1
|
El Khattabi O, Lamwati Y, Henkrar F, Collin B, Levard C, Colin F, Smouni A, Fahr M. Lead-induced changes in plant cell ultrastructure: an overview. Biometals 2025; 38:1-19. [PMID: 39325137 DOI: 10.1007/s10534-024-00639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Lead (Pb) is one of the most harmful toxic metals and causes severe damage to plants even at low concentrations. Pb inhibits plant development, reduces photosynthesis rates, and causes metabolic disfunctions. Plant cells display these alterations in the form of abnormal morphological modifications resulting from ultrastructural changes in the cell wall, plasma membrane, chloroplast, endoplasmic reticulum, mitochondria, and nuclei. Depending on plant tolerance capacity, the ultrastructural changes could be either a sign of toxicity that limits plant development or an adaptive strategy to cope with Pb stress. This paper gathers data on Pb-induced changes in cell ultrastructure observed in many tolerant and hyperaccumulator plants and describes the ultrastructural changes that appear to be mechanisms to alleviate Pb toxicity. The different modifications caused by Pb in cell organelles are summarized and reinforced with hypotheses that provide an overview of plant responses to Pb stress and explain the physiological and morphological changes that occur in tolerant plants. These ultrastructural modifications could help assess the potential of plants for use in phytoremediation.
Collapse
Affiliation(s)
- Oumaima El Khattabi
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Youssef Lamwati
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille University, 13397, Marseille, France
| | - Fatima Henkrar
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
| | - Blanche Collin
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Clement Levard
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Fabrice Colin
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
| | - Mouna Fahr
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco.
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco.
| |
Collapse
|
2
|
Ongey EL, Banerjee A. In vitro reconstitution of transition metal transporters. J Biol Chem 2024; 300:107589. [PMID: 39032653 PMCID: PMC11381811 DOI: 10.1016/j.jbc.2024.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Transition metal ions are critically important across all kingdoms of life. The chemical properties of iron, copper, zinc, manganese, cobalt, and nickel make them very attractive for use as cofactors in metalloenzymes and/or metalloproteins. Their versatile chemistry in aqueous solution enables them to function both as electron donors and acceptors, and thus participate in both reduction and oxidation reactions respectively. Transition metal ions can also function as nonredox multidentate coordination sites that play essential roles in macromolecular structure and function. Malfunction in transition metal transport and homeostasis has been linked to a wide number of human diseases including cancer, diabetes, and neurodegenerative disorders. Transition metal transporters are central players in the physiology of transition metals whereby they move transition metals in and out of cellular compartments. In this review, we provide a comprehensive overview of in vitro reconstitution of the activity of integral membrane transition metal transporters and discuss strategies that have been successfully implemented to overcome the challenges. We also discuss recent advances in our understanding of transition metal transport mechanisms and the techniques that are currently used to decipher the molecular basis of transport activities of these proteins. Deep mechanistic insights into transition metal transport systems will be essential to understand their malfunction in human diseases and target them for potential therapeutic strategies.
Collapse
Affiliation(s)
- Elvis L Ongey
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human, Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Anirban Banerjee
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human, Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
3
|
Collado-López S, Burns KF, Smith SN, Kordas K, Desai G. Association between breakfast skipping and blood levels of lead and cadmium in children and adolescents aged 6-17 years: Results from the National Health and Nutrition Examination Survey 2013-2018. J Trace Elem Med Biol 2024; 84:127468. [PMID: 38728997 DOI: 10.1016/j.jtemb.2024.127468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
INTRODUCTION Previous research suggests that fasting increases lead absorption in the gastrointestinal tract, and that regularly eating meals may reduce blood lead. However, there is insufficient evidence linking breakfast status and blood-metal levels in children. We assessed the cross-sectional association between breakfast consumption status and children and adolescent's blood levels of lead and cadmium. We also explored blood hemoglobin, serum ferritin, and age group as potential effect modifiers of these associations. METHODS This analysis included children and adolescents aged 6-17 years who participated in the National Health and Nutrition Examination Survey (NHANES) cycles 2013-2018 with complete data on breakfast consumption status (consumers vs. skippers), blood metals, and covariates (N=3722). Blood metal variables were log-transformed. Crude and covariate-adjusted, survey-weighted linear regression models were conducted for each blood metal outcome. Potential effect modification was explored using stratification. RESULTS Overall fewer participants reported skipping breakfast (n=719) than eating breakfast (n=3003). Mean (SE) concentrations of blood lead and cadmium (µg/L) were 0.63 (0.01) µg/dL and 0.13 (0.00) µg/L, respectively. Children and adolescents who skipped breakfast were more likely to be female (51.2%), older (mean 12.2 years, SE = 0.1), have a higher body mass index (mean 22.8 kg/m2, SE = 0.2), and a lower income-poverty ratio (mean 1.7, SE = 0.1) than breakfast consumers. No associations between breakfast consumption and any of the blood metals were found. When stratified by age (≤ 10, 11-13, and 14-17 years), children aged 11-13 years who consumed breakfast had lower log-transformed blood lead levels [β = -0.14 µg/L; 95% CI: (-0.25, -0.03)] compared to children of the same age who skipped breakfast. CONCLUSION Children 11-13 years-old who were breakfast consumers had lower blood lead levels compared to children of the same age who skipped breakfast. Our results support that encouraging breakfast consumption among school-age children may contribute to lower blood lead levels.
Collapse
Affiliation(s)
- Sonia Collado-López
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, Morelos 62100, Mexico
| | - Kaelyn F Burns
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA.
| | - Samantha N Smith
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA
| | - Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
4
|
Liu ZH, Ai S, Xia Y, Wang HL. Intestinal toxicity of Pb: Structural and functional damages, effects on distal organs and preventive strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172781. [PMID: 38685433 DOI: 10.1016/j.scitotenv.2024.172781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Lead (Pb) is one of the most common heavy metal pollutants that possesses multi-organ toxicity. For decades, great efforts have been devoted to investigate the damage of Pb to kidney, liver, bone, blood cells and the central nervous system (CNS). For the common, dietary exposure is the main avenue of Pb, but our knowledge of Pb toxicity in gastrointestinal tract (GIT) remains quite insufficient. Importantly, emerging evidence has documented that gastrointestinal disorders affect other distal organs like brain and liver though gut-brain axis or gut-liver axis, respectively. This review focuses on the recent understanding of intestinal toxicity of Pb exposure, including structural and functional damages. We also review the influence and mechanism of intestinal toxicity on other distal organs, mainly concentrated on brain and liver. At last, we summarize the bioactive substances that reported to alleviate Pb toxicity, providing potential dietary intervention strategies to prevent or attenuate Pb toxicity.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| |
Collapse
|
5
|
Ebrahimi M, Ebrahimi M, Vergroesen JE, Aschner M, Sillanpää M. Environmental exposures to cadmium and lead as potential causes of eye diseases. J Trace Elem Med Biol 2024; 82:127358. [PMID: 38113800 DOI: 10.1016/j.jtemb.2023.127358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Humans are exposed to cadmium and lead in various regions of the world daily due to industrial development and climate change. Increasing numbers of preclinical and clinical studies indicate that heavy metals, such as cadmium and lead, play a role in the pathogenesis of eye diseases. Excessive exposure to heavy metals such as cadmium and lead can increase the risk of impaired vision. Therefore, it is essential to better characterize the role of these non-essential metals in disease etiology and progression. This article discusses the potential role of cadmium and lead in the development of age-related eye diseases, including age-related macular degeneration, cataracts, and glaucoma. Furthermore, we discuss how cadmium and lead affect ocular cells and provide an overview of putative pathological mechanisms associated with their propensity to damage the eye.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Ebrahimi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Joëlle E Vergroesen
- Department of Ophthalmology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, PR China; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
6
|
Parithathvi A, Choudhari N, Dsouza HS. Prenatal and early life lead exposure induced neurotoxicity. Hum Exp Toxicol 2024; 43:9603271241285523. [PMID: 39340316 DOI: 10.1177/09603271241285523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Lead (Pb) has become a major environmental contaminant. There are several ways in which lead can enter the human body and cause toxic effects on human health. This review focuses on the impact of lead toxicity at prenatal and early life stages and its effect on neurodevelopment. Lead exposure to the developing foetus targets foetal neural stem cells. Hence, it has detrimental effects on developing neural and glial cells, adversely influencing cognition and behaviour. Lead has a profound influence on the movement of calcium ions (Ca2+), which can be attributed to most of the mechanisms by which lead affects neurodevelopment. There is no known safe threshold of lead exposure for children. Lead can affect foetal neurodevelopment leading to various neurological disorders, and neurotoxic effects on behavioural and cognitive outcomes. In this review, we discuss prenatal and early-life lead exposure, its mechanism, and consequences for neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease in later stages of life. This review further highlights the importance of lead exposure during pregnancy and lactation periods as well as early development of the child in understanding the extent of lead-induced neurological damage to the foetus/children and the associated future risks.
Collapse
Affiliation(s)
- Aluru Parithathvi
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Neha Choudhari
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Herman S Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Yu X, Xiong L, Zhao S, Li Z, Xiang S, Cao Y, Zhou C, Dong J, Qiu J. Effect of lead, calcium, iron, zinc, copper and magnesium on anemia in children with BLLs ≥ 100 μg/L. J Trace Elem Med Biol 2023; 78:127192. [PMID: 37163818 DOI: 10.1016/j.jtemb.2023.127192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
OBJECTIVE Adverse effects of lead exposure on children's health have been demonstrated. While studies have examined the relationship between iron status and low-level lead exposure in children with blood lead levels (BLLs) < 100 μg/L, few have investigated the association between blood lead and other trace elements and anemia in children with BLLs ≥ 100 μg/L. This study aimed to assess the levels of lead, iron, copper, zinc, magnesium, and calcium in children aged 0-14 with BLLs≥ 100 μg/L between 2009 and 2021, and to examine the relationship between blood lead, trace elements and anemia. METHODS A total of 11,541 children with BLLs ≥ 100 μg/L were included in this study. Venous blood samples were collected to measure blood lead levels, hemoglobin levels, and trace element levels. According to the World Health Organization standard, outpatients with hemoglobin levels < 110 g / L were defined as having anemia. RESULTS The study results found that high BLLs and blood calcium had a negative influence on Hb with odds ratios (95% confidence interval) of 1.411(1.208, 1.649) and 1.219(1.043, 1.424). High blood iron had a positive influence on Hb with odds ratios of 0.421(0.355, 0.499). CONCLUSION The results suggest that the risk of anemia rose significantly with higher BLLs, blood copper, and blood calcium levels, and decreases considerably with higher blood iron levels.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha 410007, China.
| | - Liang Xiong
- Hunan Children's Hospital, Changsha 410007, China.
| | - Sha Zhao
- Children's Health Center, Hunan Children's Hospital, Changsha 410007, China.
| | - Zhengqiu Li
- Hunan Children's Hospital Inspection Center, Changsha 410007, China.
| | - Shiting Xiang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha 410007, China.
| | - Yuhan Cao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, China.
| | - Changci Zhou
- Academy of Pediatrics, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Jie Dong
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha 410007, China.
