1
|
Song R, Yin S, Wu J, Yan J. Neuronal regulated cell death in aging-related neurodegenerative diseases: key pathways and therapeutic potentials. Neural Regen Res 2025; 20:2245-2263. [PMID: 39104166 PMCID: PMC11759035 DOI: 10.4103/nrr.nrr-d-24-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Regulated cell death (such as apoptosis, necroptosis, pyroptosis, autophagy, cuproptosis, ferroptosis, disulfidptosis) involves complex signaling pathways and molecular effectors, and has been proven to be an important regulatory mechanism for regulating neuronal aging and death. However, excessive activation of regulated cell death may lead to the progression of aging-related diseases. This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases. Notably, the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases. These forms of cell death exacerbate disease progression by promoting inflammation, oxidative stress, and pathological protein aggregation. The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms, with a focus on ferroptosis, cuproptosis, and disulfidptosis. For instance, FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation, while copper mediates glutathione peroxidase 4 degradation, enhancing ferroptosis sensitivity. Additionally, inhibiting the Xc- transport system to prevent ferroptosis can increase disulfide formation and shift the NADP + /NADPH ratio, transitioning ferroptosis to disulfidptosis. These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms. In conclusion, identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Run Song
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shiyi Yin
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
2
|
Najdek C, Walle P, Flaig A, Ayral AM, Demiautte F, Coulon A, Buiche V, Lambert E, Amouyel P, Gelle C, Siedlecki-Wullich D, Dumont J, Kilinc D, Eysert F, Lambert JC, Chapuis J. Calpain and caspase regulate Aβ peptide production via cleavage of KINDLIN2 encoded by the AD-associated gene FERMT2. Neurobiol Aging 2025; 151:117-125. [PMID: 40273529 DOI: 10.1016/j.neurobiolaging.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 04/14/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
The adapter protein KINDLIN2, encoded by the Alzheimer's disease (AD) genetic risk factor FERMT2, was identified as a modulator of APP processing. KINDLIN2 directly interacts with APP to modulate its metabolism, and KINDLIN2 underexpression impairs long-term potentiation in an APP-dependent manner. Altogether, these data suggest that loss of KINDLIN2 could have a detrimental effect on synaptic function and promote AD pathophysiological process. In this study, we identified KINDLIN2 as a novel substrate of caspases and calpain I, two well-characterized cysteine proteases involved in the regulation of synaptic plasticity. These cleavages resulted in the dissociation of the F0 and F1 domains of KINDLIN2 that are necessary for it to function as an adapter protein. Furthermore, we demonstrate that these cleavages lead to a decrease in KINDLIN2's ability to control APP processing. Overall, these KINDLIN2 cleavages appear as potential new mechanisms in the regulation of KINDLIN2 functions at the synapse and could be of interest for the pathophysiology of AD.
Collapse
Affiliation(s)
- Chloé Najdek
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Pauline Walle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Amandine Flaig
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Anne-Marie Ayral
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Florie Demiautte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Audrey Coulon
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Valérie Buiche
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Erwan Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Carla Gelle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Dolores Siedlecki-Wullich
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Julie Dumont
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Devrim Kilinc
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Fanny Eysert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Julien Chapuis
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France.
| |
Collapse
|
3
|
Ansari S, Maurya VK, Kumar S, Tiwari M, Abdel-Moneime AS, Saxena SK. Neuroprotective effects of Centella asiatica against LPS/amyloid beta-induced neurodegeneration through inhibition of neuroinflammation. Neuroscience 2025; 575:19-35. [PMID: 40204151 DOI: 10.1016/j.neuroscience.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/27/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Protein aggregation and microglia-mediated neuroinflammation are the major contributors to the progression of neurodegeneration. Currently, available drugs for neurodegenerative diseases have limited efficacy and are associated with several side effects; suggesting a need to discover novel therapeutic agents. Therefore, we aim to evaluate the neuroprotective effects of C. asiatica against amyloid beta (Aβ) and lipopolysaccharides (LPS)-induced neurodegeneration using human microglia and neuronal cell-based models. To identify potential molecular targets of C. asiatica, network pharmacology-based approaches were used along with molecular docking, followed by experimental validation via indirect ELISA, Western blotting, and indirect immunofluorescence assays. Our results from network pharmacology, molecular docking, and cell-based models, exhibited that AKT1, TNF-α, STAT3, CASP3, PTGS2, MAPK1, APP, and NF-κB are the potential molecular targets of C. asiatica. Further, we have found that C. asiatica treatment reduces LPS/Aβ-induced cell death, NO production, and LDH release in microglia and neuronal cells. The anti-neuroinflammatory effect of C. asiatica was further observed via the reduction of LPS, Aβ, and LPS+Aβ-induced neuroinflammatory markers; TNF-α, IL6, IL-1β, AKT1, INOS, NF-κB, MAPK3, and PTGS2 in microglia cells. Moreover, neurodegenerative and apoptotic markers; APP, α-syn, P-tau STAT3, and CASP3 were reduced upon C. asiatica treatment in neuronal cells, suggesting its neuroprotective properties. For the first time, we have shown the neuroprotective effects of C. asiatica against LPS, Aβ, and LPS+Aβ -induced neurodegeneration via inhibition of neuroinflammation and neurodegenerative markers. The outcomes of the study suggested that C. asiatica could be a promising candidate for neuroinflammation-mediated neurodegenerative diseases like Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Saniya Ansari
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India; TheWorld Society for Virology (WSV), MA 01060, USA
| | - Vimal K Maurya
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India; TheWorld Society for Virology (WSV), MA 01060, USA
| | - Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India; TheWorld Society for Virology (WSV), MA 01060, USA
| | - Mohan Tiwari
- CSIR-National Botanical Research Institute, Lucknow 226001, India
| | | | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India; TheWorld Society for Virology (WSV), MA 01060, USA.
| |
Collapse
|
4
|
Tannous R, Zhang C, Shabat D. Super-Sensitive Chemiluminescent Probe for the Detection of Caspase-3 Activity. Bioconjug Chem 2025; 36:1113-1120. [PMID: 40340439 PMCID: PMC12100654 DOI: 10.1021/acs.bioconjchem.5c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/10/2025]
Abstract
Caspase-3 is a pivotal enzyme in the apoptosis pathway that is responsible for executing programmed cell death through the cleavage of key cellular proteins. Existing fluorescence-based probes for caspase-3 detection suffer from limitations such as background noise from tissue autofluorescence and light scattering, reducing their sensitivity and real-time imaging capabilities. To overcome these limitations, we developed a chemiluminescent probe, Ac-DEVD-CL, that enables the highly sensitive and selective detection of caspase-3 activity. Upon caspase-3-mediated cleavage, the probe undergoes a self-immolative reaction that triggers a chemiluminescent signal, allowing real-time monitoring of the enzymatic activity. Probe Ac-DEVD-CL demonstrated an exceptionally high turn-on response, with a 5000-fold increase in the chemiluminescent signal upon enzymatic activation. The probe exhibited notable specificity for caspase-3, with minimal cross-reactivity toward other biologically relevant proteases and tumor-associated enzymes. Additionally, inhibition studies using the caspase-3 inhibitor confirmed that the probe's activation is exclusively mediated by caspase-3. A direct comparison with the commercially available fluorescent probe revealed that probe Ac-DEVD-CL offers significantly improved sensitivity, achieving a signal-to-noise ratio 380-fold higher and a limit of detection 100-fold lower. These results establish probe Ac-DEVD-CL as a highly effective tool for detecting caspase-3 activity with superior precision. Finally, we validated the probe's utility in imaging apoptosis in live cells. In 4T1 breast cancer cells treated with cisplatin, Ac-DEVD-CL generated a strong chemiluminescent signal, with a three-order-of-magnitude enhancement compared to untreated cells. Overall, the probe Ac-DEVD-CL demonstrates a significant improvement in detection sensitivity, providing a powerful and versatile chemiluminescent probe for real-time imaging of caspase-3 activity. Its exceptional sensitivity and selectivity could make it a valuable tool for cancer research, drug discovery, and therapeutic monitoring.
