1
|
Pitt WJ, Cooper WR, Pouchnik D, Headrick H, Nachappa P. High-throughput molecular gut content analysis of aphids identifies plants relevant for potato virus Y epidemiology. INSECT SCIENCE 2024; 31:1489-1502. [PMID: 38319817 DOI: 10.1111/1744-7917.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 02/08/2024]
Abstract
Aphids are phloem-feeding insects that reduce crop productivity due to feeding and transmission of plant viruses. When aphids disperse across the landscape to colonize new host plants, they will often probe on a wide variety of nonhost plants before settling on a host suitable for feeding and reproduction. There is limited understanding of the diversity of plants that aphids probe on within a landscape, and characterizing this diversity can help us better understand host use patterns of aphids. Here, we used gut content analysis (GCA) to identify plant genera that were probed by aphid vectors of potato virus Y (PVY). Aphids were trapped weekly near potato fields during the growing seasons of 2020 and 2021 in San Luis Valley in Colorado. High-throughput sequencing of plant barcoding genes, trnF and ITS2, from 200 individual alate (i.e., winged) aphids representing nine vector species of PVY was performed using the PacBio sequencing platform, and sequences were identified to genus using NCBI BLASTn. We found that 34.7% of aphids probed upon presumed PVY host plants and that two of the most frequently detected plant genera, Solanum and Brassica, represent important crops and weeds within the study region. We found that 75% of aphids frequently probed upon PVY nonhosts including many species that are outside of their reported host ranges. Additionally, 19% of aphids probed upon more than one plant species. This study provides the first evidence from high-throughput molecular GCA of aphids and reveals host use patterns that are relevant for PVY epidemiology.
Collapse
Affiliation(s)
- William Jacob Pitt
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Derek Pouchnik
- Laboratory for Biotechnology and Bioanalysis, Washington State University, Pullman, Washington, USA
| | - Heather Headrick
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, Wapato, Washington, USA
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Tabara M, Uraguchi S, Kiyono M, Watanabe I, Takeda A, Takahashi H, Fukuhara T. A resilient mutualistic interaction between cucumber mosaic virus and its natural host to adapt to an excess zinc environment and drought stress. JOURNAL OF PLANT RESEARCH 2024:10.1007/s10265-024-01573-w. [PMID: 39190237 DOI: 10.1007/s10265-024-01573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
A perennial pseudometallophyte Arabidopsis halleri is frequently infected with cucumber mosaic virus (CMV) in its natural habitat. The purpose of this study was to characterize the effect of CMV infection on the environmental adaptation of its natural host A. halleri. The CMV(Ho) strain isolated from A. halleri was inoculated into clonal virus-free A. halleri plants, and a unique plant-virus system consisting of CMV(Ho) and its natural wild plant host was established. In a control environment with ambient zinc supplementation, CMV(Ho) infection retarded growth in the above-ground part of host plants but conferred strong drought tolerance. On the other hand, in an excess zinc environment, simulating a natural edaphic environment of A halleri, host plants hyperaccumulated zinc and CMV(Ho) infection did not cause any symptoms to host plants while conferring mild drought tolerance. We also demonstrated in Nicotiana benthamiana as another host that similar effects were induced by the combination of excess zinc and CMV(Ho) infection. Transcriptomic analysis indicated that the host plant recognized CMV(Ho) as a mutualistic symbiont rather than a parasitic pathogen. These results suggest a resilient mutualistic interaction between CMV(Ho) and its natural host A. halleri in its natural habitat.
Collapse
Affiliation(s)
- Midori Tabara
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Izumi Watanabe
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Atsushi Takeda
- College of Life Sciences, Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Aramaki-Aza-Aoba, 468-1, Sendai, 980-0845, Japan
| | - Toshiyuki Fukuhara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
3
|
Tennant P, Rampersad S, Alleyne A, Johnson L, Tai D, Amarakoon I, Roye M, Pitter P, Chang PG, Myers Morgan L. Viral Threats to Fruit and Vegetable Crops in the Caribbean. Viruses 2024; 16:603. [PMID: 38675944 PMCID: PMC11053604 DOI: 10.3390/v16040603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Viruses pose major global challenges to crop production as infections reduce the yield and quality of harvested products, hinder germplasm exchange, increase financial inputs, and threaten food security. Small island or archipelago habitat conditions such as those in the Caribbean are particularly susceptible as the region is characterized by high rainfall and uniform, warm temperatures throughout the year. Moreover, Caribbean islands are continuously exposed to disease risks because of their location at the intersection of transcontinental trade between North and South America and their role as central hubs for regional and global agricultural commodity trade. This review provides a summary of virus disease epidemics that originated in the Caribbean and those that were introduced and spread throughout the islands. Epidemic-associated factors that impact disease development are also discussed. Understanding virus disease epidemiology, adoption of new diagnostic technologies, implementation of biosafety protocols, and widespread acceptance of biotechnology solutions to counter the effects of cultivar susceptibility remain important challenges to the region. Effective integrated disease management requires a comprehensive approach that should include upgraded phytosanitary measures and continuous surveillance with rapid and appropriate responses.
Collapse
Affiliation(s)
- Paula Tennant
- Department of Life Sciences, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Sephra Rampersad
- Department of Life Sciences, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago;
| | - Angela Alleyne
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill, Bridgetown BB11000, Barbados;
| | - Lloyd Johnson
- Department of Life Sciences, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
| | - Deiondra Tai
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Icolyn Amarakoon
- Department of Basic Medical Sciences, Biochemistry Section, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
| | - Marcia Roye
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Patrice Pitter
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| | - Peta-Gaye Chang
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| | - Lisa Myers Morgan
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| |
Collapse
|
4
|
Guevara-Rivera EA, Rodríguez-Negrete EA, Lozano-Durán R, Bejarano ER, Torres-Calderón AM, Arce-Leal ÁP, Leyva-López NE, Méndez-Lozano J. From Metagenomics to Ecogenomics: NGS-Based Approaches for Discovery of New Circular DNA Single-Stranded Viral Species. Methods Mol Biol 2024; 2732:103-117. [PMID: 38060120 DOI: 10.1007/978-1-0716-3515-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Viruses comprise the most abundant genetic material in the biosphere; however, global viral genomic population (virome) has been largely underestimated. Recently, high-throughput sequencing (HTS) has provided a powerful tool for the detection of known viruses and the discovery of novel viral species from environmental and individual samples using metagenomics and ecogenomics approaches, respectively. Viruses with circular DNA single-stranded (ssDNA) genomes belonging to the begomovirus genera (family Geminiviridae) constitute the largest group of emerging plant viruses worldwide. The knowledge of begomoviruses viromes is mostly restricted to crop plant systems; nevertheless, it has been described that noncultivated plants specifically at the interface between wild and cultivated plants are important reservoirs leading to viral evolution and the emergence of new diseases. Here we present a protocol that allows the identification and isolation of known and novel begomoviruses species infecting cultivated and noncultivated plant species. The method consists of circular viral molecules enrichment by rolling circle amplification (RCA) from begomovirus-positive total plant DNA, followed by NGS-based metagenomic sequencing. Subsequently, metagenomic reads are processed for taxonomic classification using Viromescan software and a customized Geminiviridae family database, and begomovirus-related reads are used for contigs assembly and annotation using Spades software and Blastn algorithm, respectively. Then, the obtained begomovirus-related signatures are used as templates for specific primers design and implemented for PCR-based ecogenomic identification of individual samples harboring the corresponding viral species. Lastly, full-length begomovirus genomes are obtained by RCA-based amplification from total plant DNA of selected individual samples, cloning, and viral molecular identity corroborated by Sanger sequencing. Conclusively, the identification and isolation of a novel monopartite begomovirus species native to the New World (NW) named Gallium leaf deformation virus (GLDV) is shown.
Collapse
Affiliation(s)
- Enrique A Guevara-Rivera
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Guasave, Sinaloa, Mexico
| | - Edgar A Rodríguez-Negrete
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Guasave, Sinaloa, Mexico
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | | | - Ángela P Arce-Leal
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Guasave, Sinaloa, Mexico
| | - Norma E Leyva-López
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Guasave, Sinaloa, Mexico
| | - Jesús Méndez-Lozano
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Guasave, Sinaloa, Mexico.
| |
Collapse
|
5
|
Gautam S, Gadhave KR, Buck JW, Dutta B, Coolong T, Adkins S, Simmons AM, Srinivasan R. Effects of Host Plants and Their Infection Status on Acquisition and Inoculation of A Plant Virus by Its Hemipteran Vector. Pathogens 2023; 12:1119. [PMID: 37764927 PMCID: PMC10537197 DOI: 10.3390/pathogens12091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Whitefly, Bemisia tabaci Gennadius (B cryptic species), transmits cucurbit leaf crumple virus (CuLCrV) in a persistent fashion. CuLCrV affects several crops such as squash and snap bean in the southeastern United States. CuLCrV is often found as a mixed infection with whitefly transmitted criniviruses, such as cucurbit yellow stunting disorder virus (CYSDV) in hosts such as squash, or as a single infection in hosts such as snap bean. The implications of different host plants (inoculum sources) with varying infection status on CuLCrV transmission/epidemics is not clear. This study conducted a series of whitefly mediated CuLCrV transmission experiments. In the first experiment, three plants species: squash, snap bean, and tobacco were inoculated by whiteflies feeding on field-collected mixed-infected squash plants. In the second experiment, three plant species, namely squash, snap bean, and tobacco with varying infection status (squash infected with CuLCrV and CYSDV and snap bean and tobacco infected with CuLCrV), were used as inoculum sources. In the third experiment, squash plants with differential CuLCrV accumulation levels and infection status (either singly infected with CuLCrV or mixed infected with CuLCrV and CYSDV) were used as inoculum sources. Irrespective of plant species and its infection status, CuLCrV accumulation in whiteflies was dependent upon the CuLCrV accumulation in the inoculum source plants. Furthermore, differential CuLCrV accumulation in whiteflies resulted in differential transmission, CuLCrV accumulation, and disease phenotype in the recipient squash plants. Overall, results demonstrate that whitefly mediated CuLCrV transmission between host plants follows a virus density dependent phenomenon with implications for epidemics.
