1
|
Yan C, Liu L, Zhang T, Hu Y, Pan H, Cui C. A comprehensive review on human enteric viruses in water: Detection methods, occurrence, and microbial risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136373. [PMID: 39531817 DOI: 10.1016/j.jhazmat.2024.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human enteric viruses, such as norovirus, adenovirus, rotavirus, and enterovirus, are crucial targets in controlling biological contamination in water systems worldwide. Due to their small size and low concentrations in water, effective virus concentration and detection methods are essential for ensuring microbial safety. This paper reviews the typical and innovative methods for concentrating and detecting human enteric viruses, highlights viral contamination levels across different water bodies, and discusses the removal efficiencies of virus through various treatment technologies. The application and current gaps of quantitative microbial risk assessment (QMRA) for evaluating the risks of human enteric viruses is also explored. Innovative methods such as digital polymerase chain reaction and isothermal amplification show promise in sensitivity and convenience, however, distinguishing between infectious and non-infectious viruses should be a key focus of future detection techniques. The highest concentrations of human enteric viruses were detected in wastewater, ranging from 103 to 106 copies/L, while drinking water showed significantly lower concentrations, often below 102 copies/L. QMRA studies suggest that exposure to human enteric viruses, whether through contaminated drinking water, occupational contact, or accidental wastewater discharge, could result in a life expectancy of 1.96 × 10-4 to 4.53 × 10-1 days/year.
Collapse
Affiliation(s)
- Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lingli Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyuan Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hongchen Pan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Elfellaki N, Berrouch S, Biary A, Goïta S, Rafi H, Lachkar H, Dehhani O, de Rougemont A, Bourlet T, Hafid JE. Comparison of four concentration methods of adenovirus, norovirus and rotavirus in tap water. J Virol Methods 2024; 330:115013. [PMID: 39209160 DOI: 10.1016/j.jviromet.2024.115013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Human enteric viruses, as adenovirus (HAdV), norovirus (HuNoV) and rotavirus (RVA) are significant causes of gastroenteritis associated with consumption of contaminated water worldwide. Various methods have been described for their detection and monitoring in water. The aim of this study was to compare the performance of four conditions for concentrating HAdV, HuNoV and RVA from water matrices, in order to develop a single protocol that could simultaneously concentrate all target viruses from tap water. The tested conditions were based on the adsorption-elution using electronegative filters, in which we evaluated cation-coated filtration by MgCl2 with or without acid rinse by H2SO4 and two elution buffers, namely NaOH and tris-glycine-beef extract. Genomic material was extracted and amplified by real-time PCR and real-time RT-PCR using commercial kits. Based on the statistical analysis of amplification results (cycles of quantification), the condition involving cation-coated filtration by MgCl2 using electronegative filters with acid rinse by H2SO4 combined with NaOH elution allowed efficient recovery of both HAdV, HuNoV and RVA from tap water compared to the other conditions. These findings confirm the effectiveness of the approach used to monitor three major enteric viruses in tap water.
Collapse
Affiliation(s)
- Nouhaila Elfellaki
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Salma Berrouch
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco; Higher School of Technology of El Kelâa des Sraghna, Cadi Ayyad University, El Kelâa des Sraghna, Morocco
| | - Abdelkader Biary
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Simeon Goïta
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Houda Rafi
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Hibatallah Lachkar
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Oussama Dehhani
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Alexis de Rougemont
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon Bourgogne, France
| | - Thomas Bourlet
- Infectious Agents and Hygiene Department, University Hospital of Saint Etienne, Saint-Etienne, France
| | - Jamal Eddine Hafid
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco.
| |
Collapse
|
3
|
Zeng J, Desmond P, Ngo HH, Lin W, Liu X, Liu B, Li G, Ding A. Membrane modification in enhancement of virus removal: A critical review. J Environ Sci (China) 2024; 146:198-216. [PMID: 38969448 DOI: 10.1016/j.jes.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2024]
Abstract
Many waterborne diseases are related with viruses, and COVID-19 worldwide has raised the concern of virus security in water into the public horizon. Compared to other conventional water treatment processes, membrane technology can achieve satisfactory virus removal with fewer chemicals, and prevent the outbreaks of viruses to a maximal extent. Researchers developed new modification methods to improve membrane performance. This review focused on the membrane modifications that enhance the performance in virus removal. The characteristics of viruses and their removal by membrane filtration were briefly generalized, and membrane modifications were systematically discussed through different virus removal mechanisms, including size exclusion, hydrophilic and hydrophobic interactions, electronic interactions, and inactivation. Advanced functional materials for membrane modification were summarized based on their nature. Furthermore, it is suggested that membranes should be enhanced through different mechanisms mainly based on their ranks of pore size. The current review provided theoretical support regarding membrane modifications in the enhancement of virus removal and avenues for practical application.
Collapse
Affiliation(s)
- Jie Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peter Desmond
- Institute of Environmental Engineering (ISA), RWTH Aachen University, Aachen 52056, Germany
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, Sydney 2007, Australia
| | - Wei Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingsheng Liu
- The Second Construction Co. Ltd. of China Construction Third Engineering Bureau, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Reeve P, Marshall G, Zhang P, Thwaites B, van den Akker B. Pathogen validation of small- and large-scale recycled water plants utilizing various clarification and media filtration technologies. JOURNAL OF WATER AND HEALTH 2024; 22:2132-2145. [PMID: 39611673 DOI: 10.2166/wh.2024.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
Media filters are important in wastewater recycling schemes for pathogen removal. Filter selection depends on health targets and plant scale; however, there is a data gap concerning pathogen removal efficacy at full scale. This study compared the pathogen removal performance of two full-scale filtration technologies, including a small 17,000 m3/d pressurized media filtration (PMF) plant and a large 120,000 m3/d gravity filter in the form of dissolved air flotation filtration (DAFF). The preceding clarification processes were also assessed. Validation of protozoa and virus removal was estimated by dosing model organisms yeast and MS2 bacteriophage to demonstrate removal potential. The DAFF process (coagulation, flotation and filtration) was most efficient at removing bacteriophage with a mean log10 reduction value (LRV) of 2.90 (±0.64), compared with 0.98 (±0.37) achieved by coagulation, sedimentation and PMF. Yeast log10 reduction though both systems were similar measuring 3.80 (±1.06) through DAFF and 4.57 (±0.14) through coagulation, sedimentation and PMF. The DAFF process showed greater variability in MS2 and yeast removal, which was attributed to filtration. Energy and chemical usage were also evaluated, revealing trade-offs between these factors, treatment scale and pathogen LRVs, offering practical insights into the technological and economic aspects of designing fit-for-purpose recycled water schemes.
Collapse
Affiliation(s)
- Petra Reeve
- South Australian Water Corporation, Adelaide, SA 5000, Australia
| | | | - Po Zhang
- South Australian Water Corporation, Adelaide, SA 5000, Australia
| | - Ben Thwaites
- South Australian Water Corporation, Adelaide, SA 5000, Australia
| | - Ben van den Akker
- South Australian Water Corporation, Adelaide, SA 5000, Australia; STEM, University of South Australia, Mawson Lakes, SA 5095, Australia E-mail:
| |
Collapse
|
5
|
Oh C, Zheng G, Samineni L, Kumar M, Nguyen TH. Effective Removal of Enteric Viruses by Moringa oleifera Seed Extract Functionalized Cotton Filter. ACS ES&T WATER 2024; 4:3320-3331. [DOI: 10.1021/acsestwater.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois Urbana−Champaign, 205 N. Mathews Ave, Urbana, Illinois 61801, United States
- Department of Environmental Engineering Sciences, University of Florida, 1128 Center Dr, Gainesville, Florida 32611, United States
| | - Gang Zheng
- Department of Civil and Environmental Engineering, University of Illinois Urbana−Champaign, 205 N. Mathews Ave, Urbana, Illinois 61801, United States
| | - Laxmicharan Samineni
- Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St, Austin, Texas 78712, United States
| | - Manish Kumar
- Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St, Austin, Texas 78712, United States
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 301E E Dean Keeton St c1700, Austin, Texas 78712, United States
| | - Thanh H. Nguyen
- Department of Civil and Environmental Engineering, University of Illinois Urbana−Champaign, 205 N. Mathews Ave, Urbana, Illinois 61801, United States
- Institute of Genomic Biology, University of Illinois Urbana−Champaign, 1206 W. Gregory Dr, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Maneein S, Sangsanont J, Limpiyakorn T, Sirikanchana K, Rattanakul S. The coagulation process for enveloped and non-enveloped virus removal in turbid water: Removal efficiencies, mechanisms and its application to SARS-CoV-2 Omicron BA.2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172945. [PMID: 38703849 DOI: 10.1016/j.scitotenv.2024.172945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The coagulation process has a high potential as a treatment method that can handle pathogenic viruses including emerging enveloped viruses in drinking water treatment process which can lower infection risk through drinking water consumption. In this study, a surrogate enveloped virus, bacteriophage Փ6, and surrogate non-enveloped viruses, including bacteriophage MS-2, T4, ՓX174, were used to evaluate removal efficiencies and mechanisms by the conventional coagulation process with alum, poly‑aluminum chloride, and ferric chloride at pH 5, 7, and 9 in turbid water. Also, treatability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recent virus of global concern by coagulation was evaluated as SARS-CoV-2 can presence in drinking water sources. It was observed that an increase in the coagulant dose enhanced the removal efficiency of turbidity and viruses, and the condition that provided the highest removal efficiency of enveloped and non-enveloped viruses was 50 mg/L of coagulants at pH 5. In addition, the coagulation process was more effective for enveloped virus removal than for the non-enveloped viruses, and it demonstrated reduction of SARS-CoV-2 Omicron BA.2 over 0.83-log with alum. According to culture- and molecular-based assays (qPCR and CDDP-qPCR), the virus removal mechanisms were floc adsorption and coagulant inactivation. Through inactivation with coagulants, coagulants caused capsid destruction, followed by genome damage in non-enveloped viruses; however, damage to a lipid envelope is suggested to contribute to a great extend for enveloped virus inactivation. We demonstrated that conventional coagulation is a promising method for controlling emerging and re-emerging viruses in drinking water.
Collapse
Affiliation(s)
- Siriwara Maneein
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
7
|
Miura T, Kadoya SS, Miura Y, Takino H, Akiba M, Sano D, Masuda T. Pepper mild mottle virus intended for use as a process indicator for drinking water treatment: Present forms and quantitative relations to norovirus and rotavirus in surface water. WATER RESEARCH 2024; 257:121713. [PMID: 38733963 DOI: 10.1016/j.watres.2024.121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Pepper mild mottle virus (PMMoV) has been proposed as a potential indicator of human enteric viruses in environmental water and for viral removal during drinking water treatment. To investigate the occurrence and present forms of PMMoV and quantitative relations to norovirus GII and rotavirus A (RVA) in surface waters, 147 source water samples were collected from 21 drinking water treatment plants (DWTPs) in Japan between January 2018 and January 2021, and the concentrations of viruses in suspended and dissolved fractions were measured using real-time RT-PCR. PMMoV was detected in 81-100 % of samples in each sample month and observed concentrations ranged from 3.0 to 7.0 log10 copies/L. The concentrations of PMMoV were higher in dissolved fraction compared to suspended fractions, while different partitioning was observed for NoV GII depending on seasons. The concentrations of PMMoV were basically higher than those of norovirus GII (1.9-5.3 log10 copies/L) and RVA (1.9-6.6 log10 copies/L), while in 18 samples, RVA presented higher concentrations than PMMoV. Partial regions of VP7, VP4, and VP6 of the RVA in the 18 samples were amplified using nested PCR, and the genotypes were determined using an amplicon-based next-generation sequencing approach. We found that these source water samples included not only human RVA but also various animal RVA and high genetic diversity due to the existence of animal RVA was associated with a higher RVA concentration than PMMoV. Our findings suggest that PMMoV can be used as an indicator of norovirus GII and human RVA in drinking water sources and that the indicator performance should be evaluated by comparing to zoonotic viruses as well as human viruses.
