1
|
Wortham M, Liu F, Harrington AR, Fleischman JY, Wallace M, Mulas F, Mallick M, Vinckier NK, Cross BR, Chiou J, Patel NA, Sui Y, McGrail C, Jun Y, Wang G, Jhala US, Schüle R, Shirihai OS, Huising MO, Gaulton KJ, Metallo CM, Sander M. Nutrient regulation of the islet epigenome controls adaptive insulin secretion. J Clin Invest 2023; 133:e165208. [PMID: 36821378 PMCID: PMC10104905 DOI: 10.1172/jci165208] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Adaptation of the islet β cell insulin-secretory response to changing insulin demand is critical for blood glucose homeostasis, yet the mechanisms underlying this adaptation are unknown. Here, we have shown that nutrient-stimulated histone acetylation plays a key role in adapting insulin secretion through regulation of genes involved in β cell nutrient sensing and metabolism. Nutrient regulation of the epigenome occurred at sites occupied by the chromatin-modifying enzyme lysine-specific demethylase 1 (Lsd1) in islets. β Cell-specific deletion of Lsd1 led to insulin hypersecretion, aberrant expression of nutrient-response genes, and histone hyperacetylation. Islets from mice adapted to chronically increased insulin demand exhibited shared epigenetic and transcriptional changes. Moreover, we found that genetic variants associated with type 2 diabetes were enriched at LSD1-bound sites in human islets, suggesting that interpretation of nutrient signals is genetically determined and clinically relevant. Overall, these studies revealed that adaptive insulin secretion involves Lsd1-mediated coupling of nutrient state to regulation of the islet epigenome.
Collapse
Affiliation(s)
- Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Fenfen Liu
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Austin R. Harrington
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Johanna Y. Fleischman
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Martina Wallace
- Department of Bioengineering, UCSD, La Jolla, California, USA
| | - Francesca Mulas
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Medhavi Mallick
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Nicholas K. Vinckier
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Benjamin R. Cross
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Joshua Chiou
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Nisha A. Patel
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Yinghui Sui
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Carolyn McGrail
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Yesl Jun
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Gaowei Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Ulupi S. Jhala
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Roland Schüle
- Department of Urology, University of Freiburg Medical Center, Freiburg, Germany
| | - Orian S. Shirihai
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Mark O. Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, and Physiology and Membrane Biology, School of Medicine, UCD, Davis, California, USA
| | - Kyle J. Gaulton
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | | | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| |
Collapse
|
2
|
Tariq M, de Souza AH, Bensellam M, Chae H, Jaffredo M, Close AF, Deglasse JP, Santos LRB, Buemi A, Mourad NI, Wojtusciszyn A, Raoux M, Gilon P, Broca C, Jonas JC. Prolonged culture of human pancreatic islets under glucotoxic conditions changes their acute beta cell calcium and insulin secretion glucose response curves from sigmoid to bell-shaped. Diabetologia 2023; 66:709-723. [PMID: 36459178 DOI: 10.1007/s00125-022-05842-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022]
Abstract
AIMS/HYPOTHESIS The rapid remission of type 2 diabetes by a diet very low in energy correlates with a marked improvement in glucose-stimulated insulin secretion (GSIS), emphasising the role of beta cell dysfunction in the early stages of the disease. In search of novel mechanisms of beta cell dysfunction after long-term exposure to mild to severe glucotoxic conditions, we extensively characterised the alterations in insulin secretion and upstream coupling events in human islets cultured for 1-3 weeks at ~5, 8, 10 or 20 mmol/l glucose and subsequently stimulated by an acute stepwise increase in glucose concentration. METHODS Human islets from 49 non-diabetic donors (ND-islets) and six type 2 diabetic donors (T2D-islets) were obtained from five isolation centres. After shipment, the islets were precultured for 3-7 days in RPMI medium containing ~5 mmol/l glucose and 10% (vol/vol) heat-inactivated FBS with selective islet picking at each medium renewal. Islets were then cultured for 1-3 weeks in RPMI containing ~5, 8, 10 or 20 mmol/l glucose before measurement of insulin secretion during culture, islet insulin and DNA content, beta cell apoptosis and cytosolic and mitochondrial glutathione redox state, and assessment of dynamic insulin secretion and upstream coupling events during acute stepwise stimulation with glucose [NAD(P)H autofluorescence, ATP/(ATP+ADP) ratio, electrical activity, cytosolic Ca2+ concentration ([Ca2+]c)]. RESULTS Culture of ND-islets for 1-3 weeks at 8, 10 or 20 vs 5 mmol/l glucose did not significantly increase beta cell apoptosis or oxidative stress but decreased insulin content in a concentration-dependent manner and increased beta cell sensitivity to subsequent acute stimulation with glucose. Islet glucose responsiveness was higher after culture at 8 or 10 vs 5 mmol/l glucose and markedly reduced after culture at 20 vs 5 mmol/l glucose. In addition, the [Ca2+]c and insulin secretion responses to acute stepwise stimulation with glucose were no longer sigmoid but bell-shaped, with maximal stimulation at 5 or 10 mmol/l glucose and rapid sustained inhibition above that concentration. Such paradoxical inhibition was, however, no longer observed when islets were acutely depolarised by 30 mmol/l extracellular K+. The glucotoxic alterations of beta cell function were fully reversible after culture at 5 mmol/l glucose and were mimicked by pharmacological activation of glucokinase during culture at 5 mmol/l glucose. Similar results to those seen in ND-islets were obtained in T2D-islets, except that their rate of insulin secretion during culture at 8 and 20 mmol/l glucose was lower, their cytosolic glutathione oxidation increased after culture at 8 and 20 mmol/l glucose, and the alterations in GSIS and upstream coupling events were greater after culture at 8 mmol/l glucose. CONCLUSIONS/INTERPRETATION Prolonged culture of human islets under moderate to severe glucotoxic conditions markedly increased their glucose sensitivity and revealed a bell-shaped acute glucose response curve for changes in [Ca2+]c and insulin secretion, with maximal stimulation at 5 or 10 mmol/l glucose and rapid inhibition above that concentration. This novel glucotoxic alteration may contribute to beta cell dysfunction in type 2 diabetes independently from a detectable increase in beta cell apoptosis.
Collapse
Affiliation(s)
- Mohammad Tariq
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Arnaldo H de Souza
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Mohammed Bensellam
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Heeyoung Chae
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Manon Jaffredo
- CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, University of Bordeaux, Pessac, France
| | - Anne-Françoise Close
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Philippe Deglasse
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Laila R B Santos
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
- Bio Base Europe Pilot Plant (BBEPP), Ghent, Belgium
| | - Antoine Buemi
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle de chirurgie expérimentale, Université catholique de Louvain, Brussels, Belgium
| | - Nizar I Mourad
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle de chirurgie expérimentale, Université catholique de Louvain, Brussels, Belgium
| | - Anne Wojtusciszyn
- Laboratoire de Thérapie Cellulaire du Diabète, Institut de Médecine Régénérative et Biothérapies, Hôpital St Eloi, CHU Montpellier, Montpellier, France
- Service d'Endocrinologie, Diabétologie et Métabolisme, Centre Hospitalier Universitaire Vaudois and Université de Lausanne, Lausanne, Switzerland
| | - Matthieu Raoux
- CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, University of Bordeaux, Pessac, France
| | - Patrick Gilon
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Christophe Broca
- Laboratoire de Thérapie Cellulaire du Diabète, Institut de Médecine Régénérative et Biothérapies, Hôpital St Eloi, CHU Montpellier, Montpellier, France
| | - Jean-Christophe Jonas
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
3
|
Remedi MS, Nichols CG. Glucokinase Inhibition: A Novel Treatment for Diabetes? Diabetes 2023; 72:170-174. [PMID: 36669001 PMCID: PMC9871191 DOI: 10.2337/db22-0731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/12/2022] [Indexed: 01/21/2023]
Abstract
Chronic hyperglycemia increases pancreatic β-cell metabolic activity, contributing to glucotoxicity-induced β-cell failure and loss of functional β-cell mass, potentially in multiple forms of diabetes. In this perspective we discuss the novel paradoxical and counterintuitive concept of inhibiting glycolysis, particularly by targeted inhibition of glucokinase, the first enzyme in glycolysis, as an approach to maintaining glucose sensing and preserving functional β-cell mass, thereby improving insulin secretion, in the treatment of diabetes.
Collapse
Affiliation(s)
- Maria S. Remedi
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
4
|
Murao N, Yokoi N, Takahashi H, Hayami T, Minami Y, Seino S. Increased glycolysis affects β-cell function and identity in aging and diabetes. Mol Metab 2022; 55:101414. [PMID: 34871777 PMCID: PMC8732780 DOI: 10.1016/j.molmet.2021.101414] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Age is a risk factor for type 2 diabetes (T2D). We aimed to elucidate whether β-cell glucose metabolism is altered with aging and contributes to T2D. METHODS We used senescence-accelerated mice (SAM), C57BL/6J (B6) mice, and ob/ob mice as aging models. As a diabetes model, we used db/db mice. The glucose responsiveness of insulin secretion and the [U-13C]-glucose metabolic flux were examined in isolated islets. We analyzed the expression of β-cell-specific genes in isolated islets and pancreatic sections as molecular signatures of β-cell identity. β cells defective in the malate-aspartate (MA) shuttle were previously generated from MIN6-K8 cells by the knockout of Got1, a component of the shuttle. We analyzed Got1 KO β cells as a model of increased glycolysis. RESULTS We identified hyperresponsiveness to glucose and compromised cellular identity as dysfunctional phenotypes shared in common between aged and diabetic mouse β cells. We also observed a metabolic commonality between aged and diabetic β cells: hyperactive glycolysis through the increased expression of nicotinamide mononucleotide adenylyl transferase 2 (Nmnat2), a cytosolic nicotinamide adenine dinucleotide (NAD)-synthesizing enzyme. Got1 KO β cells showed increased glycolysis, β-cell dysfunction, and impaired cellular identity, phenocopying aging and diabetes. Using Got1 KO β cells, we show that attenuation of glycolysis or Nmnat2 activity can restore β-cell function and identity. CONCLUSIONS Our study demonstrates that hyperactive glycolysis is a metabolic signature of aged and diabetic β cells, which may underlie age-related β-cell dysfunction and loss of cellular identity. We suggest Nmnat2 suppression as an approach to counteract age-related T2D.
