1
|
Ter Braak B, Loonstra-Wolters L, Elbertse K, Osterlund T, Hendriks G, Jamalpoor A. ToxProfiler: A novel human-based reporter assay for in vitro chemical safety assessment. Toxicology 2024; 509:153970. [PMID: 39396605 DOI: 10.1016/j.tox.2024.153970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
In vitro chemical safety assessment often relies on simple and general cytotoxicity endpoint measurements and fails to adequately predict human toxicity. To improve the in vitro chemical safety assessment, it is important to understand the underlying mechanisms of toxicity. Here we introduce ToxProfiler, a novel human-based reporter assay that quantifies the chemical-induced stress responses at a single-cell level and reveals the toxicological mode-of-action (MoA) of novel drugs and chemicals. The assay accurately measures the activation of seven major cellular stress response pathways (oxidative stress, cell cycle stress, endoplasmic reticulum stress, ion stress, protein stress, autophagy and inflammation) that play a role in the adaptive responses prior to cellular toxicity. To assess the applicability of the assay in predicting the toxicity MoA of chemicals, we tested a set of 100 chemicals with well-known in vitro and in vivo toxicological profiles. Concentration response modeling and point-of-departure estimation for each reporter protein allowed for chemical potency ranking and revealed the primary toxicological MoA of chemicals. Furthermore, the assay could effectively group chemicals based on their shared toxicity signatures and link them to specific toxicological targets, e.g. mitochondrial toxicity and genotoxicity, and different human pathologies, including liver toxicity and cardiotoxicity. Overall, ToxProfiler is a quantitative in vitro reporter assay that can accurately provide insight into the toxicological MoA of compounds, thereby assisting in the future mechanism-based safety assessment of chemicals.
Collapse
Affiliation(s)
- Bas Ter Braak
- Toxys B.V., Leiden Bioscience Park, Oegstgeest, DH 2342, the Netherlands
| | | | - Kim Elbertse
- Toxys B.V., Leiden Bioscience Park, Oegstgeest, DH 2342, the Netherlands
| | - Torben Osterlund
- Toxys B.V., Leiden Bioscience Park, Oegstgeest, DH 2342, the Netherlands
| | - Giel Hendriks
- Toxys B.V., Leiden Bioscience Park, Oegstgeest, DH 2342, the Netherlands
| | - Amer Jamalpoor
- Toxys B.V., Leiden Bioscience Park, Oegstgeest, DH 2342, the Netherlands.
| |
Collapse
|
2
|
Drake C, Zobl W, Escher SE. Assessment of pulmonary fibrosis using weighted gene co-expression network analysis. FRONTIERS IN TOXICOLOGY 2024; 6:1465704. [PMID: 39512679 PMCID: PMC11540828 DOI: 10.3389/ftox.2024.1465704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
For many industrial chemicals toxicological data is sparse regarding several regulatory endpoints, so there is a high and often unmet demand for NAMs that allow for screening and prioritization of these chemicals. In this proof of concept case study we propose multi-gene biomarkers of compounds' ability to induce lung fibrosis and demonstrate their application in vitro. For deriving these biomarkers we used weighted gene co-expression network analysis to reanalyze a study where the time-dependent pulmonary gene-expression in mice treated with bleomycin had been documented. We identified eight modules of 58 to 273 genes each which were particularly activated during the different phases (inflammatory; acute and late fibrotic) of the developing fibrosis. The modules' relation to lung fibrosis was substantiated by comparison to known markers of lung fibrosis from DisGenet. Finally, we show the modules' application as biomarkers of chemical inducers of lung fibrosis based on an in vitro study of four diketones. Clear differences could be found between the lung fibrosis inducing diketones and other compounds with regard to their tendency to induce dose-dependent increases of module activation as determined using a previously proposed differential activation score and the fraction of differentially expressed genes in the modules. Accordingly, this study highlights the potential use of composite biomarkers mechanistic screening for compound-induced lung fibrosis.
Collapse
|
3
|
Viant MR, Amstalden E, Athersuch T, Bouhifd M, Camuzeaux S, Crizer DM, Driemert P, Ebbels T, Ekman D, Flick B, Giri V, Gómez-Romero M, Haake V, Herold M, Kende A, Lai F, Leonards PEG, Lim PP, Lloyd GR, Mosley J, Namini C, Rice JR, Romano S, Sands C, Smith MJ, Sobanski T, Southam AD, Swindale L, van Ravenzwaay B, Walk T, Weber RJM, Zickgraf FM, Kamp H. Demonstrating the reliability of in vivo metabolomics based chemical grouping: towards best practice. Arch Toxicol 2024; 98:1111-1123. [PMID: 38368582 PMCID: PMC10944399 DOI: 10.1007/s00204-024-03680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
While grouping/read-across is widely used to fill data gaps, chemical registration dossiers are often rejected due to weak category justifications based on structural similarity only. Metabolomics provides a route to robust chemical categories via evidence of shared molecular effects across source and target substances. To gain international acceptance, this approach must demonstrate high reliability, and best-practice guidance is required. The MetAbolomics ring Trial for CHemical groupING (MATCHING), comprising six industrial, government and academic ring-trial partners, evaluated inter-laboratory reproducibility and worked towards best-practice. An independent team selected eight substances (WY-14643, 4-chloro-3-nitroaniline, 17α-methyl-testosterone, trenbolone, aniline, dichlorprop-p, 2-chloroaniline, fenofibrate); ring-trial partners were blinded to their identities and modes-of-action. Plasma samples were derived from 28-day rat tests (two doses per substance), aliquoted, and distributed to partners. Each partner applied their preferred liquid chromatography-mass spectrometry (LC-MS) metabolomics workflows to acquire, process, quality assess, statistically analyze and report their grouping results to the European Chemicals Agency, to ensure the blinding conditions of the ring trial. Five of six partners, whose metabolomics datasets passed quality control, correctly identified the grouping of eight test substances into three categories, for both male and female rats. Strikingly, this was achieved even though a range of metabolomics approaches were used. Through assessing intrastudy quality-control samples, the sixth partner observed high technical variation and was unable to group the substances. By comparing workflows, we conclude that some heterogeneity in metabolomics methods is not detrimental to consistent grouping, and that assessing data quality prior to grouping is essential. We recommend development of international guidance for quality-control acceptance criteria. This study demonstrates the reliability of metabolomics for chemical grouping and works towards best-practice.
Collapse
Affiliation(s)
- Mark R Viant
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - E Amstalden
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - T Athersuch
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - M Bouhifd
- European Chemicals Agency, Telakkakatu 6, FI-00121, Helsinki, Finland
| | - S Camuzeaux
- Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, W12 0NN, UK
| | - D M Crizer
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - P Driemert
- BASF Metabolome Solutions GmbH, Tegeler Weg 33, 10589, Berlin, Germany
| | - T Ebbels
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - D Ekman
- Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, GA, 30605, USA
| | - B Flick
- BASF SE, Carl-Bosch-Str 38, 67056, Ludwigshafen, Germany
- NUVISAN ICB GmbH, Toxicology, 13353, Berlin, Germany
| | - V Giri
- BASF SE, Carl-Bosch-Str 38, 67056, Ludwigshafen, Germany
| | - M Gómez-Romero
- Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, W12 0NN, UK
| | - V Haake
- BASF Metabolome Solutions GmbH, Tegeler Weg 33, 10589, Berlin, Germany
| | - M Herold
- BASF Metabolome Solutions GmbH, Tegeler Weg 33, 10589, Berlin, Germany
| | - A Kende
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - F Lai
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - P E G Leonards
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - P P Lim
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - G R Lloyd
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - J Mosley
- Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, GA, 30605, USA
| | - C Namini
- Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, GA, 30605, USA
| | - J R Rice
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - S Romano
- Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, GA, 30605, USA
| | - C Sands
- Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, W12 0NN, UK
| | - M J Smith
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - T Sobanski
- European Chemicals Agency, Telakkakatu 6, FI-00121, Helsinki, Finland
| | - A D Southam
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - L Swindale
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - B van Ravenzwaay
- BASF SE, Carl-Bosch-Str 38, 67056, Ludwigshafen, Germany
- Environmental Sciences Consulting, 67122, Altrip, Germany
| | - T Walk
- BASF Metabolome Solutions GmbH, Tegeler Weg 33, 10589, Berlin, Germany
| | - R J M Weber
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - F M Zickgraf
- BASF SE, Carl-Bosch-Str 38, 67056, Ludwigshafen, Germany
| | - H Kamp
- BASF Metabolome Solutions GmbH, Tegeler Weg 33, 10589, Berlin, Germany
| |
Collapse
|
4
|
Ilyaskina D, Fernandes S, Berg MP, Lamoree MH, van Gestel CAM, Leonards PEG. Exploring the Relationship Among Lipid Profile Changes, Growth, and Reproduction in Folsomia candida Exposed to Teflubenzuron Over Time. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38517147 DOI: 10.1002/etc.5851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
The integration of untargeted lipidomics approaches in ecotoxicology has emerged as a strategy to enhance the comprehensiveness of environmental risk assessment. Although current toxicity tests with soil microarthropods focus on species performance, that is, growth, reproduction, and survival, understanding the mechanisms of toxicity across all levels of biological organization, from molecule to community is essential for informed decision-making. Our study focused on the impacts of sublethal concentrations of the insecticide teflubenzuron on the springtail Folsomia candida. Untargeted lipidomics was applied to link changes in growth, reproduction, and the overall stress response with lipid profile changes over various exposure durations. The accumulation of teflubenzuron in organisms exposed to the highest test concentration (0.035 mg a.s. kg-1 soil dry wt) significantly impacted reproductive output without compromising growth. The results suggested a resource allocation shift from reproduction to size maintenance. This hypothesis was supported by lipid shifts on day 7, at which point reductions in triacylglycerol and diacylglycerol content corresponded with decreased offspring production on day 21. The hypermetabolism of fatty acids and N-acylethanolamines on days 2 and 7 of exposure indicated oxidative stress and inflammation in the animals in response to teflubenzuron bioaccumulation, as measured using high-performance liquid chromatography-tandem mass spectrometry. Overall, the changes in lipid profiles in comparison with phenotypic adverse outcomes highlight the potential of lipid analysis as an early-warning tool for reproductive disturbances caused by pesticides in F. candida. Environ Toxicol Chem 2024;00:1-12. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Diana Ilyaskina
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Saúl Fernandes
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matty P Berg
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Kamp H, Kocabas NA, Faulhammer F, Synhaeve N, Rushton E, Flick B, Giri V, Sperber S, Higgins LG, Penman MG, van Ravenzwaay B, Rooseboom M. Utility of in vivo metabolomics to support read-across for UVCB substances under REACH. Arch Toxicol 2024; 98:755-768. [PMID: 38265474 PMCID: PMC10861390 DOI: 10.1007/s00204-023-03638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 01/25/2024]
Abstract
Structure-based grouping of chemicals for targeted testing and read-across is an efficient way to reduce resources and animal usage. For substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs), structure-based grouping is virtually impossible. Biology-based approaches such as metabolomics could provide a solution. Here, 15 steam-cracked distillates, registered in the EU through the Lower Olefins Aromatics Reach Consortium (LOA), as well as six of the major substance constituents, were tested in a 14-day rat oral gavage study, in line with the fundamental elements of the OECD 407 guideline, in combination with plasma metabolomics. Beyond signs of clinical toxicity, reduced body weight (gain), and food consumption, pathological investigations demonstrated the liver, thyroid, kidneys (males only), and hematological system to be the target organs. These targets were confirmed by metabolome pattern recognition, with no additional targets being identified. While classical toxicological parameters did not allow for a clear distinction between the substances, univariate and multivariate statistical analysis of the respective metabolomes allowed for the identification of several subclusters of biologically most similar substances. These groups were partly associated with the dominant (> 50%) constituents of these UVCBs, i.e., indene and dicyclopentadiene. Despite minor differences in clustering results based on the two statistical analyses, a proposal can be made for the grouping of these UVCBs. Both analyses correctly clustered the chemically most similar compounds, increasing the confidence that this biological approach may provide a solution for the grouping of UVCBs.