Collapse
Affiliation(s)
- Takayuki Miura
- Department of Environmental Health, National Institute of Public Health, Wako, Japan.
| | - Syun-Suke Kadoya
- Department of Civil and Environmental Engineering, Tohoku University, Japan; Department of Urban Engineering, The University of Tokyo, Japan
| | - Yohei Miura
- Department of Civil and Environmental Engineering, Tohoku University, Japan
| | - Hiroyuki Takino
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| | - Michihiro Akiba
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Tohoku University, Japan
| | | |
Collapse
|
8
|
Hong W, Mei H, Shi X, Lin X, Wang S, Ni R, Wang Y, Song L. Viral community distribution, assembly mechanism, and associated hosts in an industrial park wastewater treatment plant. ENVIRONMENTAL RESEARCH 2024; 247:118156. [PMID: 38199475 DOI: 10.1016/j.envres.2024.118156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/02/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Viruses manipulate bacterial community composition and impact wastewater treatment efficiency. Some viruses pose threats to the environment and human populations through infection. Improving the efficiency of wastewater treatment and ensuring the health of the effluent and receptor pools requires an understanding of how viral communities assemble and interact with hosts in wastewater treatment plants (WWTPs). We used metagenomic analysis to study the distribution, assembly mechanism, and sensitive hosts for the viral communities in raw water, anaerobic tanks, and returned activated sludge units of a large-scale industrial park WWTP. Uroviricota (53.42% ± 0.14%) and Nucleocytoviricota (26.1% ± 0.19%) were dominant in all units. Viral community composition significantly differed between units, as measured by β diversity (P = 0.005). Compared to raw water, the relative viral abundance decreased by 29.8% in the anaerobic tank but increased by 9.9% in the activated sludge. Viral community assembly in raw water and anaerobic tanks was predominantly driven by deterministic processes (MST <0.5) versus stochastic processes (MST >0.5) in the activated sludge, indicating that differences in diffusion limits may fundamentally alter the assembly mechanisms of viral communities between the solid and liquid-phase environments. Acidobacteria was identified as the sensitive host contributing to viral abundance, exhibiting strong interactions and a mutual dependence (degree = 59). These results demonstrate the occurrence and prevalence of viruses in WWTPs, their different assembly mechanism, and sensitive hosts. These observations require further study of the mechanisms of viral community succession, ecological function, and roles in the successive wastewater treatment units.
Collapse
Affiliation(s)
- Wenqing Hong
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Hong Mei
- East China Engineering Science and Technology Co., Ltd, Hefei, 230024, China
| | - Xianyang Shi
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China.
| | - Xiaoxing Lin
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Shuijing Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Renjie Ni
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Yan Wang
- East China Engineering Science and Technology Co., Ltd, Hefei, 230024, China
| | - Liyan Song
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China.
| |
Collapse
|
9
|
Su Y, Gao R, Huang F, Liang B, Guo J, Fan L, Wang A, Gao SH. Occurrence, transmission and risks assessment of pathogens in aquatic environments accessible to humans. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120331. [PMID: 38368808 DOI: 10.1016/j.jenvman.2024.120331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Pathogens are ubiquitously detected in various natural and engineered water systems, posing potential threats to public health. However, it remains unclear which human-accessible waters are hotspots for pathogens, how pathogens transmit to these waters, and what level of health risk associated with pathogens in these environments. This review collaboratively focuses and summarizes the contamination levels of pathogens on the 5 water systems accessible to humans (natural water, drinking water, recreational water, wastewater, and reclaimed water). Then, we showcase the pathways, influencing factors and simulation models of pathogens transmission and survival. Further, we compare the health risk levels of various pathogens through Quantitative Microbial Risk Assessment (QMRA), and assess the limitations of water-associated QMRA application. Pathogen levels in wastewater are consistently higher than in other water systems, with no significant variation for Cryptosporidium spp. among five water systems. Hydraulic conditions primarily govern the transmission of pathogens into human-accessible waters, while environmental factors such as temperature impact pathogens survival. The median and mean values of computed public health risk levels posed by pathogens consistently surpass safety thresholds, particularly in the context of recreational waters. Despite the highest pathogens levels found in wastewater, the calculated health risk is significantly lower than in other water systems. Except pathogens concentration, variables like the exposure mode, extent, and frequency are also crucial factors influencing the public health risk in water systems. This review shares valuable insights to the more accurate assessment and comprehensive management of public health risk in human-accessible water environments.
Collapse
Affiliation(s)
- Yiyi Su
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Rui Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Fang Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Yasui M, Katayama H. Unveiling the viral escape: Quantification of microfloc-bound viruses in precoagulation and membrane filtration. JOURNAL OF WATER AND HEALTH 2024; 22:309-320. [PMID: 38421625 PMCID: wh_2024_233 DOI: 10.2166/wh.2024.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The implementation of precoagulation before the physical removal process is expected to achieve a high virus removal rate. However, viruses may form small flocs and subsequently escape into the effluent during physical removal processes. This study evaluated how viruses in the microflocs could be quantified using conventional virus quantification methods (plaque assay and quantitative polymerase chain reaction (qPCR)) to reveal the risk of underestimating virus concentration. In this study, the microfloc dissolution phenomenon in phosphate buffer solution was employed as a floc dissolution test. Viruses in microflocs formed under the experimental conditions. assuming water treatments, were quantified before and after floc dissolution. The findings revealed that virus concentrations increased by 1.0-3.9 log plaque-forming units/mL according to the plaque assay and by 1.7-4.0 log copies/mL according to the qPCR. This increase occurred after the dissolution of microflocs that were prepared in the humic acid test water. In the case of treated wastewater, virus concentrations increased in all samples according to the plaque assay and in seven of eight samples according to the qPCR. Our results indicate the necessity of careful consideration of virus quantification after precoagulation and physical removal systems.
Collapse
Affiliation(s)
- Midori Yasui
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Environmental Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan E-mail:
| | - Hiroyuki Katayama
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Panizzolo M, Gea M, Carraro E, Gilli G, Bonetta S, Pignata C. Occurrence of human pathogenic viruses in drinking water and in its sources: A review. J Environ Sci (China) 2023; 132:145-161. [PMID: 37336605 DOI: 10.1016/j.jes.2022.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/21/2023]
Abstract
Since many waterborne diseases are caused by human pathogenic viruses, virus monitoring of drinking water (DW) and DW sources is crucial for public health. Therefore, the aim of this review was to describe the occurrence of human pathogenic viruses in DW and DW sources; the occurrence of two viruses proposed as novel indicators of human faecal contamination (Pepper mild mottle virus and Tobacco mosaic virus) was also reported. This research was focused on articles that assessed viral occurrence using molecular methods in the surface water used for DW production (SW-D), groundwater used for DW production (GW-D), DW and bottled-DW (BW). A total of 1544 studies published in the last 10 years were analysed, and 79 were ultimately included. In considering the detection methods, filtration is the most common concentration technique, while quantitative polymerase chain reaction is the most common quantification technique. Regarding virus occurrence in SW-D, GW-D, and DW, high percentages of positive samples were reported for adenovirus, polyomavirus and Pepper mild mottle virus. Viral genomes were frequently detected in SW-D and rarely in GW-D, suggesting that GW-D may be a safe DW source. Viral genomes were also detected in DW, posing a possible threat to human health. The lowest percentages of positive samples were found in Europe, while the highest were found in Asia and South America. Only three articles assessed viral occurrence in BW. This review highlights the lack of method standardization and the need for legislation updates.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy.
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| |
Collapse
|
12
|
Li J, Campos LC, Zhang L, Xie W. Sand and sand-GAC filtration technologies in removing PPCPs: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157680. [PMID: 35907530 DOI: 10.1016/j.scitotenv.2022.157680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/24/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Concerns have been raised about the risks that pharmaceuticals and personal care products (PPCPs) in aquatic environments posed to humans and the environment. In recent years, sand filtration has been used to potentially remove these emerging contaminants from water. However, there has been no review of the effectiveness of this technology to date. This paper presents a brief introduction of sand filtration types, reviews the current progress in PPCPs removal through sand filtration, and discusses the mechanisms behind this process and the combination of granular activated carbon (GAC) and sand as an enhanced sand-GAC filtration technology. Sand filtration achieves a reasonable but highly variable degree of PPCPs removal. Biodegradation and adsorption are the two main mechanisms of PPCPs removal, in particular the biodegradation since adsorption capacity of sand is relatively low. Other processes, such as bio-sorption and indirect adsorption, may also contribute to PPCPs removal. To compensate for the inadequate PPCPs removal through sand filtration, porous GAC has been combined with sand to develop sand-GAC filtration technologies. Serial, dual, and sandwich filters have been investigated, and significant removal enhancement has been observed, due to the strengthened adsorption capacity, suggesting the applicability of these variants. Future research focus, such as investigating the influence of different operational conditions on sand filter performance, obtaining a deeper understanding of the various removal mechanisms, and investigating of long-term performance of the filter used for PPCPs removal, are suggested.
Collapse
Affiliation(s)
- Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Luiza C Campos
- Department of Civil, Environmental & Geomatic Engineering, Faculty of Engineering, University College London, London WC1E 6BT, UK
| | - Linyang Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Wenjun Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| |
Collapse
|
13
|
Hsu SY, Bayati M, Li C, Hsieh HY, Belenchia A, Klutts J, Zemmer SA, Reynolds M, Semkiw E, Johnson HY, Foley T, Wieberg CG, Wenzel J, Johnson MC, Lin CH. Biomarkers selection for population normalization in SARS-CoV-2 wastewater-based epidemiology. WATER RESEARCH 2022; 223:118985. [PMID: 36030667 PMCID: PMC9376872 DOI: 10.1016/j.watres.2022.118985] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/15/2022] [Accepted: 08/13/2022] [Indexed: 05/29/2023]
Abstract
Wastewater-based epidemiology (WBE) has been one of the most cost-effective approaches to track the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) levels in the communities since the coronavirus disease 2019 (COVID-19) outbreak in 2020. Normalizing SARS-CoV-2 concentrations by the population biomarkers in wastewater is critical for interpreting the viral loads, comparing the epidemiological trends among the sewersheds, and identifying the vulnerable communities. In this study, five population biomarkers, pepper mild mottle virus (PMMoV), creatinine (CRE), 5-hydroxyindoleacetic acid (5-HIAA), caffeine (CAF) and its metabolite paraxanthine (PARA) were investigated and validated for their utility in normalizing the SARS-CoV-2 loads through two normalizing approaches using the data from 64 wastewater treatment plants (WWTPs) in Missouri. Their utility in assessing the real-time population contributing to the wastewater was also evaluated. The best performing candidate was further tested for its capacity for improving correlation between normalized SARS-CoV-2 loads and the clinical cases reported in the City of Columbia, Missouri, a university town with a constantly fluctuating population. Our results showed that, except CRE, the direct and indirect normalization approaches using biomarkers allow accounting for the changes in wastewater dilution and differences in relative human waste input over time regardless flow volume and population of the given WWTP. Among selected biomarkers, PARA is the most reliable population biomarker in determining the SARS-CoV-2 load per capita due to its high accuracy, low variability, and high temporal consistency to reflect the change in population dynamics and dilution in wastewater. It also demonstrated its excellent utility for real-time assessment of the population contributing to the wastewater. In addition, the viral loads normalized by the PARA-estimated population significantly improved the correlation (rho=0.5878, p < 0.05) between SARS-CoV-2 load per capita and case numbers per capita. This chemical biomarker complements the current normalization scheme recommended by CDC and helps us understand the size, distribution, and dynamics of local populations for forecasting the prevalence of SARS-CoV2 within each sewershed.