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha 410007, China.
| |
Collapse
|
8
|
Ray S, Berry SP, Wilson EA, Zhang CH, Shekhar M, Singharoy A, Gaudet R. High-resolution structures with bound Mn 2+ and Cd 2+ map the metal import pathway in an Nramp transporter. eLife 2023; 12:e84006. [PMID: 37039477 PMCID: PMC10185341 DOI: 10.7554/elife.84006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Transporters of the Nramp (Natural resistance-associated macrophage protein) family import divalent transition metal ions into cells of most organisms. By supporting metal homeostasis, Nramps prevent diseases and disorders related to metal insufficiency or overload. Previous studies revealed that Nramps take on a LeuT fold and identified the metal-binding site. We present high-resolution structures of Deinococcus radiodurans (Dra)Nramp in three stable conformations of the transport cycle revealing that global conformational changes are supported by distinct coordination geometries of its physiological substrate, Mn2+, across conformations, and by conserved networks of polar residues lining the inner and outer gates. In addition, a high-resolution Cd2+-bound structure highlights differences in how Cd2+ and Mn2+ are coordinated by DraNramp. Complementary metal binding studies using isothermal titration calorimetry with a series of mutated DraNramp proteins indicate that the thermodynamic landscape for binding and transporting physiological metals like Mn2+ is different and more robust to perturbation than for transporting the toxic Cd2+ metal. Overall, the affinity measurements and high-resolution structural information on metal substrate binding provide a foundation for understanding the substrate selectivity of essential metal ion transporters like Nramps.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Samuel P Berry
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Eric A Wilson
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | - Casey H Zhang
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | | | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
9
|
Liu Y, Bafaro EM, Cowan AE, Dempski RE. The transmembrane domains mediate oligomerization of the human ZIP4 transporter in vivo. Sci Rep 2022; 12:21083. [PMID: 36473915 PMCID: PMC9727157 DOI: 10.1038/s41598-022-24782-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The human (h) ZIP4 is a plasma membrane transporter that functions to increase cytosolic zinc levels. hZIP4 encodes eight transmembrane domains and a large extracellular domain (ECD). This ECD is cleaved from the holo-transporter when cells are zinc-deficient. At the same time, mutations in the ECD can result in the zinc-deficiency disease Acrodermatitis enteropathica. Previously, it was shown that hZIP4's ECD is comprised of two structurally independent subdomains where contacts between the ECD monomeric units are centered at the PAL motif. These results lead to the hypothesis that ZIP4-ECD is essential to the dimerization of the holo-transporter. To test this hypothesis, we used Fluorescence Correlation Spectroscopy (FCS) to quantify the oligomeric state of full-length hZIP4 and hZIP4 lacking the ECD domain, each tagged with eGFP. Inspection of our experimental results demonstrate that both the full-length and truncated hZIP4 is a dimer when expressed in HEK293 cells. Parallel functional experiments demonstrate that the Km and Vmax for truncated and full-length hZIP4/eGFP are similar. Determining that truncated hZIP4/eGFP forms a dimer is a crucial step for understanding the function of the hZIP4-ECD, which provides more insight into how the diseases related to hZIP4 protein.
Collapse
Affiliation(s)
- Yuting Liu
- grid.268323.e0000 0001 1957 0327Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609 USA
| | - Elizabeth M. Bafaro
- grid.268323.e0000 0001 1957 0327Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609 USA
| | - Ann E. Cowan
- grid.63054.340000 0001 0860 4915Department of Molecular Biology and Biophysics and Center for Cell Analysis and Modeling, University of Connecticut, Farmington, CT 06030 USA
| | - Robert E. Dempski
- grid.268323.e0000 0001 1957 0327Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609 USA
| |
Collapse
|
10
|
Chang JD, Gao W, Wang P, Zhao FJ. OsNRAMP5 Is a Major Transporter for Lead Uptake in Rice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17481-17490. [PMID: 36418022 DOI: 10.1021/acs.est.2c06384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lead (Pb) is one of the most toxic metals affecting human health globally. Food is an important source of chronic Pb exposure in humans. How Pb is taken up by rice, a staple food for over half of the global population, remains unknown. In the present study, we investigated the role of OsNRAMP5, a member of the NRAMP (Natural Resistance-Associated Macrophage Protein) transporter family, in Pb uptake by rice roots. Heterologous expression of OsNRAMP5 in yeast increased Pb uptake and sensitivity toward Pb. Knockout of OsNRAMP5 in rice by CRISPR/Cas9 gene editing resulted in significant decreases in root uptake of Pb and accumulation in rice shoots. The maximum influx velocity (Vmax) for Pb uptake of the knockout mutants was 70% lower than that of wild-type plants. When grown in Pb-contaminated paddy soil, OsNRAMP5 knockout mutants accumulated approximately 50 and 70% lower Pb concentrations in the grain and straw, respectively, than the wild type. OsNRAMP5 expression in rice roots was not affected by Pb exposure. These results indicate that OsNRAMP5 is a major transporter for Pb uptake in rice, in addition to its role in the uptake of manganese and cadmium. This study provides a mechanistic understanding of Pb uptake in rice plants and a potential strategy to limit Pb accumulation in rice grains.
Collapse
Affiliation(s)
- Jia-Dong Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiping Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Effect of Polishing on Lead and Cadmium Bioavailability in Rice and Its Health Implications. Foods 2022; 11:foods11172718. [PMID: 36076903 PMCID: PMC9455439 DOI: 10.3390/foods11172718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Rice polishing is an important approach to reducing the concentrations of heavy metals in rice, but knowledge of its effect on the Pb and Cd bioavailability in produced rice and the related health risk remains limited. In this study, the effects of rice polishing on the bioaccessibility (BAC) and bioavailability (RBA) of Pb and Cd in rice are assessed using an in vitro method and an in vivo mouse bioassay. The Pb removal rate in brown rice (40%), lightly processed brown rice (62%), germinated rice (74%), and polished rice (79%) gradually enhanced with an increase in the polishing degree, while Cd was difficult to remove by polishing. The Pb and Cd BAC in germinated rice was the highest, while that in brown rice was the lowest. The polished rice Pb and Cd RBA in the liver and kidneys were significantly higher than those in the brown rice group. The Pb RBA in the livers and kidneys in the polished rice group was 26.6% ± 1.68% and 65.3% ± 0.83%, respectively, which was 1.6- and 2.6-times higher than that in the brown rice group, respectively. The Cd RBA values in both the livers and kidneys of the polished rice group were 1.3-times higher than those in the brown rice group. Although polishing reduced the total Pb in the polished rice, it was not enough to offset the increase in bioavailability, and its consumption risk was not weakened. This study highlighted the value of the oral-bioavailability-corrected health risk assessment for assessing the influence of rice polishing on Pb and Cd exposure via rice consumption.
Collapse
|
12
|
Wang MY, Li MY, Ning H, Xue RY, Liang JH, Wang N, Luo XS, Li G, Juhasz AL, Ma LQ, Li HB. Cadmium oral bioavailability is affected by calcium and phytate contents in food: Evidence from leafy vegetables in mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127373. [PMID: 34879567 DOI: 10.1016/j.jhazmat.2021.127373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
To test high cadmium (Cd) concentration may not be high in health risk when considering Cd bioavailability, we assessed variation of Cd relative bioavailability (RBA, relative to CdCl2) using a mouse assay for 14 vegetables of water spinach, amaranth, and pakchoi. Cadmium concentration varied from 0.13 ± 0.01-0.37 ± 0.00 μg g-1 fw. Cadmium-RBA also varied significantly from 22.9 ± 2.12-77.2 ± 4.46%, however, the variation was overall opposite to that of Cd concentration, as indicated by a strong negative correlation between Cd-RBA and Cd concentration (R2 = 0.43). Based on both Cd concentration and bioavailability, the identified high-Cd pakchoi variety resulted in significantly lower Cd intake than the high-Cd varieties of water spinach and amaranth (4.74 ± 0.05 vs. 10.1 ± 0.54 and 8.03 ± 0.04 μg kg-1 bw week-1) due to significantly lower Cd-RBA (22.9 ± 2.12 vs. 77.2 ± 4.46 and 51.3 ± 2.93%). The lower Cd-RBA in pakchoi was due to its significantly higher Ca and lower phytate concentrations, which facilitated the role of Ca in inhibiting intestinal Cd absorption. This was ascertained by observation of decreased Cd-RBA (90.5 ± 12.0% to 63.5 ± 5.53%) for a water spinach when elevating its Ca concentration by 30% with foliar Ca application. Our results suggest that to assess food Cd risk, both total Cd and Cd bioavailability should be considered.
Collapse
Affiliation(s)
- Meng-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Han Ning
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jia-Hui Liang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ning Wang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Xiao-San Luo
- Jiangsu Key Laboratory of Agricultural Meteorology, International Center for Ecology, Meteorology, and Environment, Nanjing University of Information Science & Technology, Nanjing 210044, People's Republic of China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
13
|
Abd Wahil MS, Ja’afar MH, Md Isa Z. Assessment of Urinary Lead (Pb) and Essential Trace Elements in Autism Spectrum Disorder: a Case-Control Study Among Preschool Children in Malaysia. Biol Trace Elem Res 2022; 200:97-121. [PMID: 33661472 PMCID: PMC7930527 DOI: 10.1007/s12011-021-02654-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022]
Abstract
Lead (Pb) is a heavy metal which is abundant in the environment and known to cause neurotoxicity in children even at minute concentration. However, the trace elements calcium (Ca), magnesium (Mg), zinc (Zn) and iron (Fe) are essential to children due to its protective effect on neurodevelopment. The primary objective of this study was to assess the role of Pb and trace elements in the development of autism spectrum disorder (ASD) among preschool children. A total of 81 ASD children and 74 typically developed (TD) children aged between 3 and 6 years participated in the study. Self-administered online questionnaires were completed by the parents. A first-morning urine sample was collected in a sterile polyethene urine container and assayed for Pb, Ca, Mg, Zn and Fe using an inductively coupled plasma mass spectrometry (ICP-MS). Comparisons between groups revealed that the urinary Pb, Mg, Zn and Fe levels in ASD children were significantly lower than TD children. The odds of ASD reduced significantly by 5.0% and 23.0% with an increment of every 1.0 μg/dL urinary Zn and Fe, respectively. Post interaction analysis showed that the odds of ASD reduced significantly by 11.0% and 0.1% with an increment of every 1.0 μg/dL urinary Zn and Pb, respectively. A significantly lower urinary Pb level in ASD children than TD children may be due to their poor detoxifying mechanism. Also, the significantly lower urinary Zn and Fe levels in ASD children may augment the neurotoxic effect of Pb.
