1
|
Ray A, Dutta D, Ghosh B, Bahadur M. Azoxystrobin induced genotoxicity in Pethia conchonius, a freshwater fish of river Teesta, India. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107135. [PMID: 39488151 DOI: 10.1016/j.aquatox.2024.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Azoxystrobin, a widely used fungicide, can contaminate water bodies through surface run-off, posing a risk to aquatic organisms. This study aimed to assess the genotoxic effects of azoxystrobin on the fish Pethia conchonius. The 96 h lethal concentration (LC50) of azoxystrobin was determined to be 0.514 mg/L. Based on LC50, three sub-lethal concentrations (SLCs) of 0.025 mg/L, 0.0514 mg/L, and 0.103 mg/L were used to expose fish for 96 h. The blood and gill samples were collected at 24 h intervals for analysis. The Micronucleus (MN) and Comet assays were used to evaluate nuclear abnormalities and DNA damage, respectively. The results showed that the frequency of nuclear abnormalities and DNA damage in the exposed groups was significantly higher than the control, with increasing concentrations and duration of exposure. The highest levels of micronuclei, notched and blebbed nuclei, and DNA damage parameters were observed in the group exposed to SLC III for 96 h. These findings indicate that azoxystrobin is highly genotoxic to fish causing severe DNA damage.
Collapse
Affiliation(s)
- Arpita Ray
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, P.O. NBU. Dist. Darjeeling, 734013, West Bengal, India
| | - Debojit Dutta
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, P.O. NBU. Dist. Darjeeling, 734013, West Bengal, India
| | - Bappaditya Ghosh
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, P.O. NBU. Dist. Darjeeling, 734013, West Bengal, India
| | - Min Bahadur
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, P.O. NBU. Dist. Darjeeling, 734013, West Bengal, India.
| |
Collapse
|
2
|
Minaz M. A new herbal anesthetic agent for common carp ( Cyprinus carpio) sedation and anesthesia: nutmeg ( Myristica fragrans) essential oil. Front Vet Sci 2024; 11:1477357. [PMID: 39469587 PMCID: PMC11514786 DOI: 10.3389/fvets.2024.1477357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
In aquaculture, interest in natural essential oils is increasing alongside synthetic anesthetic agents. In this context, the anesthetic efficacy of nutmeg essential oil, which had not been previously tested, was investigated in common carp (Cyprinus carpio). The study, conducted using three different concentrations (800 μL/L "LC", 1,200 μL/L "MC", and 1,400 μL/L "HC"), found that induction times were <3 min for MC and HC, while LC had a longer induction time, exceeding acceptable levels. Within the first 4 h, white blood cells, red blood cells, hemoglobin, and hematocrit levels increased to >5 103/μL, >1 106/μL, >6 g/dL, and >12%, respectively. However, they returned to control levels after 8 h. Histological signs were more severe with higher concentrations, and necrosis was only observed in the HC group. Alkaline comet assay results showed DNA migration only in the HC group. According to the PROMETHEE multi-criteria decision-making model, the LC concentration is suitable for sedation, while the MC concentration should be used for deep anesthesia. The current study demonstrates that nutmeg essential oil can be used as an alternative to commercial synthetic anesthetic agents.
Collapse
Affiliation(s)
- Mert Minaz
- Department of Aquaculture, Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey
| |
Collapse
|
3
|
Badakumar B, Inbakandan D, Venkatnarayanan S, Krishna Mohan TV, Nancharaiah YV, Pandey NK, Veeramani P, Sriyutha Murthy P. Physiological and biochemical response in green mussel Perna viridis subjected to continuous chlorination: Perspective on cooling water discharge criteria. CHEMOSPHERE 2024; 359:142191. [PMID: 38697563 DOI: 10.1016/j.chemosphere.2024.142191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Heavy infestation by Perna viridis has been observed in the sub-seabed seawater intake tunnel and CWS of a tropical coastal power station in-spite of continuous low dose chlorination regime (0.2 ± 0.1 mg L-1) (CLDC), indicating periodical settlement and growth. Continuous arrival of mussels (colonized in the sub seabed tunnel intake section) at the pump house indicated that the mussels were able to tolerate and survive in a chlorinated environment, for varying time periods and were dislodged when they become weak and subsequent death, leading to flushing out of the system. In the present study, effect of continuous chlorination [0.2 mg L-1 (in-plant use); 0.5 mg L-1 (shock dose) & 1.0 mg L-1 (high levels)] was evaluated on mussels to assess; (a) time taken for mortality, (b) action of chlorine on physiological, genetic, metabolic and neuronal processes. 100% mortality of mussels was observed after 15 (0.2 mg L-1); 9 (0.5 mg L-1) and 6 days (1.0 mg L-1) respectively. Extended valve closure due to chlorination resulted in stress, impairing the respiratory and feeding behavior leading to deterioration in mussel health. Pseudofaeces excretion reduced to 68% (0.2 mg L-1); 10% (0.5 mg L-1) and 89% (1.0 mg L-1) compared to controls. Genotoxicity was observed with increase in % tail DNA fraction in all treatments such as 86% (0.2 mg L-1); 76% (0.5 mg L-1) and 85% (1.0 mg L-1). Reactive Oxygen Species (ROS) stress biomarkers increased drastically/peaked within the first 3 days of continuous chlorination with subsequent quenching by antioxidant enzymes. Gill produced highest generation of ROS; 38% (0.2 mg L-1); 97% (0.5 mg L-1); 98% (1.0 mg L-1). Additionally, it was shown that 84% (0.2 mg L-1), 72% (0.5 mg L-1), and 80.4% (1.0 mg L-1) of the neurotransmitter acetylcholinesterase activity was inhibited by chlorine at the nerve synapse. The cumulative impact of ROS generation, neuronal toxicity, and disrupted functions weakens the overall health of green mussels resulting in mortality.
Collapse
Affiliation(s)
- Bandita Badakumar
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India; Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India
| | - D Inbakandan
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India.
| | - S Venkatnarayanan
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India
| | - T V Krishna Mohan
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - N K Pandey
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India
| | - P Veeramani
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India
| | - P Sriyutha Murthy
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
4
|
Hasnain A, Dadkhah-Aghdash H, Luqman M, Muhammad S, Sardar AA, Ali S, Mehmood F, Khan UA, Mehmood Z, John A, Binyameen, Khan ZI, Yang HH, Farooq Awan MU. Impact of automobile exhaust on biochemical and genomorphic characteristics of Mimusops elengi L. growing along roadsides of Lahore city, Pakistan. Heliyon 2024; 10:e28157. [PMID: 38524624 PMCID: PMC10958417 DOI: 10.1016/j.heliyon.2024.e28157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Automobile exhaust releases different types of pollutants that are at great risk to the air quality of the environment and incidental distress to the nature of roadside plants. Mimusops elengi L. is an evergreen medicinal tree cultivated along the roadside of Lahore City. This research aimed to investigate physiological, morphological and genomorphic characteristics of M. elengi under the influence of air pollution from vehicles. Healthy and mature leaves were collected from trees on Canal Bank and Mall roads of Lahore as the experimental sites and control sites were 20 km away from the experimental site. Different physiochemical, morphological, air pollution tolerance index (APTI) and molecular analysis for the detection of DNA damage were performed through comet assay. The results demonstrated the mean accumulated Cd, Pb, Cu and Ni heavy metal contents on the leaves were higher than the control plants (1.27, 3.22, 1.32 and 1.46 μg mg-1). APTI of trees was 9.04. Trees in these roads significantly (p < 0.01) had a lower leaf area, petiole length and leaf dry matter content in comparison to control site. Increased comet tail showed that DNA damage was higher for roadside trees than trees in the control area. For tolerance of air pollution, it necessary to check the APTI value for the M. elengi at the polluted road side of Lahore city. For long-term screening, the source and type of pollutants and consistent monitoring of various responses given by the trees should be known.
Collapse
Affiliation(s)
- Ali Hasnain
- Department of Botany, Government College University, Lahore, 54000, Pakistan
| | - Hamed Dadkhah-Aghdash
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Muhammad Luqman
- Department of Environmental Sciences, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Sohaib Muhammad
- Department of Botany, Government College University, Lahore, 54000, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Farhat Mehmood
- Department of Botany, Government College University, Lahore, 54000, Pakistan
| | - Usman Ahmed Khan
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, 54000, Pakistan
| | - Zahid Mehmood
- Department of Botany, Government College University, Lahore, 54000, Pakistan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 413310, Taiwan
| | - Arooba John
- Department of Botany, Government College University, Lahore, 54000, Pakistan
| | - Binyameen
- Department of Botany, Government College University, Lahore, 54000, Pakistan
| | - Zafar Iqbal Khan
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Hsi-Hsien Yang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 413310, Taiwan
| | | |
Collapse
|
5
|
Wang Q, Tang J, Pan L, Song A, Miao J, Zheng X, Li Z. Study on epigenotoxicity, sex hormone synthesis, and DNA damage of benzo[a]pyrene in the testis of male Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169340. [PMID: 38110097 DOI: 10.1016/j.scitotenv.2023.169340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Research on the mechanisms of reproductive toxicity caused by persistent organic pollutants (POPs) in marine animals has received significant attention. One group of typical POPs, called polycyclic aromatic hydrocarbons (PAHs), has been found to cause various reproductive toxicities in aquatic organisms, including epigenotoxicity, reproductive endocrine disruption, DNA damage effects and other reproductive toxicity, thereby affecting gonadal development. Interestingly, male aquatic animals are more susceptible to the disturbance and toxicity of environmental pollutants. However, current studies primarily focus on vertebrates, leaving a large gap in our understanding of the reproductive toxicity and mechanisms of PAHs interference in marine invertebrates. In this study, male Ruditapes philippinarum was used as an experimental subject to investigate reproduction-related indexes in clams under the stress of benzo[a]pyrene (B[a]P) at different concentrations (0, 0.8, 4 and 20 μg/L) during the proliferative, growth, maturity, and spawning period. We analyzed the molecular mechanisms of reproductive toxicity caused by PAHs in marine bivalves, specifically epigenotoxicity, reproductive endocrine disruption, and gonadal damage-apoptotic effect. The results suggest that DNA methylation plays a crucial role in mediating B[a]P-induced reproductive toxicity in male R. philippinarum. B[a]P may affect sex hormone levels, impede spermatogenesis and testis development in clams, by inhibiting the steroid hormone synthesis pathway and downregulating genes critical for cell proliferation, testis development, and spermatid expulsion. Moreover, the spermatids of male R. philippinarum were severely impaired under the B[a]P stress, leading to reduced reproductive performance in the clams. These findings contribute to a better understanding of the reproductive toxicity response of male marine invertebrates to POPs stress.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jian Tang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Aimin Song
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
6
|
Wang Q, Zhou X, Jin Q, Zhu F. Effects of the aquatic pollutant sulfamethoxazole on the innate immunity and antioxidant capacity of the mud crab Scylla paramamosain. CHEMOSPHERE 2024; 349:140775. [PMID: 38013024 DOI: 10.1016/j.chemosphere.2023.140775] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/01/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Sulfamethoxazole (SMZ) is commonly used in aquaculture to treat bacterial infections, but its long-term residual properties in natural water can pose a direct threat to aquatic animals. This study is to investigate the effects of continuous exposure to SMZ on mud crabs (Scylla paramamosain) at four different concentrations (0, 10, 100, and 1000 ng/L) that reflect the range found in natural aquatic environments. The results confirmed that SMZ exposure reduced the expression levels of genes related to the innate immunity in mud crabs, including JAK, Astakine, TLR, and Crustin. It also stimulated oxidative stress, caused the production of reactive oxygen species and lower activities of antioxidant enzymes such as peroxidase, superoxide dismutase, catalase, and glutathione. SMZ exposure damaged the DNA of crab hemocytes and hepatopancreas tissue, and reduced the phagocytosis, ultimately leading to a decreased survival rates of mud crabs infected with Vibrio alginolyticus. These findings demonstrate that SMZ exposure has immunotoxic effects on mud crabs' innate immunity and reduces the ability to resist pathogen infections.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Xiujuan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Qingri Jin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
7
|
Ribeiro O, Gaivão I, Carrola JS. Alkaline Comet Assay to Assess Genotoxicity in Zebrafish Larvae. Methods Mol Biol 2024; 2753:503-514. [PMID: 38285363 DOI: 10.1007/978-1-0716-3625-1_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The zebrafish (Danio rerio) is a model organism widely used in several research fields due to its characteristics and numerous advantages, such as optical embryo transparency, fully sequenced genome, orthologous genes to humans, small size, high reproductive rate, easy gene editing and relatively low costs. Thus, a number of protocols have been developed that allow the use of this vertebrate model for toxic effect evaluation at various biological levels, including genotoxicity, using the comet assay technique.The comet assay or single-cell gel electrophoresis is a popular and sensitive method to study DNA damage in cells, which is described in this chapter. Briefly, cells suspended in agarose on a microscope slide are lysed, denatured, electrophoresed, neutralized, and stained to study the migration of DNA strand breaks. As a result, cells with increased DNA damage present a high fluorescence intensity and an increase of comet tail length. For the visual score, comets are classified according to the head integrity, tail intensity, and tail length into five classes, namely, class 0 until class 4 (comets with high damage and with almost all the DNA in the tail). These data are used to calculate the Genetic Damage Index (GDI) expressed as Arbitrary Units (AU).