Collapse
Affiliation(s)
- Shu-Yu Hsu
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA; Center for Agroforestry, University of Missouri, Columbia, MO 65201, USA
| | - Mohamed Bayati
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Chenhui Li
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Hsin-Yeh Hsieh
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Anthony Belenchia
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Jessica Klutts
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Sally A Zemmer
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Melissa Reynolds
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Elizabeth Semkiw
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Hwei-Yiing Johnson
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Trevor Foley
- Missouri Department of Corrections, Jefferson City, MO, USA
| | - Chris G Wieberg
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Jeff Wenzel
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65201, USA
| | - Chung-Ho Lin
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA; Center for Agroforestry, University of Missouri, Columbia, MO 65201, USA.
| |
Collapse
|
14
|
Dhakar V, Geetanjali AS. Role of pepper mild mottle virus as a tracking tool for fecal pollution in aquatic environments. Arch Microbiol 2022; 204:513. [PMID: 35864362 PMCID: PMC9303839 DOI: 10.1007/s00203-022-03121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
The plant pathogen pepper mild mottle virus (PMMoV) has recently been proposed as a water quality indicator, it is a RNA virus belonging to the genus Tobamovirus in the family Virgoviridae that causes harm to the pepper crops. After consuming processed food products containing infected peppers, such as hot sauces, PMMoV is excreted in high concentrations in feces; therefore, this is the most common RNA virus, constantly found in the feces of humans. The fecal-oral pathway is emerging as an environmental problem. The presence of high concentrations of pathogens associated with human excreta in environmental waters or water reuse supplies poses a threat to public health. Due to the difficulty in determining the presence of pathogens effectively in water, attempts to monitor microbial water quality often use surrogates or indicator organisms that can be easily detected; therefore, PMMoV is used as a viral surrogate in aquatic environment. This paper describes the incidence and persistence of PMMoV in aquatic environments and in waste treatment plants and its usefulness for quantifying virus reductions by advanced water treatment technologies. In recent research, SARS-CoV-2 was reported to be found in wastewater and utilized for the purpose of monitoring coronavirus illness outbreaks. Since PMMoV is readily identified in the human feces and can also serve as an indicator of human waste, the determined PMMoV concentrations may be utilized to give the normalized report of the SARS-CoV-2 concentration, so that, the amount of human waste found in the wastewater can be taken into consideration.
Collapse
Affiliation(s)
- Vaishali Dhakar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - A. Swapna Geetanjali
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| |
Collapse
|
15
|
Torii S, Corre MH, Miura F, Itamochi M, Haga K, Katayama K, Katayama H, Kohn T. Genotype-dependent kinetics of enterovirus inactivation by free chlorine and ultraviolet (UV) irradiation. WATER RESEARCH 2022; 220:118712. [PMID: 35691190 DOI: 10.1016/j.watres.2022.118712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Inactivation kinetics of enterovirus by disinfection is often studied using a single laboratory strain of a given genotype. Environmental variants of enterovirus are genetically distinct from the corresponding laboratory strain, yet it is poorly understood how these genetic differences affect inactivation. Here we evaluated the inactivation kinetics of nine coxsackievirus B3 (CVB3), ten coxsackievirus B4 (CVB4), and two echovirus 11 (E11) variants by free chlorine and ultraviolet irradiation (UV). The inactivation kinetics by free chlorine were genotype- (i.e., susceptibility: CVB5 < CVB3 ≈ CVB4 < E11) and genogroup-dependent and exhibited up to 15-fold difference among the tested viruses. In contrast, only minor (up to 1.3-fold) differences were observed in the UV inactivation kinetics. The differences in variability between the two disinfectants could be rationalized by their respective inactivation mechanisms: inactivation by UV mainly depends on the genomic size and composition, which was similar for all viruses tested, whereas free chlorine targets the viral capsid protein, which exhibited critical differences between genogroups and genotypes. Finally, we integrated the observed variability in inactivation rate constants into an expanded Chick-Watson model to estimate the overall inactivation of an enterovirus consortium. The results highlight that the distribution of inactivation rate constants and the abundance of each genotype are essential parameters to accurately predict the overall inactivation of an enterovirus population by free chlorine. We conclude that predictions based on inactivation data of a single variant or reference pathogen alone likely overestimate the true disinfection efficiency of free chlorine.
Collapse
Affiliation(s)
- Shotaro Torii
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Marie-Hélène Corre
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fuminari Miura
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama-shi, Ehime, Japan; Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Masae Itamochi
- Department of Virology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-shi, Toyama, Japan
| | - Kei Haga
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
16
|
Microbial ecology of biofiltration used for producing safe drinking water. Appl Microbiol Biotechnol 2022; 106:4813-4829. [PMID: 35771243 PMCID: PMC9329406 DOI: 10.1007/s00253-022-12013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022]
Abstract
Abstract
Biofiltration is a water purification technology playing a pivotal role in producing safe drinking water. This technology attracts many interests worldwide due to its advantages, such as no addition of chemicals, a low energy input, and a high removal efficiency of organic compounds, undesirable taste and odours, and pathogens. The current review describes the microbial ecology of three biofiltration processes that are routinely used in drinking water treatment plants, i.e. (i) rapid sand filtration (RSF), (ii) granular activated carbon filtration (GACF), and (iii) slow sand filtration (SSF). We summarised and compared the characteristics, removal performance, and corresponding (newly revealed) mechanisms of the three biofiltration processes. Specifically, the microbial ecology of the different biofilter processes and the role of microbial communities in removing nutrients, organic compounds, and pathogens were reviewed. Finally, we highlight the limitations and challenges in the study of biofiltration in drinking water production, and propose future perspectives for obtaining a comprehensive understanding of the microbial ecology of biofiltration, which is needed to promote and optimise its further application. Key points • Biofilters are composed of complex microbiomes, primarily shaped by water quality. • Conventional biofilters contribute to address safety challenges in drinking water. • Studies may underestimate the active/functional role of microbiomes in biofilters. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12013-x.
Collapse
|
17
|
Canh VD, Liu M, Sangsanont J, Katayama H. Capsid integrity detection of pathogenic viruses in waters: Recent progress and potential future applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154258. [PMID: 35248642 DOI: 10.1016/j.scitotenv.2022.154258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Waterborne diseases caused by pathogenic human viruses are a major public health concern. To control the potential risk of viral infection through contaminated waters, a rapid, reliable tool to assess the infectivity of pathogenic viruses is required. Recently, an advanced approach (i.e., capsid integrity (RT-)qPCR) was developed to discriminate intact viruses (potentially infectious) from inactivated viruses. In this approach, samples were pretreated with capsid integrity reagents (e.g., monoazide dyes or metal compounds) before (RT -)qPCR. These reagents can only penetrate inactivated viruses with compromised capsids to bind to viral genomes and prevent their amplification, but they cannot enter viruses with intact capsids. Therefore, only viral genomes of intact viruses were amplified or detected by (RT-)qPCR after capsid integrity treatment. In this study, we reviewed recent progress in the development and application of capsid integrity (RT-)qPCR to assess the potential infectivity of viruses (including non-enveloped and enveloped viruses with different genome structures [RNA and DNA]) in water. The efficiency of capsid integrity (RT-)qPCR has been shown to depend on various factors, such as conditions of integrity reagent treatment, types of viruses, environmental matrices, and the capsid structure of viruses after disinfection treatments (e.g., UV, heat, and chlorine). For the application of capsid integrity (RT-)qPCR in real-world samples, the use of suitable virus concentration methods and process controls is important to control the efficiency of capsid integrity (RT-)qPCR. In addition, potential future applications of capsid integrity (RT-)qPCR for determining the mechanism of disinfection treatment on viral structure (e.g., capsid or genome) and a combination of capsid integrity treatment and next-generation sequencing (NGS) (capsid integrity NGS) for monitoring the community of intact pathogenic viruses in water are also discussed. This review provides essential information on the application of capsid integrity (RT-)qPCR as an efficient tool for monitoring the presence of pathogenic viruses with intact capsids in water.
Collapse
Affiliation(s)
- Vu Duc Canh
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Miaomiao Liu
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Group, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroyuki Katayama
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
18
|
Liu G, Qu J, Rose J, Medema G. Roadmap for Managing SARS-CoV-2 and Other Viruses in the Water Environment for Public Health. ENGINEERING (BEIJING, CHINA) 2022; 12:139-144. [PMID: 33654547 PMCID: PMC7909608 DOI: 10.1016/j.eng.2020.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 05/25/2023]
Abstract
The water sector needs to address viral-related public health issues, because water is a virus carrier, which not only spreads viruses (e.g., via drinking water), but also provides information about the circulation of viruses in the community (e.g., via sewage). It has been widely reported that waterborne viral pathogens are abundant, diverse, complex, and threatening the public health in both developed and developing countries. Meanwhile, there is great potential for viral monitoring that can indicate biosafety, treatment performance and community health. New developments in technology have been rising to meet the emerging challenges over the past decades. Under the current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the world's attention is directed to the urgent need to tackle the most challenging public health issues related to waterborne viruses. Based on critical analysis of the water viral knowledge progresses and gaps, this article offers a roadmap for managing COVID-19 and other viruses in the water environments for ensuring public health.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Joan Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | - Gertjan Medema
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
- KWR Water Research Institute, Nieuwegein 3433 PE, Netherlands
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628 CN, Netherlands
| |
Collapse
|
19
|
Shirakawa D, Shirasaki N, Matsushita T, Matsui Y, Yamashita R, Matsumura T, Koriki S. Evaluation of reduction efficiencies of pepper mild mottle virus and human enteric viruses in full-scale drinking water treatment plants employing coagulation-sedimentation-rapid sand filtration or coagulation-microfiltration. WATER RESEARCH 2022; 213:118160. [PMID: 35151086 DOI: 10.1016/j.watres.2022.118160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Here, we evaluated the reduction efficiencies of indigenous pepper mild mottle virus (PMMoV, a potential surrogate for human enteric viruses to assess virus removal by coagulation-sedimentation-rapid sand filtration [CS-RSF] and coagulation-microfiltration [C-MF]) and representative human enteric viruses in four full-scale drinking water treatment plants that use CS-RSF (Plants A and B) or C-MF (Plants C and D). First, we developed a virus concentration method by using an electropositive filter and a tangential-flow ultrafiltration membrane to effectively concentrate and recover PMMoV from large volumes of water: the recovery rates of PMMoV were 100% when 100-L samples of PMMoV-spiked dechlorinated tap water were concentrated to 20 mL; even when spiked water volume was 2000 L, recovery rates of >30% were maintained. The concentrations of indigenous PMMoV in raw and treated water samples determined by using this method were always above the quantification limit of the real-time polymerase chain reaction assay. We therefore were able to determine its reduction ratios: 0.9-2.7-log10 in full-scale CS-RSF and 0.7-2.9-log10 in full-scale C-MF. The PMMoV reduction ratios in C-MF at Plant C (1.0 ± 0.3-log10) were lower than those in CS-RSF at Plants A (1.7 ± 0.5-log10) and B (1.4 ± 0.7-log10), despite the higher ability of MF for particle separation in comparison with RSF owing to the small pore size in MF. Lab-scale virus-spiking C-MF experiments that mimicked full-scale C-MF revealed that a low dosage of coagulant (polyaluminum chloride [PACl]) applied in C-MF, which is determined mainly from the viewpoint of preventing membrane fouling, probably led to the low reduction ratios of PMMoV in C-MF. This implies that high virus reduction ratios (>4-log10) achieved in previous lab-scale virus-spiking C-MF studies are not necessarily achieved in full-scale C-MF. The PMMoV reduction ratios in C-MF at Plant D (2.2 ± 0.6-log10) were higher than those at Plant C, despite similar coagulant dosages. In lab-scale C-MF, the PMMoV reduction ratios increased from 1-log10 (with PACl [basicity 1.5], as at Plant C) to 2-4-log10 (with high-basicity PACl [basicity 2.1], as at Plant D), suggesting that the use of high-basicity PACl probably resulted in higher reduction ratios of PMMoV at Plant D than at Plant C. Finally, we compared the reduction ratios of indigenous PMMoV and representative human enteric viruses in full-scale CS-RSF and C-MF. At Plant D, the concentrations of human norovirus genogroup II (HuNoV GII) in raw water were sometimes above the quantification limit; however, whether its reduction ratios in C-MF were higher than those of PMMoV could not be judged since reduction ratios were >1.4-log10 for HuNoV GII and 2.3-2.9-log10 for PMMoV. At Plant B, the concentrations of enteroviruses (EVs) and HuNoV GII in raw water were above the quantification limit on one occasion, and the reduction ratios of EVs (>1.2-log10) and HuNoV GII (>1.5-log10) in CS-RSF were higher than that of PMMoV (0.9-log10). This finding supports the usefulness of PMMoV as a potential surrogate for human enteric viruses to assess virus removal by CS-RSF.