Collapse
Affiliation(s)
- Mohd Shahrol Abd Wahil
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Hasni Ja’afar
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Zaleha Md Isa
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Słota M, Wąsik M, Stołtny T, Machoń-Grecka A, Kasperczyk S. Effects of environmental and occupational lead toxicity and its association with iron metabolism. Toxicol Appl Pharmacol 2021; 434:115794. [PMID: 34780723 DOI: 10.1016/j.taap.2021.115794] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Discrepancies are present in the findings from clinical trials evaluating a physiological role of iron status in the lead-exposed population. OBJECTIVE The purpose of this article was to summarize the current understanding of cellular mechanisms of lead toxicity and present a comprehensive review of existing clinical trials related to associations of lead poisoning and iron status. Although an association of iron metabolism pathways that are affected by lead intoxication has been studied, there are still aspects that remain to be elucidated. The existence of additional Pb uptake pathways besides DMT1 transporter-mediated is postulated to non-specifically regulate lead absorption. METHODS Authors performed a systematic search of PubMed, EMBASE® and Web of Science databases to identify studies that reported an association between health risks of non-organic lead that are associated with iron status markers as possible effect modifier. RESULTS There were 58 studies that met the pre-defined inclusion criteria for the systematic review. There is a strong body of evidence supporting the hypothesis that alleviated blood lead level can be correlated with a reduced body iron store and increasing the risk of anemia. This association is of a high significance in cases of a young adolescent, weaker in groups of older children and often without a statistical significance in adults. DISCUSSION Discrepancies in the observations may result from different specificities of lead absorption pathways in children and adults, as well as the power of the statistical tests in varying population sizes. It may be assumed that the extent of iron deficits coupled together with source, timing, and severity of lead exposure, significantly influence the correlation between these factors. Some of the intervention programs of counteracting lead poisoning by iron supplementation proved to be effective and may be a promising prevention strategy for the exposed population.
Collapse
Affiliation(s)
- Michał Słota
- ARKOP Sp. z o.o., Kolejowa 34a, 32-332 Bukowno, Poland
| | - Marta Wąsik
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Tomasz Stołtny
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie, Bytomska 62, 41-940 Piekary Śląskie, Poland
| | - Anna Machoń-Grecka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| |
Collapse
|
15
|
Mani MS, Dsouza VL, Dsouza HS. Evaluation of divalent metal transporter 1 (DMT1) (rs224589) polymorphism on blood lead levels of occupationally exposed individuals. Toxicol Lett 2021; 353:13-19. [PMID: 34626817 DOI: 10.1016/j.toxlet.2021.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/15/2021] [Accepted: 10/04/2021] [Indexed: 01/28/2023]
Abstract
Lead (Pb) is an environmental and public health toxicant. It affects various organ systems of the body, thereby disrupting their normal functions. To date, several genes that are known to influence the mechanism of action of lead and toxicity have been studied. Among them, the iron transporter gene, SLC11A2 (Solute Carrier 11 group A member 2) which codes for the transmembrane protein, DMT1 (Divalent Metal Transporter 1) has shown to transport other metals including zinc, copper, and lead. We investigated the influence of DMT1 polymorphism (rs224589) on blood lead (Pb-B) levels. In the present study, we enrolled 113 lead-exposed workers and performed a comprehensive biochemical analysis and genetic composition. The frequency of DMT1 variants observed in the total subjects (n = 113) was 42 % for homozygous CC wild type, 54 % for heterozygous CA, and 4 % for homozygous AA mutant. The heterozygous CA carriers presented higher Pb-B levels compared to wild type CC and mutant AA carriers. Further, a negative association was observed between Pb-B levels and hemoglobin in heterozygous CA carriers. Hence, C allele may be the risk allele that contributes to increased susceptibility to high Pb-B retention, and genotyping of DMT1 in lead exposed subjects might be used as a prognostic marker to impede organ damage due to lead toxicity.
Collapse
Affiliation(s)
- Monica Shirley Mani
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Venzil Lavie Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
16
|
Tiwari AKM, Mahdi AA, Mishra S, Parveen H, Fatima G. Effect of iron and folate supplementation on Pb levels in pregnant anemic women: a prospective study. Free Radic Res 2021; 54:662-669. [PMID: 32954897 DOI: 10.1080/10715762.2020.1825704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
There are few reports revealing association between iron intake and environmental lead exposure during pregnancy. Therefore, the present study was undertaken to investigate the effect of iron supplementation on biochemical modulation of certain lead toxicity markers associated with pregnancy. Iron and folic acid supplementations were given to 250 pregnant anemic women (mild = 100, moderate = 100 and severe = 50) and 100 age matched nonanemic pregnant women as controls for 100 days. Lead (Pb) toxicity markers, enzymatic and nonenzymatic antioxidant were estimated as per standard protocols. The levels of Pb, serum transferrin receptors (sTfR), zinc protoporphyrin (ZPP), δ-aminolevulinic acid (δ-ALA, both in blood and urine) were found significantly increased in all pretreated subjects and these were decreased after oral iron supplementation. Iron-deficient pregnant women reflected a significant increase in lipid peroxide levels (LPO) and protein carbonyl levels (PC) which were found to be further increased after iron supplementation. The levels of iron (Fe), haemoglobin (Hb), ferritin, delta aminolevulinic acid dehydratase (δ-ALAD), catalase (CAT), superoxide dismutase (SOD), and reduced glutathione levels (GSH) were significantly decreased in pretreated groups and these parameters were found significantly increased in all supplemented subjects after treatment. Antioxidant vitamins viz. C and E were found significantly decreased in all post treated groups. Our observation suggests that recommended iron dose is not only effective for blood indices parameters, but it also decreases Pb concentrations in the blood during pregnancy. However, further studies with larger sample size are needed to confirm these findings.
Collapse
Affiliation(s)
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Sanjay Mishra
- School of Biotechnology, IFTM University, Moradabad, Uttar Pradesh, India
| | - Hina Parveen
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ghizal Fatima
- Department of Biotechnology, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Li HB, Ning H, Li SW, Li J, Xue RY, Li MY, Wang MY, Liang JH, Juhasz AL, Ma LQ. An interlaboratory evaluation of the variability in arsenic and lead relative bioavailability when assessed using a mouse bioassay. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:593-607. [PMID: 33952142 DOI: 10.1080/15287394.2021.1919947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Animal bioassays have been developed to estimate oral relative bioavailability (RBA) of metals in soil, dust, or food for accurate health risk assessment. However, the comparability in RBA estimates from different labs remains largely unclear. Using 12 soil and soil-like standard reference materials (SRMs), this study investigated variability in lead (Pb) and arsenic (As) RBA estimates employing a mouse bioassay in 3 labs at Nanjing University, University of Jinan, and Shandong Normal University. Two performances of the bioassay at Nanjing University in 2019 and 2020 showed reproducible Pb and As RBA estimates, but increasing the number of mouse replicates in 2020 produced more precise RBA measurements. Although there were inter-lab variations in diet consumption rate and metal accumulation in mouse liver and kidneys following SRM ingestion due to differences in diet composition, bioassays at 3 labs in 2019 yielded overall similar Pb and As RBA estimates for the 12 SRMs with strong linear correlations between each 2 of the 3 labs for Pb (R2 = 0.95-0.98 and slope = 0.85-1.02) and As RBA outcomes (R2 = 0.46-0.86 and slope = 0.56-0.79). The consistency in RBA estimates was attributed to the relative nature of the final bioavailability outcome, which might overcome the inter-lab variation in diet consumption and metal uptake in mice. These results increased the confidence of use of mouse bioassays in bioavailability studies.
Collapse
Affiliation(s)
- Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Han Ning
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, People's Republic of China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Meng-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Jia-Hui Liang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
18
|
Zhu J, Yeo JH, Bowyer AA, Proschogo N, New EJ. Studies of the labile lead pool using a rhodamine-based fluorescent probe. Metallomics 2021; 12:644-648. [PMID: 32342963 DOI: 10.1039/d0mt00056f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lead is a heavy metal which has long been known to have toxic effects on the body. However, much remains to be learnt about the labile lead pool and cellular uptake of lead. We report here RPb1 that undergoes a 100-fold increase in fluorescence emission in the presence of Pb2+, and which can be applied to study the labile lead pool within cells. We demonstrate the capacity of RPb1 for investigating labile lead pool in DLD-1 cells and changes in labile lead during differentiation of K562 cells.
Collapse
Affiliation(s)
- Jianping Zhu
- University of Sydney, School of Chemistry, Sydney, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
19
|
Das S, Nath M, Laskar AK, DebRoy S, Deb S, Barhai A, Choudhury AP. Lead and cadmium exposure network in children in a periurban area in India: susceptibility and health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28133-28145. [PMID: 33528773 DOI: 10.1007/s11356-021-12608-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
To investigate the complex Pb-Cd exposure network in school-going children, a thorough investigation of the probable exposure means (diet, water, and school micro-environments such as paint dust and school courtyard soil) and exposure route (ingestion, inhalation and dermal) was carried out in a periurban area spanning three districts in southern Assam, India. Multivariate statistical analysis was carried out to understand the complex data matrices, and the health risk assessments (carcinogenic and non-carcinogenic) based on US EPA Risk Assessment models were also made. We found the median values to be 0.9-4.0 mg Pb/kg and 0.21-6.2 mg Cd/kg in various food items. Groundwater also had Pb (0.13-0.48 mg/L) and Cd (0.11-0.29 mg/L). Pb levels in paint dust were within the permissible limits, but 50% of the samples had higher than permissible levels of Cd. Approximately 23% of the school courtyard soil had Pb above the global background levels, but all the samples had 4-27 times elevated levels of Cd in them. School micro-environment contributed significantly to the metal load in children due to their typical hand-to-mouth behavior and dietary intake (food and water) via ingestion was the most prominent route of exposure in children. The evaluation of the estimated chronic daily intake and the hazard quotient indicated hazardous exposure over a lifetime to both Pb and Cd, but only Cd posed a prominent cancer risk. It could be concluded that chronic insidious effects of metals would be a noteworthy toxicological threat to children when exposed early on.
Collapse
Affiliation(s)
- Suchismita Das
- Aquatic Toxicology and Remediation Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India.
| | - Moumita Nath
- Aquatic Toxicology and Remediation Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Agniv Kumar Laskar
- Aquatic Toxicology and Remediation Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Satabdi DebRoy
- Aquatic Toxicology and Remediation Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Swarupa Deb
- Aquatic Toxicology and Remediation Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Akan Barhai
- Aquatic Toxicology and Remediation Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Atiya Parveen Choudhury
- Aquatic Toxicology and Remediation Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| |
Collapse
|
20
|
Molecular Mechanism of Nramp-Family Transition Metal Transport. J Mol Biol 2021; 433:166991. [PMID: 33865868 DOI: 10.1016/j.jmb.2021.166991] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The Natural resistance-associated macrophage protein (Nramp) family of transition metal transporters enables uptake and trafficking of essential micronutrients that all organisms must acquire to survive. Two decades after Nramps were identified as proton-driven, voltage-dependent secondary transporters, multiple Nramp crystal structures have begun to illustrate the fine details of the transport process and provide a new framework for understanding a wealth of preexisting biochemical data. Here we review the relevant literature pertaining to Nramps' biological roles and especially their conserved molecular mechanism, including our updated understanding of conformational change, metal binding and transport, substrate selectivity, proton transport, proton-metal coupling, and voltage dependence. We ultimately describe how the Nramp family has adapted the LeuT fold common to many secondary transporters to provide selective transition-metal transport with a mechanism that deviates from the canonical model of symport.