Collapse
Affiliation(s)
- Rozan Tannous
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv69978Israel
| | - Chi Zhang
- School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Luoyu Road 1037, Wuhan430074, China
| | - Doron Shabat
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv69978Israel
| |
Collapse
|
5
|
Lee S, Miller CL, Bentley AR, Brown MR, Nagarajan P, Noordam R, Morrison J, Schwander K, Westerman K, Kho M, Kraja AT, de Vries PS, Ammous F, Aschard H, Bartz TM, Do A, Dupont CT, Feitosa MF, Gudmundsdottir V, Guo X, Harris SE, Hikino K, Huang Z, Lefevre C, Lyytikäinen LP, Milaneschi Y, Nardone GG, Santin A, Schmidt H, Shen B, Sofer T, Sun Q, Tan YA, Tang J, Thériault S, van der Most PJ, Ware EB, Weiss S, Ya Xing W, Yu C, Zhao W, Ansari MAY, Anugu P, Attia JR, Bazzano LA, Bis JC, Breyer M, Cade B, Chen G, Collins S, Corley J, Davies G, Dörr M, Du J, Edwards TL, Faquih T, Faul JD, Fohner AE, Fretts AM, Gangireddy S, Gepner A, Graff M, Hofer E, Homuth G, Hood MM, Jie X, Kähönen M, Kardia SL, Karvonen-Gutierrez CA, Launer LJ, Levy D, Maheshwari M, Martin LW, Matsuda K, McNeil JJ, Nolte IM, Okochi T, Raffield LM, Raitakari OT, Risch L, Risch M, Roux AD, Ruiz-Narvaez EA, Russ TC, Saito T, Schreiner PJ, Scott RJ, Shikany J, Smith JA, Snieder H, Spedicati B, Tai ES, Taylor AM, Taylor KD, Tesolin P, van Dam RM, Wang R, Wenbin W, Xie T, Yao J, et alLee S, Miller CL, Bentley AR, Brown MR, Nagarajan P, Noordam R, Morrison J, Schwander K, Westerman K, Kho M, Kraja AT, de Vries PS, Ammous F, Aschard H, Bartz TM, Do A, Dupont CT, Feitosa MF, Gudmundsdottir V, Guo X, Harris SE, Hikino K, Huang Z, Lefevre C, Lyytikäinen LP, Milaneschi Y, Nardone GG, Santin A, Schmidt H, Shen B, Sofer T, Sun Q, Tan YA, Tang J, Thériault S, van der Most PJ, Ware EB, Weiss S, Ya Xing W, Yu C, Zhao W, Ansari MAY, Anugu P, Attia JR, Bazzano LA, Bis JC, Breyer M, Cade B, Chen G, Collins S, Corley J, Davies G, Dörr M, Du J, Edwards TL, Faquih T, Faul JD, Fohner AE, Fretts AM, Gangireddy S, Gepner A, Graff M, Hofer E, Homuth G, Hood MM, Jie X, Kähönen M, Kardia SL, Karvonen-Gutierrez CA, Launer LJ, Levy D, Maheshwari M, Martin LW, Matsuda K, McNeil JJ, Nolte IM, Okochi T, Raffield LM, Raitakari OT, Risch L, Risch M, Roux AD, Ruiz-Narvaez EA, Russ TC, Saito T, Schreiner PJ, Scott RJ, Shikany J, Smith JA, Snieder H, Spedicati B, Tai ES, Taylor AM, Taylor KD, Tesolin P, van Dam RM, Wang R, Wenbin W, Xie T, Yao J, Young KL, Zhang R, Zonderman AB, Concas MP, Conen D, Cox SR, Evans MK, Fox ER, de Las Fuentes L, Giri A, Girotto G, Grabe HJ, Gu C, Gudnason V, Harlow SD, Holliday E, Jost JB, Lacaze P, Lee S, Lehtimäki T, Li C, Liu CT, Morrison AC, North KE, Penninx BW, Peyser PA, Province MM, Psaty BM, Redline S, Rosendaal FR, Rotimi CN, Rotter JI, Schmidt R, Sim X, Terao C, Weir DR, Zhu X, Franceschini N, O'Connell JR, Jaquish CE, Wang H, Manning A, Munroe PB, Rao DC, Chen H, Gauderman WJ, Bierut L, Winkler TW, Fornage M. A Large-Scale Genome-wide Association Study of Blood Pressure Accounting for Gene-Depressive Symptomatology Interactions in 564,680 Individuals from Diverse Populations. RESEARCH SQUARE 2025:rs.3.rs-6025759. [PMID: 40034430 PMCID: PMC11875294 DOI: 10.21203/rs.3.rs-6025759/v1] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Gene-environment interactions may enhance our understanding of hypertension. Our previous study highlighted the importance of considering psychosocial factors in gene discovery for blood pressure (BP) but was limited in statistical power and population diversity. To address these challenges, we conducted a multi-population genome-wide association study (GWAS) of BP accounting for gene-depressive symptomatology (DEPR) interactions in a larger and more diverse sample. Results Our study included 564,680 adults aged 18 years or older from 67 cohorts and 4 population backgrounds (African (5%), Asian (7%), European (85%), and Hispanic (3%)). We discovered seven novel gene-DEPR interaction loci for BP traits. These loci mapped to genes implicated in neurogenesis (TGFA, CASP3), lipid metabolism (ACSL1), neuronal apoptosis (CASP3), and synaptic activity (CNTN6, DBI). We also identified evidence for gene-DEPR interaction at nine known BP loci, further suggesting links between mood disturbance and BP regulation. Of the 16 identified loci, 11 loci were derived from African, Asian, or Hispanic populations. Post-GWAS analyses prioritized 36 genes, including genes involved in synaptic functions (DOCK4, MAGI2) and neuronal signaling (CCK, UGDH, SLC01A2). Integrative druggability analyses identified 11 druggable candidate gene targets, including genes implicated in pathways linked to mood disorders as well as gene products targeted by known antihypertensive drugs. Conclusions Our findings emphasize the importance of considering gene-DEPR interactions on BP, particularly in non-European populations. Our prioritized genes and druggable targets highlight biological pathways connecting mood disorders and hypertension and suggest opportunities for BP drug repurposing and risk factor prevention, especially in individuals with DEPR.
Collapse
Affiliation(s)
- Songmi Lee
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - Pavithra Nagarajan
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Karen Schwander
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Kenneth Westerman
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA
| | - Minjung Kho
- Graduate School of Data Science, Seoul National University, Seoul
| | - Aldi T Kraja
- University of Mississippi Medical Center, Jackson, MS
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - Farah Ammous
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Hughes Aschard
- Department of Computational Biology, F-75015 Paris, France Institut Pasteur, Université Paris Cité, Paris
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Anh Do
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Charles T Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | | | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Christophe Lefevre
- Department of Data Sciences, Hunter Medical Research Institute, New Lambton Heights, NSW
| | - Leo-Pekka Lyytikäinen
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Fimlab Laboratories and Faculty of Medicine and Health Technology, Tampere University, Tampere
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC/Vrije universiteit, Amsterdam
| | | | - Aurora Santin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - Helena Schmidt
- Department of Molecular Biology and Biochemistry, Medical University Graz, Graz, Styria
| | - Botong Shen
- Laboratory of Epidemiology and Population Sciences, Health Disparities Research Section, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ye An Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Jingxian Tang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Sébastien Thériault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald
| | - Wang Ya Xing
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, Beijing
| | - Chenglong Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Md Abu Yusuf Ansari
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS
| | - Pramod Anugu
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS
| | - John R Attia
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW
| | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Max Breyer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Brian Cade
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Stacey Collins
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald
| | - Jiawen Du
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Tariq Faquih
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Alison E Fohner
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Amanda M Fretts
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - Srushti Gangireddy
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Adam Gepner
- Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - MariaElisa Graff
- Cardiovascular Disease (CVD) Genetic Epidemiology Laboratory, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Edith Hofer
- Department of Neurology, Medical University Graz, Graz, Styria
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald
| | - Michelle M Hood
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Xu Jie
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, Beijing
| | - Mika Kähönen
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere
| | - Sharon Lr Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Lisa W Martin
- Department of Cardiology, George Washington University, Washington, DC
| | - Koichi Matsuda
- Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo
| | - John J McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Tomo Okochi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC
| | - Olli T Raitakari
- Centre for Population Health Research, Department of Clinical Physiology and Nuclear Medicine, InFLAMES Research Flagship, Turku University Hospital and University of Turku, Turku
| | - Lorenz Risch
- Faculty of Medical Sciences , Institute for Laboratory Medicine, Private University in the Principality of Liechtenstein, Vaduz
| | - Martin Risch
- Central Laboratory, Cantonal Hospital Graubünden, Chur
| | - Ana Diez Roux
- Urban Health Collaborative, Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA
| | | | - Tom C Russ
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Rodney J Scott
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW
| | - James Shikany
- Division of General Internal Medicine and Population Science, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Adele M Taylor
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Rujia Wang
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Wei Wenbin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, Beijing
| | - Tian Xie
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Kristin L Young
- Cardiovascular Disease (CVD) Genetic Epidemiology Laboratory, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, Health Disparities Research Section, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste
| | - David Conen
- Population Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, Health Disparities Research Section, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Ervin R Fox
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS
| | - Lisa de Las Fuentes
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Ayush Giri
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Mecklenburg-Western Pomerania
| | - Charles Gu
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | | | - Sioban D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Elizabeth Holliday
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW
| | - Jonas B Jost
- Rothschild Foundation Hospital, Institut Français de Myopie, Paris
| | - Paul Lacaze
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul
| | - Terho Lehtimäki
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Fimlab Laboratories and Faculty of Medicine and Health Technology, Tampere University, Tampere
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - Kari E North
- Cardiovascular Disease (CVD) Genetic Epidemiology Laboratory, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Michael M Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | | | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Chikashi Terao
- The Clinical Research Center at Shizuoka General Hospital, Shizuoka
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Cashell E Jaquish
- Division of Cardiovascular Science, Epidemiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Alisa Manning
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Patricia B Munroe
- Clinical Pharmacology and Precision Medicine, Queen Mary University of London, London
| | - Dabeeru C Rao
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| |
Collapse
|
6
|
Almutary AG, Begum MY, Kyada AK, Gupta S, Jyothi SR, Chaudhary K, Sharma S, Sinha A, Abomughaid MM, Imran M, Lakhanpal S, Babalghith AO, Abu-Seer EA, Avinash D, Alzahrani HA, Alhindi AA, Iqbal D, Kumar S, Jha NK, Alghamdi S. Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions. Ageing Res Rev 2025; 104:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The complex pathophysiology of Alzheimer's disease (AD) poses challenges for the development of therapies. Recently, neuroinflammation has been identified as a key pathogenic mechanism underlying AD, while inflammation has emerged as a possible target for the management and prevention of AD. Several prior studies have demonstrated that medications modulating neuroinflammation might lessen AD symptoms, mostly by controlling neuroinflammatory signaling pathways such as the NF-κB, MAPK, NLRP3, etc, and their respective signaling cascade. Moreover, targeting these inflammatory modalities with inhibitors, natural products, and metabolites has been the subject of intensive research because of their anti-inflammatory characteristics, with many studies demonstrating noteworthy pharmacological capabilities and potential clinical applications. Therefore, targeting inflammation is considered a promising strategy for treating AD. This review comprehensively elucidates the neuroinflammatory mechanisms underlying AD progression and the beneficial effects of inhibitors, natural products, and metabolites in AD treatment.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Swati Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Adnan Abu-Seer
- Department of Epidemiology and Medical Statistic, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Hassan A Alzahrani
- Department of Respiratory Care, Medical Cities at the Minister of Interior, MCMOl, Riyadh, Saudi Arabia
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India; DST-FIST Laboratory, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology (SBT), Galgotias University, Greater Noida, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
7
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Tsoy A, Umbayev B, Kassenova A, Kaupbayeva B, Askarova S. Pathology of Amyloid-β (Aβ) Peptide Peripheral Clearance in Alzheimer's Disease. Int J Mol Sci 2024; 25:10964. [PMID: 39456746 PMCID: PMC11507512 DOI: 10.3390/ijms252010964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Although Alzheimer's disease (AD) is traditionally viewed as a central nervous system disorder driven by the cerebral accumulation of toxic beta-amyloid (Aβ) peptide, new interpretations of the amyloid cascade hypothesis have led to the recognition of the dynamic equilibrium in which Aβ resides and the importance of peripheral Aβ production and degradation in maintaining healthy Aβ levels. Our review sheds light on the critical role of peripheral organs, particularly the liver, in the metabolism and clearance of circulating Aβ. We explore the mechanisms of Aβ transport across the blood-brain barrier (BBB) via transport proteins such as LRP1 and P-glycoprotein. We also examine how peripheral clearance mechanisms, including enzymatic degradation and phagocytic activity, impact Aβ homeostasis. Our review also discusses potential therapeutic strategies targeting peripheral Aβ clearance pathways. By enhancing these pathways, we propose a novel approach to reducing cerebral Aβ burden, potentially slowing AD progression.