Collapse
Affiliation(s)
- D Shirakawa
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - N Shirasaki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - T Matsushita
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Y Matsui
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - R Yamashita
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - T Matsumura
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - S Koriki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
20
|
Hsu SY, Bayati MB, Li C, Hsieh HY, Belenchia A, Klutts J, Zemmer SA, Reynolds M, Semkiw E, Johnson HY, Foley T, Wieberg CG, Wenzel J, Johnson MC, Lin CH. Biomarkers Selection for Population Normalization in SARS-CoV-2 Wastewater-based Epidemiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.03.14.22272359. [PMID: 35313587 PMCID: PMC8936110 DOI: 10.1101/2022.03.14.22272359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wastewater-based epidemiology (WBE) has been one of the most cost-effective approaches to track the SARS-CoV-2 levels in the communities since the COVID-19 outbreak in 2020. Normalizing SARS-CoV-2 concentrations by the population biomarkers in wastewater can be critical for interpreting the viral loads, comparing the epidemiological trends among the sewersheds, and identifying the vulnerable communities. In this study, five population biomarkers, pepper mild mottle virus (pMMoV), creatinine (CRE), 5-hydroxyindoleacetic acid (5-HIAA), caffeine (CAF) and its metabolite paraxanthine (PARA) were investigated for their utility in normalizing the SARS-CoV-2 loads through developed direct and indirect approaches. Their utility in assessing the real-time population contributing to the wastewater was also evaluated. The best performed candidate was further tested for its capacity for improving correlation between normalized SARS-CoV-2 loads and the clinical cases reported in the City of Columbia, Missouri, a university town with a constantly fluctuated population. Our results showed that, except CRE, the direct and indirect normalization approaches using biomarkers allow accounting for the changes in wastewater dilution and differences in relative human waste input over time regardless flow volume and population at any given WWTP. Among selected biomarkers, PARA is the most reliable population biomarker in determining the SARS-CoV-2 load per capita due to its high accuracy, low variability, and high temporal consistency to reflect the change in population dynamics and dilution in wastewater. It also demonstrated its excellent utility for real-time assessment of the population contributing to the wastewater. In addition, the viral loads normalized by the PARA-estimated population significantly improved the correlation ( rho =0.5878, p <0.05) between SARS-CoV-2 load per capita and case numbers per capita. This chemical biomarker offers an excellent alternative to the currently CDC-recommended pMMoV genetic biomarker to help us understand the size, distribution, and dynamics of local populations for forecasting the prevalence of SARS-CoV2 within each sewershed. HIGHLIGHT bullet points The paraxanthine (PARA), the metabolite of the caffeine, is a more reliable population biomarker in SARS-CoV-2 wastewater-based epidemiology studies than the currently recommended pMMoV genetic marker.SARS-CoV-2 load per capita could be directly normalized using the regression functions derived from correlation between paraxanthine and population without flowrate and population data.Normalizing SARS-CoV-2 levels with the chemical marker PARA significantly improved the correlation between viral loads per capita and case numbers per capita.The chemical marker PARA demonstrated its excellent utility for real-time assessment of the population contributing to the wastewater.
Collapse
Affiliation(s)
- Shu-Yu Hsu
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
- Center for Agroforestry, University of Missouri, Columbia, MO 65201, USA
| | - Mohamed B Bayati
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Chenhui Li
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Hsin-Yeh Hsieh
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Anthony Belenchia
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Jessica Klutts
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Sally A Zemmer
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Melissa Reynolds
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Elizabeth Semkiw
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Hwei-Yiing Johnson
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Trevor Foley
- Missouri Department of Corrections, Jefferson City, MO, USA
| | - Chris G Wieberg
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Jeff Wenzel
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65201, USA
| | - Chung-Ho Lin
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
- Center for Agroforestry, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
21
|
Torii S, Oishi W, Zhu Y, Thakali O, Malla B, Yu Z, Zhao B, Arakawa C, Kitajima M, Hata A, Ihara M, Kyuwa S, Sano D, Haramoto E, Katayama H. Comparison of five polyethylene glycol precipitation procedures for the RT-qPCR based recovery of murine hepatitis virus, bacteriophage phi6, and pepper mild mottle virus as a surrogate for SARS-CoV-2 from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150722. [PMID: 34610400 PMCID: PMC8487407 DOI: 10.1016/j.scitotenv.2021.150722] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 05/04/2023]
Abstract
Polyethylene glycol (PEG) precipitation is one of the conventional methods for virus concentration. This technique has been used to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater. The procedures and seeded surrogate viruses were different among implementers; thus, the reported whole process recovery efficiencies considerably varied among studies. The present study compared five PEG precipitation procedures, with different operational parameters, for the RT-qPCR-based whole process recovery efficiency of murine hepatitis virus (MHV), bacteriophage phi6, and pepper mild mottle virus (PMMoV), and molecular process recovery efficiency of murine norovirus using 34 raw wastewater samples collected in Japan. The five procedures yielded significantly different whole process recovery efficiency of MHV (0.070%-2.6%) and phi6 (0.071%-0.51%). The observed concentration of indigenous PMMoV ranged from 8.9 to 9.7 log (8.2 × 108 to 5.6 × 109) copies/L. Interestingly, PEG precipitation with 2-h incubation outperformed that with overnight incubation partially due to the difference in molecular process recovery efficiency. The recovery load of MHV exhibited a positive correlation (r = 0.70) with that of PMMoV, suggesting that PMMoV is the potential indicator of the recovery efficiency of SARS-CoV-2. In addition, we reviewed 13 published studies and found considerable variability between different studies in the whole process recovery efficiency of enveloped viruses by PEG precipitation. This was due to the differences in operational parameters and surrogate viruses as well as the differences in wastewater quality and bias in the measurement of the seeded load of surrogate viruses, resulting from the use of different analytes and RNA extraction methods. Overall, the operational parameters (e.g., incubation time and pretreatment) should be optimized for PEG precipitation. Co-quantification of PMMoV may allow for the normalization of SARS-CoV-2 RNA concentration by correcting for the differences in whole process recovery efficiency and fecal load among samples.
Collapse
Affiliation(s)
- Shotaro Torii
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Wakana Oishi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yifan Zhu
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Ocean Thakali
- Department of Engineering, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Zaizhi Yu
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Bo Zhao
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Chisato Arakawa
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Akihiko Hata
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan; Faculty of Agriculture and Marine Science, Kochi University, Monobe-Otsu 200, Nankoku, Kochi 783-8502 Japan
| | - Shigeru Kyuwa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
22
|
Hezam A, Drmosh QA, Ponnamma D, Bajiri MA, Qamar M, Namratha K, Zare M, Nayan MB, Onaizi SA, Byrappa K. Strategies to Enhance ZnO Photocatalyst's Performance for Water Treatment: A Comprehensive Review. CHEM REC 2022; 22:e202100299. [PMID: 35119182 DOI: 10.1002/tcr.202100299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/22/2022] [Indexed: 01/05/2023]
Abstract
Despite the photocatalytic organic pollutant degradation using ZnO started in 1910-1911, many challenges are still ahead, and several critical issues have to be addressed. Large band gap, and short life-time of photogenerated electrons and holes are critical issues negatively affect the photocatalytic activity of ZnO. Various approaches have been introduced to overcome these issues including intrinsic doping, extrinsic doping, and heterostructure. This review introduces unique and deep insights into tuning of the photocatalytic activity of ZnO. It starts by description of how to tune the photocatalytic activity of pristine ZnO through tuning its morphology, surface area, exposed face, and intrinsic defects. Afterward, the review explains how the Z-scheme approach succeed to address the redox weakened issue of heterojunction approach. In general, this review provides a clear image that helps the researcher to tune the photocatalytic activity of pristine ZnO and its heterostructure.
Collapse
Affiliation(s)
- Abdo Hezam
- Center for Materials Science and Technology, University of Mysore, Vijana Bhavana, Manasagangothiri, 570 006, Mysuru, India.,Leibniz-Institute for Catalysis at the University of Rostock, 18059, Rostock, Germany
| | - Q A Drmosh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
| | | | - Mohammed Abdullah Bajiri
- Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, 577 451, Shankaraghatta, India
| | - Mohammad Qamar
- Interdisciplinary Research Center for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
| | - K Namratha
- DOS in Earth Science, University of Mysore, Mysuru, 570 006, India
| | - Mina Zare
- Center for Materials Science and Technology, University of Mysore, Vijana Bhavana, Manasagangothiri, 570 006, Mysuru, India
| | - M B Nayan
- Center for Materials Science and Technology, University of Mysore, Vijana Bhavana, Manasagangothiri, 570 006, Mysuru, India
| | - Sagheer A Onaizi
- Interdisciplinary Research Center for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia.,Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, 31216, Dhahran, Saudi Arabia
| | - K Byrappa
- Adichunchanagiri University, N.H.75, 571448, B. G. Nagara, Mandya District, India
| |
Collapse
|
23
|
Chen L, Deng Y, Dong S, Wang H, Li P, Zhang H, Chu W. The occurrence and control of waterborne viruses in drinking water treatment: A review. CHEMOSPHERE 2021; 281:130728. [PMID: 34010719 PMCID: PMC8084847 DOI: 10.1016/j.chemosphere.2021.130728] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 05/04/2023]
Abstract
As the coronavirus disease 2019 continues to spread globally, its culprit, the severe acute respiratory syndrome coronavirus 2 has been brought under scrutiny. In addition to inhalation transmission, the possible fecal-oral viral transmission via water/wastewater has also been brought under the spotlight, necessitating a timely global review on the current knowledge about waterborne viruses in drinking water treatment system - the very barrier that intercepts waterborne pathogens to terminal water users. In this article we reviewed the occurrence, concentration methods, and control strategies, also, treatment performance on waterborne viruses during drinking water treatment were summarized. Additionally, we emphasized the potential of applying the quantitative microbial risk assessment to guide drinking water treatment to mitigate the viral exposure risks, especially when the unregulated novel viral pathogens are of concern. This review paves road for better control of viruses at drinking water treatment plants to protect public health.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, USA
| | - Shengkun Dong
- Key LLaboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institute, School of Civil Engineering, Sun Yat-sen University, Guangdong, China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Pan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Huaiyu Zhang
- Central and Southern China Institute of Municipal Engineering Design and Research, Hubei, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
24
|
Nakazawa Y, Abe T, Matsui Y, Shinno K, Kobayashi S, Shirasaki N, Matsushita T. Differences in removal rates of virgin/decayed microplastics, viruses, activated carbon, and kaolin/montmorillonite clay particles by coagulation, flocculation, sedimentation, and rapid sand filtration during water treatment. WATER RESEARCH 2021; 203:117550. [PMID: 34418646 DOI: 10.1016/j.watres.2021.117550] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
One of the main purposes of drinking water treatment is to reduce turbidity originating from clay particles. Relatively little is known about the removal of other types of particles, including conventionally sized powdered activated carbon (PAC) and superfine PAC (SPAC), which are intentionally added during the treatment process; microplastic particles; and viruses. To address this knowledge gap, we conducted a preliminary investigation in full-scale water treatment plants and then studied the removal of these particles during coagulation-flocculation, sedimentation, and rapid sand filtration (CSF) in bench-scale experiments in which these particles were present together. Numbers of all target particles were greatly decreased by coagulation-flocculation and sedimentation (CS). Subsequent rapid sand filtration greatly reduced the concentrations of PAC and SPAC but not the concentrations of viruses, microplastic particles, and clay particles. Overall removal rates by CSF were 4.6 logs for PAC and SPAC, 3.5 logs for viruses, 2.9 logs for microplastics, and 2.8 logs for clay. The differences in removals were not explained by particle sizes or zeta potentials. However, for clays, PAC and SPAC, for which the particle size distributions were wide, smaller particles were less efficiently removed. The ratios of both clay to PAC and clay to SPAC particles increased greatly after rapid sand filtration because removal rates of PAC and SPAC particles were about 2 logs higher than removal rates of clay particles. The trend of greater reduction of PAC concentrations than turbidity was confirmed by measurements made in 14 full-scale water purification plants in which residual concentrations of PAC in treated water were very low, 40-200 particles/mL. Clay particles therefore accounted for most of the turbidity in sand filtrate, even though PAC was employed. The removal rate of microplastic particles was comparable to that of clays. Sufficient turbidity removal would therefore provide comparable removal of microplastics. We investigated the effect of mechanical/photochemical weathering on the removal of microplastics via CSF. Photochemical weathering caused a small increment in the removal rate of microplastics during CS but a small reduction in the removal rate of microplastics during rapid sand filtration; mechanical weathering decreased the removal rate via CS but increased the removal rate via rapid sand filtration. The changes of removal of microplastics might have been caused by changes of their zeta potential.