Collapse
Affiliation(s)
- Naoya Murao
- Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan; Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.
| | - Tomohide Hayami
- Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan; Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Graduate School of Medicine, Kobe University, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
5
|
Wortham M, Sander M. Transcriptional mechanisms of pancreatic β-cell maturation and functional adaptation. Trends Endocrinol Metab 2021; 32:474-487. [PMID: 34030925 PMCID: PMC8259463 DOI: 10.1016/j.tem.2021.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Pancreatic β-cells secrete insulin commensurate to circulating nutrient levels to maintain normoglycemia. The ability of β-cells to couple insulin secretion to nutrient stimuli is acquired during a postnatal maturation process. In mature β-cells the insulin secretory response adapts to changes in nutrient state. Both β-cell maturation and functional adaptation rely on the interplay between extracellular cues and cell type-specific transcriptional programs. Here we review emerging evidence that developmental and homeostatic regulation of β-cell function involves collaboration between lineage-determining and signal-dependent transcription factors (LDTFs and SDTFs, respectively). A deeper understanding of β-cell SDTFs and their cognate signals would delineate mechanisms of β-cell maturation and functional adaptation, which has direct implications for diabetes therapies and for generating mature β-cells from stem cells.
Collapse
Affiliation(s)
- Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Hegde V, Dhurandhar NV, Reddy PH. Hyperinsulinemia or Insulin Resistance: What Impacts the Progression of Alzheimer's Disease? J Alzheimers Dis 2020; 72:S71-S79. [PMID: 31744006 DOI: 10.3233/jad-190808] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2D), which is often accompanied by hyperinsulinemia and insulin resistance, is associated with an increased risk for developing mild cognitive impairment and Alzheimer's disease (AD); however, the underlying mechanisms for this association are still unclear. Recent findings have shown that hyperinsulinemia and insulin resistance can coexist or be independent events. This makes it imperative to determine the contribution of these individual conditions in impacting AD. This literature review highlights the recent developments of hyperinsulinemia and insulin resistance involvement in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- Vijay Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences Texas Tech University, Lubbock, TX, USA
| | - Nikhil V Dhurandhar
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences Texas Tech University, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Internal Medicine, Cell Biology and Biochemistry, Neuroscience/Pharmacology and Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
7
|
Whitticar NB, Nunemaker CS. Reducing Glucokinase Activity to Enhance Insulin Secretion: A Counterintuitive Theory to Preserve Cellular Function and Glucose Homeostasis. Front Endocrinol (Lausanne) 2020; 11:378. [PMID: 32582035 PMCID: PMC7296051 DOI: 10.3389/fendo.2020.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pancreatic beta-cells are the only cells in the body that can synthesize and secrete insulin. Through the process of glucose-stimulated insulin secretion, beta-cells release insulin into circulation, stimulating GLUT4-dependent glucose uptake into peripheral tissue. Insulin is normally secreted in pulses that promote signaling at the liver. Long before type 2 diabetes is diagnosed, beta-cells become oversensitive to glucose, causing impaired pulsatility and overstimulation in fasting levels of glucose. The resulting hypersecretion of insulin can cause poor insulin signaling and clearance at the liver, leading to hyperinsulinemia and insulin resistance. Continued overactivity can eventually lead to beta-cell exhaustion and failure at which point type 2 diabetes begins. To prevent or reverse the negative effects of overstimulation, beta-cell activity can be reduced. Clinical studies have revealed the potential of beta-cell rest to reverse new cases of diabetes, but treatments lack durable benefits. In this perspective, we propose an intervention that reduces overactive glucokinase activity in the beta-cell. Glucokinase is known as the glucose sensor of the beta-cell due to its high control over insulin secretion. Therefore, glycolytic overactivity may be responsible for hyperinsulinemia early in the disease and can be reduced to restore normal stimulus-secretion coupling. We have previously reported that reducing glucokinase activity in prediabetic mouse islets can restore pulsatility and enhance insulin secretion. Building on this counterintuitive finding, we review the importance of pulsatile insulin secretion and highlight how normalizing glucose sensing in the beta cell during prediabetic hyperinsulinemia may restore pulsatility and improve glucose homeostasis.
Collapse
Affiliation(s)
- Nicholas B. Whitticar
- Translational Biomedical Sciences Program, Graduate College, Ohio University, Athens, OH, United States
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Craig S. Nunemaker
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- *Correspondence: Craig S. Nunemaker
| |
Collapse
|
8
|
Scarl RT, Corbin KL, Vann NW, Smith HM, Satin LS, Sherman A, Nunemaker CS. Intact pancreatic islets and dispersed beta-cells both generate intracellular calcium oscillations but differ in their responsiveness to glucose. Cell Calcium 2019; 83:102081. [PMID: 31563790 DOI: 10.1016/j.ceca.2019.102081] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 01/19/2023]
Abstract
Pancreatic islets produce pulses of insulin and other hormones that maintain normal glucose homeostasis. These micro-organs possess exquisite glucose-sensing capabilities, allowing for precise changes in pulsatile insulin secretion in response to small changes in glucose. When communication among these cells is disrupted, precision glucose sensing falters. We measured intracellular calcium patterns in 6-mM-steps between 0 and 16 mM glucose, and also more finely in 2-mM-steps from 8 to 12 mM glucose, to compare glucose sensing systematically among intact islets and dispersed islet cells derived from the same mouse pancreas in vitro. The calcium activity of intact islets was uniformly low (quiescent) below 4 mM glucose and active above 8 mM glucose, whereas dispersed beta-cells displayed a broader activation range (2-to-10 mM). Intact islets exhibited calcium oscillations with 2-to-5-min periods, yet beta-cells exhibited longer 7-10 min periods. In every case, intact islets showed changes in activity with each 6-mM-glucose step, whereas dispersed islet cells displayed a continuum of calcium responses ranging from islet-like patterns to stable oscillations unaffected by changes in glucose concentration. These differences were also observed for 2-mM-glucose steps. Despite the diversity of dispersed beta-cell responses to glucose, the sum of all activity produced a glucose dose-response curve that was surprisingly similar to the curve for intact islets, arguing against the importance of "hub cells" for function. Beta-cells thus retain many of the features of islets, but some are more islet-like than others. Determining the molecular underpinnings of these variations could be valuable for future studies of stem-cell-derived beta-cell therapies.
Collapse
Affiliation(s)
- Rachel T Scarl
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Nicholas W Vann
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Hallie M Smith
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Leslie S Satin
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Arthur Sherman
- Laboratory of Biological Modeling, NIDDK, NIH, Bethesda, MD, United States
| | - Craig S Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States.