Collapse
Affiliation(s)
- H Kamp
- BASF Metabolome Solutions GmbH, Berlin, Germany
| | | | | | | | - E Rushton
- LyondellBasell, Rotterdam, The Netherlands
| | - B Flick
- BASF SE, Ludwigshafen, Germany
- NUVISAN ICB GmbH, Toxicology, 13353, Berlin, Germany
| | - V Giri
- BASF SE, Ludwigshafen, Germany
| | | | - L G Higgins
- LOA C/O Penman Consulting Ltd, Brussels, Belgium
| | - M G Penman
- LOA C/O Penman Consulting Ltd, Brussels, Belgium
| | | | - M Rooseboom
- Shell Global Solution International B.V, The Hague, The Netherlands
| |
Collapse
|
6
|
Wilhelmi P, Haake V, Zickgraf FM, Giri V, Ternes P, Driemert P, Nöth J, Scholz S, Barenys M, Flick B, Birk B, Kamp H, Landsiedel R, Funk-Weyer D. Molecular signatures of angiogenesis inhibitors: a single-embryo untargeted metabolomics approach in zebrafish. Arch Toxicol 2024; 98:943-956. [PMID: 38285066 PMCID: PMC10861732 DOI: 10.1007/s00204-023-03655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024]
Abstract
Angiogenesis is a key process in embryonic development, a disruption of this process can lead to severe developmental defects, such as limb malformations. The identification of molecular perturbations representative of antiangiogenesis in zebrafish embryo (ZFE) may guide the assessment of developmental toxicity from an endpoint- to a mechanism-based approach, thereby improving the extrapolation of findings to humans. Thus, the aim of the study was to discover molecular changes characteristic of antiangiogenesis and developmental toxicity. We exposed ZFEs to two antiangiogenic drugs (SU4312, sorafenib) and two developmental toxicants (methotrexate, rotenone) with putative antiangiogenic action. Molecular changes were measured by performing untargeted metabolomics in single embryos. The metabolome response was accompanied by the occurrence of morphological alterations. Two distinct metabolic effect patterns were observed. The first pattern comprised common effects of two specific angiogenesis inhibitors and the known teratogen methotrexate, strongly suggesting a shared mode of action of antiangiogenesis and developmental toxicity. The second pattern involved joint effects of methotrexate and rotenone, likely related to disturbances in energy metabolism. The metabolites of the first pattern, such as phosphatidylserines, pterines, retinol, or coenzyme Q precursors, represented potential links to antiangiogenesis and related developmental toxicity. The metabolic effect pattern can contribute to biomarker identification for a mechanism-based toxicological testing.
Collapse
Affiliation(s)
- Pia Wilhelmi
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056, Ludwigshafen Am Rhein, Germany.
- University of Barcelona, Research Group in Toxicology-GRET, 08028, Barcelona, Spain.
| | - Volker Haake
- BASF Metabolome Solutions, 10589, Berlin, Germany
| | - Franziska M Zickgraf
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056, Ludwigshafen Am Rhein, Germany.
| | - Varun Giri
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056, Ludwigshafen Am Rhein, Germany
| | | | | | - Julia Nöth
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Marta Barenys
- University of Barcelona, Research Group in Toxicology-GRET, 08028, Barcelona, Spain
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Burkhard Flick
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056, Ludwigshafen Am Rhein, Germany
- Preclinical Compound Profiling, Toxicology, NUVISAN ICB GmbH, 13353, Berlin, Germany
| | - Barbara Birk
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056, Ludwigshafen Am Rhein, Germany
| | | | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056, Ludwigshafen Am Rhein, Germany
- Institute of Pharmacy, Pharmacology and Toxicology, Free University of Berlin, 14195, Berlin, Germany
| | - Dorothee Funk-Weyer
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056, Ludwigshafen Am Rhein, Germany
| |
Collapse
|
7
|
Sillé F, Hartung T. Metabolomics in Preclinical Drug Safety Assessment: Current Status and Future Trends. Metabolites 2024; 14:98. [PMID: 38392990 PMCID: PMC10890122 DOI: 10.3390/metabo14020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolomics is emerging as a powerful systems biology approach for improving preclinical drug safety assessment. This review discusses current applications and future trends of metabolomics in toxicology and drug development. Metabolomics can elucidate adverse outcome pathways by detecting endogenous biochemical alterations underlying toxicity mechanisms. Furthermore, metabolomics enables better characterization of human environmental exposures and their influence on disease pathogenesis. Metabolomics approaches are being increasingly incorporated into toxicology studies and safety pharmacology evaluations to gain mechanistic insights and identify early biomarkers of toxicity. However, realizing the full potential of metabolomics in regulatory decision making requires a robust demonstration of reliability through quality assurance practices, reference materials, and interlaboratory studies. Overall, metabolomics shows great promise in strengthening the mechanistic understanding of toxicity, enhancing routine safety screening, and transforming exposure and risk assessment paradigms. Integration of metabolomics with computational, in vitro, and personalized medicine innovations will shape future applications in predictive toxicology.
Collapse
Affiliation(s)
- Fenna Sillé
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- CAAT-Europe, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
8
|
Takkellapati S, Gonzalez MA. Application of read-across methods as a framework for the estimation of emissions from chemical processes. CLEAN TECHNOLOGIES AND RECYCLING 2023; 3:283-300. [PMID: 38357098 PMCID: PMC10866300 DOI: 10.3934/ctr.2023018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The read-across method is a popular data gap filling technique with developed application for multiple purposes, including regulatory. Within the US Environmental Protection Agency's (US EPA) New Chemicals Program under Toxic Substances Control Act (TSCA), read-across has been widely used, as well as within technical guidance published by the Organization for Economic Co-operation and Development, the European Chemicals Agency, and the European Center for Ecotoxicology and Toxicology of Chemicals for filling chemical toxicity data gaps. Under the TSCA New Chemicals Review Program, US EPA is tasked with reviewing proposed new chemical applications prior to commencing commercial manufacturing within or importing into the United States. The primary goal of this review is to identify any unreasonable human health and environmental risks, arising from environmental releases/emissions during manufacturing and the resulting exposure from these environmental releases. The authors propose the application of read-across techniques for the development and use of a framework for estimating the emissions arising during the chemical manufacturing process. This methodology is to utilize available emissions data from a structurally similar analogue chemical or a group of structurally similar chemicals in a chemical family taking into consideration their physicochemical properties under specified chemical process unit operations and conditions. This framework is also designed to apply existing knowledge of read-across principles previously utilized in toxicity estimation for an analogue or category of chemicals and introduced and extended with a concurrent case study.
Collapse
Affiliation(s)
- Sudhakar Takkellapati
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division, Environmental Decision Analytics Branch, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Michael A. Gonzalez
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division, Environmental Decision Analytics Branch, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| |
Collapse
|
9
|
Bernhard A, Poulsen R, Brun Hansen AM, Hansen M. Toxicometabolomics as a tool for next generation environmental risk assessment. EFSA J 2023; 21:e211005. [PMID: 38047121 PMCID: PMC10687767 DOI: 10.2903/j.efsa.2023.e211005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Traditionally applied methodology in environmental risk assessment (ERA) has fallen out of step with technological advancements and regulatory requirements, challenging effectiveness and accuracy of the assessments. Extensive efforts have been focused towards a transition to a more data-driven and mechanistically-based next generation risk assessment. Metabolomics can produce detailed and comprehensive molecular insight into affected biochemical processes. Combining metabolomics with environmental toxicology can help to understand the mechanisms and/or modes of action underlying toxicity of environmental pollutants and inform adverse outcome pathways, as well as facilitate identification of biomarkers to quantify effects and/or exposure. This Technical Report describes the activities and work performed within the frame of the European Food Risk Assessment Fellowship Programme (EU-FORA), implemented at the section 'Environmental Chemistry and Toxicology' at the Department of Environmental Science at Aarhus University in Denmark with synergies to an ongoing H2020 RIA project 'EndocRine Guideline Optimisation' (ERGO). In accordance with the 'training by doing' principles of the EU-FORA, the fellowship project combined the exploration of the status of scientific discussion on methodology in ERA through literature study with hands-on training, using the metabolomics analysis pipeline established at Aarhus University. For the hands-on training, an amphibian metamorphosis assay (OECD test no.231) was used as a proof-of-concept toxicometabolomics study case. Both a targeted biomarker - and an untargeted metabolomics approach was applied.