Collapse
Affiliation(s)
- Saurabh Gautam
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA;
| | - Kiran R. Gadhave
- Texas A&M AgriLife Research, 6500 W Amarillo Blvd, Amarillo, TX 79106, USA;
| | - James W. Buck
- Department of Plant Pathology, University of Georgia, 1109 Experiment St., Griffin, GA 30223, USA;
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, 3250 Rainwater Road, Tifton, GA 31793, USA;
| | - Timothy Coolong
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, 120 Carlton Street, Athens, GA 30602, USA;
| | - Scott Adkins
- USDA-ARS, U.S., Horticultural Research Laboratory, Fort Pierce, FL 34945, USA;
| | - Alvin M. Simmons
- USDA-ARS, U.S., Vegetable Laboratory, Charleston, SC 29414, USA;
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA;
| |
Collapse
|
6
|
Fiallo-Olivé E, Navas-Castillo J. Begomoviruses: what is the secret(s) of their success? TRENDS IN PLANT SCIENCE 2023; 28:715-727. [PMID: 36805143 DOI: 10.1016/j.tplants.2023.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 05/13/2023]
Abstract
Begomoviruses constitute an extremely successful group of emerging plant viruses transmitted by whiteflies of the Bemisia tabaci complex. Hosts include important vegetable, root, and fiber crops grown in the tropics and subtropics. Factors contributing to the ever-increasing diversity and success of begomoviruses include their predisposition to recombine their genomes, interaction with DNA satellites recruited throughout their evolution, presence of wild plants as a virus reservoir and a source of speciation, and extreme polyphagia and continuous movement of the insect vectors to temperate regions. These features as well as some controversial issues (replication in the insect vector, putative seed transmission, transmission by insects other than B. tabaci, and expansion of the host range to monocotyledonous plants) will be analyzed in this review.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
7
|
Rivarez MPS, Pecman A, Bačnik K, Maksimović O, Vučurović A, Seljak G, Mehle N, Gutiérrez-Aguirre I, Ravnikar M, Kutnjak D. In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem. MICROBIOME 2023; 11:60. [PMID: 36973750 PMCID: PMC10042675 DOI: 10.1186/s40168-023-01500-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/20/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In agroecosystems, viruses are well known to influence crop health and some cause phytosanitary and economic problems, but their diversity in non-crop plants and role outside the disease perspective is less known. Extensive virome explorations that include both crop and diverse weed plants are therefore needed to better understand roles of viruses in agroecosystems. Such unbiased exploration is available through viromics, which could generate biological and ecological insights from immense high-throughput sequencing (HTS) data. RESULTS Here, we implemented HTS-based viromics to explore viral diversity in tomatoes and weeds in farming areas at a nation-wide scale. We detected 125 viruses, including 79 novel species, wherein 65 were found exclusively in weeds. This spanned 21 higher-level plant virus taxa dominated by Potyviridae, Rhabdoviridae, and Tombusviridae, and four non-plant virus families. We detected viruses of non-plant hosts and viroid-like sequences and demonstrated infectivity of a novel tobamovirus in plants of Solanaceae family. Diversities of predominant tomato viruses were variable, in some cases, comparable to that of global isolates of the same species. We phylogenetically classified novel viruses and showed links between a subgroup of phylogenetically related rhabdoviruses to their taxonomically related host plants. Ten classified viruses detected in tomatoes were also detected in weeds, which might indicate possible role of weeds as their reservoirs and that these viruses could be exchanged between the two compartments. CONCLUSIONS We showed that even in relatively well studied agroecosystems, such as tomato farms, a large part of very diverse plant viromes can still be unknown and is mostly present in understudied non-crop plants. The overlapping presence of viruses in tomatoes and weeds implicate possible presence of virus reservoir and possible exchange between the weed and crop compartments, which may influence weed management decisions. The observed variability and widespread presence of predominant tomato viruses and the infectivity of a novel tobamovirus in solanaceous plants, provided foundation for further investigation of virus disease dynamics and their effect on tomato health. The extensive insights we generated from such in-depth agroecosystem virome exploration will be valuable in anticipating possible emergences of plant virus diseases and would serve as baseline for further post-discovery characterization studies. Video Abstract.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
- Present Address: College of Agriculture and Agri-Industries, Caraga State University, Ampayon, Butuan City, 8600 Philippines
| | - Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
| | - Katarina Bačnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Olivera Maksimović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Gabrijel Seljak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- School for Viticulture and Enology, University of Nova Gorica, Dvorec Lanthieri Glavni trg 8, Vipava, 5271 Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| |
Collapse
|
8
|
Jeger MJ. Tolerance of plant virus disease: Its genetic, physiological, and epidemiological significance. Food Energy Secur 2022. [DOI: 10.1002/fes3.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Michael John Jeger
- Department of Life Sciences, Silwood Park Imperial College London Ascot UK
| |
Collapse
|
9
|
Viral cross-class transmission results in disease of a phytopathogenic fungus. THE ISME JOURNAL 2022; 16:2763-2774. [PMID: 36045287 PMCID: PMC9428384 DOI: 10.1038/s41396-022-01310-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/15/2022]
Abstract
Interspecies transmission of viruses is a well-known phenomenon in animals and plants whether via contacts or vectors. In fungi, interspecies transmission between distantly related fungi is often suspected but rarely experimentally documented and may have practical implications. A newly described double-strand RNA (dsRNA) virus found asymptomatic in the phytopathogenic fungus Leptosphaeria biglobosa of cruciferous crops was successfully transmitted to an evolutionarily distant, broad-host range pathogen Botrytis cinerea. Leptosphaeria biglobosa botybirnavirus 1 (LbBV1) was characterized in L. biglobosa strain GZJS-19. Its infection in L. biglobosa was asymptomatic, as no significant differences in radial mycelial growth and pathogenicity were observed between LbBV1-infected and LbBV1-free strains. However, cross-species transmission of LbBV1 from L. biglobosa to infection in B. cinerea resulted in the hypovirulence of the recipient B. cinerea strain t-459-V. The cross-species transmission was succeeded only by inoculation of mixed spores of L. biglobosa and B. cinerea on PDA or on stems of oilseed rape with the efficiency of 4.6% and 18.8%, respectively. To investigate viral cross-species transmission between L. biglobosa and B. cinerea in nature, RNA sequencing was carried out on L. biglobosa and B. cinerea isolates obtained from Brassica samples co-infected by these two pathogens and showed that at least two mycoviruses were detected in both fungal groups. These results indicate that cross-species transmission of mycoviruses may occur frequently in nature and result in the phenotypical changes of newly invaded phytopathogenic fungi. This study also provides new insights for using asymptomatic mycoviruses as biocontrol agent.
Collapse
|
10
|
Fiallo-Olivé E, Bastidas L, Chirinos DT, Navas-Castillo J. Insights into Emerging Begomovirus-Deltasatellite Complex Diversity: The First Deltasatellite Infecting Legumes. BIOLOGY 2021; 10:1125. [PMID: 34827118 PMCID: PMC8615175 DOI: 10.3390/biology10111125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022]
Abstract
Begomoviruses and associated DNA satellites are involved in pathosystems that include many cultivated and wild dicot plants and the whitefly vector Bemisia tabaci. A survey of leguminous plants, both crops and wild species, was conducted in Venezuela, an understudied country, to determine the presence of begomoviruses. Molecular analysis identified the presence of bipartite begomoviruses in 37% of the collected plants. Four of the six begomoviruses identified constituted novel species, and two others had not been previously reported in Venezuela. In addition, a novel deltasatellite (cabbage leaf curl deltasatellite, CabLCD) was found to be associated with cabbage leaf curl virus (CabLCV) in several plant species. CabLCD was the first deltasatellite found to infect legumes and the first found in the New World to infect a crop plant. Agroinoculation experiments using Nicotiana benthamiana plants and infectious viral clones confirmed that CabLCV acts as a helper virus for CabLCD. The begomovirus-deltasatellite complex described here is also present in wild legume plants, suggesting the possible role of these plants in the emergence and establishment of begomoviral diseases in the main legume crops in the region. Pathological knowledge of these begomovirus-deltasatellite complexes is fundamental to develop control methods to protect leguminous crops from the diseases they cause.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Avenida Dr. Wienberg s/n, 29750 Algarrobo-Costa, Málaga, Spain;
| | - Liseth Bastidas
- Departamento Fitosanitario, Facultad de Agronomía, Universidad del Zulia, Maracaibo 4005, Zulia, Venezuela;
| | - Dorys T. Chirinos
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Portoviejo 130105, Manabí, Ecuador;
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Avenida Dr. Wienberg s/n, 29750 Algarrobo-Costa, Málaga, Spain;
| |
Collapse
|
11
|
Hasiów-Jaroszewska B, Boezen D, Zwart MP. Metagenomic Studies of Viruses in Weeds and Wild Plants: A Powerful Approach to Characterise Variable Virus Communities. Viruses 2021; 13:1939. [PMID: 34696369 PMCID: PMC8539035 DOI: 10.3390/v13101939] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
High throughput sequencing (HTS) has revolutionised virus detection and discovery, allowing for the untargeted characterisation of whole viromes. Viral metagenomics studies have demonstrated the ubiquity of virus infection - often in the absence of disease symptoms - and tend to discover many novel viruses, highlighting the small fraction of virus biodiversity described to date. The majority of the studies using high-throughput sequencing to characterise plant viromes have focused on economically important crops, and only a small number of studies have considered weeds and wild plants. Characterising the viromes of wild plants is highly relevant, as these plants can affect disease dynamics in crops, often by acting as viral reservoirs. Moreover, the viruses in unmanaged systems may also have important effects on wild plant populations and communities. Here, we review metagenomic studies on weeds and wild plants to show the benefits and limitations of this approach and identify knowledge gaps. We consider key genomics developments that are likely to benefit the field in the near future. Although only a small number of HTS studies have been performed on weeds and wild plants, these studies have already discovered many novel viruses, demonstrated unexpected trends in virus distributions, and highlighted the potential of metagenomics as an approach.
Collapse
Affiliation(s)
- Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Węgorka 20, 60-318 Poznań, Poland
| | - Dieke Boezen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (D.B.); (M.P.Z.)
| | - Mark P. Zwart
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (D.B.); (M.P.Z.)
| |
Collapse
|
12
|
Rivarez MPS, Vučurović A, Mehle N, Ravnikar M, Kutnjak D. Global Advances in Tomato Virome Research: Current Status and the Impact of High-Throughput Sequencing. Front Microbiol 2021; 12:671925. [PMID: 34093492 PMCID: PMC8175903 DOI: 10.3389/fmicb.2021.671925] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses cause a big fraction of economically important diseases in major crops, including tomato. In the past decade (2011–2020), many emerging or re-emerging tomato-infecting viruses were reported worldwide. In this period, 45 novel viral species were identified in tomato, 14 of which were discovered using high-throughput sequencing (HTS). In this review, we first discuss the role of HTS in these discoveries and its general impact on tomato virome research. We observed that the rate of tomato virus discovery is accelerating in the past few years due to the use of HTS. However, the extent of the post-discovery characterization of viruses is lagging behind and is greater for economically devastating viruses, such as the recently emerged tomato brown rugose fruit virus. Moreover, many known viruses still cause significant economic damages to tomato production. The review of databases and literature revealed at least 312 virus, satellite virus, or viroid species (in 22 families and 39 genera) associated with tomato, which is likely the highest number recorded for any plant. Among those, here, we summarize the current knowledge on the biology, global distribution, and epidemiology of the most important species. Increasing knowledge on tomato virome and employment of HTS to also study viromes of surrounding wild plants and environmental samples are bringing new insights into the understanding of epidemiology and ecology of tomato-infecting viruses and can, in the future, facilitate virus disease forecasting and prevention of virus disease outbreaks in tomato.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,School for Viticulture and Enology, University of Nova Gorica, Nova Gorica, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
13
|
McLeish MJ, Fraile A, García-Arenal F. Population Genomics of Plant Viruses: The Ecology and Evolution of Virus Emergence. PHYTOPATHOLOGY 2021; 111:32-39. [PMID: 33210987 DOI: 10.1094/phyto-08-20-0355-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The genomics era has revolutionized studies of adaptive evolution by monitoring large numbers of loci throughout the genomes of many individuals. Ideally, the investigation of emergence in plant viruses requires examining the population dynamics of both virus and host, their interactions with each other, with other organisms and the abiotic environment. Genetic mechanisms that affect demographic processes are now being studied with high-throughput technologies, traditional genetics methods, and new computational tools for big-data. In this review, we discuss the utility of these approaches to monitor and detect changes in virus populations within cells and individuals, and over wider areas across species and communities of ecosystems. The advent of genomics in virology has fostered a multidisciplinary approach to tackling disease risk. The ability to make sense of the information now generated in this integrated setting is by far the most substantial obstacle to the ultimate goal of plant virology to minimize the threats to food security posed by disease. To achieve this goal, it is imperative to understand and forecast how populations respond to future changes in complex natural systems.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
14
|
Disease Pandemics and Major Epidemics Arising from New Encounters between Indigenous Viruses and Introduced Crops. Viruses 2020; 12:v12121388. [PMID: 33291635 PMCID: PMC7761969 DOI: 10.3390/v12121388] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023] Open
Abstract
Virus disease pandemics and epidemics that occur in the world’s staple food crops pose a major threat to global food security, especially in developing countries with tropical or subtropical climates. Moreover, this threat is escalating rapidly due to increasing difficulties in controlling virus diseases as climate change accelerates and the need to feed the burgeoning global population escalates. One of the main causes of these pandemics and epidemics is the introduction to a new continent of food crops domesticated elsewhere, and their subsequent invasion by damaging virus diseases they never encountered before. This review focusses on providing historical and up-to-date information about pandemics and major epidemics initiated by spillover of indigenous viruses from infected alternative hosts into introduced crops. This spillover requires new encounters at the managed and natural vegetation interface. The principal virus disease pandemic examples described are two (cassava mosaic, cassava brown streak) that threaten food security in sub-Saharan Africa (SSA), and one (tomato yellow leaf curl) doing so globally. A further example describes a virus disease pandemic threatening a major plantation crop producing a vital food export for West Africa (cacao swollen shoot). Also described are two examples of major virus disease epidemics that threaten SSA’s food security (rice yellow mottle, groundnut rosette). In addition, brief accounts are provided of two major maize virus disease epidemics (maize streak in SSA, maize rough dwarf in Mediterranean and Middle Eastern regions), a major rice disease epidemic (rice hoja blanca in the Americas), and damaging tomato tospovirus and begomovirus disease epidemics of tomato that impair food security in different world regions. For each pandemic or major epidemic, the factors involved in driving its initial emergence, and its subsequent increase in importance and geographical distribution, are explained. Finally, clarification is provided over what needs to be done globally to achieve effective management of severe virus disease pandemics and epidemics initiated by spillover events.