| |
Collapse
|
9
|
Jahan I, Corbin KL, Bogart AM, Whitticar NB, Waters CD, Schildmeyer C, Vann NW, West HL, Law NC, Wiseman JS, Nunemaker CS. Reducing Glucokinase Activity Restores Endogenous Pulsatility and Enhances Insulin Secretion in Islets From db/db Mice. Endocrinology 2018; 159:3747-3760. [PMID: 30239634 PMCID: PMC6202857 DOI: 10.1210/en.2018-00589] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022]
Abstract
An early sign of islet failure in type 2 diabetes (T2D) is the loss of normal patterns of pulsatile insulin release. Disruptions in pulsatility are associated with a left shift in glucose sensing that can cause excessive insulin release in low glucose (relative hyperinsulinemia, a hallmark of early T2D) and β-cell exhaustion, leading to inadequate insulin release during hyperglycemia. Our hypothesis was that reducing excessive glucokinase activity in diabetic islets would improve their function. Isolated mouse islets were exposed to glucose and varying concentrations of the glucokinase inhibitor d-mannoheptulose (MH) to examine changes in intracellular calcium ([Ca2+]i) and insulin secretion. Acutely exposing islets from control CD-1 mice to MH in high glucose (20 mM) dose dependently reduced the size of [Ca2+]i oscillations detected by fura-2 acetoxymethyl. Glucokinase activation in low glucose (3 mM) had the opposite effect. We then treated islets from male and female db/db mice (age, 4 to 8 weeks) and heterozygous controls overnight with 0 to 10 mM MH to determine that 1 mM MH produced optimal oscillations. We then used 1 mM MH overnight to measure [Ca2+]i and insulin simultaneously in db/db islets. MH restored oscillations and increased insulin secretion. Insulin secretion rates correlated with MH-induced increases in amplitude of [Ca2+]i oscillations (R2 = 0.57, P < 0.01, n = 10) but not with mean [Ca2+]i levels in islets (R2 = 0.05, not significant). Our findings show that correcting glucose sensing can restore proper pulsatility to diabetic islets and improved pulsatility correlates with enhanced insulin secretion.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Avery M Bogart
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Honors Tutorial College, Ohio University, Athens, Ohio
| | - Nicholas B Whitticar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Christopher D Waters
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Cara Schildmeyer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Honors Tutorial College, Ohio University, Athens, Ohio
| | - Nicholas W Vann
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Hannah L West
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Honors Tutorial College, Ohio University, Athens, Ohio
| | - Nathan C Law
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | | | - Craig S Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| |
Collapse
|
10
|
Moghadam AA, Moran TH, Dailey MJ. Alterations in circadian and meal-induced gut peptide levels in lean and obese rats. Exp Biol Med (Maywood) 2017; 242:1786-1794. [PMID: 29191090 DOI: 10.1177/1535370217732041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Alterations in gut hormone signaling are a likely contributing factor to the metabolic disturbances associated with overweight/obesity as they coordinate the timing of feeding behavior, absorption, and utilization of nutrients. These hormones are released in response to food intake, or follow a circadian or anticipatory pattern of secretion that is independent of nutrient stimulation. The aim of this study was to identify the degree to which high-fat diet-induced obesity would alter the daily rhythm of gut peptide plasma levels (glucagon-like peptide-1 [GLP-1], peptide YY [PYY], insulin or amylin [AMY]) or meal-induced levels in the middle of the light or dark cycle. Male Sprague-Dawley rats were fed a high-fat diet (OBESE) or chow (LEAN), implanted with jugular catheters, and blood samples were taken every 2 h throughout the light/dark cycle while freely feeding or after an Ensure liquid meal. We found that even when OBESE and LEAN animals ate the same kcals and have a similar pattern of food intake, there is a difference in both the levels and rhythm of plasma gut peptides. GLP-1 and PYY are higher during the light cycle in LEAN animals and AMY is higher in the OBESE group throughout the light/dark cycle. There was also a differential response of plasma gut signals after the Ensure meal, even though the composition and amount of intake of the meal were the same in both groups. These changes occur prior to the high-fat diet induced loss of glycemic control and may be a target for early intervention. Impact statement The aim of this study was to test if obesity would alter the daily rhythm of gut peptides or meal-induced levels in the middle of the light or dark cycle. We found that even when animals are eating the same amount (in kcal) of food that the obese animals have altered daily rhythms and meal-induced gut peptide levels. In particular, we are the first to show that obesity induces increases in peptide YY levels during the light cycle and amylin remains high throughout the light and dark cycle in obese animals. These changes occurred prior to a loss of glycemic control. Thus, the rhythm of gut peptides could be used as an early indicator of later and more serious metabolic disturbances and may be a target for early intervention.
Collapse
Affiliation(s)
- Alexander A Moghadam
- 1 Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10591, USA
| | - Timothy H Moran
- 2 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Megan J Dailey
- 3 Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Wortham M, Sander M. Mechanisms of β-cell functional adaptation to changes in workload. Diabetes Obes Metab 2016; 18 Suppl 1:78-86. [PMID: 27615135 PMCID: PMC5021190 DOI: 10.1111/dom.12729] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/09/2016] [Indexed: 11/28/2022]
Abstract
Insulin secretion must be tightly coupled to nutritional state to maintain blood glucose homeostasis. To this end, pancreatic β-cells sense and respond to changes in metabolic conditions, thereby anticipating insulin demands for a given physiological context. This is achieved in part through adjustments of nutrient metabolism, which is controlled at several levels including allosteric regulation, post-translational modifications, and altered expression of metabolic enzymes. In this review, we discuss mechanisms of β-cell metabolic and functional adaptation in the context of two physiological states that alter glucose-stimulated insulin secretion: fasting and insulin resistance. We review current knowledge of metabolic changes that occur in the β-cell during adaptation and specifically discuss transcriptional mechanisms that underlie β-cell adaptation. A more comprehensive understanding of how β-cells adapt to changes in nutrient state could identify mechanisms to be co-opted for therapeutically modulating insulin secretion in metabolic disease.
Collapse
Affiliation(s)
- M Wortham
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla
| | - M Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla.
| |
Collapse
|
12
|
Corbin KL, Waters CD, Shaffer BK, Verrilli GM, Nunemaker CS. Islet Hypersensitivity to Glucose Is Associated With Disrupted Oscillations and Increased Impact of Proinflammatory Cytokines in Islets From Diabetes-Prone Male Mice. Endocrinology 2016; 157:1826-38. [PMID: 26943366 PMCID: PMC4870867 DOI: 10.1210/en.2015-1879] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulsatile insulin release is the primary means of blood glucose regulation. The loss of pulsatility is thought to be an early marker and possible factor in developing type 2 diabetes. Another early adaptation in islet function to compensate for obesity is increased glucose sensitivity (left shift) associated with increased basal insulin release. We provide evidence that oscillatory disruptions may be linked with overcompensation (glucose hypersensitivity) in islets from diabetes-prone mice. We isolated islets from male 4- to 5-week-old (prediabetic) and 10- to 12-week-old (diabetic) leptin-receptor-deficient (db/db) mice and age-matched heterozygous controls. After an overnight incubation in media with 11 mM glucose, we measured islet intracellular calcium in 5, 8, 11, or 15 mM glucose. Islets from heterozygous 10- to 12-week-old mice were quiescent in 5 mM glucose and displayed oscillations with increasing amplitude and/or duration in 8, 11, and 15 mM glucose, respectively. Islets from diabetic 10- to 12-week-old mice, in contrast, showed robust oscillations in 5 mM glucose that declined with increasing glucose. Similar trends were observed at 4-5-weeks of age. A progressive left shift in maximal insulin release was also observed in islets as db/db mice aged. Reducing glucokinase activity with 1 mM D-mannoheptulose restored oscillations in 11 mM glucose. Finally, overnight low-dose cytokine exposure negatively impacted oscillations preferentially in high glucose in diabetic islets compared with heterozygous controls. Our findings suggest the following: 1) islets from frankly diabetic mice can produce oscillations, 2) elevated sensitivity to glucose prevents diabetic mouse islets from producing oscillations in normal postprandial (11-15 mM glucose) conditions, and 3) hypersensitivity to glucose may magnify stress effects from inflammation or other sources.
Collapse
Affiliation(s)
- Kathryn L Corbin
- Department of Biomedical Sciences (K.L.C., C.S.N.), Heritage College of Osteopathic Medicine, and Diabetes Institute (K.L.C., C.S.N.), Ohio University, Athens, Ohio 45701; and Departments of Medicine (C.D.W., B.K.S., G.M.V.) and Biomedical Engineering (C.D.W.), University of Virginia, Charlottesville, Virginia 22908
| | - Christopher D Waters
- Department of Biomedical Sciences (K.L.C., C.S.N.), Heritage College of Osteopathic Medicine, and Diabetes Institute (K.L.C., C.S.N.), Ohio University, Athens, Ohio 45701; and Departments of Medicine (C.D.W., B.K.S., G.M.V.) and Biomedical Engineering (C.D.W.), University of Virginia, Charlottesville, Virginia 22908
| | - Brett K Shaffer
- Department of Biomedical Sciences (K.L.C., C.S.N.), Heritage College of Osteopathic Medicine, and Diabetes Institute (K.L.C., C.S.N.), Ohio University, Athens, Ohio 45701; and Departments of Medicine (C.D.W., B.K.S., G.M.V.) and Biomedical Engineering (C.D.W.), University of Virginia, Charlottesville, Virginia 22908
| | - Gretchen M Verrilli
- Department of Biomedical Sciences (K.L.C., C.S.N.), Heritage College of Osteopathic Medicine, and Diabetes Institute (K.L.C., C.S.N.), Ohio University, Athens, Ohio 45701; and Departments of Medicine (C.D.W., B.K.S., G.M.V.) and Biomedical Engineering (C.D.W.), University of Virginia, Charlottesville, Virginia 22908
| | - Craig S Nunemaker
- Department of Biomedical Sciences (K.L.C., C.S.N.), Heritage College of Osteopathic Medicine, and Diabetes Institute (K.L.C., C.S.N.), Ohio University, Athens, Ohio 45701; and Departments of Medicine (C.D.W., B.K.S., G.M.V.) and Biomedical Engineering (C.D.W.), University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
13
|
Erion KA, Berdan CA, Burritt NE, Corkey BE, Deeney JT. Chronic Exposure to Excess Nutrients Left-shifts the Concentration Dependence of Glucose-stimulated Insulin Secretion in Pancreatic β-Cells. J Biol Chem 2015; 290:16191-201. [PMID: 25934392 DOI: 10.1074/jbc.m114.620351] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 01/21/2023] Open
Abstract
Hyperinsulinemia (HI) is elevated plasma insulin at basal glucose. Impaired glucose tolerance is associated with HI, although the exact cause and effect relationship remains poorly defined. We tested the hypothesis that HI can result from an intrinsic response of the β-cell to chronic exposure to excess nutrients, involving a shift in the concentration dependence of glucose-stimulated insulin secretion. INS-1 (832/13) cells were cultured in either a physiological (4 mm) or high (11 mm) glucose concentration with or without concomitant exposure to oleate. Isolated rat islets were also cultured with or without oleate. A clear hypersensitivity to submaximal glucose concentrations was evident in INS-1 cells cultured in excess nutrients such that the 25% of maximal (S0.25) glucose-stimulated insulin secretion was significantly reduced in cells cultured in 11 mm glucose (S0.25 = 3.5 mm) and 4 mm glucose with oleate (S0.25 = 4.5 mm) compared with 4 mm glucose alone (S0.25 = 5.7 mm). The magnitude of the left shift was linearly correlated with intracellular lipid stores in INS-1 cells (r(2) = 0.97). We observed no significant differences in the dose responses for glucose stimulation of respiration, NAD(P)H autofluorescence, or Ca(2+) responses between left- and right-shifted β-cells. However, a left shift in the sensitivity of exocytosis to Ca(2+) was documented in permeabilized INS-1 cells cultured in 11 versus 4 mm glucose (S0.25 = 1.1 and 1.7 μm, respectively). Our results suggest that the sensitivity of exocytosis to triggering is modulated by a lipid component, the levels of which are influenced by the culture nutrient environment.