Collapse
Affiliation(s)
| | - Rikke Poulsen
- Section of Environmental Chemistry and Toxicology, Department of Environmental ScienceAarhus UniversityDenmark
| | - Anna M Brun Hansen
- Section of Environmental Chemistry and Toxicology, Department of Environmental ScienceAarhus UniversityDenmark
| | - Martin Hansen
- Section of Environmental Chemistry and Toxicology, Department of Environmental ScienceAarhus UniversityDenmark
| |
Collapse
|
10
|
Schmeisser S, Miccoli A, von Bergen M, Berggren E, Braeuning A, Busch W, Desaintes C, Gourmelon A, Grafström R, Harrill J, Hartung T, Herzler M, Kass GEN, Kleinstreuer N, Leist M, Luijten M, Marx-Stoelting P, Poetz O, van Ravenzwaay B, Roggeband R, Rogiers V, Roth A, Sanders P, Thomas RS, Marie Vinggaard A, Vinken M, van de Water B, Luch A, Tralau T. New approach methodologies in human regulatory toxicology - Not if, but how and when! ENVIRONMENT INTERNATIONAL 2023; 178:108082. [PMID: 37422975 PMCID: PMC10858683 DOI: 10.1016/j.envint.2023.108082] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
The predominantly animal-centric approach of chemical safety assessment has increasingly come under pressure. Society is questioning overall performance, sustainability, continued relevance for human health risk assessment and ethics of this system, demanding a change of paradigm. At the same time, the scientific toolbox used for risk assessment is continuously enriched by the development of "New Approach Methodologies" (NAMs). While this term does not define the age or the state of readiness of the innovation, it covers a wide range of methods, including quantitative structure-activity relationship (QSAR) predictions, high-throughput screening (HTS) bioassays, omics applications, cell cultures, organoids, microphysiological systems (MPS), machine learning models and artificial intelligence (AI). In addition to promising faster and more efficient toxicity testing, NAMs have the potential to fundamentally transform today's regulatory work by allowing more human-relevant decision-making in terms of both hazard and exposure assessment. Yet, several obstacles hamper a broader application of NAMs in current regulatory risk assessment. Constraints in addressing repeated-dose toxicity, with particular reference to the chronic toxicity, and hesitance from relevant stakeholders, are major challenges for the implementation of NAMs in a broader context. Moreover, issues regarding predictivity, reproducibility and quantification need to be addressed and regulatory and legislative frameworks need to be adapted to NAMs. The conceptual perspective presented here has its focus on hazard assessment and is grounded on the main findings and conclusions from a symposium and workshop held in Berlin in November 2021. It intends to provide further insights into how NAMs can be gradually integrated into chemical risk assessment aimed at protection of human health, until eventually the current paradigm is replaced by an animal-free "Next Generation Risk Assessment" (NGRA).
Collapse
Affiliation(s)
| | - Andrea Miccoli
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany; National Research Council, Ancona, Italy
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | | | - Albert Braeuning
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Wibke Busch
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Christian Desaintes
- European Commission (EC), Directorate General for Research and Innovation (RTD), Brussels, Belgium
| | - Anne Gourmelon
- Organisation for Economic Cooperation and Development (OECD), Environment Directorate, Paris, France
| | | | - Joshua Harrill
- Center for Computational Toxicology and Exposure (CCTE), United States Environmental Protection Agency (US EPA), Durham, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health Baltimore MD USA, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Matthias Herzler
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Nicole Kleinstreuer
- NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), National Institute of Environmental Health Sciences (NIEHS), Durham, USA
| | - Marcel Leist
- CAAT‑Europe and Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - Oliver Poetz
- NMI Natural and Medical Science Institute at the University of Tuebingen, Reutlingen, Germany; SIGNATOPE GmbH, Reutlingen, Germany
| | | | - Rob Roggeband
- European Partnership for Alternative Approaches to Animal Testing (EPAA), Procter and Gamble Services Company NV/SA, Strombeek-Bever, Belgium
| | - Vera Rogiers
- Scientific Committee on Consumer Safety (SCCS), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Adrian Roth
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Pascal Sanders
- Fougeres Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Fougères, France France
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure (CCTE), United States Environmental Protection Agency (US EPA), Durham, USA
| | | | | | | | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Tewes Tralau
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
11
|
Bai F, Gao G, Li T, Liu J, Li L, Jia Y, Song L. Integrated physiological and metabolomic analysis reveals new insights into toxicity pathways of paraquat to Microcystis aeruginosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106521. [PMID: 37061422 DOI: 10.1016/j.aquatox.2023.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/04/2023] [Accepted: 04/02/2023] [Indexed: 05/15/2023]
Abstract
Chemical pollutants, such as herbicides, released into the aquatic environment adversely affect the phytoplankton community structure. While majority of herbicides are specifically designed to target photosynthetic processes, they also can be toxic to phytoplankton; however, despite the photosynthetic toxicity, some herbicides can target multiple physiological processes. Therefore, a full picture of toxicity pathway of herbicide to phytoplankton is necessary. In the present study, the cyanobacterium Microcystis aeruginosa was exposed to two levels (17 μg L-1 (EC10) and 65 μg L-1 (EC50)) of paraquat for 72 h. The physiological and metabolic responses were analyzed to elucidate the toxicity pathway and establish the adverse outcome pathway of paraquat to M. aeruginosa. The results revealed that enhanced glycolysis (upregulation of pyruvic acid level) and tricarboxylic acid cycle (upregulation of the levels of malic acid, isocitric acid and citric acid) exposed to EC10 level of paraquat, which probably acted as a temporary strategy to maintain a healthy energy status in M. aeruginosa cells. Meanwhile, the expressions of glutathione and benzoic acid were enhanced to scavenge the excessive reactive oxygen species (ROS). Additionally, the accumulation of pigments (chlorophyll a and carotenoid) might play a supplementary role in the acclimation to EC10 level paraquat treatment. In cells exposed to paraquat by EC50 level, the levels of SOD, CAT, glutathione and benzoic acid increased significantly; however, the ROS exceeded the tolerance level of antioxidant system in M. aeruginosa. The adverse effects were revealed by inhibition of chlorophyll a fluorescence, the decreases in several carbohydrates (e.g., glucose 1-phosphate, fructose and galactose) and total protein content. Consequently, paraquat-induced oxidative stress caused the growth inhibition of M. aeruginosa. These findings provide new insights into the mode of action of paraquat in M. aeruginosa.
Collapse
Affiliation(s)
- Fang Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Guangbin Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Tianli Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yunlu Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
12
|
Murali A, Giri V, Zickgraf FM, Ternes P, Cameron HJ, Sperber S, Haake V, Driemert P, Kamp H, Funk-Weyer D, Sturla SJ, Rietjens IMCM, van Ravenzwaay B. Connecting Gut Microbial Diversity with Plasma Metabolome and Fecal Bile Acid Changes Induced by the Antibiotics Tobramycin and Colistin Sulfate. Chem Res Toxicol 2023; 36:598-616. [PMID: 36972423 DOI: 10.1021/acs.chemrestox.2c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The diversity of microbial species in the gut has a strong influence on health and development of the host. Further, there are indications that the variation in expression of gut bacterial metabolic enzymes is less diverse than the taxonomic profile, underlying the importance of microbiome functionality, particularly from a toxicological perspective. To address these relationships, the gut bacterial composition of Wistar rats was altered by a 28 day oral treatment with the antibiotics tobramycin or colistin sulfate. On the basis of 16S marker gene sequencing data, tobramycin was found to cause a strong reduction in the diversity and relative abundance of the microbiome, whereas colistin sulfate had only a marginal impact. Associated plasma and fecal metabolomes were characterized by targeted mass spectrometry-based profiling. The fecal metabolome of tobramycin-treated animals had a high number of significant alterations in metabolite levels compared to controls, particularly in amino acids, lipids, bile acids (BAs), carbohydrates, and energy metabolites. The accumulation of primary BAs and significant reduction of secondary BAs in the feces indicated that the microbial alterations induced by tobramycin inhibit bacterial deconjugation reactions. The plasma metabolome showed less, but still many alterations in the same metabolite groups, including reductions in indole derivatives and hippuric acid, and furthermore, despite marginal effects of colistin sulfate treatment, there were nonetheless systemic alterations also in BAs. Aside from these treatment-based differences, we also uncovered interindividual differences particularly centering on the loss of Verrucomicrobiaceae in the microbiome, but with no apparent associated metabolite alterations. Finally, by comparing the data set from this study with metabolome alterations in the MetaMapTox database, key metabolite alterations were identified as plasma biomarkers indicative of altered gut microbiomes resulting from a wide activity spectrum of antibiotics.
Collapse
Affiliation(s)
| | - Varun Giri
- BASF SE, Ludwigshafen am Rhein 67056, Rheinland-Pfalz, Germany
| | | | - Philipp Ternes
- Metanomics (BASF Metabolome Solutions) GmbH, Tegeler Weg 33, Berlin 10589, Germany
| | - Hunter James Cameron
- BASF Corporation Computational Biology (RTP), Research Triangle Park, 3500 Paramount Parkway, Morrisvile, North Carolina 27560, United States
| | - Saskia Sperber
- BASF SE, Ludwigshafen am Rhein 67056, Rheinland-Pfalz, Germany
| | - Volker Haake
- Metanomics (BASF Metabolome Solutions) GmbH, Tegeler Weg 33, Berlin 10589, Germany
| | - Peter Driemert
- Metanomics (BASF Metabolome Solutions) GmbH, Tegeler Weg 33, Berlin 10589, Germany
| | - Hennicke Kamp
- Metanomics (BASF Metabolome Solutions) GmbH, Tegeler Weg 33, Berlin 10589, Germany
| | | | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, Zurich CH 8092, Switzerland
| | | | | |
Collapse
|
13
|
Murali A, Zickgraf FM, Ternes P, Giri V, Cameron HJ, Sperber S, Haake V, Driemert P, Kamp H, Weyer DF, Sturla SJ, Rietjens IMGM, van Ravenzwaay B. Gut Microbiota as Well as Metabolomes of Wistar Rats Recover within Two Weeks after Doripenem Antibiotic Treatment. Microorganisms 2023; 11:microorganisms11020533. [PMID: 36838498 PMCID: PMC9959319 DOI: 10.3390/microorganisms11020533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
An understanding of the changes in gut microbiome composition and its associated metabolic functions is important to assess the potential implications thereof on host health. Thus, to elucidate the connection between the gut microbiome and the fecal and plasma metabolomes, two poorly bioavailable carbapenem antibiotics (doripenem and meropenem), were administered in a 28-day oral study to male and female Wistar rats. Additionally, the recovery of the gut microbiome and metabolomes in doripenem-exposed rats were studied one and two weeks after antibiotic treatment (i.e., doripenem-recovery groups). The 16S bacterial community analysis revealed an altered microbial population in all antibiotic treatments and a recovery of bacterial diversity in the doripenem-recovery groups. A similar pattern was observed in the fecal metabolomes of treated animals. In the recovery group, particularly after one week, an over-compensation was observed in fecal metabolites, as they were significantly changed in the opposite direction compared to previously changed metabolites upon 28 days of antibiotic exposure. Key plasma metabolites known to be diagnostic of antibiotic-induced microbial shifts, including indole derivatives, hippuric acid, and bile acids were also affected by the two carbapenems. Moreover, a unique increase in the levels of indole-3-acetic acid in plasma following meropenem treatment was observed. As was observed for the fecal metabolome, an overcompensation of plasma metabolites was observed in the recovery group. The data from this study provides insights into the connectivity of the microbiome and fecal and plasma metabolomes and demonstrates restoration post-antibiotic treatment not only for the microbiome but also for the metabolomes. The importance of overcompensation reactions for health needs further studies.