Collapse
|
15
|
Hančinský R, Mihálik D, Mrkvová M, Candresse T, Glasa M. Plant Viruses Infecting Solanaceae Family Members in the Cultivated and Wild Environments: A Review. PLANTS 2020; 9:plants9050667. [PMID: 32466094 PMCID: PMC7284659 DOI: 10.3390/plants9050667] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/01/2022]
Abstract
Plant viruses infecting crop species are causing long-lasting economic losses and are endangering food security worldwide. Ongoing events, such as climate change, changes in agricultural practices, globalization of markets or changes in plant virus vector populations, are affecting plant virus life cycles. Because farmer’s fields are part of the larger environment, the role of wild plant species in plant virus life cycles can provide information about underlying processes during virus transmission and spread. This review focuses on the Solanaceae family, which contains thousands of species growing all around the world, including crop species, wild flora and model plants for genetic research. In a first part, we analyze various viruses infecting Solanaceae plants across the agro-ecological interface, emphasizing the important role of virus interactions between the cultivated and wild zones as global changes affect these environments on both local and global scales. To cope with these changes, it is necessary to adjust prophylactic protection measures and diagnostic methods. As illustrated in the second part, a complex virus research at the landscape level is necessary to obtain relevant data, which could be overwhelming. Based on evidence from previous studies we conclude that Solanaceae plant communities can be targeted to address complete life cycles of viruses with different life strategies within the agro-ecological interface. Data obtained from such research could then be used to improve plant protection methods by taking into consideration environmental factors that are impacting the life cycles of plant viruses.
Collapse
Affiliation(s)
- Richard Hančinský
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
| | - Daniel Mihálik
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
- Institute of High Mountain Biology, University of Žilina, Univerzitná 8215/1, 01026 Žilina, Slovakia
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešťany, Slovakia
| | - Michaela Mrkvová
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
| | - Thierry Candresse
- INRAE, University Bordeaux, UMR BFP, 33140 Villenave d’Ornon, France;
| | - Miroslav Glasa
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-5930-2447
| |
Collapse
|
16
|
Fontenele RS, Salywon AM, Majure LC, Cobb IN, Bhaskara A, Avalos-Calleros JA, Argüello-Astorga GR, Schmidlin K, Khalifeh A, Smith K, Schreck J, Lund MC, Köhler M, Wojciechowski MF, Hodgson WC, Puente-Martinez R, Van Doorslaer K, Kumari S, Vernière C, Filloux D, Roumagnac P, Lefeuvre P, Ribeiro SG, Kraberger S, Martin DP, Varsani A. A Novel Divergent Geminivirus Identified in Asymptomatic New World Cactaceae Plants. Viruses 2020; 12:E398. [PMID: 32260283 PMCID: PMC7232249 DOI: 10.3390/v12040398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Cactaceae comprise a diverse and iconic group of flowering plants which are almost exclusively indigenous to the New World. The wide variety of growth forms found amongst the cacti have led to the trafficking of many species throughout the world as ornamentals. Despite the evolution and physiological properties of these plants having been extensively studied, little research has focused on cactus-associated viral communities. While only single-stranded RNA viruses had ever been reported in cacti, here we report the discovery of cactus-infecting single-stranded DNA viruses. These viruses all apparently belong to a single divergent species of the family Geminiviridae and have been tentatively named Opuntia virus 1 (OpV1). A total of 79 apparently complete OpV1 genomes were recovered from 31 different cactus plants (belonging to 20 different cactus species from both the Cactoideae and Opuntioideae clades) and from nine cactus-feeding cochineal insects (Dactylopius sp.) sampled in the USA and Mexico. These 79 OpV1 genomes all share > 78.4% nucleotide identity with one another and < 64.9% identity with previously characterized geminiviruses. Collectively, the OpV1 genomes display evidence of frequent recombination, with some genomes displaying up to five recombinant regions. In one case, recombinant regions span ~40% of the genome. We demonstrate that an infectious clone of an OpV1 genome can replicate in Nicotiana benthamiana and Opuntia microdasys. In addition to expanding the inventory of viruses that are known to infect cacti, the OpV1 group is so distantly related to other known geminiviruses that it likely represents a new geminivirus genus. It remains to be determined whether, like its cactus hosts, its geographical distribution spans the globe.
Collapse
Affiliation(s)
- Rafaela S. Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Andrew M. Salywon
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
| | - Lucas C. Majure
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Ilaria N. Cobb
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amulya Bhaskara
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- Center for Research in Engineering, Science and Technology, Paradise Valley High School, 3950 E Bell Rd, Phoenix, AZ 85032, USA
| | - Jesús A. Avalos-Calleros
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa de San José 2055, Lomas 4ta Secc, San Luis Potosi 78216, S.L.P., Mexico; (J.A.A.-C.); (G.R.A.-A.)
| | - Gerardo R. Argüello-Astorga
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa de San José 2055, Lomas 4ta Secc, San Luis Potosi 78216, S.L.P., Mexico; (J.A.A.-C.); (G.R.A.-A.)
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Anthony Khalifeh
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Kendal Smith
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Joshua Schreck
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Michael C. Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Matias Köhler
- Departamento de BotânicaPrograma de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501970, Brazil;
| | | | - Wendy C. Hodgson
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
| | - Raul Puente-Martinez
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, Department of Immunobiology, BIO5 Institute, and UA Cancer Center, University of Arizona, Tucson, AZ 85721, USA;
| | - Safaa Kumari
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol Station, Beqa’a, Zahle, Lebanon;
| | - Christian Vernière
- CIRAD, BGPI, 34398 Montpellier, France; (C.V.); (D.F.); (P.R.)
- BGPI, INRAE, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France
| | - Denis Filloux
- CIRAD, BGPI, 34398 Montpellier, France; (C.V.); (D.F.); (P.R.)
- BGPI, INRAE, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France
| | - Philippe Roumagnac
- CIRAD, BGPI, 34398 Montpellier, France; (C.V.); (D.F.); (P.R.)
- BGPI, INRAE, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France
| | | | - Simone G. Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, CEP 70770-917, Brazil;
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
| | - Darren P. Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa;
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
17
|
Mollel HG, Ndunguru J, Sseruwagi P, Alicai T, Colvin J, Navas-Castillo J, Fiallo-Olivé E. African Basil ( Ocimum gratissimum) Is a Reservoir of Divergent Begomoviruses in Uganda. PLANT DISEASE 2020; 104:853-859. [PMID: 31910114 DOI: 10.1094/pdis-08-19-1675-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Begomoviruses are plant viruses that cause major losses to many economically important crops. Although they are poorly understood, begomoviruses infecting wild plants may have an important role as reservoirs in the epidemiology of viral diseases. This study reports the discovery and genomic characterization of three novel bipartite begomoviruses from wild and cultivated African basil (Ocimum gratissimum) plants collected in Uganda, East Africa. Based on the symptoms shown by the infected plants, the names proposed for these viruses are Ocimum yellow vein virus (OcYVV), Ocimum mosaic virus (OcMV), and Ocimum golden mosaic virus (OcGMV). Genome and phylogenetic analyses suggest that DNA-A of OcGMV is mostly related to begomoviruses infecting tomato in Africa, whereas those of OcYVV and OcMV are closely related to one another and highly divergent within the Old World begomoviruses. The DNA-A of all characterized begomovirus isolates are of a recombinant nature, revealing the role of recombination in the evolution of these begomoviruses. The viruses characterized here are the first identified in O. gratissimum and the first in Ocimum spp. in the African continent and could have important epidemiological consequences for cultivated basils and other important crops.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Happyness G Mollel
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas - Universidad de Málaga, 29750 Algarrobo-Costa, Málaga, Spain
| | - Joseph Ndunguru
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - Titus Alicai
- National Crops Resources Research Institute, Namulonge, Kampala, Uganda
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas - Universidad de Málaga, 29750 Algarrobo-Costa, Málaga, Spain
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas - Universidad de Málaga, 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
18
|
Rodríguez-Nevado C, G Gavilán R, Pagán I. Host Abundance and Identity Determine the Epidemiology and Evolution of a Generalist Plant Virus in a Wild Ecosystem. PHYTOPATHOLOGY 2020; 110:94-105. [PMID: 31589103 DOI: 10.1094/phyto-07-19-0271-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing evidence indicates that in wild ecosystems plant viruses are important ecological agents, and with potential to jump into crops, but only recently have the diversity and population dynamics of wild plant viruses begun to be explored. Theory proposes that biotic factors (e.g., ecosystem biodiversity, host abundance, and host density) and climatic conditions would determine the epidemiology and evolution of wild plant viruses. However, these predictions seldom have been empirically tested. For 3 years, we analyzed the prevalence and genetic diversity of Potyvirus species in preserved riparian forests of Spain. Results indicated that potyviruses were always present in riparian forests, with a novel generalist potyvirus species provisionally named Iberian hop mosaic virus (IbHMV), explaining the largest fraction of infected plants. Focusing on this potyvirus, we analyzed the biotic and climatic factors affecting virus infection risk and population genetic diversity in its native ecosystem. The main predictors of IbHMV infection risk were host relative abundance and species richness. Virus prevalence and host relative abundance were the major factors determining the genetic diversity and selection pressures in the virus population. These observations support theoretical predictions assigning these ecological factors a key role in parasite epidemiology and evolution. Finally, our phylogenetic analysis indicated that the viral population was genetically structured according to host and location of origin, as expected if speciation is largely sympatric. Thus, this work contributes to characterizing viral diversity and provides novel information on the determinants of plant virus epidemiology and evolution in wild ecosystems.