Collapse
Affiliation(s)
- Andrey Tsoy
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| | - Bauyrzhan Umbayev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| | - Aliya Kassenova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
- Faculty of Natural Sciences, Eurasian National University, Astana 010000, Kazakhstan
| | - Bibifatima Kaupbayeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| |
Collapse
|
9
|
Fang Y, Gong Z, You M, Peng K. Identification of a novel caspase cleavage motif AEAD. Virol Sin 2024; 39:755-766. [PMID: 39098717 PMCID: PMC11738786 DOI: 10.1016/j.virs.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/16/2023] [Indexed: 08/06/2024] Open
Abstract
Infections of many viruses induce caspase activation to regulate multiple cellular pathways, including programmed cell death, immune signaling and etc. Characterizations of caspase cleavage sites and substrates are important for understanding the regulation mechanisms of caspase activation. Here, we identified and analyzed a novel caspase cleavage motif AEAD, and confirmed its caspase dependent cleavage activity in natural substrate, such as nitric oxide-associated protein 1 (NOA1). Fusing the enhanced green fluorescent protein (EGFP) with the mitochondrial marker protein Tom20 through the AEAD motif peptide localized EGFP to the mitochondria. Upon the activation of caspase triggered by Sendai virus (SeV) or herpes simplex virus type 1 (HSV-1) infection, EGFP diffusely localized to the cell due to the caspase-mediated cleavage, thus allowing visual detection of the virus-induced caspase activation. An AEAD peptide-derived inhibitor Z-AEAD-FMK were developed, which significantly inhibited the activities of caspases-1, -3, -6, -7, -8 and -9, exhibiting a broad caspase inhibition effect. The inhibitor further prevented caspases-mediated cleavage of downstream substrates, including BID, PARP1, LMNA, pro-IL-1β, pro-IL-18, GSDMD and GSDME, protecting cells from virus-induced apoptotic and pyroptotic cell death. Together, our findings provide a new perspective for the identification of novel caspase cleavage motifs and the development of new caspase inhibitors and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yujie Fang
- State Key Laboratory of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences, Wuhan, 430071, China
| | - Miaomiao You
- State Key Laboratory of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Peng
- State Key Laboratory of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Provincial Key Laboratory of Jiangxia, Wuhan, 430207, China.
| |
Collapse
|
10
|
Deghiedy NM, Abdel-Naby DH, Aziz MM, El-Sheikh MM. Fisetin-loaded pluronic-based nanogel: Radiation synthesis for alleviating neurocognitive impairments in a rat model of alzheimer's disease via modulation of the apoptotic cascade. Int J Biol Macromol 2024; 274:133472. [PMID: 38942410 DOI: 10.1016/j.ijbiomac.2024.133472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder marked by cognitive impairment and memory loss. In this study, AD was experimentally induced in rats using aluminum chloride (AlCl3) and D-galactose (D-gal). Fisetin (Fis), a natural compound with antioxidant and anti-inflammatory properties, has potential for neurodegeneration management, but its low bioavailability limits clinical applications. To address this, we synthesized and characterized Pluronic-2-Acrylamido-2-methylpropane sulfonic acid (PLUR-PAMPS) nanogels using gamma radiation and successfully loaded Fis onto them (Fis-PLUR-PAMPS). The optimal formulation exhibited minimal particle size, a highly acceptable polydispersity index, and the highest zeta-potential, enhancing stability and solubilization efficiency. Our goal was to improve Fis's bioavailability and assess its efficacy against AlCl3/D-gal-induced AD. Male albino Wistar rats were pre-treated orally with Fis (40 mg/kg) or Fis-PLUR-PAMPS for seven days, followed by a seven-day intraperitoneal injection of AlCl3 and D-gal. Behavioral assessments, histopathological analysis, and biochemical evaluation of markers related to AD pathology were conducted. Results demonstrated that Fis-PLUR-PAMPS effectively mitigated cognitive impairments and neurodegenerative signs induced by AlCl3/D-gal. These findings suggest that Fis-PLUR-PAMPS nanogels enhance Fis's bioavailability and therapeutic efficacy, offering a promising approach for AD management.
Collapse
Affiliation(s)
- Noha M Deghiedy
- Department of Polymers Chemistry, NCRRT, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Doaa H Abdel-Naby
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Maha M Aziz
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Marwa M El-Sheikh
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
11
|
Pietrzak-Wawrzyńska BA, Wnuk A, Przepiórska-Drońska K, Łach A, Kajta M. Posttreatment with PaPE-1 Protects from Aβ-Induced Neurodegeneration Through Inhibiting the Expression of Alzheimer's Disease-Related Genes and Apoptosis Process That Involves Enhanced DNA Methylation of Specific Genes. Mol Neurobiol 2024; 61:4130-4145. [PMID: 38064105 PMCID: PMC11236864 DOI: 10.1007/s12035-023-03819-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/19/2023] [Indexed: 07/11/2024]
Abstract
Targeting the non-nuclear estrogen receptor (ER) signaling has been postulated as novel therapeutic strategy for central nervous system pathologies. Recently, we showed that newly designed PaPE-1 (Pathway Preferential Estrogen-1), which selectively activates ER non-nuclear signaling pathways, elicited neuroprotection in a cellular model of Alzheimer's disease (AD) when it was applied at the same time as amyloid-β (Aβ). Since delayed treatment reflects clinical settings better than cotreatment does, current basic study proposes a novel therapeutic approach for AD that relies on a posttreatment with PaPE-1. In this study, mouse neuronal cell cultures treated with preaggregated Aβ1-42 (10 µM) showed the presence of extracellular Aβ1-42, confirming the adequacy of the AD model used. We are the first to demonstrate that a 24-h delayed posttreatment with PaPE-1 decreased the degree of Aβ-induced neurodegeneration, restored neurite outgrowth, and inhibited the expression of AD-related genes, i.e., Rbfox, Apoe, Bace2, App, and Ngrn, except for Chat, which was stimulated. In addition, PaPE-1 elicited anti-apoptotic effects by inhibiting Aβ-induced caspase activities as well as attenuating apoptotic chromatin condensation, and in these ways, PaPE-1 prevented neuronal cell death. Posttreatment with PaPE-1 also downregulated the Aβ-affected mRNA expression of apoptosis-specific factors, such as Bax, Gsk3b, Fas, and Fasl, except for Bcl2, which was upregulated by PaPE-1. In parallel, PaPE-1 decreased the protein levels of BAX, FAS, and FASL, which were elevated in response to Aβ. PaPE-1 elicited a decrease in the BAX/BCL2 ratio that corresponds to increased methylation of the Bax gene. However, the PaPE-1-evoked Bcl2 gene hypermethylation suggests other PaPE-1-dependent mechanisms to control Aβ-induced apoptosis.
Collapse
Affiliation(s)
- Bernadeta A Pietrzak-Wawrzyńska
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Agnieszka Wnuk
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Karolina Przepiórska-Drońska
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Andrzej Łach
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Małgorzata Kajta
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland.
| |
Collapse
|
12
|
Wójcik P, Jastrzębski MK, Zięba A, Matosiuk D, Kaczor AA. Caspases in Alzheimer's Disease: Mechanism of Activation, Role, and Potential Treatment. Mol Neurobiol 2024; 61:4834-4853. [PMID: 38135855 PMCID: PMC11236938 DOI: 10.1007/s12035-023-03847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
With the aging of the population, treatment of conditions emerging in old age, such as neurodegenerative disorders, has become a major medical challenge. Of these, Alzheimer's disease, leading to cognitive dysfunction, is of particular interest. Neuronal loss plays an important role in the pathophysiology of this condition, and over the years, a great effort has been made to determine the role of various factors in this process. Unfortunately, until now, the exact pathomechanism of this condition remains unknown. However, the most popular theories associate AD with abnormalities in the Tau and β-amyloid (Aβ) proteins, which lead to their deposition and result in neuronal death. Neurons, like all cells, die in a variety of ways, among which pyroptosis, apoptosis, and necroptosis are associated with the activation of various caspases. It is worth mentioning that Tau and Aβ proteins are considered to be one of the caspase activators, leading to cell death. Moreover, the protease activity of caspases influences both of the previously mentioned proteins, Tau and Aβ, converting them into more toxic derivatives. Due to the variety of ways caspases impact the development of AD, drugs targeting caspases could potentially be useful in the treatment of this condition. Therefore, there is a constant need to search for novel caspase inhibitors and evaluate them in preclinical and clinical trials.
Collapse
Affiliation(s)
- Piotr Wójcik
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland.
| | - Michał K Jastrzębski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland
| | - Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland.
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
13
|
Baghel MS, Burns GD, Tsapatsis M, Mallika AP, Cruz ALF, Cao T, Chen XK, Rosa IDL, Marx SR, Ye Y, Sun S, Li T, Wong PC. Depletion of TDP-43 exacerbates tauopathy-dependent brain atrophy by sensitizing vulnerable neurons to caspase 3-mediated endoproteolysis of tau in a mouse model of Multiple Etiology Dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600814. [PMID: 38979270 PMCID: PMC11230425 DOI: 10.1101/2024.06.26.600814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
TDP-43 proteinopathy, initially disclosed in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), coexists with tauopathy in a variety of neurodegenerative disorders, termed multiple etiology dementias (MEDs), including Alzheimer's Disease (AD). While such co-pathology of TDP-43 is strongly associated with worsened neurodegeneration and steeper cognitive decline, the pathogenic mechanism underlying the exacerbated neuron loss remains elusive. The loss of TDP-43 splicing repression that occurs in presymptomatic ALS-FTD individuals suggests that such early loss could facilitate the pathological conversion of tau to accelerate neuron loss. Here, we report that the loss of TDP-43 repression of cryptic exons in forebrain neurons (CaMKII-CreER;Tardbp f/f mice) is necessary to exacerbate tauopathy-dependent brain atrophy by sensitizing vulnerable neurons to caspase 3-dependent cleavage of endogenous tau to promote tauopathy. Corroborating this finding within the human context, we demonstrate that loss of TDP-43 function in iPSC-derived cortical neurons promotes early cryptic exon inclusion and subsequent caspase 3-mediated endoproteolysis of tau. Using a genetic approach to seed tauopathy in CaMKII-CreER;Tardbp f/f mice by expressing a four-repeat microtubule binding domain of human tau, we show that the amount of tau seed positively correlates with levels of caspase 3-cleaved tau. Importantly, we found that the vulnerability of hippocampal neurons to TDP-43 depletion is dependent on the amount of caspase 3-cleaved tau: from most vulnerable neurons in the CA2/3, followed by those in the dentate gyrus, to the least in CA1. Taken together, our findings strongly support the view that TDP-43 loss-of-function exacerbates tauopathy-dependent brain atrophy by increasing the sensitivity of vulnerable neurons to caspase 3-mediated endoproteolysis of tau, resulting in a greater degree of neurodegeneration in human disorders with co-pathologies of tau and TDP-43. Our work thus discloses novel mechanistic insights and therapeutic targets for human tauopathies harboring co-pathology of TDP-43 and provides a new MED model for testing therapeutic strategies.