Collapse
Affiliation(s)
- Ondina Ribeiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), Vila Real, Portugal
| | - Isabel Gaivão
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - João Soares Carrola
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Vila Real, Portugal.
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), Vila Real, Portugal.
| |
Collapse
|
8
|
Dutta D, Ray A, Ghosh B, Bahadur M. Assessment of imidacloprid induced genotoxicity in Pethia conchonius (Rosy barb), a common freshwater fish of India. Drug Chem Toxicol 2024; 47:101-114. [PMID: 37326304 DOI: 10.1080/01480545.2023.2222931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Imidacloprid is one of the highly efficient, globally used neonicotinoid groups of insecticides. The indiscriminate use of imidacloprid is contaminating large water bodies affecting not only the target organisms but also non-target organisms including fish. The present study aimed to assess the extent of nuclear DNA damage by imidacloprid in Pethia conchonius a freshwater fish in India using comet and micronucleus assays. The LC50 value of imidacloprid was estimated to be 227.33 mg L-1. Based on the LC50-96 h value, three sub-lethal concentrations of imidacloprid, SLC I -18.94 mg L-1, SLC II -28.41 mg L-1 and SLC III -56.83 mg L-1 were used to detect its genotoxic effect at DNA and cellular level. The imidacloprid exposed fishes exhibited higher DNA damage and nuclear abnormalities (p < 0.05) than the control. The %head DNA, %tail DNA, tail length and the frequency of micronuclei with other nuclear abnormalities like blebbed and notched nuclei were significantly higher than the control in a time and concentration-dependent manner. The DNA damage parameters such as %head DNA (29.107 ± 1.843), %tail DNA (70.893 ± 1.843), tail length (361.431 ± 8.455) micronucleus (1.300 ± 0.019), notched (0.844 ± 0.011) and blebbed (0.811 ± 0.011) nuclei were found to be highest for SLC III (56.83 mg L-1) at 96 h. The findings indicate that IMI is highly genotoxic in fish and other vertebrates leading to mutagenic/clastogenic effects. The study will be helpful in optimization of the imidacloprid use.
Collapse
Affiliation(s)
- Debojit Dutta
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, India
| | - Arpita Ray
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, India
| | - Bappaditya Ghosh
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, India
| | - Min Bahadur
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, India
| |
Collapse
|
9
|
Rivero-Wendt CLG, Miranda Vilela AL, GarciaFernandes L, Negreli Santos A, Leal I, Jaques J, Fernandes CE. Cytogenotoxic potential and toxicity in adult Danio rerio (zebrafish) exposed to chloramine T. PeerJ 2023; 11:e16452. [PMID: 38077413 PMCID: PMC10702335 DOI: 10.7717/peerj.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Background Chloramine-T (CL-T) is a synthetic sodium salt used as a disinfectant in fish farms to combat bacterial infections in fish gills and skin. While its efficacy in pathogen control is well-established, its reactivity with various functional groups has raised concerns. However, limited research exists on the toxicity of disinfection by-products to aquatic organisms. Therefore, this study aims to assess the sublethal effects of CL-T on adult zebrafish by examining biomarkers of nucleus cytotoxicity and genotoxicity, acetylcholinesterase (AChE) inhibition, and histopathological changes. Methods Male and female adult zebrafish (wildtype AB lineage) specimens were exposed to 70, 140, and 200 mg/L of CL-T and evaluated after 96 h. Cytotoxic and genotoxic effects were evaluated by estimating the frequencies of nuclear abnormalities (NA), micronuclei (MN), and integrated optical density (IOD) of nuclear erythrocytes. Histopathological changes in the gills and liver were assessed using the degree of tissue changes (DTC). AChE activity was measured in brain samples. Results and conclusions At a concentration of 200 mg/L, NA increased, indicating the cytogenotoxic potential of CL-T in adult zebrafish. Morphological alterations in the nuclei were observed at both 70 and 200 mg/L concentrations. Distinct IOD profiles were identified across the three concentrations. There were no changes in AChE activity in adult zebrafish. The DTC scores were high in all concentrations, and histological alterations suggested low to moderate toxicity of CL-T for adult zebrafish.
Collapse
Affiliation(s)
- Carla Letícia Gediel Rivero-Wendt
- Institute of Bioscience, Federal University of Mato Grosso do Sul, Laboratory of Experimental Pathology, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Luana GarciaFernandes
- Institute of Bioscience, Federal University of Mato Grosso do Sul, Laboratory of Experimental Pathology, Campo Grande, Mato Grosso do Sul, Brazil
| | - Andreza Negreli Santos
- Institute of Bioscience, Federal University of Mato Grosso do Sul, Multicenter Graduate Program in Biochemistry and Molecular Biology, Campo Grande, Mato Grosso do Sul, Brazil
| | - Igor Leal
- Institute of Bioscience, Federal University of Mato Grosso do Sul, Multicenter Graduate Program in Biochemistry and Molecular Biology, Campo Grande, Mato Grosso do Sul, Brazil
| | - Jeandre Jaques
- Institute of Bioscience, Federal University of Mato Grosso do Sul, Multicenter Graduate Program in Biochemistry and Molecular Biology, Campo Grande, Mato Grosso do Sul, Brazil
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Graduate Program in Pharmaceutical Sciences, Campo Grande, Mato Grosso do Sul, Brazil
| | - Carlos Eurico Fernandes
- Institute of Bioscience, Federal University of Mato Grosso do Sul, Laboratory of Experimental Pathology, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
10
|
Cant A, Bado-Nilles A, Porcher JM, Bolzan D, Prygiel J, Catteau A, Turiès C, Geffard A, Bonnard M. Application of the Fpg-modified comet assay on three-spined stickleback in freshwater biomonitoring: toward a multi-biomarker approach of genotoxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-30756-6. [PMID: 37989949 DOI: 10.1007/s11356-023-30756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Aquatic species are exposed to a wide spectrum of substances, which can compromise their genomic integrity by inducing DNA damage or oxidative stress. Genotoxicity biomarkers as DNA strand breaks and chromosomal damages developed on sentinel species have already proved to be relevant in aquatic biomonitoring. However, these biomarkers do not reflect DNA oxidative lesions, i.e., the 8-oxodG, recognized as pre-mutagenic lesion if not or mis-repaired in human biomonitoring. The relevance to include the measure of these lesions by using the Fpg-modified comet assay on erythrocytes of the three-spined stickleback was investigated. An optimization step of the Fpg-modified comet assay considering enzyme buffer impact, Fpg concentration, and incubation time has been performed. Then, this measure was integrated in a battery of genotoxicity and cytotoxicity biomarkers (considering DNA strand breaks, DNA content variation, and cell apoptosis/necrosis and density) and applied in a freshwater monitoring program on six stations of the Artois Picardie watershed (3-week caging of control fish). These biomarkers allowed to discriminate the stations regarding the genotoxic potential of water bodies and specifically by the measure of oxidative DNA lesions, which seem to be a promising tool in environmental genotoxicity risk assessment.
Collapse
Affiliation(s)
- Amélie Cant
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France
| | - Anne Bado-Nilles
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
| | - Dorothée Bolzan
- Agence de L'Eau Artois-Picardie, Centre Tertiaire de L'Arsenal, BP 80818, 59508, Douai Cedex, France
| | - Jean Prygiel
- Agence de L'Eau Artois-Picardie, Centre Tertiaire de L'Arsenal, BP 80818, 59508, Douai Cedex, France
| | - Audrey Catteau
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France
| | - Cyril Turiès
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France.
| |
Collapse
|
11
|
Shin YK, Seo DY, Eom HJ, Park M, Lee M, Choi YE, Han YS, Rhee JS, Kim YJ. Oxidative Stress and DNA Damage in Pagrus major by the Dinoflagellate Karenia mikimotoi. Toxins (Basel) 2023; 15:620. [PMID: 37888651 PMCID: PMC10611101 DOI: 10.3390/toxins15100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Karenia mikimotoi is a common species of red tide dinoflagellate that causes the mass mortality of marine fauna in coastal waters of Republic of Korea. Despite continuous studies on the ecophysiology and toxicity of K. mikimotoi, the underlying molecular mechanisms remain poorly understood. Red sea bream, Pagrus major, is a high-value aquaculture fish species, and the coastal aquaculture industry of red sea bream has been increasingly affected by red tides. To investigate the potential oxidative effects of K. mikimotoi on P. major and the molecular mechanisms involved, we exposed the fish to varying concentrations of K. mikimotoi and evaluated its toxicity. Our results showed that exposure to K. mikimotoi led to an accumulation of reactive oxygen species (ROS) and oxidative DNA damage in the gill tissue of P. major. Furthermore, we found that K. mikimotoi induced the activation of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, in the gill tissue of P. major, with a significant increase in activity at concentrations above 5000 cells/mL. However, the activity of glutathione S-transferase did not significantly increase at the equivalent concentration. Our study confirms that oxidative stress and DNA damage is induced by acute exposure to K. mikimotoi, as it produces ROS and hypoxic conditions in P. major. In addition, it was confirmed that gill and blood samples can be used as biomarkers to detect the degree of oxidative stress in fish. These findings have important implications for the aquaculture of red sea bream, particularly in the face of red tide disasters.
Collapse
Affiliation(s)
- Yun Kyung Shin
- National Institute of Fisheries Science, Busan 46083, Republic of Korea;
| | - Do Yeon Seo
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; (D.Y.S.); (H.-J.E.); (Y.-E.C.)
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22012, Republic of Korea
| | - Hye-Jin Eom
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; (D.Y.S.); (H.-J.E.); (Y.-E.C.)
| | - Mira Park
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea;
| | - Minji Lee
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea;
| | - Young-Eun Choi
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; (D.Y.S.); (H.-J.E.); (Y.-E.C.)
- Eco Sustainable Solution Center Korea Conformity Laboratories, Incheon 40684, Republic of Korea
| | - Young-Seok Han
- Neo Environmental Business Co., Bucheon 14523, Republic of Korea;
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; (D.Y.S.); (H.-J.E.); (Y.-E.C.)
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea;
- Yellow Sea Research Institute, Incheon 22012, Republic of Korea
| | - Youn-Jung Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; (D.Y.S.); (H.-J.E.); (Y.-E.C.)
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea;
- Yellow Sea Research Institute, Incheon 22012, Republic of Korea
| |
Collapse
|
12
|
Khan S, Qamar Z, Khan A, Waqas M, Nawab J, Khisroon M, Khan A. Genotoxic effects of polycyclic aromatic hydrocarbons (PAHs) present in vehicle-wash wastewater on grass carp (Ctenopharyngodon idella) and freshwater mussels (Anodonta cygnea). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121513. [PMID: 37030598 DOI: 10.1016/j.envpol.2023.121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Vehicle-wash wastewater (VWW) contains high levels of various petrochemicals such as polycyclic aromatic hydrocarbons (PAHs), a carcinogenic category of organic substances. However, the genotoxic effects of PAHs present in VWW remain largely unknown. We explored the genotoxic effects of PAHs present in VWW on fish grass carp (Ctenopharyngodon idella) and freshwater mussels (Anodonta cygnea). Fish and freshwater mussels were divided into control and exposed groups, the prior groups were treated at weekly intervals with clean water, and the latter with Σ16PAHs contaminated VWW for up to four weeks. The samples of blood from fish and haemolymph from freshwater mussels were collected and analyzed using the comet assay technique. Results exhibited that in control fish and freshwater mussel groups the genotoxicity decreased with every week passing following the order of W1 > W2 > W3 > W4, ranging from 8.33 ± 3.06 to 25.3 ± 4.62 and from 46.0 ± 6.93 to 7.67 ± 3.79, respectively. The exposed fish and freshwater mussel groups indicated an increase in genotoxicity with increasing week intervals with an order of W4 > W3 > W2 > W1, ranging from 55.7 ± 11.9 to 128.3 ± 10.0 and from 112.7 ± 8.50 to 183.3 ± 10.1, respectively. The genotoxic effect of Σ16PAHs on fish was comparatively lower than on freshwater mussels. This study elucidates that VWW is highly genotoxic and should be treated before discharging into aquatic ecosystems.
Collapse
Affiliation(s)
- Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan; Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Zahir Qamar
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Ajmal Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan; Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Waqas
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan; Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Javed Nawab
- Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhmmmad Khisroon
- Department of Zoology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Ajmal Khan
- Department of Zoology, University of Peshawar, Peshawar, 25120, Pakistan
| |
Collapse
|
13
|
Standards for Quantitative Measurement of DNA Damage in Mammalian Cells. Int J Mol Sci 2023; 24:ijms24065427. [PMID: 36982502 PMCID: PMC10051712 DOI: 10.3390/ijms24065427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
As the potential applications of DNA diagnostics continue to expand, there is a need for improved methods and standards for DNA analysis. This report describes several methods that could be considered for the production of reference materials for the quantitative measurement of DNA damage in mammalian cells. With the focus on DNA strand breaks, potentially useful methods for assessing DNA damage in mammalian cells are reviewed. The advantages and limitations of each method, as well as additional concerns with respect to reference material development, are also discussed. In conclusion, we outline strategies for developing candidate DNA damage reference materials that could be adopted by research laboratories in a wide variety of applications.
