1
|
Ko A, Oh S, Byon JY, Weon B, Lee J, Lee W, Oh YK, Kim DK, Kim S, Kim YS, Lim CS, Lee JP. Surviving the cold: Assessing long-term outcomes among Korean CKD patients exposed to low perceived temperature during winter. ENVIRONMENTAL RESEARCH 2024; 261:119636. [PMID: 39029731 DOI: 10.1016/j.envres.2024.119636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Perceived temperature (PT), which encompasses meteorological factors such as wind speed, cloud cover, and humidity, reflects the actual effect of temperature on the human body. However, limited data exist on the health implications of prolonged exposure to low temperatures during winter in individuals with chronic kidney disease (CKD). We investigated the association between winter PT and long-term outcomes among CKD patients. A total of 32,870 CKD patients from three tertiary hospitals in Seoul were enrolled in this retrospective study (2001-2018). PT was calculated using Staiger's equation, integrating temperature data from 29 automated weather stations across Seoul, along with dew point temperature, wind velocity, and cloud cover data. Kriging interpolation was utilized to estimate PT values at the patients' locations. Overall mortality and major adverse cardiovascular events (MACEs) were assessed using a time-varying Cox proportional hazards model. Additionally, the Cox regression model evaluated PT corresponding to temperature thresholds for cold surge watches or warnings. Over a median follow-up of 6.14 ± 3.96 years, 6147 deaths (18.7%) were recorded. We found that as the average or minimum PT and Ta decreased by 1 °C, the risk of overall mortality significantly increased. In multivariable analyses, the hazard ratio (HR) for the average PT was 1.049 (95% confidence interval [CI] 1.028-1.071), and that for the minimum PT was 1.038 (CI 1.027-1.052). Furthermore, a cold surge warning at a PT of -25.63 °C indicated an HR of 1.837 (CI 1.764-1.914) and a C-index of 0.792. The increased risk of mortality was more pronounced in patients with low or middle socioeconomic statuses. For MACEs, lower average and minimum PT and Ta were associated with an increased risk, following a similar trend to overall mortality, although not all results reached statistical significance. These findings emphasize the importance of targeted public health policies to mitigate risks among vulnerable CKD patients.
Collapse
Affiliation(s)
- Ara Ko
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea.
| | - Sohee Oh
- Medical Research Collaborating Center, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jae-Young Byon
- National Meteorological Satellite Center, Korea Meteorological Administration, Jincheon, Chungcheongbuk-do, Republic of Korea
| | - Boram Weon
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Whanhee Lee
- Data Science, School of Biomedical Convergence Engineering, Pusan National University, Pusan, Republic of Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Evteev A, Syutkina T, Grosheva A, Santos P, Ghirotto S, Hanihara T, Hubbe M, Menéndez LP. Disparate and parallel craniofacial climatic adaptations in native populations of Asia, North America, and South America. J Anat 2024; 245:699-724. [PMID: 39183681 PMCID: PMC11470782 DOI: 10.1111/joa.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024] Open
Abstract
Understanding the impact that climate had in shaping cranial variation is critical for inferring the evolutionary mechanisms that played a role in human diversification. Here, we provide a comprehensive study aiming to analyze the association between climate and cranial variation of high latitude populations living in temperate to cold environments of Asia, North America, and South America. For this, we compiled a large morphometric dataset (N = 2633), which was combined with climatic and genomic data. We tested the influence of climate on the facial skeleton, nasal protrusion, and cranial vault and through multiple statistical tests at two geographical scales: intracontinental and intercontinental. We show that populations living in cold areas share a morphological pattern characterized by an increase in nasal height, facial and orbital heights and widths, a decrease in facial protrusion, and larger, longer, and lower cranial vaults. There are also distinctive features; populations from north Asia present the tallest noses, largest faces, and cranial vaults of the whole sample. Nasal breadth dimensions show small values in Asians, large values in South Americans, and non-significant changes in arctic North America. The morphological pattern in populations living at high latitude may be the result of parallel adaptation, as supported by physiological, morphometric, ecological, and genetic explanations, while the differences in magnitude and phenotypic expression could be due to the diverse population histories, severity of climate, and cultural strategies. Overall, our study shows that climate is a relevant factor shaping modern human morphology and it should be considered when studying modern human evolution and diversification.
Collapse
Affiliation(s)
- Andrej Evteev
- Anuchin Research Institute and Museum of AnthropologyMoscow State UniversityMoscowRussia
| | - Taisiya Syutkina
- Miklukho‐Maklay Institute of Ethnology and AnthropologyRussian Academy of SciencesMoscowRussia
| | - Alexandra Grosheva
- Vavilov Institute of General GeneticsRussian Academy of ScienceMoscowRussia
| | - Patrícia Santos
- CNRS, UMR 5199 – PACEAUniversité de BordeauxPessacFrance
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| | - Silvia Ghirotto
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| | - Tsunehiko Hanihara
- Department of Anatomy, School of MedicineKitasato UniversitySagamiharaKanagawaJapan
| | - Mark Hubbe
- Department of AnthropologyOhio State UniversityColumbusOhioUSA
- Instituto de Arqueología y AntropologíaUniversidad Católica del NorteSan Pedro de AtacamaChile
| | - Lumila Paula Menéndez
- Department of Anthropology of the AmericasUniversity of BonnBonnGermany
- Konrad Lorenz Institute for Evolution and Cognition ResearchKlosterneuburgAustria
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
3
|
Talukder MR, Islam MT, Mathew S, Perry C, Phung D, Rutherford S, Cass A. The effect of ambient temperatures on hospital admissions for kidney diseases in Central Australia. ENVIRONMENTAL RESEARCH 2024; 259:119502. [PMID: 38945510 DOI: 10.1016/j.envres.2024.119502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
This study aimed to quantify risk of hospitalisations for kidney diseases related to ambient temperature in Central Australia, Northern Territory (NT). Daily hospitalisation data were extracted for Alice Springs Hospital, Central Australia, 2010-2021. The association between daily mean temperature and daily hospital admissions for total kidney and specific kidney conditions was assessed using a quasi-Poisson Generalized Linear Model combined with a distributed lag non-linear model. A total of 52,057 hospitalisations associated with kidney diseases were recorded. In general, risk of specific kidney related hospitalisations was immediate due to hot temperatures and prolonged due to cold temperatures. Relative to the minimum-risk temperature (5.1 °C), at 31 °C, cumulative relative risk (RR) of hospitalisations for total kidney disease (TKD) was 1.297 [95% CI 1.164,1.446] over lag0-1 days, for chronic kidney disease (CKD) cumulative RR was 1.269 [95% CI 1.115,1.444] and for kidney failure (KF) cumulative RR was 1.252 [95% CI 1.107,1.416] at lag 0, and for urinary tract infection (UTI) cumulative RR was 1.522 [95% CI 1.072,2.162] over lag0-7 days. At 16 °C and over lag0-7 days, cumulative RR of hospitalisations for TKD was 1.320 [95% CI 1.135,1.535], for CKD was 1.232 [95% CI 1.025,1.482], for RF was 1.233 [95% CI 1.035,1.470] and for UTI was 1.597 [95% CI 1.143, 2.231]. Both cold and hot temperatures were also associated with increased risks of kidney related total hospitalisations among First Nations Australians and women. Overall, temperature attributable to 13.7% (i.e. 7138 cases) of kidney related hospitalisations with higher attributable hospitalisations from cold temperature. Given the significant burden of kidney disease and projected increases in extreme temperatures associated with climate change in NT including Central Australia there is a need to implement public health and environmental health risk reduction strategies and awareness programs to mitigate potential adverse health effects of extreme temperatures.
Collapse
Affiliation(s)
- Mohammad Radwanur Talukder
- Leukaemia Foundation, Adelaide, SA, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
| | - Md Tauhidul Islam
- Health Administration, Policy and Leadership Program, Murdoch Business School, Murdoch University, Perth, WA, Australia
| | - Supriya Mathew
- Menzies School of Health Research, Charles Darwin University, NT, Australia
| | - Chris Perry
- Aboriginal Medical Services Alliance Northern Territory, Alice Springs, NT, Australia
| | - Dung Phung
- School of Public Health, The University of Queensland, QLD, Australia; Queensland Alliance for Environmental Health Sciences, The University of Queensland, QLD, Australia
| | - Shannon Rutherford
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Alan Cass
- Menzies School of Health Research, Charles Darwin University, NT, Australia
| |
Collapse
|
4
|
Li T, Shao J, An N, Chang Y, Xia Y, Han Q, Zhu F. Combined proteomics and metabolomics analysis reveal the effect of a training course on the immune function of Chinese elite short-track speed skaters. Immun Inflamm Dis 2024; 12:e70030. [PMID: 39352112 PMCID: PMC11443606 DOI: 10.1002/iid3.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
INTRODUCTION The aim of this study was to combine proteomics and metabolomics to evaluate the immune system of short-track speed skaters (STSS) before and after a training course. Our research focused on changes in urinary proteins and metabolites that have the potential to serve as indicators for training load. METHODS Urine samples were collected from 21 elite STSS (13 male and 8 female) of the China National Team before and immediately after one training course. First-beat sports sensor was used to monitor the training load. Proteomic detection was performed using a Thermo UltiMate 3000 ultra high performence chromatography nano liquid chromatograph and an Orbitrap Exploris 480 mass spectrometer. MSstats (R package) was used for the statistical evaluation of significant differences in proteins from the samples. Two filtration criteria (fold change [FC] > 2 and p < 0.05) were used to identify the differential expressed proteins. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis for differential proteins was performed to identify the pathways involved. Nontargeted metabolomic detection was performed using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS_) with an ACQUITY 2D UPLC plus Q Exactive (QE) hybrid Quadrupole-Orbitrap mass spectrometer. Differential metabolites were identified using non-parametric statistical methods (Wilcox's rank test). Two filtration criteria (FC > 1.2 and p < 0.05) were used to identify differential metabolites. Combined analysis of proteomic and metabolomics were performed on the "Wu Kong" platform. Correlation analysis was performed using Spearman's rank correlation coefficient. RESULTS (1) The most upregulated proteins were immune-related proteins, including complement proteins (C9, C4-B, and C9) and immunoglobulins (IgA, IgM, and IgG). The most downregulated proteins were osteopontin (OPN) and CD44 in urine. The correlation analysis showed that the content of OPN and CD44 (the receptor for OPN) in urine were significantly negatively correlated with the upregulated immune-related proteins. The content of OPN and CD44 is sex-dependent and negatively correlated with the training load. (2) The most upregulated metabolites included lactate, cortisol, inosine, glutamine, argininosuccinate (the precursor for arginine synthesis), 3-methyl-2-oxobutyrate (the catabolite of valine), 3-methyl-2-oxovalerate (the catabolite of isoleucine), and 4-methyl-2-oxopentanoate (the catabolite of leucine), which is sex-dependent and negatively correlated with OPN and CD44. (3) The joint analysis revealed five main related pathways, including the immune and innate immune systems. The enriched immune-related proteins included complements, immunoglobulins, and protein catabolism-related proteins. The enriched immune-related metabolites included cAMP, N-acetylgalactosamine, and glutamate. (4) There is a significant negative correlation between the content of OPN and CD44 in urine and the training load. CONCLUSION One training course can lead to the activation of the immune system and a sex-dependent decrease in the content of OPN and CD44. Training load has a significant and negative correlation with the content of OPN and CD44, suggesting that OPN and CD44 could be potential indicators for training load.
Collapse
Affiliation(s)
- Tieying Li
- Sports Nutrition Center, National Institute of Sports MedicineBeijingChina
- Key Lab of Sports NutritionState General Administration of Sport of ChinaBeijingChina
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People's Republic of ChinaBeijingChina
| | - Jing Shao
- Sports Nutrition Center, National Institute of Sports MedicineBeijingChina
- Key Lab of Sports NutritionState General Administration of Sport of ChinaBeijingChina
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People's Republic of ChinaBeijingChina
| | - Nan An
- Sports Nutrition Center, National Institute of Sports MedicineBeijingChina
- Key Lab of Sports NutritionState General Administration of Sport of ChinaBeijingChina
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People's Republic of ChinaBeijingChina
| | - Yashan Chang
- Sports Nutrition Center, National Institute of Sports MedicineBeijingChina
- Key Lab of Sports NutritionState General Administration of Sport of ChinaBeijingChina
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People's Republic of ChinaBeijingChina
| | - Yishi Xia
- Sports Nutrition Center, National Institute of Sports MedicineBeijingChina
- Key Lab of Sports NutritionState General Administration of Sport of ChinaBeijingChina
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People's Republic of ChinaBeijingChina
| | - Qi Han
- Sports Nutrition Center, National Institute of Sports MedicineBeijingChina
- Key Lab of Sports NutritionState General Administration of Sport of ChinaBeijingChina
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People's Republic of ChinaBeijingChina
| | - Fenglin Zhu
- School of Sport Medicine and RehabilitationBeijing Sport UniversityBeijingChina
| |
Collapse
|
5
|
El-Ansary MRM, El-Ansary AR, Said SM, Abdel-Hakeem MA. Regular cold shower exposure modulates humoral and cell-mediated immunity in healthy individuals. J Therm Biol 2024; 125:103971. [PMID: 39299098 DOI: 10.1016/j.jtherbio.2024.103971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Cold hydrotherapy is an ancient practice that has recently gained scientific interest for its potential health benefits. This study explored the effects of regular cold shower exposure on immune cell function. METHODS Sixty healthy Egyptian adults were randomized to take cold or hot showers daily for 90 days. Levels of immunoglobulins, cytokines, and interferon-gamma were measured in blood samples at baseline, 30, 60, and 90 days. RESULTS The cold shower group exhibited significant increases in immunoglobulin levels. Conversely, the hot shower group showed a significant decrease in IgM levels at 60 and 90 days compared to baseline, alongside nonsignificant decrease of IgG and IgA. the cold shower group demonstrated elevated levels of IL-2 and IL-4 at 90 days, indicating enhanced T-cell proliferation and humoral immunity, respectively. In contrast, the hot shower group did not exhibit significant changes in cytokine levels. There were no significant differences in IFN-γ and TNF-α levels between the groups. CONCLUSIONS Regular cold shower exposure appears to enhance humoral and cell-mediated immunity through the upregulation of antibodies, interleukin-2, and interleukin-4. Brief cold stressors may induce physiological adaptations that prime the immune response. This accessible, sustainable lifestyle modification could potentially serve as an alternative therapy to boost immunity. Further research on larger populations is warranted to better understand the physiological effects of cold temperatures on immunity.