Collapse
Affiliation(s)
- Aishwarya Murali
- BASF SE, 67056 Ludwigshafen, Germany
- Correspondence: (A.M.); (B.v.R.)
| | | | | | | | | | | | - Volker Haake
- BASF Metabolome Solutions GmbH, 10589 Berlin, Germany
| | | | - Hennicke Kamp
- BASF Metabolome Solutions GmbH, 10589 Berlin, Germany
| | | | - Shana J. Sturla
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | | | - Bennard van Ravenzwaay
- Department of Toxicology, Wageningen University & Research, 6703 HE Wageningen, The Netherlands
- Correspondence: (A.M.); (B.v.R.)
| |
Collapse
|
14
|
Derivation of metabolic point of departure using high-throughput in vitro metabolomics: investigating the importance of sampling time points on benchmark concentration values in the HepaRG cell line. Arch Toxicol 2023; 97:721-735. [PMID: 36683062 PMCID: PMC9968698 DOI: 10.1007/s00204-022-03439-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 01/23/2023]
Abstract
Amongst omics technologies, metabolomics should have particular value in regulatory toxicology as the measurement of the molecular phenotype is the closest to traditional apical endpoints, whilst offering mechanistic insights into the biological perturbations. Despite this, the application of untargeted metabolomics for point-of-departure (POD) derivation via benchmark concentration (BMC) modelling is still a relatively unexplored area. In this study, a high-throughput workflow was applied to derive PODs associated with a chemical exposure by measuring the intracellular metabolome of the HepaRG cell line following treatment with one of four chemicals (aflatoxin B1, benzo[a]pyrene, cyclosporin A, or rotenone), each at seven concentrations (aflatoxin B1, benzo[a]pyrene, cyclosporin A: from 0.2048 μM to 50 μM; rotenone: from 0.04096 to 10 μM) and five sampling time points (2, 6, 12, 24 and 48 h). The study explored three approaches to derive PODs using benchmark concentration modelling applied to single features in the metabolomics datasets or annotated metabolites or lipids: (1) the 1st rank-ordered unannotated feature, (2) the 1st rank-ordered putatively annotated feature (using a recently developed HepaRG-specific library of polar metabolites and lipids), and (3) 25th rank-ordered feature, demonstrating that for three out of four chemical datasets all of these approaches led to relatively consistent BMC values, varying less than tenfold across the methods. In addition, using the 1st rank-ordered unannotated feature it was possible to investigate temporal trends in the datasets, which were shown to be chemical specific. Furthermore, a possible integration of metabolomics-driven POD derivation with the liver steatosis adverse outcome pathway (AOP) was demonstrated. The study highlights that advances in technologies enable application of in vitro metabolomics at scale; however, greater confidence in metabolite identification is required to ensure PODs are mechanistically anchored.
Collapse
|
15
|
Nakagawa S, Hayashi A, Nukada Y, Yamane M. Comparison of toxicological effects and exposure levels between triclosan and its structurally similar chemicals using in vitro tests for read-across case study. Regul Toxicol Pharmacol 2022; 132:105181. [PMID: 35526779 DOI: 10.1016/j.yrtph.2022.105181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
Abstract
Read-across based on structural and biological similarities is expected to be a promising alternative method for assessing systemic toxicity. A concrete strategy for quantitative chemical risk assessment would be to stack read-across case studies and extract key considerations from them. Thus, we developed a read-across case study by comparing the toxicological effects based on adverse outcome pathways and exposure levels of different structurally similar chemicals for a target organ. In this study, we selected the hepatotoxicity of triclosan and its structurally similar chemicals including diclosan and 1-chloro-3-(4-chlorophenoxy)benzene. The results of in vitro toxicogenomics showed that disorders of cholesterol synthesis were commonly detected with both triclosan and diclosan. The decrease in hepatocellular cholesterol levels was similar in the cells treated with triclosan and diclosan. Furthermore, the exposure levels of triclosan and diclosan for the liver were similar. Collectively, these results suggest that triclosan and diclosan show similar toxicological effects and severity of hepatotoxicity. Considering the existing repeated dose toxicity data, our prediction results are reasonable regarding the toxicological effect and its severity. Thus, the present study demonstrated the usability of comparing toxicological effects and exposure levels using read-across for quantitative chemical risk assessment.
Collapse
Affiliation(s)
- Shota Nakagawa
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun Tochigi, 321-3497, Japan.
| | - Akane Hayashi
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun Tochigi, 321-3497, Japan
| | - Yuko Nukada
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun Tochigi, 321-3497, Japan
| | - Masayuki Yamane
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun Tochigi, 321-3497, Japan
| |
Collapse
|
16
|
Murali A, Giri V, Cameron HJ, Sperber S, Zickgraf FM, Haake V, Driemert P, Walk T, Kamp H, Rietjens IMCM, van Ravenzwaay B. Investigating the gut microbiome and metabolome following treatment with artificial sweeteners acesulfame potassium and saccharin in young adult Wistar rats. Food Chem Toxicol 2022; 165:113123. [DOI: 10.1016/j.fct.2022.113123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
|
17
|
Landsiedel R, Hahn D, Ossig R, Ritz S, Sauer L, Buesen R, Rehm S, Wohlleben W, Groeters S, Strauss V, Sperber S, Wami H, Dobrindt U, Prior K, Harmsen D, van Ravenzwaay B, Schnekenburger J. Gut microbiome and plasma metabolome changes in rats after oral gavage of nanoparticles: sensitive indicators of possible adverse health effects. Part Fibre Toxicol 2022; 19:21. [PMID: 35321750 PMCID: PMC8941749 DOI: 10.1186/s12989-022-00459-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The oral uptake of nanoparticles is an important route of human exposure and requires solid models for hazard assessment. While the systemic availability is generally low, ingestion may not only affect gastrointestinal tissues but also intestinal microbes. The gut microbiota contributes essentially to human health, whereas gut microbial dysbiosis is known to promote several intestinal and extra-intestinal diseases. Gut microbiota-derived metabolites, which are found in the blood stream, serve as key molecular mediators of host metabolism and immunity. RESULTS Gut microbiota and the plasma metabolome were analyzed in male Wistar rats receiving either SiO2 (1000 mg/kg body weight/day) or Ag nanoparticles (100 mg/kg body weight/day) during a 28-day oral gavage study. Comprehensive clinical, histopathological and hematological examinations showed no signs of nanoparticle-induced toxicity. In contrast, the gut microbiota was affected by both nanoparticles, with significant alterations at all analyzed taxonomical levels. Treatments with each of the nanoparticles led to an increased abundance of Prevotellaceae, a family with gut species known to be correlated with intestinal inflammation. Only in Ag nanoparticle-exposed animals, Akkermansia, a genus known for its protective impact on the intestinal barrier was depleted to hardly detectable levels. In SiO2 nanoparticles-treated animals, several genera were significantly reduced, including probiotics such as Enterococcus. From the analysis of 231 plasma metabolites, we found 18 metabolites to be significantly altered in Ag-or SiO2 nanoparticles-treated rats. For most of these metabolites, an association with gut microbiota has been reported previously. Strikingly, both nanoparticle-treatments led to a significant reduction of gut microbiota-derived indole-3-acetic acid in plasma. This ligand of the arylhydrocarbon receptor is critical for regulating immunity, stem cell maintenance, cellular differentiation and xenobiotic-metabolizing enzymes. CONCLUSIONS The combined profiling of intestinal microbiome and plasma metabolome may serve as an early and sensitive indicator of gut microbiome changes induced by orally administered nanoparticles; this will help to recognize potential adverse effects of these changes to the host.
Collapse
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Daniela Hahn
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstrasse 17, 48149, Muenster, Germany
| | - Rainer Ossig
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstrasse 17, 48149, Muenster, Germany
| | - Sabrina Ritz
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstrasse 17, 48149, Muenster, Germany
| | - Lydia Sauer
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstrasse 17, 48149, Muenster, Germany
| | - Roland Buesen
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Sascha Rehm
- HB Technologies AG, 72076, Tübingen, Germany
- Medical Data Integration Center, University Tuebingen, 72072, Tübingen, Germany
| | | | - Sibylle Groeters
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Volker Strauss
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Saskia Sperber
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Haleluya Wami
- Institute of Hygiene, University of Muenster, 48149, Muenster, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Muenster, 48149, Muenster, Germany
| | - Karola Prior
- Department of Periodontology and Operative Dentistry, University Hospital Muenster, 48149, Muenster, Germany
| | - Dag Harmsen
- Department of Periodontology and Operative Dentistry, University Hospital Muenster, 48149, Muenster, Germany
| | | | - Juergen Schnekenburger
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstrasse 17, 48149, Muenster, Germany.
| |
Collapse
|
18
|
Malinowska JM, Palosaari T, Sund J, Carpi D, Bouhifd M, Weber RJM, Whelan M, Viant MR. Integrating in vitro metabolomics with a 96-well high-throughput screening platform. Metabolomics 2022; 18:11. [PMID: 35000038 PMCID: PMC8743266 DOI: 10.1007/s11306-021-01867-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION High-throughput screening (HTS) is emerging as an approach to support decision-making in chemical safety assessments. In parallel, in vitro metabolomics is a promising approach that can help accelerate the transition from animal models to high-throughput cell-based models in toxicity testing. OBJECTIVE In this study we establish and evaluate a high-throughput metabolomics workflow that is compatible with a 96-well HTS platform employing 50,000 hepatocytes of HepaRG per well. METHODS Low biomass cell samples were extracted for metabolomics analyses using a newly established semi-automated protocol, and the intracellular metabolites were analysed using a high-resolution spectral-stitching nanoelectrospray direct infusion mass spectrometry (nESI-DIMS) method that was modified for low sample biomass. RESULTS The method was assessed with respect to sensitivity and repeatability of the entire workflow from cell culturing and sampling to measurement of the metabolic phenotype, demonstrating sufficient sensitivity (> 3000 features in hepatocyte extracts) and intra- and inter-plate repeatability for polar nESI-DIMS assays (median relative standard deviation < 30%). The assays were employed for a proof-of-principle toxicological study with a model toxicant, cadmium chloride, revealing changes in the metabolome across five sampling times in the 48-h exposure period. To allow the option for lipidomics analyses, the solvent system was extended by establishing separate extraction methods for polar metabolites and lipids. CONCLUSIONS Experimental, analytical and informatics workflows reported here met pre-defined criteria in terms of sensitivity, repeatability and ability to detect metabolome changes induced by a toxicant and are ready for application in metabolomics-driven toxicity testing to complement HTS assays.