Collapse
|
14
|
Collins A, Møller P, Gajski G, Vodenková S, Abdulwahed A, Anderson D, Bankoglu EE, Bonassi S, Boutet-Robinet E, Brunborg G, Chao C, Cooke MS, Costa C, Costa S, Dhawan A, de Lapuente J, Bo' CD, Dubus J, Dusinska M, Duthie SJ, Yamani NE, Engelward B, Gaivão I, Giovannelli L, Godschalk R, Guilherme S, Gutzkow KB, Habas K, Hernández A, Herrero O, Isidori M, Jha AN, Knasmüller S, Kooter IM, Koppen G, Kruszewski M, Ladeira C, Laffon B, Larramendy M, Hégarat LL, Lewies A, Lewinska A, Liwszyc GE, de Cerain AL, Manjanatha M, Marcos R, Milić M, de Andrade VM, Moretti M, Muruzabal D, Novak M, Oliveira R, Olsen AK, Owiti N, Pacheco M, Pandey AK, Pfuhler S, Pourrut B, Reisinger K, Rojas E, Rundén-Pran E, Sanz-Serrano J, Shaposhnikov S, Sipinen V, Smeets K, Stopper H, Teixeira JP, Valdiglesias V, Valverde M, van Acker F, van Schooten FJ, Vasquez M, Wentzel JF, Wnuk M, Wouters A, Žegura B, Zikmund T, Langie SAS, Azqueta A. Measuring DNA modifications with the comet assay: a compendium of protocols. Nat Protoc 2023; 18:929-989. [PMID: 36707722 PMCID: PMC10281087 DOI: 10.1038/s41596-022-00754-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/05/2022] [Indexed: 01/28/2023]
Abstract
The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to human. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/apyrimidinic sites), alkylated and oxidized nucleobases, DNA-DNA crosslinks, UV-induced cyclobutane pyrimidine dimers and some chemically induced DNA adducts. Depending on the specimen type, there are important modifications to the comet assay protocol to avoid the formation of additional DNA damage during the processing of samples and to ensure sufficient sensitivity to detect differences in damage levels between sample groups. Various applications of the comet assay have been validated by research groups in academia, industry and regulatory agencies, and its strengths are highlighted by the adoption of the comet assay as an in vivo test for genotoxicity in animal organs by the Organisation for Economic Co-operation and Development. The present document includes a series of consensus protocols that describe the application of the comet assay to a wide variety of cell types, species and types of DNA damage, thereby demonstrating its versatility.
Collapse
Affiliation(s)
- Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Soňa Vodenková
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Abdulhadi Abdulwahed
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Diana Anderson
- Biomedical Sciences Department, University of Bradford, Bradford, UK
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome, Italy
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Gunnar Brunborg
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Christy Chao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Carla Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Solange Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Alok Dhawan
- Centre of BioMedical Research, SGPGIMS Campus, Lucknow, India
| | - Joaquin de Lapuente
- Toxicology Department, AC MARCA Group, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Julien Dubus
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-Lez-Durance, France
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Susan J Duthie
- School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, Scotland
| | - Naouale El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Bevin Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Isabel Gaivão
- Genetics and Biotechnology Department and Veterinary and Animal Research Centre (CECAV), Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Lisa Giovannelli
- Department NEUROFARBA, Section Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Roger Godschalk
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Sofia Guilherme
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Kristine B Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Khaled Habas
- School of Chemistry and Bioscience, Faculty of Life Sciences, Bradford University, Bradford, UK
| | - Alba Hernández
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola de Vallès, Spain
| | - Oscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Marina Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Siegfried Knasmüller
- Institute of Cancer Research, Internal Medicine I, Medical University Vienna, Vienna, Austria
| | - Ingeborg M Kooter
- Department Circular Economy and Environment, the Netherlands Organisation for Applied Scientific Research-TNO, Utrecht, The Netherlands
| | | | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Carina Ladeira
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Blanca Laffon
- Universidade da Coruña, Grupo DICOMOSA, CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Psicología, Facultad de Ciencias de la Educación, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Marcelo Larramendy
- Laboratory of Ecotoxicology, Faculty of Natural Sciences and Museum, National University of La Plata, La Plata, Argentina
| | - Ludovic Le Hégarat
- Anses, French Agency for Food, Environmental and Occupational Health and Safety, Fougeres Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Angélique Lewies
- Department of Cardiothoracic Surgery, University of the Free State, Bloemfontein, South Africa
| | - Anna Lewinska
- Department of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Guillermo E Liwszyc
- Laboratory of Ecotoxicology, Faculty of Natural Sciences and Museum, National University of La Plata, La Plata, Argentina
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Mugimane Manjanatha
- Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, Jefferson, AR, USA
| | - Ricard Marcos
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola de Vallès, Spain
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vanessa Moraes de Andrade
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, University of Southern Santa Catarina, Criciuma, Brazil
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Perugia, Italy
| | - Damian Muruzabal
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Rui Oliveira
- Department of Biology, CBMA-Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Ann-Karin Olsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Norah Owiti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mário Pacheco
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Alok K Pandey
- Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Stefan Pfuhler
- Global Product Stewardship - Human Safety, The Procter & Gamble Co, Cincinnati, OH, USA
| | - Bertrand Pourrut
- Laboratoire Ecologie fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Emilio Rojas
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CU, Mexico City, Mexico
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Julen Sanz-Serrano
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | | | - Ville Sipinen
- Norwegian Scientific Committee for Food and Environment, Oslo, Norway
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Vanessa Valdiglesias
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Universidade da Coruña, Grupo NanoToxGen, CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Biología, Facultad de Ciencias, A Coruña, Spain
| | - Mahara Valverde
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CU, Mexico City, Mexico
| | | | - Frederik-Jan van Schooten
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | | | | | - Maciej Wnuk
- Department of Biology, University of Rzeszow, Rzeszow, Poland
| | - Annelies Wouters
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tomas Zikmund
- Biocev, 1st Medical Faculty, Charles University, Vestec, Czech Republic
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Sabine A S Langie
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
15
|
Dash MK, Rahman MS. Molecular and biochemical responses to tributyltin (TBT) exposure in the American oyster: Triggers of stress-induced oxidative DNA damage and prooxidant-antioxidant imbalance in tissues by TBT. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109523. [PMID: 36427667 DOI: 10.1016/j.cbpc.2022.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Environmental pollution increases due to anthropogenic activities. Toxic chemicals in the environment affect the health of aquatic organisms. Tributyltin (TBT) is a toxic chemical widely used as an antifouling paint on boats, hulls, and ships. The toxic effect of TBT is well documented in aquatic organisms; however, little is known about the effects of TBT on DNA lesions in shellfish. The American oyster (Crassostrea virginica, an edible and commercially important species) is an ideal marine mollusk to examine the effects of TBT exposure on DNA lesions and oxidative/nitrative stress. In this study, we investigated the effects of TBT on 8'-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), dinitrophenyl protein (DNP, a biomarker on reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, a biomarker of reactive nitrogen species, RNS), catalase (CAT, an antioxidant), and acetylcholinesterase (AChE, a cholinergic enzyme) expressions in the gills and digestive glands of oysters. We also analyzed extrapallial (EF) fluid conditions. Immunohistochemical and qRT-PCR results showed that TBT exposure significantly increased 8-OHdG, dsDNA, DNP, NTP, and CAT mRNA and/or protein expressions in the gills and digestive glands. However, AChE mRNA and protein expressions, and EP fluid pH and protein concentrations were decreased in TBT-exposed oysters. Taken together, these results suggest that antifouling biocide-induced production of ROS/RNS results in DNA damage, which may lead to decreased cellular functions in oysters. To the best of our knowledge, the present study provides the first molecular/biochemical evidence that TBT exposure results in oxidative/nitrative stress and DNA lesions in oysters.
Collapse
Affiliation(s)
- Mohan Kumar Dash
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA; Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
16
|
Santos APR, Silva LZ, Freire BM, da Silva Faria MC, Batista BL, Rocha BA, Barbosa F, Rodrigues JL. Artisanal Gem Mining in Brazil: A Source of Genotoxicity and Exposure to Toxic Elements. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2510. [PMID: 36767878 PMCID: PMC9916162 DOI: 10.3390/ijerph20032510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Environmental and occupational exposure to toxic metals has led many people around the world to have serious health problems. Mining activities contribute to an increased risk of exposure to these elements. In this work, a study of environmental biomonitoring and routes of exposure to toxic metals in a region of artisanal mining was performed. This study was carried out in the district of Taquaral de Minas, located in the Jequitinhonha Valley in the state of Minas Gerais. The valley is one of the wealthiest and highest gem-producing areas in Brazil. Five artisanal mines were sampled (Bode, Pirineu, Pinheira, Lajedo, and Marmita). Several potentially toxic metals (Be, Zn, Mn, Ba Cd, Hg, and U) were investigated in the soils and dust over the rocks and the soils. Samples from 22 individuals occupationally exposed and 17 unexposed persons, who formed the reference group, were analyzed for trace elements by an inductively coupled plasma mass spectrometer. The genotoxicity was evaluated by the micronucleus test in buccal mucosa epithelial cells, where the following changes were scored: micronuclei (MN) binucleate (BN) cells and kariolytic (KL) cells. The MN test showed significantly increased frequencies in all alterations of exposed individuals compared to the controls (p < 0.05, Student's t-test). The urine analysis showed levels of Cr, Ni Ba, Pb, and As in the blood, which were higher than the ATSDR recommended levels. The association between the MN test and the trace element concentrations found in the blood and urine was significant (p < 0.05). The higher the number of years of working, the higher the concentrations in the blood were, due to chronic exposure. The results of the present study indicate environmental contamination and a potential risk to the health of miners, suggesting an intervention.
Collapse
Affiliation(s)
- Ana Paula Rufino Santos
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Lucas Zeferino Silva
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Bruna Moreira Freire
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil
| | - Márcia Cristina da Silva Faria
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil
| | - Bruno Alves Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/no, Ribeirao Preto 14040-903, SP, Brazil
| | - Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/no, Ribeirao Preto 14040-903, SP, Brazil
| | - Jairo Lisboa Rodrigues
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| |
Collapse
|
17
|
The effect of low doses of chlorpyrifos on blood and bone marrow cells in Wistar rats. Arh Hig Rada Toksikol 2022; 73:223-232. [PMID: 36226822 PMCID: PMC9837532 DOI: 10.2478/aiht-2022-73-3665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/01/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the genotoxic potential of low doses of chlorpyrifos (CPF) on blood and bone marrow cells in adult male Wistar rats. CPF was administered by oral gavage at daily doses of 0.010, 0.015, and 0.160 mg/kg of body weight (bw) for 28 consecutive days. Positive control (PC) was administered 300 mg/kg bw/day of ethyl methane sulphonate (EMS) for the final three days of the experiment. Toxic outcomes of exposure were determined with the in vivo micronucleus (MN) assay and alkaline comet assay. The 28-day exposure to the 0.015 mg/kg CPF dose, which was three times higher than the current value of acute reference dose (ARfD), reduced body weight gain in rats the most. The in vivo MN assay showed significant differences in number of reticulocytes per 1000 erythrocytes between PC and negative control (NC) and between all control groups and the groups exposed to 0.015 and 0.160 mg/kg bw/day of CPF. The number of micronucleated polychromatic erythrocytes per 2000 erythrocytes was significantly higher in the PC than the NC group or group exposed to 0.015 mg/kg bw/day of CPF. CPF treatment did not significantly increase primary DNA damage in bone marrow cells compared to the NC group. However, the damage in bone marrow cells of CPF-exposed rats was much higher than the one recorded in leukocytes, established in the previous research. Both assays proved to be successful for the assessment of CPFinduced genome instability in Wistar rats. However, the exact mechanisms of damage have to be further investigated and confirmed by other, more sensitive methods.
Collapse
|
18
|
Xu R, Pan L, Zhou Y, Gao Z, Miao J, Yang Y, Li D. Reproductive toxicity induced by benzo[a]pyrene exposure: first exploration highlighting the multi-stage molecular mechanism in female scallop Chlamys farreri. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48675-48693. [PMID: 35195870 DOI: 10.1007/s11356-022-19235-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Reproductive toxicity induced by benzo[a]pyrene (B[a]P) exposure has received great ecotoxicological concerns. However, huge gaps on the molecular mechanism still exist in bivalves. In this study, reproduction-related indicators were investigated in female scallops Chlamys farreri during life cycle of proliferative, growth, mature, and spawn stages, under gradient concentrations of B[a]P at 0, 0.04, 0.4, and 4 μg/L. Meanwhile, a multi-stage ovarian transcriptome analysis under 4 μg/L B[a]P exposure was also conducted to elucidate the potential molecular mechanisms. The results indicated that life-cycle exposure to 0.4 and 4 μg/L B[a]P significantly decreased GSI and sex steroid levels. Even 0.04 μg/L B[a]P could play the adverse role in DNA integrity at the mature and spawn stages. Ovarian histological sections showed that B[a]P inhibited the maturation and release of oocytes. Through the functional enrichment analysis of differentially expressed genes (DEGs) from transcriptome data, 18 genes involved in endocrine disruption effects, DNA damage and repair, and oogenesis were selected and further determined by qRT-PCR. The downregulation of genes involved in steroidogenic and estrogen signaling pathways indicated that B[a]P could cause endocrine disruption through both receptor-dependent and receptor-independent pathways. The variations of gene expressions involved in DNA single-strand break and repair implied the presence of toxic mechanisms similar with vertebrates. Additionally, the changes of gene expressions of cell cycle, apoptosis, and cell adhesion suggested that exposure to B[a]P possibly caused the reproductive toxicity effects by affecting oogenesis. Taken together, this study was a pioneer in combining genome-wide transcriptomic analysis with its corresponding reproductive indicators (GSI, sex steroid levels, DNA single-strand break, and histological sections) to explore the bivalves' toxic mechanisms under B[a]P exposure. Meanwhile, some genes involved in estrogen signaling pathway and DNA damage were firstly analyzed in bivalves, and the expression data might be useful in establishing new hypotheses and discovering new biomarkers for marine biomonitoring.