Collapse
Affiliation(s)
- Mahmoud R M El-Ansary
- Department of Immunology and Medical Microbiology, Faculty of Medicine, Misr University for Science and Technology, Giza, Egypt
| | - Amira R El-Ansary
- Department of Internal Medicine, Faculty of Medicine, Misr University for Science and Technology, Giza, Egypt
| | - Shereen M Said
- Department of Basic Science, Faculty of Physical Therapy, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A Abdel-Hakeem
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt.
| |
Collapse
|
6
|
Qian Y, Zhao Y, Tang L, Ye D, Chen Q, Zhu H, Ye H, Xu G, Liu L. Short-term effects of air pollutants and meteorological factors on outpatients with allergic airway disease in Ningbo, China, 2015-2021. Public Health 2024; 236:52-59. [PMID: 39163744 DOI: 10.1016/j.puhe.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
OBJECTIVES The allergic airway disease, such as allergic rhinitis, chronic rhinosinusitis, asthma, is a general term of a range of inflammatory disorders affecting the upper and lower airways and lung parenchyma. This study aimed to investigate the short-term effects of air pollutants and meteorological factors on AAD-related daily outpatient visits. STUDY DESIGN An ecological study. METHODS Data on outpatient visits due to AAD (n = 4,554,404) were collected from the platform of the Ningbo Health Information from January 1, 2015 to December 31, 2021. A Quasi-Poisson generalized additive regression model was established to analyze the lag effects of air pollution on daily outpatient visits for AAD. Restricted cubic spline functions were used to explore the potential non-linear relationships between air pollutants and meteorological and daily outpatient visits for AAD. RESULTS PM2.5, PM10, SO2, NO2, or CO were associated with daily outpatient visits for AAD, and there was a significant increasing trend in the cumulative lag effects. SO2 had the largest effect at Lag07, with a 25.3% (95% CI: 21.6%-29.0%) increase in AAD for every 10 μg/m3 increase in exposure concentration. Subgroup analysis showed that the 0-18 years old age group had the strongest effects, especially for AR, and all effects were stronger in the cold season. CONCLUSIONS Given that patients aged 0-18 are more susceptible to environmental changes, protective measures specifically for children should be taken during dry and cold weather conditions with poor air quality.
Collapse
Affiliation(s)
- Y Qian
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China.
| | - Y Zhao
- Department of Biostatistics School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - L Tang
- Ningbo Health Information Center, Ningbo, Zhejiang Province, China
| | - D Ye
- Ningbo Health Information Center, Ningbo, Zhejiang Province, China
| | - Q Chen
- Department of Disease Prevention and Health Promotion, Ningbo NO.2 Hospital, Ningbo, Zhejiang Province, China
| | - H Zhu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - H Ye
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - G Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China.
| | - L Liu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China; Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, Zhejiang, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China.
| |
Collapse
|
7
|
Ning Z, He S, Liao X, Ma C, Wu J. Cold waves and fine particulate matter in high-altitude Chinese cities: assessing their interactive impact on outpatient visits for respiratory disease. BMC Public Health 2024; 24:1377. [PMID: 38778299 PMCID: PMC11110372 DOI: 10.1186/s12889-024-18896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Extreme weather events like heatwaves and fine particulate matter (PM2.5) have a synergistic effect on mortality, but research on the synergistic effect of cold waves and PM2.5 on outpatient visits for respiratory disease, especially at high altitudes in climate change-sensitive areas, is lacking. METHODS we collected time-series data on meteorological, air pollution, and outpatient visits for respiratory disease in Xining. We examined the associations between cold waves, PM2.5, and outpatient visits for respiratory disease using a time-stratified case-crossover approach and distributional lag nonlinear modeling. Our analysis also calculated the relative excess odds due to interaction (REOI), proportion attributable to interaction (AP), and synergy index (S). We additionally analyzed cold waves over time to verify climate change. RESULTS Under different definitions of cold waves, the odds ratio for the correlation between cold waves and outpatient visits for respiratory disease ranged from 0.95 (95% CI: 0.86, 1.05) to 1.58 (1.47, 1.70). Exposure to PM2.5 was significantly associated with an increase in outpatient visits for respiratory disease. We found that cold waves can synergize with PM2.5 to increase outpatient visits for respiratory disease (REOI > 0, AP > 0, S > 1), decreasing with stricter definitions of cold waves and longer durations. Cold waves' independent effect decreased over time, but their interaction effect persisted. From 8.1 to 21.8% of outpatient visits were due to cold waves and high-level PM2.5. People aged 0-14 and ≥ 65 were more susceptible to cold waves and PM2.5, with a significant interaction for those aged 15-64 and ≥ 65. CONCLUSION Our study fills the gap on how extreme weather and PM2.5 synergistically affect respiratory disease outpatient visits in high-altitude regions. The synergy of cold waves and PM2.5 increases outpatient visits for respiratory disease, especially in the elderly. Cold wave warnings and PM2.5 reduction have major public health benefits.
Collapse
Affiliation(s)
- Zhenxu Ning
- Department of Public Health, Faculty of Medicine, Qinghai University, Xining, China
| | - Shuzhen He
- Xining Centre for Disease Control and Prevention, Xining, China.
| | - Xinghao Liao
- Department of Public Health, Faculty of Medicine, Qinghai University, Xining, China
| | - Chunguang Ma
- Xining Centre for Disease Control and Prevention, Xining, China
| | - Jing Wu
- Xining Centre for Disease Control and Prevention, Xining, China
| |
Collapse
|
8
|
Luo T, Zhu J, Li K, Li Y, Li J, Chen Y, Shi H. Crosstalk between innate immunity and rumen-fecal microbiota under the cold stress in goats. Front Immunol 2024; 15:1363664. [PMID: 38476231 PMCID: PMC10928366 DOI: 10.3389/fimmu.2024.1363664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
The balance of the microbiome, which is sensitive to temperature changes, plays a crucial role in maintaining overall health and reducing the risk of diseases. However, the specific mechanisms by which immunity and microbiota interact to adapt to cold stress have yet to be addressed. In this study, Nanjiang Yellow goats were chosen as a model and sampled during the cold (winter, cold stress) and warm (spring) seasons, respectively. Analyses of serum immune factors, as well as the composition of rumen and fecal microbial communities, were conducted to explore the crosstalk between microbiota and innate immunity under cold stress. Significantly increased levels of IgA (P < 0.01) were observed in the cold season compared to the warm season. Conversely, the levels of IL-2 (P = 0.02) and IL-6 (P < 0.01) diminished under cold stress. However, no significant differences were observed in IgG (P = 0.89), IgM (P = 0.42), and IL-4 (P = 0.56). While there were no significant changes in the diversity of bacterial communities between the warm and cold seasons, positive correlations between serum IgA, IL-2, IL-6 concentrations and several genera were observed. Furthermore, the weighted gene co-expression network analysis indicated that the microbiota enriched in the MEbrown module positively correlated with IgA, while the microbiota enriched in the MEblue module positively correlated with IL-2 and IL-6. The strong correlation between certain probiotics, including Alistipes, Bacteroides, Blautia, and Prevotellaceae_UCG.004, and the concentration of IL-2, and IL-6 suggests their potential role in immunomodulatory properties. This study provides valuable insights into the crosstalk between microbial communities and immune responses under the challenge of cold stress. Further studies on the immunomodulatory properties of these probiotics would contribute to the development of strategies to enhance the stress resistance of animals for improved overall health and survival.
Collapse
Affiliation(s)
- Tao Luo
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Kerui Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongtao Li
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jun Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yu Chen
- Institute of Nanjiang Yellow Goat Sciences, Bazhong, Sichuan, China
| | - Hengbo Shi
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Neyra JS, Davis RE. The association between climate and emergency department visits for renal and urinary disease in Charlottesville, Virginia. ENVIRONMENTAL RESEARCH 2024; 240:117525. [PMID: 37898224 DOI: 10.1016/j.envres.2023.117525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Diseases of the kidney and urinary tract impose a significant portion of the total disease burden, and linkages to high temperature exposure suggest that this burden may increase in the near future. We examined the association between climate and daily emergency department (ED) visits for kidney and urinary disease at the University of Virginia main hospital in Charlottesville, Virginia from 2005 to 2020. Generalized additive models and distributed lag nonlinear models were used to examine these associations over a 21-day lag period. After testing a variety of weather variables from observations taken at the Charlottesville, Albemarle County Airport weather station, 1 p.m. temperature was found to have the strongest association with ED visits for renal and urinary visits while controlling for seasonal and trend factors, air quality, day of the week, and wintry weather. The relative risk of ED visits exhibited a stronger association with high temperatures compared to low temperatures. The heat response was pronounced at short lags (0-1 days) with the relative risk (RR) increasing when 1 p.m. temperatures exceeded 20°C and peaking at 29°C (RR = 1.28). By comparison, low temperatures (≤0°C) exhibited a negative association (RR = 0.80 at -10°C) at short lags (0-1 day), with evidence of a weak RR increase at lags of 2-3 and 9-14 days. These results for ED visitation are consistent with other studies linking high temperatures to acute kidney injury, chronic kidney disease, the development of kidney stones, and other associated illnesses. A better understanding of the impact of temperature extremes in generating or exacerbating existing conditions could assist medical health professionals in the prevention and management of these diseases during extreme weather events.
Collapse
Affiliation(s)
- Jesus S Neyra
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, United States.
| | - Robert E Davis
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
10
|
Wu Y, Zhang J, Luo G, Zhang J, Zhang X, Liao B, Shi C. Association between diurnal temperature range and outpatient visits for urticaria disease in Lanzhou, China: a distributed lag nonlinear analysis. Int Arch Occup Environ Health 2024; 97:1-8. [PMID: 37950847 DOI: 10.1007/s00420-023-02019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/12/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND A growing number of epidemiological studies have shown that daily temperatures are associated with urticaria. However, the relationship between daily changes in temperature and urticaria is unclear. OBJECTIVES To assess the diurnal temperature difference (DTR) effects on urticaria outpatient visits in Lanzhou, China. METHODS Urticaria outpatient visits data during 2011-2019 were collected from three major tertiary hospitals in Lanzhou. Daily temperature data from the official website of China Meteorological Administration. Assessment of the relationship between urticaria outpatient volume and DTR in Lanzhou City using a distributed lag nonlinear model. RESULTS A total of 83,022 urticaria visits were enrolled. There was a nonlinear relationship between DTR and urticaria outpatient visits and a lagged effect of DTR impact. The effects of high DTR on urticaria visits were not seen in all populations but in the male population and in the 15-59 age group. High DTR (P95: 18.2 °C) was associated with a 27% (95% CI: 0.01, 60.53%) and 31% (95% CI: 1.60, 68.99%) increase in the number of urticaria visits in the 21-day lag effect for the male cohort and the 15-59 year old cohort, respectively, compared with 11.5 °C, respectively. CONCLUSIONS Our study suggests that DTR is a potential risk factor for urticaria. The results of this study may provide a scientific basis for local governments to improve preventive measures in the health care system.
Collapse
Affiliation(s)
- Yi Wu
- Department of Dermatology, The First Hospital of Lanzhou University, No. 1, Donggangxi Rd, Chengguan District, Lanzhou City, 730000, Gansu, China
| | - Jing Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, People's Republic of China
| | - Guodong Luo
- Gansu Provincial People's Hospital, Lanzhou, 730000, People's Republic of China
| | - Jianhong Zhang
- Department of Dermatology, The First Hospital of Lanzhou University, No. 1, Donggangxi Rd, Chengguan District, Lanzhou City, 730000, Gansu, China
| | - Xiangdong Zhang
- Department of Dermatology, The First Hospital of Lanzhou University, No. 1, Donggangxi Rd, Chengguan District, Lanzhou City, 730000, Gansu, China
| | - Bei Liao
- The First Clinical Medical College of Lanzhou University, Lanzhou, People's Republic of China
| | - Chunrui Shi
- Department of Dermatology, The First Hospital of Lanzhou University, No. 1, Donggangxi Rd, Chengguan District, Lanzhou City, 730000, Gansu, China.
| |
Collapse
|
11
|
Zhao H, Yang Y, Feng C, Wang W, Yang C, Yin Y, Gong L, Lin T. Nonlinear effects of humidex on risk of outpatient visit for allergic conjunctivitis among children and adolescents in Shanghai, China: A time series analysis. J Glob Health 2023; 13:04132. [PMID: 37921044 PMCID: PMC10623378 DOI: 10.7189/jogh.13.04132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Background Various epidemiological studies have focused on the adverse health outcomes of meteorological factors. However, there has been little research on the impact of humidex on allergic conjunctivitis, especially in child and adolescent populations. We aimed to explore the impact of humidex, a comprehensive index of relative humidity and temperature, on child and adolescent allergic conjunctivitis admissions. Methods Outpatient visit data for allergic conjunctivitis, meteorological factors and air pollutants in Shanghai for the 2017-2022 period were retrieved. For the purpose of analysing the nonlinear connection and lag impact between humidex and admissions for paediatric and adolescent allergic conjunctivitis, the distributed lag nonlinear model (DLNM) was fitted. Results A total of 147 090 cases were included in our cohort. We found a significantly nonlinear effect on humidex and allergic conjunctivitis. In the single-day lag pattern, the relative risks (RR) of allergic conjunctivitis were significant at lag 0 (RR = 1.08, 95% confidence interval (CI) = 1.05-1.11) to lag 2 (RR = 1.01, 95% CI = 1.00-1.01), lag 5 (RR = 1.01, 95% CI = 1.00-1.01) to lag 9 (RR = 1.01, 95% CI = 1.00-1.01), and lag 14 (RR = 1.02, 95% CI: 1.01-1.03). In the cumulative-lag day pattern, the RR of allergic conjunctivitis were significant at lag 0-0 (RR = 1.08, 95% CI = 1.05-1.11) to lag 0-14 (RR = 1.21, 95% CI = 1.13-1.28). We found that boys, children aged 7-17 years, and children in the warm season were more vulnerable to humidex. In addition, the highest attributable fraction (AF) and attributable number (AN) of humidex are at lag 0-14 (AF = 0.17, AN = 25 026). Conclusions Humidex exposure markedly increased the risk of allergic conjunctivitis, especially in highly high humidex. Appropriate public health management is needed for disease management and early intervention.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Yun Yang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Changming Feng
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Chenhao Yang
- Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai, China
| | - Yue Yin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
12
|
MacDonald CR, Choi JE, Hong CC, Repasky EA. Consideration of the importance of measuring thermal discomfort in biomedical research. Trends Mol Med 2023; 29:589-598. [PMID: 37330365 PMCID: PMC10619709 DOI: 10.1016/j.molmed.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
Core temperature stability is the result of a dynamically regulated balance of heat loss and gain, which is not reflected by a simple thermometer reading. One way in which these changes manifest is in perceived thermal comfort, 'feeling too cold' or 'feeling too hot', which can activate stress pathways. Unfortunately, there is surprisingly little preclinical research that tracks changes in perceived thermal comfort in response to either disease progression or various treatments. Without measuring this endpoint, there may be missed opportunities to evaluate disease and therapy outcomes in murine models of human disease. Here, we discuss the possibility that changes in thermal comfort in mice could be a useful and physiologically relevant measure of energy trade-offs required under various physiological or pathological conditions.