Collapse
Affiliation(s)
- Karel A Erion
- From the Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Charles A Berdan
- From the Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Nathan E Burritt
- From the Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Barbara E Corkey
- From the Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jude T Deeney
- From the Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
14
|
Xia L, Wang Z, Zhang Y, Yang X, Zhan Y, Cheng R, Wang S, Zhang J. Reciprocal regulation of insulin and plasma 5'-AMP in glucose homeostasis in mice. J Endocrinol 2015; 224:225-34. [PMID: 25512345 DOI: 10.1530/joe-14-0501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A previous investigation has demonstrated that plasma 5'-AMP (pAMP) exacerbates and causes hyperglycemia in diabetic mice. However, the crosstalk between pAMP and insulin signaling to regulate glucose homeostasis has not been investigated in depth. In this study, we showed that the blood glucose level was more dependent on the ratio of insulin to pAMP than on the absolute level of these two factors. Administration of 5'-AMP significantly attenuated the insulin-stimulated insulin receptor (IR) autophosphorylation in the liver and muscle tissues, resulting in the inhibition of downstream AKT phosphorylation. A docking analysis indicated that adenosine was a potential inhibitor of IR tyrosine kinase. Moreover, the 5'-AMP treatment elevated the ATP level in the pancreas and in the isolated islets, stimulating insulin secretion and increasing the plasma level of insulin. The insulin administration decreased the 5'-AMP-induced hyper-adenosine level by the up-regulation of adenosine kinase activities. Our results indicate that blood glucose homeostasis is reciprocally regulated by pAMP and insulin.
Collapse
Affiliation(s)
- Lin Xia
- Center for Molecular MetabolismNanjing University of Science and Technology, B508, #364, 200 Xiaolingwei Street, Nanjing 210094, ChinaDepartment of RadiologyNanjing University of Chinese Medicine, Nanjing 210000, ChinaDepartment of Biochemistry and Molecular BiologyJiangsu University School of Medicine, Zhenjiang 212013, China
| | - Zhongqiu Wang
- Center for Molecular MetabolismNanjing University of Science and Technology, B508, #364, 200 Xiaolingwei Street, Nanjing 210094, ChinaDepartment of RadiologyNanjing University of Chinese Medicine, Nanjing 210000, ChinaDepartment of Biochemistry and Molecular BiologyJiangsu University School of Medicine, Zhenjiang 212013, China
| | - Ying Zhang
- Center for Molecular MetabolismNanjing University of Science and Technology, B508, #364, 200 Xiaolingwei Street, Nanjing 210094, ChinaDepartment of RadiologyNanjing University of Chinese Medicine, Nanjing 210000, ChinaDepartment of Biochemistry and Molecular BiologyJiangsu University School of Medicine, Zhenjiang 212013, China
| | - Xiao Yang
- Center for Molecular MetabolismNanjing University of Science and Technology, B508, #364, 200 Xiaolingwei Street, Nanjing 210094, ChinaDepartment of RadiologyNanjing University of Chinese Medicine, Nanjing 210000, ChinaDepartment of Biochemistry and Molecular BiologyJiangsu University School of Medicine, Zhenjiang 212013, China
| | - Yibei Zhan
- Center for Molecular MetabolismNanjing University of Science and Technology, B508, #364, 200 Xiaolingwei Street, Nanjing 210094, ChinaDepartment of RadiologyNanjing University of Chinese Medicine, Nanjing 210000, ChinaDepartment of Biochemistry and Molecular BiologyJiangsu University School of Medicine, Zhenjiang 212013, China
| | - Rui Cheng
- Center for Molecular MetabolismNanjing University of Science and Technology, B508, #364, 200 Xiaolingwei Street, Nanjing 210094, ChinaDepartment of RadiologyNanjing University of Chinese Medicine, Nanjing 210000, ChinaDepartment of Biochemistry and Molecular BiologyJiangsu University School of Medicine, Zhenjiang 212013, China
| | - Shiming Wang
- Center for Molecular MetabolismNanjing University of Science and Technology, B508, #364, 200 Xiaolingwei Street, Nanjing 210094, ChinaDepartment of RadiologyNanjing University of Chinese Medicine, Nanjing 210000, ChinaDepartment of Biochemistry and Molecular BiologyJiangsu University School of Medicine, Zhenjiang 212013, China
| | - Jianfa Zhang
- Center for Molecular MetabolismNanjing University of Science and Technology, B508, #364, 200 Xiaolingwei Street, Nanjing 210094, ChinaDepartment of RadiologyNanjing University of Chinese Medicine, Nanjing 210000, ChinaDepartment of Biochemistry and Molecular BiologyJiangsu University School of Medicine, Zhenjiang 212013, China
| |
Collapse
|
15
|
Abstract
OBJECTIVE The histological alteration of the exocrine pancreas in obesity has not been clarified. In the present study, we investigated biochemical and histological changes in the exocrine pancreas of obese model rats. METHODS Zucker lean rats were fed a standard diet, and Zucker diabetic fatty (ZDF) rats were divided into 2 groups fed a standard diet and a high-fat diet, respectively. These experimental groups were fed each of the diets from 6 weeks until 12, 18, 24 weeks of age. We performed blood biochemical assays and histological analysis of the pancreas. RESULTS In the ZDF rats fed a high-fat diet, the ratio of accumulated pancreatic fat area relative to exocrine gland area was increased significantly at 18 weeks of age in comparison with the other 2 groups (P < 0.05), and lipid droplets were observed in acinar cells. Subsequently, at 24 weeks of age in this group, pancreatic fibrosis and the serum exocrine pancreatic enzyme levels were increased significantly relative to the other 2 groups (P < 0.01). CONCLUSIONS In ZDF rats fed a chronic high-fat diet, fat accumulates in pancreatic acinar cells, and this fatty change seems to be related to subsequent pancreatic fibrosis and acinar cell injury.
Collapse
|
16
|
ER stress in rodent islets of Langerhans is concomitant with obesity and β-cell compensation but not with β-cell dysfunction and diabetes. Nutr Diabetes 2013; 3:e93. [PMID: 24145577 PMCID: PMC3817349 DOI: 10.1038/nutd.2013.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/15/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022] Open
Abstract
Objective: The objective of this study was to determine whether ER stress correlates with β-cell dysfunction in obesity-associated diabetes. Methods: Quantitative RT-PCR and western blot analysis were used to investigate changes in the expression of markers of ER stress, the unfolded protein response (UPR) and β-cell function in islets isolated from (1) non-diabetic Zucker obese (ZO) and obese female Zucker diabetic fatty (fZDF) rats compared with their lean littermates and from (2) high-fat-diet-fed fZDF rats (HF-fZDF), to induce diabetes, compared with age-matched non-diabetic obese fZDF rats. Results: Markers of an adaptive ER stress/UPR and β-cell function are elevated in islets isolated from ZO and fZDF rats compared with their lean littermates. In islets isolated from HF-fZDF rats, there was no significant change in the expression of markers of ER stress compared with age matched, obese, non-diabetic fZDF rats. Conclusions: These results provide evidence that obesity-induced activation of the UPR is an adaptive response for increasing the ER folding capacity to meet the increased demand for insulin. As ER stress is not exacerbated in high-fat-diet-induced diabetes, we suggest that failure of the islet to mount an effective adaptive UPR in response to an additional increase in insulin demand, rather than chronic ER stress, may ultimately lead to β-cell failure and hence diabetes.
Collapse
|
17
|
Luciani DS, White SA, Widenmaier SB, Saran VV, Taghizadeh F, Hu X, Allard MF, Johnson JD. Bcl-2 and Bcl-xL suppress glucose signaling in pancreatic β-cells. Diabetes 2013; 62:170-82. [PMID: 22933114 PMCID: PMC3526034 DOI: 10.2337/db11-1464] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
B-cell lymphoma 2 (Bcl-2) family proteins are established regulators of cell survival, but their involvement in the normal function of primary cells has only recently begun to receive attention. In this study, we demonstrate that chemical and genetic loss-of-function of antiapoptotic Bcl-2 and Bcl-x(L) significantly augments glucose-dependent metabolic and Ca(2+) signals in primary pancreatic β-cells. Antagonism of Bcl-2/Bcl-x(L) by two distinct small-molecule compounds rapidly hyperpolarized β-cell mitochondria, increased cytosolic Ca(2+), and stimulated insulin release via the ATP-dependent pathway in β-cell under substimulatory glucose conditions. Experiments with single and double Bax-Bak knockout β-cells established that this occurred independently of these proapoptotic binding partners. Pancreatic β-cells from Bcl-2(-/-) mice responded to glucose with significantly increased NAD(P)H levels and cytosolic Ca(2+) signals, as well as significantly augmented insulin secretion. Inducible deletion of Bcl-x(L) in adult mouse β-cells also increased glucose-stimulated NAD(P)H and Ca(2+) responses and resulted in an improvement of in vivo glucose tolerance in the conditional Bcl-x(L) knockout animals. Our work suggests that prosurvival Bcl proteins normally dampen the β-cell response to glucose and thus reveals these core apoptosis proteins as integrators of cell death and physiology in pancreatic β-cells.