Collapse
Affiliation(s)
- Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China.
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| |
Collapse
|
19
|
Naguib M, Mekkawy IA, Mahmoud UM, Sayed AEDH. Genotoxic evaluation of silver nanoparticles in catfish Clarias gariepinus erythrocytes; DNA strand breakage using comet assay. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
20
|
Sayed AEDH, Hamed M, Soliman HAM, Authman MMN. The protective role of lycopene against toxic effects induced by the herbicide Harness® and its active ingredient acetochlor on the African catfish Clarias gariepinus (Burchell, 1822). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14561-14574. [PMID: 34617222 DOI: 10.1007/s11356-021-16518-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
The effects of Harness® toxicity on fish health are little known. So, current work aimed to study the impact of sub-lethal doses of Harness® (an acetochlor-based herbicide) on the African catfish, Clarias gariepinus, and also investigated the potential role of lycopene (LYCO) administration in alleviating Harness® negative effects. Fish were divided into five groups in triplicates as follows: group 1 (control) received no treatment, group 2 was exposed to 10 μm Harness®/L, group 3 was orally administered 10 mg LYCO/kg body weight and exposed to 10 μm Harness®/L, group 4 was exposed to 100 μm Harness®/L, and group 5 was orally administered 10 mg LYCO/kg body weight and exposed to 100 μm Harness®/L for 2 weeks. Some hemato-biochemical parameters, genotoxicity, and histopathological changes were assessed at the end of this period. Sub-lethal doses of Harness® altered the shape of erythrocytes in contrast to the control sample. Also, hematological parameters of exposed fish exhibited a significant (P < 0.05) reduction in the values of red blood cell count (RBCs), hemoglobin (Hb), hematocrit (HCT), and platelets (PL), as well as an insignificant (P > 0.05) drop in mean corpuscular volume (MCV). Harness® was also found to cause genotoxicity as well as histopathological alterations. LYCO administration decreased hemato-biochemical changes and returned them to near-normal levels. The findings showed that LYCO administration (10 mg LYCO/kg body weight) decreased Harness® toxicity in C. gariepinus and alleviated its destructive effects.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Sciences, Assiut University, Assiut, 71516, Egypt.
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| | | |
Collapse
|
21
|
Gamal M, Zaid MA, Mourad IKA, El Kareem HA, Gomaa OM. Trichoderma viride bioactive peptaibol induces apoptosis in Aspergillus niger infecting tilapia in fish farms. AQUACULTURE 2022; 547:737474. [DOI: 10.1016/j.aquaculture.2021.737474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
Hathout HMR, Sobhy HM, Abou-Ghanima S, El-Garawani IM. Ameliorative role of ascorbic acid on the oxidative stress and genotoxicity induced by acetamiprid in Nile tilapia (Oreochromis niloticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55089-55101. [PMID: 34121161 DOI: 10.1007/s11356-021-14856-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
On juveniles of Oreochromis niloticus, the protective potential of ascorbic acid (Asc) against oxidative stress and genotoxicity induced by acetamiprid (Aceta) sub-lethal concentrations was investigated in this study. Fishes were divided into six groups and exposed to either Asc (50 ppm), 10 and 20 ppm Aceta, 10 ppm (Aceta)+Asc, 20 ppm (Aceta)+Asc, or the unexposed control group. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities and their transcripts were assessed. DNA damage in erythrocytes, hepatocytes, and gill cells, in addition to the mitotic index (MI), and the existence of erythrocytic nuclear abnormalities (ENAs) were performed. The results showed that concentrations of Aceta (10 and 20 ppm) induced oxidative stress by altering the antioxidant enzyme activities and transcripts. There were genotoxic effects of Aceta exposure showed by the significant (P < 0.05) increase in DNA-damaged cells and ENA, meanwhile a decrease in MI. Co-exposure with Asc showed significant alleviations of oxidative status and genotoxicity. Thus, results suggest that Asc-combined exposure could be the effective treatment against Aceta-induced oxidative stress accompanied with genotoxicity in O. niloticus.
Collapse
Affiliation(s)
- Heba M R Hathout
- Department of Natural Resources, Faculty of African Post Graduate Studies, Cairo University, Cairo, 12613, Egypt
| | - Hassan M Sobhy
- Department of Natural Resources, Faculty of African Post Graduate Studies, Cairo University, Cairo, 12613, Egypt
| | | | - Islam M El-Garawani
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, 32511, Egypt.
| |
Collapse
|
23
|
Lehun AL, Mendes AB, Takemoto RM, Bueno Krawczyk ACDD. Genotoxic effects of urban pollution in the Iguaçu River on two fish populations. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:984-991. [PMID: 34319218 DOI: 10.1080/10934529.2021.1956229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Environmental impacts on water resources and discharges of pollutants are some of the main problems of aquatic ecosystems. Currently, the Iguaçu River is considered the second most polluted river in Brazil, therefore, given the importance of understanding the effects of water pollution on living organisms, this study aimed to analyze the possible genotoxic effects in Astyanax bifasciatus (Characiformes; Characidae) and Geophagus brasiliensis (Perciformes: Cichlidae) in response to the water quality of the Iguaçu River. Four sampling points were determined on the Iguaçu River, with different levels of environmental impact. The micronuclei and nuclear abnormalities were quantified by counting 2000 erythrocytes from each specimen. There was a statistical difference in the frequency of nuclear abnormalities both for A. bifasciatus (Kruskal-Wallis 3;30 = 10.9; p = 0.01) and for G. brasiliensis (Kruskal-Wallis 3;26 = 12.27; p = 0.006), with point 1 (critically degraded) showing a higher frequency of nuclear abnormalities and point 4 (moderately degraded) showing a lower frequency of nuclear abnormalities for both species, showing genotoxic potential in fish erythrocytes. This result demonstrates the need for further discussion on the conservation of the Iguaçu River as well as broadening the discussion on its potability.
Collapse
Affiliation(s)
- Atsler Luana Lehun
- Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Amanda Brixner Mendes
- Colegiado de Ciências Biológicas, Universidade Estadual do Paraná, Centro, PR, Brazil
| | - Ricardo Massato Takemoto
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia), Universidade Estadual de Maringá, Maringá, PR, Brasil
| | | |
Collapse
|
24
|
D'Agostini F, La Maestra S. Micronuclei in Fish Erythrocytes as Genotoxic Biomarkers of Water Pollution: An Overview. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:195-240. [PMID: 34611757 DOI: 10.1007/398_2021_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Freshwater and marine water bodies receive chemical contaminants from industrial, agricultural, urban, and domestic wastes. Eco-genotoxicity assays are useful tools to assess the cumulative genotoxicity of these pollutants. Fish are suitable indicators for biomonitoring of mutagenic and carcinogenic pollution.In this review, we present a complete overview of the studies performed so far using the micronucleus test in peripheral erythrocytes of fish exposed to polluted water. We have listed all the species of fish used and the geographical distribution of the investigations. We have analyzed and discussed all technical aspects of using this test in fish, as well as the advantages and disadvantages of the different experimental protocols. We have reported the results of all studies. This assay has become, for years, one of the simplest, fastest, and most cost-effective for assessing genotoxic risk in aquatic environments. However, there are still several factors influencing the variability of the results. Therefore, we have given indications and suggestions to achieve a standardization of experimental procedures and ensure uniformity of future investigations.
Collapse
|
25
|
Duroudier N, Katsumiti A, Mikolaczyk M, Schäfer J, Bilbao E, Cajaraville MP. Cell and tissue level responses in mussels Mytilus galloprovincialis dietarily exposed to PVP/PEI coated Ag nanoparticles at two seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141303. [PMID: 32871366 DOI: 10.1016/j.scitotenv.2020.141303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (Ag NPs) are present in numerous consumer products due to their antimicrobial and other unique properties, thus concerns about their potential input into aquatic ecosystems are increasing. Toxicity of Ag NPs in waterborne exposed aquatic organisms has been widely investigated, but studies assessing the potential toxic effects caused after ingestion through the food web, especially at low realistic concentrations, remain scarce. Moreover, it is not well known whether season may influence toxic effects of Ag NPs. The main objective of this study was to determine cell and tissue level responses in mussels Mytilus galloprovincialis dietarily exposed to poly-N-vinyl-2-pirrolidone/polyethyleneimine (PVP/PEI) coated 5 nm Ag NPs for 1, 7 and 21 days both in autumn and spring. Mussels were fed every day with microalgae Isochrysis galbana exposed for 24 h to a low dose (1 μg Ag/L Ag NPs) in spring and to a higher dose (10 μg Ag/L Ag NPs) in spring and autumn. Mussels fed with microalgae exposed to the high dose accumulated Ag significantly after 21 days in both seasons, higher levels being measured in autumn compared to spring. Intralysosomal metal accumulation measured in mussel digestive gland and time- and dose-dependent reduction of mussels health status was similar in both seasons. DNA strand breaks increased significantly in hemocytes at both exposure doses along the 21 days in spring and micronuclei frequency showed an increasing trend after 1 and 7 days of exposure to 1 μg Ag/L Ag NPs in spring and to 10 μg Ag/L in both seasons. Values decreased after 21 days of exposure in all the cases. In conclusion, PVP/PEI coated 5 nm Ag NPs ingested through the food web were significantly accumulated in mussel tissues and caused adverse cell and tissue level effects both in autumn and in spring.
Collapse
Affiliation(s)
- Nerea Duroudier
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, PiE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Alberto Katsumiti
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, PiE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Mathilde Mikolaczyk
- Université de Bordeaux, UMR 5805 EPOC, Allée Geoffroy St Hilaire, 33615 Pessac Cedex, France
| | - Jörg Schäfer
- Université de Bordeaux, UMR 5805 EPOC, Allée Geoffroy St Hilaire, 33615 Pessac Cedex, France
| | - Eider Bilbao
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, PiE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Miren P Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, PiE, University of the Basque Country UPV/EHU, Basque Country, Spain.
| |
Collapse
|
26
|
Abu Zeid EH, El Sharkawy NI, Moustafa GG, Anwer AM, Al Nady AG. The palliative effect of camel milk on hepatic CYP1A1 gene expression and DNA damage induced by fenpropathrin oral intoxication in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111296. [PMID: 32949931 DOI: 10.1016/j.ecoenv.2020.111296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the alleviating role of camel milk (CM) in the mitigation of fenpropathrin (FNP) type II pyrethroid induced oxidative stress, alterations of hepatic (CYP1A1) mRNA expression pattern, and DNA damage using the alkaline comet assay (SCGE) in male rats. Sixty male Sprague-Dawley rats were separated into six groups (n = 10): 1st control (C), 2nd corn oil (CO), 3rd (CM): gavaged CM 2ml/rat, 4th (FNP): gavaged FNP 7.09 mg/kg body weight (BW), 5th (FNP pro/co-treated): gavaged CM firstly for 15 days, then CM + FNP by the same mentioned doses and route, 6th (FNP + CM co-treated): gavaged FNP firstly followed by CM by the same mentioned doses and route. Rats were orally gavaged three times per week, day after day for 60 days. FNP exposure significantly reduced serum glutathione (GSH) levels, but significantly increased serum levels of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), protein carbonyl (PCO), and 8hydroxy2deoxyguanosine (8OH2dG). Additionally, FNP exposure significantly up-regulated the mRNA expression levels of hepatic CYP1A1 and increased the SCGE indices in whole blood, liver, and spleen tissues of exposed male rats. Administration of CM significantly regulated the FNP induced oxidative stress, reduced hepatic CYP1A1 mRNA expression levels and values of comet assay indices particularly in the (CM + FNP pro/co-treated) group compared to the (FNP + CM co-treated) group. In conclusion, our results indicate, for the first time, that FNP retains an in vivo genotoxic potential at a dose of (1/10 LD50) and up-regulated hepatic CYP1A1 mRNA expression in male rats. Additionally, CM supplements may improve the genotoxic outcomes, oxidative stress, and altered CYP1A1 mRNA expression induced by FNP particularly in the pro/concurrent-treatment compared to the concurrent treatment alone.