Collapse
Affiliation(s)
- Cameron R MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Jee Eun Choi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
13
|
Wang F, Nie H, Shi C. Short-term effects of meteorological factors on childhood atopic dermatitis in Lanzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15070-15081. [PMID: 36166129 DOI: 10.1007/s11356-022-23250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Atopic dermatitis (AD) is one of the leading burdens of skin disease in children globally. Meteorological factors are involved in the onset and development of AD. Several studies have examined the effects of meteorological factors on AD, but their results are inconsistent, and the understanding of the link between AD and meteorological factors remains inadequate. In this study, a total of 19,702 children aged 0 to 14 visited the outpatient clinic for AD from 2015 to 2019 in Lanzhou, China. A distributed lag nonlinear model (DLNM) applies to evaluate effects of meteorological factors on childhood AD in Lanzhou, China, and further explored age and gender differences. It was found that extremely high or low temperatures, extremely high diurnal temperature range (DTR), extremely low relative humidity (RH), and extremely high wind speed (WS) increased the risk of outpatient visits for childhood AD. Effects of extremely high DTR and extremely high WS were more intense, with maximum cumulative risks of 2.248 (95% CI 1.798, 2.811) and 3.834 (95% CI 3.086, 4.759) at lag 0-21, respectively. Furthermore, the combination of low temperature and low RH can also contribute to the higher risk of childhood AD. For extreme temperatures, children aged 7-14 years were more vulnerable. For extremely low RH, extremely high DTR and WS, boys and children aged 0-3 years were more vulnerable. Public health departments should strengthen publicity and education about how meteorological factors affect childhood AD and develop sex- and age-specific preventative measures.
Collapse
Affiliation(s)
- Fei Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Dermatology, The First Hospital of Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Hui Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Chunrui Shi
- Department of Dermatology, The First Hospital of Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
14
|
Ma T, Tan J, Li R, Li J, Gao B. Effects of six weeks of sub-plateau cold environment training on physical functioning and athletic ability in elite parallel giant slalom snowboard athletes. PeerJ 2023; 11:e14770. [PMID: 36721778 PMCID: PMC9884478 DOI: 10.7717/peerj.14770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Background Hypoxic and cold environments have been shown to improve the function and performance of athletes. However, it is unclear whether the combination of subalpine conditions and cold temperatures may have a greater effect. The present study aims to investigate the effects of 6 weeks of training in a sub-plateau cold environment on the physical function and athletic ability of elite parallel giant slalom snowboard athletes. Methods Nine elite athletes (four males and five females) participated in the study. The athletes underwent 6 weeks of high intensity ski-specific technical training (150 min/session, six times/week) and medium-intensity physical training (120 min/session, six times/week) prior to the Beijing 2021 Winter Olympic Games test competition. The physiological and biochemical parameters were collected from elbow venous blood samples after each 2-week session to assess the athletes' physical functional status. The athletes' athletic ability was evaluated by measuring their maximal oxygen uptake, Wingate 30 s anaerobic capacity, 30 m sprint run, and race performance. Measurements were taken before and after participating in the training program for six weeks. The repeated measure ANOVA was used to test the overall differences of blood physiological and biochemical indicators. For indicators with significant time main effects, post-hoc tests were conducted using the least significant difference (LSD) method. The paired-samples t-test was used to analyze changes in athletic ability indicators before and after training. Results (1) There was a significant overall time effect for red blood cells (RBC) and white blood cells (WBC) in males; there was also a significant effect on the percentage of lymphocytes (LY%), serum testosterone (T), and testosterone to cortisol ratio (T/C) in females (p < 0.001 - 0.015, η p 2 = 0 . 81 - 0 . 99 ). In addition, a significant time effect was also found for blood urea(BU), serum creatine kinase (CK), and serum cortisol levels in both male and female athletes (p = 0.001 - 0.029, η p 2 = 0 . 52 - 0 . 95 ). (2) BU and CK levels in males and LY% in females were all significantly higher at week 6 (p = 0.001 - 0.038), while WBC in males was significantly lower (p = 0.030). T and T/C were significantly lower in females at week 2 compared to pre-training (p = 0.007, 0.008, respectively), while cortisol (C) was significantly higher in males and females at weeks 2 and 4 (p (male) = 0.015, 0.004, respectively; p (female) = 0.024, 0.030, respectively). (3) There was a noticeable increase in relative maximal oxygen uptake, Wingate 30 s relative average anaerobic power, 30 m sprint run performance, and race performance in comparison to the pre-training measurements (p < 0.001 - 0.027). Conclusions Six weeks of sub-plateau cold environment training may improve physical functioning and promote aerobic and anaerobic capacity for parallel giant slalom snowboard athletes. Furthermore, male athletes had a greater improvement of physical functioning and athletic ability when trained in sub-plateau cold environments.
Collapse
Affiliation(s)
- Tao Ma
- School of Elite Sport, Shanghai University of Sport, Shanghai, Shanghai, China
| | - Jingwang Tan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ran Li
- School of Elite Sport, Shanghai University of Sport, Shanghai, Shanghai, China
| | - Jiatao Li
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Binghong Gao
- School of Elite Sport, Shanghai University of Sport, Shanghai, Shanghai, China
| |
Collapse
|
15
|
Roche J, Rasmussen P, Gatterer H, Roveri G, Turner R, van Hall G, Maillard M, Walzl A, Kob M, Strapazzon G, Goetze JP, Schäfer ST, Kammerer T, Nader E, Connes P, Robert M, Mueller T, Feraille E, Siebenmann C. Hypoxia briefly increases diuresis but reduces plasma volume by fluid redistribution in women. Am J Physiol Heart Circ Physiol 2022; 323:H1068-H1079. [PMID: 36269645 PMCID: PMC9678412 DOI: 10.1152/ajpheart.00394.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have recently reported that hypobaric hypoxia (HH) reduces plasma volume (PV) in men by decreasing total circulating plasma protein (TCPP). Here, we investigated whether this applies to women and whether an inflammatory response and/or endothelial glycocalyx shedding could facilitate the TCCP reduction. We further investigated whether acute HH induces a short-lived diuretic response that was overlooked in our recent study, where only 24-h urine volumes were evaluated. In a strictly controlled crossover protocol, 12 women underwent two 4-day sojourns in a hypobaric chamber: one in normoxia (NX) and one in HH equivalent to 3,500-m altitude. PV, urine output, TCPP, and markers for inflammation and glycocalyx shedding were repeatedly measured. Total body water (TBW) was determined pre- and postsojourns by deuterium dilution. PV was reduced after 12 h of HH and thereafter remained 230-330 mL lower than in NX (P < 0.0001). Urine flow was 45% higher in HH than in NX throughout the first 6 h (P = 0.01) but lower during the second half of the first day (P < 0.001). Twenty-four-hour urine volumes (P ≥ 0.37) and TBW (P ≥ 0.14) were not different between the sojourns. TCPP was lower in HH than in NX at the same time points as PV (P < 0.001), but inflammatory or glycocalyx shedding markers were not consistently increased. As in men, and despite initially increased diuresis, HH-induced PV contraction in women is driven by a loss of TCPP and ensuing fluid redistribution, rather than by fluid loss. The mechanism underlying the TCPP reduction remains unclear but does not seem to involve inflammation or glycocalyx shedding.NEW & NOTEWORTHY This study is the first to investigate the mechanisms underlying plasma volume (PV) contraction in response to hypoxia in women while strictly controlling for confounders. PV contraction in women has a similar time course and magnitude as in men and is driven by the same mechanism, namely, oncotically driven redistribution rather than loss of fluid. We further report that hypoxia facilitates an increase in diuresis, that is, however, short-lived and of little relevance for PV regulation.
Collapse
Affiliation(s)
- Johanna Roche
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | | | - Hannes Gatterer
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giulia Roveri
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Rachel Turner
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Gerrit van Hall
- 3Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,4Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,5Clinical Metabolomics Core Facility, Rigshospitalet, University of Copenhagen, Denmark
| | - Marc Maillard
- 6Service of Nephrology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Anna Walzl
- 7Department of Anesthesiology, LMU Klinikum, Ludwig-Maximilians-University München, Munich, Germany
| | - Michael Kob
- 8Division of Clinical Nutrition, Bolzano Regional Hospital, Bolzano, Italy
| | - Giacomo Strapazzon
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Jens Peter Goetze
- 3Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Simon Thomas Schäfer
- 7Department of Anesthesiology, LMU Klinikum, Ludwig-Maximilians-University München, Munich, Germany
| | - Tobias Kammerer
- 7Department of Anesthesiology, LMU Klinikum, Ludwig-Maximilians-University München, Munich, Germany,9Department for Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elie Nader
- 10Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Philippe Connes
- 10Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Mélanie Robert
- 10Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Thomas Mueller
- 11Department of Clinical Pathology, Hospital of Bolzano, Bolzano, Italy,12Department of Laboratory Medicine, Hospital Voecklabruck, Voecklabruck, Austria
| | - Eric Feraille
- 13National Center of Competence in Research Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland,14Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
16
|
Kopplin CS, Rosenthal L. The positive effects of combined breathing techniques and cold exposure on perceived stress: a randomised trial. CURRENT PSYCHOLOGY 2022; 42:1-13. [PMID: 36248220 PMCID: PMC9540300 DOI: 10.1007/s12144-022-03739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 11/26/2022]
Abstract
A pranayama-inspired breathing technique, cold exposure, and their combined application were assessed for their potential to reduce perceived stress in adults and compared to a control group. An experiment involving four groups was conducted, yielding separate cells for breathing technique-only and cold exposure-only, as well as a combined treatment and a control group. Eighty-six individuals participated in the study. Perceived stress is measured employing the 10-item version of the Perceived Stress Scale (PSS-10) and the 20-item version of the Perceived Stress Questionnaire (PSQ). The instruments exhibit a substantial correlation (r = 0.842, p < 0.001). The combined group exhibited a medium to large positive effect on perceived stress compared to the control group. The breathing technique and cold exposure on their own were not found to yield substantial effects, indicating synergies between both exercises. Combinations of breathing techniques and cold exposure may be employed to decrease individuals' perceived stress.
Collapse
|
17
|
Cold air exposure at - 15 °C induces more airway symptoms and epithelial stress during heavy exercise than rest without aggravated airway constriction. Eur J Appl Physiol 2022; 122:2533-2544. [PMID: 36053365 PMCID: PMC9613713 DOI: 10.1007/s00421-022-05004-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/26/2022] [Indexed: 11/19/2022]
Abstract
Purpose Exposure to cold air may harm the airways. It is unclear to what extent heavy exercise adds to the cold-induced effects on peripheral airways, airway epithelium, and systemic immunity among healthy individuals. We investigated acute effects of heavy exercise in sub-zero temperatures on the healthy airways. Methods Twenty-nine healthy individuals underwent whole body exposures to cold air in an environmental chamber at − 15 °C for 50 min on two occasions; a 35-min exercise protocol consisting of a 5-min warm-up followed by 2 × 15 min of running at 85% of VO2max vs. 50 min at rest. Lung function was measured by impulse oscillometry (IOS) and spirometry before and immediately after exposures. CC16 in plasma and urine, and cytokines in plasma were measured before and 60 min after exposures. Symptoms were surveyed pre-, during and post-trials. Results FEV1 decreased after rest (− 0.10 ± 0.03 L, p < 0.001) and after exercise (− 0.06 ± 0.02 L, p = 0.012), with no difference between trials. Exercise in − 15 °C induced greater increases in lung reactance (X5; p = 0.023), plasma CC16 (p < 0.001) as well as plasma IL-8 (p < 0.001), compared to rest. Exercise induced more intense symptoms from the lower airways, whereas rest gave rise to more general symptoms. Conclusion Heavy exercise during cold air exposure at − 15 °C induced signs of an airway constriction to a similar extent as rest in the same environment. However, biochemical signs of airway epithelial stress, cytokine responses, and symptoms from the lower airways were more pronounced after the exercise trial. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-022-05004-3.