Collapse
|
21
|
Rasnick E, Ryan PH, Bailer AJ, Fisher T, Parsons PJ, Yolton K, Newman NC, Lanphear BP, Brokamp C. Identifying sensitive windows of airborne lead exposure associated with behavioral outcomes at age 12. Environ Epidemiol 2021; 5:e144. [PMID: 33870016 PMCID: PMC8043737 DOI: 10.1097/ee9.0000000000000144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/12/2021] [Indexed: 11/25/2022] Open
Abstract
Despite the precipitous decline of airborne lead concentrations following the removal of lead in gasoline, lead is still detectable in ambient air in most urban areas. Few studies, however, have examined the health effects of contemporary airborne lead concentrations in children. METHODS We estimated monthly air lead exposure among 263 children (Cincinnati Childhood Allergy and Air Pollution Study; Cincinnati, OH; 2001-2005) using temporally scaled predictions from a validated land use model and assessed neurobehavioral outcomes at age 12 years using the parent-completed Behavioral Assessment System for Children, 2nd edition. We used distributed lag models to estimate the effect of airborne lead exposure on behavioral outcomes while adjusting for potential confounding by maternal education, community-level deprivation, blood lead concentrations, greenspace, and traffic related air pollution. RESULTS We identified sensitive windows during mid- and late childhood for increased anxiety and atypicality scores, whereas sensitive windows for increased aggression and attention problems were identified immediately following birth. The strongest effect was at age 12, where a 1 ng/m3 increase in airborne lead exposure was associated with a 3.1-point (95% confidence interval: 0.4, 5.7) increase in anxiety scores. No sensitive windows were identified for depression, somatization, conduct problems, hyperactivity, or withdrawal behaviors. CONCLUSIONS We observed associations between exposure to airborne lead concentrations and poor behavioral outcomes at concentrations 10 times lower than the National Ambient Air Quality Standards set by the US Environmental Protection Agency.
Collapse
Affiliation(s)
- Erika Rasnick
- Department of Statistics, Miami University, Oxford
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center
| | - Patrick H. Ryan
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | | | | | - Patrick J. Parsons
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, New York
| | - Kimberly Yolton
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of General and Community Pediatrics, Cincinnati Children’s Hospital Medical Center
| | - Nicholas C. Newman
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Cole Brokamp
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
22
|
Afzal MJ, Khan MI, Cheema SA, Hussain S, Anwar-Ul-Haq M, Ali MH, Naveed M. Combined application of Bacillus sp. MN-54 and phosphorus improved growth and reduced lead uptake by maize in the lead-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44528-44539. [PMID: 32772285 DOI: 10.1007/s11356-020-10372-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) is considered an important environmental contaminant due to its considerable toxicity to living organisms. It can enter and accumulate in plant tissues and become part of the food chain. In the present study, individual and combined effects of Bacillus sp. MN-54 and phosphorus (P) on maize growth and physiology were evaluated in Pb-contaminated soil. A pristine soil was artificially contaminated with two levels of Pb (i.e., 250 and 500 mg kg-1 dry soil) and was transferred to plastic pots. Bacillus sp. MN-54 treated and untreated maize (DK-6714) seeds were planted in pots. Recommended doses of nutrients (N and K) were applied in each pot while P was applied in selective pots. Results showed that Pb stress hampered the maize growth and physiological attributes in a concentration-dependent manner, and significant reductions in seedling emergence, shoot and root lengths, fresh and dry biomasses, leaf area, chlorophyll content, rate of photosynthesis, and stomatal conductance were recorded compared with control. Application of Bacillus sp. MN-54 or P particularly in combination significantly reduced the toxic effects of Pb on maize. At higher Pb level (500 mg kg-1), the combined application effectively reduced Pb uptake up to 42.4% and 50% by shoots, 30.8% and 33.9% by roots, and 18.4% and 26.2% in available Pb content in soil after 45 days and 90 days, respectively compared with that of control. Moreover, the use of Bacillus sp. MN-54 significantly improved the P uptake by maize plants by 44.4% as compared with that of control. Our findings suggest that the combined use of Bacillus sp. MN-54 and P could be effective and helpful in improving plant growth and Pb immobilization in Pb-contaminated soil.
Collapse
Affiliation(s)
- Muhammad Junaid Afzal
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Imran Khan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
- Department of Isotope Biogeochemistry, Helmholtz - Center for Environmental Research-UFZ, Leipzig, Germany.
| | | | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Anwar-Ul-Haq
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Hayder Ali
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
23
|
Yathapu SR, Kondapalli NB, Srivalliputturu SB, Hemalatha R, Bharatraj DK. Effect of lead exposure and nutritional iron-deficiency on immune response: A vaccine challenge study in rats. J Immunotoxicol 2020; 17:144-152. [PMID: 32574507 DOI: 10.1080/1547691x.2020.1773973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The prevalence of iron (Fe) deficiency and subclinical lead (Pb) toxicity is high in developing countries like India, and information on their potential additive effects on immune responses is scant. The current study assessed immune parameters in dual Pb-exposed\Fe-deficient weanling SD rats. Rats were fed a control (CD) or Fe-deficient (ID) diet for 4 weeks and then evaluated for hemoglobin (Hb) and serum Fe status. Then, half the rats in each group began to receive daily oral Pb exposure (25 mg/4 ml/kg BW; gavage) or vehicle for a further 4 weeks (while maintained on original respective diets). After the 4-weeks of dosing, rats were assessed for Hb and serum Fe, and for blood lead level (BLL) and δ-aminolevulinic acid dehydratase (ALAD) activity. At this point, half the rats in each group (now n = 8) were then vaccinated with tetanus toxoid (TT), and then two boosters at 2-week intervals. All the time, rats stayed on their original respective diets along with exposure to Pb on alternate days. At 2 weeks after the final booster, rats were euthanized and blood collected to assess total/specific IgG and IgM levels; mucosal (intestinal) IgA levels were also determined. Spleens were taken to assess CD4+ and CD8+ cell levels and for ex vivo measures of splenocyte proliferation/TH1 and TH2 cytokine formation. The results indicated significant lowering of Hb and serum Fe levels in ID rats and increased blood Pb and decreased ALAD activity in all Pb-exposed rats. Fe-deficiency alone induced significant increases in ALAD activity, but only in an absence of Pb. While there was no impact of any regimen on total or TT-specific IgG, significant decreases in mucosal IgA and TT-specific IgM were seen in ID-fed Pb-exposed rats. CD4+ cell levels were not impacted by treatment; CD8+ levels were increased in all ID/Pb-exposed rats. Ex-vivo splenocyte proliferation was significantly higher among vaccinated rats, as well as ID-fed Pb-exposed unvaccinated rats. Cytokine formation in all cases was highly variable. The results suggest that Fe deficiency compromised cell-mediated, mucosal, and/or humoral immune response-related endpoints and that Pb exposure during the deficiency further impacted these outcomes.
Collapse
Affiliation(s)
- Srinivasa Reddy Yathapu
- Food and Drug Toxicology Research Center, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Narendra Babu Kondapalli
- Department of Immunology and Micro-biology, ICMR-National Institute of Nutrition, Hyderabad, India
| | | | - Rajkumar Hemalatha
- Department of Immunology and Micro-biology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Dinesh Kumar Bharatraj
- Food and Drug Toxicology Research Center, ICMR-National Institute of Nutrition, Hyderabad, India
| |
Collapse
|
24
|
Bozzi AT, Bane LB, Zimanyi CM, Gaudet R. Unique structural features in an Nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import. J Gen Physiol 2019; 151:1413-1429. [PMID: 31619456 PMCID: PMC6888756 DOI: 10.1085/jgp.201912428] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023] Open
Abstract
Natural resistance-associated macrophage protein (Nramp) transporters enable uptake of essential transition metal micronutrients in numerous biological contexts. These proteins are believed to function as secondary transporters that harness the electrochemical energy of proton gradients by "coupling" proton and metal transport. Here we use the Deinococcus radiodurans (Dra) Nramp homologue, for which we have determined crystal structures in multiple conformations, to investigate mechanistic details of metal and proton transport. We untangle the proton-metal coupling behavior of DraNramp into two distinct phenomena: ΔpH stimulation of metal transport rates and metal stimulation of proton transport. Surprisingly, metal type influences substrate stoichiometry, leading to manganese-proton cotransport but cadmium uniport, while proton uniport also occurs. Additionally, a physiological negative membrane potential is required for high-affinity metal uptake. To begin to understand how Nramp's structure imparts these properties, we target a conserved salt-bridge network that forms a proton-transport pathway from the metal-binding site to the cytosol. Mutations to this network diminish voltage and ΔpH dependence of metal transport rates, alter substrate selectivity, perturb or eliminate metal-stimulated proton transport, and erode the directional bias favoring outward-to-inward metal transport under physiological-like conditions. Thus, this unique salt-bridge network may help Nramp-family transporters maximize metal uptake and reduce deleterious back-transport of acquired metals. We provide a new mechanistic model for Nramp proton-metal cotransport and propose that functional advantages may arise from deviations from the traditional model of symport.
Collapse
Affiliation(s)
- Aaron T Bozzi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Lukas B Bane
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Christina M Zimanyi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| |
Collapse
|
25
|
Bradham KD, Nelson CM, Diamond GL, Thayer WC, Scheckel KG, Noerpel M, Herbin-Davis K, Elek B, Thomas DJ. Dietary Lead and Phosphate Interactions Affect Oral Bioavailability of Soil Lead in the Mouse. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12556-12564. [PMID: 31557437 PMCID: PMC8188726 DOI: 10.1021/acs.est.9b02803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Effects of dietary P level on the oral bioavailability of Pb present in soil were examined in a mouse model. Adult female C57BL/6 mice had free access to AIN-93G purified rodent diet amended with Pb as a soluble salt, Pb acetate, or in a soil matrix (NIST SRM 2710a). In these studies, the basal diet contained P at a nutritionally sufficient level (0.3% w/w) and the modified diets contained P at a lower (0.15%) or a higher (1.2%) level. For either dietary Pb source (Pb acetate or NIST SRM 2710a), low dietary P level markedly increased accumulation of Pb in bone, blood, and kidney. Tissue Pb levels in mice fed a high P in diet were not different from mice fed the basal P diet. Dietary P and Pb interacted to affect body weight change and feed efficiency in mice. The relative contribution of different Pb species in diet and feces was also affected by dietary P level. Differences in Pb species between diet and feces indicated that transformation of Pb species can occur during gastrointestinal tract transit. These interactions between Pb and P that alter Pb speciation may be important determinants of the bioavailability of Pb ingested in soil.