Collapse
Affiliation(s)
- Ehsan H Abu Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Nabela I El Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Abeer M Anwer
- Head Researcher of Immunity in Animal Reproduction Research Institute. Egypt
| | - Ahmed G Al Nady
- Veterinarian at the Central Administration of Veterinary Quarantine and Examinations, Egypt
| |
Collapse
|
27
|
Turan F, Eken M, Ozyilmaz G, Karan S, Uluca H. Heavy metal bioaccumulation, oxidative stress and genotoxicity in African catfish Clarias gariepinus from Orontes river. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1522-1537. [PMID: 32710163 DOI: 10.1007/s10646-020-02253-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
One of the major problems affecting the ecosystem health is the exposure of heavy metals due to anthropogenic activities. These exposures may induce toxiogenetic damage and carcinogenesis in aquatic organism. DNA damage biomarkers for fish species detect genotoxic parameters for ecological risk assessment. In the present study, the effect of heavy metals (Cr, Cd, Cu, Fe and Mn) on DNA damage and oxidative stress of Clarias gariepinus was examined by Comet assay at Reference site and two different sampling sites of the Orontes River. Moreover, the relationship between DNA damage and physiological response to oxidative stress caused in C. gariepinus was investigated by sampling seasonal water and fish samples for one year. In this study, Cr, Cd and Cu in water column of Orontes River and the concentrations of Fe and Mn in liver tissue of C. gariepinus were highly exceed the maximum permissible limit set by EPA (1999, 2016) WHO (1989) and TEG (2012) that can cause adverse effects on environment health. SOD activities in liver tissues were significantly higher than those in muscle tissues. SOD, CAT activity and MDA levels of both Site 1 and Site 2 at Orontes River were higher than those of the Reference site. In result of the COMET analysis, the highest levels of DNA damage were found at gill and liver tissues in Site 2 (17.746 ± 1.072% T-DNA; 16.014 ± 0.710% T-DNA respectively) at Orontes river. A higher level of DNA damage in gill cells compared to liver cells was observed in all regions of the Orontes River. In Principal component analysis (PCA), the heavy metals Cd, Cr and Cu (in the water column) and MDA in liver and muscle revealed strong contribution to the observed DNA damage that were scattered opposite to each other's along the principal components. Moreover, correlations between parameters revealed a positive significant relationship between Cd, Cr and Cu in water and DNA damage levels in C. gariepinus. Pearson correlation analysis detected a positive relationship between MDA, CAT and SOD and DNA damage levels in African catfish. Consequently, this study exposed genotoxic damage and oxidative stress of C. gariepinus due to metal pollution in Orontes River and lead to the better understanding of genotoxicty, oxidative stress and heavy metal relationships.
Collapse
Affiliation(s)
- Funda Turan
- Faculty of Marine Science and Technology, Iskenderun Technical University, P.O. Box: 31200, Iskenderun, Hatay, Turkey.
| | - Meltem Eken
- Faculty of Marine Science and Technology, Iskenderun Technical University, P.O. Box: 31200, Iskenderun, Hatay, Turkey
| | - Gul Ozyilmaz
- Faculty of Arts and Sciences, Hatay Mustafa Kemal University, P.O. Box: 31060, Antakya, Hatay, Turkey
| | - Serpil Karan
- Faculty of Marine Science and Technology, Iskenderun Technical University, P.O. Box: 31200, Iskenderun, Hatay, Turkey
| | - Haluk Uluca
- Faculty of Arts and Sciences, Hatay Mustafa Kemal University, P.O. Box: 31060, Antakya, Hatay, Turkey
| |
Collapse
|
28
|
Pradhan D, Singh RK, Verma SK. Genotoxic Potential Assessment of the Herbicide Bispyribac-Sodium in a Fresh Water Fish Clarias batrachus (Linn.). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:715-720. [PMID: 32970224 DOI: 10.1007/s00128-020-03003-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Genotoxic potential of herbicide bispyribac-sodium was evaluated in fish Clarias batrachus using micronucleus (MN) test and comet assay. Fish were exposed to three environmentally relevant test concentrations of the herbicide for 20, 25 and 30 days. Significant effects (p < 0.05) for both concentration and duration of exposure were observed in herbicide exposed fish. Similar trend of DNA damage was observed through MN test and comet assay. Maximum DNA damage was observed in fish exposed to highest concentration of herbicide at all duration. Maximum damage was observed on day 25 at all concentrations followed by a decline. This study established C. batrachus as an ecotoxicological model for bispyribac-sodium induced genotoxicity testing. It further confirmed that both MN test and comet assay are useful tool for assessment of genotoxicity induced by water pollutants.
Collapse
Affiliation(s)
- Dibyajyoti Pradhan
- Department of Zoology, Dr. C. V. Raman University, Bilaspur, Chattisgarh, India
| | | | - Sushant Kumar Verma
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur, Chattisgarh, India.
| |
Collapse
|
29
|
Turan F, Karan S, Ergenler A. Effect of heavy metals on toxicogenetic damage of European eels Anguilla anguilla. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38047-38055. [PMID: 32621191 DOI: 10.1007/s11356-020-09749-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Aquatic organisms are exposed to a variety of contaminants such as heavy metals introduced into the environment as a consequence of anthropogenic activities that usually cause genotoxic damage in aquatic organisms. DNA damage biomarkers for fish species detect genotoxic parameters for ecological risk assessment. In the present study, the effect of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn, Co, and Mn) on DNA damage of Anguilla anguilla was examined by comet assay at reference site and three different sampling sites of the Orontes River. The relative mean heavy metal concentrations in water column were in the order of Fe>Cr>Pb>Zn>Ni>Cu>Mn>Cd>Co in all the sampling sites. Cr, Cd, and Pb concentrations at all sampling sites were above the values allowed by the EPA (1999, 2016). With these results, negative effects of Cr, Cd, and Pb appeared on ecosystem health. The comet assay showed a higher level of DNA damage in the gill cells in comparison with the liver cells of A. anguilla. The highest level of DNA damage as %T-DNA, tail moment, and tail migration in gill cells were 20.007 ± 1.744 %; 2.899 ± 0.341 μm, and 12.383 ± 01.040 TMi and 20.172 ± 1.944 %, 2.559 ± 0.265 μm, and 10.763 ± 0.910 TMi at Site 2 and Site 3, respectively. The correlations between heavy metals and DNA damage parameters revealed that both Cu and Co in water showed significant negative correlations (p < 0.05) with DNA damage levels. Consequently, this study revealed the genotoxic damage of A. anguilla due to pollution in Orontes River and lead to the better understanding of genotoxicity and heavy metal relationships.
Collapse
Affiliation(s)
- Funda Turan
- Faculty of Marine Science and Technology, Iskenderun Technical University, P.O. Box 31200, Iskenderun, Hatay, Turkey.
| | - Serpil Karan
- Faculty of Marine Science and Technology, Iskenderun Technical University, P.O. Box 31200, Iskenderun, Hatay, Turkey
| | - Ayşegül Ergenler
- Faculty of Marine Science and Technology, Iskenderun Technical University, P.O. Box 31200, Iskenderun, Hatay, Turkey
| |
Collapse
|
30
|
Ceyca-Contreras JP, Cortés-Gutiérrez EI, García-Salas JA, Dávila-Rodríguez MI, García-Hernández J. Evaluation of the genotoxic effect of heavy metals in pigeons from urban and rural habitat in Monterrey, Mexico, using the chromatin dispersion assay. Biomarkers 2020; 25:670-676. [PMID: 32969739 DOI: 10.1080/1354750x.2020.1825811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Evaluate genotoxic effect of heavy metals on Pigeon Erythrocytes (PE) from urban and rural habitat (outside of the city) in Monterrey, Mexico, using the chromatin dispersion assay. MATERIALS AND METHODS We quantified metals concentrations (Cd, Hg, Cu and Pb) in tail feathers of 22 pigeons from an urban and a rural site in northeastern Mexico. DNA damage in peripheral blood erythrocytes was measured by chromatin dispersion assay in 13 pigeon living in urban habitat and in nine living in rural habitat as the control. MicroNucleus (MN) test was used to confirm levels of DNA damage. RESULTS Birds in urban habitat had highest concentrations in feathers for all the metallic elements analysed with respect to birds in rural habitat. Concentrations of Cu and Hg showed a significant increase (p < 0.05). Our results showed a significant increase of DNA damage in urban-habitat pigeons compared with that of pigeons in rural area. These results were confirmed by a MN test. CONCLUSIONS Our preliminary findings demonstrate that PE examination via chromatin dispersion assay is a reliable, precise and inexpensive morphological bioassay for evaluating environmental genotoxicity associated with heavy metals. Further studies for evaluating the individual participation of contaminants in DNA damage are needed.
Collapse
Affiliation(s)
- Juan P Ceyca-Contreras
- Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Elva I Cortés-Gutiérrez
- Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Juan A García-Salas
- Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | | | | |
Collapse
|
31
|
Dos Reis IMM, Siebert MN, Zacchi FL, Mattos JJ, Flores-Nunes F, Toledo-Silva GD, Piazza CE, Bícego MC, Taniguchi S, Melo CMRD, Bainy ACD. Differential responses in the biotransformation systems of the oyster Crassostrea gigas (Thunberg, 1789) elicited by pyrene and fluorene: Molecular, biochemical and histological approach - Part II. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105565. [PMID: 32682195 DOI: 10.1016/j.aquatox.2020.105565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Pyrene (PYR) and fluorene (FLU) are among the sixteen priority Polycyclic Aromatic Hydrocarbons (PAH) of the United States Environmental Protection Agency and are both frequently detected in contaminated sites. Due to the importance of bivalve mollusks in biomonitoring programs and the scarce information on the biotransformation system in these organisms, the aim of this study was to investigate the effect of PYR and FLU at the transcriptional level and the enzymatic activities of some biotransformation systems in the Pacific oyster Crassostrea gigas, and to evaluate the histological effects in their soft tissues. Oysters C. gigas were exposed for 24 h and 96 h to PYR (0.25 and 0.5 μM) and FLU (0.6 and 1.2 μM). After exposure, transcript levels of cytochrome P450 coding genes (CYP1-like, CYP2-like, CYP2AU2, CYP356A1, CYP17α-like), glutathione S tranferase genes (omega GSTO-like and microsomal, MGST-like) and sulfotransferase gene (SULT-like), and the activity of ethoxyresorufin O-deethylase (EROD), Glutathione S-transferase (GST) and microssomal GST (MGST) were evaluated in gills. Histologic changes were also evaluated after the exposure period. PYR and FLU bioconcentrated in oyster soft tissues. The half-life time of PYR in water was lower than fluorene, which is in accordance to the higher lipophilicity and bioconcentration of the former. EROD activity was below the limit of detection in all oysters exposed for 96 h to PYR and FLU. The reproductive stage of the oysters exposed to PYR was post-spawn. Exposure to PYR caused tubular atrophy in digestive diverticula, but had no effect on transcript levels of biotransformation genes. However, the organisms exposed for 96 h to PYR 0.5 μM showed higher MGST activity, suggesting a protective role against oxidative stress in gills of oysters under higher levels of PYR in the tissues. Increased number of mucous cells in mantle were observed in oysters exposed to the higher FLU concentration, suggesting a defense mechanisms. Oysters exposed for 24 h to FLU 1.2 μM were in the ripe stage of gonadal development and showed higher transcript levels of CYP2AU2, GSTO-like and SULT-like genes, suggesting a role in the FLU biotransformation. In addition, after 96 h of exposure to FLU there was a significant increase of mucous cells in the mantle of oysters but no effect was observed on the EROD, total GST and MGST activities. These results suggest that PAH have different effects on transcript levels of biotransformation genes and enzyme activities, however these differences could also be related to the reproductive stage.
Collapse
Affiliation(s)
- Isis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Guilherme de Toledo-Silva
- Bioinformatics Laboratory, Cell Biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Cláudio Manoel Rodrigues de Melo
- Laboratory of Marine Mollusks (LMM), Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
32
|
Gupta P, Verma SK. Evaluation of genotoxicity induced by herbicide pendimethalin in fresh water fishClarias batrachus(linn.) and possible role of oxidative stress in induced DNA damage. Drug Chem Toxicol 2020; 45:750-759. [DOI: 10.1080/01480545.2020.1774603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Priyanka Gupta
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur, India
| | - Sushant Kumar Verma
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur, India
| |
Collapse
|
33
|
Zhu Q, Li N, Wang C, Zhang Q, Sun H. Effect of interactions between various humic acid fractions and iron nanoparticles on the toxicity to white rot fungus. CHEMOSPHERE 2020; 247:125895. [PMID: 31958649 DOI: 10.1016/j.chemosphere.2020.125895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Humic acid plays an important role in controlling the toxicity of nanoparticles to organisms. However, little is known about the influence of different fractions of dissolved humic acid (DHA) from soil on the toxicity of nanoparticles to organisms. The concentration of γ-Fe2O3 and the exposure time affected the malondialdehyde (MDA) content, reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) activity in P. chrysosporium cells and were inversely proportional to the relative activities of the cells. P. chrysosporium was exposed to γ-Fe2O3 and DHA1 for 3 h, 6 h and 12 h. Catalase (CAT) and peroxidase (POD) activities were generally higher than control. Particularly, under the influence of 50 mg/L DHA1 and different concentrations of γ-Fe2O3 (10 and 50 mg/L), the CAT and POD activities were higher than those of cells exposed to γ-Fe2O3 alone. Conversely, both activities of P. chrysosporium exposed to DHA4 combined with γ-Fe2O3 for 12 h were lower than those of cells exposed to γ-Fe2O3 alone and gradually decreased with increasing DHA4 concentration (0, 10 and 50 mg/L). The μ-XAFS normalized spectrum indicated that Fe3+ entering the cells tended to transform into Fe2+ as the stress time prolonged. TEM analysis confirmed the toxicity of high concentrations of γ-Fe2O3 to P. chrysosporium. The comet assay showed that DHA4 in soil enhanced the toxicity of γ-Fe2O3 to P. chrysosporium more than DHA1 did. Namely, compared to DHA1, DHA4 made it easier for nano-Fe2O3 to enter P. chrysosporium cells, causing more toxicity of γ-Fe2O3 to P. chrysosporium.