Collapse
|
18
|
He L, Xue B, Wang B, Liu C, Gimeno Ruiz de Porras D, Delclos GL, Hu M, Luo B, Zhang K. Impact of high, low, and non-optimum temperatures on chronic kidney disease in a changing climate, 1990-2019: A global analysis. ENVIRONMENTAL RESEARCH 2022; 212:113172. [PMID: 35346653 PMCID: PMC9907637 DOI: 10.1016/j.envres.2022.113172] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND Although a few studies have reported the relationship between high and low temperatures and chronic kidney disease (CKD), the global burden of CKD attributable to extreme heat and cold in recent decades remains unknown. METHODS Based on the Global Burden of Disease Study (GBD) 2019, we obtained data on age-standardized mortality rates (ASMR) and age-standardized rates of disability-adjusted life years (ASDR) per 100 000 population of the CKD attributable to non-optimum temperatures from 1990 to 2019. The annual mean temperature of each country was used to divide each country into five climate zones (tropical, subtropical, warm-temperate, cool-temperate, and boreal). The locally weighted regression model was used to estimate the burden for different climate zones and Socio-demographic index (SDI) regions. RESULTS In 1990, the ASMR and ASDR due to high temperature estimated -0.01 (95% UI, -0.74 to 0.44) and -0.32 (-21.66 to 12.66) per 100 000 population, respectively. In 2019, the ASMR and ASDR reached 0.10 (-0.28 to 0.38) and 2.71 (-8.07 to 10.46), respectively. The high-temperature burden increased most rapidly in tropical and low SDI regions. There were 0.99 (0.59 to 1.39) ASMR attributable to low-temperature in 1990, which increased to 1.05 (0.61-1.49) in 2019. While the ASDR due to low temperature declined from 22.03 (12.66 to 30.64) in 1990 to 20.43 (11.30 to 29.26) in 2019. Overall, the burden of CKD attributable to non-optimal temperatures has increased from 1990 to 2019. CKD due to hypertension and diabetes mellitus were the primary causes of CKD death attributable to non-optimum temperatures in 2019 with males and older adults being more susceptible to these temperatures. CONCLUSIONS The CKD burden due to high, low, and non-optimum temperatures varies considerably by regions and countries. The burden of CKD attributable to high temperature has been increasing since 1990.
Collapse
Affiliation(s)
- Li He
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Baode Xue
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Bo Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Ce Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - David Gimeno Ruiz de Porras
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Southwest Center for Occupational and Environmental Health, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - George L Delclos
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Southwest Center for Occupational and Environmental Health, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ming Hu
- School of Architecture, Planning and Preservation, University of Maryland, College Park, MD, 20742, USA
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China.
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY, 12144, USA.
| |
Collapse
|
19
|
Chen Y, Ji H, Guo J, Chen Y, Li W, Wang S, Zhen L. Non-targeted Metabolomics Analysis Based on LC–MS to Assess the Effects of Different Cold Exposure Times on Piglets. Front Physiol 2022; 13:853995. [PMID: 35450163 PMCID: PMC9016228 DOI: 10.3389/fphys.2022.853995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Pigs are susceptible to low temperature conditions, and cold stress causes metabolic changes in the body to increase heat production as an adaption to adverse environments. To characterize and validate different metabolites in piglet livers at different cold exposure times, sixteen 30-day-old male weaned piglets with similar weights were randomly divided into four groups: the normal temperature group (24 ± 2°C, NT) and cold exposure (4 ± 2°C) 2-h group (CS2), 6-h group (CS6), and 12-h group (CS12). At the end of the experiment, the liver samples were analyzed using systemic non-targeted metabolomics. Eight known differentially abundant metabolites (farnesyl pyrophosphate, isocitrate, triethanolamine, phenylethylamine, deoxynosine, citric acid, maltotriose, and epinephrine) were observed between the CS groups and the control group in positive and negative ion modes. The eight main differentially abundant metabolites involved in seven metabolite classifications. Metabolic pathways and enrichment analyses revealed that the pathways involved three KEGG pathway classifications. Most of the pathways were related to amino acid or energy metabolism. Moreover, the metabolic pathways were not identical under different cold exposure times, with those following 2 and 6 h of cold exposure more related to carbohydrates and energy production and those following 12 h of cold exposure more related to the metabolism connected with epinephrine. Thus, under different cold exposure times, the metabolite profiles and metabolic pathways differed.
Collapse
Affiliation(s)
- Yong Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yan Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjie Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shengping Wang
- Hunan Institute of Microbiology, Changsha, China
- *Correspondence: Shengping Wang, ; Li Zhen,
| | - Li Zhen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Shengping Wang, ; Li Zhen,
| |
Collapse
|
20
|
Huang JQ, Zhang J, Hao CL, Chen ZR. Association of children wheezing diseases with meteorological and environmental factors in Suzhou, China. Sci Rep 2022; 12:5018. [PMID: 35322129 PMCID: PMC8943037 DOI: 10.1038/s41598-022-08985-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/16/2022] [Indexed: 11/09/2022] Open
Abstract
Wheezing diseases are one of the major chronic respiratory diseases in children. To explore the effects of meteorological and environmental factors on the prevalence of children wheezing diseases, clinical data of children hospitalized with wheezing diseases in Suzhou, China from 2013 to 2017 were collected. Meteorological and environmental factors from 2013 to 2017 were obtained from the local Meteorological Bureau and Environmental Protection Bureau. Relationships between wheezing diseases and meteorological and environmental factors were evaluated using Pearson's correlation and multivariate regression analysis. An autoregressive integrated moving average (ARIMA) model was used to estimate the effects of meteorological and environmental variables on children wheezing diseases. Children wheezing diseases were frequently presented in infants less than 12 months old (1897/2655, 58.28%), and the hospitalization rate was highest in winter (1024/3255, 31.46%). In pathogen-positive specimens, the top three pathogens were respiratory syncytial virus (21.35%), human rhinovirus (16.28%) and mycoplasma pneumoniae (10.47%). The seasonality of wheezing children number showed a distinctive winter peak. Children wheezing diseases were negatively correlated with average temperature (P < 0.001, r = - 0.598). The ARIMA (1,0,0)(0,0,0)12 model could be used to predict temperature changes associated wheezing diseases. Meteorological and environmental factors were associated with the number of hospitalized children with wheezing diseases and can be used as early warning indicators for the occurrence of wheezing diseases and prevalence of virus.
Collapse
Affiliation(s)
- Jia-Qi Huang
- Department of Respiratory Disease, Children's Hospital of Soochow University, Jingde Road NO. 303, Suzhou, 215003, Jiangsu, China
| | - Jin Zhang
- Department of Respiratory Disease, Children's Hospital of Soochow University, Jingde Road NO. 303, Suzhou, 215003, Jiangsu, China
| | - Chuang-Li Hao
- Department of Respiratory Disease, Children's Hospital of Soochow University, Jingde Road NO. 303, Suzhou, 215003, Jiangsu, China.
| | - Zheng-Rong Chen
- Department of Respiratory Disease, Children's Hospital of Soochow University, Jingde Road NO. 303, Suzhou, 215003, Jiangsu, China.
| |
Collapse
|
21
|
Mu S, Xia Y, Wu Q, Ji C, Dai H, Zhang M, Jiao J, Shi F, Liu S, Wang G, Shen T, Tian Y, Yang L, Fu Q, Zhao Y. Response of Bone Metabolism Markers to Ice Swimming in Regular Practitioners. Front Physiol 2021; 12:731523. [PMID: 34899374 PMCID: PMC8662563 DOI: 10.3389/fphys.2021.731523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/03/2021] [Indexed: 12/04/2022] Open
Abstract
Objective: Both exercise and cold exposure cause physiological stress and they often occur in combination. However, the effects of exercise during severe cold on variation in bone metabolism in humans have remained elusive. The aim of this study was to investigate the variations in circulating bone metabolism markers after ice swimming (IS). Methods: Eighty-seven women and men aged 42–84 years old were recruited to perform regular IS activities. Serum parathyroid hormone (PTH), total calcium (Ca2+), total phosphorus (Pi), total magnesium (Mg2+), N-terminal osteocalcin (N-MID), total propeptide of procollagen 1 (TPINP), and C-terminal telopeptide of type 1 collagen (β-CTX) were measured 30 min before and 30 min after IS. Bone mineral content (BMC) and bone mineral density (BMD) were assessed at lumbar spine 1–4 (L1–L4) and femoral neck (FN). The IS habits were obtained from questionnaires and the 10-year probability of osteoporotic fracture was calculated using the FRAX® tool with and without a BMD value of the FN. Results: There were significant increases in PTH (median, 40.120–51.540 pg/mL), Ca2+ (median, 2.330–2.400 mmol/L), and Pi (median, 1.100–1.340 mmol/L) and significant decreases in TPINP (median, 38.190–36.610 ng/mL) and β-CTX (median, 0.185–0.171 ng/mL), while there was a trend for increased serum Mg2+ (P = 0.058) but no significant change in N-MID (P = 0.933) after IS in all subjects. The increases in the proportions of cases of hyperparathyroidemia, hypercalcemia, and hyperphosphatemia in those performing IS were statistically significant. The baseline levels and the changes of bone metabolism markers had associations with osteoporosis and bone status, but these may be age and sex dependent. Finally, there were significant correlations among the bone metabolism markers. Conclusion: IS caused significant alterations in bone metabolic markers, specifically, increases in PTH, Ca2+ and Pi should raise concerns about potential cardiovascular health risks in severe cold exercise. Additionally, a divergence between PTH elevation and a decline in bone turnover, which shown a special change of bone metabolism after IS and may suggest potential therapeutic implications of cold exercise in PTH and bone metabolic disorders.
Collapse
Affiliation(s)
- Shuai Mu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qijun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chao Ji
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huixu Dai
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiao Jiao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feng Shi
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shengye Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangbin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tao Shen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liqing Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Exposure-lag-response associations between extreme environmental conditions and primary Sjögren's syndrome. Clin Rheumatol 2021; 41:523-532. [PMID: 34523037 DOI: 10.1007/s10067-021-05910-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Patients with primary Sjögren's syndrome (pSS) reportedly believe that their symptoms worsen on extreme weather days due to variations in environmental conditions. However, few studies have assessed the acute effects of environmental exposure on the onset of pSS. This study aimed to evaluate the exposure-response relationship between extreme environmental conditions and pSS outpatient visits. METHOD We obtained data on pSS outpatient visits from two provincial general hospitals in Hefei, China, during 2014-2019. A distributed lag non-linear model was used to estimate the exposure-lag-response relationship between environmental variables and pSS. RESULTS We detected significant and non-linear associations between extreme environments and pSS. The estimated relative risk (RR) for a lag of 3 days was 1.11 (95% CI: 1.03 to 1.19) for extreme cold and for a lag of 21 days was 1.07 (95% CI: 1.01 to 1.12) for extreme dampness. Long sunshine duration was positively correlated with pSS (lag 11, 1.05, 95% CI: 1.01 to 1.08). Moreover, female patients were more susceptible to these effects. Patients older than 65 years old were more vulnerable to frigid environments (lag 3, RR = 1.30, 95% CI: 1.09 to 1.54), while younger patients were more vulnerable to extreme dampness (lag 21, RR = 1.10, 95% CI: 1.03 to 1.16). Extreme cold and high humidity were negatively correlated with the same-day outpatient visits. CONCLUSIONS Our findings suggest a potential relationship between exposure to extreme environmental conditions and increased risk of pSS outpatient visits. We therefore suggest that policymakers and doctors aim to further our understanding of environmental effects on pSS and adopt adequate measures to alleviate pSS symptoms. Key Points • Extreme cold, extreme dampness, and long sunshine duration increased the risk of pSS outpatient visits, especially for females. • Young pSS patients are more susceptible to a rise in humidity. • Elderly pSS patients are more sensitive to extreme cold weather.
Collapse
|
23
|
Chen Y, Kong D, Fu J, Zhang Y, Zhao Y, Liu Y, Chang Z, Liu Y, Liu X, Xu K, Jiang C, Fan Z. Increased hospital admissions for asthma from short-term exposure to cold spells in Beijing, China. Int J Hyg Environ Health 2021; 238:113839. [PMID: 34507107 DOI: 10.1016/j.ijheh.2021.113839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is a paucity of studies investigating extreme cold events and asthma exacerbations. This study examined whether an association exists between cold spells and daily hospital admissions for asthma in Beijing, China from 2012 to 2016. METHODS Daily hospital admissions for asthma, meteorological variables and air quality data were collected during 2012-2016 in Beijing. A cold spell was defined as a period of at least two consecutive days with the daily mean temperature below or at the 5th percentile (-7 °C) in cold seasons (November to March) during the study period. We applied a time-series design using quasi-Poisson regression combined with a distributed lag model to estimate the risk of asthma hospital admissions associated with cold spells. Stratified analyses by gender and age groups were conducted to identify the potential susceptible subpopulations to cold spells. We also explored the effect modification by air quality by dividing the daily air quality index (AQI) into two levels (high and low) based on the median value. RESULTS Cold spells increased the risk of asthma hospital admissions, with the maximum cumulative relative risk (CRR) over three weeks (Lag0-21) in the total population. The highest single-day relative risk (RR) was found on the days of cold spells (Lag0) with the RR = 1.059 (95% CI: 1.008-1.113), and the CRR at Lag0-21 was 1.333 (95% CI: 1.049-1.693). Across different gender and age groups, younger people (<65 years) were more sensitive to cold spells. No significant effect modification by AQI was detected. CONCLUSION Short-term exposure to cold spells is associated with an increased risk of hospital admissions for asthma in Beijing. During the cold spells, younger people aged <65 years were at particular risk for asthma exacerbations. Our results suggest that extreme cold events have a significant impact on asthma.