Collapse
Affiliation(s)
- Julia M Malinowska
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Taina Palosaari
- European Commission, Joint Research Centre (JRC), 21027, Ispra, Italy
| | - Jukka Sund
- European Commission, Joint Research Centre (JRC), 21027, Ispra, Italy
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), 21027, Ispra, Italy
| | - Mounir Bouhifd
- European Commission, Joint Research Centre (JRC), 21027, Ispra, Italy
- European Chemicals Agency, Helsinki, Finland
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), 21027, Ispra, Italy
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
- Phenome Centre Birmingham, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
19
|
Malinowska JM, Palosaari T, Sund J, Carpi D, Lloyd GR, Weber RJM, Whelan M, Viant MR. Automated Sample Preparation and Data Collection Workflow for High-Throughput In Vitro Metabolomics. Metabolites 2022; 12:52. [PMID: 35050173 PMCID: PMC8778710 DOI: 10.3390/metabo12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022] Open
Abstract
Regulatory bodies have started to recognise the value of in vitro screening and metabolomics as two types of new approach methodologies (NAMs) for chemical risk assessments, yet few high-throughput in vitro toxicometabolomics studies have been reported. A significant challenge is to implement automated sample preparation of the low biomass samples typically used for in vitro screening. Building on previous work, we have developed, characterised and demonstrated an automated sample preparation and analysis workflow for in vitro metabolomics of HepaRG cells in 96-well microplates using a Biomek i7 Hybrid Workstation (Beckman Coulter) and Orbitrap Elite (Thermo Scientific) high-resolution nanoelectrospray direct infusion mass spectrometry (nESI-DIMS), across polar metabolites and lipids. The experimental conditions evaluated included the day of metabolite extraction, order of extraction of samples in 96-well microplates, position of the 96-well microplate on the instrument's deck and well location within a microplate. By using the median relative standard deviation (mRSD (%)) of spectral features, we have demonstrated good repeatability of the workflow (final mRSD < 30%) with a low percentage of features outside the threshold applied for statistical analysis. To improve the quality of the automated workflow further, small method modifications were made and then applied to a large cohort study (4860 sample infusions across three nESI-DIMS assays), which confirmed very high repeatability of the whole workflow from cell culturing to metabolite measurements, whilst providing a significant improvement in sample throughput. It is envisioned that the automated in vitro metabolomics workflow will help to advance the application of metabolomics (as a part of NAMs) in chemical safety, primarily as an approach for high throughput screening and prioritisation.
Collapse
Affiliation(s)
| | - Taina Palosaari
- Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy; (T.P.); (J.S.); (D.C.); (M.W.)
| | - Jukka Sund
- Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy; (T.P.); (J.S.); (D.C.); (M.W.)
| | - Donatella Carpi
- Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy; (T.P.); (J.S.); (D.C.); (M.W.)
| | - Gavin R. Lloyd
- Phenome Centre Birmingham, University of Birmingham, Birmingham B15 2TT, UK;
| | - Ralf J. M. Weber
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
- Phenome Centre Birmingham, University of Birmingham, Birmingham B15 2TT, UK;
| | - Maurice Whelan
- Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy; (T.P.); (J.S.); (D.C.); (M.W.)
| | - Mark R. Viant
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
- Phenome Centre Birmingham, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
20
|
Alexander-White C, Bury D, Cronin M, Dent M, Hack E, Hewitt NJ, Kenna G, Naciff J, Ouedraogo G, Schepky A, Mahony C, Europe C. A 10-step framework for use of read-across (RAX) in next generation risk assessment (NGRA) for cosmetics safety assessment. Regul Toxicol Pharmacol 2022; 129:105094. [PMID: 34990780 DOI: 10.1016/j.yrtph.2021.105094] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/12/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
This paper presents a 10-step read-across (RAX) framework for use in cases where a threshold of toxicological concern (TTC) approach to cosmetics safety assessment is not possible. RAX builds on established approaches that have existed for more than two decades using chemical properties and in silico toxicology predictions, by further substantiating hypotheses on toxicological similarity of substances, and integrating new approach methodologies (NAM) in the biological and kinetic domains. NAM include new types of data on biological observations from, for example, in vitro assays, toxicogenomics, metabolomics, receptor binding screens and uses physiologically-based kinetic (PBK) modelling to inform about systemic exposure. NAM data can help to substantiate a mode/mechanism of action (MoA), and if similar chemicals can be shown to work by a similar MoA, a next generation risk assessment (NGRA) may be performed with acceptable confidence for a data-poor target substance with no or inadequate safety data, based on RAX approaches using data-rich analogue(s), and taking account of potency or kinetic/dynamic differences.
Collapse
Affiliation(s)
- Camilla Alexander-White
- MKTox & Co Ltd, 36 Fairford Crescent, Downhead Park, Milton Keynes, Buckinghamshire, MK15 9AQ, UK.
| | - Dagmar Bury
- L'Oreal Research & Innovation, 9 Rue Pierre Dreyfus, 92110, Clichy, France
| | - Mark Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 AF, UK
| | - Matthew Dent
- Unilever, Safety & Environmental Assurance Centre, Colworth House, Sharnbrook, Bedfordshire, MK44 1ET, UK
| | - Eric Hack
- ScitoVation, Research Triangle Park, Durham, NC, USA
| | - Nicola J Hewitt
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160, Brussels, Belgium
| | - Gerry Kenna
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160, Brussels, Belgium
| | - Jorge Naciff
- The Procter & Gamble Company, Cincinnati, OH, 45040, USA
| | - Gladys Ouedraogo
- L'Oreal Research & Innovation, 1 Avenue Eugène Schueller, Aulnay sous bois, France
| | | | | | - Cosmetics Europe
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160, Brussels, Belgium.
| |
Collapse
|
21
|
Kralj T, Brouwer KLR, Creek DJ. Analytical and Omics-Based Advances in the Study of Drug-Induced Liver Injury. Toxicol Sci 2021; 183:1-13. [PMID: 34086958 PMCID: PMC8502468 DOI: 10.1093/toxsci/kfab069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Drug-induced liver injury (DILI) is a significant clinical issue, affecting 1-1.5 million patients annually, and remains a major challenge during drug development-toxicity and safety concerns are the second-highest reason for drug candidate failure. The future prevalence of DILI can be minimized by developing a greater understanding of the biological mechanisms behind DILI. Both qualitative and quantitative analytical techniques are vital to characterizing and investigating DILI. In vitro assays are capable of characterizing specific aspects of a drug's hepatotoxic nature and multiplexed assays are capable of characterizing and scoring a drug's association with DILI. However, an even deeper insight into the perturbations to biological pathways involved in the mechanisms of DILI can be gained through the use of omics-based analytical techniques: genomics, transcriptomics, proteomics, and metabolomics. These omics analytical techniques can offer qualitative and quantitative insight into genetic susceptibilities to DILI, the impact of drug treatment on gene expression, and the effect on protein and metabolite abundance. This review will discuss the analytical techniques that can be applied to characterize and investigate the biological mechanisms of DILI and potential predictive biomarkers.
Collapse
Affiliation(s)
- Thomas Kralj
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7569, USA
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
22
|
Benbrook C, Perry MJ, Belpoggi F, Landrigan PJ, Perro M, Mandrioli D, Antoniou MN, Winchester P, Mesnage R. Commentary: Novel strategies and new tools to curtail the health effects of pesticides. Environ Health 2021; 20:87. [PMID: 34340709 PMCID: PMC8330079 DOI: 10.1186/s12940-021-00773-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/18/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Flaws in the science supporting pesticide risk assessment and regulation stand in the way of progress in mitigating the human health impacts of pesticides. Critical problems include the scope of regulatory testing protocols, the near-total focus on pure active ingredients rather than formulated products, lack of publicly accessible information on co-formulants, excessive reliance on industry-supported studies coupled with reticence to incorporate published results in the risk assessment process, and failure to take advantage of new scientific opportunities and advances, e.g. biomonitoring and "omics" technologies. RECOMMENDED ACTIONS Problems in pesticide risk assessment are identified and linked to study design, data, and methodological shortcomings. Steps and strategies are presented that have potential to deepen scientific knowledge of pesticide toxicity, exposures, and risks. We propose four solutions: (1) End near-sole reliance in regulatory decision-making on industry-supported studies by supporting and relying more heavily on independent science, especially for core toxicology studies. The cost of conducting core toxicology studies at labs not affiliated with or funded directly by pesticide registrants should be covered via fees paid by manufacturers to public agencies. (2) Regulators should place more weight on mechanistic data and low-dose studies within the range of contemporary exposures. (3) Regulators, public health agencies, and funders should increase the share of exposure-assessment resources that produce direct measures of concentrations in bodily fluids and tissues. Human biomonitoring is vital in order to quickly identify rising exposures among vulnerable populations including applicators, pregnant women, and children. (4) Scientific tools across disciplines can accelerate progress in risk assessments if integrated more effectively. New genetic and metabolomic markers of adverse health impacts and heritable epigenetic impacts are emerging and should be included more routinely in risk assessment to effectively prevent disease. CONCLUSIONS Preventing adverse public health outcomes triggered or made worse by exposure to pesticides will require changes in policy and risk assessment procedures, more science free of industry influence, and innovative strategies that blend traditional methods with new tools and mechanistic insights.