Collapse
Affiliation(s)
- Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Nan Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Qi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
34
|
Mandil R, Prakash A, Rahal A, Singh SP, Sharma D, Kumar R, Garg SK. In vitro and in vivo effects of flubendiamide and copper on cyto-genotoxicity, oxidative stress and spleen histology of rats and its modulation by resveratrol, catechin, curcumin and α-tocopherol. BMC Pharmacol Toxicol 2020; 21:29. [PMID: 32326976 PMCID: PMC7179012 DOI: 10.1186/s40360-020-00405-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/20/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Living organisms are frequently exposed to more than one xenobiotic at a time either by ingestion of contaminated food/fodder or due to house-hold practices, occupational hazards or through environment. These xenobiotics interact individually or in combination with biological systems and act as carcinogen or produce other toxic effects including reproductive and degenerative diseases. Present study was aimed to investigate the cyto-genotoxic effects of flubendiamide and copper and ameliorative potential of certain natural phyotconstituent antioxidants. METHOD In vitro cytogenotoxic effects were evaluated by employing battery of assays including Propidium iodide staining, Tunel assay, Micronuclei, DNA fragmentation and Comet assay on isolated splenocytes and their prevention by resveratrol (5 and 10 μM), catechin (10 and 20 μM), curcumin (5 and 10 μM) and α-tocopherol (5, 10 and 20 μM). In vivo study was also undertaken daily oral administration of flubendiamide (200 mg/kg) or copper (33 mg/kg) and both these in combination, and also all these concurrently with of α-tocopherol to Wistar rats for 90 days. RESULTS Flubendiamide and copper produced concentration-dependent cytotoxic effects on splenocytes and at median lethal concentrations, flubendiamide (40 μM) and copper (40 μM) respectively produced 71 and 81% nonviable cells, higher number of Tunel+ve apoptotic cells, 7.86 and 9.16% micronucleus and 22.90 and 29.59 comets/100 cells and DNA fragmentation. In vivo study revealed significant (P < 0.05) increase in level of lipid peroxidation (LPO) and decrease in glutathione peroxidase (GPx), glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities in groups exposed to flubendiamide or copper alone or both these in combination. Histopathological examination of rat spleens revealed depletion of lymphoid tissue, separation of splenocytes and rarification in splenic parenchyma of xenobiotic(s) treated groups. CONCLUSION Flubendiamide and copper induce oxidative stress and produce cytogenotoxic effects along with histoarchitectural changes in spleen. All four tested natural antioxidants (resveratrol, catechin, curcumin and α-tocopherol) reduced flubendiamide and copper-induced cytotoxic effects in rat splenocytes. Rat splenocytes are very sensitive to flubendiamide and copper-induced cytogenotoxicity, therefore, these can be effectively employed for screening of compounds for their cytogenotoxic potential. α-tocopherol was effective in restoring alterations in oxidative stress biomarkers and preventing histoarchitectural lesions in spleen.
Collapse
Affiliation(s)
- Rajesh Mandil
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Tecahnology, 250110, Meerut, India
| | - Atul Prakash
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go- Anusandhan Sansthan (DUVASU), -281001, Mathura, India
| | - Anu Rahal
- Division of Goat Health, Central Institute for Research on Goat (CIRG), Makhdoom, Farah, Mathura, Uttar Pradesh 281122 India
| | - S. P. Singh
- Department of Animal Genetics & Breeding, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), 281001, Mathura, India
| | - Deepak Sharma
- Department of Animal Genetics & Breeding, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), 281001, Mathura, India
| | - Rahul Kumar
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), 281001, Mathura, India
| | - Satish Kumar Garg
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go- Anusandhan Sansthan (DUVASU), -281001, Mathura, India
| |
Collapse
|
35
|
Ali D, Falodah FA, Almutairi B, Alkahtani S, Alarifi S. Assessment of DNA damage and oxidative stress in juvenile Channa punctatus (Bloch) after exposure to multi-walled carbon nanotubes. ENVIRONMENTAL TOXICOLOGY 2020; 35:359-367. [PMID: 31710160 DOI: 10.1002/tox.22871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have many applications in industry and used as additives in polymers, catalysts, anodes in lithium-battery and drug delivery. There is little information about MWCNTs' (210 nm) genotoxic potential on juvenile freshwater fish Channa punctatus. Therefore, in this study, we have determined the toxic effects of MWCNTs on freshwater fish C. punctatus by assessing toxicological endpoints such as oxidative stress, mutagenicity, and genotoxicity after acute MWCNTs exposure for 5 days. MWCNTs LC50 -96 hours value for C. punctatus was 21.8 mg/L and on this basis three different MWCNTs concentrations were selected, that is, sub-lethal I, II, and III, for 5-days exposure trials with C. punctatus. The level of lipid peroxidation increased in the gills and kidney of exposed fish at sub-lethal concentrations II and III. Contrastingly, glutathione decreased more in the gills than in the kidney. The activity of catalase enzymes decreased more in the gills than in the kidney at sublethal concentrations I and II. Glutathione S-transferase decreased in gill tissue but increased in kidney tissue following sub-lethal III exposure. Moreover, the level of glutathione reductase decreased in both tissues. In addition, MWCNTs genotoxicity was confirmed by DNA damage in lymphocytes, gills, kidney cells, and production of micronuclei (MNi) in red blood cells of freshwater fish following sub-lethal I, II, and III exposures. In conclusion, this study revealed that application of micronucleus and comet assays for in vivo laboratory studies using freshwater fish for screening the genotoxic potential of MWCNTs.
Collapse
Affiliation(s)
- Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz A Falodah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bader Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Pellegri V, Gorbi G, Buschini A. DNA damage detection by Comet Assay on Daphnia magna: Application in freshwater biomonitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135780. [PMID: 31972938 DOI: 10.1016/j.scitotenv.2019.135780] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/04/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Monitoring of water genotoxicity still remains underexploited in risk assessment. The present study aimed at standardizing and evaluating the sensitivity and applicability of the Comet Assay adapted for Daphnia magna in genotoxicological investigations in freshwater environments. Two sampling campaigns (2014-2015) were performed in the watercourses of a pilot basin located in the Parma district (Italy). Fourteen sampling stations with different Ecological Status and/or EBI values were selected, all with a good Chemical Status according to the EU-Water Framework Directive 2000/60. The Alkaline Comet Assay was performed on 48 h-aged daphnids exposed (24 h) to 23 water samples. In parallel, the acute toxicity test was carried out. Daphnids exposed to samples, collected upstream the main watercourses in non-impacted areas, showed low DNA migration (Tail Intensity percentage - TI% - in the range 2.97-13.21), similar to laboratory controls. An increase in genotoxicity (TI% in the range 20-40) proceeding from the mountain towards the plain area was observed, in agreement with the land uses and the ES/EBI values of the stations. The highest genotoxic damage was observed after exposure to samples from watercourses of the minor hydrographic network in the plain area and waterbodies receiving wastewater treatment plant outflows. A modified version of the Comet Assay able to identify the presence of genotoxins inducing DNA oxidative damage, after standardization, was applied to daphnids treated with waters from 4 selected monitoring stations. The presence of oxidative contaminants was detected downstream a wastewater treatment plant outflow. The Comet Assay on D. magna has proven to be sensitive and able to discriminate among differently impacted areas and might be applied routinely. The FPG-Comet proved to be able to highlight the presence of contaminants causing oxidative stress. In our knowledge, this is the first time that Comet Assay on Daphnia magna is successfully applied for freshwater monitoring.
Collapse
Affiliation(s)
- Valerio Pellegri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/a, 43124 Parma, Italy.
| | - Gessica Gorbi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/a, 43124 Parma, Italy.
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/a, 43124 Parma, Italy; Centre for Molecular and Translational Oncology-COMT, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy.
| |
Collapse
|
37
|
Acolas ML, Davail B, Gonzalez P, Jean S, Clérandeau C, Morin B, Gourves PY, Daffe G, Labadie P, Perrault A, Lauzent M, Pierre M, Le Barh R, Baudrimont M, Peluhet L, Le Menach K, Budzinski H, Rochard E, Cachot J. Health indicators and contaminant levels of a critically endangered species in the Gironde estuary, the European sturgeon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3726-3745. [PMID: 31020527 DOI: 10.1007/s11356-019-05139-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
The European sturgeon, Acipenser sturio, is a highly endangered species that almost disappeared in the last decades. Thanks to yearly restocking of the population, this species is still found in the Gironde estuary (France), where juveniles grow during several years before leaving to the ocean. The aims of this study were to evaluate the pressure exerted on these fish by known organic and inorganic contaminants during their stay at the Gironde estuary, and to get information on the fish's health in this context. Monthly captures over the year 2014 provided 87 fish from the cohorts 2012 and 2013 mainly, and from cohorts 2008, 2009, and 2011, all fish born in hatchery. We report the very first analyses of contaminant levels and of biological markers measured in the blood of these fish. Low inorganic contamination was found, composed of seven metals mainly Zn (< 5 μg mL-1), Fe (< 1.5 μg mL-1), Cu (< 0.8 μg mL-1), Se (< 0.8 μg mL-1), As (< 0.25 μg mL-1), Co (< 0.14 μg mL-1), and Mn (< 0.03 μg mL-1). Concerning persistent organic contaminants, the sum of seven PCBs varied from 1 to 10 ng g-1 plasma, that of eight OCPs from 0.1 to 1 ng g-1, and that of eight PBDEs from 10 to 100 pg g-1. Higher levels of contaminants were measured during spring as compared to summer. The sex steroid hormone plasma levels (estradiol, testosterone, and 11-ketotestosterone) were quite low, which was predictable for juveniles. The transcription of reproduction-involved genes (EstR, AR, LHR, sox9) in blood cells was demonstrated for the first time. Some of them were correlated with organic contaminant levels PCBs and OCPs. Other gene transcriptions (sodCu and bax) were correlated with PCBs and OCPs. However, the DNA damage level measured here as comet tail DNA and micronuclei ratio in red blood cells were in the very low range of the values commonly obtained in fish from pristine areas. The data presented here can serve as a reference base for future monitoring of this population of sturgeons.
Collapse
Affiliation(s)
- Marie-Laure Acolas
- Irstea, EABX, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, F-33612, Gazinet Cestas, France
| | - Blandine Davail
- University of Bordeaux, UMR 5805 EPOC, Aquatic Ecotoxicology, B2, allée Geoffroy Saint-Hilaire, F-33405, Talence, France.
| | - Patrice Gonzalez
- University of Bordeaux, UMR 5805 EPOC, Aquatic Ecotoxicology, Place du Dr B. Peyneau, F-33120, Arcachon, France
| | - Séverine Jean
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopole, F-31326, Caxtanet-Tolosan Cedex, France
| | - Christelle Clérandeau
- University of Bordeaux, UMR 5805 EPOC, Aquatic Ecotoxicology, B2, allée Geoffroy Saint-Hilaire, F-33405, Talence, France
| | - Bénédicte Morin
- University of Bordeaux, UMR 5805 EPOC, Aquatic Ecotoxicology, B2, allée Geoffroy Saint-Hilaire, F-33405, Talence, France
| | - Pierre-Yves Gourves
- University of Bordeaux, UMR 5805 EPOC, Aquatic Ecotoxicology, Place du Dr B. Peyneau, F-33120, Arcachon, France
| | - Guillemine Daffe
- University of Bordeaux, UMR 5805 EPOC, Aquatic Ecotoxicology, Place du Dr B. Peyneau, F-33120, Arcachon, France
| | - Pierre Labadie
- University of Bordeaux, UMR 5805 EPOC, LPTC, 351 crs de la Libération, F-33405, Talence, France
| | - Annie Perrault
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopole, F-31326, Caxtanet-Tolosan Cedex, France
| | - Mathilde Lauzent
- University of Bordeaux, UMR 5805 EPOC, LPTC, 351 crs de la Libération, F-33405, Talence, France
| | - Maud Pierre
- Irstea, EABX, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, F-33612, Gazinet Cestas, France
| | - Romaric Le Barh
- Irstea, EABX, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, F-33612, Gazinet Cestas, France
| | - Magalie Baudrimont
- University of Bordeaux, UMR 5805 EPOC, Aquatic Ecotoxicology, Place du Dr B. Peyneau, F-33120, Arcachon, France
| | - Laurent Peluhet
- University of Bordeaux, UMR 5805 EPOC, LPTC, 351 crs de la Libération, F-33405, Talence, France
| | - Karyn Le Menach
- University of Bordeaux, UMR 5805 EPOC, LPTC, 351 crs de la Libération, F-33405, Talence, France
| | - Hélène Budzinski
- University of Bordeaux, UMR 5805 EPOC, LPTC, 351 crs de la Libération, F-33405, Talence, France
| | - Eric Rochard
- Irstea, EABX, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, F-33612, Gazinet Cestas, France
| | - Jérôme Cachot
- University of Bordeaux, UMR 5805 EPOC, Aquatic Ecotoxicology, B2, allée Geoffroy Saint-Hilaire, F-33405, Talence, France
| |
Collapse
|
38
|
Sherwood TA, Medvecky RL, Miller CA, Tarnecki AM, Schloesser RW, Main KL, Mitchelmore CL, Wetzel DL. Nonlethal Biomarkers of Oxidative Stress in Oiled Sediment Exposed Southern Flounder ( Paralichthys lethostigma): Utility for Field-Base Monitoring Exposure and Potential Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14734-14743. [PMID: 31765146 DOI: 10.1021/acs.est.9b05930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Deepwater Horizon (DWH) blowout resulted in the deposition of toxic polycyclic aromatic hydrocarbons (PAHs), in the coastal sediments of the Gulf of Mexico. The immediate effects on an ecosystem from an oil spill are clearly recognizable, however the long-term chronic effects and recovery after a spill are still not well understood. Current methodologies for biomonitoring wild populations are invasive and mostly lethal. Here, two potential nonlethal biomonitoring tools for the assessment of PAH toxicity and induced biological alterations in the field, were identified using laboratory-validated methods. In this study, subadult southern flounder (Paralichthys lethostigma) were chronically exposed to DWH surrogate oiled sediments for 35 days; a subset of these exposed flounder were then provided a clean nonexposure period to ascertain the utility of selected biomarkers to monitor recovery post exposure. After chronic exposure, there was an increase in gene expression of cytochrome P450 1A but not glutathione S-transferase. There was also a notable imbalance of oxidants to antioxidants, measured as reduced glutathione, oxidized glutathione, and their ratio in the blood. Evidence of subsequent oxidative damage due to chronic exposure was found through lipid peroxidation and DNA damage assessments of liver, gill, and blood.