Collapse
Affiliation(s)
- Yoshifumi Nakazawa
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Saitama, Wako 351-0197, Japan
| | - Taketo Abe
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Yoshihiko Matsui
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan.
| | - Koki Shinno
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Sakiko Kobayashi
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Nobutaka Shirasaki
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Taku Matsushita
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| |
Collapse
|
25
|
Tarhan T. Removal of carbol fuchsin from aqueous solution by using three-dimensional porous, economic, and eco-friendly polymer. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1789-1803. [PMID: 33931914 DOI: 10.1002/wer.1578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
In this study, a three-dimensional (3D) porous polydimethylsiloxane (PDMS) was prepared using a cheap material with a highly simple and different method. PDMS was firstly applied for the removal of carbol fuchsin (CF) cationic organic dye pollution in this study. Besides, the adsorption capacity of 3D PDMS for removal of the CF was found quite high compared to other materials in already published results. The synthesized PDMS was characterized using several spectroscopic and imaging techniques such as FTIR, Raman, SEM, stereomicroscope, EDX, UV/Vis, and TGA. The optimal conditions were found as 10 mg L-1 initial concentration, 20 mg of adsorbent dose, 2 h contact time, pH 10, and 25°C temperature. The removal % of CF and the maximum adsorption capacity were calculated at approximately 89% and 88.8 mg g-1 , respectively. Furthermore, the equilibrium studies showed that the Langmuir isotherm model fitted well with the removal of CF. Moreover, according to the kinetic results, the second-order kinetic model was found suitable (qe,cal 89.3 mg g-1 and qe,exp 88.8 mg g-1 close to each other) for the adsorption of CF. Also, the thermodynamic studies indicated that adsorption occurs spontaneously, and the adsorption process was physical adsorption. Besides, the reusability of the adsorbent was studied. PRACTITIONER POINTS: Water treatment technology should be low cost, economically viable and in the meantime, eco-friendly. The 3D porous PDMS was prepared by using cheap material with a highly simple method and eco-friendly This unique material was firstly applied for the removal of organic dye in water in this study.
Collapse
Affiliation(s)
- Tuba Tarhan
- Vocational High School of Health Services, Mardin Artuklu University, Mardin, Turkey
| |
Collapse
|
26
|
Hata A, Shirasaka Y, Ihara M, Yamashita N, Tanaka H. Spatial and temporal distributions of enteric viruses and indicators in a lake receiving municipal wastewater treatment plant discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146607. [PMID: 33773350 DOI: 10.1016/j.scitotenv.2021.146607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Although lake water can be used as a source of drinking water and recreational activities, there is a dearth of research on the occurrence and fate of enteric viruses. Over a period of 14 months at six points in 2014-2015, we conducted monthly monitoring of the virological water quality of a Japanese lake. The lake receives effluent from three surrounding wastewater treatment plants and retains water for about two weeks. These features allowed us to investigate the occurrence and fate of viruses in the lake environment. Human enteric viruses such as noroviruses and their indicators (pepper mild mottle virus and F-specific RNA bacteriophage [FRNAPH] genogroups) were quantified by PCR-based assays. Additionally, FRNAPH genogroups were quantified by infectivity-based assays to estimate the degree of virus inactivation. Pepper mild mottle virus, genogroup II (GII) norovirus, and GI-FRNAPH were identified in relatively high frequencies (positive in >40% out of 64 samples), with concentrations ranging from 1.3 × 101 to 2.9 × 104 copies/L. Human enteric viruses and some indicators were not detected and less prevalent, respectively, after April 2015. Principal component analysis revealed that the virological water quality changed gradually over time, but its differences between the sampling points were not apparent. FRNAPH genogroups were inactivated during the warm season (averaged water temperature of >20 °C) compared to the cool season (averaged water temperature of <20 °C), which may have been due to the more severe environmental stresses such as sunlight and water temperature. This suggests that the infection risk associated with the use of the lake water may have been overestimated by the gene quantification assay during the warm season.
Collapse
Affiliation(s)
- Akihiko Hata
- Department of Environmental and Civil Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Yuya Shirasaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Naoyuki Yamashita
- Course of Rural Engineering, Department of Science and Technology for Biological Resources and Environment, Faculty of Agriculture, Graduate School of Agriculture Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
27
|
Cheng S, Ge Y, Lee Y, Yang X. Prediction of Photolysis Kinetics of Viral Genomes under UV 254 Irradiation to Estimate Virus Infectivity Loss. WATER RESEARCH 2021; 198:117165. [PMID: 33962243 DOI: 10.1016/j.watres.2021.117165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
UV254 irradiation disinfection is a commonly used method to inactivate pathogenic viruses in water and wastewater treatment. Model prediction method can serve as a pre-screening tool to quickly estimate the effectiveness of UV254 irradiation on emerging or unculturable viruses. In this study, an improved prediction model was applied to estimate UV254 photolysis kinetics of viral genomes (kpred, genome) based on the genome sequences and their photoreactivity and to correlate with the experimental virus infectivity loss kinetics (kexp, infectivity). The UV254 inactivation data of 102 viruses (including 2 dsRNA, 65 ssRNA, 33 dsDNA and 2 ssDNA viruses) were collected from the published experimental data with kexp, infectivity ranging from 0.016 to 3.49 cm2 mJ-1. The model had fairly good performance in predicting the virus susceptibility to UV254 irradiation except dsRNA viruses (Pearson's correlation coefficient = 0.64) and 70% of kpred, genome fell in the range of 1/2 to 2 times of kexp, infectivity. The positive deviation of the model often occurred for photoresistant viruses with low kexp, infectivity less than 0.20 cm2 mJ-1 (e.g., Adenovirus, Papovaviridae and Retroviridae). We also applied this model to predict the UV254 inactivation rate of SARS-CoV-2 (kpred, genome = 3.168 cm2 mJ-1) and a UV dose of 3 mJ cm-2 seemed to be able to achieve a 2-log removal by conservative calculation using 1/2kpred, genome value. This prediction method can be used as a prescreening tool to assess the effectiveness of UV254 irradiation for emerging/unculturable viruses in water or wastewater treatment.
Collapse
Affiliation(s)
- Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuexian Ge
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
28
|
Atabakhsh P, Kargar M, Doosti A. Detection and evaluation of rotavirus surveillance methods as viral indicator in the aquatic environments. Braz J Microbiol 2021; 52:811-820. [PMID: 33599964 PMCID: PMC8105488 DOI: 10.1007/s42770-020-00417-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
Group A rotaviruses (RVAs) have been introduced as the most important causative agents of acute gastroenteritis in the young children. One of every 260 children born globally will die due to rotavirus (RV) before 5 years old. The RV is widely known as a viral indicator for health (fecal contamination) because this pathogen has a high treatment resistance nature, which has been listed as a relevant waterborne pathogen by the World Health Organization (WHO). Therefore, monitoring of environmental is important, and RV is one of the best-known indicators for monitoring. It has been proved that common standards for microbiological water quality do not guarantee the absence of viruses. On the other hand, in order to recover and determine RV quantity within water, standard methods are scarce. Therefore, dependable prediction of RV quantities in water sample is crucial to be able to improve supervision efficiency of the treatment procedure, precise quantitative evaluation of the microbial risks as well as microbiological water safety. Hence, this study aimed to introduce approaches to detecting and controlling RV in environmental waters, and discussed the challenges faced to enable a clear perception on the ubiquity of the RV within different types of water across the world.
Collapse
Affiliation(s)
- Paymaneh Atabakhsh
- Department of Microbiology, Isfahan Water and Wastewater Company, Isfahan, Iran
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mohammad Kargar
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
29
|
Mohapatra S, Menon NG, Mohapatra G, Pisharody L, Pattnaik A, Menon NG, Bhukya PL, Srivastava M, Singh M, Barman MK, Gin KYH, Mukherji S. The novel SARS-CoV-2 pandemic: Possible environmental transmission, detection, persistence and fate during wastewater and water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142746. [PMID: 33092831 PMCID: PMC7536135 DOI: 10.1016/j.scitotenv.2020.142746] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/08/2020] [Accepted: 09/27/2020] [Indexed: 04/14/2023]
Abstract
The contagious SARS-CoV-2 virus, responsible for COVID-19 disease, has infected over 27 million people across the globe within a few months. While literature on SARS-CoV-2 indicates that its transmission may occur predominantly via aerosolization of virus-laden droplets, the possibility of alternate routes of transmission and/or reinfection via the environment requires considerable scientific attention. This review aims to collate information on possible transmission routes of this virus, to ascertain its fate in the environment. Concomitant with the presence of SARS-CoV-2 viral RNA in faeces and saliva of infected patients, studies also indicated its occurrence in raw wastewater, primary sludge and river water. Therefore sewerage system could be a possible route of virus outbreak, a possible tool to assess viral community spread and future surveillance technique. Hence, this review looked into detection, occurrence and fate of SARS-CoV-2 during primary, secondary, and tertiary wastewater and water treatment processes based on published literature on SARS-CoV and other enveloped viruses. The review also highlights the need for focused research on occurrence and fate of SARS-CoV-2 in various environmental matrices. Utilization of this information in environmental transmission models developed for other enveloped and enteric viruses can facilitate risk assessment studies. Preliminary research efforts with SARS-CoV-2 and established scientific reports on other coronaviruses indicate that the threat of virus transmission from the aquatic environment may be currently non-existent. However, the presence of viral RNA in wastewater provides an early warning that highlights the need for effective sewage treatment to prevent a future outbreak of SARS-CoV-2.