Collapse
Affiliation(s)
- Charles Benbrook
- Heartland Health Research Alliance, 10526 SE Vashon Vista Drive, Port Orchard, WA 98367 USA
| | - Melissa J. Perry
- Department of Environmental and Occupational Health, George Washington University, Washington, DC USA
| | | | - Philip J. Landrigan
- Schiller Institute for Integrated Science and Society, Boston College, Newton, MA 02467 USA
| | | | | | - Michael N. Antoniou
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Paul Winchester
- School of Medicine, Department of Pediatrics, Indiana University, Indianapolis, IN USA
| | - Robin Mesnage
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, UK
| |
Collapse
|
23
|
Harrill JA, Viant MR, Yauk CL, Sachana M, Gant TW, Auerbach SS, Beger RD, Bouhifd M, O'Brien J, Burgoon L, Caiment F, Carpi D, Chen T, Chorley BN, Colbourne J, Corvi R, Debrauwer L, O'Donovan C, Ebbels TMD, Ekman DR, Faulhammer F, Gribaldo L, Hilton GM, Jones SP, Kende A, Lawson TN, Leite SB, Leonards PEG, Luijten M, Martin A, Moussa L, Rudaz S, Schmitz O, Sobanski T, Strauss V, Vaccari M, Vijay V, Weber RJM, Williams AJ, Williams A, Thomas RS, Whelan M. Progress towards an OECD reporting framework for transcriptomics and metabolomics in regulatory toxicology. Regul Toxicol Pharmacol 2021; 125:105020. [PMID: 34333066 DOI: 10.1016/j.yrtph.2021.105020] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Omics methodologies are widely used in toxicological research to understand modes and mechanisms of toxicity. Increasingly, these methodologies are being applied to questions of regulatory interest such as molecular point-of-departure derivation and chemical grouping/read-across. Despite its value, widespread regulatory acceptance of omics data has not yet occurred. Barriers to the routine application of omics data in regulatory decision making have been: 1) lack of transparency for data processing methods used to convert raw data into an interpretable list of observations; and 2) lack of standardization in reporting to ensure that omics data, associated metadata and the methodologies used to generate results are available for review by stakeholders, including regulators. Thus, in 2017, the Organisation for Economic Co-operation and Development (OECD) Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) launched a project to develop guidance for the reporting of omics data aimed at fostering further regulatory use. Here, we report on the ongoing development of the first formal reporting framework describing the processing and analysis of both transcriptomic and metabolomic data for regulatory toxicology. We introduce the modular structure, content, harmonization and strategy for trialling this reporting framework prior to its publication by the OECD.
Collapse
Affiliation(s)
- Joshua A Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States.
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Michabo Health Science, University of Birmingham Enterprise, Birmingham Research Park, Vincent Drive, Birmingham, B15 2SQ, United Kingdom.
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Environment Health and Safety Division, Paris, France
| | - Timothy W Gant
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England (PHE), Harwell Science Campus, Oxfordshire, United Kingdom
| | - Scott S Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Richard D Beger
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | | | - Jason O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Lyle Burgoon
- US Army Engineer Research and Development Center, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA
| | - Florian Caiment
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, the Netherlands
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), 21027, Ispra, Italy
| | - Tao Chen
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Brian N Chorley
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - John Colbourne
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Michabo Health Science, University of Birmingham Enterprise, Birmingham Research Park, Vincent Drive, Birmingham, B15 2SQ, United Kingdom
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), 21027, Ispra, Italy
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University (UPS), Toulouse, France; MetaToul-AXIOM Platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Claire O'Donovan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Timothy M D Ebbels
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, SW7 2AZ, United Kingdom
| | - Drew R Ekman
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA, 30605, United States
| | | | - Laura Gribaldo
- European Commission, Joint Research Centre (JRC), 21027, Ispra, Italy
| | - Gina M Hilton
- PETA Science Consortium International e.V., Friolzheimer Str. 3, 70499, Stuttgart, Germany
| | - Stephanie P Jones
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Aniko Kende
- Syngenta Jealott's Hill International Research Centre, Bracknell, RG42 6EY, United Kingdom
| | - Thomas N Lawson
- Michabo Health Science, University of Birmingham Enterprise, Birmingham Research Park, Vincent Drive, Birmingham, B15 2SQ, United Kingdom
| | - Sofia B Leite
- European Commission, Joint Research Centre (JRC), 21027, Ispra, Italy
| | - Pim E G Leonards
- Department of Environment and Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - Laura Moussa
- US Food and Drug Administration, Center for Veterinary Medicine, Rockville, MD, United States
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Oliver Schmitz
- BASF Metabolome Solutions, Metabolome Data Science, Tegeler Weg 33, 10589, Berlin, Germany
| | | | - Volker Strauss
- BASF SE, Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | - Monica Vaccari
- Center for Environmental Health and Prevention, Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, Bologna, Italy
| | - Vikrant Vijay
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Michabo Health Science, University of Birmingham Enterprise, Birmingham Research Park, Vincent Drive, Birmingham, B15 2SQ, United Kingdom
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), 21027, Ispra, Italy
| |
Collapse
|
24
|
Nakagawa S, Okamoto M, Yoshihara K, Nukada Y, Morita O. Grouping of chemicals based on the potential mechanisms of hepatotoxicity of naphthalene and structurally similar chemicals using in vitro testing for read-across and its validation. Regul Toxicol Pharmacol 2021; 121:104874. [PMID: 33493583 DOI: 10.1016/j.yrtph.2021.104874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/25/2020] [Accepted: 01/19/2021] [Indexed: 11/21/2022]
Abstract
Integrated Approaches to Testing and Assessment provides a framework to improve the reliability of read-across for chemical risk assessment of systemic toxicity without animal testing. However, the availability of only a few case studies hinders the use of this concept for regulatory purposes. Thus, we compared the biological similarity of structurally similar chemicals using in vitro testing to demonstrate the validity of this concept for grouping chemicals and to extract key considerations in read-across. We analyzed the hepatotoxicity of naphthalene and three chemicals structurally similar to naphthalene (2,7-naphthalenediol, 1,5-naphthalenediol, and 1-naphthol) for which 90-day repeated dose toxicity data are available. To elucidate and compare their potential mechanisms, we conducted in vitro microarray analysis using rat primary hepatocytes and validated the results using a biomarker and metabolic activation analysis. We observed that 2,7-naphthalenediol, 1,5-naphthalenediol, and 1-naphthol had similar potential mechanisms, namely, induction of oxidative stress by their metabolic activation. Conversely, naphthalene did not show a similar toxicity effect. The existing in vivo data confirmed our grouping of chemicals based on this potential mechanism. Thus, our findings suggest that in vitro toxicogenomics and related biochemical assays are useful for comparing biological similarities and grouping chemicals based on their toxicodynamics for read-across.
Collapse
Affiliation(s)
- Shota Nakagawa
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321-3497, Japan.
| | - Maiko Okamoto
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321-3497, Japan
| | - Keita Yoshihara
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321-3497, Japan
| | - Yuko Nukada
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321-3497, Japan
| | - Osamu Morita
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321-3497, Japan
| |
Collapse
|
25
|
Hernández-Mesa M, Le Bizec B, Dervilly G. Metabolomics in chemical risk analysis – A review. Anal Chim Acta 2021; 1154:338298. [DOI: 10.1016/j.aca.2021.338298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
|
26
|
Olesti E, González-Ruiz V, Wilks MF, Boccard J, Rudaz S. Approaches in metabolomics for regulatory toxicology applications. Analyst 2021; 146:1820-1834. [PMID: 33605958 DOI: 10.1039/d0an02212h] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Innovative methodological approaches are needed to conduct human health and environmental risk assessments on a growing number of marketed chemicals. Metabolomics is progressively proving its value as an efficient strategy to perform toxicological evaluations of new and existing substances, and it will likely become a key tool to accelerate chemical risk assessments. However, additional guidance with widely accepted and harmonized procedures is needed before metabolomics can be routinely incorporated in decision-making for regulatory purposes. The aim of this review is to provide an overview of metabolomic strategies that have been successfully employed in toxicity assessment as well as the most promising workflows in a regulatory context. First, we provide a general view of the different steps of regulatory toxicology-oriented metabolomics. Emphasis is put on three key elements: robustness of experimental design, choice of analytical platform, and use of adapted data treatment tools. Then, examples in which metabolomics supported regulatory toxicology outputs in different scenarios are reviewed, including chemical grouping, elucidation of mechanisms of toxicity, and determination of points of departure. The overall intention is to provide insights into why and how to plan and conduct metabolomic studies for regulatory toxicology purposes.
Collapse
Affiliation(s)
- Eulalia Olesti
- School of Pharmaceutical Sciences, University of Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
27
|
Elucidating the Relations between Gut Bacterial Composition and the Plasma and Fecal Metabolomes of Antibiotic Treated Wistar Rats. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The gut microbiome is vital to the health and development of an organism, specifically in determining the host response to a chemical (drug) administration. To understand this, we investigated the effects of six antibiotic (AB) treatments (Streptomycin sulfate, Roxithromycin, Sparfloxacin, Vancomycin, Clindamycin and Lincomycin hydrochloride) and diet restriction (–20%) on the gut microbiota in 28-day oral toxicity studies on Wistar rats. The fecal microbiota was determined using 16S rDNA marker gene sequencing. AB-class specific alterations were observed in the bacterial composition, whereas restriction in diet caused no observable difference. These changes associated well with the changes in the LC–MS/MS- and GC–MS-based metabolome profiles, particularly of feces and to a lesser extent of plasma. Particularly strong and AB-specific metabolic alterations were observed for bile acids in both plasma and feces matrices. Although AB-group-specific plasma metabolome changes were observed, weaker associations between fecal and plasma metabolome suggest a profound barrier between them. Numerous correlations between the bacterial families and the fecal metabolites were established, providing a holistic overview of the gut microbial functionality. Strong correlations were observed between microbiota and bile acids, lipids and fatty acids, amino acids and related metabolites. These microbiome–metabolome correlations promote understanding of the functionality of the microbiome for its host.