Collapse
Affiliation(s)
- Dan S. Luciani
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Child & Family Research Institute, Vancouver, British Columbia, Canada
- Corresponding authors: James D. Johnson, , and Dan S. Luciani,
| | - Sarah A. White
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Child & Family Research Institute, Vancouver, British Columbia, Canada
| | - Scott B. Widenmaier
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Varun V. Saran
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada the
- University of British Columbia James Hogg Research Centre, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Farnaz Taghizadeh
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael F. Allard
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada the
- University of British Columbia James Hogg Research Centre, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding authors: James D. Johnson, , and Dan S. Luciani,
| |
Collapse
|
18
|
Li XN, Herrington J, Petrov A, Ge L, Eiermann G, Xiong Y, Jensen MV, Hohmeier HE, Newgard CB, Garcia ML, Wagner M, Zhang BB, Thornberry NA, Howard AD, Kaczorowski GJ, Zhou YP. The role of voltage-gated potassium channels Kv2.1 and Kv2.2 in the regulation of insulin and somatostatin release from pancreatic islets. J Pharmacol Exp Ther 2012; 344:407-16. [PMID: 23161216 DOI: 10.1124/jpet.112.199083] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The voltage-gated potassium channels Kv2.1 and Kv2.2 are highly expressed in pancreatic islets, yet their contribution to islet hormone secretion is not fully understood. Here we investigate the role of Kv2 channels in pancreatic islets using a combination of genetic and pharmacologic approaches. Pancreatic β-cells from Kv2.1(-/-) mice possess reduced Kv current and display greater glucose-stimulated insulin secretion (GSIS) relative to WT β-cells. Inhibition of Kv2.x channels with selective peptidyl [guangxitoxin-1E (GxTX-1E)] or small molecule (RY796) inhibitors enhances GSIS in isolated wild-type (WT) mouse and human islets, but not in islets from Kv2.1(-/-) mice. However, in WT mice neither inhibitor improved glucose tolerance in vivo. GxTX-1E and RY796 enhanced somatostatin release in isolated human and mouse islets and in situ perfused pancreata from WT and Kv2.1(-/-) mice. Kv2.2 silencing in mouse islets by adenovirus-small hairpin RNA (shRNA) specifically enhanced islet somatostatin, but not insulin, secretion. In mice lacking somatostatin receptor 5, GxTX-1E stimulated insulin secretion and improved glucose tolerance. Collectively, these data show that Kv2.1 regulates insulin secretion in β-cells and Kv2.2 modulates somatostatin release in δ-cells. Development of selective Kv2.1 inhibitors without cross inhibition of Kv2.2 may provide new avenues to promote GSIS for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Xiaoyan Nina Li
- Department of Metabolic Disorders, Merck Research Laboratories, Rahway, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Delghingaro-Augusto V, Décary S, Peyot ML, Latour MG, Lamontagne J, Paradis-Isler N, Lacharité-Lemieux M, Akakpo H, Birot O, Nolan CJ, Prentki M, Bergeron R. Voluntary running exercise prevents β-cell failure in susceptible islets of the Zucker diabetic fatty rat. Am J Physiol Endocrinol Metab 2012; 302:E254-64. [PMID: 22045312 DOI: 10.1152/ajpendo.00360.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physical activity improves glycemic control in type 2 diabetes (T2D), but its contribution to preserving β-cell function is uncertain. We evaluated the role of physical activity on β-cell secretory function and glycerolipid/fatty acid (GL/FA) cycling in male Zucker diabetic fatty (ZDF) rats. Six-week-old ZDF rats engaged in voluntary running for 6 wk (ZDF-A). Inactive Zucker lean and ZDF (ZDF-I) rats served as controls. ZDF-I rats displayed progressive hyperglycemia with β-cell failure evidenced by falling insulinemia and reduced insulin secretion to oral glucose. Isolated ZDF-I rat islets showed reduced glucose-stimulated insulin secretion expressed per islet and per islet protein. They were also characterized by loss of the glucose regulation of fatty acid oxidation and GL/FA cycling, reduced mRNA expression of key β-cell genes, and severe reduction of insulin stores. Physical activity prevented diabetes in ZDF rats through sustaining β-cell compensation to insulin resistance shown in vivo and in vitro. Surprisingly, ZDF-A islets had persistent defects in fatty acid oxidation, GL/FA cycling, and β-cell gene expression. ZDF-A islets, however, had preserved islet insulin mRNA and insulin stores compared with ZDF-I rats. Physical activity did not prevent hyperphagia, dyslipidemia, or obesity in ZDF rats. In conclusion, islets of ZDF rats have a susceptibility to failure that is possibly due to altered β-cell fatty acid metabolism. Depletion of pancreatic islet insulin stores is a major contributor to islet failure in this T2D model, preventable by physical activity.
Collapse
Affiliation(s)
- Viviane Delghingaro-Augusto
- Molecular Nutrition Unit and The Montreal Diabetes Research Center, Research Center of the University of Montreal Hospital Center,University of Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang Y, Chen W, Li R, Li Y, Ge Y, Chen G. Insulin-regulated Srebp-1c and Pck1 mRNA expression in primary hepatocytes from zucker fatty but not lean rats is affected by feeding conditions. PLoS One 2011; 6:e21342. [PMID: 21731709 PMCID: PMC3120864 DOI: 10.1371/journal.pone.0021342] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/26/2011] [Indexed: 02/07/2023] Open
Abstract
Insulin regulates the transcription of genes for hepatic glucose and lipid metabolism. We hypothesized that this action may be impaired in hepatocytes from insulin resistant animals. Primary hepatocytes from insulin sensitive Zucker lean (ZL) and insulin resistant Zucker fatty (ZF) rats in ad libitum or after an overnight fasting were isolated, cultured and treated with insulin and other compounds for analysis of gene expression using real-time PCR. The mRNA levels of one insulin-induced (Srebp-1c) and one insulin-suppressed (Pck1) genes in response to insulin, glucagon, and compactin treatments in hepatocytes from ad libitum ZL and ZF rats were analyzed. Additionally, the effects of insulin and T1317 on their levels in hepatocytes from ad libitum or fasted ZL or ZF rats were compared. The mRNA levels of Srebp-1c, Fas, and Scd1, but not that of Insr, Gck and Pck1, were higher in freshly isolated hepatocytes from ad libitum ZF than that from ZL rats. These patterns of Srebp-1c and Pck1 mRNA levels remained in primary hepatocyte cultured in vitro. Insulin's ability to regulate Srebp-1c and Pck1 expression was diminished in hepatocytes from ad libitum ZF, but not ZL rats. Glucagon or compactin suppressed Srebp-1c mRNA expression in lean, but not fatty hepatocytes. However, glucagon induced Pck1 mRNA expression similarly in hepatocytes from ad libitum ZL and ZF rats. Insulin caused the same dose-dependent increase of Akt phosphorylation in hepatocytes from ad libitum ZL and ZF rats. It synergized with T1317 to induce Srebp-1c, and suppressed Pck1 mRNA levels in hepatocytes from fasted, but not that from ad libitum ZF rats. We demonstrated that insulin was unable to regulate its downstream genes' mRNA expression in hepatocytes from ad libitum ZF rats. This impairment can be partially restored in hepatocytes from ZF rats after an overnight fasting, a phenomenon that deserves further investigation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Wei Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Rui Li
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Yang Li
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Yuebin Ge
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
- College of Pharmacy, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
21
|
Han D, Moon S, Kim H, Choi SE, Lee SJ, Park KS, Jun H, Kang Y, Kim Y. Detection of Differential Proteomes Associated with the Development of Type 2 Diabetes in the Zucker Rat Model Using the iTRAQ Technique. J Proteome Res 2010; 10:564-77. [DOI: 10.1021/pr100759a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dohyun Han
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Sungyoon Moon
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Hyunsoo Kim
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Sung-E Choi
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Soo-Jin Lee
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Kyong Soo Park
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Heesook Jun
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Yup Kang
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| |
Collapse
|
22
|
Peyot ML, Pepin E, Lamontagne J, Latour MG, Zarrouki B, Lussier R, Pineda M, Jetton TL, Madiraju SRM, Joly E, Prentki M. Beta-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass. Diabetes 2010; 59:2178-87. [PMID: 20547980 PMCID: PMC2927940 DOI: 10.2337/db09-1452] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE C57Bl/6 mice develop obesity and mild hyperglycemia when fed a high-fat diet (HFD). Although diet-induced obesity (DIO) is a widely studied model of type 2 diabetes, little is known about beta-cell failure in these mice. RESEARCH DESIGN AND METHODS DIO mice were separated in two groups according to body weight gain: low- and high-HFD responders (LDR and HDR). We examined whether mild hyperglycemia in HDR mice is due to reduced beta-cell mass or function and studied islet metabolism and signaling. RESULTS HDR mice were more obese, hyperinsulinemic, insulin resistant, and hyperglycemic and showed a more altered plasma lipid profile than LDR. LDR mice largely compensated insulin resistance, whereas HDR showed perturbed glucose homeostasis. Neither LDR nor HDR mice showed reduced beta-cell mass, altered islet glucose metabolism, and triglyceride deposition. Insulin secretion in response to glucose, KCl, and arginine was impaired in LDR and almost abolished in HDR islets. Palmitate partially restored glucose- and KCl-stimulated secretion. The glucose-induced rise in ATP was reduced in both DIO groups, and the glucose-induced rise in Ca(2+) was reduced in HDR islets relatively to LDR. Glucose-stimulated lipolysis was decreased in LDR and HDR islets, whereas fat oxidation was increased in HDR islets only. Fatty acid esterification processes were markedly diminished, and free cholesterol accumulated in HDR islets. CONCLUSIONS beta-Cell failure in HDR mice is not due to reduced beta-cell mass and glucose metabolism or steatosis but to a secretory dysfunction that is possibly due to altered ATP/Ca(2+) and lipid signaling, as well as free cholesterol deposition.