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, India; NUS Environmental Research Institute, National University of Singapore (NUS), Singapore
| | - N Gayathri Menon
- Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay, India; nEcoTox GmbH, An der Neümuhle 2, Annweiler am Trifels, Germany
| | | | - Lakshmi Pisharody
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, India
| | - Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln (UNL), USA
| | - N Gowri Menon
- Department of Veterinary Epidemiology and Preventive Medicine, Kerala Veterinary and Animal Sciences University (KVASU), Wayanad, Kerala, India
| | | | | | | | | | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore (NUS), Singapore.
| | - Suparna Mukherji
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, India; Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay, India.
| |
Collapse
|
30
|
Torii S, Miura F, Itamochi M, Haga K, Katayama K, Katayama H. Impact of the Heterogeneity in Free Chlorine, UV 254, and Ozone Susceptibilities Among Coxsackievirus B5 on the Prediction of the Overall Inactivation Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3156-3164. [PMID: 33583178 DOI: 10.1021/acs.est.0c07796] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The disinfection susceptibilities of viruses vary even among variants, yet the inactivation efficiency of a certain virus genotype, species, or genus was determined based on the susceptibility of its laboratory strain. The objectives were to evaluate the variability in susceptibilities to free chlorine, UV254, and ozone among 13 variants of coxsackievirus B5 (CVB5) and develop the model allowing for predicting the overall inactivation of heterogeneous CVB5. Our results showed that the susceptibilities differed by up to 3.4-fold, 1.3-fold, and 1.8-fold in free chlorine, UV254, and ozone, respectively. CVB5 in genogroup B exhibited significantly lower susceptibility to free chlorine and ozone than genogroup A, where the laboratory strain, Faulkner, belongs. The capsid protein in genogroup B contained a lower number of sulfur-containing amino acids, readily reactive to oxidants. We reformulated the Chick-Watson model by incorporating the probability distributions of inactivation rate constants to capture the heterogeneity. This expanded Chick-Watson model indicated that up to 4.2-fold larger free chlorine CT is required to achieve 6-log inactivation of CVB5 than the prediction by the Faulkner strain. Therefore, it is recommended to incorporate the variation in disinfection susceptibilities for predicting the overall inactivation of a certain type of viruses.
Collapse
Affiliation(s)
- Shotaro Torii
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Fuminari Miura
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama-shi, Ehime 790-8577, Japan
| | - Masae Itamochi
- Department of Virology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-shi, Toyama 939-0363, Japan
| | - Kei Haga
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, O̅mura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, O̅mura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
31
|
Bonanno Ferraro G, Suffredini E, Mancini P, Veneri C, Iaconelli M, Bonadonna L, Montagna MT, De Giglio O, La Rosa G. Pepper Mild Mottle Virus as Indicator of Pollution: Assessment of Prevalence and Concentration in Different Water Environments in Italy. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:117-125. [PMID: 33432501 DOI: 10.1007/s12560-020-09458-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Pepper mild mottle virus (PMMoV), a plant pathogenic virus belonging to the family Virgoviridae, has been proposed as a potential viral indicator for human faecal pollution in aquatic environments. The present study investigated the occurrence, amount and diversity of PMMoV in water environments in Italy. A total of 254 water samples, collected between 2017 and 2019 from different types of water, were analysed. In detail, 92 raw sewage, 32 treated sewage, 16 river samples, 9 estuarine waters, 20 bathing waters, 67 groundwater samples and 18 drinking waters were tested. PMMoV was detected in 79% and 75% of untreated and treated sewage samples, respectively, 75% of river samples, 67% and 25% of estuarine and bathing waters and 13% of groundwater samples. No positive was detected in drinking water. The geometric mean of viral concentrations (genome copies/L) was ranked as follows: raw sewage (2.2 × 106) > treated sewage (2.9 × 105) > river waters (6.1 × 102) > estuarine waters (4.8 × 102) > bathing waters (8.5 × 101) > groundwater (5.9 × 101). A statistically significant variation of viral loads could be observed between raw and treated sewage and between these and all the other water matrices. PMMoV occurrence and viral loads did not display seasonal variation in raw sewage nor correlation with faecal indicator bacteria in marine waters and groundwater. This study represents the first report on the occurrence and quantification PMMoV in different water environments in Italy. Further studies are required to evaluate the suitability of PMMoV as a viral indicator for human faecal pollution and for viral pathogens in waters.
Collapse
Affiliation(s)
- G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - C Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Bonadonna
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M T Montagna
- Department of Biomedical Sciences and Human Oncology, Section of Hygiene, University of Bari Aldo Moro, Bari, Italy
| | - O De Giglio
- Department of Biomedical Sciences and Human Oncology, Section of Hygiene, University of Bari Aldo Moro, Bari, Italy
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
32
|
Filipić A, Dobnik D, Tušek Žnidarič M, Žegura B, Štern A, Primc G, Mozetič M, Ravnikar M, Žel J, Gutierrez Aguirre I. Inactivation of Pepper Mild Mottle Virus in Water by Cold Atmospheric Plasma. Front Microbiol 2021; 12:618209. [PMID: 33584622 PMCID: PMC7877120 DOI: 10.3389/fmicb.2021.618209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022] Open
Abstract
Water scarcity is one of the greatest threats for human survival and quality of life, and this is increasingly contributing to the risk of human, animal and plant infections due to waterborne viruses. Viruses are transmitted through polluted water, where they can survive and cause infections even at low concentrations. Plant viruses from the genus Tobamovirus are highly mechanically transmissible, and cause considerable damage to important crops, such as tomato. The release of infective tobamoviruses into environmental waters has been reported, with the consequent risk for arid regions, where these waters are used for irrigation. Virus inactivation in water is thus very important and cold atmospheric plasma (CAP) is emerging in this field as an efficient, safe, and sustainable alternative to classic waterborne virus inactivation methods. In the present study we evaluated CAP-mediated inactivation of pepper mild mottle virus (PMMoV) in water samples. PMMoV is a very resilient water-transmissible tobamovirus that can survive transit through the human digestive tract. The efficiency of PMMoV inactivation was characterized for infectivity and virion integrity, and at the genome level, using test plant infectivity assays, transmission electron microscopy, and molecular methods, respectively. Additionally, the safety of CAP treatment was determined by testing the cytotoxic and genotoxic properties of CAP-treated water on the HepG2 cell line. 5-min treatment with CAP was sufficient to inactivate PMMoV without introducing any cytotoxic or genotoxic effects in the in-vitro cell model system. These data on inactivation of such stable waterborne virus, PMMoV, will encourage further examination of CAP as an alternative for treatment of potable and irrigation waters, and even for other water sources, with emphasis on inactivation of various viruses including enteric viruses.
Collapse
Affiliation(s)
- Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Alja Štern
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Gregor Primc
- Department of Surface Engineering, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Miran Mozetič
- Department of Surface Engineering, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,University of Nova Gorica, Nova Gorica, Slovenia
| | - Jana Žel
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutierrez Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
33
|
Zhang Y, Wayner CC, Wu S, Liu X, Ball WP, Preheim SP. Effect of Strain-Specific Biofilm Properties on the Retention of Colloids in Saturated Porous Media under Conditions of Stormwater Biofiltration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2585-2596. [PMID: 33523627 DOI: 10.1021/acs.est.0c06177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Filter performance can be affected by bacterial colonization of the filtration media, yet little is known about how naturally occurring bacteria modify the surface properties of filtration media to affect colloidal removal. We used sand columns and simulated stormwater conditions to study the retention of model colloidal particles, carboxyl-modified-latex (CML) beads, in porous media colonized by naturally occurring bacterial strains. Colloid retention varied substantially across identical columns colonized by different, in some cases closely related, bacterial strains in a cell density independent manner. Atomic force microscopy was applied to quantify the interaction energy between CML beads and each bacterial strain's biofilm surface. We found interaction energy between CML and each strain was significantly different, with adhesive energies between the biofilm and CML, presumed to be associated with polymer-surface bonding, a better predictor of CML retention than other strain characteristics. Overall, the findings suggest that interactions with biopolymers in naturally occurring bacterial biofilms strongly influence colloid retention in porous media. This work highlights the need for more investigation into the role of biofilm microbial community composition on colloid removal in porous media to improve biofilter design and operation.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Claire C Wayner
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Shanshan Wu
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Xitong Liu
- Department of Civil and Environmental Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street NW, Washington, District of Columbia 20052, United States
| | - William P Ball
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Sarah P Preheim
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
34
|
Canh VD, Torii S, Furumai H, Katayama H. Application of Capsid Integrity (RT-)qPCR to Assessing Occurrence of Intact Viruses in Surface Water and Tap Water in Japan. WATER RESEARCH 2021; 189:116674. [PMID: 33279831 DOI: 10.1016/j.watres.2020.116674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/29/2020] [Accepted: 11/23/2020] [Indexed: 05/05/2023]
Abstract
Capsid integrity (RT-)qPCR has recently been developed to discriminate between intact forms from inactivated forms of viruses, but its applicability to identifying integrity of viruses in drinking water has remained limited. In this study, we investigated the application of capsid integrity (RT-)qPCR using cis-dichlorodiammineplatinum (CDDP) with sodium deoxycholate (SD) pretreatment (SD-CDDP-(RT-)qPCR) to detect intact viruses in surface water and tap water. A total of 63 water samples (surface water, n = 20; tap water, n = 43) were collected in the Kanto region in Japan and quantified by conventional (RT)-qPCR and SD-CDDP-(RT-)qPCR for pepper mild mottle virus (PMMoV) and seven other viruses pathogenic to humans (Aichivirus (AiV), noroviruses of genotypes I and II, enterovirus, adenovirus type 40 and 41, and JC and BK polyomaviruses). In surface water, PMMoV (100%) was more frequently detected than other human pathogenic viruses (30%-60%), as determined by conventional (RT-)qPCR. SD-CDDP-(RT-)qPCR also revealed that intact PMMoV (95%) was more common than intact human pathogenic viruses (20%-45%). In the tap water samples, most of the target viruses were not detected by conventional (RT-)qPCR, except for PMMoV (9%) and AiV (5%). PMMoV remained positive (5%), whereas no AiV was detected when tested by SD-CDDP-(RT-)qPCR, indicating that some PMMoV had an intact capsid, whereas AiV had damaged capsids. The presence of AiV in the absence of PMMoV in tap water produced from groundwater may demonstrate the limitation of PMMoV as a viral indicator in groundwater. In addition to being abundant in surface water, PMMoV was detected in tap water, including PMMoV with intact capsids. Thus, the absence of intact PMMoV may be used to guarantee the viral safety of tap water produced from surface water.
Collapse
Affiliation(s)
- Vu Duc Canh
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Shotaro Torii
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
35
|
Kataki S, Chatterjee S, Vairale MG, Sharma S, Dwivedi SK. Concerns and strategies for wastewater treatment during COVID-19 pandemic to stop plausible transmission. RESOURCES, CONSERVATION, AND RECYCLING 2021; 164:105156. [PMID: 32921917 PMCID: PMC7473346 DOI: 10.1016/j.resconrec.2020.105156] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 05/20/2023]
Abstract
Along with outbreak of the pandemic COVID-19 caused by SARS-CoV-2, the problem of biomedical wastewater disposal has caused widespread public concern, as reportedly the presence is confirmed in wastewater. Keeping in mind (i) available evidence indicating need to better understand potential of wastewater mediated transmission and (ii) knowledge gaps in its occurrence, viability, persistence, and inactivation in wastewater, in this present work, we wanted to re-emphasize some strategies for management of SARS-CoV-2 contaminated wastewater to minimise any possible secondary transmission to human and environment. The immediate challenges to consider while considering wastewater management are uncertainty about this new biothreat, relying on prediction based treatments options, significant population being the latent asymptomatic carrier increased risk of passing out of the virus to sewage network, inadequacy of wastewater treatment facility particularly in populated developing countries and increased generation of wastewater due to increased cleanliness concern. In absence of regulated central treatment facility, installation of decentralized wastewater treatment units with single or multiple disinfection barriers in medical units, quarantine centre, isolation wards, testing facilities seems to be urgent for minimizing any potential risk of wastewater transmission. Employing some emerging disinfectants (peracetic acid, performic acid, sodium dichloro isocyanurate, chloramines, chlorine dioxide, benzalconium chloride) shows prospects in terms of virucidal properties. However, there is need of additional research on coronaviruses specific disinfection data generation, regular monitoring of performance considering all factors influencing virus survival, performance evaluation in actual water treatment, need of augmenting disinfection dosages, environmental considerations to select the most appropriate disinfection technology.