Collapse
Affiliation(s)
- Karen D Bradham
- Office of Research and Development , United States Environmental Protection Agency , Research Triangle Park , Durham , North Carolina 27711 , United States
| | - Clay M Nelson
- Office of Research and Development , United States Environmental Protection Agency , Research Triangle Park , Durham , North Carolina 27711 , United States
| | - Gary L Diamond
- SRC, Inc. , North Syracuse , New York 13212 , United States
| | | | - Kirk G Scheckel
- Office of Research and Development , United States Environmental Protection Agency , Cincinnati , Ohio 45224 , United States
| | - Matt Noerpel
- Office of Research and Development , United States Environmental Protection Agency , Cincinnati , Ohio 45224 , United States
| | - Karen Herbin-Davis
- Pharmacokinetics Branch, Integrated Systems Toxicology Division , National Health and Environmental Effects Laboratory, ORD, US EPA, RTP, NC , Durham , North Carolina 27709 , United States
| | - Brittany Elek
- Pharmacokinetics Branch, Integrated Systems Toxicology Division , National Health and Environmental Effects Laboratory, ORD, US EPA, RTP, NC , Durham , North Carolina 27709 , United States
| | - David J Thomas
- Pharmacokinetics Branch, Integrated Systems Toxicology Division , National Health and Environmental Effects Laboratory, ORD, US EPA, RTP, NC , Durham , North Carolina 27709 , United States
| |
Collapse
|
26
|
Rădulescu A, Lundgren S. A pharmacokinetic model of lead absorption and calcium competitive dynamics. Sci Rep 2019; 9:14225. [PMID: 31578386 PMCID: PMC6775169 DOI: 10.1038/s41598-019-50654-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/30/2019] [Indexed: 01/03/2023] Open
Abstract
Lead is a naturally-occurring element. It has been known to man for a long time, and it is one of the longest established poisons. The current consensus is that no level of lead exposure should be deemed "safe". New evidence regarding the blood levels at which morbidities occur has prompted the CDC to reduce the screening guideline of 10 μg/dl to 2 μg/dl. Measurable cognitive decline (reduced IQ, academic deficits) have been found to occur at levels below 10 μg/dl, especially in children. Knowledge of lead pharmacology allows us to better understand its absorption and metabolization, mechanisms that produce its medical consequences. Based upon an original and very simplified compartmental model of Rabinowitz (1973) with only three major compartments (blood, bone and soft tissue), extensive biophysical models sprouted over the following two decades. However, none of these models have been specifically designed to use new knowledge of lead molecular dynamics to understand its deleterious effects on the brain. We build and analyze a compartmental model of lead pharmacokinetics, focused specifically on addressing neurotoxicity. We use traditional phase space methods, parameter sensitivity analysis and bifurcation theory to study the transitions in the system's behavior in response to various physiological parameters. We conclude that modeling the complex interaction of lead and calcium along their dynamic trajectory may successfully explain counter-intuitive effects on systemic function and neural behavior which could not be addressed by existing linear models. Our results encourage further efforts towards using nonlinear phenomenology in conjunction with empirically driven system parameters, to obtain a biophysical model able to provide clinical assessments and predictions.
Collapse
Affiliation(s)
- Anca Rădulescu
- Department of Mathematics, State University of New York at New Paltz, New York, USA.
| | - Steven Lundgren
- Department of Mechanical Engineering, State University of New York at New Paltz, New York, USA
| |
Collapse
|
27
|
Li HB, Li MY, Zhao D, Li J, Li SW, Juhasz AL, Basta NT, Luo YM, Ma LQ. Oral Bioavailability of As, Pb, and Cd in Contaminated Soils, Dust, and Foods based on Animal Bioassays: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10545-10559. [PMID: 31442034 DOI: 10.1021/acs.est.9b03567] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Metal contamination in soil, dust, and food matrices impacts the health of millions of people worldwide. During the past decades, various animal bioassays have been developed to determine the relative bioavailability (RBA) of As, Pb, and Cd in contaminated soils, dust, and foods, which vary in operational approaches. This review discusses the strengths and weaknesses of different animal models (swine and mice), dosing schemes (single gavage dose, repeated gavage dose, daily repeated feeding, and free access to diet), and end points (blood, urine, and tissue) in metal-RBA measurement; compares metal-RBA obtained using mouse and swine bioassays, different dosing schemes, and different end points; and summarizes key findings on As-, Pb-, and Cd-RBA values in contaminated soils, dust, and foods. Future directions related to metal-RBA research are highlighted, including (1) comparison of metal-RBA determinations between different bioassays and different laboratories to ensure robust bioavailability data, (2) enhancing the metal-RBA database for contaminated dust and foods, (3) identification of physiological and physicochemical mechanisms responsible for variability in metal-RBA values, (4) formulation of strategies to decrease metal-RBA values in contaminated soils, dust, and foods, and (5) assessing the impacts of cocontaminants on metal-RBA measurement.
Collapse
Affiliation(s)
- Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Di Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Jie Li
- College of Geography and Environment , Shandong Normal University , Jinan 250358 , China
| | - Shi-Wei Li
- School of Water Conservancy and Environment , University of Jinan , Jinan 250022 , China
| | - Albert L Juhasz
- Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
| | - Nicholas T Basta
- School of Environment and Natural Resources , Ohio State University , Columbus , Ohio 43210
| | - Yong-Ming Luo
- Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
28
|
Garrick MD, Garrick LM, Zhao L, Collins JF, Soukup J, Ghio AJ. A direct comparison of divalent metal-ion transporter (DMT1) and hinokitiol, a potential small molecule replacement. Biometals 2019; 32:745-755. [PMID: 31368012 PMCID: PMC6768898 DOI: 10.1007/s10534-019-00207-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023]
Abstract
Hinokitiol, a natural lipophilic chelator, appears capable of replacing several iron transporters after they have been genetically ablated. Divalent metal-ion transporter (DMT1) is the major iron importer in enterocytes and erythroblasts. We have compared DMT1 and hinokitiol in multiple fashions to learn if the smaller molecule is a suitable substitute using two HEK293 cell lines engineered to overexpress different isoforms of DMT1. Both the macromolecule and the lipophilic chelator enable import of ferrous ions into HEK293 cells. Hinokitiol also mediates ferric ion import but DMT1 cannot do so. While DMT1 can also import Mn2+ ions, hinokitiol lacks this ability. The Michaelis–Menten analysis for kinetics of macromolecular catalysis is also suitable for hinokitiol-supported iron import. To compare hinokitiol to DMT1 relative to other metal ions that DMT1 can transport, we employed an organic extraction procedure with which we initially matched the results obtained for Fe2+, Fe3+ and Mn2+, and then showed that multiple other cations were unlikely to enter via hinokitiol. The small chelator thus shares some functional properties with DMT1, but distinct difference were also noted.
Collapse
Affiliation(s)
- Michael D Garrick
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA. .,Department of Pediatrics, University at Buffalo, Buffalo, NY, USA.
| | - Laura M Garrick
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA
| | - Lin Zhao
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA
| | - James F Collins
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Joleen Soukup
- National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Andrew J Ghio
- National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Rahman MM, Hossain KFB, Banik S, Sikder MT, Akter M, Bondad SEC, Rahaman MS, Hosokawa T, Saito T, Kurasaki M. Selenium and zinc protections against metal-(loids)-induced toxicity and disease manifestations: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:146-163. [PMID: 30384162 DOI: 10.1016/j.ecoenv.2018.10.054] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
Metals are ubiquitous in the environment due to huge industrial applications in the form of different chemicals and from extensive mining activities. The frequent exposures to metals and metalloids are crucial for the human health. Trace metals are beneficial for health whereas non-essential metals are dangerous for the health and some are proven etiological factors for diseases including cancers and neurological disorders. The interactions of essential trace metals such as selenium (Se) and zinc (Zn) with non-essential metals viz. lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg) in biological system are very critical and complex. A huge number of studies report the protective role of Se and Zn against metal toxicity, both in animal and cellular levels, and also explain the numerous mechanisms involved. However, it has been considered that a tiny dyshomeostasis in the metals/trace metals status in biological system could induce severe deleterious effects that can manifest to numerous diseases. Thus, in this particular review, we have demonstrated the critical protection mechanism/s of Se and Zn against Cd, Pb, As and Hg toxicity in a one by one manner to clarify the up-to-date findings and perspectives. Furthermore, biomolecular consequences are comprehensively presented in light of particular cellular/biomolecular events which are somehow linked to a subsequent disease. The analyzed reports support significant protection potential of Se and Zn, either alone or in combination with other agents, against each of the abovementioned non-essential metals. However, Se and Zn are still not being used as detoxifying agents due to some unexplained reasons. We hypothesized that Se could be a potential candidate for detoxifying As and Hg regardless of their chemical speciations, but requires intensive clinical trials. However, particularly Zn-Hg interaction warrants more investigations both in animal and cellular level.
Collapse
Affiliation(s)
- Md Mostafizur Rahman
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan; Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | | - Subrata Banik
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - Md Tajuddin Sikder
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Mahmuda Akter
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
| | | | - Md Shiblur Rahaman
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - Toshiyuki Hosokawa
- Research Division of Higher Education, Institute for the Advancement of Higher Education, Hokkaido University, 060-0817 Sapporo, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan; Faculty of Environmental Earth Science, Hokkaido University, 060-0810 Sapporo, Japan.
| |
Collapse
|
30
|
Ravenscroft J, Roy A, Queirolo EI, Mañay N, Martínez G, Peregalli F, Kordas K. Drinking water lead, iron and zinc concentrations as predictors of blood lead levels and urinary lead excretion in school children from Montevideo, Uruguay. CHEMOSPHERE 2018; 212:694-704. [PMID: 30176551 DOI: 10.1016/j.chemosphere.2018.07.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/13/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
The global burden of water-based lead (Pb) exposure on children is largely unknown; however, the importance of water sources as a path of Pb exposure is receiving increased attention due to recent prominent exposure events related to corroded plumbing infrastructure in the US. This study investigated the contribution of Pb in household drinking and cooking water to Pb levels in blood (PbB) and urine (PbU) within 353 early school-aged children from Montevideo, Uruguay. Additionally, the analysis considered the child's iron status and the water content of iron (WFe) and zinc (WZn) in relation to water Pb and blood/urine Pb concentrations. Lead concentrations for both PbB and PbU were fairly low (M ± SD: 4.2 ± 2.1 μg/dL; Median [5%, 95%]: 1.9 [0.6, 5.1 μg/L, respectively]); however 21% of the sample had a PbB >5 μg/dL but ≤ 10 μg/dL. Overall, there was little evidence of an association between water metal concentrations and children's PbB/PbU. However, when the sample was stratified by children's iron status, WPb was positively related to PbU, but negatively related to PbB in iron-replete children, even after adjusting for WFe and WZn. In iron-deficient children, there was no elevation in PbU with increasing WPb. In this sample of children with low Pb levels, there were no overwhelming relationships between WPb and either PbB or PbU, however, there was some evidence that iron-replete status promotes excretion of WPb.