Collapse
Affiliation(s)
- Cristina Rodríguez-Nevado
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, Madrid, Spain
| | - Rosario G Gavilán
- Facultad de Farmacia, Departamento de Farmacología, Farmacognosia y Botánica, unidad de Botánica, Universidad Complutense de Madrid, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Phytovirome Analysis of Wild Plant Populations: Comparison of Double-Stranded RNA and Virion-Associated Nucleic Acid Metagenomic Approaches. J Virol 2019; 94:JVI.01462-19. [PMID: 31597769 DOI: 10.1128/jvi.01462-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 12/29/2022] Open
Abstract
Metagenomic studies have indicated that the diversity of plant viruses was until recently far underestimated. As important components of ecosystems, there is a need to explore the diversity and richness of the viruses associated with plant populations and to understand the drivers shaping their diversity in space and time. Two viral sequence enrichment approaches, double-stranded RNA (dsRNA) and virion-associated nucleic acids (VANA), have been used and compared here for the description of the virome of complex plant pools representative of the most prevalent plant species in unmanaged and cultivated ecosystems. A novel bioinformatics strategy was used to assess viral richness not only at the family level but also by determining operational taxonomic units (OTU) following the clustering of conserved viral domains. A large viral diversity dominated by novel dsRNA viruses was detected in all sites, while a large between-site variability limited the ability to draw a clear conclusion on the impact of cultivation. A trend for a higher diversity of dsRNA viruses was nevertheless detected in unmanaged sites (118 versus 77 unique OTUs). The dsRNA-based approach consistently revealed a broader and more comprehensive diversity for RNA viruses than the VANA approach, whatever the assessment criterion. In addition, dissimilarity analyses indicated both approaches to be largely reproducible but not necessarily convergent. These findings illustrate features of phytoviromes in various ecosystems and a novel strategy for precise virus richness estimation. These results allow us to reason methodological choices in phytovirome studies and likely in other virome studies where RNA viruses are the focal taxa.IMPORTANCE There are today significant knowledge gaps on phytovirus populations and on the drivers impacting them but also on the comparative performance-methodological approaches for their study. We used and compared two viral sequence enrichment approaches, double-stranded RNAs (dsRNA) and virion-associated nucleic acids (VANA), for phytovirome description in complex pools representative of the most prevalent plant species in unmanaged and cultivated ecosystems. Viral richness was assessed by determining operational taxonomic units (OTU) following the clustering of conserved viral domains. There is some limited evidence of an impact of cultivation on viral populations. These results provide data allowing us to reason the methodological choices in virome studies. For researchers primarily interested in RNA viruses, the dsRNA approach is recommended because it consistently provided a more comprehensive description of the analyzed phytoviromes, but it understandably underrepresented DNA viruses and bacteriophages.
Collapse
|
20
|
Lefeuvre P, Martin DP, Elena SF, Shepherd DN, Roumagnac P, Varsani A. Evolution and ecology of plant viruses. Nat Rev Microbiol 2019; 17:632-644. [PMID: 31312033 DOI: 10.1038/s41579-019-0232-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
The discovery of the first non-cellular infectious agent, later determined to be tobacco mosaic virus, paved the way for the field of virology. In the ensuing decades, research focused on discovering and eliminating viral threats to plant and animal health. However, recent conceptual and methodological revolutions have made it clear that viruses are not merely agents of destruction but essential components of global ecosystems. As plants make up over 80% of the biomass on Earth, plant viruses likely have a larger impact on ecosystem stability and function than viruses of other kingdoms. Besides preventing overgrowth of genetically homogeneous plant populations such as crop plants, some plant viruses might also promote the adaptation of their hosts to changing environments. However, estimates of the extent and frequencies of such mutualistic interactions remain controversial. In this Review, we focus on the origins of plant viruses and the evolution of interactions between these viruses and both their hosts and transmission vectors. We also identify currently unknown aspects of plant virus ecology and evolution that are of practical importance and that should be resolvable in the near future through viral metagenomics.
Collapse
Affiliation(s)
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Paterna, València, Spain.,The Santa Fe Institute, Santa Fe, NM, USA
| | | | - Philippe Roumagnac
- CIRAD, UMR BGPI, Montpellier, France.,BGPI, CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA. .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
21
|
Abstract
Viral diseases provide a major challenge to twenty-first century agriculture worldwide. Climate change and human population pressures are driving rapid alterations in agricultural practices and cropping systems that favor destructive viral disease outbreaks. Such outbreaks are strikingly apparent in subsistence agriculture in food-insecure regions. Agricultural globalization and international trade are spreading viruses and their vectors to new geographical regions with unexpected consequences for food production and natural ecosystems. Due to the varying epidemiological characteristics of diverent viral pathosystems, there is no one-size-fits-all approach toward mitigating negative viral disease impacts on diverse agroecological production systems. Advances in scientific understanding of virus pathosystems, rapid technological innovation, innovative communication strategies, and global scientific networks provide opportunities to build epidemiologic intelligence of virus threats to crop production and global food security. A paradigm shift toward deploying integrated, smart, and eco-friendly strategies is required to advance virus disease management in diverse agricultural cropping systems.
Collapse
Affiliation(s)
- Roger A C Jones
- Institute of Agriculture, University of Western Australia, Crawley, Western Australia 6009, Australia; .,Department of Primary Industries and Regional Development, South Perth, Western Australia 6151, Australia
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington 99350, USA;
| |
Collapse
|
22
|
From Spatial Metagenomics to Molecular Characterization of Plant Viruses: A Geminivirus Case Study. Adv Virus Res 2018; 101:55-83. [PMID: 29908594 DOI: 10.1016/bs.aivir.2018.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The number of plant viruses that are known likely remains only a vanishingly small fraction of all extant plant virus species. Consequently, the distribution and population dynamics of plant viruses within even the best-studied ecosystems have only ever been studied for small groups of virus species. Even for the best studied of these groups very little is known about virus diversity at spatial scales ranging from an individual host, through individual local host populations to global host populations. To date, metagenomics studies that have assessed the collective or metagenomes of viruses at the ecosystem scale have revealed many previously unrecognized viral species. More recently, novel georeferenced metagenomics approaches have been devised that can precisely link individual sequence reads to both the plant hosts from which they were obtained, and the spatial arrangements of these hosts. Besides illuminating the diversity and the distribution of plant viruses at the ecosystem scale, application of these "geometagenomics" approaches has enabled the direct testing of hypotheses relating to the impacts of host diversity, host spatial variations, and environmental conditions on plant virus diversity and prevalence. To exemplify how such top-down approaches can provide a far deeper understanding of host-virus associations, we provide a case-study focusing on geminiviruses within two complex ecosystems containing both cultivated and uncultivated areas. Geminiviruses are a highly relevant model for studying the evolutionary and ecological aspects of viral emergence because the family Geminiviridae includes many of the most important crop pathogens that have emerged over the past century. In addition to revealing unprecedented degrees of geminivirus diversity within the analyzed ecosystems, the geometagenomics-based approach enabled the focused in-depth analysis of the complex evolutionary dynamics of some of the highly divergent geminivirus species that were discovered.
Collapse
|
23
|
Jones RAC. Plant and Insect Viruses in Managed and Natural Environments: Novel and Neglected Transmission Pathways. Adv Virus Res 2018; 101:149-187. [PMID: 29908589 DOI: 10.1016/bs.aivir.2018.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The capacity to spread by diverse transmission pathways enhances a virus' ability to spread effectively and survive when circumstances change. This review aims to improve understanding of how plant and insect viruses spread through natural and managed environments by drawing attention to 12 novel or neglected virus transmission pathways whose contribution is underestimated. For plant viruses, the pathways reviewed are vertical and horizontal transmission via pollen, and horizontal transmission by parasitic plants, natural root grafts, wind-mediated contact, chewing insects, and contaminated water or soil. For insect viruses, they are transmission by plants serving as passive "vectors," arthropod vectors, and contamination of pollen and nectar. Based on current understanding of the spatiotemporal dynamics of virus spread, the likely roles of each pathway in creating new primary infection foci, enlarging previously existing infection foci, and promoting generalized virus spread are estimated. All pathways except transmission via parasitic plants, root grafts, and wind-mediated contact transmission are likely to produce new primary infection foci. All 12 pathways have the capability to enlarge existing infection foci, but only to a limited extent when spread occurs via virus-contaminated soil or vertical pollen transmission. All pathways except those via parasitic plant, root graft, contaminated soil, and vertical pollen transmission likely contribute to generalized virus spread, but to different extents. For worst-case scenarios, where mixed populations of host species occur under optimal virus spread conditions, the risk that host species jumps or virus emergence events will arise is estimated to be "high" for all four insect virus pathways considered, and, "very high" or "moderate" for plant viruses transmitted by parasitic plant and root graft pathways, respectively. To establish full understanding of virus spread and thereby optimize effective virus disease management, it is important to examine all transmission pathways potentially involved, regardless of whether the virus' ecology is already presumed to be well understood or otherwise.
Collapse
Affiliation(s)
- Roger A C Jones
- Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley, WA, Australia; Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| |
Collapse
|
24
|
Bernardo P, Charles-Dominique T, Barakat M, Ortet P, Fernandez E, Filloux D, Hartnady P, Rebelo TA, Cousins SR, Mesleard F, Cohez D, Yavercovski N, Varsani A, Harkins GW, Peterschmitt M, Malmstrom CM, Martin DP, Roumagnac P. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale. THE ISME JOURNAL 2018; 12:173-184. [PMID: 29053145 PMCID: PMC5739011 DOI: 10.1038/ismej.2017.155] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/21/2017] [Accepted: 08/22/2017] [Indexed: 11/09/2022]
Abstract
Disease emergence events regularly result from human activities such as agriculture, which frequently brings large populations of genetically uniform hosts into contact with potential pathogens. Although viruses cause nearly 50% of emerging plant diseases, there is little systematic information about virus distribution across agro-ecological interfaces and large gaps in understanding of virus diversity in nature. Here we applied a novel landscape-scale geometagenomics approach to examine relationships between agricultural land use and distributions of plant-associated viruses in two Mediterranean-climate biodiversity hotspots (Western Cape region of South Africa and Rhône river delta region of France). In total, we analysed 1725 geo-referenced plant samples collected over two years from 4.5 × 4.5 km2 grids spanning farmlands and adjacent uncultivated vegetation. We found substantial virus prevalence (25.8-35.7%) in all ecosystems, but prevalence and identified family-level virus diversity were greatest in cultivated areas, with some virus families displaying strong agricultural associations. Our survey revealed 94 previously unknown virus species, primarily from uncultivated plants. This is the first effort to systematically evaluate plant-associated viromes across broad agro-ecological interfaces. Our findings indicate that agriculture substantially influences plant virus distributions and highlight the extent of current ignorance about the diversity and roles of viruses in nature.