Collapse
Affiliation(s)
- Meghraj S Baghel
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Grace D Burns
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Margarita Tsapatsis
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Aswathy Peethambaran Mallika
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Anna Lourdes F Cruz
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Tianyu Cao
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Xiaoke K Chen
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Isabel De La Rosa
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Shaelyn R Marx
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Yingzhi Ye
- Department of Physiology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
- Department of Physiology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Philip C Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Balusu S, De Strooper B. The necroptosis cell death pathway drives neurodegeneration in Alzheimer's disease. Acta Neuropathol 2024; 147:96. [PMID: 38852117 PMCID: PMC11162975 DOI: 10.1007/s00401-024-02747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Although apoptosis, pyroptosis, and ferroptosis have been implicated in AD, none fully explains the extensive neuronal loss observed in AD brains. Recent evidence shows that necroptosis is abundant in AD, that necroptosis is closely linked to the appearance of Tau pathology, and that necroptosis markers accumulate in granulovacuolar neurodegeneration vesicles (GVD). We review here the neuron-specific activation of the granulovacuolar mediated neuronal-necroptosis pathway, the potential AD-relevant triggers upstream of this pathway, and the interaction of the necrosome with the endo-lysosomal pathway, possibly providing links to Tau pathology. In addition, we underscore the therapeutic potential of inhibiting necroptosis in neurodegenerative diseases such as AD, as this presents a novel avenue for drug development targeting neuronal loss to preserve cognitive abilities. Such an approach seems particularly relevant when combined with amyloid-lowering drugs.
Collapse
Affiliation(s)
- Sriram Balusu
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK.
| |
Collapse
|
15
|
Abyadeh M, Gupta V, Paulo JA, Mahmoudabad AG, Shadfar S, Mirshahvaladi S, Gupta V, Nguyen CT, Finkelstein DI, You Y, Haynes PA, Salekdeh GH, Graham SL, Mirzaei M. Amyloid-beta and tau protein beyond Alzheimer's disease. Neural Regen Res 2024; 19:1262-1276. [PMID: 37905874 PMCID: PMC11467936 DOI: 10.4103/1673-5374.386406] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating disease. Physiologically, these two proteins are produced and expressed within the normal human body. However, under pathological conditions, abnormal expression, post-translational modifications, conformational changes, and truncation can make these proteins prone to aggregation, triggering specific disease-related cascades. Recent studies have indicated associations between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as retinal neurodegenerative diseases like Glaucoma and age-related macular degeneration. Additionally, these proteins have been linked to cardiovascular disease, cancer, traumatic brain injury, and diabetes, which are all leading causes of morbidity and mortality. In this comprehensive review, we provide an overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.
Collapse
Affiliation(s)
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Sina Shadfar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Shahab Mirshahvaladi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Christine T.O. Nguyen
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H. Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L. Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
16
|
Davoody S, Asgari Taei A, Khodabakhsh P, Dargahi L. mTOR signaling and Alzheimer's disease: What we know and where we are? CNS Neurosci Ther 2024; 30:e14463. [PMID: 37721413 PMCID: PMC11017461 DOI: 10.1111/cns.14463] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
Despite the great body of research done on Alzheimer's disease, the underlying mechanisms have not been vividly investigated. To date, the accumulation of amyloid-beta plaques and tau tangles constitutes the hallmark of the disease; however, dysregulation of the mammalian target of rapamycin (mTOR) seems to be significantly involved in the pathogenesis of the disease as well. mTOR, as a serine-threonine protein kinase, was previously known for controlling many cellular functions such as cell size, autophagy, and metabolism. In this regard, mammalian target of rapamycin complex 1 (mTORC1) may leave anti-aging impacts by robustly inhibiting autophagy, a mechanism that inhibits the accumulation of damaged protein aggregate and dysfunctional organelles. Formation and aggregation of neurofibrillary tangles and amyloid-beta plaques seem to be significantly regulated by mTOR signaling. Understanding the underlying mechanisms and connection between mTOR signaling and AD may suggest conducting clinical trials assessing the efficacy of rapamycin, as an mTOR inhibitor drug, in managing AD or may help develop other medications. In this literature review, we aim to elaborate mTOR signaling network mainly in the brain, point to gaps of knowledge, and define how and in which ways mTOR signaling can be connected with AD pathogenesis and symptoms.
Collapse
Affiliation(s)
- Samin Davoody
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Afsaneh Asgari Taei
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Pariya Khodabakhsh
- Department of NeurophysiologyInstitute of Physiology, Eberhard Karls University of TübingenTübingenGermany
| | - Leila Dargahi
- Neurobiology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
17
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
18
|
Abutarboush R, Reed E, Chen Y, Gu M, Watson C, Kawoos U, Statz JK, Tschiffely AE, Ciarlone S, Perez-Garcia G, Gama Sosa MA, de Gasperi R, Stone JR, Elder GA, Ahlers ST. Exposure to Low-Intensity Blast Increases Clearance of Brain Amyloid Beta. J Neurotrauma 2024; 41:685-704. [PMID: 38183627 DOI: 10.1089/neu.2023.0284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024] Open
Abstract
The long-term effects of exposure to blast overpressure are an important health concern in military personnel. Increase in amyloid beta (Aβ) has been documented after non-blast traumatic brain injury (TBI) and may contribute to neuropathology and an increased risk for Alzheimer's disease. We have shown that Aβ levels decrease following exposure to a low-intensity blast overpressure event. To further explore this observation, we examined the effects of a single 37 kPa (5.4 psi) blast exposure on brain Aβ levels, production, and clearance mechanisms in the acute (24 h) and delayed (28 days) phases post-blast exposure in an experimental rat model. Aβ and, notably, the highly neurotoxic detergent soluble Aβ42 form, was reduced at 24 h but not 28 days after blast exposure. This reduction was not associated with changes in the levels of Aβ oligomers, expression levels of amyloid precursor protein (APP), or increase in enzymes involved in the amyloidogenic cleavage of APP, the β- and ϒ-secretases BACE1 and presenilin-1, respectively. The levels of ADAM17 α-secretase (also known as tumor necrosis factor α-converting enzyme) decreased, concomitant with the reduction in brain Aβ. Additionally, significant increases in brain levels of the endothelial transporter, low-density related protein 1 (LRP1), and enhancement in co-localization of aquaporin-4 (AQP4) to perivascular astrocytic end-feet were observed 24 h after blast exposure. These findings suggest that exposure to low-intensity blast may enhance endothelial clearance of Aβ by LRP1-mediated transcytosis and alter AQP4-aided glymphatic clearance. Collectively, the data demonstrate that low-intensity blast alters enzymatic, transvascular, and perivascular clearance of Aβ.
Collapse
Affiliation(s)
- Rania Abutarboush
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Eileen Reed
- Parsons Corporation, Centreville, Virginia, USA
| | - Ye Chen
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Ming Gu
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | - Usmah Kawoos
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jonathan K Statz
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Anna E Tschiffely
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Stephanie Ciarlone
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Georgina Perez-Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Miguel A Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rita de Gasperi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Gregory A Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| |
Collapse
|
19
|
AbdEl-Raouf K, Farrag HSH, Rashed R, Ismail MA, El-Ganzuri MA, El-Sayed WM. New bithiophene derivative attenuated Alzheimer's disease induced by aluminum in a rat model via antioxidant activity and restoration of neuronal and synaptic transmission. J Trace Elem Med Biol 2024; 82:127352. [PMID: 38070385 DOI: 10.1016/j.jtemb.2023.127352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND One of the hypotheses that leads to an increased incidence of Alzheimer's disease (AD) is the accumulation of aluminum in the brain's frontal cortex. The present study aimed to evaluate the therapeutic role of a novel bithiophene derivative at two doses against AlCl3-induced AD in a rat model. METHODOLOGY Adult male rats were divided into six groups, 18 rats each. Group 1: naïve animals, group 2: animals received a daily oral administration of bithiophene dissolved in DMSO (1 mg/kg) for 30 days every other day, groups 3-6: animals received a daily oral administration of AlCl3 (100 mg/kg/day) for 45 consecutive days. Groups 4 and 5 received an oral administration of low or high dose of the bithiophene (0.5 or 1 mg/kg, respectively). Group 6; Animals were treated with a daily oral dose of memantine (20 mg/kg) for 30 consecutive days. MAIN FINDINGS Al disturbed the antioxidant milieu, elevated the lipid peroxidation, and depleted the antioxidants. It also disturbed the synaptic neurotransmission by elevating the activities of acetylcholine esterase and monoamine oxidase resulting in the depletion of dopamine and serotonin and accumulation of glutamate and norepinephrine. Al also deteriorated the expression of genes involved in apoptosis and the production of amyloid-β plaques as well as phosphorylation of tau. The new bithiophene at the low dose reversed most of the previous deleterious effects of aluminum in the cerebral cortex and was in many instances superior to the reference drug; memantine. CONCLUSION Taking together, the bithiophene modulated the AD etiology through antioxidant activity, prevention of neuronal and synaptic loss, and probably mitigating the formation of amyloid-β plaques and phosphorylation of tau.
Collapse
Affiliation(s)
- Kholoud AbdEl-Raouf
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| | | | - Rashed Rashed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| | - Mohamed A Ismail
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Monir A El-Ganzuri
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt.
| |
Collapse
|
20
|
Martin SP, Leeman-Markowski BA. Proposed mechanisms of tau: relationships to traumatic brain injury, Alzheimer's disease, and epilepsy. Front Neurol 2024; 14:1287545. [PMID: 38249745 PMCID: PMC10797726 DOI: 10.3389/fneur.2023.1287545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic brain injury (TBI), Alzheimer's disease (AD), and epilepsy share proposed mechanisms of injury, including neuronal excitotoxicity, cascade signaling, and activation of protein biomarkers such as tau. Although tau is typically present intracellularly, in tauopathies, phosphorylated (p-) and hyper-phosphorylated (hp-) tau are released extracellularly, the latter leading to decreased neuronal stability and neurofibrillary tangles (NFTs). Tau cleavage at particular sites increases susceptibility to hyper-phosphorylation, NFT formation, and eventual cell death. The relationship between tau and inflammation, however, is unknown. In this review, we present evidence for an imbalanced endoplasmic reticulum (ER) stress response and inflammatory signaling pathways resulting in atypical p-tau, hp-tau and NFT formation. Further, we propose tau as a biomarker for neuronal injury severity in TBI, AD, and epilepsy. We present a hypothesis of tau phosphorylation as an initial acute neuroprotective response to seizures/TBI. However, if the underlying seizure pathology or TBI recurrence is not effectively treated, and the pathway becomes chronically activated, we propose a "tipping point" hypothesis that identifies a transition of tau phosphorylation from neuroprotective to injurious. We outline the role of amyloid beta (Aβ) as a "last ditch effort" to revert the cell to programmed death signaling, that, when fails, transitions the mechanism from injurious to neurodegenerative. Lastly, we discuss targets along these pathways for therapeutic intervention in AD, TBI, and epilepsy.