Collapse
Affiliation(s)
- Marie-Line Peyot
- Montreal Diabetes Research Center and CRCHUM, Montreal, QC, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Collombat P, Xu X, Heimberg H, Mansouri A. Pancreatic beta-cells: from generation to regeneration. Semin Cell Dev Biol 2010; 21:838-44. [PMID: 20688184 DOI: 10.1016/j.semcdb.2010.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 07/25/2010] [Indexed: 12/28/2022]
Abstract
The pancreas is composed of two main compartments consisting of endocrine and exocrine tissues. The majority of the organ is exocrine and responsible for the synthesis of digestive enzymes and for their transport via an intricate ductal system into the duodenum. The endocrine tissue represents less than 2% of the organ and is organized into functional units called islets of Langerhans, comprising alpha-, beta-, delta-, epsilon- and PP-cells, producing the hormones glucagon, insulin, somatostatin, ghrelin and pancreatic polypeptide (PP), respectively. Insulin-producing beta-cells play a central role in the control of the glucose homeostasis. Accordingly, absolute or relative deficiency in beta-cells may ultimately lead to type 1 and/or type 2 diabetes, respectively. One major goal of diabetes research is therefore to understand the molecular mechanisms controlling the development of beta-cells during pancreas morphogenesis, but also those underlying the regeneration of adult injured pancreas, and assess their significance for future cell-based therapy. In this review, we will therefore present new insights into beta-cell development with focus on beta-cell regeneration.
Collapse
|
24
|
Han J, Liu YQ. Reduction of islet pyruvate carboxylase activity might be related to the development of type 2 diabetes mellitus in Agouti-K mice. J Endocrinol 2010; 204:143-52. [PMID: 19910451 PMCID: PMC2808427 DOI: 10.1677/joe-09-0391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pyruvate carboxylase (PC) activity is enhanced in the islets of obese rats, but it is reduced in the islets of type 2 diabetic rats, suggesting the importance of PC in beta-cell adaptation to insulin resistance as well as the possibility that PC reduction might lead to hyperglycemia. However, the causality is currently unknown. We used obese Agouti mice (AyL) as a model to show enhanced beta-cell adaptation, and type 2 diabetic db/db mice as a model to show severe beta-cell failure. After comparison of the two models, a less severe type 2 diabetic Agouti-K (AyK) mouse model was used to show the changes in islet PC activity during the development of type 2 diabetes mellitus (T2DM). AyK mice were separated into two groups: mildly (AyK-M, blood glucose <250 mg/dl) and severely (AyK-S, blood glucose >250 mg/dl) hyperglycemic. Islet PC activity, but not protein level, was increased 1.7-fold in AyK-M mice; in AyK-S mice, islet PC activity and protein level were reduced. All other changes including insulin secretion and islet morphology in AyK-M mice were similar to those observed in AyL mice, but they were worse in AyK-S mice where these parameters closely matched those in db/db mice. In 2-day treated islets, PC activity was inhibited by high glucose but not by palmitate. Our findings suggest that islet PC might play a role in the development of T2DM where reduction of PC activity might be a consequence of mild hyperglycemia and a cause for severe hyperglycemia.
Collapse
Affiliation(s)
- J Han
- The Research Institute for Children, Children's Hospital at New Orleans, New Orleans, Louisiana 70118, USA
| | | |
Collapse
|
25
|
Inhibition of DPP-4 with sitagliptin improves glycemic control and restores islet cell mass and function in a rodent model of type 2 diabetes. Eur J Pharmacol 2009; 623:148-54. [PMID: 19765579 DOI: 10.1016/j.ejphar.2009.09.027] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/30/2009] [Accepted: 09/08/2009] [Indexed: 11/24/2022]
Abstract
Inhibition of dipeptidyl peptidase-4 (DPP-4) activity has been shown to improve glycemic control in patients with type 2 diabetes by prolonging and potentiating the actions of incretin hormones. This study is designed to determine the effects of the DPP-4 inhibitor sitagliptin on improving islet function in a mouse model of insulin resistance and insulin secretion defects. ICR mice were pre-treated with high fat diet and a low dose of streptozotocin to induce insulin resistance and impaired insulin secretion, respectively. Diabetic mice were treated with sitagliptin or the sulfonylurea agent glipizide as admixture to high fat diet for ten weeks. Sustained reduction of blood glucose, HbA(1c), circulating glucagon and improvement in oral glucose tolerance were observed in mice treated with sitagliptin. In contrast, glipizide improved glycemic control only during the early weeks and to a lesser degree compared to sitagliptin, and had no effect on circulating glucagon levels or glucose tolerance. The improvement in glycemic control in sitagliptin-treated mice was associated with a significant increase in glucose-dependent insulin secretion in both perfused pancreas and isolated islets. Importantly, in contrast to the lack of effect by glipizide, sitagliptin significantly restored beta and alpha cell mass as well as alpha/beta cell ratio. These data indicate that DPP-4 inhibition by sitagliptin provided better overall improvement of glycemic control compared to glipizide in the high fat diet/streptozotocin induced diabetic mouse model. The ability of sitagliptin to enhance islet cell function may offer insight into the potential for disease modification.
Collapse
|
26
|
Functional pancreatic beta-cell mass: Involvement in type 2 diabetes and therapeutic intervention. DIABETES & METABOLISM 2009; 35:77-84. [DOI: 10.1016/j.diabet.2008.09.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 09/25/2008] [Accepted: 09/26/2008] [Indexed: 01/09/2023]
|
27
|
Watanabe K, Petro BJ, Shlimon AE, Unterman TG. Effect of periodontitis on insulin resistance and the onset of type 2 diabetes mellitus in Zucker diabetic fatty rats. J Periodontol 2008; 79:1208-16. [PMID: 18597603 DOI: 10.1902/jop.2008.070605] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Studies indicate that an association exists between periodontitis and type 2 diabetes mellitus (T2DM) and/or obesity, with chronic inflammation hypothesized as the common denominator. The purpose of this study was to determine the causal effect of periodontitis and the concomitant impact of diet on the onset of insulin resistance (IR) and T2DM using a rat model system that simulates human obesity and T2DM. METHODS Twenty-eight, 5-week-old female Zucker diabetic fatty (ZDF, fa/fa) rats were divided into four groups of seven animals: high-fat fed-periodontitis (HF/P), high-fat fed-no periodontitis (HF/C), low-fat fed-periodontitis (LF/P), and low-fat fed-no periodontitis (LF/C). Periodontitis was induced by ligature placement. Fasting plasma insulin and glucose levels were measured, and glucose tolerance tests were performed to assess glucose homeostasis, IR, and the onset of T2DM. The level of tumor necrosis factor-alpha (TNF-alpha), leptin, triglycerides, and free fatty acids were determined in week 13 at sacrifice. RESULTS HF/P rats developed more severe IR compared to HF/C rats (P <0.01) and LF/P or LF/C rats (P <0.001) as measured by fasting insulin levels and homeostasis model assessment analysis. The onset of severe IR occurred approximately 3 weeks earlier in HF/P rats compared to HF/C rats. HF/P rats developed impaired (110 to 125 mg/dl) and frank fasting hyperglycemia (>125 mg/dl) 2 weeks earlier than HF/C rats. There was no difference in the severity and onset of IR and T2DM between LF/P and LF/C rats. The level of TNF-alpha was significantly higher in HF/P rats compared to HF/C rats (P <0.01). CONCLUSION Periodontitis accelerated the onset of severe IR and impaired glucose homeostasis in high-fat fed ZDF rats.