Collapse
Affiliation(s)
- Julia Ravenscroft
- Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA.
| | - Aditi Roy
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Toxicology Area, Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Gabriela Martínez
- Toxicology Area, Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Katarzyna Kordas
- Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
31
|
Paisrisarn P, Tepaamorndech S, Khongkow M, Khemthong P, Kasamechonchung P, Klysubun W, Wutikhun T, Huang L, Chantarasakha K, Boonrungsiman S. Alterations of mineralized matrix by lead exposure in osteoblast (MC3T3-E1) culture. Toxicol Lett 2018; 299:172-181. [PMID: 30312686 DOI: 10.1016/j.toxlet.2018.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/31/2018] [Accepted: 10/08/2018] [Indexed: 01/02/2023]
Abstract
The present study investigated the effect of lead (Pb) on bone ultrastructure and chemistry using an in vitro bone model. MC3T3-E1 preosteoblasts were differentiated and treated with lead acetate at 0.4, 2, 10, and 50 μM. No abnormalities in either cell growth or bone nodule formation were observed with the treated dose of lead acetate. However, Pb treatments could significantly increase Pb accumulation in differentiated osteoblast cultures and upregulate expression of Divalent metal transporter 1 (Dmt1) in a dose dependent manner. Pb treatments also altered the expression of osteogenic genes, including secreted phosphoprotein 1, osteocalcin, type I collagen, and osteoprotegerin. Moreover, in mineralized osteoblast cultures, Pb was found to be mainly deposited as Pb salts and oxides, respectively. Ultrastructure analysis revealed Pb localizing with calcium and phosphorus in the mineralized matrix. In mineralizing osteoblast cells, Pb was found in the intracellular calcified vesicles which is one of the bone mineralization mechanisms. Pb was also present in mineral deposits with various shapes and sizes, such as small and large globular or needle-like mineral deposits representing early to mature stages of mineral deposits. Furthermore, Pb was found more in the globular deposits than the needle shaped mineral crystals. Taken together, our observations revealed how Pb incorporates into bone tissue, and showed a close association with bone apatite.
Collapse
Affiliation(s)
- Piyawan Paisrisarn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathumthani 12120, Thailand
| | - Surapun Tepaamorndech
- National Center of Genetic engineering and Biotechnology Center (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Pathumthani 12120, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathumthani 12120, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathumthani 12120, Thailand
| | - Panita Kasamechonchung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathumthani 12120, Thailand
| | - Wantana Klysubun
- Synchrotron Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Tuksadon Wutikhun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathumthani 12120, Thailand
| | - Liping Huang
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA
| | - Kanittha Chantarasakha
- National Center of Genetic engineering and Biotechnology Center (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Pathumthani 12120, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathumthani 12120, Thailand.
| |
Collapse
|
32
|
Li HB, Li MY, Zhao D, Zhu YG, Li J, Juhasz AL, Cui XY, Luo J, Ma LQ. Food influence on lead relative bioavailability in contaminated soils: Mechanisms and health implications. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:427-433. [PMID: 30014932 DOI: 10.1016/j.jhazmat.2018.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/08/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
To determine the effects of dietary constituents on soil Pb oral bioavailability, Pb relative bioavailability (RBA) in 3 soils contaminated by zinc smelting (ZS), wire-rope production (WR), and metal mining (MM) was measured under fasted and fed states with 9 foods. Under fasted state, Pb-RBA was 84.4 ± 10.3, 82.6 ± 4.70, and 32.3 ± 1.10% for ZS, WR, and MM soils; however, it decreased by 1.3-3.5 fold to 23.9-58.8, 25.6-49.9, and 14.8-24.2% under fed states with foods excluding Pb-RBA with egg in WR soil (97.3 ± 4.46%), and with cabbage and egg in MM soil (40.0 ± 8.62 and 44.4 ± 0.96%). In the presence of foods, egg and pork with significantly higher protein and fat contents leaded to the highest soil Pb-RBA (44.4-97.3%), while Pb-RBA determined with mineral-rich mouse feed was 1.6-7.9 fold lower (9.41-13.5%), suggesting high fat and protein foods tended to increase soil Pb-RBA, while high mineral diets decreased soil Pb-RBA. The increased Pb-RBA of MM soil with cabbage compared to fasted state was due to high organic content in cabbage, which could increase soil Pb solubility by inhibiting Fe and Pb co-precipitation in the intestine. For accurate assessment of health risks of contaminated soils, dietary influence on soil Pb-RBA should be considered.
Collapse
Affiliation(s)
- Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Di Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Ya-Guang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Jie Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Xin-Yi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China; Soil and Water Science Department, University of Florida, Gainesville, Florida 32611, United States.
| |
Collapse
|
33
|
How Does Low Socioeconomic Status Increase Blood Lead Levelsin KoreanChildren? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071488. [PMID: 30011877 PMCID: PMC6068902 DOI: 10.3390/ijerph15071488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 11/23/2022]
Abstract
Although studies have shown that a low socioeconomic status (SES) is associated with high blood lead levels (BLLs) in children, the mechanism underlying this observation is not well known. To determine how SES influences BLLs via environmental factors in Korean children, we conducted a population-based cross-sectional study of 4744 children aged 5–13 years. Questionnaires on sociodemographic information, environmental factors, and food consumption were administered to the children’s parents. BLLs in the study subjects were measured.The complete set of hypothesized associations was assessed using regression analysis and structural equation modeling. SES was associated with high BLLs. The total effects of nutritional factors, lead in the air and total length of nearby roads, and agriculture on BLLs were −0.062 (p < 0.001), 0.068 (p = 0.005), and 0.038 (p = 0.035), respectively. The direct effects of playing outdoors and SES on BLLs were 0.113 (p < 0.001) and −0.111 (p < 0.001), respectively. Although playing outdoors had a greater direct effect on BLLs than did SES, the total effect of SES (standardized β = −0.132, p < 0.001) was greater than that of other sources owing to indirect effects (β = −0.020, p = 0.004). A low SES was a major risk factor for elevated BLLs via environmental factors.
Collapse
|
34
|
Soto-Arredondo KJ, Robles J, Díaz-Cervantes E, Ruiz-Ramírez C, García-Revilla MA, Wrobel K, Wrobel K, Díaz-Muñoz M, Méndez I, Flores A, Acevedo-Aguilar FJ, Martínez-Alfaro M. Effects of lead and lead–melatonin exposure on protein and gene expression of metal transporters, proteins and the copper/zinc ratio in rats. Biometals 2018; 31:859-871. [PMID: 30006888 DOI: 10.1007/s10534-018-0127-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/09/2018] [Indexed: 02/05/2023]
Affiliation(s)
| | - Juvencio Robles
- Departamento de Farmacia, Universidad de Guanajuato, Guanajuato, Mexico
| | | | | | | | - Katarzyna Wrobel
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Mexico
| | - Kazimierz Wrobel
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, INB, Campus UNAM, Querétaro, Mexico
| | - Isabel Méndez
- Departamento de Neurobiología Celular y Molecular, INB, Campus UNAM, Querétaro, Mexico
| | - Alberto Flores
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | | | | |
Collapse
|
35
|
Kordas K, Burganowski R, Roy A, Peregalli F, Baccino V, Barcia E, Mangieri S, Ocampo V, Mañay N, Martínez G, Vahter M, Queirolo EI. Nutritional status and diet as predictors of children's lead concentrations in blood and urine. ENVIRONMENT INTERNATIONAL 2018; 111:43-51. [PMID: 29172090 PMCID: PMC5915341 DOI: 10.1016/j.envint.2017.11.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Accepted: 11/17/2017] [Indexed: 05/05/2023]
Abstract
Lead exposure remains an important public health problem. Contaminated foods may act as a source of lead exposure, while certain nutrients may reduce lead absorption. We examined the cross-sectional associations of dietary patterns and the intake of several nutrients and foods with blood (Pb-B) and urinary (Pb-U) lead concentrations in children (5-8y) from Montevideo, Uruguay. From two 24-hour recalls completed by caregivers, we derived the mean daily intake of select nutrients and food groups (dairy, milk, fruit, root vegetables, foods rich in heme and non-heme iron), as well as "nutrient dense" and "processed" food patterns. Pb-B (n=315) was measured using atomic absorption spectrometry; Pb-U (n=321) using ICP-MS. Pb-U was adjusted for specific gravity and log-transformed to approximate a normal distribution. Iron deficiency (ID) and dietary variables were tested as predictors of Pb-B and log-Pb-U in covariate-adjusted regressions. Median [5%, 95%] Pb-B and Pb-U were 3.8 [0.8-7.8] μg/dL and 1.9 [0.6-5.1] μg/L, respectively; ~25% of Pb-B above current U.S. CDC reference concentration of 5μg/dL. ID was associated with 0.75μg/dL higher Pb-B, compared to non-ID (p<0.05). Consumption of root vegetables was not associated with Pb-B or log-Pb-U. Higher scores on the nutrient-dense pattern were related with higher Pb-Bs, possibly due to consumption of green leafy vegetables. Dietary intake of iron or iron-rich foods was not associated with biomarkers of lead. Conversely, children consuming more calcium, dairy, milk and yogurt had lower Pb-B and log-Pb-U. Our findings appear consistent with existing recommendations on including calcium-rich, but not iron- or vitamin-C-rich foods in the diets of lead-exposed children, especially where the consumption of these foods is low.
Collapse
Affiliation(s)
- Katarzyna Kordas
- Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, United States.
| | - Rachael Burganowski
- Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, United States
| | - Aditi Roy
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fabiana Peregalli
- Centre for Research, Catholic University of Uruguay, Montevideo, Uruguay; Department of Gastroenterology, Hepatology and Nutrition, Pereira Rossell Hospital, Montevideo, Uruguay
| | - Valentina Baccino
- Centre for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Elizabeth Barcia
- Centre for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Soledad Mangieri
- Centre for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Virginia Ocampo
- Centre for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Toxicology Area, Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Gabriela Martínez
- Toxicology Area, Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Marie Vahter
- Institute of Environmental Health, Karolinska Institutet, Stockholm, Sweden
| | - Elena I Queirolo
- Centre for Research, Catholic University of Uruguay, Montevideo, Uruguay
| |
Collapse
|
36
|
Li SW, Liu X, Sun HJ, Li MY, Zhao D, Luo J, Li HB, Ma LQ. Effect of phosphate amendment on relative bioavailability and bioaccessibility of lead and arsenic in contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2017; 339:256-263. [PMID: 28654790 DOI: 10.1016/j.jhazmat.2017.06.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Hand-to-mouth activity is an important pathway for children's exposure to contaminated soils, which is often co-contaminated by Pb and As in mining and smelting sites. To reduce soil Pb risk to humans by oral exposure, phosphate amendments have been used to reduce Pb relative bioavailability (RBA), but its efficiency has not been investigated using validated in vitro assays nor its influence on As-RBA. Here, 5 contaminated soils (A-E) were amended with 0.5% phosphoric acid (PA) to study its effect on Pb- and As- RBA using a newly-developed mouse kidney model and bioaccessibility using 4 in vitro assays including UBM, SBRC, IVG, and PBET. Based on the mouse kidney model, Pb-RBA in PA-amended soils decreased from 14.2-62.5% to 10.1-29.8%. In contrast, As-RBA decreased from 26.5% to 15.9% in soil B but increased from 27.5 to 41.2% in soil D, with changes being insignificant in 3 other soils (35.8-58.8 to 28.1-61.1%). When assessing Pb bioaccessibility in PA-amended soils, decreased bioaccessibility were found using PBET and SBRC. For As, its bioaccessibility increased in PA-amended soils, inconsistent with in vivo data. Our results shed light on the importance of method selection to assess risk in Pb- and As-contaminated soils amended with phosphate.