Collapse
|
28
|
Krebs J, McKeague M. Green Toxicology: Connecting Green Chemistry and Modern Toxicology. Chem Res Toxicol 2020; 33:2919-2931. [DOI: 10.1021/acs.chemrestox.0c00260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Johanna Krebs
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
- Department of Health Sciences and Technology, ETH Zürich, Universitätstrasse 2, Zurich, Switzerland CH 8092
| | - Maureen McKeague
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
- Faculty of Science, Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
29
|
Ball N, Madden J, Paini A, Mathea M, Palmer AD, Sperber S, Hartung T, van Ravenzwaay B. Key read across framework components and biology based improvements. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 853:503172. [DOI: 10.1016/j.mrgentox.2020.503172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
|
30
|
Morger A, Mathea M, Achenbach JH, Wolf A, Buesen R, Schleifer KJ, Landsiedel R, Volkamer A. KnowTox: pipeline and case study for confident prediction of potential toxic effects of compounds in early phases of development. J Cheminform 2020; 12:24. [PMID: 33431007 PMCID: PMC7157991 DOI: 10.1186/s13321-020-00422-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Risk assessment of newly synthesised chemicals is a prerequisite for regulatory approval. In this context, in silico methods have great potential to reduce time, cost, and ultimately animal testing as they make use of the ever-growing amount of available toxicity data. Here, KnowTox is presented, a novel pipeline that combines three different in silico toxicology approaches to allow for confident prediction of potentially toxic effects of query compounds, i.e. machine learning models for 88 endpoints, alerts for 919 toxic substructures, and computational support for read-across. It is mainly based on the ToxCast dataset, containing after preprocessing a sparse matrix of 7912 compounds tested against 985 endpoints. When applying machine learning models, applicability and reliability of predictions for new chemicals are of utmost importance. Therefore, first, the conformal prediction technique was deployed, comprising an additional calibration step and per definition creating internally valid predictors at a given significance level. Second, to further improve validity and information efficiency, two adaptations are suggested, exemplified at the androgen receptor antagonism endpoint. An absolute increase in validity of 23% on the in-house dataset of 534 compounds could be achieved by introducing KNNRegressor normalisation. This increase in validity comes at the cost of efficiency, which could again be improved by 20% for the initial ToxCast model by balancing the dataset during model training. Finally, the value of the developed pipeline for risk assessment is discussed using two in-house triazole molecules. Compared to a single toxicity prediction method, complementing the outputs of different approaches can have a higher impact on guiding toxicity testing and de-selecting most likely harmful development-candidate compounds early in the development process.
Collapse
Affiliation(s)
- Andrea Morger
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | | | | | | | | | | | | | - Andrea Volkamer
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.
| |
Collapse
|
31
|
Nakagawa S, Okamoto M, Nukada Y, Morita O. Comparison of the potential mechanisms for hepatotoxicity of p-dialkoxy chlorobenzenes in rat primary hepatocytes for read-across. Regul Toxicol Pharmacol 2020; 113:104617. [PMID: 32087351 DOI: 10.1016/j.yrtph.2020.104617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/26/2019] [Accepted: 02/18/2020] [Indexed: 01/06/2023]
Abstract
Read-across based on only structural similarity is considered to have a risk of error in chemical risk assessment. Under these circumstances, considering biological similarity based on adverse outcome pathways using in vitro omics technologies is expected to enhance the accuracy and robustness of conclusions in read-across. However, due to a lack of practical case studies, key considerations and use of these technologies for data gap filling are not well discussed. Here we extracted and compared the potential mechanisms for hepatotoxicity for structural analogs of p-dialkoxy chlorobenzenes including 1,4-dichloro-2,5-dimethoxybenzene (DDMB), 2,5-dichloro-1,4-diethoxybenzene (DDEB), 2-chloro-1,4-dimethoxybenzene (CDMB), and 1-chloro-2,5-diethoxybenzene (CDEB) using in vitro omics technologies for read-across. To reveal the potential mechanisms for hepatotoxicity, we conducted microarray analysis with rat primary hepatocytes. The results showed that three (DDMB, DDEB, CDEB) of the four chemicals affected similar biological pathways such as peroxisome proliferation, oxidative stress, and mitochondrial dysfunction. Furthermore, these biological pathways are consistent with in vivo hepatotoxicity in the source chemical, DDMB. In contrast, CDMB did not affect a specific toxicological pathway. Taken together, these data show the potential mechanisms for hepatotoxicity for three chemicals (DDMB, DDEB, CDEB) and provide novel insights into grouping chemicals using in vitro toxicogenomics for read-across.
Collapse
Affiliation(s)
- Shota Nakagawa
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun Tochigi, 321-3497, Japan.
| | - Maiko Okamoto
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun Tochigi, 321-3497, Japan
| | - Yuko Nukada
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun Tochigi, 321-3497, Japan
| | - Osamu Morita
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun Tochigi, 321-3497, Japan
| |
Collapse
|
32
|
Towards grouping concepts based on new approach methodologies in chemical hazard assessment: the read-across approach of the EU-ToxRisk project. Arch Toxicol 2019; 93:3643-3667. [DOI: 10.1007/s00204-019-02591-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
|
33
|
Sperber S, Wahl M, Berger F, Kamp H, Lemke O, Starck V, Walk T, Spitzer M, Ravenzwaay B. Metabolomics as read-across tool: An example with 3-aminopropanol and 2-aminoethanol. Regul Toxicol Pharmacol 2019; 108:104442. [DOI: 10.1016/j.yrtph.2019.104442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/06/2023]
|
34
|
Finding synergies for the 3Rs – Repeated Dose Toxicity testing: Report from an EPAA Partners' Forum. Regul Toxicol Pharmacol 2019; 108:104470. [DOI: 10.1016/j.yrtph.2019.104470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 08/30/2019] [Indexed: 11/21/2022]
|
35
|
Guo Y, Zhao L, Zhang X, Zhu H. Using a hybrid read-across method to evaluate chemical toxicity based on chemical structure and biological data. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:178-187. [PMID: 31004930 PMCID: PMC6508079 DOI: 10.1016/j.ecoenv.2019.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 05/08/2023]
Abstract
Read-across has become a primary approach to fill data gaps for chemical safety assessments. Chemical similarity based on structure, reactivity, and physic-chemical property information is a traditional approach applied for read-across toxicity studies. However, toxicity mechanisms are usually complicated in a biological system, so only using chemical similarity to perform the read-across for new compounds was not satisfactory for most toxicity endpoints, especially when the chemically similar compounds show dissimilar toxicities. This study aims to develop an enhanced read-across method for chemical toxicity predictions. To this end, we used two large toxicity datasets for read-across purposes. One consists of 3979 compounds with Ames mutagenicity data, and the other contains 7332 compounds with rat acute oral toxicity data. First, biological data for all compounds in these two datasets were obtained by querying thousands of PubChem bioassays. The PubChem bioassays with at least five compounds from either of these two datasets showing active responses were selected to generate comprehensive bioprofiles. The read-across studies were performed by using chemical similarity search only and also by using a hybrid similarity search based on both chemical descriptors and bioprofiles. Compared to traditional read-across based on chemical similarity, the hybrid read-across approach showed improved accuracy of predictions for both Ames mutagenicity and acute oral toxicity. Furthermore, we could illustrate potential toxicity mechanisms by analyzing the bioprofiles used for this hybrid read-across study. The results of this study indicate that the new hybrid read-across approach could be an applicable computational tool for chemical toxicity predictions. In this way, the bottleneck of traditional read-across studies can be overcome by introducing public biological data into the traditional process. The incorporation of bioprofiles generated from the additional biological data for compounds can partially solve the "activity cliff" issue and reveal their potential toxicity mechanisms. This study leads to a promising direction to utilize data-driven approaches for computational toxicology studies in the big data era.
Collapse
Affiliation(s)
- Yajie Guo
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Linlin Zhao
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Xiaoyi Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China.
| | - Hao Zhu
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA; Department of Chemistry, Rutgers University, Camden, NJ, USA.
| |
Collapse
|
36
|
Malinowska JM, Viant MR. Confidence in metabolite identification dictates the applicability of metabolomics to regulatory toxicology. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Sinclair GM, O'Brien AL, Keough M, De Souza DP, Dayalan S, Kanojia K, Kouremenos K, Tull DL, Coleman RA, Jones OAH, Long SM. Using metabolomics to assess the sub-lethal effects of zinc and boscalid on an estuarine polychaete worm over time. Metabolomics 2019; 15:108. [PMID: 31367897 DOI: 10.1007/s11306-019-1570-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/22/2019] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Zinc is a heavy metal commonly detected in urban estuaries around Australia. Boscalid is a fungicide found in estuaries, both in water and sediment, it enters the system predominantly through agricultural run-off. Zinc is persistent while boscalid breaks down, with a half-life of 108 days. Both contaminants are widely distributed and their effects on ecosystems are not well understood. OBJECTIVES The aim of this study was to determine the metabolite changes in Simplisetia aequisetis (an estuarine polychaete) following laboratory exposure to a sub-lethal concentration of zinc or boscalid over a 2-week period. METHODS Individuals were collected at six time points over a 2-week period. Whole polychaete metabolites were extracted and quantified using a multi-platform approach. Polar metabolites were detected using a semi-targeted GC-MS analysis and amine containing compounds were analysed using a targeted LC-MS analysis. Total lipid energy content was also analysed for Simplisetia aequisetis. RESULTS The pathways that responded to zinc and boscalid exposure were alanine, aspartate and glutamate metabolism (AAG); glycine, serine and threonine metabolism (GST) and metabolites associated with the tricarboxylic acid cycle (TCA). Results showed that changes in total abundance of some metabolites could be detected as early as 24-h exposure. Changes were detected in the metabolites before commonly used total lipid energy assays identified effects. CONCLUSION A multi-platform approach provided a holistic overview of the metabolomic response to contaminants in polychaetes. This approach shows promise to be used in biomonitoring programs to provide early diagnostic indicators of contamination and exposure.
Collapse
Affiliation(s)
- Georgia M Sinclair
- School of BioSciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia
- Centre for Aquatic Pollution Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia
- Aquatic Environmental Stress Research Group, RMIT-University, Plenty Rd, Bundoora, VIC, 3083, Australia
| | - Allyson L O'Brien
- School of BioSciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia
| | - Michael Keough
- School of BioSciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3010, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3010, Australia
- CSL Limited, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, 3010, Australia
| | - Komal Kanojia
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3010, Australia
| | - Konstantinos Kouremenos
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3010, Australia
- Trajan Scientific and Medical, 7 Argent Pl, Ringwood, VIC, 3134, Australia
| | - Dedreia L Tull
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3010, Australia
| | - Rhys A Coleman
- Melbourne Water Corporation, 990 La Trobe Street, Docklands, VIC, 3000, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Sara M Long
- School of BioSciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia.
- Centre for Aquatic Pollution Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia.
- Aquatic Environmental Stress Research Group, RMIT-University, Plenty Rd, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
38
|
Viant MR, Ebbels TMD, Beger RD, Ekman DR, Epps DJT, Kamp H, Leonards PEG, Loizou GD, MacRae JI, van Ravenzwaay B, Rocca-Serra P, Salek RM, Walk T, Weber RJM. Use cases, best practice and reporting standards for metabolomics in regulatory toxicology. Nat Commun 2019; 10:3041. [PMID: 31292445 PMCID: PMC6620295 DOI: 10.1038/s41467-019-10900-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022] Open
Abstract
Metabolomics is a widely used technology in academic research, yet its application to regulatory science has been limited. The most commonly cited barrier to its translation is lack of performance and reporting standards. The MEtabolomics standaRds Initiative in Toxicology (MERIT) project brings together international experts from multiple sectors to address this need. Here, we identify the most relevant applications for metabolomics in regulatory toxicology and develop best practice guidelines, performance and reporting standards for acquiring and analysing untargeted metabolomics and targeted metabolite data. We recommend that these guidelines are evaluated and implemented for several regulatory use cases.