Collapse
Affiliation(s)
- Pauline Bernardo
- CIRAD, UMR BGPI, Montpellier, France
- BGPI, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Pathology, Ohio State University, OARDC, Wooster, OH, USA
| | - Tristan Charles-Dominique
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Center for Integrative Conservation, Community Ecology and Conservation, Menglun, Yunnan, China
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| | - Mohamed Barakat
- CEA, CNRS, Aix-Marseille Université, UMR 7265, LEMIRE, Saint-Paul-lez-Durance, France
| | - Philippe Ortet
- CEA, CNRS, Aix-Marseille Université, UMR 7265, LEMIRE, Saint-Paul-lez-Durance, France
| | - Emmanuel Fernandez
- CIRAD, UMR BGPI, Montpellier, France
- BGPI, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Denis Filloux
- CIRAD, UMR BGPI, Montpellier, France
- BGPI, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Penelope Hartnady
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine. University of Cape Town, Observatory, South Africa
| | - Tony A Rebelo
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| | - Stephen R Cousins
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| | - François Mesleard
- Tour du Valat, Institut de recherche pour la conservation des zones humides méditerranéennes, Le Sambuc-Arles, France
- Institut Méditerranéen de Biodiversité et Ecologie (IMBE), UMR CNRS 7263-IRD 237, Université d'Avignon et des pays du Vaucluse, Aix-Marseille Université, IUT d’Avignon, Avignon, France
| | - Damien Cohez
- Tour du Valat, Institut de recherche pour la conservation des zones humides méditerranéennes, Le Sambuc-Arles, France
| | - Nicole Yavercovski
- Tour du Valat, Institut de recherche pour la conservation des zones humides méditerranéennes, Le Sambuc-Arles, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Structural Biology Research Unit, University of Cape Town, Observatory, South Africa
| | - Gordon W Harkins
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, South Africa
| | - Michel Peterschmitt
- CIRAD, UMR BGPI, Montpellier, France
- BGPI, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Carolyn M Malmstrom
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Graduate Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine. University of Cape Town, Observatory, South Africa
| | - Philippe Roumagnac
- CIRAD, UMR BGPI, Montpellier, France
- BGPI, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
- BIOS, UMR BGPI CIRAD Campus International de Baillarguet, TA A-54/K, Montpellier Cedex 5 F-34398, France. E-mail
| |
Collapse
|
25
|
Rodríguez-Nevado C, Montes N, Pagán I. Ecological Factors Affecting Infection Risk and Population Genetic Diversity of a Novel Potyvirus in Its Native Wild Ecosystem. FRONTIERS IN PLANT SCIENCE 2017; 8:1958. [PMID: 29184567 PMCID: PMC5694492 DOI: 10.3389/fpls.2017.01958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Increasing evidence indicates that there is ample diversity of plant virus species in wild ecosystems. The vast majority of this diversity, however, remains uncharacterized. Moreover, in these ecosystems the factors affecting plant virus infection risk and population genetic diversity, two traits intrinsically linked to virus emergence, are largely unknown. Along 3 years, we have analyzed the prevalence and diversity of plant virus species from the genus Potyvirus in evergreen oak forests of the Iberian Peninsula, the main wild ecosystem in this geographic region and in the entire Mediterranean basin. During this period, we have also measured plant species diversity, host density, plant biomass, temperature, relative humidity, and rainfall. Results indicated that potyviruses were always present in evergreen oak forests, with a novel virus species explaining the largest fraction of potyvirus-infected plants. We determined the genomic sequence of this novel virus and we explored its host range in natural and greenhouse conditions. Natural host range was limited to the perennial plant mountain rue (Ruta montana), commonly found in evergreen oak forests of the Iberian Peninsula. In this host, the virus was highly prevalent and was therefore provisionally named mediterranean ruda virus (MeRV). Focusing in this natural host-virus interaction, we analyzed the ecological factors affecting MeRV infection risk and population genetic diversity in its native wild ecosystem. The main predictor of virus infection risk was the host density. MeRV prevalence was the major factor determining genetic diversity and selection pressures in the virus populations. This observation supports theoretical predictions assigning these two traits a key role in parasite epidemiology and evolution. Thus, our analyses contribute both to characterize viral diversity and to understand the ecological determinants of virus population dynamics in wild ecosystems.
Collapse
Affiliation(s)
- Cristina Rodríguez-Nevado
- Centro de Biotecnología y Genómica de Plantas – Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Nuria Montes
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
- Rheumatology Service, Hospital Universitario La Princesa, IIS-IP, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas – Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
26
|
Fraile A, McLeish MJ, Pagán I, González-Jara P, Piñero D, García-Arenal F. Environmental heterogeneity and the evolution of plant-virus interactions: Viruses in wild pepper populations. Virus Res 2017; 241:68-76. [PMID: 28554561 DOI: 10.1016/j.virusres.2017.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/27/2022]
Abstract
Understanding host-pathogen interactions requires analyses to address the multiplicity of scales in heterogeneous landscapes. Anthropogenic influence on plant communities, especially cultivation, is a major cause of environmental heterogeneity. We have approached the analysis of how environmental heterogeneity determines plant-virus interactions by studying virus infection in a wild plant currently undergoing incipient domestication, the wild pepper or chiltepin, across its geographical range in Mexico. We have shown previously that anthropogenic disturbance is associated with higher infection and disease risk, and with disrupted patterns of host and virus genetic spatial structure. We now show that anthropogenic factors, species richness, host genetic diversity and density in communities supporting chiltepin differentially affect infection risk according to the virus analysed. We also show that in addition to these factors, a broad range of abiotic and biotic variables meaningful to continental scales, have an important role on the risk of infection depending on the virus. Last, we show that natural virus infection of chiltepin plants in wild communities results in decreased survival and fecundity, hence negatively affecting fitness. This important finding paves the way for future studies on plant-virus co-evolution.
Collapse
Affiliation(s)
- Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Pablo González-Jara
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
27
|
Fiallo-Olivé E, Chirinos DT, Geraud-Pouey F, Navas-Castillo J. Complete genome sequence of jacquemontia yellow vein virus, a novel begomovirus infecting Jacquemontia tamnifolia in Venezuela. Arch Virol 2017; 162:2463-2466. [PMID: 28434100 DOI: 10.1007/s00705-017-3372-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
Wild plants of the family Convolvulaceae are hosts for a few New World begomoviruses (genus Begomovirus, family Geminiviridae). In this work, we report the complete genome sequence of a new begomovirus infecting the wild convolvulaceous plant Jacquemontia tamnifolia in Venezuela. The cloned bipartite genome showed the organization of typical New World begomoviruses and was found to be phylogenetically related to those of begomoviruses from Venezuela and other Caribbean countries. Several recombination events have been shown to have occurred involving genome fragment exchange with related begomoviruses infecting crops such as tomato and cucurbits and wild plants, including Jacquemontia sp. We propose the name jacquemontia yellow vein virus (JacYVV) for this new begomovirus.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750, Algarrobo-Costa, Málaga, Spain.
| | - Dorys T Chirinos
- Unidad Técnica Fitosanitaria, Facultad de Agronomía, Universidad del Zulia, Maracaibo, 4005, Zulia, Venezuela.,Laboratorio de Entomología, Facultad de Ciencias Agrarias, Universidad Agraria del Ecuador, Guayaquil, Ecuador
| | - Francis Geraud-Pouey
- Unidad Técnica Fitosanitaria, Facultad de Agronomía, Universidad del Zulia, Maracaibo, 4005, Zulia, Venezuela
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750, Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
28
|
Tugume AK, Mukasa SB, Valkonen JPT. Mixed Infections of Four Viruses, the Incidence and Phylogenetic Relationships of Sweet Potato Chlorotic Fleck Virus (Betaflexiviridae) Isolates in Wild Species and Sweetpotatoes in Uganda and Evidence of Distinct Isolates in East Africa. PLoS One 2016; 11:e0167769. [PMID: 28005969 PMCID: PMC5179071 DOI: 10.1371/journal.pone.0167769] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/18/2016] [Indexed: 01/05/2023] Open
Abstract
Viruses infecting wild flora may have a significant negative impact on nearby crops, and vice-versa. Only limited information is available on wild species able to host economically important viruses that infect sweetpotatoes (Ipomoea batatas). In this study, Sweet potato chlorotic fleck virus (SPCFV; Carlavirus, Betaflexiviridae) and Sweet potato chlorotic stunt virus (SPCSV; Crinivirus, Closteroviridae) were surveyed in wild plants of family Convolvulaceae (genera Astripomoea, Ipomoea, Hewittia and Lepistemon) in Uganda. Plants belonging to 26 wild species, including annuals, biannuals and perennials from four agro-ecological zones, were observed for virus-like symptoms in 2004 and 2007 and sampled for virus testing. SPCFV was detected in 84 (2.9%) of 2864 plants tested from 17 species. SPCSV was detected in 66 (5.4%) of the 1224 plants from 12 species sampled in 2007. Some SPCSV-infected plants were also infected with Sweet potato feathery mottle virus (SPFMV; Potyvirus, Potyviridae; 1.3%), Sweet potato mild mottle virus (SPMMV; Ipomovirus, Potyviridae; 0.5%) or both (0.4%), but none of these three viruses were detected in SPCFV-infected plants. Co-infection of SPFMV with SPMMV was detected in 1.2% of plants sampled. Virus-like symptoms were observed in 367 wild plants (12.8%), of which 42 plants (11.4%) were negative for the viruses tested. Almost all (92.4%) the 419 sweetpotato plants sampled from fields close to the tested wild plants displayed virus-like symptoms, and 87.1% were infected with one or more of the four viruses. Phylogenetic and evolutionary analyses of the 3'-proximal genomic region of SPCFV, including the silencing suppressor (NaBP)- and coat protein (CP)-coding regions implicated strong purifying selection on the CP and NaBP, and that the SPCFV strains from East Africa are distinguishable from those from other continents. However, the strains from wild species and sweetpotato were indistinguishable, suggesting reciprocal movement of SPCFV between wild and cultivated Convolvulaceae plants in the field.
Collapse
Affiliation(s)
- Arthur K. Tugume
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Department of Plant Sciences, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Settumba B. Mukasa
- Department of Agricultural Production, School of Agricultural Sciences, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Jari P. T. Valkonen
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Kamitani M, Nagano AJ, Honjo MN, Kudoh H. RNA-Seq reveals virus-virus and virus-plant interactions in nature. FEMS Microbiol Ecol 2016; 92:fiw176. [PMID: 27549115 PMCID: PMC5854034 DOI: 10.1093/femsec/fiw176] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/10/2016] [Accepted: 08/16/2016] [Indexed: 11/17/2022] Open
Abstract
As research on plant viruses has focused mainly on crop diseases, little is known about these viruses in natural environments. To understand the ecology of viruses in natural systems, comprehensive information on virus-virus and virus-host interactions is required. We applied RNA-Seq to plants from a natural population of Arabidopsis halleri subsp. gemmifera to simultaneously determine the presence/absence of all sequence-reported viruses, identify novel viruses and quantify the host transcriptome. By introducing the criteria of read number and genome coverage, we detected infections by Turnip mosaic virus (TuMV), Cucumber mosaic virus and Brassica yellows virus Active TuMV replication was observed by ultramicroscopy. De novo assembly further identified a novel partitivirus, Arabidopsis halleri partitivirus 1 Interestingly, virus reads reached a maximum level that was equivalent to that of the host's total mRNA, although asymptomatic infection was common. AhgAGO2, a key gene in host defence systems, was upregulated in TuMV-infected plants. Multiple infection was frequent in TuMV-infected leaves, suggesting that TuMV facilitates multiple infection, probably by suppressing host RNA silencing. Revealing hidden plant-virus interactions in nature can enhance our understanding of biological interactions and may have agricultural applications.