Collapse
Affiliation(s)
- Samantha P. Martin
- Comprehensive Epilepsy Center, New York University Langone Health, New York, NY, United States
- Department of Neurology, New York University Langone Health, New York, NY, United States
- New York University Grossman School of Medicine, New York, NY, United States
- VA New York Harbor Healthcare System, New York, NY, United States
| | - Beth A. Leeman-Markowski
- Comprehensive Epilepsy Center, New York University Langone Health, New York, NY, United States
- Department of Neurology, New York University Langone Health, New York, NY, United States
- VA New York Harbor Healthcare System, New York, NY, United States
| |
Collapse
|
21
|
Nam E, Lin Y, Park J, Do H, Han J, Jeong B, Park S, Lee DY, Kim M, Han J, Baik M, Lee Y, Lim MH. APP-C31: An Intracellular Promoter of Both Metal-Free and Metal-Bound Amyloid-β 40 Aggregation and Toxicity in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307182. [PMID: 37949680 PMCID: PMC10811509 DOI: 10.1002/advs.202307182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Intracellular C-terminal cleavage of the amyloid precursor protein (APP) is elevated in the brains of Alzheimer's disease (AD) patients and produces a peptide labeled APP-C31 that is suspected to be involved in the pathology of AD. But details about the role of APP-C31 in the development of the disease are not known. Here, this work reports that APP-C31 directly interacts with the N-terminal and self-recognition regions of amyloid-β40 (Aβ40 ) to form transient adducts, which facilitates the aggregation of both metal-free and metal-bound Aβ40 peptides and aggravates their toxicity. Specifically, APP-C31 increases the perinuclear and intranuclear generation of large Aβ40 deposits and, consequently, damages the nucleus leading to apoptosis. The Aβ40 -induced degeneration of neurites and inflammation are also intensified by APP-C31 in human neurons and murine brains. This study demonstrates a new function of APP-C31 as an intracellular promoter of Aβ40 amyloidogenesis in both metal-free and metal-present environments, and may offer an interesting alternative target for developing treatments for AD that have not been considered thus far.
Collapse
Affiliation(s)
- Eunju Nam
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence AnalysisKorea Basic Science Institute (KBSI)OchangChungbuk28119Republic of Korea
| | - Jiyong Park
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon34141Republic of Korea
| | - Hyunsu Do
- Graduate School of Medical Science and EngineeringKAISTDaejeon34141Republic of Korea
| | - Jiyeon Han
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Bohyeon Jeong
- Rare Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Subin Park
- Rare Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- Department of BiochemistryDepartment of Medical ScienceChungnam National University School of MedicineDaejeon35015Republic of Korea
| | - Da Yong Lee
- Rare Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Mingeun Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Jinju Han
- Graduate School of Medical Science and EngineeringKAISTDaejeon34141Republic of Korea
| | - Mu‐Hyun Baik
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon34141Republic of Korea
| | - Young‐Ho Lee
- Research Center for Bioconvergence AnalysisKorea Basic Science Institute (KBSI)OchangChungbuk28119Republic of Korea
- Bio‐Analytical ScienceUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeon34134Republic of Korea
- Department of Systems BiotechnologyChung‐Ang UniversityGyeonggi17546Republic of Korea
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversityMiyagi980‐8578Japan
| | - Mi Hee Lim
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
22
|
Mirzaei S, Eisvand F, Nejabat M, Ghodsi R, Hadizadeh F. Anticancer Potential of a Synthetic Quinoline, 9IV-c, by Inducing Apoptosis in A549 Cell and In vivo BALB/c Mice Models. Anticancer Agents Med Chem 2024; 24:185-192. [PMID: 38629154 DOI: 10.2174/0118715206267446231103075806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 04/19/2024]
Abstract
BACKGROUND In a previous work from the author of this study, the compound of 9IV-c, ((E)-2-(3,4- dimethoxystyryl)-6,7,8-trimethoxy-N-(3,4,5-trimethoxyphenyl)quinoline-4-amine) was synthesized, and the effects of potent activity on the multiple human tumor cell lines were evaluated considering the spindle formation together with the microtubule network. METHODS Accordingly, cytotoxic activity, apoptotic effects, and the therapeutic efficiency of compound 9IV-c on A549 and C26 cell lines were investigated in this study. RESULTS The compound 9IV-c demonstrated high cytotoxicity against A549 and C26 cell lines with IC50 = 1.66 and 1.21 μM, respectively. The flow cytometric analysis of the A549 cancer cell line treated with compound 9IVc showed that This compound induced cell cycle arrest at the G2/M phase and apoptosis. Western blotting analysis displayed that compound 9IV-c also elevated the Bax/Bcl-2 ratio and increased the activation of caspase-9 and -3 but not caspase-8. CONCLUSION These data presented that the intrinsic pathway was responsible for 9IV-c -induced cell apoptosis. In vivo studies demonstrated that treatment with the compound of 9IV-c at 10 mg/kg dose led to a decrease in tumor growth compared to the control group. It was found that there was not any apparent body weight loss in the period of treatment. Also, in the vital organs of the BALB/c mice, observable pathologic changes were not detected.
Collapse
Affiliation(s)
- Salimeh Mirzaei
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Kumar S, Mahajan A, Ambatwar R, Khatik GL. Recent Advancements in the Treatment of Alzheimer's Disease: A Multitarget-directed Ligand Approach. Curr Med Chem 2024; 31:6032-6062. [PMID: 37861025 DOI: 10.2174/0109298673264076230921065945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and one of the leading causes of progressive dementia, affecting 50 million people worldwide. Many pathogenic processes, including amyloid β aggregation, tau hyperphosphorylation, oxidative stress, neuronal death, and deterioration of the function of cholinergic neurons, are associated with its progression. The one-compound-one-target treatment paradigm was unsuccessful in treating AD due to the multifaceted nature of Alzheimer's disease. The recent development of multitarget-directed ligand research has been explored to target the complementary pathways associated with the disease. We aimed to find the key role and progress of MTDLs in treating AD; thus, we searched for the past ten years of literature on "Pub- Med", "ScienceDirect", "ACS" and "Bentham Science" using the keywords neurodegenerative diseases, Alzheimer's disease, and multitarget-directed ligands. The literature was further filtered based on the quality of work and relevance to AD. Thus, this review highlights the current advancement and advantages of multitarget-directed ligands over traditional single-targeted drugs and recent progress in their development to treat AD.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Amol Mahajan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Ramesh Ambatwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| |
Collapse
|
24
|
González LM, Bourissai A, Lessard-Beaudoin M, Lebel R, Tremblay L, Lepage M, Graham RK. Amelioration of Cognitive and Olfactory System Deficits in APOE4 Transgenic Mice with DHA Treatment. Mol Neurobiol 2023; 60:5624-5641. [PMID: 37329383 DOI: 10.1007/s12035-023-03401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Olfactory dysfunction and atrophy of olfactory brain regions are observed early in mild cognitive impairment and Alzheimer disease. Despite substantial evidence showing neuroprotective effects in MCI/AD with treatment of docosahexaenoic acid (DHA), an omega-3 fatty acid, few studies have assessed DHA and its effects on the olfactory system deficits. We therefore performed structural (MRI), functional (olfactory behavior, novel object recognition), and molecular (markers of apoptosis and inflammation) assessments of APOE4 and wild-type mice ± DHA treatment at 3, 6, and 12 months of age. Our results demonstrate that APOE4 mice treated with the control diet show recognition memory deficits, abnormal olfactory habituation, and discrimination abilities and an increase in IBA-1 immunoreactivity in the olfactory bulb. These phenotypes were not present in APOE4 mice treated with a DHA diet. Alterations in some brain regions' weights and/or volumes were observed in the APOPE4 mice and may be due to caspase activation and/or neuroinflammatory events. These results suggest that the consumption of a diet rich in DHA may provide some benefit to E4 carriers but may not alleviate all symptoms.
Collapse
Affiliation(s)
- Laura Martínez González
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada
| | - Adam Bourissai
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Mélissa Lessard-Beaudoin
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada
| | - Réjean Lebel
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Luc Tremblay
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Martin Lepage
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Rona K Graham
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada.
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada.
| |
Collapse
|
25
|
Hobbs KF, Propp J, Vance NR, Kalenkiewicz A, Witkin KR, Ashley Spies M. Allosteric Tuning of Caspase-7: Establishing the Nexus of Structure and Catalytic Power. Chemistry 2023; 29:e202300872. [PMID: 37005499 PMCID: PMC11596327 DOI: 10.1002/chem.202300872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Caspase-7 (C7), a cysteine protease involved in apoptosis, is a valuable drug target for its role in human diseases (e. g., Parkinson's, Alzheimer's, sepsis). The C7 allosteric site has great potential for small-molecule targeting, but numerous drug discovery efforts have identified precious few allosteric inhibitors. Here we present the first selective, drug-like inhibitor of C7 along with several other improved inhibitors based on our previous fragment hit. We also provide a rational basis for the impact of allosteric binding on the C7 catalytic cycle by using an integrated approach including X-ray crystallography, stopped-flow kinetics, and molecular dynamics simulations. Our findings suggest allosteric binding disrupts C7 pre-acylation by neutralization of the catalytic dyad, displacement of substrate from the oxyanion hole, and altered dynamics of substrate binding loops. This work advances drug targeting efforts and bolsters our understanding of allosteric structure-activity relationships (ASARs).
Collapse
Affiliation(s)
- Kathryn F Hobbs
- Biochemistry and Molecular Biology Department, University of Iowa, 51 Newton Road, 4-403 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Jonah Propp
- Pharmaceutics and Experimental Therapeutics Department, Medicinal and Natural Products Chemistry Division, University of Iowa, 180 South Grand Avenue, Iowa City, IA, 52242, USA
| | - Nicholas R Vance
- Pharmaceutics and Experimental Therapeutics Department, Medicinal and Natural Products Chemistry Division, University of Iowa, 180 South Grand Avenue, Iowa City, IA, 52242, USA
| | - Andrew Kalenkiewicz
- Biochemistry and Molecular Biology Department, University of Iowa, 51 Newton Road, 4-403 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Katie R Witkin
- Pharmaceutics and Experimental Therapeutics Department, Medicinal and Natural Products Chemistry Division, University of Iowa, 180 South Grand Avenue, Iowa City, IA, 52242, USA
| | - M Ashley Spies
- Biochemistry and Molecular Biology Department, University of Iowa, 51 Newton Road, 4-403 Bowen Science Building, Iowa City, IA, 52242, USA
- Pharmaceutics and Experimental Therapeutics Department, Medicinal and Natural Products Chemistry Division, University of Iowa, 180 South Grand Avenue, Iowa City, IA, 52242, USA
| |
Collapse
|
26
|
Xiong J, Zhang Z, Ye K. C/EBPβ/AEP Signaling Drives Alzheimer's Disease Pathogenesis. Neurosci Bull 2023; 39:1173-1185. [PMID: 36735152 PMCID: PMC10313643 DOI: 10.1007/s12264-023-01025-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Almost two-thirds of patients with AD are female. The reason for the higher susceptibility to AD onset in women is unclear. However, hormone changes during the menopausal transition are known to be associated with AD. Most recently, we reported that follicle-stimulating hormone (FSH) promotes AD pathology and enhances cognitive dysfunctions via activating the CCAAT-enhancer-binding protein (C/EBPβ)/asparagine endopeptidase (AEP) pathway. This review summarizes our current understanding of the crucial role of the C/EBPβ/AEP pathway in driving AD pathogenesis by cleaving multiple critical AD players, including APP and Tau, explaining the roles and the mechanisms of FSH in increasing the susceptibility to AD in postmenopausal females. The FSH-C/EBPβ/AEP pathway may serve as a novel therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, 518034, China.