Collapse
Affiliation(s)
- Tracy A Sherwood
- Mote Marine Laboratory , 1600 Ken Thompson Parkway , Sarasota , Florida 34236 , United States
| | - Rebecca L Medvecky
- Mote Marine Laboratory , 1600 Ken Thompson Parkway , Sarasota , Florida 34236 , United States
| | - Christelle A Miller
- Mote Marine Laboratory , 1600 Ken Thompson Parkway , Sarasota , Florida 34236 , United States
| | - Andrea M Tarnecki
- Mote Marine Laboratory , 1600 Ken Thompson Parkway , Sarasota , Florida 34236 , United States
| | - Ryan W Schloesser
- Mote Marine Laboratory , 1600 Ken Thompson Parkway , Sarasota , Florida 34236 , United States
| | - Kevan L Main
- Mote Marine Laboratory , 1600 Ken Thompson Parkway , Sarasota , Florida 34236 , United States
| | - Carys L Mitchelmore
- University of Maryland Center for Environmental Science , Chesapeake Biological Laboratory , 146 Williams Street , Solomons , Maryland 20688 , United States
| | - Dana L Wetzel
- Mote Marine Laboratory , 1600 Ken Thompson Parkway , Sarasota , Florida 34236 , United States
| |
Collapse
|
39
|
Meland S, Gomes T, Petersen K, Håll J, Lund E, Kringstad A, Grung M. Road related pollutants induced DNA damage in dragonfly nymphs (Odonata, Anisoptera) living in highway sedimentation ponds. Sci Rep 2019; 9:16002. [PMID: 31690746 PMCID: PMC6831790 DOI: 10.1038/s41598-019-52207-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/15/2019] [Indexed: 11/09/2022] Open
Abstract
Nowadays, stormwater sedimentation ponds are popular in stormwater management because of their ability to mitigate flooding and treat polluted runoff from e.g. roads. In addition, they may provide other ecosystem services such as biodiversity. These man-made habitats will inevitably be polluted and the organisms living therein may be negatively affected by the chemical cocktail present in both the water and sediment compartments. The present study explored DNA damage in dragonfly nymphs (Odonata, Anisoptera) living in highway sedimentation ponds in comparison with natural ponds. The concentrations of Polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs and metals were also determined in sediment samples from the different ponds. The results showed that DNA damage was significantly higher in dragonfly nymphs living in sedimentation ponds compared to nymphs living in natural ponds. DNA damage was also highly and significantly correlated with the pollution levels in the sediment, i.e., PAH and Zinc. Finally, we report the concentrations of various alkylated PAHs which appeared to be very dominant in the sedimentation ponds. Our results show that there may be a conflict between the sedimentation ponds’ primary function of protecting natural water bodies from polluted runoff and their secondary function as habitats for organisms. Overall, we suggest that this must be considered when planning and designing stormwater measures.
Collapse
Affiliation(s)
- Sondre Meland
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway. .,Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, PO 5003, 1432, Ås, Norway.
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
| | - Karina Petersen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
| | - Johnny Håll
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
| | - Espen Lund
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
| | - Alfhild Kringstad
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
| | - Merete Grung
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
| |
Collapse
|
40
|
Perveen S, Hashmi I, Khan R. Evaluation of genotoxicity and hematological effects in common carp (Cyprinus carpio) induced by disinfection by-products. JOURNAL OF WATER AND HEALTH 2019; 17:762-776. [PMID: 31638027 DOI: 10.2166/wh.2019.261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Disinfection is intended to improve drinking water quality and human health. Although disinfectants may transform organic matter and form disinfection by-products (DBPs), many are branded as cyto- and genotoxic. Traditionally, research focuses on the effects of DBPs on human health, but cytogenic impacts on aquatic organisms still remain ill defined. The current study examines the potential toxic effect of chloroform and iodoform (DBPs) on Cyprinus carpio, selected as a model organism. Fish specimens were exposed to various concentrations of DBPs primarily based on LD50 values, where acute toxicity was monitored for 96 h. Headspace SPME extraction through gas chromatography was employed to assess the effects of spiked DBPs doses in fish blood. Cytotoxicity was monitored using Comet assay. Tail length, tail DNA, and olive tail moment values were quantified to be significant (P < 0.05) as compared to control. A statistically significant (P < 0.05) decrease in all blood parameters (hematology) was observed. Changes in biochemical indices (glucose, total protein, and alanine aminotransferase (ALT)) were also significant. ALT secretion was significantly increased (93 ± 0.05 and 82.8 ± 0.1 U/L) at higher concentration compared to control (56 ± 0.1 U/L), suggesting liver damage. Results demonstrated that iodoform was statistically more damaging as compared to chloroform.
Collapse
Affiliation(s)
- Samina Perveen
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), H-12 sector, Islamabad, Pakistan E-mail:
| | - Imran Hashmi
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), H-12 sector, Islamabad, Pakistan E-mail:
| | - Romana Khan
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), H-12 sector, Islamabad, Pakistan E-mail:
| |
Collapse
|
41
|
Sumi N, Chitra KC. Cytogenotoxic effects of fullerene C 60 in the freshwater teleostean fish, Anabas testudineus (Bloch, 1792). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:503104. [PMID: 31699344 DOI: 10.1016/j.mrgentox.2019.503104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 01/26/2023]
Abstract
In recent years, carbon nanomaterials, including fullerene C60 is regarded as the building block in nanotechnology because of its widespread use in medicine, industry, cosmetics and commercial products. Despite the special properties, several reports have raised public health concerns due to the unknown and practically unexplored toxic effects of nanomaterials. However, there have been relatively few studies regarding the genotoxic responses of fullerene C60in vivo. Genotoxic effects of DMSO-solublized C60 nanomaterial suspension at sublethal concentrations (5 and 10 mg/L) were investigated on adult freshwater fish, Anabas testudineus using micronucleus and comet assays. An assessment of micronucleus induction showed severe cytoplasmic and nuclear abnormalities in erythrocytes, gill and liver cells. Abnormalities in cytoplasm were identified as formation of sticky cells, vacuolated cytoplasm, cytoplasmic degeneration, echinocyte, acanthocyte, anisochromatic cells and abnormal erythrocyte membrane. The nuclear abnormalities included micronucleus, binucleated cells, nuclear buds, irregular nucleus, vacuolated, notched and serrated nucleus in the erythrocytes compared to the control groups. Similarly, significant increase (P < 0.05) in micronucleus frequencies were observed in gill and liver cells. The high frequency of micronucleus was observed in the gill cells followed by liver and erythrocytes, respectively, at both sublethal concentrations, and the severity was duration and concentration-dependent. In comet assay, significant increase (P < 0.05) in DNA damage was observed using the comet parameter, percent tail DNA. The highest level of comet damage with grade 3 was observed in blood, gill and liver cells on increase in duration and concentration when compared to the respective control groups. Thus the results revealed that fullerene C60 nanomaterials may pose risk to aquatic organisms, especially fish, by the induction of genotoxicity. Further studies are warranted to provide new insights on the mechanisms and consequences of C60 nanomaterials interactions with biological membranes.
Collapse
Affiliation(s)
- Nechat Sumi
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India
| | - Kumari Chidambaran Chitra
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India.
| |
Collapse
|
42
|
Asllani FH, Schürz M, Bresgen N, Eckl PM, Alija AJ. Genotoxicity risk assessment in fish (Rutilus rutilus) from two contaminated rivers in the Kosovo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:429-435. [PMID: 31051359 DOI: 10.1016/j.scitotenv.2019.04.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
Being exposed to untreated urban and industrial water, the rivers Drenica and Sitnica are considered to be the most polluted ones in the Kosovo. Our previous investigations on the cyto- and genotoxic potential of water samples from these rivers evaluated with primary rat hepatocyte cultures indicated a risk for the health of aquatic organisms. In order to assess the genotoxic risk to aquatic organisms, we therefore performed a two year study (2016-2017) on roach (Rutilus rutilus) from these rivers. Specimens were collected at three locations along the Drenica river and two locations along the Sitnica river, and the genotoxicity was evaluated by the micronucleus as well as the Comet assay (DNA damage) in erythrocytes. The frequencies of micronucleated cells were determined for samples collected in four seasons, whereas the Comet assay was employed on samples collected in five seasons during the two-year period. The data obtained revealed an increase of the frequency of micronucleated erythrocytes from Rutilus rutilus collected at most sampling locations and from both rivers at all seasons investigated. Significant differences to the control (lake Badovc) were found in summer 2016 and spring 2017 samples. When comparing the seasons, the summer 2016 samples were most genotoxic, followed by spring 2017 and autumn 2016. With regard to the Comet assay data, a similar but more prominent "response" was observed. Another important observation is that micronucleus rates as well as DNA damage levels were significantly higher in samples collected in 2016 compared to the respective seasons in 2017. Altogether, the "response" obtained with both markers confirmed a genotoxic risk for fish due the pollution of these rivers. Since there were, however, seasonal and annual variations of the genotoxicity levels further in depth studies have to be carried out addressing the nature of these changes.
Collapse
Affiliation(s)
- Fisnik H Asllani
- University of Prishtina, Department of Biology, Xhorxh Bush, n.n., 10000, Kosovo; University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Melanie Schürz
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Nikolaus Bresgen
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Peter M Eckl
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Avdulla J Alija
- University of Prishtina, Department of Biology, Xhorxh Bush, n.n., 10000, Kosovo.
| |
Collapse
|
43
|
Zhang F, Ren L, Zhou S, Duan P, Xue J, Chen H, Feng Y, Yue X, Yuan P, Liu Q, Yang P, Lei Y. Role of B-Cell Lymphoma 2 Ovarian Killer (BOK) in Acute Toxicity of Human Lung Epithelial Cells Caused by Cadmium Chloride. Med Sci Monit 2019; 25:5356-5368. [PMID: 31323016 PMCID: PMC6660808 DOI: 10.12659/msm.913706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) is a Bcl-2 family member with sequence homology to pro-apoptotic BAX and BAK, but its physiological and pathological roles remain largely unclear. Exposure of cells to cadmium may cause DNA damage, decrease DNA repair capacity, and increase genomic instability. Material/Methods The present study investigated the effects of BOK on the toxicity of cadmium chloride (CdCl2) to human bronchial epithelial (16HBE) cells. We constructed BOK over-expressing (16HBE-BOK) cells and BOK knockdown (16HBE-shBOK) cells using the BOK-ORF plasmid and BOK-siRNA. qRT-PCR for BOK mRNA expression. We used Trypan blue exclusion assay for cell growth, MTT colorimetric assays for cells inhibition rate, and Comet assays for detecting damaged DNA. Results CdCl2, at various concentrations and exposure times, increased BOK mRNA. 16HBE-BOK cells (BOK over-expressing) proliferated more than 16HBE cells after 72 h; 16HBE-shBOK (BOK knockdown) cells proliferated less. In addition, BOK deficiency enhanced cell death induced by CdCl2. Similarly, CdCl2- and H2O2-induced DNA damage was greater in BOK-deficient cells. Conclusions These findings support a role for BOK in CdCl2-induced DNA damage and cell death.
Collapse
Affiliation(s)
- Fang Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Liang Ren
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Shanshan Zhou
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Peng Duan
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Junchao Xue
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Haiqin Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yufeng Feng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Xiaoxuan Yue
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Piaofan Yuan
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ping Yang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yixiong Lei
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
44
|
Paravani EV, Simoniello MF, Poletta GL, Casco VH. Cypermethrin induction of DNA damage and oxidative stress in zebrafish gill cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:1-7. [PMID: 30743075 DOI: 10.1016/j.ecoenv.2019.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Cypermethrin (CYP) is a synthetic pyrethroid insecticide, used to control pests in domestic, industrial and agricultural environments. According to recent reports, it is one of the most common contaminants in freshwater aquatic systems. The aim of this study was to evaluate its potential genotoxic effect and the activation of the superoxide dismutase (SOD) and catalase (CAT) systems of adult zebrafish gill cells after in vivo exposure. The comet assay (CA) demonstrated that gill cells are sensitive to DNA damage after in vitro exposure to hydrogen peroxide (H2O2), showing a dose-dependent response. We also found an increase in DNA damage of gill cells following a dose- and time-dependent treatment with CYP. Moreover, it was verified that SOD and CAT activities significantly increased after exposure to 0.6 µg/L CYP, both during six and nine days. The same treatment caused a significant up-regulation of the mRNA levels of Mn-sod and cat genes. These data indicate that CYP causes gill cell's DNA damage and oxidative stress, modifying the activities of the enzymes responsible for maintaining ROS balance, as well as in their corresponding gene expression levels.