Collapse
Affiliation(s)
- Yuxiong Chen
- Department of Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Dehui Kong
- Department of Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Jia Fu
- Department of Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yongqiao Zhang
- Department of Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yakun Zhao
- Department of Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yanbo Liu
- Department of Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhen'ge Chang
- Department of Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yijie Liu
- Department of Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Xiaole Liu
- Department of Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Kaifeng Xu
- Department of Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Zhongjie Fan
- Department of Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
24
|
Eimonte M, Paulauskas H, Daniuseviciute L, Eimantas N, Vitkauskiene A, Dauksaite G, Solianik R, Brazaitis M. Residual effects of short-term whole-body cold-water immersion on the cytokine profile, white blood cell count, and blood markers of stress. Int J Hyperthermia 2021; 38:696-707. [PMID: 33910456 DOI: 10.1080/02656736.2021.1915504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: One of the most challenging environmental extremes is immersion in cold/icy water, and consequent common assumption is that even a brief exposure to cold can lead to cold-related illnesses. The increase in the concentrations of the stress hormones cortisol, epinephrine (Epi), and norepinephrine (NE) in response to acute cold stress are thought to suppress the release of proinflammatory cytokines. No previous study has explored the residual consequences of whole-body short-term cold-water immersion (CWI; 14 °C for 10 min) on the immune response in healthy non-acclimated young adult men (aged 20-30 years).Materials and methods: In the current study, we tested the hypothesis that short-term acute whole-body CWI would induce high blood levels of cortisol, NE, and Epi, which in turn would increase circulating leukocyte numbers and delay the production of proinflammatory cytokines (tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6). Results: Short-term whole-body CWI produced a stressful physiological reaction, as manifested by hyperventilation and increased muscle shivering, metabolic heat production, and heart rate. CWI also induced the marked release of the stress hormones Epi, NE, and cortisol. The change in IL-6 concentration after CWI was delayed and TNF-α production was decreased, but IL-1β was not affected within 48 h after CWI. A delayed increase in neutrophil percentage and decrease in lymphocyte percentage occurred after CWI.Conclusion: These findings suggest that, even though CWI caused changes in stress and immune markers, the participants showed no predisposition to symptoms of the common cold within 48 h after CWI.
Collapse
Affiliation(s)
- Milda Eimonte
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Henrikas Paulauskas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Laura Daniuseviciute
- Faculty of Social Sciences, Arts and Humanities, Kaunas University of Technology, Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gintare Dauksaite
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Rima Solianik
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
25
|
Hu Y, Jiang F, Tan J, Liu S, Li S, Wu M, Yan C, Yu G, Hu Y, Yin Y, Tong S. Environmental Exposure and Childhood Atopic Dermatitis in Shanghai: A Season-Stratified Time-Series Analysis. Dermatology 2021; 238:101-108. [PMID: 34082421 DOI: 10.1159/000514685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/23/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Childhood atopic dermatitis (AD) is an inflammatory skin disease which sometimes predisposes to allergies. Environmental factors (low humidity, irritants, etc.) are prominent causative triggers of AD. OBJECTIVES This study aims to explore the effects of both meteorological factors and air pollutants on childhood AD, and the modification effects by season in Shanghai, China. METHODS Quasi-Poisson generalized linear regression model, combined with a distributed lag nonlinear model was used to examine the nonlinear and lagged effects of environmental factors on childhood AD from 2009 to 2017 in Shanghai. We also performed a season-stratified analysis to determine the modification effects of environmental exposure by season on childhood AD. RESULTS There were 1,043,240 outpatient visits for childhood AD in total, at 3 major pediatric hospitals. Low temperature and relative humidity (RH), and high daily temperature difference (DTD) and air pollutants (i.e., NO2) increased the relative risks (RRs) of outpatient visits for childhood AD in the whole year. In the cold season, an increased risk of outpatient visits for childhood AD was associated with low RH (RR 2.26, 95% CI 1.69-3.02) and high NO2 (1.11, 95% CI 1.06-1.17). In the warm season, outpatient visits for childhood AD were associated with low temperature (3.49, 95% CI 3.22-3.77), low RH (1.89, 95% CI 1.74-2.06), high DTD (1.41, 95% CI 1.31-1.53), and high NO2 (1.05, 95% CI 1.03-1.06). CONCLUSIONS This study suggests that environmental exposure may be a key trigger for outpatient visits for childhood AD with apparent seasonal effects. Tailored preventive strategies to avoid environmental triggers of childhood AD should be developed.
Collapse
Affiliation(s)
- Yabin Hu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Jiang
- Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institution, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianguo Tan
- Shanghai Key Laboratory of Meteorology and Health (Shanghai Meteorological Service), Shanghai, China
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shenghui Li
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Meiqin Wu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chonghuai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangjun Yu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China
| | - Yi Hu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China
| | - Yong Yin
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shilu Tong
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Mai TC, Braun A, Bach V, Pelletier A, de Seze R. Low-Level Radiofrequency Exposure Induces Vasoconstriction in Rats. Bioelectromagnetics 2021; 42:455-463. [PMID: 34015144 DOI: 10.1002/bem.22350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 11/07/2022]
Abstract
Recent studies have revealed that rodents' physiological responses to low-intensity radiofrequency (RF) electromagnetic fields were similar to thermoregulatory responses to cold conditions. The primary autonomic response to cold exposure is peripheral vasoconstriction that allows rodents to reduce heat loss and maintain a relatively constant internal body temperature. In the present study, we investigated the effects of 900 MHz RF at a low level (SAR of 0.35 W/kg) on tail skin temperature (Ttail ) in rats. We showed that rats exposed to RF had lower Ttail than control rats at ambient temperatures between 27 and 28 °C, suggesting that RF could induce a noticeable degree of vasoconstriction under mild-warm ambient temperatures. This difference in Ttail was suppressed after the intraperitoneal injection of a vasodilator, an α-adrenergic antagonist, confirming the hypothesis of the vasoconstriction in exposed rats. Moreover, like a response to cold stimuli, RF exposure led to increased plasma concentrations of important factors: noradrenaline (a neurotransmitter responsible for vasoconstriction and thermogenesis) and fatty acids (markers of activated thermogenesis). Taken together, these findings indicate that low-intensity RF levels triggered some key physiological events usually associated with responses to cold in rats. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Thi Cuc Mai
- Experimental Toxicology Unit, National Institute of Industrial Environment and Risks (INERIS), Parc Technologique Alata, Verneuil-en-Halatte, France.,PeriTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Anne Braun
- Experimental Toxicology Unit, National Institute of Industrial Environment and Risks (INERIS), Parc Technologique Alata, Verneuil-en-Halatte, France.,PeriTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Veronique Bach
- Experimental Toxicology Unit, National Institute of Industrial Environment and Risks (INERIS), Parc Technologique Alata, Verneuil-en-Halatte, France.,PeriTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Amandine Pelletier
- Experimental Toxicology Unit, National Institute of Industrial Environment and Risks (INERIS), Parc Technologique Alata, Verneuil-en-Halatte, France.,PeriTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Rene de Seze
- Experimental Toxicology Unit, National Institute of Industrial Environment and Risks (INERIS), Parc Technologique Alata, Verneuil-en-Halatte, France.,PeriTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| |
Collapse
|
27
|
Gao J, Lu M, Sun Y, Wang J, An Z, Liu Y, Li J, Jia Z, Wu W, Song J. Changes in ambient temperature increase hospital outpatient visits for allergic rhinitis in Xinxiang, China. BMC Public Health 2021; 21:600. [PMID: 33771145 PMCID: PMC8004401 DOI: 10.1186/s12889-021-10671-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The effect of ambient temperature on allergic rhinitis (AR) remains unclear. Accordingly, this study aimed to explore the relationship between ambient temperature and the risk of AR outpatients in Xinxiang, China. METHOD Daily data of outpatients for AR, meteorological conditions, and ambient air pollution in Xinxiang, China were collected from 2015 to 2018. The lag-exposure-response relationship between daily mean temperature and the number of hospital outpatient visits for AR was analyzed by distributed lag non-linear model (DLNM). Humidity, long-time trends, day of the week, public holidays, and air pollutants including sulfur dioxide (SO2), and nitrogen dioxide (NO2) were controlled as covariates simultaneously. RESULTS A total of 14,965 AR outpatient records were collected. The relationship between ambient temperature and AR outpatients was generally M-shaped. There was a higher risk of AR outpatient when the temperature was 1.6-9.3 °C, at a lag of 0-7 days. Additionally, the positive association became significant when the temperature rose to 23.5-28.5 °C, at lag 0-3 days. The effects were strongest at the 25th (7 °C) percentile, at lag of 0-7 days (RR: 1.32, 95% confidence intervals (CI): 1.05-1.67), and at the 75th (25 °C) percentile at a lag of 0-3 days (RR: 1.15, 95% CI: 1.02-1.29), respectively. Furthermore, men were more sensitive to temperature changes than women, and the younger groups appeared to be more influenced. CONCLUSIONS Both mild cold and mild hot temperatures may significantly increase the risk of AR outpatients in Xinxiang, China. These findings could have important public health implications for the occurrence and prevention of AR.
Collapse
Affiliation(s)
- Jianhui Gao
- Xinxiang Medical University, Xinxiang, 453003, China
| | - Mengxue Lu
- Xinxiang Medical University, Xinxiang, 453003, China
| | - Yinzhen Sun
- Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Xinxiang, 453003, China
| | - Jingyao Wang
- Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhen An
- Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Xinxiang, 453003, China
| | - Yue Liu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Juan Li
- Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Xinxiang, 453003, China
| | - Zheng Jia
- Xinxiang Central Hospital, Xinxiang, 453001, China
| | - Weidong Wu
- Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Xinxiang, 453003, China
| | - Jie Song
- Xinxiang Medical University, Xinxiang, 453003, China.
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Xinxiang, 453003, China.
| |
Collapse
|
28
|
Bubbico L, Mastrangelo G, Larese-Filon F, Basso P, Rigoli R, Maurelli M, Ferlito S, Capelli M, Gisabella C, Javanbakht M, Bellizzi S, Cegolon L. Community Use of Face Masks against the Spread of COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063214. [PMID: 33808861 PMCID: PMC8003592 DOI: 10.3390/ijerph18063214] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 02/04/2023]
Abstract
The role of face masks to prevent and control COVID-19 is critical, especially since asymptomatic or pre-symptomatic infected individuals can shed high loads of SARS-CoV-2 in the surrounding environment. In addition to being a two-way barrier to protect against virions droplets both in terms of "source control" (for the benefits of the community) and "physical protection" (for wearer), face masks also allow maintaining physiological temperatures and humidity of the nasal cavity and mouth, independently from the external environmental conditions. Beyond compromising the viral transmission speed, exposure to cold environments could have a detrimental effect on the host's susceptibility to SARS-CoV-2. The innate human immune system becomes in fact weaker with cooler nose temperatures and thus more vulnerable to viral replication. Furthermore, there is evidence that warm, humid climates are associated with reduced spread of SARS-CoV-2, while cold dry conditions favor its stability and transmissibility. In the early stage of a viral infection, a physiological body temperature in the upper airways supports the innate immune system, endorsing the muco-ciliary clearance, inhibiting, or deactivating any first settlement of viruses. Face masks are therefore strongly recommended also outdoors, especially under cold weather conditions, not only as a physical barrier against the transmission of SARS-CoV-2, but also to prevent the rapid cooling of the nasal mucosa and the inhibition of the human innate defense of the upper airways.
Collapse
Affiliation(s)
- Luciano Bubbico
- Sensori-Neural Disabilities Research Unit, INAPP, 00198 Rome, Italy;
| | - Giuseppe Mastrangelo
- Department of Cardiac, Thoracic, Vascular Sciences & Public Health, Padua University, 35122 Padua, Italy;
| | - Francesca Larese-Filon
- Occupational Medicine Unit, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.-F.); (P.B.)
| | - Paolo Basso
- Occupational Medicine Unit, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.-F.); (P.B.)
| | - Roberto Rigoli
- Microbiology Unit, Ca’ Foncello Hospital, Local Health Unit N.2 ‘Marca Trevigiana”, 31100 Treviso, Italy;
| | - Martina Maurelli
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 37129 Verona, Italy;
| | - Salvatore Ferlito
- Department of Surgical Medical Sciences and Advanced Technologies, School of Medicine, University of Catania, 95124 Catania, Italy;
| | - Marco Capelli
- Ear Nose and Throat (ENT) Department, CDI—Italian Diagnostic Centre, 20122 Milan, Italy;
| | - Claudio Gisabella
- Public Health Department, Local Health Unit N.2 “Marca Trevigiana”, 31100 Treviso, Italy;
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Saverio Bellizzi
- Partnership for Maternal, Newborn & Child Health, World Health Organization, 1200 Geneva, Switzerland;
| | - Luca Cegolon
- Public Health Department, Local Health Unit N.2 “Marca Trevigiana”, 31100 Treviso, Italy;
- Correspondence: or ; Tel.: +39-0422-323757
| |
Collapse
|
29
|
Eklund L, Schagatay F, Tufvesson E, Sjöström R, Söderström L, Hanstock HG, Sandström T, Stenfors N. An experimental exposure study revealing composite airway effects of physical exercise in a subzero environment. Int J Circumpolar Health 2021; 80:1897213. [PMID: 33685367 PMCID: PMC7946023 DOI: 10.1080/22423982.2021.1897213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Exposure to a cold climate is associated with an increased morbidity and mortality, but the specific mechanisms are largely unknown. People with cardiopulmonary disease and winter endurance athletes are particularly vulnerable. This study aimed to map multiple domains of airway responses to exercise in subzero temperature in healthy individuals. Thirty-one healthy subjects underwent whole-body exposures for 50 minutes on two occasions in an environmental chamber with intermittent moderate-intensity exercise in +10 °C and -10 °C. Lung function, plasma/urine CC16 , and symptoms were investigated before and after exposures. Compared to baseline, exercise in -10 °C decreased FEV1 (p=0.002), FEV1/FVC (p<0.001), and increased R20Hz (p=0.016), with no differences between exposures. Reactance increased after +10 °C (p=0.005), which differed (p=0.042) from a blunted response after exercise in -10 °C. Plasma CC16 increased significantly within exposures, without differences between exposures. Exercise in -10 °C elicited more intense symptoms from the upper airways, compared to +10 °C. Symptoms from the lower airways were few and mild. Short-duration moderate-intensity exercise in -10 °C induces mild symptoms from the lower airways, no lung function decrements or enhanced leakage of biomarkers of airway epithelial injury, and no peripheral bronchodilatation, compared to exercise in +10 °C.