| |
Collapse
|
27
|
Magalhães HIR, Machado FA, Souza RF, Caetano MAF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Study of the roles of caspase-3 and nuclear factor kappa B in myenteric neurons in a P2X7 receptor knockout mouse model of ulcerative colitis. World J Gastroenterol 2023; 29:3440-3468. [PMID: 37389242 PMCID: PMC10303518 DOI: 10.3748/wjg.v29.i22.3440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND The literature indicates that the enteric nervous system is affected in inflammatory bowel diseases (IBDs) and that the P2X7 receptor triggers neuronal death. However, the mechanism by which enteric neurons are lost in IBDs is unknown. AIM To study the role of the caspase-3 and nuclear factor kappa B (NF-κB) pathways in myenteric neurons in a P2X7 receptor knockout (KO) mouse model of IBDs. METHODS Forty male wild-type (WT) C57BL/6 and P2X7 receptor KO mice were euthanized 24 h or 4 d after colitis induction by 2,4,6-trinitrobenzene sulfonic acid (colitis group). Mice in the sham groups were injected with vehicle. The mice were divided into eight groups (n = 5): The WT sham 24 h and 4 d groups, the WT colitis 24 h and 4 d groups, the KO sham 24 h and 4 d groups, and the KO colitis 24 h and 4 d groups. The disease activity index (DAI) was analyzed, the distal colon was collected for immunohistochemistry analyses, and immunofluorescence was performed to identify neurons immunoreactive (ir) for calretinin, P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, and total NF-κB. We analyzed the number of calretinin-ir and P2X7 receptor-ir neurons per ganglion, the neuronal profile area (µm²), and corrected total cell fluorescence (CTCF). RESULTS Cells double labeled for calretinin and P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, or total NF-κB were observed in the WT colitis 24 h and 4 d groups. The number of calretinin-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (2.10 ± 0.13 vs 3.33 ± 0.17, P < 0.001; 2.92 ± 0.12 vs 3.70 ± 0.11, P < 0.05), but was not significantly different between the KO groups. The calretinin-ir neuronal profile area was increased in the WT colitis 24 h group compared to the WT sham 24 h group (312.60 ± 7.85 vs 278.41 ± 6.65, P < 0.05), and the nuclear profile area was decreased in the WT colitis 4 d group compared to the WT sham 4 d group (104.63 ± 2.49 vs 117.41 ± 1.14, P < 0.01). The number of P2X7 receptor-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (19.49 ± 0.35 vs 22.21 ± 0.18, P < 0.001; 20.35 ± 0.14 vs 22.75 ± 0.51, P < 0.001), and no P2X7 receptor-ir neurons were observed in the KO groups. Myenteric neurons showed ultrastructural changes in the WT colitis 24 h and 4 d groups and in the KO colitis 24 h group. The cleaved caspase-3 CTCF was increased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (485949 ± 14140 vs 371371 ± 16426, P < 0.001; 480381 ± 11336 vs 378365 ± 4053, P < 0.001), but was not significantly different between the KO groups. The total caspase-3 CTCF, phospho-NF-κB CTCF, and total NF-κB CTCF were not significantly different among the groups. The DAI was recovered in the KO groups. Furthermore, we demonstrated that the absence of the P2X7 receptor attenuated inflammatory infiltration, tissue damage, collagen deposition, and the decrease in the number of goblet cells in the distal colon. CONCLUSION Ulcerative colitis affects myenteric neurons in WT mice but has a weaker effect in P2X7 receptor KO mice, and neuronal death may be associated with P2X7 receptor-mediated caspase-3 activation. The P2X7 receptor can be a therapeutic target for IBDs.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Ribeiro Figliuolo
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Robson Coutinho-Silva
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | |
Collapse
|
28
|
Kim J, Lim J, Yoo ID, Park S, Moon JS. TXNIP contributes to induction of pro-inflammatory phenotype and caspase-3 activation in astrocytes during Alzheimer's diseases. Redox Biol 2023; 63:102735. [PMID: 37172394 DOI: 10.1016/j.redox.2023.102735] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Neuroinflammation and oxidative stress have been implicated in the pathogenesis of Alzheimer's disease (AD). Neuroinflammation and oxidative stress are associated with neuronal death in AD. Astrocytes are linked to neuroinflammation during AD. Astrocytes are important contributors to AD progression. Although the role of thioredoxin-interacting protein (TXNIP) has been identified in inflammation and oxidative stress, the mechanism by which TXNIP regulates inflammation and oxidative stress in astrocytes during AD remains unclear. In the present study, we found that TXNIP gene levels were elevated in cerebral cortex of patients with AD. The protein levels of TXNIP were elevated in GFAP-positive astrocytes of cerebral cortex from patients with AD and APP/PS1 double-transgenic mouse model of AD. Our results showed that TXNIP increased expression of genes related to pro-inflammatory reactive astrocytes and pro-inflammatory cytokines and chemokines in human astrocytes. Moreover, TXNIP increased production of pro-inflammatory cytokines and chemokines in human astrocytes. TXNIP induced activation of NK-kB signaling and over-production of mitochondrial reactive oxygen species (mtROS) in human astrocytes. TXNIP also induced mitochondrial oxidative stress by reduction of mitochondrial respiration and ATP production in human astrocytes. Furthermore, elevated TXNIP levels are correlated with caspase-3 activation of GFAP-positive astrocytes in patients with AD and mouse AD. TXNIP induced mitochondria-dependent apoptosis via caspase-9 and caspase-3 activation in human astrocytes. These results suggest that TXNIP contributes to induction of pro-inflammatory phenotype and caspase-3 activation in astrocytes during AD.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Jaejoon Lim
- Bundang CHA Medical Center, Department of Neurosurgery, CHA University, Yatap-dong 59, Seong-nam, 13496, South Korea
| | - Ik Dong Yoo
- Department of Nuclear Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, 31151, Chungcheongnam-do, South Korea.
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea.
| |
Collapse
|
29
|
Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, et alVitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, Karin M, Kashkar H, Kaufmann T, Kelly GL, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Kluck R, Krysko DV, Kulms D, Kumar S, Lavandero S, Lavrik IN, Lemasters JJ, Liccardi G, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Luedde T, MacFarlane M, Madeo F, Malorni W, Manic G, Mantovani R, Marchi S, Marine JC, Martin SJ, Martinou JC, Mastroberardino PG, Medema JP, Mehlen P, Meier P, Melino G, Melino S, Miao EA, Moll UM, Muñoz-Pinedo C, Murphy DJ, Niklison-Chirou MV, Novelli F, Núñez G, Oberst A, Ofengeim D, Opferman JT, Oren M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pentimalli F, Pereira DM, Pervaiz S, Peter ME, Pinton P, Porta G, Prehn JHM, Puthalakath H, Rabinovich GA, Rajalingam K, Ravichandran KS, Rehm M, Ricci JE, Rizzuto R, Robinson N, Rodrigues CMP, Rotblat B, Rothlin CV, Rubinsztein DC, Rudel T, Rufini A, Ryan KM, Sarosiek KA, Sawa A, Sayan E, Schroder K, Scorrano L, Sesti F, Shao F, Shi Y, Sica GS, Silke J, Simon HU, Sistigu A, Stephanou A, Stockwell BR, Strapazzon F, Strasser A, Sun L, Sun E, Sun Q, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Troy CM, Turk B, Urbano N, Vandenabeele P, Vanden Berghe T, Vander Heiden MG, Vanderluit JL, Verkhratsky A, Villunger A, von Karstedt S, Voss AK, Vousden KH, Vucic D, Vuri D, Wagner EF, Walczak H, Wallach D, Wang R, Wang Y, Weber A, Wood W, Yamazaki T, Yang HT, Zakeri Z, Zawacka-Pankau JE, Zhang L, Zhang H, Zhivotovsky B, Zhou W, Piacentini M, Kroemer G, Galluzzi L. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ 2023; 30:1097-1154. [PMID: 37100955 PMCID: PMC10130819 DOI: 10.1038/s41418-023-01153-w] [Show More Authors] [Citation(s) in RCA: 173] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.
Collapse
Affiliation(s)
- Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy.
