
| | - Liang Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education; Southeast University; Nanjing 210096 China
| | - Jianfeng Pan
- School of Energy and Power Engineering; Jiangsu University; Zhenjiang Jiangsu 212013 China
| |
Collapse
|
44
|
Wang Y, Ni T, Yuan J, Wang C, Liu G. Oxidative treatment of diclofenac via ferrate(VI) in aqueous media: effect of surfactant additives. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:1342-1350. [PMID: 28333050 DOI: 10.2166/wst.2016.601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The potential reaction of diclofenac (DCF) with ferrate(VI) and influences of coexisting surfactants have not been investigated in depth, and are the focus of this study. The results demonstrated that DCF reacted effectively and rapidly with Fe(VI) and approximately 75% of DCF (0.03 mM) was removed by excess Fe(VI) (0.45 mM) within 10 min. All of the reactions followed pseudo first-order kinetics with respect to DCF and Fe(VI), where the apparent second-order rate constant (kapp) was 5.07 M-1 s-1 at pH 9.0. Furthermore, the degradation efficiencies of DCF were clearly dependent on the concentrations of dissolved organic matter additives in the substrate solution. Primarily, inhibitory effects were observed with the samples that contained anionic (sodium dodecyl-benzene sulfonate, SDBS) or non-ionic (Tween-80) surfactants, which have been attributed to the side reactions between Fe(VI) and surfactants, which led to a reduction in the available oxidant for DCF destruction. Furthermore, the addition of a cationic surfactant (cetyltrimethyl ammonium bromide, CTAB) and humic acid (HA) conveyed significantly promotional effects on the DCF-Fe(VI) reaction. The rate enhancement effect for CTAB might be due to micellar surface catalysis, through the Coulomb attraction between the reactants and positively charged surfactants, while the catalytic action for HA resulted from the additional oxidation of Fe(V)/Fe(IV) in the presence of HA. The results provided the basic knowledge required to understand the environmental relevance of DCF oxidation via Fe(VI) in the presence of surfactant additives.
Collapse
Affiliation(s)
- Yingling Wang
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China E-mail: ; School of Environment, Henan Normal University, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Xinxiang 453007, China
| | - Tianjun Ni
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China E-mail: ; School of Environment, Henan Normal University, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Xinxiang 453007, China
| | - Jianmei Yuan
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China E-mail:
| | - Chunfeng Wang
- School of Environment, Henan Normal University, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Xinxiang 453007, China
| | - Guoguang Liu
- School of Environment, Henan Normal University, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Xinxiang 453007, China; Faculty of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
45
|
Zhai P, Chen X, Dong W, Li H, Chovelon JM. Degradation of triclosan in the presence of p-aminobenzoic acid under simulated sunlight irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:558-567. [PMID: 27734316 DOI: 10.1007/s11356-016-7778-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to investigate the degradation of triclosan (TCS) in the presence of p-aminobenzoic acid (PABA) under simulated sunlight irradiation (λ ≥ 290 nm). The effect of PABA concentration, pH, dissolved organic matter (DOM), and DOM-hydrolytic Fe(III) species complexes on the photodegradation of TCS in the presence of PABA (TCS-PABA) was also studied. The photolysis of TCS-PABA obeyed pseudo-first-order kinetics well, and the degradation of TCS-PABA enhanced with increasing solution pH (from 3.0 to 11.0). The presence of PABA inhibited the degradation of TCS-PABA, and the weakest inhibitory effect was observed while the concentration of PABA was 5 mg L-1. The addition of DOM (Suwannee River fulvic acid standard I [SRFA], Suwannee River HA standard II [SRHA], and Suwannee River natural organic matter [SRNOM]) showed different inhibition effects on TCS-PABA degradation. However, higher Fe(III) concentration at the DOM concentration of 5 mg L-1 could favor the formation of DOM-hydrolytic Fe(III) species complexes, further accelerating the degradation of TCS-PABA. In comparison with deionized water (DI water), TCS-PABA could be better photodegraded in river water nearby the effluent of a wastewater treatment plant. This study provides useful information for understanding the natural behavior of TCS in the presence of other organic contaminants.