Collapse
Affiliation(s)
- Shi-Wei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Xue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Hong-Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Di Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
37
|
Jadán-Piedra C, Chiocchetti GM, Clemente MJ, Vélez D, Devesa V. Dietary compounds as modulators of metals and metalloids toxicity. Crit Rev Food Sci Nutr 2017; 58:2055-2067. [PMID: 28686469 DOI: 10.1080/10408398.2017.1302407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A large part of the population is exposed to metals and metalloids through the diet. Most of the in vivo studies on its toxicokinetics and toxicity are conducted by means of exposure through drinking water or by intragastric or intraperitoneal administration of aqueous standards, and therefore they do not consider the effect of the food matrix on the exposure. Numerous studies show that some components of the diet can modulate the toxicity of these food contaminants, reducing their effect on a systemic level. Part of this protective role may be due to a reduction of intestinal absorption and subsequent tissue accumulation of the toxic element, although it may also be a consequence of their ability to counteract the toxicity directly by their antioxidant and/or anti-inflammatory activity, among other factors. The present review provides a compilation of existing information about the effect that certain components of the diet have on the toxicokinetics and toxicity of the metals and metalloids of greatest toxicological importance that are present in food (arsenic, cadmium, lead, and mercury), and of their most toxic chemical species.
Collapse
Affiliation(s)
- Carlos Jadán-Piedra
- a Departamento de Conservaciòn y Calidad de los Alimentos , Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Paterna , Valencia , Spain
| | - Gabriela Matuoka Chiocchetti
- a Departamento de Conservaciòn y Calidad de los Alimentos , Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Paterna , Valencia , Spain
| | - María Jesús Clemente
- a Departamento de Conservaciòn y Calidad de los Alimentos , Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Paterna , Valencia , Spain
| | - Dinoraz Vélez
- a Departamento de Conservaciòn y Calidad de los Alimentos , Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Paterna , Valencia , Spain
| | - Vicenta Devesa
- a Departamento de Conservaciòn y Calidad de los Alimentos , Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Paterna , Valencia , Spain
| |
Collapse
|
38
|
Kordas K. The "Lead Diet": Can Dietary Approaches Prevent or Treat Lead Exposure? J Pediatr 2017; 185:224-231.e1. [PMID: 28283259 DOI: 10.1016/j.jpeds.2017.01.069] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/29/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Affiliation(s)
- Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY.
| |
Collapse
|
39
|
Liu Y, Zhuang J, Zhang X, Yue C, Zhu N, Yang L, Wang Y, Chen T, Wang Y, Zhang LW. Autophagy associated cytotoxicity and cellular uptake mechanisms of bismuth nanoparticles in human kidney cells. Toxicol Lett 2017; 275:39-48. [PMID: 28445739 DOI: 10.1016/j.toxlet.2017.04.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 01/01/2023]
Abstract
Bismuth compounds have been used for treatment of bacterial infection, and recently bismuth nanoparticles (BiNP) were synthesized for imaging and diagnostic purpose, while safety concern of bismuth cannot be ignored. Here, we prepared ultrasmall BiNP and showed an enhanced tumor imaging, but BiNP revealed a differentiated cytotoxicity in human embryonic kidney 293 cells (HEK293) compared to other cell types. For the first time, we found that BiNP can induce autophagy, shown as the increase of monodansylcadaverine fluorescence staining and the amount of LC3II that can be inhibited by 3-MA. BiNP were capable of entering cells in a dose and time dependent manner by fluorescence and element detection methods BiNP were found to be localized in the cytoplasm observed by transmission electron microscopy and intracellular bismuth element confirmed by energy dispersive X-ray analysis. Using endocytic inhibitors, BiNP were found to require ATP and endosomal trafficking pathways for their cellular uptake. Internalized BiNP did not co-localize with EEA1, but co-localized with Lysotracker/LAMP1/LAMP2 at late time points, indicating BiNP may be retained in the non-early endosomal vacuoles and late endosomes. With our novel finding of bismuth induced autophagy and endocytic mechanisms, potential approaches may be applied to reduce the toxicity by bismuth.
Collapse
Affiliation(s)
- Yongming Liu
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Jing Zhuang
- The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, China
| | - Xihui Zhang
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Cong Yue
- Department of Toxicology, School of Public Health, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Ning Zhu
- Institute of Chinese MateriaMedica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liecheng Yang
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Yong Wang
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Tao Chen
- Department of Toxicology, School of Public Health, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Yangyun Wang
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu Province, 215123, China.
| | - Leshuai W Zhang
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu Province, 215123, China.
| |
Collapse
|
40
|
Li SW, Sun HJ, Wang G, Cui XY, Juhasz AL, Li HB, Ma LQ. Lead relative bioavailability in soils based on different endpoints of a mouse model. JOURNAL OF HAZARDOUS MATERIALS 2017; 326:94-100. [PMID: 27992800 DOI: 10.1016/j.jhazmat.2016.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Mouse is an acceptable animal model to measure lead (Pb) relative bioavailability (RBA) in contaminated soils; however, there is a lack of comparisons among Pb-RBA measurements based on different endpoints and dosing approaches. In this study, 12 soils (47.8-8123mg Pbkg-1) were assessed for Pb-RBA using Pb accumulation in mouse liver, kidneys, and/or femur following a 10-d steady state soil dose via diet, with 6 soils being measured using mouse bioassays with area under the mouse blood Pb concentration time curve (AUC) following a single gavaged dose as the endpoint. Based on individual endpoints of the steady state method, Pb-RBA in soils was 2.1-83.4%, being generally consistent among liver, kidneys, and femur with strong linear correlations between them (r2=0.74-0.89). To compensate variation in Pb distribution among different tissues, Pb-RBA was further calculated using a combined endpoint (e.g., sum of Pb accumulation in liver, kidneys, and femur). Compared to Pb-RBA based on individual tissue showing relative standard deviation (RSD) of 11.9-15.8%, Pb-RBA using the combined endpoint showed lower RSD (10.8%), thereby being more robust. For the 6 soils with Pb-RBA based on both mouse single gavaged and steady state dosing approach, no significant difference was observed; however, steady state approach was more repeatable among animals with lower RSD (11.4% vs. 34.5%). To ensure robustness of in vivo data, the steady state dosing approach with Pb accumulation in combined tissues is recommended.
Collapse
Affiliation(s)
- Shi-Wei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Hong-Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Gang Wang
- School of Water Conservancy & Civil Engineering, Shandong Agricultural University, Tai'an, Shandong 271000, People's Republic of China
| | - Xin-Yi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
41
|
Ollson CJ, Smith E, Herde P, Juhasz AL. Influence of co-contaminant exposure on the absorption of arsenic, cadmium and lead. CHEMOSPHERE 2017; 168:658-666. [PMID: 27836265 DOI: 10.1016/j.chemosphere.2016.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 05/05/2023]
Abstract
Incidental ingestion of contaminated soil and dust is a major pathway for human exposure to many inorganic contaminants. To date, exposure research has focused on arsenic (As), cadmium (Cd) and lead (Pb), however, these studies have typically assessed metal(loid) bioavailability individually, even when multiple elements are present in the same matrix. As a consequence, it is unclear whether interactions between these elements occur within the gastro-intestinal tract, which may impact absorption and accumulation. In this study, the influence of contaminant co-exposure was assessed using a mouse bioassay and soluble forms of As, Cd and Pb supplied in mouse chow as individual, binary and tertiary elemental combinations. Arsenic urinary excretion and Pb-liver accumulation were unaffected by As-Pb co-exposure (1-10 mg As kg-1 and 3-30 mg Pb kg-1) while Cd-kidney accumulation was unaffected by the presence of As and/or Pb. However, Cd co-exposure decreased As urinary excretion and increased Pb-liver accumulation. It was hypothesized that Cd influenced arsenate absorption as a consequence of the impairment of phosphate transporters. Although the reason for increasing Pb-liver accumulation following Cd co-exposure is unclear, enhanced Pb accumulation may occur as a result of transport protein overexpression or changes in divalent metal compartmentalization.
Collapse
Affiliation(s)
- Cameron J Ollson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), Salisbury South, SA 5106, Australia.
| | - Euan Smith
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Paul Herde
- South Australian Health and Medical Research Institute, Gilles Plains, SA 5086, Australia
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
42
|
Zareifar S, Mazloomi S, Zahmatkeshan M, Shahriari M, Najeeb KS, Fattah F. The Association Between Blood Lead Level and Microcytic Hypochoromic Anemia in Children. INTERNATIONAL JOURNAL OF SCHOOL HEALTH 2016. [DOI: 10.17795/intjsh-36589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Mesquita VA, Machado MD, Silva CF, Soares EV. Influence of the metabolic state on the tolerance of Pichia kudriavzevii to heavy metals. J Basic Microbiol 2016; 56:1244-1251. [PMID: 27283353 DOI: 10.1002/jobm.201600232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/22/2016] [Indexed: 11/09/2022]
Abstract
This work aims to examine the influence of the metabolic state of the yeast Pichia kudriavzevii on the susceptibility to a metals mixture (5 mg L-1 Cd, 10 mg L-1 Pb, and 5 mg L-1 Zn). Cells exposed to the metals mixture in the presence of 25 mmol L-1 glucose displayed a higher loss of membrane integrity and proliferation capacity, compared to cells incubated in the absence of glucose. The analysis of the effect of individual metals revealed that glucose increased the toxic effect of Cd marginally, and of Pb significantly. The increased susceptibility to heavy metals due to glucose was attenuated in the simultaneous presence of a mitochondrial respiration inhibitor such as sodium azide (NaN3 ). ATP-depleted yeast cells, resulting from treatment with the non-metabolizable glucose analogue 2-deoxy-d-glucose, showed an increased susceptibility to heavy metals mixture. Pre-incubation of yeast cells with 1 or 1.5 mmol L-1 Ca2+ reduced significantly (P < 0.05) the loss of membrane integrity induced by the metals mixture. These findings contribute to the understanding of metals mechanisms of toxicity in the non-conventional yeast P. kudriavzevii.