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institut für Immunologie, Kiel University, Kiel, Germany
| | - Massimiliano Agostini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- BIOGEM, Avellino, Italy
| | - Ivano Amelio
- Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - David W Andrews
- Sunnybrook Research Institute, Toronto, ON, Canada
- Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rami I Aqeilan
- Hebrew University of Jerusalem, Lautenberg Center for Immunology & Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniele Bano
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nickolai A Barlev
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Mathieu J M Bertrand
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marco E Bianchi
- Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy and Ospedale San Raffaele IRCSS, Milan, Italy
| | | | - J Magarian Blander
- Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Carl D Bortner
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Pierluigi Bove
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patricia Boya
- Centro de Investigaciones Biologicas Margarita Salas, CSIC, Madrid, Spain
| | - Catherine Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, Villejuif, France
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- UCL Consortium for Mitochondrial Research, London, UK
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Francesco Cecconi
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francis K-M Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Guo-Qiang Chen
- State Key Lab of Oncogene and its related gene, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Youhai H Chen
- Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, Guangdong, China
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Aaron Ciechanover
- The Technion-Integrated Cancer Center, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Marcus Conrad
- Helmholtz Munich, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Mads Daugaard
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ted M Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruggero De Maria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bart De Strooper
- VIB Centre for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J Deberardinis
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Division of Hematology/Oncology, Brown University and the Lifespan Cancer Institute, Providence, RI, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kurt Engeland
- Molecular Oncology, University of Leipzig, Leipzig, Germany
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carlo Ganini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
| | - Ana J Garcia-Saez
- CECAD, Institute of Genetics, University of Cologne, Cologne, Germany
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM, UMR, 1231, Dijon, France
- Faculty of Medicine, Université de Bourgogne Franche-Comté, Dijon, France
- Anti-cancer Center Georges-François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler school of Medicine, Tel Aviv university, Tel Aviv, Israel
| | - Sourav Ghosh
- Department of Neurology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hinrich Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Departments of Molecular Microbiology and Immunology, Pharmacology, Oncology and Neurology, Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Ygal Haupt
- VITTAIL Ltd, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sudan He
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, The University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- National Cancer Center Research Institute, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ana Janic
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Philipp J Jost
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Michael Karin
- Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Hamid Kashkar
- CECAD Research Center, Institute for Molecular Immunology, University of Cologne, Cologne, Germany
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Ruth Kluck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dagmar Kulms
- Department of Dermatology, Experimental Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden, TU-Dresden, Dresden, Germany
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sergio Lavandero
- Universidad de Chile, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - John J Lemasters
- Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Richard A Lockshin
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
- St. John's University, Jamaica, NY, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Marion MacFarlane
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gwenola Manic
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Jean-Christophe Marine
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Rotterdam, the Netherlands
- IFOM-ETS The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer, and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Ute M Moll
- Department of Pathology and Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Daniel J Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Flavia Novelli
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Dimitry Ofengeim
- Rare and Neuroscience Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine and Howard Hughes Medical Institute, New York, NY, USA
| | - Theocharis Panaretakis
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, YLL School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
- National University Cancer Institute, NUHS, Singapore, Singapore
- ISEP, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Marcus E Peter
- Department of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Porta
- Center of Genomic Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina. Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Cell Clearance, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Barak Rotblat
- Department of Life sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- The NIBN, Beer Sheva, Israel
| | - Carla V Rothlin
- Department of Immunobiology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Thomas Rudel
- Microbiology Biocentre, University of Würzburg, Würzburg, Germany
| | - Alessandro Rufini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- University of Leicester, Leicester Cancer Research Centre, Leicester, UK
| | - Kevin M Ryan
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA
- Department of Systems Biology, Lab of Systems Pharmacology, Harvard Program in Therapeutics Science, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
| | - Akira Sawa
- Johns Hopkins Schizophrenia Center, Johns Hopkins University, Baltimore, MD, USA
| | - Emre Sayan
- Faculty of Medicine, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, NJ, USA
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China
| | - Yufang Shi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Giuseppe S Sica
- Department of Surgical Science, University Tor Vergata, Rome, Italy
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Flavie Strapazzon
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Univ Lyon, Univ Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène CNRS, INSERM, Lyon, France
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Liming Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - Stephen W G Tait
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Daolin Tang
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Carol M Troy
- Departments of Pathology & Cell Biology and Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicoletta Urbano
- Department of Oncohaematology, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Methusalem Program, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
- School of Forensic Medicine, China Medical University, Shenyang, China
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences (OeAW), Vienna, Austria
- The Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Daniela Vuri
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Henning Walczak
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Achim Weber
- University of Zurich and University Hospital Zurich, Department of Pathology and Molecular Pathology, Zurich, Switzerland
- University of Zurich, Institute of Molecular Cancer Research, Zurich, Switzerland
| | - Will Wood
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Huang-Tian Yang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Queens College and Graduate Center, City University of New York, Flushing, NY, USA
| | - Joanna E Zawacka-Pankau
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Biochemistry, Laboratory of Biophysics and p53 protein biology, Medical University of Warsaw, Warsaw, Poland
| | - Lin Zhang
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Wenzhao Zhou
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
30
|
HSV-1 cellular model reveals links between aggresome formation and early step of Alzheimer's disease. Transl Psychiatry 2023; 13:86. [PMID: 36898995 PMCID: PMC10006237 DOI: 10.1038/s41398-023-02376-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Many studies highlight the potential link between the chronic degenerative Alzheimer's disease and the infection by the herpes simplex virus type-1 (HSV-1). However, the molecular mechanisms making possible this HSV-1-dependent process remain to be understood. Using neuronal cells expressing the wild type form of amyloid precursor protein (APP) infected by HSV-1, we characterized a representative cellular model of the early stage of the sporadic form of the disease and unraveled a molecular mechanism sustaining this HSV-1- Alzheimer's disease interplay. Here, we show that HSV-1 induces caspase-dependent production of the 42 amino-acid long amyloid peptide (Aβ42) oligomers followed by their accumulation in neuronal cells. Aβ42 oligomers and activated caspase 3 (casp3A) concentrate into intracytoplasmic structures observed in Alzheimer's disease neuronal cells called aggresomes. This casp3A accumulation in aggresomes during HSV-1 infection limits the execution of apoptosis until its term, similarly to an abortosis-like event occurring in Alzheimer's disease neuronal cells patients. Indeed, this particular HSV-1 driven cellular context, representative of early stages of the disease, sustains a failed apoptosis mechanism that could explain the chronic amplification of Aβ42 production characteristic of Alzheimer's disease patients. Finally, we show that combination of flurbiprofen, a non-steroidal anti-inflammatory drug (NSAID), with caspase inhibitor reduced drastically HSV-1-induced Aβ42 oligomers production. This provided mechanistic insights supporting the conclusion of clinical trials showing that NSAIDs reduced Alzheimer's disease incidence in early stage of the disease. Therefore, from our study we propose that caspase-dependent production of Aβ42 oligomers together with the abortosis-like event represents a vicious circle in early Alzheimer's disease stages leading to a chronic amplification of Aβ42 oligomers that contributes to the establishment of degenerative disorder like Alzheimer's disease in patients infected by HSV-1. Interestingly this process could be targeted by an association of NSAID with caspase inhibitors.
Collapse
|
31
|
Bermejo-Bescós P, Jiménez-Aliaga KL, Benedí J, Martín-Aragón S. A Diet Containing Rutin Ameliorates Brain Intracellular Redox Homeostasis in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054863. [PMID: 36902309 PMCID: PMC10003355 DOI: 10.3390/ijms24054863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Quercetin has been studied extensively for its anti-Alzheimer's disease (AD) and anti-aging effects. Our previous studies have found that quercetin and in its glycoside form, rutin, can modulate the proteasome function in neuroblastoma cells. We aimed to explore the effects of quercetin and rutin on intracellular redox homeostasis of the brain (reduced glutathione/oxidized glutathione, GSH/GSSG), its correlation with β-site APP cleaving enzyme 1 (BACE1) activity, and amyloid precursor protein (APP) expression in transgenic TgAPP mice (bearing human Swedish mutation APP transgene, APPswe). On the basis that BACE1 protein and APP processing are regulated by the ubiquitin-proteasome pathway and that supplementation with GSH protects neurons from proteasome inhibition, we investigated whether a diet containing quercetin or rutin (30 mg/kg/day, 4 weeks) diminishes several early signs of AD. Genotyping analyses of animals were carried out by PCR. In order to determine intracellular redox homeostasis, spectrofluorometric methods were adopted to quantify GSH and GSSG levels using o-phthalaldehyde and the GSH/GSSG ratio was ascertained. Levels of TBARS were determined as a marker of lipid peroxidation. Enzyme activities of SOD, CAT, GR, and GPx were determined in the cortex and hippocampus. ΒACE1 activity was measured by a secretase-specific substrate conjugated to two reporter molecules (EDANS and DABCYL). Gene expression of the main antioxidant enzymes: APP, BACE1, a Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), caspase-3, caspase-6, and inflammatory cytokines were determined by RT-PCR. First, overexpression of APPswe in TgAPP mice decreased GSH/GSSG ratio, increased malonaldehyde (MDA) levels, and, overall, decreased the main antioxidant enzyme activities in comparison to wild-type (WT) mice. Treatment of TgAPP mice with quercetin or rutin increased GSH/GSSG, diminished MDA levels, and favored the enzyme antioxidant capacity, particularly with rutin. Secondly, both APP expression and BACE1 activity were diminished with quercetin or rutin in TgAPP mice. Regarding ADAM10, it tended to increase in TgAPP mice with rutin treatment. As for caspase-3 expression, TgAPP displayed an increase which was the opposite with rutin. Finally, the increase in expression of the inflammatory markers IL-1β and IFN-γ in TgAPP mice was lowered by both quercetin and rutin. Collectively, these findings suggest that, of the two flavonoids, rutin may be included in a day-to-day diet as a form of adjuvant therapy in AD.
Collapse
|
32
|
Arakawa M, Yoshida A, Okamura S, Ebina H, Morita E. A highly sensitive NanoLuc-based protease biosensor for detecting apoptosis and SARS-CoV-2 infection. Sci Rep 2023; 13:1753. [PMID: 36720982 PMCID: PMC9887574 DOI: 10.1038/s41598-023-28984-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/27/2023] [Indexed: 02/02/2023] Open
Abstract
Proteases play critical roles in various biological processes, including apoptosis and viral infection. Several protease biosensors have been developed; however, obtaining a reliable signal from a very low level of endogenous protease activity remains a challenge. In this study, we developed a highly sensitive protease biosensor, named FlipNanoLuc, based on the Oplophorus gracilirostris NanoLuc luciferase. The flipped β-strand was restored by protease activation and cleavage, resulting in the reconstitution of luciferase and enzymatic activity. By making several modifications, such as introducing NanoBiT technology and CL1-PEST1 degradation tag, the FlipNanoLuc-based protease biosensor system achieved more than 500-fold luminescence increase in the corresponding protease-overexpressing cells. We demonstrated that the FlipNanoLuc-based caspase sensor can be utilized for the detection of staurosporine-induced apoptosis with sixfold increase in luminescence. Furthermore, we also demonstrated that the FlipNanoLuc-based coronavirus 3CL-protease sensor can be used to detect human coronavirus OC43 with tenfold increase in luminescence and severe acute respiratory syndrome-coronavirus-2 infections with 20-fold increase in luminescence by introducing the stem-loop 1 sequence to prevent the virus inducing global translational shutdown.
Collapse
Affiliation(s)
- Masashi Arakawa
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-Cho, Hirosaki-Shi, Aomori, 036-8561, Japan.,Division of Biomolecular Function, Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Morioka, 020-0066, Japan
| | - Akiho Yoshida
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.,The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Shinya Okamura
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.,The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Hirotaka Ebina
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.,Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-Cho, Hirosaki-Shi, Aomori, 036-8561, Japan. .,Division of Biomolecular Function, Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Morioka, 020-0066, Japan.
| |
Collapse
|
33
|
Khezri MR, Ghasemnejad-Berenji M. The Role of Caspases in Alzheimer's Disease: Pathophysiology Implications and Pharmacologic Modulation. J Alzheimers Dis 2023; 91:71-90. [PMID: 36442198 DOI: 10.3233/jad-220873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Although the main cause of the onset and development of AD is not known yet, neuronal death due to pathologic changes such as amyloid-β (Aβ) deposition, tau aggregation, neuroinflammation, oxidative stress, and calcium dyshomeostasis are considered to be the main cause. At the present, there is no cure for this insidious disorder. However, accurate identification of molecular changes in AD can help provide new therapeutic goals. Caspases are a group of proteases which are known because of their role in cellular apoptosis. In addition, different caspases are involved in other cellular responses to the environment, such as induction of inflammation. Emerging evidence suggest that these proteases play a central role in AD pathophysiology due to their role in the processing of amyloid-β protein precursor, tau cleavage, and neuroinflammation. Therefore, it seems that targeting caspases may be a suitable therapeutic option to slow the progression of AD. This review focuses on the role of caspases in AD pathophysiology and introduce results from studies targeted caspases in different models of AD.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.,Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
34
|
Dhage PA, Sharbidre AA, Magdum SM. Interlacing the relevance of caspase activation in the onset and progression of Alzheimer's disease. Brain Res Bull 2023; 192:83-92. [PMID: 36372374 DOI: 10.1016/j.brainresbull.2022.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Caspases, a family of cysteine proteases is a renowned regulator of apoptosis. Members of this family are responsible for the proteolytic dismantling of numerous cellular structures. Apart from apoptosis, caspases remarkably contribute to a diverse range of molecular processes. Being the imperative members of several cellular cascades their abnormal activation/deactivation has severe implications and also leads to various diseased conditions. Similar aberrant activation of caspases is one of the several causes of neuropathologies associated with Alzheimer's disease (AD), a form of dementia severely affecting neuropsychiatric and cognitive functions. Emerging studies are providing deeper insights into the mechanisms of caspase action in the progression of AD. Current article is an attempt to review these studies and present the action mechanisms of different mammalian caspases in the advancement of AD associated neuropathologies.