Collapse
Affiliation(s)
- Keiko Watanabe
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612-5176, USA.
| | | | | | | |
Collapse
|
28
|
Tan CP, Feng Y, Zhou YP, Eiermann GJ, Petrov A, Zhou C, Lin S, Salituro G, Meinke P, Mosley R, Akiyama TE, Einstein M, Kumar S, Berger JP, Mills SG, Thornberry NA, Yang L, Howard AD. Selective small-molecule agonists of G protein-coupled receptor 40 promote glucose-dependent insulin secretion and reduce blood glucose in mice. Diabetes 2008; 57:2211-9. [PMID: 18477808 PMCID: PMC2494688 DOI: 10.2337/db08-0130] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Acute activation of G protein-coupled receptor 40 (GPR40) by free fatty acids (FFAs) or synthetic GPR40 agonists enhances insulin secretion. However, it is still a matter of debate whether activation of GPR40 would be beneficial for the treatment of type 2 diabetes, since chronic exposure to FFAs impairs islet function. We sought to evaluate the specific role of GPR40 in islets and its potential as a therapeutic target using compounds that specifically activate GPR40. RESEARCH DESIGN AND METHODS We developed a series of GPR40-selective small-molecule agonists and studied their acute and chronic effects on glucose-dependent insulin secretion (GDIS) in isolated islets, as well as effects on blood glucose levels during intraperitoneal glucose tolerance tests in wild-type and GPR40 knockout mice (GPR40(-/-)). RESULTS Small-molecule GPR40 agonists significantly enhanced GDIS in isolated islets and improved glucose tolerance in wild-type mice but not in GPR40(-/-) mice. While a 72-h exposure to FFAs in tissue culture significantly impaired GDIS in islets from both wild-type and GPR40(-/-) mice, similar exposure to the GPR40 agonist did not impair GDIS in islets from wild-type mice. Furthermore, the GPR40 agonist enhanced insulin secretion in perfused pancreata from neonatal streptozotocin-induced diabetic rats and improved glucose levels in mice with high-fat diet-induced obesity acutely and chronically. CONCLUSIONS GPR40 does not mediate the chronic toxic effects of FFAs on islet function. Pharmacological activation of GPR40 may potentiate GDIS in humans and be beneficial for overall glucose control in patients with type 2 diabetes.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blood Glucose/metabolism
- CHO Cells
- Cell Line
- Cricetinae
- Cricetulus
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Dietary Fats/administration & dosage
- Fatty Acids/pharmacology
- Fatty Acids, Nonesterified/pharmacology
- Female
- Humans
- In Vitro Techniques
- Inositol 1,4,5-Trisphosphate/metabolism
- Insulin/blood
- Insulin/metabolism
- Insulin Secretion
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/blood
- Obesity/etiology
- Obesity/metabolism
- Pregnancy
- Rats
- Rats, Wistar
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
Collapse
Affiliation(s)
- Carina P Tan
- Department of Metabolic Disorders-Diabetes, Merck Research Laboratories, Rahway, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Topp BG, Atkinson LL, Finegood DT. Dynamics of insulin sensitivity, -cell function, and -cell mass during the development of diabetes in fa/fa rats. Am J Physiol Endocrinol Metab 2007; 293:E1730-5. [PMID: 17895283 DOI: 10.1152/ajpendo.00572.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Both male Zucker Fatty (mZF) and lower-fat-fed female Zucker diabetic fatty (LF-fZDF) rats are obese but remain normoglycemic. Male ZDF (mZDF) and high-fat-fed female ZDF rats (HF-fZDF) are also obese but develop diabetes between 7 and 10 wk of age. Although these models have been well studied, the mechanisms governing the adaptations to obesity in the normoglycemic animals, and the failure of adaptation in the animals that develop diabetes, remain unclear. Here we use quantitative morphometry and our recently developed coupled beta-cell mass (beta(m)), insulin, and glucose model to elucidate the dynamics of insulin sensitivity (S(I)), beta-cell secretory capacity (beta(sc)), and beta(m) in these four animal models. Both groups that remained normoglycemic with increasing obesity (mZF, LF-fZDF) exhibited increased beta(m) and constant beta(sc) in response to a falling S(I). In rats that developed hyperglycemia (mZDF, HF-fZDF), there was a greater reduction in S(I) and slower expansion of beta(m), with constant beta(sc). beta(sc) decreased after glucose levels rose above 20 mM. Taken together, these data suggest that excessive insulin resistance and insufficient beta(m) adaptation play a primary role in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Brian G Topp
- School of Kinesiology, Simon Fraser Univ., 8888 Univ. Drive, Burnaby, BC, Canada V5A 1S6
| | | | | |
Collapse
|
30
|
Stepp DW. Impact of obesity and insulin resistance on vasomotor tone: nitric oxide and beyond. Clin Exp Pharmacol Physiol 2007; 33:407-14. [PMID: 16700872 DOI: 10.1111/j.1440-1681.2006.04381.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1. Obesity is rapidly increasing in Western populations, driving a parallel increase in hypertension, diabetes and vascular disease. Prior to the development of overt diabetes or hypertension, obese patients spend years in a state of progressive insulin resistance and metabolic disease. Mounting evidence suggests that this insulin-resistant state has deleterious effects on the control of blood flow, thus placing organ systems at a higher risk for end-organ damage and increasing cardiovascular mortality. 2. The purpose of the present review is to examine the current literature on the effects of obesity and insulin resistance on the acute control of vascular tone. Effects on nitric oxide (NO)-mediated control of vascular tone are particularly examined with regard to proximal causes and distal mechanisms of the impaired NO-mediation of vasodilation. 3. Finally, novel pathways of impaired control of perfusion are summarized from the recent literature to identify new avenues of exploring impaired vascular function in patients with metabolic disease.
Collapse
Affiliation(s)
- David W Stepp
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912-2500, USA.
| |
Collapse
|
31
|
Li X, Zhang L, Meshinchi S, Dias-Leme C, Raffin D, Johnson JD, Treutelaar MK, Burant CF. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes 2006; 55:2965-73. [PMID: 17065332 DOI: 10.2337/db06-0733] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gene expression profiling of islets from pre-diabetic male Zucker diabetic fatty (ZDF) rats showed increased expression of hypoxia-related genes, prompting investigation of the vascular integrity of the islets. The islet microvasculature was increased approximately twofold in young male ZDF rats by both morphometric analysis and quantifying mRNA levels of endothelial markers. ZDF rats at 12 weeks of age showed a significant reduction in the number of endothelial cells, which was prevented by pretreatment with pioglitazone. Light and electron microscopy of normoglycemic 7-week-old ZDF rats showed thickened endothelial cells with loss of endothelial fenestrations. By 12 weeks of age, there was disruption of the endothelium and intra-islet hemorrhage. Islets from 7- and 12-week-old ZDF rats showed an approximate three- and twofold increase in vascular endothelial growth factor (VEGF)-A mRNA and VEGF protein secretion, respectively, compared with lean controls. Thrombospondin-1 mRNA increased in 7- and 12-week-old rats by 2- and 10-fold, respectively, and was reduced by 50% in 12-week-old rats pretreated with pioglitazone. Islets from young male control rats induced migration of endothelial cells in a collagen matrix only after pretreatment with matrix metalloproteinase (MMP)-9. Islets from 7-week-old ZDF rats showed a fivefold increase in migration score compared with wild-type controls, even without MMP-9 treatment. Islets from 15-week-old ZDF rats did not induce migration; rather, they caused a significant rounding up of the duct-derived cells, suggesting a toxic effect. These data suggest that in the ZDF rat model of type 2 diabetes, an inability of the islet to maintain vascular integrity may contribute to beta-cell failure.
Collapse
Affiliation(s)
- Xianquan Li
- University of Michigan Medical Center, Box 0678, 1500 E. Medical Center Dr., Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Nolan CJ, Leahy JL, Delghingaro-Augusto V, Moibi J, Soni K, Peyot ML, Fortier M, Guay C, Lamontagne J, Barbeau A, Przybytkowski E, Joly E, Masiello P, Wang S, Mitchell GA, Prentki M. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling. Diabetologia 2006; 49:2120-30. [PMID: 16868750 DOI: 10.1007/s00125-006-0305-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Accepted: 04/11/2006] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes. MATERIALS AND METHODS NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats. RESULTS Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5-8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride-fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent. CONCLUSIONS/INTERPRETATION The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride-fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity.
Collapse
Affiliation(s)
- C J Nolan
- Molecular Nutrition Unit and Montreal Diabetes Research Center, University of Montreal and Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rabaglia ME, Gray-Keller MP, Frey BL, Shortreed MR, Smith LM, Attie AD. Alpha-Ketoisocaproate-induced hypersecretion of insulin by islets from diabetes-susceptible mice. Am J Physiol Endocrinol Metab 2005; 289:E218-24. [PMID: 15741243 DOI: 10.1152/ajpendo.00573.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Most patients at risk for developing type 2 diabetes are hyperinsulinemic. Hyperinsulinemia may be a response to insulin resistance, but another possible abnormality is insulin hypersecretion. BTBR mice are insulin resistant and hyperinsulinemic. When the leptin(ob) mutation is introgressed into BTBR mice, they develop severe diabetes. We compared the responsiveness of lean B6 and BTBR mouse islets to various insulin secretagogues. The transamination product of leucine, alpha-ketoisocaproate (KIC), elicited a dramatic insulin secretory response in BTBR islets. The KIC response was blocked by methyl-leucine or aminooxyacetate, inhibitors of branched-chain amino transferase. When dimethylglutamate was combined with KIC, the fractional insulin secretion was identical in islets from both mouse strains, predicting that the amine donor is rate-limiting for KIC-induced insulin secretion. Consistent with this prediction, glutamate levels were higher in BTBR than in B6 islets. The transamination product of glutamate, alpha-ketoglutarate, elicited insulin secretion equally from B6 and BTBR islets. Thus formation of alpha-ketoglutarate is a requisite step in the response of mouse islets to KIC. alpha-Ketoglutarate can be oxidized to succinate. However, succinate does not stimulate insulin secretion in mouse islets. Our data suggest that alpha-ketoglutarate may directly stimulate insulin secretion and that increased formation of alpha-ketoglutarate leads to hyperinsulinemia.
Collapse
Affiliation(s)
- Mary E Rabaglia
- Dept. of Biochemistry, Univ. of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Stressors such as chronic hyperglycemia or hyperlipidemia may lead to insufficient insulin secretion in susceptible individuals, contributing to type 2 diabetes. The molecules mediating this effect are just beginning to be identified. Uncoupling protein (UCP)-2 may be one such negative modulator of insulin secretion. Accumulating evidence shows that beta-cell UCP2 expression is upregulated by glucolipotoxic conditions and that increased activity of UCP2 decreases insulin secretion. Mitochondrial superoxide has been identified as a posttranslational regulator of UCP2 activity in islets; thus, UCP2 may provide protection to beta-cells at one level while simultaneously having detrimental effects on insulin secretion. Interestingly, the latter appears to be the dominant outcome, because UCP2 knockout mice display an increased beta-cell mass and retained insulin secretion capacity in the face of glucolipotoxicity.