Collapse
Affiliation(s)
- Pingping Zhai
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Xuan Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Hongjing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Jean-Marc Chovelon
- Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), UMR CNRS 5256, Université Lyon 1, 2 Avenue Albert Einstein, 69626, Villeurbanne, France
| |
Collapse
|
46
|
Heterogeneous Fenton-like reactions with a novel hybrid Cu–Mn–O catalyst for the degradation of benzophenone-3 in aqueous media. CR CHIM 2017. [DOI: 10.1016/j.crci.2016.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Feng M, Wang X, Chen J, Qu R, Sui Y, Cizmas L, Wang Z, Sharma VK. Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products. WATER RESEARCH 2016; 103:48-57. [PMID: 27429354 DOI: 10.1016/j.watres.2016.07.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/05/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
The degradation of five fluoroquinolone (FQ) antibiotics (flumequine (FLU), enrofloxacin (ENR), norfloxacin (NOR), ofloxacin (OFL) and marbofloxacin (MAR)) by ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) was examined to demonstrate the potential of this iron-based chemical oxidant to treat antibiotics in water. Experiments were conducted at different molar ratios of Fe(VI) to FQs at pH 7.0. All FQs, except FLU, were degraded within 2 min at [Fe(VI)]:[FQ] ≤ 20.0. Multiple additions of Fe(VI) improved the degradation efficiency, and provided greater degradation than a single addition of Fe(VI). The effects of anions, cations, and humic acid (HA), usually present in source waters and wastewaters, on the removal of FLU were investigated. Anions (Cl(-), SO4(2-), NO3(-), and HCO3(-)) and monovalent cations (Na(+) and K(+)) had no influence on the removal of FLU. However, multivalent cations (Ca(2+), Mg(2+), Cu(2+), and Fe(3+)) in water decreased the efficiency of FLU removal by Fe(VI). An increase in the ionic strength of the solution, and the presence of HA in the water, also decreased the percentage of FLU removed by Fe(VI). Experiments on the removal of selected FQs, present as co-existing antibiotics in pure water, river water, synthetic water and wastewater, were also conducted to demonstrate the practical application of Fe(VI) to remove the antibiotics during water treatment. The seventeen oxidized products (OPs) of FLU were identified using solid phase extraction-liquid chromatography-high-resolution mass spectrometry. The reaction pathways are proposed, and are theoretically confirmed by molecular orbital calculations.
Collapse
Affiliation(s)
- Mingbao Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xinghao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Jing Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yunxia Sui
- Centre of Modern Analysis, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Leslie Cizmas
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
48
|
Study on enhancement mechanism of NO absorption in K2FeO4 solution basing on mass transfer-reaction theory. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2016.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Guo Y, Lin Q, Xu B, Qi F. Degradation of benzophenone-3 by the ozonation in aqueous solution: kinetics, intermediates and toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7962-7974. [PMID: 26769481 DOI: 10.1007/s11356-015-5941-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Benzophenone-3 (BP-3) is a popular ultraviolet absorbing chemical and has an adverse impact on aquatic ecosystems and human health. We determined the reaction kinetic constants of BP-3 and its de-proton pattern reacting with the molecular ozone or hydroxyl radical (·OH) for the first time. The obtained constant of the molecular ozone reacting with BP-3 or BP-3(-) was 1.03(±0.21) × 10(2) or 1.85(±0.098) × 10(5) M(-1) s(-1), respectively. And, the constant for BP-3 reacting with ·OH was 9.74(±0.21) × 10(9) or 10.13(±0.25) × 10(9) M(-1) s(-1) as using 4-chlorobenzoic acid and benzotriazole as reference compounds, respectively. The intermediates generated in the molecular ozone (12 kinds) or ·OH oxidation (18 kinds) were identified by LC-MS/MS. The removal efficiency of BP-3 in ozonation was dependent on the initial concentration of ozone, BP-3, and matrix water quality. The detoxification of BP-3 ozonation was depended on initial ozone dose using Chlorella vulgaris as the probe. Higher ozone dose increased the toxicity of the solution for more BP-3 being degraded and more intermediates formed, suggesting that the sole ozonation is not an effect approach for the degradation of BP-3 and some other energy should be combined.
Collapse
Affiliation(s)
- Yang Guo
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Qiaoxin Lin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Bingbing Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
50
|
Liu H, Sun P, He Q, Feng M, Liu H, Yang S, Wang L, Wang Z. Ozonation of the UV filter benzophenone-4 in aquatic environments: Intermediates and pathways. CHEMOSPHERE 2016; 149:76-83. [PMID: 26855209 DOI: 10.1016/j.chemosphere.2016.01.097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/23/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
The occurrence of benzophenone-4 (BP-4) in water environments may pose a serious public health hazard due to its potential endocrine disrupting effects. In this work, the intermediates, probable degradation pathways and toxicity changes during ozonation of BP-4 in aqueous solution were systematically investigated. Results revealed that alkaline conditions favored the oxidation of BP-4. However, inorganic anions (Cl(-), NO3(-), SO4(2-)), cations (K(+), Ca(2+), Mg(2+)) and humic acid had no remarkable effect on BP-4 removal within the tested concentrations. Ozonation was also effective for the fast removal of BP-4 in real waters. The TOC suggested a low mineralization rate, even after the complete BP-4 removal. Meanwhile, the treated mixtures exhibited an obvious inhibition to the bioluminescent bacteria Photobacterium phosphoreum, indicating the formation of transformation products with higher toxicities. Furthermore, fourteen products were identified by means of liquid chromatography-mass spectrometry. Notably, seven of them have not been reported previously. The quenching test indicated that the degradation processes probably were dominated by OH. Next, possible degradation pathways were proposed and further justified by theoretical calculations of frontier electron densities. This investigation will contribute to the systematic elucidation of the ozonation process of UV filters in aquatic environments.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China; College of Biological and Chemical Engineering, Jiaxing University, Zhejiang, Jiaxing 314001, PR China
| | - Ping Sun
- College of Biological and Chemical Engineering, Jiaxing University, Zhejiang, Jiaxing 314001, PR China
| | - Qun He
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Mingbao Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Hongxia Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China; College of Biological and Chemical Engineering, Jiaxing University, Zhejiang, Jiaxing 314001, PR China
| | - Shaogui Yang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Liansheng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China.
| |
Collapse
|