Collapse
Affiliation(s)
- Mari Kamitani
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga 520-2113, Japan
| | - Atsushi J Nagano
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga 520-2113, Japan Faculty of Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2914, Japan JST PRESTO, Japan Science and Technology Agency, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mie N Honjo
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga 520-2113, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga 520-2113, Japan
| |
Collapse
|
30
|
Fraile A, García-Arenal F. Environment and evolution modulate plant virus pathogenesis. Curr Opin Virol 2016; 17:50-56. [DOI: 10.1016/j.coviro.2016.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/07/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022]
|
31
|
Plant Virus Diversity and Evolution. CURRENT RESEARCH TOPICS IN PLANT VIROLOGY 2016. [PMCID: PMC7123681 DOI: 10.1007/978-3-319-32919-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, the majority of plant virology focused on agricultural systems. Recent efforts have expanded our knowledge of the true diversity of plant viruses by studying those viruses that infect wild, undomesticated plants. Those efforts have provided answers to basic ecological questions regarding viruses in the wild, and insights into evolutionary questions, regarding the origins of viruses. While much work has been done, we have merely scratched the surface of the diversity that is estimated to exist. In this chapter we discuss the state of our knowledge of virus diversity, both in agricultural systems as well as in native wild systems, the border between these two systems and how viruses adapt and move across this border into an artificial, domesticated environment. We look at how this diversity has affected our outlook on viruses as a whole, shifting our past view of viruses as purely antagonistic entities of destruction to one where viruses are in a mutually beneficial relationship with their hosts. Additionally, we discuss the current work that plant virology has put forth regarding the evolutionary mechanisms, the life histories, and the deep evolution of viruses.
Collapse
|
32
|
Hily JM, Poulicard N, Mora MÁ, Pagán I, García-Arenal F. Environment and host genotype determine the outcome of a plant-virus interaction: from antagonism to mutualism. THE NEW PHYTOLOGIST 2016; 209:812-22. [PMID: 26365599 DOI: 10.1111/nph.13631] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/31/2015] [Indexed: 05/21/2023]
Abstract
It has been hypothesized that plant-virus interactions vary between antagonism and conditional mutualism according to environmental conditions. This hypothesis is based on scant experimental evidence, and to test it we examined the effect of abiotic factors on the Arabidopsis thaliana-Cucumber mosaic virus (CMV) interaction. Four Arabidopsis genotypes clustering into two allometric groups were grown under six environments defined by three temperature and two light-intensity conditions. Plants were either CMV-infected or mock-inoculated, and the effects of environment and infection on temporal and resource allocation life-history traits were quantified. Life-history traits significantly differed between allometric groups over all environments, with group 1 plants tolerating abiotic stress better than those of group 2. The effect of CMV infection on host fitness (virulence) differed between genotypes, being lower in group 1 genotypes. Tolerance to abiotic stress and to infection was similarly achieved through life-history trait responses, which resulted in resource reallocation from growth to reproduction. Effects of infection varied according to plant genotype and environment from detrimental to beneficial for host fitness. These results are highly relevant and demonstrate that plant viruses can be pleiotropic parasites along the antagonism-mutualism continuum, which should be considered in analyses of the evolution of plant-virus interactions.
Collapse
Affiliation(s)
- Jean-Michel Hily
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) & Escuela Técnica Superior de Ingenieros (ETSI) Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Nils Poulicard
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) & Escuela Técnica Superior de Ingenieros (ETSI) Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Miguel-Ángel Mora
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) & Escuela Técnica Superior de Ingenieros (ETSI) Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) & Escuela Técnica Superior de Ingenieros (ETSI) Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) & Escuela Técnica Superior de Ingenieros (ETSI) Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón (Madrid), 28223, Spain
| |
Collapse
|
33
|
Thapa V, McGlinn DJ, Melcher U, Palmer MW, Roossinck MJ. Determinants of taxonomic composition of plant viruses at the Nature Conservancy's Tallgrass Prairie Preserve, Oklahoma. Virus Evol 2015; 1:vev007. [PMID: 27774279 PMCID: PMC5014475 DOI: 10.1093/ve/vev007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The role of biotic and abiotic factors in shaping the diversity and composition of communities of plant viruses remain understudied, particularly in natural settings. In this study, we test the effects of host identity, location, and sampling year on the taxonomic composition of plant viruses in six native plant species [Ambrosia psilostachya (Asteraceae), Vernonia baldwinii (Asteraceae), Asclepias viridis (Asclepiadaceae), Ruellia humilis (Acanthaceae), Panicum virgatum (Poaceae) and Sorghastrum nutans (Poaceae)] from the Nature Conservancy's Tallgrass Prairie Preserve in northeastern Oklahoma. We sampled over 400 specimens of the target host plants from twenty sites (plots) in the Tallgrass Prairie Preserve over 4 years and tested them for the presence of plant viruses applying virus-like particle and double-stranded RNA enrichment methods. Many of the viral sequences identified could not be readily assigned to species, either due to their novelty or the shortness of the sequence. We thus grouped our putative viruses into operational viral taxonomic units for further analysis. Partial canonical correspondence analysis revealed that the taxonomic composition of plant viruses in the target species had a significant relationship with host species (P value: 0.001) but no clear relation with sampling site or year. Variation partitioning further showed that host identity explained about 2-5 per cent of the variation in plant virus composition. We could not interpret the significant relationship between virus composition and host plants with respect to host taxonomy or ecology. Only six operational viral taxonomic units had over 5 per cent incidence over a 4-year period, while the remainder exhibited sporadic infection of the target hosts. This study is the first of its kind to document the dynamics of the entire range of viruses in multiple plant species in a natural setting.
Collapse
Affiliation(s)
- Vaskar Thapa
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA
| | - Daniel J. McGlinn
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ulrich Melcher
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Michael W. Palmer
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA
| | - Marilyn J. Roossinck
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
34
|
Jones RAC, Coutts BA. Spread of introduced viruses to new plants in natural ecosystems and the threat this poses to plant biodiversity. MOLECULAR PLANT PATHOLOGY 2015; 16:541-545. [PMID: 26146862 PMCID: PMC6638323 DOI: 10.1111/mpp.12268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Roger A C Jones
- School of Plant Biology and Institute of Agriculture, Faculty of Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Department of Agriculture and Food Western Australia, Bentley Delivery Centre, Locked Bag no. 4, Perth, WA, 6983, Australia
| | - Brenda A Coutts
- School of Plant Biology and Institute of Agriculture, Faculty of Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Department of Agriculture and Food Western Australia, Bentley Delivery Centre, Locked Bag no. 4, Perth, WA, 6983, Australia
| |
Collapse
|
35
|
Roossinck MJ, García-Arenal F. Ecosystem simplification, biodiversity loss and plant virus emergence. Curr Opin Virol 2015; 10:56-62. [PMID: 25638504 PMCID: PMC7102708 DOI: 10.1016/j.coviro.2015.01.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/08/2015] [Accepted: 01/14/2015] [Indexed: 01/02/2023]
Abstract
Plant viruses can emerge into crops from wild plant hosts, or conversely from domestic (crop) plants into wild hosts. Changes in ecosystems, including loss of biodiversity and increases in managed croplands, can impact the emergence of plant virus disease. Although data are limited, in general the loss of biodiversity is thought to contribute to disease emergence. More in-depth studies have been done for human viruses, but studies with plant viruses suggest similar patterns, and indicate that simplification of ecosystems through increased human management may increase the emergence of viral diseases in crops.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, USA; Murdoch University, Perth, Australia.
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Spain
| |
Collapse
|
36
|
Jones R. Trends in plant virus epidemiology: Opportunities from new or improved technologies. Virus Res 2014; 186:3-19. [DOI: 10.1016/j.virusres.2013.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 12/16/2022]
|
37
|
Prendeville HR, Tenhumberg B, Pilson D. Effects of virus on plant fecundity and population dynamics. THE NEW PHYTOLOGIST 2014; 202:1346-1356. [PMID: 24571200 DOI: 10.1111/nph.12730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
Microorganisms are ubiquitous and thought to regulate host populations. Although microorganisms can be pathogenic and affect components of fitness, few studies have examined their effects on wild plant populations. As individual traits might not contribute equally to changes in population growth rate, it is essential to examine the entire life cycle to determine how microorganisms affect host population dynamics. In this study, we used data from common garden experiments with plants from three Cucurbita pepo populations exposed to three virus treatments. These data were used to parameterize a deterministic matrix model, which allowed us to estimate the effect of virus on components of fitness and population growth rate. Virus did not reduce fruit number, but population growth rates varied among virus treatments and wild C. pepo populations. The effect of virus on population growth rate depended on virus species and wild C. pepo population. Contributions of life-history transitions and life-history traits to population growth rates varied among populations and virus treatments. However, this population-virus interaction was not evident when examining individual components of fitness. Thus, caution must be used when interpreting the effects of changes in individual traits, as single traits do not always predict population-level change accurately.
Collapse
Affiliation(s)
- Holly R Prendeville
- School of Biological Sciences, University of Nebraska, 348 Manter Hall, Lincoln, NE, 68588-0118, USA
| | - Brigitte Tenhumberg
- School of Biological Sciences, University of Nebraska, 348 Manter Hall, Lincoln, NE, 68588-0118, USA
| | - Diana Pilson
- School of Biological Sciences, University of Nebraska, 348 Manter Hall, Lincoln, NE, 68588-0118, USA
| |
Collapse
|
38
|
Vincent SJ, Coutts BA, Jones RAC. Effects of introduced and indigenous viruses on native plants: exploring their disease causing potential at the agro-ecological interface. PLoS One 2014; 9:e91224. [PMID: 24621926 PMCID: PMC3951315 DOI: 10.1371/journal.pone.0091224] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/08/2014] [Indexed: 11/28/2022] Open
Abstract
The ever increasing movement of viruses around the world poses a major threat to plants growing in cultivated and natural ecosystems. Both generalist and specialist viruses move via trade in plants and plant products. Their potential to damage cultivated plants is well understood, but little attention has been given to the threat such viruses pose to plant biodiversity. To address this, we studied their impact, and that of indigenous viruses, on native plants from a global biodiversity hot spot in an isolated region where agriculture is very recent (<185 years), making it possible to distinguish between introduced and indigenous viruses readily. To establish their potential to cause severe or mild systemic symptoms in different native plant species, we used introduced generalist and specialist viruses, and indigenous viruses, to inoculate plants of 15 native species belonging to eight families. We also measured resulting losses in biomass and reproductive ability for some host-virus combinations. In addition, we sampled native plants growing over a wide area to increase knowledge of natural infection with introduced viruses. The results suggest that generalist introduced viruses and indigenous viruses from other hosts pose a greater potential threat than introduced specialist viruses to populations of native plants encountered for the first time. Some introduced generalist viruses infected plants in more families than others and so pose a greater potential threat to biodiversity. The indigenous viruses tested were often surprisingly virulent when they infected native plant species they were not adapted to. These results are relevant to managing virus disease in new encounter scenarios at the agro-ecological interface between managed and natural vegetation, and within other disturbed natural vegetation situations. They are also relevant for establishing conservation policies for endangered plant species and avoiding spread of damaging viruses to undisturbed natural vegetation beyond the agro-ecological interface.