Collapse
Affiliation(s)
- Catherine B Chan
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Prince Edward, Canada.
| | | | | | | |
Collapse
|
35
|
Muller YL, Bogardus C, Beamer BA, Shuldiner AR, Baier LJ. A functional variant in the peroxisome proliferator-activated receptor gamma2 promoter is associated with predictors of obesity and type 2 diabetes in Pima Indians. Diabetes 2003; 52:1864-71. [PMID: 12829658 DOI: 10.2337/diabetes.52.7.1864] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma)-2 is a member of the nuclear hormone receptor superfamily that is expressed predominantly in adipocytes and is thought to have a role in energy homeostasis, adipogenesis, and insulin sensitivity. A functional single nucleotide polymorphism (SNP) that predicts a proline to alanine substitution (Pro12Ala) within the coding region of this gene has previously been associated with obesity and type 2 diabetes in several populations. In this study, we identified several novel SNPs in the promoter region of PPARgamma2 and genotyped them, along with the previously identified Pro12Ala SNP. In 241 nondiabetic Pima subjects, the Pro12Ala was associated with whole-body insulin action (P = 0.05), hepatic insulin action (P = 0.03), and fasting plasma insulin concentrations (P = 0.01). One of the promoter SNPs positioned within a putative E2 box was in high linkage disequilibrium (/D'/ = 0.98) with the Pro12Ala. This promoter SNP was similarly associated with whole-body insulin action (P = 0.04) and hepatic insulin action (P = 0.05), but not fasting plasma insulin concentrations. Functional studies in transfected 3T3-L1 cells demonstrated that this single base substitution in the putative E2 box significantly altered transcriptional activity from a luciferase reporter construct. These data indicate that this promoter SNP, via its effect on PPARgamma2 expression, may also have functional consequences on PPARgamma2-activated pathways, and perhaps both the promoter SNP and the Pro12Ala contribute to PPARgamma2-related phenotypes.
Collapse
Affiliation(s)
- Yunhua Li Muller
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona 85016, USA
| | | | | | | | | |
Collapse
|
36
|
Crosson SM, Khan A, Printen J, Pessin JE, Saltiel AR. PTG gene deletion causes impaired glycogen synthesis and developmental insulin resistance. J Clin Invest 2003; 111:1423-32. [PMID: 12727934 PMCID: PMC154451 DOI: 10.1172/jci17975] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein targeting to glycogen (PTG) is a scaffolding protein that targets protein phosphatase 1alpha (PP1alpha) to glycogen, and links it to enzymes involved in glycogen synthesis and degradation. We generated mice that possess a heterozygous deletion of the PTG gene. These mice have reduced glycogen stores in adipose tissue, liver, heart, and skeletal muscle, corresponding with decreased glycogen synthase activity and glycogen synthesis rate. Although young PTG heterozygous mice initially demonstrate normal glucose tolerance, progressive glucose intolerance, hyperinsulinemia, and insulin resistance develop with aging. Insulin resistance in older PTG heterozygous mice correlates with a significant increase in muscle triglyceride content, with a corresponding attenuation of insulin receptor signaling. These data suggest that PTG plays a critical role in glycogen synthesis and is necessary to maintain the appropriate metabolic balance for the partitioning of fuel substrates between glycogen and lipid.
Collapse
Affiliation(s)
- Sean M Crosson
- Department of Medicine, Life Sciences Institute, University of Michigan School of Medicine, Ann Arbor, Michigan 48109-0650, USA
| | | | | | | | | |
Collapse
|
37
|
Zhou YP, Sreenan S, Pan CY, Currie KPM, Bindokas VP, Horikawa Y, Lee JP, Ostrega D, Ahmed N, Baldwin AC, Cox NJ, Fox AP, Miller RJ, Bell GI, Polonsky KS. A 48-hour exposure of pancreatic islets to calpain inhibitors impairs mitochondrial fuel metabolism and the exocytosis of insulin. Metabolism 2003; 52:528-34. [PMID: 12759879 DOI: 10.1053/meta.2003.50091] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Genetic variation in the gene for a cytosolic cysteine protease, calpain-10, increases the susceptibility to type 2 diabetes apparently by altering levels of gene expression. In view of the importance of altered beta-cell function in the pathophysiology of type 2 diabetes, the present study was undertaken to define the effects on insulin secretion of exposing pancreatic islets to calpain inhibitors for 48 hours. Exposure of mouse islets to calpain inhibitors (ALLN, ALLM, E-64-d, MDL 18270, and PD147631) of different structure and mechanism of action for 48 hours reversibly suppresses glucose-induced insulin secretion by 40% to 80%. Exposure of islets to inhibitors of other proteases, ie, cathepsin B and proteasome, did not affect insulin secretion. The 48-hour incubation with calpain inhibitors also attenuates insulin secretory responses to the mitochondrial fuel alpha-ketoisocaproate (KIC). The same incubation also suppresses glucose metabolism and intracellular calcium ([Ca(2+)](i)) responses to glucose or KIC in islets. In summary, long-term inhibition of islet calpain activity attenuates insulin secretion possibly by limiting the rate of glucose metabolism. A reduction of calpain activity in islet could contribute to the development of beta-cell failure in type 2 diabetes thereby providing a link between genetic susceptibility to diabetes and the pathophysiologic manifestations of the disease.
Collapse
Affiliation(s)
- Yun-Ping Zhou
- Departments of Medicine, Neurobiology, Pharmacology and Physiology, Biochemistry and Molecular Biology, Human Genetics, and the Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu YQ, Jetton TL, Leahy JL. beta-Cell adaptation to insulin resistance. Increased pyruvate carboxylase and malate-pyruvate shuttle activity in islets of nondiabetic Zucker fatty rats. J Biol Chem 2002; 277:39163-8. [PMID: 12147706 DOI: 10.1074/jbc.m207157200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-cell biochemical mechanisms that account for the compensatory hyperfunction with insulin resistance (so-called beta-cell adaptation) are unknown. We investigated glucose metabolism in isolated islets from 10-12-week-old Zucker fatty (ZF) and Zucker lean (ZL) rats (results expressed per mg/islet of protein). ZF rats were obese, hyperlipidemic, and normoglycemic. They had a 3.8-fold increased beta-cell mass along with 3-10-fold increases in insulin secretion to various stimuli during pancreas perfusion despite insulin content per milligram of beta-cells being only one-third that of ZL rats. Islet glucose metabolism (utilization and oxidation) was 1.5-2-fold increased in the ZF islets despite pyruvate dehydrogenase activity being 30% lowered compared with the ZL islets. The reason was increased flux through pyruvate carboxylase (PC) and the malate-pyruvate and citrate-pyruvate shuttles based on the following observations (% ZL islets): increased V(max) of PC (160%), malate dehydrogenase (170%), and malic enzyme (275%); elevated concentrations of oxaloacetate (150%), malate (250%), citrate (140%), and pyruvate (250%); and 2-fold increased release of malate from isolated mitochondria. Inhibition of PC by 5 mm phenylacetic acid markedly lowered glucose-induced insulin secretion in ZF and ZL islets. Thus, our results suggest that PC and the pyruvate shuttles are increased in ZF islets, and this accounts for glucose mitochondrial metabolism being increased when pyruvate dehydrogenase activity is reduced. As the anaplerosis pathways are implicated in glucose-induced insulin secretion and the synthesis of glucose-derived lipid and amino acids, our results highlight the potential importance of PC and the anaplerosis pathways in the enhanced insulin secretion and beta-cell growth that characterize beta-cell adaptation to insulin resistance.
Collapse
Affiliation(s)
- Ye Qi Liu
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
39
|
|
40
|
Srinivasan M, Song F, Aalinkeel R, Patel MS. Molecular adaptations in islets from neonatal rats reared artificially on a high carbohydrate milk formula. J Nutr Biochem 2001; 12:575-584. [PMID: 12031263 DOI: 10.1016/s0955-2863(01)00176-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Four day-old rat pups artificially raised on a high carbohydrate (HC) milk formula during their suckling period immediately develop hyperinsulinemia which persists into adulthood despite weaning onto lab chow on day 24. The present study investigates the molecular adaptations in islets isolated from neonatal rats in response to this dietary treatment during their suckling period. There is a significant increase in the level of preproinsulin mRNA and insulin biosynthesis in 12 day-old HC islets compared to islets from age-matched mother-fed (MF) control rats. Pancreatic duodenal homeobox factor-1 (PDX-1) modulates pancreatic ontogeny as well as preproinsulin gene expression in islets from neonatal rats. The mRNA level, DNA binding activity and protein content of PDX-1 are significantly increased in HC islets. The stress-activated protein kinase-2 and phosphatidylinositol 3-kinase have been reported to modulate PDX-1 activity in islets. The mRNA levels of these kinases are increased in HC islets. The mRNA level of upstream stimulatory factor (a modulator of PDX-1 gene expression) is also significantly increased in HC islets. These results indicate that the upregulation of several molecular events, including increases in the gene expression of preproinsulin, transcription factors and kinases may contribute to the chronic hyperinsulinemic state in the HC rats.
Collapse
Affiliation(s)
- M Srinivasan
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 14214, Buffalo, NY, USA
| | | | | | | |
Collapse
|