Collapse
Affiliation(s)
- Vanessa A Mesquita
- Bioengineering Laboratory-CIETI, Department of Chemical Engineering, ISEP-School of Engineering of Polytechnic Institute of Porto, Porto, 4200-072, Portugal.,Department of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Manuela D Machado
- Bioengineering Laboratory-CIETI, Department of Chemical Engineering, ISEP-School of Engineering of Polytechnic Institute of Porto, Porto, 4200-072, Portugal.,CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Cristina F Silva
- Department of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Eduardo V Soares
- Bioengineering Laboratory-CIETI, Department of Chemical Engineering, ISEP-School of Engineering of Polytechnic Institute of Porto, Porto, 4200-072, Portugal.,CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
44
|
Li HB, Zhao D, Li J, Li SW, Wang N, Juhasz AL, Zhu YG, Ma LQ. Using the SBRC Assay to Predict Lead Relative Bioavailability in Urban Soils: Contaminant Source and Correlation Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4989-4996. [PMID: 27093348 DOI: 10.1021/acs.est.6b00480] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Using in vitro bioaccessibility assays to predict Pb relative bioavailability (RBA) in contaminated soils has been demonstrated, however, limited research was performed on urban soils having lower Pb levels. In this study, 162 soils from urban parks in 27 capital cities in China were measured for Pb bioaccessibility using the SBRC assay, with Pb-RBA in 38 subsamples being measured using a mouse-kidney assay. Total Pb concentrations in soils were 9.3-1198 mg kg(-1), with 92% of the soils having Pb concentrations <100 mg kg(-1). Lead bioaccessibility in soils was 20-94%, increasing with Pb concentration up to 100 mg kg(-1) (r = 0.44), however, limited variability in Pb bioaccessibility (60-80%) was observed for soils with Pb > 100 mg kg(-1). On the basis of a stable isotope fingerprinting technique, coal combustion ash was identified as the major Pb source, contributing to the increased Pb bioaccessibility with increasing soil Pb concentration. Lead-RBA in soils was 17-87%, showing a strong linear correlation with Pb bioaccessibility (r(2) = 0.61), with cross validation of the correlation based on random subsampling and leave-one-out approaches yielding low prediction errors. On the basis of the large sample size of 38 soils, this study demonstrated that the Pb-RBA predictive capability of the SBRC assay can be extended from mining/smelting impacted soils to urban soils with lower Pb levels.
Collapse
Affiliation(s)
- Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, People's Republic of China
| | - Di Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, People's Republic of China
| | - Jie Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, People's Republic of China
| | - Shi-Wei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, People's Republic of China
| | - Ning Wang
- Institute of Agricultural Resources and Environments, Jiangsu Academy of Agricultural Sciences , Nanjing 210014, People's Republic of China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, People's Republic of China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, People's Republic of China
- Soil and Water Science Department, University of Florida , Gainesville, Florida 32611, United States
| |
Collapse
|
45
|
Shah-Kulkarni S, Ha M, Kim BM, Kim E, Hong YC, Park H, Kim Y, Kim BN, Chang N, Oh SY, Kim YJ, Lee B, Ha EH. Neurodevelopment in Early Childhood Affected by Prenatal Lead Exposure and Iron Intake. Medicine (Baltimore) 2016; 95:e2508. [PMID: 26825887 PMCID: PMC5291557 DOI: 10.1097/md.0000000000002508] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
No safe threshold level of lead exposure in children has been recognized. Also, the information on shielding effect of maternal dietary iron intake during pregnancy on the adverse effects of prenatal lead exposure on children's postnatal neurocognitive development is very limited. We examined the association of prenatal lead exposure and neurodevelopment in children at 6, 12, 24, and 36 months and the protective action of maternal dietary iron intake against the impact of lead exposure. The study participants comprise 965 pregnant women and their subsequent offspring of the total participants enrolled in the Mothers and Children's environmental health study: a prospective birth cohort study. Generalized linear model and linear mixed model analysis were performed to analyze the effect of prenatal lead exposure and mother's dietary iron intake on children's cognitive development at 6, 12, 24, and 36 months. Maternal late pregnancy lead was marginally associated with deficits in mental development index (MDI) of children at 6 months. Mothers having less than 75th percentile of dietary iron intake during pregnancy showed significant increase in the harmful effect of late pregnancy lead exposure on MDI at 6 months. Linear mixed model analyses showed the significant detrimental effect of prenatal lead exposure in late pregnancy on cognitive development up to 36 months in children of mothers having less dietary iron intake during pregnancy. Thus, our findings imply importance to reduce prenatal lead exposure and have adequate iron intake for better neurodevelopment in children.
Collapse
Affiliation(s)
- Surabhi Shah-Kulkarni
- From the Department of Preventive Medicine, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul (SS-K, B-MK, EK, HP, E-HH); Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan (MH); Institute of Environmental Medicine, Medical Research Center, Seoul National University, Seoul (Y-CH); Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (YK); Division of Child and Adolescent Psychiatry, Department of Psychiatry and Institute of Human Behavioral Medicine, College of Medicine, Seoul National University (B-NK); Department of Nutritional Science and Food Management, Ewha Womans University (NC); Department of Food and Nutrition, Kyung Hee University (S-YO); Department of Obstetrics Medicine, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul (YJK); and Environmental Health Research Division, National Institute of Environment Research, Incheon, Republic of Korea (BL)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Menon AV, Chang J, Kim J. Mechanisms of divalent metal toxicity in affective disorders. Toxicology 2015; 339:58-72. [PMID: 26551072 DOI: 10.1016/j.tox.2015.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023]
Abstract
Metals are required for proper brain development and play an important role in a number of neurobiological functions. The divalent metal transporter 1 (DMT1) is a major metal transporter involved in the absorption and metabolism of several essential metals like iron and manganese. However, non-essential divalent metals are also transported through this transporter. Therefore, altered expression of DMT1 can modify the absorption of toxic metals and metal-induced toxicity. An accumulating body of evidence has suggested that increased metal stores in the brain are associated with elevated oxidative stress promoted by the ability of metals to catalyze redox reactions, resulting in abnormal neurobehavioral function and the progression of neurodegenerative diseases. Metal overload has also been implicated in impaired emotional behavior, although the underlying mechanisms are not well understood with limited information. The current review focuses on psychiatric dysfunction associated with imbalanced metabolism of metals that are transported by DMT1. The investigations with respect to the toxic effects of metal overload on behavior and their underlying mechanisms of toxicity could provide several new therapeutic targets to treat metal-associated affective disorders.
Collapse
Affiliation(s)
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Toxic trace elements at gastrointestinal level. Food Chem Toxicol 2015; 86:163-75. [PMID: 26482641 DOI: 10.1016/j.fct.2015.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/08/2015] [Accepted: 10/11/2015] [Indexed: 11/22/2022]
Abstract
Many trace elements are considered essential [iron (Fe), zinc (Zn), copper (Cu)], whereas others may be harmful [lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As)], depending on their concentration and chemical form. In most cases, the diet is the main pathway by which they enter our organism. The presence of toxic trace elements in food has been known for a long time, and many of the food matrices that carry them have been identified. This has led to the appearance of legislation and recommendations concerning consumption. Given that the main route of exposure is oral, passage through the gastrointestinal tract plays a fundamental role in their entry into the organism, where they exert their toxic effect. Although the digestive system can be considered to be of crucial importance in their toxicity, in most cases we do not know the events that occur during the passage of these elements through the gastrointestinal tract and of ascertaining whether they may have some kind of toxic effect on it. The aim of this review is to summarize available information on this subject, concentrating on the toxic trace elements that are of greatest interest for organizations concerned with food safety and health: Pb, Cd, Hg and As.
Collapse
|
48
|
Vázquez M, Vélez D, Devesa V, Puig S. Participation of divalent cation transporter DMT1 in the uptake of inorganic mercury. Toxicology 2015; 331:119-24. [DOI: 10.1016/j.tox.2015.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 11/24/2022]
|
49
|
Abstract
Metals are frequently used in industry and represent a major source of toxin exposure for workers. For this reason governmental agencies regulate the amount of metal exposure permissible for worker safety. While essential metals serve physiologic roles, metals pose significant health risks upon acute and chronic exposure to high levels. The central nervous system is particularly vulnerable to metals. The brain readily accumulates metals, which under physiologic conditions are incorporated into essential metalloproteins required for neuronal health and energy homeostasis. Severe consequences can arise from circumstances of excess essential metals or exposure to toxic nonessential metal. Herein, we discuss sources of occupational metal exposure, metal homeostasis in the human body, susceptibility of the nervous system to metals, detoxification, detection of metals in biologic samples, and chelation therapeutic strategies. The neurologic pathology and physiology following aluminum, arsenic, lead, manganese, mercury, and trimethyltin exposures are highlighted as classic examples of metal-induced neurotoxicity.
Collapse
Affiliation(s)
- Samuel Caito
- Division of Clinical Pharmacology and Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, TN, USA; The Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Michael Aschner
- Division of Clinical Pharmacology and Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, TN, USA; The Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA; Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
50
|
Jeong KS, Park H, Ha E, Hong YC, Ha M, Park H, Kim BN, Lee SJ, Lee KY, Kim JH, Kim Y. Evidence that cognitive deficit in children is associated not only with iron deficiency, but also with blood lead concentration: a preliminary study. J Trace Elem Med Biol 2015; 29:336-41. [PMID: 25224739 DOI: 10.1016/j.jtemb.2014.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/11/2014] [Accepted: 08/25/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate whether blood lead concentrations are elevated in iron-deficient children, and to examine the association between iron deficiency and/or elevated blood lead concentration and cognitive deficits in children. METHOD The present study is a component of the Mothers' and Children's Environmental Health (MOCEH) study, a multi-center birth cohort project in Korea that began in 2006. The study cohort consisted of 194 children who underwent testing of blood lead and serum C-reactive proteins (CRPs) and ferritin concentrations, and the Korean version of the Wechsler Preschool and Primary Scale of Intelligence, revised edition (WPPSI-R), at 60 months of age. In addition, the mothers' blood lead concentrations during pregnancy were included in the analyses. Multivariate linear regression analysis was performed to analyze the correlation between high blood lead and low serum ferritin concentrations, after adjustment for covariates, in children, as well as to analyze the association of verbal IQ with serum ferritin and blood lead concentrations. RESULTS Lead and ferritin concentrations were inversely and significantly associated in children after adjustment for covariates. Moreover, both concentrations were associated with verbal IQ, after adjustment for covariates, and each was associated with cognitive deficits after adjustment for the other. Sobel test statistics showed that blood lead concentration was a significant partial mediator for the relationship between iron deficiency and verbal IQ. CONCLUSION Due to the results discussed in the present study, cognitive deficit in children seems to be associated not only with iron deficiency, but also with blood lead concentration.
Collapse
Affiliation(s)
- Kyoung Sook Jeong
- Department of Occupational and Environmental Medicine, Dongguk University College of Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Hyewon Park
- Department of Child and Family Welfare, University of Ulsan, Ulsan, Republic of Korea
| | - Eunhee Ha
- Department of Preventive Medicine, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Institute of Environmental Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Mina Ha
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hyesook Park
- Department of Preventive Medicine, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Soo-Jeong Lee
- Department of Obstetrics and Gynecology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Kyung Yeon Lee
- Department of Pediatrics, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Ja Hyeong Kim
- Department of Pediatrics, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Yangho Kim
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
| |
Collapse
|