Collapse
Affiliation(s)
- Stuart J. Vincent
- Department of Agriculture and Food, South Perth, Western Australia, Australia
- State Agricultural Biotechnology Centre, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, Western Australia, Australia
| | - Brenda A. Coutts
- Department of Agriculture and Food, South Perth, Western Australia, Australia
- School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Roger A. C. Jones
- Department of Agriculture and Food, South Perth, Western Australia, Australia
- School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
39
|
Kehoe MA, Coutts BA, Buirchell BJ, Jones RAC. Hardenbergia mosaic virus: crossing the barrier between native and introduced plant species. Virus Res 2014; 184:87-92. [PMID: 24594521 DOI: 10.1016/j.virusres.2014.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 11/16/2022]
Abstract
Hardenbergia mosaic virus (HarMV), genus Potyvirus, belongs to the bean common mosaic virus (BCMV) potyvirus lineage found only in Australia. The original host of HarMV, Hardenbergia comptoniana, family Fabaceae, is indigenous to the South-West Australian Floristic Region (SWAFR), where Lupinus spp. are grown as introduced grain legume crops, and exist as naturalised weeds. Two plants of H. comptoniana and one of Lupinus cosentinii, each with mosaic and leaf deformation symptoms, were sampled from a small patch of disturbed vegetation at an ancient ecosystem-recent agroecosystem interface. Potyvirus infection was detected in all three samples by ELISA and RT-PCR. After sequencing on an Illumina HiSeq 2000, three complete and two nearly complete HarMV genomes from H. comptoniana and one complete HarMV genome from L. cosentinii were obtained. Phylogenetic analysis which compared (i) the four new complete genomes with the three HarMV genomes on Genbank (two of which were identical), and (ii) coat protein (CP) genes from the six new genomes with the 38 HarMV CP sequences already on Genbank, revealed that three of the complete and one of the nearly complete new genomes were in HarMV clade I, one of the complete genomes in clade V and one nearly complete genome in clade VI. The complete HarMV genome from L. cosentinii differed by only eight nucleotides from one of the HarMV clade I genomes from a nearby H. comptoniana plant, with only one of these nucleotide changes being non-synonymous. Pairwise comparison between all the complete HarMV genomes revealed nucleotide identities ranging between 82.2% and 100%. Recombination analysis revealed evidence of two recombination events amongst the six complete genomes. This study provides the first report of HarMV naturally infecting L. cosentinii and the first example for the SWAFR of virus emergence from a native plant species to invade an introduced plant species.
Collapse
Affiliation(s)
- M A Kehoe
- School of Plant Biology and Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley, WA 6009, Australia; Crop Protection and Lupin Breeding Branches, Department of Agriculture and Food Western Australia, Bentley Delivery Centre, Perth, WA 6983, Australia.
| | - B A Coutts
- School of Plant Biology and Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley, WA 6009, Australia; Crop Protection and Lupin Breeding Branches, Department of Agriculture and Food Western Australia, Bentley Delivery Centre, Perth, WA 6983, Australia
| | - B J Buirchell
- School of Plant Biology and Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley, WA 6009, Australia; Crop Protection and Lupin Breeding Branches, Department of Agriculture and Food Western Australia, Bentley Delivery Centre, Perth, WA 6983, Australia
| | - R A C Jones
- School of Plant Biology and Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley, WA 6009, Australia; Crop Protection and Lupin Breeding Branches, Department of Agriculture and Food Western Australia, Bentley Delivery Centre, Perth, WA 6983, Australia
| |
Collapse
|
40
|
Moreno-Pérez MG, Pagán I, Aragón-Caballero L, Cáceres F, Fraile A, García-Arenal F. Ecological and genetic determinants of Pepino Mosaic Virus emergence. J Virol 2014; 88:3359-68. [PMID: 24390328 PMCID: PMC3957916 DOI: 10.1128/jvi.02980-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/29/2013] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Virus emergence is a complex phenomenon, which generally involves spread to a new host from a wild host, followed by adaptation to the new host. Although viruses account for the largest fraction of emerging crop pathogens, knowledge about their emergence is incomplete. We address here the question of whether Pepino Mosaic Virus (PepMV) emergence as a major tomato pathogen worldwide could have involved spread from wild to cultivated plant species and host adaptation. For this, we surveyed natural populations of wild tomatoes in southern Peru for PepMV infection. PepMV incidence, genetic variation, population structure, and accumulation in various hosts were analyzed. PepMV incidence in wild tomatoes was high, and a strain not yet reported in domestic tomato was characterized. This strain had a wide host range within the Solanaceae, multiplying efficiently in most assayed Solanum species and being adapted to wild tomato hosts. Conversely, PepMV isolates from tomato crops showed evidence of adaptation to domestic tomato, possibly traded against adaptation to wild tomatoes. Phylogenetic reconstructions indicated that the most probable ancestral sequence came from a wild Solanum species. A high incidence of PepMV in wild tomato relatives would favor virus spread to crops and its efficient multiplication in different Solanum species, including tomato, allowing its establishment as an epidemic pathogen. Later, adaptation to tomato, traded off against adaptation to other Solanum species, would isolate tomato populations from those in other hosts. IMPORTANCE Virus emergence is a complex phenomenon involving multiple ecological and genetic factors and is considered to involve three phases: virus encounter with the new host, virus adaptation to the new host, and changes in the epidemiological dynamics. We analyze here if this was the case in the recent emergence of Pepino Mosaic Virus (PepMV) in tomato crops worldwide. We characterized a new strain of PepMV infecting wild tomato populations in Peru. Comparison of this strain with PepMV isolates from tomato crops, plus phylogenetic reconstructions, supports a scenario in which PepMV would have spread to crops from wild tomato relatives, followed by adaptation to the new host and eventually leading to population isolation. Our data, which derive from the analysis of field isolates rather than from experimental evolution approaches, significantly contribute to understanding of plant virus emergence, which is necessary for its anticipation and prevention.
Collapse
Affiliation(s)
- Manuel G. Moreno-Pérez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Fátima Cáceres
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Nacional de San Agustín, Arequipa, Peru
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
41
|
Lecoq H, Wipf-Scheibel C, Nozeran K, Millot P, Desbiez C. Comparative molecular epidemiology provides new insights into Zucchini yellow mosaic virus occurrence in France. Virus Res 2014; 186:135-43. [PMID: 24486486 DOI: 10.1016/j.virusres.2014.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Zucchini yellow mosaic virus (ZYMV, genus Potyvirus) causes important crop losses in cucurbits worldwide. In France, ZYMV epidemics are sporadic but occasionally very severe. This contrasts with Watermelon mosaic virus (WMV, genus Potyvirus) which causes regular and early epidemics. Factors influencing ZYMV epidemiology are still poorly understood. In order to gain new insights on the ecology and epidemiology of this virus, a 5-year multilocation trial was conducted in which ZYMV spread and populations were studied in each of the 20 plot/year combinations and compared with WMV. Search for ZYMV alternative hosts was conducted by testing weeds growing naturally around one plot and also by checking ZYMV natural infections in selected ornamental species. Although similar ZYMV populations were observed occasionally in the same plot in two successive years suggesting the occurrence of overwintering hosts nearby, only two Lamium amplexicaule plants were found to be infected by ZYMV of 3459 weed samples that were tested. The scarcity of ZYMV reservoirs contrasts with the frequent detection of WMV in the same samples. Since ZYMV and WMV have many aphid vectors in common and are transmitted with similar efficiencies, the differences observed in ZYMV and WMV reservoir abundances could be a major explanatory factor for the differences observed in the typology of ZYMV and WMV epidemics in France. Other potential ZYMV alternative hosts have been identified in ornamental species including begonia. Although possible in a few cases, exchanges of populations between different plots located from 500 m to 4 km apart seem uncommon. Therefore, the potential dissemination range of ZYMV by its aphid vectors seems to be rather limited in a fragmented landscape.
Collapse
Affiliation(s)
- H Lecoq
- INRA, UR407 Station de Pathologie Végétale, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France.
| | - C Wipf-Scheibel
- INRA, UR407 Station de Pathologie Végétale, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| | - K Nozeran
- INRA, UR407 Station de Pathologie Végétale, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| | - P Millot
- INRA, UR407 Station de Pathologie Végétale, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| | - C Desbiez
- INRA, UR407 Station de Pathologie Végétale, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| |
Collapse
|
42
|
Almeyda CV, Eid SG, Saar D, Samuitiene M, Pappu HR. Comparative analysis of endogenous plant pararetroviruses in cultivated and wild Dahlia spp. Virus Genes 2013; 48:140-52. [PMID: 24353027 DOI: 10.1007/s11262-013-0997-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/16/2013] [Indexed: 11/28/2022]
Abstract
Two distinct caulimoviruses, Dahlia mosaic virus (DMV) and Dahlia common mosaic virus, and an endogenous plant pararetroviral sequence (DvEPRS) were reported in Dahlia spp. DvEPRS, previously referred to as DMV-D10, was originally identified in the US from the cultivated Dahlia variabilis, and has also been found in New Zealand, Lithuania and Egypt, as well as in wild dahlia species growing in their natural habitats in Mexico. Sequence analysis of three new EPRSs from cultivated dahlias from Lithuania [D10-LT; 7,159 nucleotide level (nt)], New Zealand (D10-NZ, 7,156 nt), and the wild species, Dahlia rupicola, from Mexico (D10-DR, 7,133 nt) is reported in this study. The three EPRSs have the structure and organization typical of a caulimovirus species and showed identities among various open reading frames (ORFs) ranging between 71 and 97 % at the nt when compared to those or the known DvEPRS from the US. Examination of a dataset of seven full-length EPRSs obtained to date from cultivated and wild Dahlia spp. provided clues into genetic diversity of these EPRSs from diverse sources of dahlia. Phylogenetic analyses, mutation frequencies, potential recombination events, selection, and fitness were evaluated as evolutionary evidences for genetic variation. Assessment of all ORFs using phylogenomic and population genetics approaches suggests a wide genetic diversity of EPRSs occurring in dahlias. Phylogenetic analyses show that the EPRSs from various sources form one clade indicating a lack of clustering by geographical origin. Grouping of various EPRSs into two host taxa (cultivated vs. wild) shows little divergence with respect to their origin. Population genetic parameters demonstrate negative selection for all ORFs, with the reverse transcriptase region more variable than other ORFs. Recombination events were found which provide evolutionary evidence for genetic diversity among dahlia-associated EPRSs. This study contributes to an increased understanding of molecular population genetics and evolutionary pathways of these reverse transcribing viral elements.
Collapse
Affiliation(s)
- C V Almeyda
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | |
Collapse
|
43
|
Svanella-Dumas L, Candresse T, Hullé M, Marais A. Distribution of Barley yellow dwarf virus-PAV in the Sub-Antarctic Kerguelen Islands and Characterization of Two New Luteovirus Species. PLoS One 2013; 8:e67231. [PMID: 23825645 PMCID: PMC3688969 DOI: 10.1371/journal.pone.0067231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/16/2013] [Indexed: 01/31/2023] Open
Abstract
A systematic search for viral infection was performed in the isolated Kerguelen Islands, using a range of polyvalent genus-specific PCR assays. Barley yellow dwarf virus (BYDV) was detected in both introduced and native grasses such as Poa cookii. The geographical distribution of BYDV and its prevalence in P. cookii were analyzed using samples collected from various sites of the archipelago. We estimate the average prevalence of BYDV to be 24.9% in P. cookii, with significant variability between sites. BYDV genetic diversity was assessed using sequence information from two genomic regions: the P3 open reading frame (ORF) (encoding the coat protein) and the hypervariable P6 ORF region. The phylogenetic analysis in the P3 region showed that BYDV sequences segregate into three major lineages, the most frequent of which (Ker-I cluster) showed close homology with BYDV-PAV-I isolates and had very low intra-lineage diversity (0.6%). A similarly low diversity was also recorded in the hypervariable P6 region, suggesting that Ker-I isolates derive from the recent introduction of BYDV-PAV-I. Divergence time estimation suggests that BYDV-PAV-I was likely introduced in the Kerguelen environment at the same time frame as its aphid vector, Rhopalosiphum padi, whose distribution shows good overlap with that of BYDV-Ker-I. The two other lineages show more than 22% amino acid divergence in the P3 region with other known species in the BYDV species complex, indicating that they represent distinct BYDV species. Using species-specific amplification primers, the distribution of these novel species was analyzed. The high prevalence of BYDV on native Poaceae and the presence of the vector R. padi, raises the question of its impact on the vulnerable plant communities of this remote ecosystem.