Collapse
Affiliation(s)
- Linda Eklund
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Filip Schagatay
- Department of Community Medicine and Rehabilitation, Unit of Research, Education and Development, Umeå University, Östersund, Sweden
| | | | - Rita Sjöström
- Department of Clinical Sciences, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Lars Söderström
- Unit of Research, Education and Development, Östersund Hospital, Östersund, Sweden
| | - Helen G Hanstock
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Thomas Sandström
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Nikolai Stenfors
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
30
|
Guo H, Zhou G, Tian G, Liu Y, Dong N, Li L, Zhang S, Chai H, Chen Y, Yang Y. Changes in Rumen Microbiota Affect Metabolites, Immune Responses and Antioxidant Enzyme Activities of Sheep under Cold Stimulation. Animals (Basel) 2021; 11:ani11030712. [PMID: 33807979 PMCID: PMC7999998 DOI: 10.3390/ani11030712] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Under a cold environment, the animal’s weight is reduced and even health is affected. As we all know, microbiota is beneficial to animal health. It can produce metabolites to improve animal immunity and avoid damage. Therefore, we aimed to understand the self-protection mechanisms of sheep under cold stress. To investigate this mechanism, we designed two experiments to explore the effects of low temperature and wind speed on sheep phenotypes, rumen microbes, immune cytokines and oxidative stress. Our results identified that the sheep remained healthy in a cold environment. This may be due to the enrichment of Lachnospiraceae in the rumen. A large amount of propionate may enter into the gluconeogenesis reaction, resulting in a decrease in the content of propionate in the rumen, thereby reducing animal’s immunity. In summary, the increase of Lachnospiraceae and propionate in the rumen may help sheep live in a cold environment. Our experiments provide some direction for the healthy feeding of animals in cold environments. Abstract Low-temperature environments can strongly affect the normal growth and health of livestock. In winter, cold weather can be accompanied by strong winds that aggravate the effects of cold on livestock. In this study, two experiments were conducted to investigate the effect of low temperature and/or wind speed on physiological indices, rumen microbiota, immune responses and oxidative stress in sheep. When sheep were exposed to cold temperature and/or stronger wind speeds, the average daily gain (ADG) decreased (p < 0.05), and the abundance of Lachnospiraceae was significantly higher (p < 0.05). The acetate and propionate contents and the proportion of propionate in the rumen also significantly reduced (p < 0.05). The immunoglobulin G (IgG) and TH1-related cytokines in the blood were significantly lower (p < 0.05). However, antioxidant enzyme contents were significantly increased and the concentration of malondialdehyde (MDA) was reduced (p < 0.05). In a cold environment, the abundance of Lachnospiraceae in the rumen of sheep was highly enriched, and the decreasing of propionate might be one of the factors affecting the immunity of the animals, the sheep did not suffer from oxidative damage during the experiment.
Collapse
|
31
|
Yang L, Wu J, Hu Z, Gao F, Hu X. Effects of workload on human cognitive performance of exposure to extremely cold environment. Physiol Behav 2020; 230:113296. [PMID: 33352146 DOI: 10.1016/j.physbeh.2020.113296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/27/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023]
Abstract
Many jobs like outdoor work and emergency rescue have to be exposed to extremely cold environments. The combined effects of the cold exposure and work intensity on human cognitive performance remain unclear. In this paper, the experiments of six Chinese young men exposed to an extremely cold environment (-10 °C) were conducted in a climatic chamber. The work intensity level was graded according to the metabolic rate corresponding to three walking speeds. Nine cognitive functions and one perceived were recorded to evaluate the subjects' cognitive performance, including NCTB (seven items), Stroop, and RPE were measured. The increase of workload from moderate to high could lead to the acceleration of fatigue speed and the aggravation of fatigue degree 5 min earlier. Moderate work intensity is a noteworthy work level in extremely cold environment, which is an inflection point in the impact of fatigue and cognitive levels. The manual dexterity significantly increases by the workload intensity, and the high work intensity makes the hands more dexterous (29% increase). Extremely cold environment has a significant effect on short-term memory (decreased 33%). The selective attention was reduced by 16% in the extremely cold environment. With the moderate work intensity in extremely cold environment, the perceived judgment response speed would decrease. The combined effects of the extremely cold environment and the workload on the cognitive functions of psychomotor ability and attention or sensorimotor speed should be paid more attention to.
Collapse
Affiliation(s)
- Lin Yang
- School of Emergency Management & Safety Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Jiansong Wu
- School of Emergency Management & Safety Engineering, China University of Mining and Technology, Beijing 100083, China.
| | - Zhuqiang Hu
- School of Emergency Management & Safety Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Fei Gao
- Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaofeng Hu
- Public Security Behavioral Science Laboratory, People's Public Security University of China, Beijing 100038, China
| |
Collapse
|
32
|
Knechtle B, Waśkiewicz Z, Sousa CV, Hill L, Nikolaidis PT. Cold Water Swimming-Benefits and Risks: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8984. [PMID: 33276648 PMCID: PMC7730683 DOI: 10.3390/ijerph17238984] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Cold water swimming (winter or ice swimming) has a long tradition in northern countries. Until a few years ago, ice swimming was practiced by very few extreme athletes. For some years now, ice swimming has been held as competitions in ice-cold water (colder than 5 °C). The aim of this overview is to present the current status of benefits and risks for swimming in cold water. When cold water swimming is practiced by experienced people with good health in a regular, graded and adjusted mode, it appears to bring health benefits. However, there is a risk of death in unfamiliar people, either due to the initial neurogenic cold shock response or due to a progressive decrease in swimming efficiency or hypothermia.
Collapse
Affiliation(s)
- Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, 9000 St. Gallen, Switzerland;
| | - Zbigniew Waśkiewicz
- Institute of Sport Science, Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland;
- Department of Sports Medicine and Medical Rehabilitation Moscow, Sechenov First Moscow State Medical University, 19c1 Moscow, Russia
| | - Caio Victor Sousa
- Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA;
| | - Lee Hill
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada;
| | | |
Collapse
|
33
|
Hu Y, Cheng J, Jiang F, Liu S, Li S, Tan J, Yin Y, Tong S. Season-stratified effects of meteorological factors on childhood asthma in Shanghai, China. ENVIRONMENTAL RESEARCH 2020; 191:110115. [PMID: 32846175 DOI: 10.1016/j.envres.2020.110115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/19/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES There has been increasing interest in identifying the adverse effects of ambient environmental factors on asthma exacerbations (AE), but season-stratified effects of meteorological factors on childhood asthma remain unclear. We explored the season-stratified effects of meteorological factors on childhood AE in Shanghai, China. METHODS Poisson generalized linear regression model combined with a distributed lag nonlinear model was used to examine the lagged and nonlinear effects of meteorological factors on childhood AE after adjustment for putative confounders. We also performed a season-stratified analysis to determine whether the season modified the relationship between meteorological factors and childhood AE. RESULTS There were 23,103 emergency department visits (EDVs) for childhood AE, including 15,466 boys and 7637 girls during 2008-2017. Most meteorological factors (e.g., temperature, diurnal temperature range (DTR), relative humidity (RH) and wind speed (WS)) were significantly associated with EDVs for childhood AE, even after adjustment for the confounding effects of air pollutants. In the whole year, extreme cold, moderate heat, higher DTR, lower RH and WS increased the relative risk (RR) for childhood AE. In the cold season, lower RH and wind speed increased the risks of childhood AE (RRlag0-28 for the 5th percentile (p5) of RH: 9.744, 95% CI: 3.567, 26.616; RRlag0-28 for the p5 of wind speed: 10.671, 95% CI: 1.096, 103.879). In the warm season, higher temperature and DTR, lower RH and WS increased the RR for childhood AE (RRlag0-5 for the p95 of temperature: 1.871, 95% CI: 1.246, 2.810; RRlag0-2 for the p95 of DTR: 1.146, 95% CI: 1.010, 1.300; RRlag0-5 for the p5 of RH: 1.931, 95% CI: 1.191, 3.128; RRlag0-2 for the p5 of WS: 1.311, 95% CI: 1.005, 1.709). CONCLUSIONS Extreme meteorological factors appeared to be triggers of EDVs for childhood AE in Shanghai and the effects modified by season. These findings provide evidence for developing season-specific and tailored strategies to prevent and control childhood AE.
Collapse
Affiliation(s)
- Yabin Hu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian Cheng
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Fan Jiang
- Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institution, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shenghui Li
- School of Public Health, Shanghai Jiaotong University, Shanghai, China
| | - Jianguo Tan
- Shanghai Key Laboratory of Meteorology and Health (Shanghai Meteorological Service), Shanghai, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Shilu Tong
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
34
|
Yoshino Y, Yamamoto A, Misu K, Wakabayashi Y, Kitazawa T, Ota Y. Exposure to low temperatures suppresses the production of B-cell activating factor via TLR3 in BEAS-2B cells. Biochem Biophys Rep 2020; 24:100809. [PMID: 32923700 PMCID: PMC7474404 DOI: 10.1016/j.bbrep.2020.100809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022] Open
Abstract
Acute viral respiratory tract infections (RTIs) are commonly associated with cold weather; however, the mechanism behind this is still unclear. Secretory IgA (sIgA) mainly contributes to the immune response against pathogenic microorganisms in the respiratory tract. Certain pathogen-associated molecular patterns (PAMPs) induce the expression of B-cell activating factor (BAFF) in epithelial cells, macrophages, and dendritic cells. BAFF transforms B cells into plasma cells, which leads to the mass production of immunoglobulins, including IgA, on the mucosal epithelium. However, no studies have described the relationship between cold exposure and BAFF and/or sIgA in RTI. The aim of our study was to determine this relationship in vitro by investigating the effect of low temperature on BAFF production by BEAS-2B cells after the addition of toll-like receptor (TLR) ligands. We showed stimulation of polyinosinic:polycytidylic acid (poly I:C), which led BEAS-2B to produce interferon (IFN)-β. IFN-β itself induced BEAS-2B cells to produce BAFF. Janus kinase inhibitor I decreased the amount of BAFF produced in BEAS-2B cells upon stimulation with IFN-β and poly I:C. Significantly less BAFF was produced post-poly I:C stimulation in low-temperature conditions than in normal-temperature conditions (mean ± SD: 41.2 ± 23.3 [33 °C] vs. 138.3 ± 7.1 pg/mL [37 °C], P = 0.05). However, the low-temperature condition itself was not cytotoxic. The stimulation of poly I:C produced BAFF from BEAS2B cells via IFN-β production and the JAK/signal transducer and activator of transcription pathway played an important role in BAFF production in BEAS-2B cells. Cold exposure reduced BAFF production by BEAS2B cells after stimulation with the TLR3 ligand. Cold exposure may, therefore, suppress the production of BAFF, resulting in the inhibition of IgA secretion in the bronchial epithelium, which explains the increased frequency of RTIs in cold weather. Relationship between cold exposure and B-cell activating factor (BAFF) was assessed. BAFF produced post poly I:C stimulation was lesser under low-temperature conditions. Cold exposure may suppress BAFF production to inhibit IgA secretion.
Collapse
Affiliation(s)
- Yusuke Yoshino
- Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Ai Yamamoto
- Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Keita Misu
- Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Yoshitaka Wakabayashi
- Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Takatoshi Kitazawa
- Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Yasuo Ota
- Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| |
Collapse
|
35
|
Wei Q, Zhong L, Gao J, Yi W, Pan R, Gao J, Duan J, Xu Z, He Y, Liu X, Tang C, Su H. Diurnal temperature range and childhood asthma in Hefei, China: Does temperature modify the association? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138206. [PMID: 32247134 DOI: 10.1016/j.scitotenv.2020.138206] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The present study aimed to understand the effect of diurnal temperature range (DTR) on childhood asthma in Hefei, China, and to explore the effect of temperature on the DTR-asthma association. MATERIALS AND METHODS Daily data on hospital admissions for childhood asthma, air pollutants, and weather variables in Hefei, China, from 1st January 2014 to 31st December 2015, were collected. A generalized additive model combined with a distributed lag non-linear model was used to quantify the effects of DTR on the total, age- and gender-specific hospital admissions for childhood asthma. A non-parametric bivariate response surface model, and a generalized additive model combined with a stratified parametric model were used to explore the interaction between DTR and temperature. RESULTS We observed that high DTR was associated with an increase in hospital admissions for childhood asthma. When DTR increased from 6.7 °C to 16.8 °C (99% percentile), hospital admissions for childhood asthma increased by 13% (relative risk: 1.13, 95% confidence interval: 1.07, 1.12). The analysis stratified, by mean temperature level, suggested that when DTR increased by 1 °C at low temperatures, asthma hospitalizations in total children, girls, boys and school-age children increased by 5.0% (95% CI: 2.6%, 7.5%), 3.7% (95% CI: 0.4%, 5.7%), 2.9% (95% CI: 0.8%, 4.4%) and 5.0% (95% CI: 2.6%, 7.5%), respectively. CONCLUSIONS This study suggests that the impact of high DTR should be considered among public health advice for children with existing asthma. Those days with high DTR and low mean temperature need extra attention.