Collapse
Affiliation(s)
- Mark R Viant
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | | | | - David J T Epps
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | | | | - Philippe Rocca-Serra
- Oxford e-Research Centre, Department of Engineering Science, University of Oxford, Oxford, OX1 3QG, UK
| | - Reza M Salek
- International Agency for Research on Cancer, Lyon, France
| | - Tilmann Walk
- BASF Metabolome Solutions, 10589, Berlin, Germany
| | - Ralf J M Weber
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
39
|
Schmitz-Spanke S. Toxicogenomics - What added Value Do These Approaches Provide for Carcinogen Risk Assessment? ENVIRONMENTAL RESEARCH 2019; 173:157-164. [PMID: 30909101 DOI: 10.1016/j.envres.2019.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
It is still a major challenge to protect humans at workplaces and in the environment. To cope with this task, it is a prerequisite to obtain detailed information on the extent of chemical perturbations of biological pathways, in particular, adaptive vs. adverse effects and the dose-response relationships. This knowledge serves as the basis for the classification of non-carcinogens and carcinogens and for further distinguishing carcinogens in genotoxic (DNA damaging) or non-genotoxic compounds. Basing on quantitative dose-response relationships, points of departures can be derived for chemical risk assessment. In recent years, new methods have shown their capability to support the established rodent models of carcinogenicity testing. In vitro high throughput screening assays assess more comprehensively cell response. In addition, omics technologies were applied to study the mode of action of chemicals whereby the term "toxicogenomics" comprises various technologies such as transcriptomics, epigenomics, or metabolomics. This review aims to summarize the current state of toxicogenomic approaches in risk science and to compare them with established ones. For example, measurement of global transcriptional changes generates meaningful information for toxicological risk assessment such as accurate classification of genotoxic/non-genotoxic carcinogens. Alteration in mRNA expression offers previously unknown insights in the mode of action and enables the definition of key events. Based on these, benchmark doses can be calculated for the transition from an adaptive to an adverse state. In short, this review assesses the potential and challenges of transcriptomics and addresses the impact of other omics technologies on risk assessment in terms of hazard identification and dose-response assessment.
Collapse
Affiliation(s)
- Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany.
| |
Collapse
|
40
|
van Ravenzwaay B, Sauer UG, de Matos O, Poole A. Editorial: Applying 'omics technologies in chemicals risk assessment. Regul Toxicol Pharmacol 2018; 91 Suppl 1:S1-S2. [PMID: 29246668 DOI: 10.1016/j.yrtph.2017.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Metabolomics Discovers Early-Response Metabolic Biomarkers that Can Predict Chronic Reproductive Fitness in Individual Daphnia magna. Metabolites 2018; 8:metabo8030042. [PMID: 30041468 PMCID: PMC6160912 DOI: 10.3390/metabo8030042] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Chemical risk assessment remains entrenched in chronic toxicity tests that set safety thresholds based on animal pathology or fitness. Chronic tests are resource expensive and lack mechanistic insight. Discovering a chemical's mode-of-action can in principle provide predictive molecular biomarkers for a toxicity endpoint. Furthermore, since molecular perturbations precede pathology, early-response molecular biomarkers may enable shorter, more resource efficient testing that can predict chronic animal fitness. This study applied untargeted metabolomics to attempt to discover early-response metabolic biomarkers that can predict reproductive fitness of Daphnia magna, an internationally-recognized test species. First, we measured the reproductive toxicities of cadmium, 2,4-dinitrophenol and propranolol to individual Daphnia in 21-day OECD toxicity tests, then measured the metabolic profiles of these animals using mass spectrometry. Multivariate regression successfully discovered putative metabolic biomarkers that strongly predict reproductive impairment by each chemical, and for all chemicals combined. The non-chemical-specific metabolic biomarkers were then applied to metabolite data from Daphnia 24-h acute toxicity tests and correctly predicted that significant decreases in reproductive fitness would occur if these animals were exposed to cadmium, 2,4-dinitrophenol or propranolol for 21 days. While the applicability of these findings is limited to three chemicals, they provide proof-of-principle that early-response metabolic biomarkers of chronic animal fitness can be discovered for regulatory toxicity testing.
Collapse
|
42
|
The challenge of the application of 'omics technologies in chemicals risk assessment: Background and outlook. Regul Toxicol Pharmacol 2017; 91 Suppl 1:S14-S26. [DOI: 10.1016/j.yrtph.2017.09.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 11/21/2022]
|
43
|
Cronin MT, Richarz AN. Relationship Between Adverse Outcome Pathways and Chemistry-BasedIn SilicoModels to Predict Toxicity. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2017.0021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mark T.D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, England
| | - Andrea-Nicole Richarz
- European Commission, Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Ispra, Italy
| |
Collapse
|
44
|
Kauffmann HM, Kamp H, Fuchs R, Chorley BN, Deferme L, Ebbels T, Hackermüller J, Perdichizzi S, Poole A, Sauer UG, Tollefsen KE, Tralau T, Yauk C, van Ravenzwaay B. Framework for the quality assurance of 'omics technologies considering GLP requirements. Regul Toxicol Pharmacol 2017; 91 Suppl 1:S27-S35. [PMID: 28987912 DOI: 10.1016/j.yrtph.2017.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
Abstract
'Omics technologies are gaining importance to support regulatory toxicity studies. Prerequisites for performing 'omics studies considering GLP principles were discussed at the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) Workshop Applying 'omics technologies in Chemical Risk Assessment. A GLP environment comprises a standard operating procedure system, proper pre-planning and documentation, and inspections of independent quality assurance staff. To prevent uncontrolled data changes, the raw data obtained in the respective 'omics data recording systems have to be specifically defined. Further requirements include transparent and reproducible data processing steps, and safe data storage and archiving procedures. The software for data recording and processing should be validated, and data changes should be traceable or disabled. GLP-compliant quality assurance of 'omics technologies appears feasible for many GLP requirements. However, challenges include (i) defining, storing, and archiving the raw data; (ii) transparent descriptions of data processing steps; (iii) software validation; and (iv) ensuring complete reproducibility of final results with respect to raw data. Nevertheless, 'omics studies can be supported by quality measures (e.g., GLP principles) to ensure quality control, reproducibility and traceability of experiments. This enables regulators to use 'omics data in a fit-for-purpose context, which enhances their applicability for risk assessment.
Collapse
Affiliation(s)
| | | | | | | | - Lize Deferme
- ExxonMobil Petroleum and Chemical B.V.B.A., Belgium
| | | | - Jörg Hackermüller
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Germany
| | - Stefania Perdichizzi
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | - Alan Poole
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), Belgium
| | | | | | - Tewes Tralau
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Germany
| | - Carole Yauk
- Environmental Health Science and Research Bureau, Health Canada, Canada
| | | |
Collapse
|
45
|
Brockmeier EK, Hodges G, Hutchinson TH, Butler E, Hecker M, Tollefsen KE, Garcia-Reyero N, Kille P, Becker D, Chipman K, Colbourne J, Collette TW, Cossins A, Cronin M, Graystock P, Gutsell S, Knapen D, Katsiadaki I, Lange A, Marshall S, Owen SF, Perkins EJ, Plaistow S, Schroeder A, Taylor D, Viant M, Ankley G, Falciani F. The Role of Omics in the Application of Adverse Outcome Pathways for Chemical Risk Assessment. Toxicol Sci 2017; 158:252-262. [PMID: 28525648 PMCID: PMC5837273 DOI: 10.1093/toxsci/kfx097] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In conjunction with the second International Environmental Omics Symposium (iEOS) conference, held at the University of Liverpool (United Kingdom) in September 2014, a workshop was held to bring together experts in toxicology and regulatory science from academia, government and industry. The purpose of the workshop was to review the specific roles that high-content omics datasets (eg, transcriptomics, metabolomics, lipidomics, and proteomics) can hold within the adverse outcome pathway (AOP) framework for supporting ecological and human health risk assessments. In light of the growing number of examples of the application of omics data in the context of ecological risk assessment, we considered how omics datasets might continue to support the AOP framework. In particular, the role of omics in identifying potential AOP molecular initiating events and providing supportive evidence of key events at different levels of biological organization and across taxonomic groups was discussed. Areas with potential for short and medium-term breakthroughs were also discussed, such as providing mechanistic evidence to support chemical read-across, providing weight of evidence information for mode of action assignment, understanding biological networks, and developing robust extrapolations of species-sensitivity. Key challenges that need to be addressed were considered, including the need for a cohesive approach towards experimental design, the lack of a mutually agreed framework to quantitatively link genes and pathways to key events, and the need for better interpretation of chemically induced changes at the molecular level. This article was developed to provide an overview of ecological risk assessment process and a perspective on how high content molecular-level datasets can support the future of assessment procedures through the AOP framework.
Collapse
Affiliation(s)
- Erica K. Brockmeier
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Thomas H. Hutchinson
- School of Biological Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, UK
| | - Emma Butler
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Markus Hecker
- Toxicology Centre and School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | | | - Natalia Garcia-Reyero
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
- Mississippi State University, Institute for Genomics, Biocomputing and Biotechnology, Starkville, Mississippi
| | - Peter Kille
- Cardiff School of Biosciences, University of Cardiff, Cardiff CF10 3AT, UK
| | - Dörthe Becker
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kevin Chipman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - John Colbourne
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Timothy W. Collette
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30605-2700
| | - Andrew Cossins
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mark Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Peter Graystock
- Department of Entomology, University of California, Riverside, California 92521
| | - Steve Gutsell
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Dries Knapen
- Zebrafishlab, University of Antwerp, Universiteitsplein 1, Belgium
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Anke Lange
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Stuart Marshall
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Stewart F. Owen
- AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TF, UK
| | - Edward J. Perkins
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Stewart Plaistow
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Anthony Schroeder
- Water Resources Center (Office: Mid-Continent Ecology Division), University of Minnesota, Minnesota 55108
| | - Daisy Taylor
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Mark Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gerald Ankley
- U.S. Environmental Protection Agency, Duluth, Minnesota 55804
| | - Francesco Falciani
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
46
|
Schultz TW, Cronin MT. Lessons learned from read-across case studies for repeated-dose toxicity. Regul Toxicol Pharmacol 2017; 88:185-191. [DOI: 10.1016/j.yrtph.2017.06.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
|