Collapse
Affiliation(s)
- Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Assam, India
| | - Soumya Chatterjee
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Assam, India
| | - Mohan G Vairale
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Assam, India
| | - Sonika Sharma
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Assam, India
| | - Sanjai K Dwivedi
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Assam, India
| |
Collapse
|
36
|
Adelodun B, Ajibade FO, Ighalo JO, Odey G, Ibrahim RG, Kareem KY, Bakare HO, Tiamiyu AO, Ajibade TF, Abdulkadir TS, Adeniran KA, Choi KS. Assessment of socioeconomic inequality based on virus-contaminated water usage in developing countries: A review. ENVIRONMENTAL RESEARCH 2021; 192:110309. [PMID: 33045227 DOI: 10.1016/j.envre.2020.110309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/20/2020] [Accepted: 10/04/2020] [Indexed: 05/24/2023]
Abstract
Water is an essential resource required for various human activities such as drinking, cooking, and other recreational activities. While developed nations have made significant improvement in providing adequate quality water and sanitation devoid of virus contaminations to a significant percentage of the residences, many of the developing countries are still lacking in these regards, leading to many death cases among the vulnerable due to ingestion of virus-contaminated water and other waterborne pathogens. However, the recent global pandemic of COVID-19 seems to have changed the paradigm by reawakening the importance of water quality and sanitation, and focusing more attention on the pervasive effect of the use of virus-contaminated water as it can be a potential driver for the spread of the virus and other waterborne diseases, especially in developing nations that are characterized by low socioeconomic development. Therefore, this review assessed the socioeconomic inequalities related to the usage of virus-contaminated water and other waterborne pathogens in developing countries. The socioeconomic factors attributed to the various waterborne diseases due to the use of virus-contaminated water in many developing countries are poverty, the standard of living, access to health care facilities, age, gender, and level of education. Some mitigation strategies to address the viral contamination of water sources are therefore proposed, while future scope and recommendations on tackling the essential issues related to socioeconomic inequality in developing nations are highlighted.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria.
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Joshua O Ighalo
- Department of Chemical Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria; Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea
| | | | - Kola Yusuff Kareem
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | | | | | - Temitope F Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | | | - Kamoru Akanni Adeniran
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Institute of Agricultural Science & Technology, Kyungpook, National University, Daegu, South Korea.
| |
Collapse
|
37
|
Adelodun B, Ajibade FO, Ighalo JO, Odey G, Ibrahim RG, Kareem KY, Bakare HO, Tiamiyu AO, Ajibade TF, Abdulkadir TS, Adeniran KA, Choi KS. Assessment of socioeconomic inequality based on virus-contaminated water usage in developing countries: A review. ENVIRONMENTAL RESEARCH 2021; 192:110309. [PMID: 33045227 PMCID: PMC7546968 DOI: 10.1016/j.envres.2020.110309] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/20/2020] [Accepted: 10/04/2020] [Indexed: 05/05/2023]
Abstract
Water is an essential resource required for various human activities such as drinking, cooking, and other recreational activities. While developed nations have made significant improvement in providing adequate quality water and sanitation devoid of virus contaminations to a significant percentage of the residences, many of the developing countries are still lacking in these regards, leading to many death cases among the vulnerable due to ingestion of virus-contaminated water and other waterborne pathogens. However, the recent global pandemic of COVID-19 seems to have changed the paradigm by reawakening the importance of water quality and sanitation, and focusing more attention on the pervasive effect of the use of virus-contaminated water as it can be a potential driver for the spread of the virus and other waterborne diseases, especially in developing nations that are characterized by low socioeconomic development. Therefore, this review assessed the socioeconomic inequalities related to the usage of virus-contaminated water and other waterborne pathogens in developing countries. The socioeconomic factors attributed to the various waterborne diseases due to the use of virus-contaminated water in many developing countries are poverty, the standard of living, access to health care facilities, age, gender, and level of education. Some mitigation strategies to address the viral contamination of water sources are therefore proposed, while future scope and recommendations on tackling the essential issues related to socioeconomic inequality in developing nations are highlighted.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria.
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Joshua O Ighalo
- Department of Chemical Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria; Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea
| | | | - Kola Yusuff Kareem
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | | | | | - Temitope F Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | | | - Kamoru Akanni Adeniran
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Institute of Agricultural Science & Technology, Kyungpook, National University, Daegu, South Korea.
| |
Collapse
|
38
|
Tandukar S, Sherchan SP, Haramoto E. Reduction of Pathogenic and Indicator Viruses at a Drinking Water Treatment Plant in Southern Louisiana, USA. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:269-273. [PMID: 32666473 DOI: 10.1007/s12560-020-09436-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Monthly sampling was conducted at a drinking water treatment plant (DWTP) in Southern Louisiana, USA from March 2017 to February 2018 to determine the prevalence and reduction efficiency of pathogenic and indicator viruses. Water samples were collected from the DWTP at three different treatment stages (raw, secondary-treated, and chlorinated drinking water) and subjected to quantification of seven pathogenic viruses and three indicator viruses [pepper mild mottle virus (PMMoV), tobacco mosaic virus (TMV), and crAssphage] based on quantitative polymerase chain reaction. Among the seven pathogenic viruses tested, only Aichi virus 1 (AiV-1) (7/12, 58%) and noroviruses of genogroup II (NoVs-GII) (2/12, 17%) were detected in the raw water samples. CrAssphage had the highest positive ratio at 78% (28/36), and its concentrations were significantly higher than those of the other indicator viruses for all three water types (P < 0.05). The reduction ratios of AiV-1 (0.7 ± 0.5 log10; n = 7) during the whole treatment process were the lowest among the tested viruses, followed by crAssphage (1.1 ± 1.9 log10; n = 9), TMV (1.3 ± 0.9 log10; n = 8), PMMoV (1.7 ± 0.8 log10; n = 12), and NoVs-GII (3.1 ± 0.1 log10; n = 2). Considering the high abundance and relatively low reduction, crAssphage was judged to be an appropriate process indicator during drinking water treatment. To the best of our knowledge, this is the first study to assess the reduction of crAssphage and TMV during drinking water treatment.
Collapse
Affiliation(s)
- Sarmila Tandukar
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan.
| |
Collapse
|
39
|
Misra A, Zambrzycki C, Kloker G, Kotyrba A, Anjass MH, Franco Castillo I, Mitchell SG, Güttel R, Streb C. Water Purification and Microplastics Removal Using Magnetic Polyoxometalate-Supported Ionic Liquid Phases (magPOM-SILPs). Angew Chem Int Ed Engl 2019; 59:1601-1605. [PMID: 31639241 PMCID: PMC7004052 DOI: 10.1002/anie.201912111] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/21/2019] [Indexed: 01/23/2023]
Abstract
Filtration is an established water‐purification technology. However, due to low flow rates, the filtration of large volumes of water is often not practical. Herein, we report an alternative purification approach in which a magnetic nanoparticle composite is used to remove organic, inorganic, microbial, and microplastics pollutants from water. The composite is based on a polyoxometalate ionic liquid (POM‐IL) adsorbed onto magnetic microporous core–shell Fe2O3/SiO2 particles, giving a magnetic POM‐supported ionic liquid phase (magPOM‐SILP). Efficient, often quantitative removal of several typical surface water pollutants is reported together with facile removal of the particles using a permanent magnet. Tuning of the composite components could lead to new materials for centralized and decentralized water purification systems.
Collapse
Affiliation(s)
- Archismita Misra
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Christian Zambrzycki
- Institute of Chemical Engineering, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Gabriele Kloker
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Anika Kotyrba
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Montaha H Anjass
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.,Helmholtz Institute Ulm, Helmholtzstrasse 11, 89081, Ulm, Germany
| | - Isabel Franco Castillo
- Instituto de Ciencia de Materiales de Aragón (ICMA-CSIC), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Scott G Mitchell
- Instituto de Ciencia de Materiales de Aragón (ICMA-CSIC), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Robert Güttel
- Institute of Chemical Engineering, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.,Helmholtz Institute Ulm, Helmholtzstrasse 11, 89081, Ulm, Germany
| |
Collapse
|
40
|
Misra A, Zambrzycki C, Kloker G, Kotyrba A, Anjass MH, Franco Castillo I, Mitchell SG, Güttel R, Streb C. Wasseraufreinigung und Mikroplastik‐Entferung durch magnetische Polyoxometallat‐unterstützte ionische Flüssigphasen (magPOM‐SILPs). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Archismita Misra
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Christian Zambrzycki
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Gabriele Kloker
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Anika Kotyrba
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Montaha H. Anjass
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Deutschland
- Helmholtz Institute Ulm Helmholtzstr. 11 89081 Ulm Deutschland
| | - Isabel Franco Castillo
- Instituto de Ciencia de Materiales de Aragón (ICMA-CSIC) CSIC-Universidad de Zaragoza 50009 Zaragoza Spanien
| | - Scott G. Mitchell
- Instituto de Ciencia de Materiales de Aragón (ICMA-CSIC) CSIC-Universidad de Zaragoza 50009 Zaragoza Spanien
| | - Robert Güttel
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Carsten Streb
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Deutschland
- Helmholtz Institute Ulm Helmholtzstr. 11 89081 Ulm Deutschland
| |
Collapse
|
41
|
Atabakhsh P, Kargar M, Doosti A. Molecular surveillance of human rotaviruses in drinking water and investigation of the efficiency of their removal in Isfahan water treatment plant. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:759. [PMID: 31741059 DOI: 10.1007/s10661-019-7834-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Enteric viruses, especially human rotaviruses present in aquatic environments, are microbial criteria in quality assessment of water resources. The present research aimed to investigate molecular monitoring of human rotavirus and efficacy evaluation of Isfahan water treatment plant (WTP) in the elimination of viruses. In total, 60 water samples were collected from different units of WTP. Zeta plus electropositive Virosorb cartridge filter and elution buffer was used for concentrating water samples. Enzyme-linked immunosorbent assay (ELISA) was used for detecting rotavirus antigen. Quantitative real-time reverse transcription PCR (qRT-PCR) with SYBR Green I fluorescent dye was performed for molecular detection of rotavirus. Multiplex nested reverse transcription-polymerase chain reaction (RT-PCR) was used for rotavirus G genotyping. Total coliform count varies from 102-103 CFU/mL in the raw water resources. Rotavirus antigen was detected in 17 samples (28.33%) by ELISA, and 13 samples (21.67%) were found positive by RT-PCR. These included 41.18% (7 cases) of raw water influent, 29.41% (5 cases) after sedimentation, 23.52% (4 cases) after ozonation, and 5.88% (1 case) after filtration in ELISA method. The highest number of rotaviruses was detected by qRT-PCR in autumn (46.15% (6 cases)). The commonest circulating G type in the sampling points was the mixed types, which was identified in 6 samples (46.15%), followed by non-typeable (23.07%), G3 (15.38%), G1 (7.69%), and G8 (7.69%), respectively. Despite the presence of rotavirus in raw water, after clarification and ozonation, filtration and treated water did not show the presence of rotavirus. The results of this study showed that multi-stage treatment has a positive effect on virus removal in WTP.