Collapse
Affiliation(s)
- Qiannan Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Liqin Zhong
- The Second People's Hospital of Hefei, Hefei, Anhui 230011, China
| | - Jiaqi Gao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Jiaojiao Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Jun Duan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Zihan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China.
| |
Collapse
|
36
|
Mandal CC, Panwar MS. Can the summer temperatures reduce COVID-19 cases? Public Health 2020; 185:72-79. [PMID: 32574871 PMCID: PMC7275978 DOI: 10.1016/j.puhe.2020.05.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Despite huge global, national, and local preventive measures including travel restriction, social distancing, and quarantines, the outbreak of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develops the coronavirus disease 2019 (COVID-19) worldwide pandemic. SARS-CoV-2 emerging from Wuhan, China, took only three months to cover >200 countries worldwide by infecting more than 2.4 million people and killing more than 150,000 people. Although this infection at the early stage creates seasonal flu-like symptoms with a higher illness, it eventually causes a higher mortality. Epidemiological studies not only find the causes of many health issues but also suggest preventive measures. This study aimed to see the link between environment temperature and COVID-19 cases. STUDY DESIGN The monthly average environment temperature (MAET) and various COVID-19 cases of a country were collected and analyzed to see the relationship between these parameters. METHODS Univariate analysis and statistical modeling were used to determine the relationship between environment temperature and different COVID-19 cases. RESULTS This study found that the majorities of the countries having higher COVID-19 cases are located in the higher latitude (colder region) in the globe. As of 20th April data available, statistical analyses by various methods have found that strong negative correlations with statistical significance exist between MAET and several COVID-19 cases including total cases, active cases, and cases per million of a country (Spearman correlation coefficients were -0.45, -0.42, and -0.50 for total cases, active cases, and cases/per million, respectively). Analysis by the statistical log-linear regression model further supports that the chance of patients to contract COVID-19 is less in warmer countries than in colder countries. CONCLUSION This pilot study proposes that cold environment may be an additional risk factor for COVID-19 cases.
Collapse
Affiliation(s)
- Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817, India.
| | - M S Panwar
- Department of Statistics, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
37
|
Huang C, Shi G. Climate Change to Blame in Severe Oral Corticosteroid-Dependent Asthma? A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e921120. [PMID: 32303671 PMCID: PMC7193221 DOI: 10.12659/ajcr.921120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Patient: Female, 63-year-old Final Diagnosis: Asthma Symptoms: Wheeze Medication: — Clinical Procedure: — Specialty: Pulmonology
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland).,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland).,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
38
|
Hu Y, Xu Z, Jiang F, Li S, Liu S, Wu M, Yan C, Tan J, Yu G, Hu Y, Yin Y, Tong S. Relative impact of meteorological factors and air pollutants on childhood allergic diseases in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135975. [PMID: 31841850 DOI: 10.1016/j.scitotenv.2019.135975] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Non-optimal weather conditions and air pollution pose a significant threat to children's health. However, the relative impact of different environmental exposures on childhood allergic diseases remains unclear. OBJECTIVES This study aimed to quantify the relative impact of meteorological factors and air pollutants on childhood allergic diseases in Shanghai, China. METHODS Data on clinical visits due to childhood asthma, allergic rhinitis (AR) and atopic dermatitis (AD) from 2007 to 2017 in Shanghai were collected from Shanghai Children's Medical Center and Xinhua Hospital. The meteorological data (i.e. daily mean temperature, temperature difference, air pressure, air pressure difference, precipitation, relative humidity, sunshine and wind speed) for the same period were obtained from the Shanghai Meteorological Center. Air pollution data (PM10, PM2.5, NO2, SO2 and O3) were provided by the Shanghai Environmental Protection Agency. Quasi-Poisson regression with distributed lag non-linear models and Poisson regression combined with generalized linear models were used to assess the relative impact of meteorological factors and air pollutants on childhood allergic diseases. RESULTS There were a total of 2,410,392 cases of childhood allergic diseases, including 975,771 asthma, 646,975 AR and 787,646 AD. Most of environmental factors were significantly associated with childhood allergic diseases. Daily mean temperature (standard β: -0.076 (95% confidence interval (CI): -0.086, -0.067)) and air pressure (standard β: 0.075 (95% CI: 0.068, 0.082)) seemed to play more important roles than other environmental factors in the occurrence of these allergic diseases. The numbers of these allergic diseases attributable to an interquartile range (IQR) change in meteorological factors also appeared to be greater than those attributable to an IQR change in air pollutants. CONCLUSIONS Both climatic variation and air pollution were associated with childhood allergic diseases, but the former appeared to play a more important role in the occurrence of these diseases. These findings may have significant implications for the development of tailored strategies to prevent these rapidly-increasing diseases worldwide.
Collapse
Affiliation(s)
- Yabin Hu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiwei Xu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Fan Jiang
- Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institution, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shenghui Li
- School of Public Health, Shanghai Jiaotong University, Shanghai, China
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meiqin Wu
- Shanghai Key Laboratory of Environmental and Child Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chonghuai Yan
- Shanghai Key Laboratory of Environmental and Child Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Guangjun Yu
- Shanghai Children's Hospital, Shanghai, China
| | - Yi Hu
- Shanghai Children's Hospital, Shanghai, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Shilu Tong
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
39
|
Lam HCY, Chan EYY. Effects of high temperature on existing allergic symptoms and the effect modification of allergic history on health outcomes during hot days among adults: An exploratory cross-sectional telephone survey study. ENVIRONMENTAL RESEARCH 2019; 175:142-147. [PMID: 31125717 DOI: 10.1016/j.envres.2019.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/13/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE The effects of high temperature on existing allergic conditions are unclear. This study explored the prevalence of allergic symptoms and the effects of high temperature on existing allergic symptoms among an adult population. The effects of high temperature on other non-allergic health outcomes were compared between adults with and without a history of allergic symptoms. METHOD A cross-sectional telephone survey study was conducted in Hong Kong two weeks after a heat wave in 2017. Socio-demographic information, history of allergic symptoms, non-allergic health symptoms and self-reported changes of allergic symptoms during the study hot period were collected using multiple-choice questions. RESULTS Of the 436 respondents, 24% had reported an allergic history. During the study hot period, 22.4% and 15.7% of those who had skin and nasal allergies had reported worsen symptoms comparing to normal days. Comparing to people without an allergic history, those ever having allergic symptoms reported a higher rate of mucus secretions, mouth ulcers, poorer sleeping quality and worsen mood during the study hot period. The main limitation of this study is the lack of baseline information and the changes in symptoms were based on self-report basis. CONCLUSION A noticeable proportion of the study adult population reported an allergic history. Some of these symptoms got worse during period of high temperature. Pre-existing allergic symptoms were found associated with more adverse health effects and worse quality of life during hot days. Strategic health promotion policy should be planned to increase the awareness of the potential impacts of high temperature on allergy and the related health issues.
Collapse
Affiliation(s)
- Holly Ching Yu Lam
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Emily Ying Yang Chan
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
40
|
Wang Q, Fu W, Guo Y, Tang Y, Du H, Wang M, Liu Z, Li Q, An L, Tian J, Li M, Wu Z. Drinking Warm Water Improves Growth Performance and Optimizes the Gut Microbiota in Early Postweaning Rabbits during Winter. Animals (Basel) 2019; 9:E346. [PMID: 31212853 PMCID: PMC6616395 DOI: 10.3390/ani9060346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence indicates that cold exposure changes the composition of the gut microbiota and reduces intestinal immunity in early postweaning livestock. However, little is known about the effects of drinking warm water (WW) on gut microbiota during winter. In this study, we investigated the effects of drinking WW in winter on the growth performance and gut microbiota structure of rabbits raised in poorly insulated housing from the early postweaning period (day 46) to the subadult period (day 82). The average daily gain and feed conversion ratio in rabbits drinking WW were significantly improved compared to those of the rabbits drinking cold water (CW) during 47-58 days. In addition, rabbits drinking WW had a significantly decreased the risk of diarrhea during 71-82 days. 16S rRNA sequence analysis revealed that the alpha diversity of the cecal microbiota was not significantly different between the WW and CW groups, but significantly increased with age. The relative abundance of cecal microorganisms, such as Coprococcus spp. was considerably increased at day 70 in the group drinking WW. Correlation analysis indicated that Coprococcus spp. was negatively associated with pro-inflammatory factors. In conclusion, our results suggest that drinking WW has a positive effect on growth performance and gut microbiota in rabbits during the early postweaning stage in winter.
Collapse
Affiliation(s)
- Qiangjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Wei Fu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yao Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yuhan Tang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- ZhaoTong Technology Promotion Workstation of Animal Husbandry and Veterinary Medicine, ZhaoTong 657000, China.
| | - Haoxuan Du
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Meizhi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zhongying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Qin Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lei An
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jianhui Tian
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Mingyong Li
- National Rabbit Industry Technology System Qingdao Comprehensive Experimental Station, Qingdao 266431, China.
| | - Zhonghong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
41
|
Strewe C, Moser D, Buchheim JI, Gunga HC, Stahn A, Crucian BE, Fiedel B, Bauer H, Gössmann-Lang P, Thieme D, Kohlberg E, Choukèr A, Feuerecker M. Sex differences in stress and immune responses during confinement in Antarctica. Biol Sex Differ 2019; 10:20. [PMID: 30992051 PMCID: PMC6469129 DOI: 10.1186/s13293-019-0231-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/18/2019] [Indexed: 12/31/2022] Open
Abstract
Background Antarctica challenges human explorers by its extreme environment. The effects of these unique conditions on the human physiology need to be understood to best mitigate health problems in Antarctic expedition crews. Moreover, Antarctica is an adequate Earth-bound analogue for long-term space missions. To date, its effects on human physiology have been studied mainly in male cohorts though more female expeditioners and applicants in astronaut training programs are selected. Therefore, the identification of sex differences in stress and immune reactions are becoming an even more essential aim to provide a more individualized risk management. Methods Ten female and 16 male subjects participated in three 1-year expeditions to the German Antarctic Research Station Neumayer III. Blood, saliva, and urine samples were taken 1–2 months prior to departure, subsequently every month during their expedition, and 3–4 months after return from Antarctica. Analyses included cortisol, catecholamine and endocannabinoid measurements; psychological evaluation; differential blood count; and recall antigen- and mitogen-stimulated cytokine profiles. Results Cortisol showed significantly higher concentrations in females than males during winter whereas no enhanced psychological stress was detected in both sexes. Catecholamine excretion was higher in males than females but never showed significant increases compared to baseline. Endocannabinoids and N-acylethanolamides increased significantly in both sexes and stayed consistently elevated during the confinement. Cytokine profiles after in vitro stimulation revealed no sex differences but resulted in significant time-dependent changes. Hemoglobin and hematocrit were significantly higher in males than females, and hemoglobin increased significantly in both sexes compared to baseline. Platelet counts were significantly higher in females than males. Leukocytes and granulocyte concentrations increased during confinement with a dip for both sexes in winter whereas lymphocytes were significantly elevated in both sexes during the confinement. Conclusions The extreme environment of Antarctica seems to trigger some distinct stress and immune responses but—with the exception of cortisol and blood cell counts—without any major relevant sex-specific differences. Stated sex differences were shown to be independent of enhanced psychological stress and seem to be related to the environmental conditions. However, sources and consequences of these sex differences have to be further elucidated.
Collapse
Affiliation(s)
- C Strewe
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Marchioninistraße 15, 81377, Munich, Germany
| | - D Moser
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Marchioninistraße 15, 81377, Munich, Germany
| | - J-I Buchheim
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Marchioninistraße 15, 81377, Munich, Germany
| | - H-C Gunga
- Institut für Physiologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - A Stahn
- Institut für Physiologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - B E Crucian
- NASA - Johnson Space Center, Houston, TX, USA
| | - B Fiedel
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - H Bauer
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - P Gössmann-Lang
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - D Thieme
- Institute of Doping Analysis und Sports Biochemistry, Kreischa, Germany
| | - E Kohlberg
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - A Choukèr
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Marchioninistraße 15, 81377, Munich, Germany.
| | - M Feuerecker
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Marchioninistraße 15, 81377, Munich, Germany
| |
Collapse
|
42
|
Lam HCY, Hajat S, Chan EYY, Goggins WB. Different sensitivities to ambient temperature between first- and re-admission childhood asthma cases in Hong Kong - A time series study. ENVIRONMENTAL RESEARCH 2019; 170:487-492. [PMID: 30641275 DOI: 10.1016/j.envres.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/07/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVES Asthma can be triggered by various factors due to different etiologies. Environmental factors remain a common trigger of asthma, especially amongst children, and such ambient exposures can be harder to avoid compared to behavioral triggers. As such, the contribution of environmental factors may be enhanced when considering repeat asthma cases compared to initial presentations. To test this hypothesis, we assessed associations between ambient temperature and hospital admissions for asthma in Hong Kong and stratified admission records into first and repeat asthma hospitalizations. METHODS The daily number of asthma hospitalizations among children aged 0-5 years in Hong Kong during 2007-2011 was regressed on daily mean temperature using distributed lagged nonlinear models, with adjustment for seasonal patterns, day-of-week effects, and other meteorological factors and air-pollutants. Analyses were stratified by summer/winter and by type of admission (first admission and repeated admission). RESULTS About 33% of the 12284 asthma hospitalizations were repeat admissions. Repeat admissions demonstrated higher sensitivity to high temperature in the summer. During this period, high temperatures were associated with increased risk of repeat admission but not with first admissions: RR (95% CI) comparing 31 °C vs. 29 °C across lags 0-15 days was 3.40 (1.26, 9.18) and 0.74 (0.31, 1.77) for repeat and first admissions respectively. In the cold season, all admissions increased with falls in temperature, with slightly stronger associations apparent for repeat admissions compared to first admission: 1.20 (1.00, 1.44) vs. 1.10 (0.96, 1.26) respectively comparing risk at 15 °C vs. 12 °C across lags 0-5 days. CONCLUSIONS To our knowledge, this is the first study to show stronger associations between ambient temperature and repeat asthma admissions compared to first admissions. The higher sensitivity among those experiencing repeat admissions may allow for more personalized disease management. Given the substantial differences in associations by admission type, future studies of ambient exposures on asthma should consider analyzing the two groups separately.