Collapse
Affiliation(s)
- E V Paravani
- Laboratorio de Microscopia Aplicada a Estudios Moleculares y Celulares, Facultad de Ingeniería, Universidad Nacional de Entre Ríos (UNER), Ruta 11 km 10, Oro Verde,3101, Entre Ríos, Argentina
| | - M F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, CC242 Paraje El Pozo S/N, (3000), Santa Fe, Argentina
| | - G L Poletta
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, CC242 Paraje El Pozo S/N, (3000), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), CABA, Argentina
| | - V H Casco
- Laboratorio de Microscopia Aplicada a Estudios Moleculares y Celulares, Facultad de Ingeniería, Universidad Nacional de Entre Ríos (UNER), Ruta 11 km 10, Oro Verde,3101, Entre Ríos, Argentina; IBB-CONICET-UNER, Argentina.
| |
Collapse
|
45
|
Francisco CDM, Bertolino SM, De Oliveira Júnior RJ, Morelli S, Pereira BB. Genotoxicity assessment of polluted urban streams using a native fish Astyanax altiparanae. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:514-523. [PMID: 31140379 DOI: 10.1080/15287394.2019.1624235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water quality has declined globally due to increased contamination of aquatic ecosystems. The use of fish genotoxicity biomarkers may improve and complement parameters for environmental risk assessment. The aim of this study was to assess the genotoxicity of samples collected from streams of the Jordão River, a tributary of the Paranaíba River, Brazil with different levels of metal contamination, utilizing a native fish species to determine the sensitivity and viability of implementing a useful, reliable technique for routine biomonitoring programs. Chemical analysis of water and sediments collected from different sites indicated that a gradient of contamination existed as evidenced by different concentrations of metals detected. After chronic exposure to contaminated samples, micronucleus (MN) frequencies in fish erythrocytes were measured and correlation with environmental parameters determined. Sites where the water concentrations of the metals aluminum (Al), iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu) were high indicating a greater genotoxic potential of these elements. At the samples collected from the urban zone, a gradual increase was found for chromium (Cr), cadmium (Cd) and nickel (Ni) indicative of adverse impacts of discharge of urban effluents. Data demonstrated that Astyanax altiparanae, used in the test, exhibited a reliable sensitivity for detection of genotoxic consequences attributed to exposure to water samples collected near the discharge of industrial and domestic waste.
Collapse
Affiliation(s)
| | - Sueli Moura Bertolino
- b Institute of Agrarian Sciences , Federal University of Uberlândia , Uberlândia , Minas Gerais , Brazil
| | | | - Sandra Morelli
- a Institute of Geography , Federal University of Uberlândia , Uberlândia , Minas Gerais , Brazil
| | - Boscolli Barbosa Pereira
- c Institute of Geography , Federal University of Uberlândia , Uberlândia , Minas Gerais , Brazil
| |
Collapse
|
46
|
Marrugo-Negrete J, Durango-Hernández J, Calao-Ramos C, Urango-Cárdenas I, Díez S. Mercury levels and genotoxic effect in caimans from tropical ecosystems impacted by gold mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:899-907. [PMID: 30769313 DOI: 10.1016/j.scitotenv.2019.01.340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
One of the most representative predator species in tropical ecosystems is caiman that can provide relevant information about the impact of mercury (Hg) associated with artisanal and small-scale gold mining. To evaluate the degree to which adverse effects are likely to occur in Caiman crocodilus, total Hg (THg) concentrations in different tissues and DNA damage in erythrocytes were determined. Samples of claws, scutes, and blood were taken from 65 specimens in sites impacted by upstream gold mining, and in a crocodile breeding center as control site, located in a floodplain in northern Colombia. In all the sites, the highest THg among tissues was in the following order: claws >> scutes > blood. High concentrations of THg were found in the different tissues of the specimens captured in areas impacted by mining activities, with mean values in claws (1100 ng/g ww), caudal scutes (490 ng/g ww), and blood (65 ng/g ww), and statistically significant differences compared to those of the control site (p < 0.05). THg in scutes from impacted sites are 15-fold higher than in control, whereas for claws and blood are 8 times higher, and a high significant correlation with THg was found in all the tissues. The comet assay reveals significant differences in the DNA damage in the exposed reptiles compared to the controls (p < 0.01). In sum, C. crocodilus from La Mojana floodplain presents a high ecological risk given its genotypic susceptibility to Hg levels present in its habitat, which could possibly influence vital functions such as reproduction of the species and the ecological niche that it represents within the ecosystem.
Collapse
Affiliation(s)
| | | | - Clelia Calao-Ramos
- Universidad de Córdoba, Carrera 6 No. 76-103, Montería, Córdoba, Colombia
| | | | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034 Barcelona, Spain.
| |
Collapse
|
47
|
Bolognesi C, Cirillo S, Chipman JK. Comet assay in ecogenotoxicology: Applications in Mytilus sp. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:50-59. [PMID: 31255226 DOI: 10.1016/j.mrgentox.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
The comet assay is a sensitive technique to detect DNA damage caused by exposure to genotoxic chemical and physical agents and is widely used in ecotoxicology. The assay has been applied in aquatic species, mainly fish and bivalves, in field biomonitoring programs and in experimental studies. The aim of the present study was to retrieve and review the published evidence to define the role of the comet assay in the assessment of genotoxic pollutants. The study focused on the application of the test in Mytilus sp, used as a sentinel organism. Twenty-one biomonitoring studies, carried out in wild and in transplanted mussels, were evaluated. An increase of the comet parameters in animals from polluted areas with respect to the controls was observed in the majority of the studies with a large variability (frequency ratio:1.2-14.5) associated with types and extent of exposure to pollutants. Three studies out of 21 reported a lack of response. Heavy metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and pesticides were the main types of chemicals detected in sediments and/or mussel tissues from polluted areas. Twenty-nine laboratory studies were retrieved showing the sensitivity of the comet assay in detecting DNA damage in mussels exposed to the most relevant pollutants and mixtures of relevant contaminants, such as pharmaceuticals, anti-fouling agents or crude oil. The comet test also appeared to be a suitable approach to detect the genotoxic effects of nanoparticles. In some studies problems in the interpretation of data or discrepancies between the results from different laboratories were noted. Critical steps in experimental protocol and characterization of pollution, environmental variables such as temperature, salinity, food availability, physiological and pathological status of the animals are important factors which should be controlled and considered in the analysis of the results.
Collapse
Affiliation(s)
- Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy.
| | - Silvia Cirillo
- School of Cellular and Molecular Medicine, University of Bristol, UK
| | | |
Collapse
|
48
|
Gajski G, Žegura B, Ladeira C, Novak M, Sramkova M, Pourrut B, Del Bo' C, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales - (Part 2 Vertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:130-164. [PMID: 31416573 DOI: 10.1016/j.mrrev.2019.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Abstract
The comet assay has become one of the methods of choice for the evaluation and measurement of DNA damage. It is sensitive, quick to perform and relatively affordable for the evaluation of DNA damage and repair at the level of individual cells. The comet assay can be applied to virtually any cell type derived from different organs and tissues. Even though the comet assay is predominantly used on human cells, the application of the assay for the evaluation of DNA damage in yeast, plant and animal cells is also quite high, especially in terms of biomonitoring. The present extensive overview on the usage of the comet assay in animal models will cover both terrestrial and water environments. The first part of the review was focused on studies describing the comet assay applied in invertebrates. The second part of the review, (Part 2) will discuss the application of the comet assay in vertebrates covering cyclostomata, fishes, amphibians, reptiles, birds and mammals, in addition to chordates that are regarded as a transitional form towards vertebrates. Besides numerous vertebrate species, the assay is also performed on a range of cells, which includes blood, liver, kidney, brain, gill, bone marrow and sperm cells. These cells are readily used for the evaluation of a wide spectrum of genotoxic agents both in vitro and in vivo. Moreover, the use of vertebrate models and their role in environmental biomonitoring will also be discussed as well as the comparison of the use of the comet assay in vertebrate and human models in line with ethical principles. Although the comet assay in vertebrates is most commonly used in laboratory animals such as mice, rats and lately zebrafish, this paper will only briefly review its use regarding laboratory animal models and rather give special emphasis to the increasing usage of the assay in domestic and wildlife animals as well as in various ecotoxicological studies.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Carina Ladeira
- H&TRC - Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal; Centro de Investigação e Estudos em Saúde de Publica, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Monika Sramkova
- Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bertrand Pourrut
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Cristian Del Bo'
- DeFENS-Division of Human Nutrition, University of Milan, Milan, Italy
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Solange Costa
- Environmental Health Department, National Health Institute Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry-MILK, NILU - Norwegian Institute for Air Research, Kjeller, Norway
| | - Gunnar Brunborg
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway
| | - Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
49
|
Castaño A, Bols N, Braunbeck T, Dierickx P, Halder M, Isomaa B, Kawahara K, Lee LEJ, Mothersill C, Pärt P, Repetto G, Sintes JR, Rufli H, Smith R, Wood C, Segner H. The use of Fish Cells in Ecotoxicology: The Report and Recommendations of ECVAM Workshop 47,. Altern Lab Anim 2019; 31:317-51. [PMID: 15612875 DOI: 10.1177/026119290303100314] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Argelia Castaño
- Animal Health Research Centre, Spanish National Institute for Food and Agrarian Research and Technology (CISA-INIA), 28130 Valdeolmos, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Erraud A, Bonnard M, Geffard O, Coulaud R, Poret A, Duflot A, Forget-Leray J, Geffard A, Xuereb B. Signification of DNA integrity in sperm of Palaemon serratus (Pennant 1777): Kinetic responses and reproduction impairment. MARINE ENVIRONMENTAL RESEARCH 2019; 144:130-140. [PMID: 30665768 DOI: 10.1016/j.marenvres.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
The study of the effects of contamination on sperm quality not only provides an early, specific and integrative response to the fraction of bioavailable pollutants, but also has been shown to predict the potential of this fraction to modify an organism's capacity to reproduce. In addition, fertility damage in invertebrates has been addressed as a major problem that may pose a threat to the maintenance of populations. In this context, the present study proposes a methodology based on the measurement of sperm DNA integrity to evaluate the impact of paternal damaged DNA on the reproductive success of Palaemon serratus. A preliminary methodological optimization step was carried out to assess the kinetics of response of spermatozoa as well as the sensitivity of the spermatozoa according to their location in the genital tract. Spermatozoa appeared to be sensitive to a short in vivo exposure to the direct acting agent methyl methanesulfonate (i.e. MMS; 2 days), with a persistence of damage even after a 30 days' recovery in a clean environment, suggesting a probable lack of DNA repair machinery. Moreover, our results revealed no difference in the level of DNA damage in mature spermatozoa whatever the exposure in spermatophore located in the terminal ampulla or in the proximal and distal part of the vas deferens. Finally, a significant decrease in the percentage of naturally bred prawns has been observed at the highest concentration of MMS (i.e. 100 μM). Nevertheless, no reproduction impairment (i.e. fertilization rate and early embryo development) following a paternal exposure has been shown in spite of very high levels of sperm DNA damage. In regard to the literature, this result raises questions concerning the kinetics of expression of genotoxic damage on progeny in the Palaemon model and future work will be led in this way.
Collapse
Affiliation(s)
- Alexandre Erraud
- Normandie Univ, UNIHAVRE, UMR-I 02 SEBIO, FR CNRS 3730 SCALE, 76600, Le Havre, France
| | - Marc Bonnard
- Université Reims Champagne Ardenne, UMR-I 02 SEBIO, 51100, Reims, France
| | - Olivier Geffard
- IRSTEA, UR MALY Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69616, Villeurbanne, France
| | - Romain Coulaud
- Normandie Univ, UNIHAVRE, UMR-I 02 SEBIO, FR CNRS 3730 SCALE, 76600, Le Havre, France
| | - Agnès Poret
- Normandie Univ, UNIHAVRE, UMR-I 02 SEBIO, FR CNRS 3730 SCALE, 76600, Le Havre, France
| | - Aurélie Duflot
- Normandie Univ, UNIHAVRE, UMR-I 02 SEBIO, FR CNRS 3730 SCALE, 76600, Le Havre, France
| | - Joëlle Forget-Leray
- Normandie Univ, UNIHAVRE, UMR-I 02 SEBIO, FR CNRS 3730 SCALE, 76600, Le Havre, France
| | - Alain Geffard
- Université Reims Champagne Ardenne, UMR-I 02 SEBIO, 51100, Reims, France
| | - Benoit Xuereb
- Normandie Univ, UNIHAVRE, UMR-I 02 SEBIO, FR CNRS 3730 SCALE, 76600, Le Havre, France.
| |
Collapse
|