Collapse
Affiliation(s)
- Paymaneh Atabakhsh
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mohammad Kargar
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
42
|
Samineni L, Xiong B, Chowdhury R, Pei A, Kuehster L, Wang H, Dickey R, Soto PE, Massenburg L, Nguyen TH, Maranas C, Velegol D, Kumar M, Velegol S. 7 Log Virus Removal in a Simple Functionalized Sand Filter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12706-12714. [PMID: 31593449 DOI: 10.1021/acs.est.9b03734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Viral contamination of drinking water due to fecal contamination is difficult to detect and treat effectively, leading to frequent outbreaks worldwide. The purpose of this paper is to report on the molecular mechanism for unprecedented high virus removal from a practical sand filter. Sand filters functionalized using a water extract of Moringa oleifera (MO) seeds, functionalized sand (f-sand) filters, achieved a ∼7 log10 virus removal. These tests were conducted with MS2 bacteriophage, a recognized surrogate for pathogenic norovirus and rotavirus. We studied the molecular mechanism of this high removal since it can have important implications for sand filtration, the most common water treatment technology worldwide. Our data reveal that the virus removal activity of f-sand is due to the presence of a chitin-binding protein, M. oleifera chitin-binding protein (MoCBP) on f-sand. Standard column experiments were supported by proteomic analysis and molecular docking simulations. Our simulations show that MoCBP binds preferentially to MS2 capsid proteins demonstrating that specific molecular interactions are responsible for enhanced virus removal. In addition, we simplified the process of making f-sand and evinced how it could be regenerated using saline water. At present, no definitive solution exists for the challenge of treating fecally contaminated drinking and irrigation water for viruses without using technologies that demand high energy or chemical consumption. We propose functionalized sand (f-sand) filters as a highly effective, energy-efficient, and practical technology for virus removal applicable to both developing and developed countries.
Collapse
Affiliation(s)
| | | | | | | | - Louise Kuehster
- School of Chemical, Biological, and Materials Engineering , University of Oklahoma , Norman , Oklahoma 73019-1004 , United States
| | | | | | | | | | - Thanh H Nguyen
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | | | | | - Manish Kumar
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | | |
Collapse
|
43
|
Bonadonna L, Briancesco R, La Rosa G. Innovative analytical methods for monitoring microbiological and virological water quality. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Lee S, Yamashita N, Tanaka H. How Fiber Breakage Reduces Microorganism Removal in Ultrafiltration for Wastewater Reclamation. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:167-177. [PMID: 30756312 DOI: 10.1007/s12560-019-09372-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Ultrafiltration (UF) membranes are increasingly being used for wastewater reclamation treatment for their high removal of pathogens and suspended solids. However, breakage of UF membrane fibers could allow leakage of pathogens into the permeate and create health risks in the use of reclaimed water. Here, we assessed the log10 reduction value (LRV) of human enteric viruses and microbial indicators of new and aged UF modules in a pilot-scale UF process to evaluate the influence of fiber breakage. Norovirus genotypes I and II, Aichi virus, and Escherichia coli were not detected in any permeate samples of intact UF modules, but were detected in samples of damaged UF modules. LRVs of all microorganisms assayed decreased as fiber breakage of new UF modules increased, with maximum decreases of > 3.3 log10. Fiber breakage in the aged UF modules did not decrease LRVs of somatic coliphages and MS2, but breakage in the new UF modules did decrease them. Intact new UF modules gave higher LRVs than intact aged UF modules. When the LRV of intact UF module was assumed to be 1 or 2 log10, increasing fiber breakage did not significantly decrease the predicted LRV, but when it was ≥ 3 log10, it did decrease LRV, in good agreement with measured LRVs in the degraded UF modules. These results suggest that the LRV of intact UF modules affects the decrease in LRV and confirm the leakage of human enteric viruses following fiber breakage in UF modules of different ages in the UF process of wastewater reclamation.
Collapse
Affiliation(s)
- Suntae Lee
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
- Innovative Materials and Resources Research Center, Public Works Research Institute, 1-6 Minamihara, Tsukuba, Ibaraki, 305-8516, Japan.
| | - Naoyuki Yamashita
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| |
Collapse
|
45
|
Lv M, Zhang Z, Zeng J, Liu J, Sun M, Yadav RS, Feng Y. Roles of magnetic particles in magnetic seeding coagulation-flocculation process for surface water treatment. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Symonds EM, Rosario K, Breitbart M. Pepper mild mottle virus: Agricultural menace turned effective tool for microbial water quality monitoring and assessing (waste)water treatment technologies. PLoS Pathog 2019; 15:e1007639. [PMID: 30998781 PMCID: PMC6472819 DOI: 10.1371/journal.ppat.1007639] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Erin M. Symonds
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, United States of America
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, United States of America
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, United States of America
| |
Collapse
|
47
|
Fauvel B, Cauchie HM, Gantzer C, Ogorzaly L. Influence of physico-chemical characteristics of sediment on the in situ spatial distribution of F-specific RNA phages in the riverbed. FEMS Microbiol Ecol 2019; 95:5289377. [PMID: 30649274 PMCID: PMC6333113 DOI: 10.1093/femsec/fiy240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/11/2019] [Indexed: 11/30/2022] Open
Abstract
Riverbed sediment is commonly described as an enteric virus reservoir and thought to play an important role in water column contamination, especially during rainfall events. Although the occurrence and fate of faecal-derived viruses are fairly well characterized in water, little information is available on their presence as their interactions with sediment. This study aimed at determining the main environmental factors responsible for the presence of enteric viruses in riverbed sediment. Using a combination of microbiological and physico-chemical analyses of freshly field-sampled sediments, we demonstrated their contamination by faecal phages. The in situ spatial distribution of phages in sediment was mainly driven by sediment composition. A preferential phage accumulation occurred along one bank of the river, where the quantity of fine sands and clay particles smaller than 0.2 mm was the highest. Additionally, a mineralogical analysis revealed the influence of the heterogeneous presence of virus sorbents such as quartz, calcite, carbonates and iron-bearing phases (goethite) on the phage spatial pattern. A more precise knowledge of the composition of riverbed sediment is therefore useful for predicting preferential areas of enteric virus accumulation and should allow more accurate microbial risk assessment when using surface water for drinking water production or recreational activities.
Collapse
Affiliation(s)
- Blandine Fauvel
- Luxembourg Institute of Science and Technology (LIST), Department of Environmental Research and Innovation (ERIN), 5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, LUXEMBOURG.,Université de Lorraine, Laboratoire de Chimie, Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Faculté de Pharmacie, 5 Rue Albert Lebrun BP 80403 54001 Nancy, FRANCE.,CNRS, LCPME, UMR 7564, Nancy F-54000, France
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology (LIST), Department of Environmental Research and Innovation (ERIN), 5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, LUXEMBOURG
| | - Christophe Gantzer
- Université de Lorraine, Laboratoire de Chimie, Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Faculté de Pharmacie, 5 Rue Albert Lebrun BP 80403 54001 Nancy, FRANCE.,CNRS, LCPME, UMR 7564, Nancy F-54000, France
| | - Leslie Ogorzaly
- Luxembourg Institute of Science and Technology (LIST), Department of Environmental Research and Innovation (ERIN), 5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, LUXEMBOURG
| |
Collapse
|
48
|
Ferrihydrite treatment to mitigate inhibition of RT-qPCR virus detection from large-volume environmental water samples. J Virol Methods 2019; 263:60-67. [DOI: 10.1016/j.jviromet.2018.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 11/19/2022]
|
49
|
Hata A, Hanamoto S, Ihara M, Shirasaka Y, Yamashita N, Tanaka H. Comprehensive Study on Enteric Viruses and Indicators in Surface Water in Kyoto, Japan, During 2014-2015 Season. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:353-364. [PMID: 30151619 DOI: 10.1007/s12560-018-9355-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Certain enteric viruses that are present in the water environment are potential risk factors of waterborne infections. To better understand the impact of viruses in water, both enteric viruses and their potential indicators should be comparatively investigated. In this study, occurrences of GI- and GII-noroviruses (NoVs), sapovirus (SaV), rotavirus (RoV), Aichi virus 1 (AiV-1), enterovirus (EV), and pepper mild mottle virus (PMMoV) were quantitatively determined in surface water samples in Japan. Additionally, the genotype distribution of GI- and GII-NoVs was determined using a next-generation amplicon sequencing. PMMoV was the most abundant virus regardless of season and location, indicating its usefulness as an indicator for the viral contamination of water. Other potential indicators, AiV and EV, were less abundant than GII-NoV. Viruses other than PMMoV showed seasonality, i.e., EV and other viruses (NoVs, SaV, RoV, and AiV-1) became prevalent during summer and winter, respectively. SaV showed a relatively high abundance at a location that was affected by untreated wastewater. Regarding NoV genotypes, GI.1, GI.2, GI.4, GI.5, GI.6, GII.3, GII.4, GII.6, and GII.17 were found from the surface water samples. GII.4 and GII.17 seemed to have contributed to the high abundance of GII-NoV in the samples. Interestingly, GII.17 strains became prevalent in the water samples before becoming prevalent among gastroenteritis patients in Japan. These findings provide further insights into the properties of viruses as contaminants in the water environment.
Collapse
Affiliation(s)
- Akihiko Hata
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Seiya Hanamoto
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
- Water Quality Research Team, Public Works Research Institute, 1-6 Minamihara, Tsukuba, Ibaraki, 305-8516, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Yuya Shirasaka
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Naoyuki Yamashita
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
- Course of Rural Engineering, Department of Science and Technology for Biological Resources and Environment, Faculty of Agriculture, Graduate School of Agriculture Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| |
Collapse
|
50
|
Symonds EM, Nguyen KH, Harwood VJ, Breitbart M. Pepper mild mottle virus: A plant pathogen with a greater purpose in (waste)water treatment development and public health management. WATER RESEARCH 2018; 144:1-12. [PMID: 30005176 PMCID: PMC6162155 DOI: 10.1016/j.watres.2018.06.066] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 05/06/2023]
Abstract
An enteric virus surrogate and reliable domestic wastewater tracer is needed to manage microbial quality of food and water as (waste)water reuse becomes more prevalent in response to population growth, urbanization, and climate change. Pepper mild mottle virus (PMMoV), a plant pathogen found at high concentrations in domestic wastewater, is a promising surrogate for enteric viruses that has been incorporated into over 29 water- and food-related microbial quality and technology investigations around the world. This review consolidates the available literature from across disciplines to provide guidance on the utility of PMMoV as either an enteric virus surrogate and/or domestic wastewater marker in various situations. Synthesis of the available research supports PMMoV as a useful enteric virus process indicator since its high concentrations in source water allow for identifying the extent of virus log-reductions in field, pilot, and full-scale (waste)water treatment systems. PMMoV reduction levels during many forms of wastewater treatment were less than or equal to the reduction of other viruses, suggesting this virus can serve as an enteric virus surrogate when evaluating new treatment technologies. PMMoV excels as an index virus for enteric viruses in environmental waters exposed to untreated domestic wastewater because it was detected more frequently and in higher concentrations than other human viruses in groundwater (72.2%) and surface waters (freshwater, 94.5% and coastal, 72.2%), with pathogen co-detection rates as high as 72.3%. Additionally, PMMoV is an important microbial source tracking marker, most appropriately associated with untreated domestic wastewater, where its pooled-specificity is 90% and pooled-sensitivity is 100%, as opposed to human feces where its pooled-sensitivity is only 11.3%. A limited number of studies have also suggested that PMMoV may be a useful index virus for enteric viruses in monitoring the microbial quality of fresh produce and shellfish, but further research is needed on these topics. Finally, future work is needed to fill in knowledge gaps regarding PMMoV's global specificity and sensitivity.
Collapse
Affiliation(s)
- E M Symonds
- University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, FL, USA.
| | - Karena H Nguyen
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Avenue, Tampa, FL, USA.
| | - V J Harwood
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Avenue, Tampa, FL, USA.
| | - M Breitbart
- University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, FL, USA.
| |
Collapse
|