Collapse
Affiliation(s)
- Holly Ching Yu Lam
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Shakoor Hajat
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, University of London, United Kingdom
| | - Emily Ying Yang Chan
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - William Bernard Goggins
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
43
|
Zhang Q, Liu W, Ma W, Zhang L, Shi Y, Wu Y, Zhu Y, Zhou M. Impact of meteorological factors on scarlet fever in Jiangsu province, China. Public Health 2018; 161:59-66. [DOI: 10.1016/j.puhe.2018.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/27/2018] [Accepted: 02/18/2018] [Indexed: 10/14/2022]
|
44
|
Lam HCY, Chan EYY, Goggins WB. Comparison of short-term associations with meteorological variables between COPD and pneumonia hospitalization among the elderly in Hong Kong-a time-series study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:1447-1460. [PMID: 29730816 DOI: 10.1007/s00484-018-1542-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/08/2018] [Accepted: 04/06/2018] [Indexed: 05/12/2023]
Abstract
Pneumonia and chronic obstructive pulmonary diseases (COPD) are the commonest causes of respiratory hospitalization among older adults. Both diseases have been reported to be associated with ambient temperature, but the associations have not been compared between the diseases. Their associations with other meteorological variables have also not been well studied. This study aimed to evaluate the associations between meteorological variables, pneumonia, and COPD hospitalization among adults over 60 and to compare these associations between the diseases. Daily cause-specific hospitalization counts in Hong Kong during 2004-2011 were regressed on daily meteorological variables using distributed lag nonlinear models. Associations were compared between diseases by ratio of relative risks. Analyses were stratified by season and age group (60-74 vs. ≥ 75). In hot season, high temperature (> 28 °C) and high relative humidity (> 82%) were statistically significantly associated with more pneumonia in lagged 0-2 and lagged 0-10 days, respectively. Pneumonia hospitalizations among the elderly (≥ 75) also increased with high solar radiation and high wind speed. During the cold season, consistent hockey-stick associations with temperature and relative humidity were found for both admissions and both age groups. The minimum morbidity temperature and relative humidity were at about 21-22 °C and 82%. The lagged effects of low temperature were comparable for both diseases (lagged 0-20 days). The low-temperature-admissions associations with COPD were stronger and were strongest among the elderly. This study found elevated pneumonia and COPD admissions risks among adults ≥ 60 during periods of extreme weather conditions, and the associations varied by season and age group. Vulnerable groups should be advised to avoid exposures, such as staying indoor and maintaining satisfactory indoor conditions, to minimize risks.
Collapse
Affiliation(s)
- Holly Ching-Yu Lam
- JC School of Public Health and Primary Care, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Emily Ying-Yang Chan
- JC School of Public Health and Primary Care, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - William Bernard Goggins
- JC School of Public Health and Primary Care, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.
| |
Collapse
|
45
|
Nieto Jimenez C, Cajigal Vargas J, Triantafilo Vladilo VS, Naranjo Orellana J. Impact of Hypothermic Stress During Special Operations Training of Chilean Military Forces. Mil Med 2018; 183:e193-e199. [PMID: 29425375 DOI: 10.1093/milmed/usx131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/23/2017] [Indexed: 01/24/2023] Open
Abstract
Introduction The Chilean Army considers processes that can optimize physical capacities for responding to the impact of situations and given stressors. The study of the effect of hypothermia as a stressor agent (HSA) and its relationship with cardiovascular, hematological, anthropometric, endocrine, and immunological parameters has not been fully addressed experimentally in military populations. Objective To identify the endocrine, hematological, cardiovascular, and immunological changes caused by HSA and to associate these variables with body composition and physical fitness in the military special operation courses of the Chilean Army. Materials and Methods Forty-two male subjects were exposed to remain in cold water (10.6 °C) in the context of regular military operations training, the longest time of exposure was determined by individual volitional limits. The measurements were taken in pre-hypothermia conditions, then 2 d later under acute hypothermia condition, and finally during the course period of lesser physical and psychological stressors where the baseline measurements were taken. The statistical analysis consisted of testing normality of the distribution through the Shapiro-Wilk test, assessing the equality of variances through the Levene test, and variance analysis by applying the ANOVA test (analysis of variance). The Bonferroni test was used for multiple comparison correction and the Pearson test for correlations between two variables. The level of significance was of p < 0.05. Results The main finding of this study is that HSA has a significant impact at the cardiovascular level and produces an increment in the cell population of the immune and hematologic systems. Significant hormonal changes were observed: ACTH (r = 0.50, p < 0.002), cortisol (r = 0.32, p < 0.03), free testosterone (r = 0.13, p < 0.002), total testosterone r = 0.31, p < 0.002), and anthropometrics (r = -0.51, p < 0.05). However, there is no significant correlation between physical fitness and HAS. Conclusions All subjects experienced hypothermia stress elicited by immersion in cold water. This was evidenced by the decrease in core temperature as well as cardiovascular, endocrine, anthropometric, and immunological changes. Individual differences exist between subjects and their resistance to hypothermia in cold water. These differences are not explained by the physical fitness profile but rather respond to a greater body adiposity index and minor changes in the adrenocorticotropic hormone and cortisol hormone. An acute hypothermia stress condition also affects the anabolic/catabolic environment. Finally, HSA produces an increase in the cell population of the immune system. The authors believe that this study allows to standardize HSA exposure times during regular military operations training by identifying the physiological impacts under this extreme environment. At present, the availability of intra-abdominal temperature measurement apparatus with capsule thermometers raises the interest of corroborating the findings of the current study through the use of such measuring devices. Likewise, an interesting line of research for the future would be to compare the HSA against a psychological evaluation with the purpose of identifying the stress management mechanisms among subjects of these characteristics and include heart rate variability measurements as an indicator of sympathetic stress.
Collapse
Affiliation(s)
- Claudio Nieto Jimenez
- Chilean Army, Center of Lessons Learned, División Doctrine, Valenzuela Llanos 623, La Reina, Chile
| | - Jorge Cajigal Vargas
- Sports Sciences Laboratory, Physical Education School, Faculty of Humanities, Universidad Mayor, San Pío X 2422, Providencia, Santiago, Chile
| | | | | |
Collapse
|
46
|
Xu Z, Crooks JL, Davies JM, Khan AF, Hu W, Tong S. The association between ambient temperature and childhood asthma: a systematic review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:471-481. [PMID: 29022096 DOI: 10.1007/s00484-017-1455-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/18/2017] [Accepted: 09/24/2017] [Indexed: 05/09/2023]
Abstract
The objectives of this study are to review available information on the association between ambient temperature and childhood asthma, and to elucidate the possible underlying mechanisms of this relationship. A systematic review was conducted based on the papers retrieved from four databases, including PubMed, ProQuest, ScienceDirect, and Scopus. Papers examining the association of absolute temperature or temperature variation with childhood asthma published from 1 January 2000 to 31 December 2016 were included. Thirteen papers have quantified the effect of absolute temperature on childhood asthma, and six papers have examined the effect of intra- or inter-day temperature variation on childhood asthma. All studies were conducted in urban areas. Aeroallergen sensitizations were only considered in the analyses of one study. Discrepancy existed in the significance of the relationship between absolute temperature and childhood asthma, and also in the shape of this relationship (i.e. linear or non-linear) and whether temperature effects were lagged. Increasing evidence is suggesting non-linear relationship between absolute temperature and childhood asthma. Future research should investigate the burden of childhood asthma specifically attributable to extreme temperatures and temperature variation using advanced statistical approach, particularly in rural areas, after properly considering aeroallergens and air pollution. Projecting future burden of childhood asthma under climate change scenarios is also warranted.
Collapse
Affiliation(s)
- Zhiwei Xu
- School of Public Health and Social Work & Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, 4059, Australia.
| | | | - Janet Mary Davies
- School of Biomedical Sciences & Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Al Fazal Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Wenbiao Hu
- School of Public Health and Social Work & Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, 4059, Australia
| | - Shilu Tong
- School of Public Health and Social Work & Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, 4059, Australia
- School of Public Health and Institute of Environment and Human Health, Anhui Medical University, Hefei, China
- Shanghai Children's Medical Centre, Shanghai Jiao-Tong University, Shanghai, China
| |
Collapse
|
47
|
Chan H, Huang HS, Sun DS, Lee CJ, Lien TS, Chang HH. TRPM8 and RAAS-mediated hypertension is critical for cold-induced immunosuppression in mice. Oncotarget 2018; 9:12781-12795. [PMID: 29560109 PMCID: PMC5849173 DOI: 10.18632/oncotarget.24356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/25/2018] [Indexed: 12/26/2022] Open
Abstract
Mechanisms underlying cold-induced immunosuppression remain unclear. Here we found that cold exposure leads to transient receptor potential melastatin 8 (TRPM8)-dependent, renin–angiotensin–aldosterone system (RAAS)-mediated hypertension, which subsequently induces small molecule and fluid extravasation, increases plasma Ig levels, and elicits immunosuppression. An effect is similar to the clinically-used immunosuppressive treatments of intravenous immunoglobulin (IVIg) against various inflammatory diseases, such as immune thrombocytopenia (ITP). Essential roles of TRPM8 and Ig in cold-induced immunosuppression are supported by the cold-mediated amelioration of ITP and the cold-mediated suppression of bacterial clearance, which were observed in wild-type mice but not in Ig- and TRPM8-deficient mutants. Treatment with antihypertensive drugs aliskiren and losartan drastically reversed high plasma Ig levels and ameliorated cold-induced immunosuppression, indicating the involvement of the RAAS and hypertension. These results indicated that the natively increased plasma Ig level is associated with immunosuppression during periods of cold exposure, and antihypertensive drugs can be useful to manage cold-induced immunosuppression.
Collapse
Affiliation(s)
- Hao Chan
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Der-Shan Sun
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan.,Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Chung-Jen Lee
- Department of Nursing, Tzu Chi College of Technology, Hualien, Taiwan
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan.,Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
48
|
Tipton MJ, Collier N, Massey H, Corbett J, Harper M. Cold water immersion: kill or cure? Exp Physiol 2017; 102:1335-1355. [DOI: 10.1113/ep086283] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022]
Affiliation(s)
- M. J. Tipton
- Extreme Environments Laboratory, Department of Sport & Exercise Science; University of Portsmouth; Portsmouth UK
| | - N. Collier
- Extreme Environments Laboratory, Department of Sport & Exercise Science; University of Portsmouth; Portsmouth UK
| | - H. Massey
- Extreme Environments Laboratory, Department of Sport & Exercise Science; University of Portsmouth; Portsmouth UK
| | - J. Corbett
- Extreme Environments Laboratory, Department of Sport & Exercise Science; University of Portsmouth; Portsmouth UK
| | - M. Harper
- Brighton and Sussex University Hospital NHS Trust; Royal Sussex County Hospital; Brighton UK
| |
Collapse
|
49
|
Zeng P, Bengtsson C, Klareskog L, Alfredsson L. Working in cold environment and risk of developing rheumatoid arthritis: results from the Swedish EIRA case-control study. RMD Open 2017; 3:e000488. [PMID: 28879055 PMCID: PMC5574417 DOI: 10.1136/rmdopen-2017-000488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 11/23/2022] Open
Abstract
Objectives To investigate (1) whether working in cold environment (WCE) is associated with an increased risk of developing rheumatoid arthritis (RA) (overall), anticitrullinated protein antibody (ACPA)-positive RA and ACPA-negative RA and (2) whether WCE interacts with occupational physical workload in conferring RA risk. Methods Data from the Swedish population-based case-control study Epidemiological Investigation of Rheumatoid Arthritis involving 3659 incident cases and 5925 controls were analysed. Study participants were asked whether they had ever worked in cold/outdoor environment along with their exposure duration and frequency. Occurrence of RA among exposed and unexposed subjects were compared by calculating ORs with 95% CI using logistic regression. Additive interactions between WCE and six types of physical workload were assessed using the principle of departure from additivity by calculating attributable proportion due to interaction (AP). Results The OR associated with having ever worked in cold environment was 1.5 (95% CI 1.4 to 1.7) for RA (overall), 1.6 (95% CI 1.4 to 1.8) for ACPA-positive RA and 1.4 (95% CI 1.2 to 1.6) for ACPA-negative RA. The risk of developing RA increased with increasing cumulative dose of working in cold indoor environment (p value <0.001), but not working in cold outdoor environment. Positive additive interaction was observed between WCE and repetitive hand/finger movements (AP 0.3 (95% CI 0.1 to 0.5)). Conclusions WCE is associated with increased risk of developing both ACPA-positive and ACPA-negative RA. A dose–response relationship was found between working in cold indoor environment and risk of developing RA. Moderate additive interaction was observed between exposure to cold environment and exposure to repetitive hand/finger movements.
Collapse
Affiliation(s)
- Pingling Zeng
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Camilla Bengtsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.,Center for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
50
|
Cheung SS, Lee JKW, Oksa J. Thermal stress, human performance, and physical employment standards. Appl Physiol Nutr Metab 2017; 41:S148-64. [PMID: 27277564 DOI: 10.1139/apnm-2015-0518] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many physically demanding occupations in both developed and developing economies involve exposure to extreme thermal environments that can affect work capacity and ultimately health. Thermal extremes may be present in either an outdoor or an indoor work environment, and can be due to a combination of the natural or artificial ambient environment, the rate of metabolic heat generation from physical work, processes specific to the workplace (e.g., steel manufacturing), or through the requirement for protective clothing impairing heat dissipation. Together, thermal exposure can elicit acute impairment of work capacity and also chronic effects on health, greatly contributing to worker health risk and reduced productivity. Surprisingly, in most occupations even in developed economies, there are rarely any standards regarding enforced heat or cold safety for workers. Furthermore, specific physical employment standards or accommodations for thermal stressors are rare, with workers commonly tested under near-perfect conditions. This review surveys the major occupational impact of thermal extremes and existing employment standards, proposing guidelines for improvement and areas for future research.
Collapse
Affiliation(s)
- Stephen S Cheung
- a Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Jason K W Lee
- b Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore.,c Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,d Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Juha Oksa
- e Finnish Institute of Occupational Health, Physical Work Capacity team, Oulu, Finland
| |
Collapse
|