Collapse
Affiliation(s)
- Laurence Svanella-Dumas
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, CS20032 Villenave d′Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, CS20032 Villenave d′Ornon, France
| | - Thierry Candresse
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, CS20032 Villenave d′Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, CS20032 Villenave d′Ornon, France
| | - Maurice Hullé
- Institut de Génétique, Environnement et Protection des Plantes, Agrocampus Rennes, UMR INRA 1349, BP 35327, Le Rheu, France
| | - Armelle Marais
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, CS20032 Villenave d′Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, CS20032 Villenave d′Ornon, France
| |
Collapse
|
44
|
Molecular characterization of a novel monopartite begomovirus isolated from Pouzolzia zeylanica in China. Arch Virol 2013; 158:1617-20. [PMID: 23462887 DOI: 10.1007/s00705-013-1632-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
The complete genome sequence of a monopartite begomovirus isolate TY01 was obtained from diseased Pouzolzia zeylanica plants exhibiting golden mosaic symptoms in Baise, Guangxi Province, China. It consisted of 2723 nucleotides (nt) and encoded two ORFs (CP and AV2) in the virion-sense DNA and five ORFs (AC1-AC5) in the complementary-sense DNA. Compared with the DNA-A sequences of other begomoviruses, it has the highest (78.5 %) nucleotide sequence identity with ageratum yellow vein virus (AYVV) isolate AFSP6D from Thailand, which is less than the 89 % identity in the complete genome that has been defined as the threshold value for demarcation of species in the genus Begomovirus, family Geminiviridae. Phylogenetic analysis showed that TY01 was grouped in a separate clade from the other 28 begomovirus isolates. These results indicate that isolate TY01 is a member of a novel Begomovirus species, for which the name "Pouzolzia golden mosaic virus" (PGMV) is proposed.
Collapse
|
45
|
Sánchez-Campos S, Martínez-Ayala A, Márquez-Martín B, Aragón-Caballero L, Navas-Castillo J, Moriones E. Fulfilling Koch's postulates confirms the monopartite nature of tomato leaf deformation virus: a begomovirus native to the New World. Virus Res 2013; 173:286-93. [PMID: 23415858 DOI: 10.1016/j.virusres.2013.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/25/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
The monopartite nature of the begomovirus tomato leaf deformation virus (ToLDeV) reported in Peru is demonstrated here. The DNA molecule cloned from an infected plant was shown to be fully infectious in tomatoes inducing leaf curling and stunted growth similar to that observed in field-infected plants. The viral DNA was reisolated from systemically infected tissues of inoculated plants, thus fulfilling Koch's postulates. ToLDeV was demonstrated, therefore, as the causal agent of the disease syndrome widespread in tomato crops in Peru. This virus was shown to be present throughout the major tomato-growing regions of this country, both in tomatoes and wild plants. Analyses of the sequences of 51 ToLDeV isolates revealed a significant genetic diversity with three major genetic types co-circulating in the population. A geographical segregation was observed which should be taken into account for virus control. Constraints to genetic divergence found for the C4 gene of ToLDeV isolates suggest a relevant function for this protein. The results obtained confirm ToLDeV as a monopartite begomovirus native to the New World, which is a significant finding for this region.
Collapse
Affiliation(s)
- S Sánchez-Campos
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental La Mayora, 29750 Algarrobo-Costa, Málaga, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Bi Y, Tugume AK, Valkonen JPT. Small-RNA deep sequencing reveals Arctium tomentosum as a natural host of Alstroemeria virus X and a new putative Emaravirus. PLoS One 2012; 7:e42758. [PMID: 22912734 PMCID: PMC3422356 DOI: 10.1371/journal.pone.0042758] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/10/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Arctium species (Asteraceae) are distributed worldwide and are used as food and rich sources of secondary metabolites for the pharmaceutical industry, e.g., against avian influenza virus. RNA silencing is an antiviral defense mechanism that detects and destroys virus-derived double-stranded RNA, resulting in accumulation of virus-derived small RNAs (21-24 nucleotides) that can be used for generic detection of viruses by small-RNA deep sequencing (SRDS). METHODOLOGY/PRINCIPAL FINDINGS SRDS was used to detect viruses in the biennial wild plant species Arctium tomentosum (woolly burdock; family Asteraceae) displaying virus-like symptoms of vein yellowing and leaf mosaic in southern Finland. Assembly of the small-RNA reads resulted in contigs homologous to Alstroemeria virus X (AlsVX), a positive/single-stranded RNA virus of genus Potexvirus (family Alphaflexiviridae), or related to negative/single-stranded RNA viruses of the genus Emaravirus. The coat protein gene of AlsVX was 81% and 89% identical to the two AlsVX isolates from Japan and Norway, respectively. The deduced, partial nucleocapsid protein amino acid sequence of the emara-like virus was only 78% or less identical to reported emaraviruses and showed no variability among the virus isolates characterized. This virus--tentatively named as Woolly burdock yellow vein virus--was exclusively associated with yellow vein and leaf mosaic symptoms in woolly burdock, whereas AlsVX was detected in only one of the 52 plants tested. CONCLUSIONS/SIGNIFICANCE These results provide novel information about natural virus infections in Acrtium species and reveal woolly burdock as the first natural host of AlsVX besides Alstroemeria (family Alstroemeriaceae). Results also revealed a new virus related to the recently emerged Emaravirus genus and demonstrated applicability of SRDS to detect negative-strand RNA viruses. SRDS potentiates virus surveys of wild plants, a research area underrepresented in plant virology, and helps reveal natural reservoirs of viruses that cause yield losses in cultivated plants.
Collapse
Affiliation(s)
- Yaqi Bi
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Arthur K. Tugume
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Jari P. T. Valkonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
47
|
Thapa V, Melcher U, Wiley GB, Doust A, Palmer MW, Roewe K, Roe BA, Shen G, Roossinck MJ, Wang YM, Kamath N. Detection of members of the Secoviridae in the Tallgrass Prairie Preserve, Osage County, Oklahoma, USA. Virus Res 2012; 167:34-42. [DOI: 10.1016/j.virusres.2012.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/21/2012] [Accepted: 03/24/2012] [Indexed: 01/08/2023]
|
48
|
Mueller EE, Groves RL, Gratton C. Crop and Non-Crop Plants as Potential Reservoir Hosts of Alfalfa mosaic virus and Cucumber mosaic virus for Spread to Commercial Snap Bean. PLANT DISEASE 2012; 96:506-514. [PMID: 30727448 DOI: 10.1094/pdis-02-11-0089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Diseases caused by aphid-transmitted viruses such as Alfalfa mosaic virus (AMV) and Cucumber mosaic virus (CMV) have increased in snap bean (Phaseolus vulgaris) in the Midwestern United States. Plants immediately surrounding agricultural fields may serve as primary virus inocula for aphids to acquire and transmit to bean crops. The project objectives were to (i) identify potentially important AMV and CMV reservoirs among naturally infected plants and (ii) determine the relationship between the virus inoculum potential (VIP) in adjacent crop field margins and virus incidence in P. vulgaris. From 2006 to 2008, surveys were conducted to quantify the virus incidence and percentage cover (2008 only) of plants present within 5 m of the P. vulgaris crop. In all, 4,350 individual plants representing 44 species were assayed, with overall AMV and CMV incidences averaging 12 and 1.5%, respectively. A VIP index was developed and used to rank the importance of virus-susceptible plants in adjacent field margins. The overall VIP index for AMV in field margins was weakly associated with AMV incidence in P. vulgaris and no relationship was observed between local CMV inoculum and P. vulgaris incidence, suggesting that factors additional to local inoculum sources may influence CMV epidemics in P. vulgaris.
Collapse
Affiliation(s)
- E E Mueller
- Department of Entomology, University of Wisconsin-Madison, 53706
| | - R L Groves
- Department of Entomology, University of Wisconsin-Madison, 53706
| | - C Gratton
- Department of Entomology, University of Wisconsin-Madison, 53706
| |
Collapse
|
49
|
Min BE, Feldman TS, Ali A, Wiley G, Muthukumar V, Roe BA, Roossinck M, Melcher U, Palmer MW, Nelson RS. Molecular characterization, ecology, and epidemiology of a novel Tymovirus in Asclepias viridis from Oklahoma. PHYTOPATHOLOGY 2012; 102:166-76. [PMID: 22026416 DOI: 10.1094/phyto-05-11-0154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Native virus-plant interactions require more understanding and their study will provide a basis from which to identify potential sources of emerging destructive viruses in crops. A novel tymovirus sequence was detected in Asclepias viridis (green milkweed), a perennial growing in a natural setting in the Tallgrass Prairie Preserve (TGPP) of Oklahoma. It was abundant within and frequent among A. viridis plants and, to varying extents, within other dicotyledonous and one grass (Panicum virgatum) species obtained from the TGPP. Extracts from A. viridis containing the sequence were infectious to a limited number of species. The virus genome was cloned and determined to be closely related to Kennedya yellow mosaic virus. The persistence of the virus within the Oklahoma A. viridis population was monitored for five successive years. Virus was present in a high percentage of plants within representative areas of the TGPP in all years and was spreading to additional plants. Virus was present in regions adjacent to the TGPP but not in plants sampled from central and south-central Oklahoma. Virus was present in the underground caudex of the plant during the winter, suggesting overwintering in this tissue. The RNA sequence encoding the virus coat protein varied considerably between individual plants (≈3%), likely due to drift rather than selection. An infectious clone was constructed and the virus was named Asclepias asymptomatic virus (AsAV) due to the absence of obvious symptoms on A. viridis.
Collapse
Affiliation(s)
- Byoung-Eun Min
- Plant Biology Division, Samuel Roberts Nobel Foundation, Inc., Ardmore, OK 73401, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fiallo-Olivé E, Navas-Castillo J, Moriones E, Martínez-Zubiaur Y. Begomoviruses infecting weeds in Cuba: increased host range and a novel virus infecting Sida rhombifolia. Arch Virol 2011; 157:141-6. [PMID: 21964921 DOI: 10.1007/s00705-011-1123-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/15/2011] [Indexed: 11/25/2022]
Abstract
As a result of surveys conducted during the last few years to search for wild reservoirs of begomoviruses in Cuba, we detected a novel bipartite begomovirus, sida yellow mottle virus (SiYMoV), infecting Sida rhombifolia plants. The complete genome sequence was obtained, showing that DNA-A was 2622 nucleotides (nt) in length and that it was most closely related (87.6% nucleotide identity) to DNA-A of an isolate of sida golden mosaic virus (SiGMV) that infects snap beans (Phaseolus vulgaris) in Florida. The DNA-B sequence was 2600 nt in length and shared the highest nucleotide identity (75.1%) with corchorus yellow spot virus (CoYSV). Phylogenetic relationship analysis showed that both DNA components of SiYMoV were grouped in the Abutilon clade, along with begomoviruses from Florida and the Caribbean islands. We also present here the complete nucleotide sequence of a novel strain of sida yellow vein virus found infecting Malvastrum coromandelianum and an isolate of euphorbia mosaic virus that was found for the first time infecting Euphorbia heterophylla in Cuba.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Centro Nacional de Sanidad Agropecuaria, San José de Las Lajas, Mayabeque, Cuba
| | | | | | | |
Collapse
|