Collapse
Affiliation(s)
- Prajakta A Dhage
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India.
| | - Archana A Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, MS, India.
| | - Sujata M Magdum
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India.
| |
Collapse
|
35
|
Greene AN, Solomon MB, Privette Vinnedge LM. Novel molecular mechanisms in Alzheimer's disease: The potential role of DEK in disease pathogenesis. Front Aging Neurosci 2022; 14:1018180. [PMID: 36275000 PMCID: PMC9582447 DOI: 10.3389/fnagi.2022.1018180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease and age-related dementias (AD/ADRD) are debilitating diseases that exact a significant physical, emotional, cognitive, and financial toll on the individual and their social network. While genetic risk factors for early-onset AD have been identified, the molecular and genetic drivers of late-onset AD, the most common subtype, remain a mystery. Current treatment options are limited for the 35 million people in the United States with AD/ADRD. Thus, it is critically important to identify novel molecular mechanisms of dementia-related pathology that may be targets for the development of new interventions. Here, we summarize the overarching concepts regarding AD/ADRD pathogenesis. Then, we highlight one potential molecular driver of AD/ADRD, the chromatin remodeling protein DEK. We discuss in vitro, in vivo, and ex vivo findings, from our group and others, that link DEK loss with the cellular, molecular, and behavioral signatures of AD/ADRD. These include associations between DEK loss and cellular and molecular hallmarks of AD/ADRD, including apoptosis, Tau expression, and Tau hyperphosphorylation. We also briefly discuss work that suggests sex-specific differences in the role of DEK in AD/ADRD pathogenesis. Finally, we discuss future directions for exploiting the DEK protein as a novel player and potential therapeutic target for the treatment of AD/ADRD.
Collapse
Affiliation(s)
- Allie N. Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matia B. Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Psychology, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
36
|
Gomes FDC, Santos IBF, Stephani CM, Ferrari MDFR, Galvis-Alonso OY, Goloni-Bertollo EM, Melo-Neto JSD, Pavarino ÉC. Vitamin D3 supplementation may attenuate morphological and molecular abnormalities of the olfactory bulb in a mouse model of Down syndrome. Tissue Cell 2022; 78:101898. [DOI: 10.1016/j.tice.2022.101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/28/2022]
|
37
|
Luo YP, Liu Z, Wang C, Yang XF, Wu XY, Tian XL, Wen HZ. Anodal transcranial direct current stimulation alleviates cognitive impairment in an APP/PS1 model of Alzheimer's disease in the preclinical stage. Neural Regen Res 2022; 17:2278-2285. [PMID: 35259850 PMCID: PMC9083165 DOI: 10.4103/1673-5374.337053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Anodal transcranial direct current stimulation (AtDCS) has been shown to alleviate cognitive impairment in an APP/PS1 model of Alzheimer's disease in the preclinical stage. However, this enhancement was only observed immediately after AtDCS, and the long-term effect of AtDCS remains unknown. In this study, we treated 26-week-old mouse models of Alzheimer's disease in the preclinical stage with 10 AtDCS sessions or sham stimulation. The Morris water maze, novel object recognition task, and novel object location test were implemented to evaluate spatial learning memory and recognition memory of mice. Western blotting was used to detect the relevant protein content. Morphological changes were observed using immunohistochemistry and immunofluorescence staining. Six weeks after treatment, the mice subjected to AtDCS sessions had a shorter escape latency, a shorter path length, more platform area crossings, and spent more time in the target quadrant than sham-stimulated mice. The mice subjected to AtDCS sessions also performed better in the novel object recognition and novel object location tests than sham-stimulated mice. Furthermore, AtDCS reduced the levels of amyloid-β42 and glial fibrillary acidic protein, a marker of astrocyte activation, and increased the level of neuronal marker NeuN in hippocampal tissue. These findings suggest that AtDCS can improve the spatial learning and memory abilities and pathological state of an APP/PS1 mouse model of Alzheimer's disease in the preclinical stage, with improvements that last for at least 6 weeks.
Collapse
Affiliation(s)
- Yin-Pei Luo
- Chongqing Key Laboratory of Neurobiology, Department of Neurobiology, School of Basic Medicine, Army Medical University; Chongqing Medical Electronics Engineering Technology Research Center, Laboratory of Neural Regulation and Rehabilitation Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zhi Liu
- Department of Histology and Embryology, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Cong Wang
- Chongqing Medical Electronics Engineering Technology Research Center, Laboratory of Neural Regulation and Rehabilitation Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiu-Fang Yang
- Chongqing Medical Electronics Engineering Technology Research Center, Laboratory of Neural Regulation and Rehabilitation Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiao-Ying Wu
- Chongqing Medical Electronics Engineering Technology Research Center, Laboratory of Neural Regulation and Rehabilitation Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xue-Long Tian
- Chongqing Medical Electronics Engineering Technology Research Center, Laboratory of Neural Regulation and Rehabilitation Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hui-Zhong Wen
- Chongqing Key Laboratory of Neurobiology, Department of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
38
|
Rajesh Y, Kanneganti TD. Innate Immune Cell Death in Neuroinflammation and Alzheimer's Disease. Cells 2022; 11:1885. [PMID: 35741014 PMCID: PMC9221514 DOI: 10.3390/cells11121885] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder molecularly characterized by the formation of amyloid β (Aβ) plaques and type 2 microtubule-associated protein (Tau) abnormalities. Multiple studies have shown that many of the brain's immunological cells, specifically microglia and astrocytes, are involved in AD pathogenesis. Cells of the innate immune system play an essential role in eliminating pathogens but also regulate brain homeostasis and AD. When activated, innate immune cells can cause programmed cell death through multiple pathways, including pyroptosis, apoptosis, necroptosis, and PANoptosis. The cell death often results in the release of proinflammatory cytokines that propagate the innate immune response and can eliminate Aβ plaques and aggregated Tau proteins. However, chronic neuroinflammation, which can result from cell death, has been linked to neurodegenerative diseases and can worsen AD. Therefore, the innate immune response must be tightly balanced to appropriately clear these AD-related structural abnormalities without inducing chronic neuroinflammation. In this review, we discuss neuroinflammation, innate immune responses, inflammatory cell death pathways, and cytokine secretion as they relate to AD. Therapeutic strategies targeting these innate immune cell death mechanisms will be critical to consider for future preventive or palliative treatments for AD.
Collapse
|
39
|
Therapeutic potential of Nlrp1 inflammasome, Caspase-1, or Caspase-6 against Alzheimer disease cognitive impairment. Cell Death Differ 2022; 29:657-669. [PMID: 34625662 PMCID: PMC8901623 DOI: 10.1038/s41418-021-00881-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
The sequential activation of Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing protein 1 (Nlrp1) inflammasome, Caspase-1 (Casp1), and Caspase-6 (Casp6) is implicated in primary human neuron cultures and Alzheimer Disease (AD) neurodegeneration. To validate the Nlrp1-Casp1-Casp6 pathway in vivo, the APPSwedish/Indiana J20 AD transgenic mouse model was generated on either a Nlrp1, Casp1 or Casp6 null genetic background and mice were studied at 4-5 months of age. Episodic memory deficits assessed with novel object recognition were normalized by genetic ablation of Nlrp1, Casp1, or Casp6 in J20 mice. Spatial learning deficits, assessed with the Barnes Maze, were normalized in genetically ablated J20, whereas memory recall was normalized in J20/Casp1-/- and J20/Casp6-/-, and improved in J20/Nlrp1-/- mice. Hippocampal CA1 dendritic spine density of the mushroom subtype was reduced in J20, and normalized in genetically ablated J20 mice. Reduced J20 hippocampal dentate gyrus and CA3 synaptophysin levels were normalized in genetically ablated J20. Increased Iba1+-microglia in the hippocampus and cortex of J20 brains were normalized by Casp1 and Casp6 ablation and reduced by Nlrp1 ablation. Increased pro-inflammatory cytokines, TNF-α and CXCL1, in the J20 hippocampus were normalized by Nlrp1 or Casp1 genetic ablation. CXCL1 was also normalized by Casp6 genetic ablation. IFN-γ was increased and total amyloid β peptide was decreased in genetically ablated Nlrp1, Casp1 or Casp6 J20 hippocampi. We conclude that Nlrp1, Casp1, or Casp6 are implicated in AD-related cognitive impairment, inflammation, and amyloidogenesis. These results indicate that Nlrp1, Casp1, and Casp6 represent rational therapeutic targets against cognitive impairment and inflammation in AD.
Collapse
|
40
|
Dehkordi MH, Munn RGK, Fearnhead HO. Non-Canonical Roles of Apoptotic Caspases in the Nervous System. Front Cell Dev Biol 2022; 10:840023. [PMID: 35281082 PMCID: PMC8904960 DOI: 10.3389/fcell.2022.840023] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Caspases are a family of cysteine proteases that predominantly cleave their substrates after aspartic acid residues. Much of what we know of caspases emerged from investigation a highly conserved form of programmed cell death called apoptosis. This form of cell death is regulated by several caspases, including caspase-2, caspase-3, caspase-7, caspase-8 and caspase-9. However, these “killer” apoptotic caspases have emerged as versatile enzymes that play key roles in a wide range of non-apoptotic processes. Much of what we understand about these non-apoptotic roles is built on work investigating how “killer” caspases control a range of neuronal cell behaviors. This review will attempt to provide an up to date synopsis of these roles.
Collapse
Affiliation(s)
- Mahshid H. Dehkordi
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
| | | | - Howard O. Fearnhead
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
- *Correspondence: Howard O. Fearnhead,
| |
Collapse
|
41
|
Chan HH, Leong CO, Lim CL, Koh RY. Roles of receptor-interacting protein kinase 1 in SH-SY5Y cells with beta amyloid-induced neurotoxicity. J Cell Mol Med 2022; 26:1434-1444. [PMID: 35106914 PMCID: PMC8899176 DOI: 10.1111/jcmm.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD), the major cause of dementia, affects the elderly population worldwide. Previous studies have shown that depletion of receptor‐interacting protein kinase 1 (RIPK1) expression reverted the AD phenotype in murine AD models. Necroptosis, executed by mixed lineage kinase domain‐like (MLKL) protein and activated by RIPK1 and RIPK3, has been shown to be involved in AD. However, the role of RIPK1 in beta‐amyloid (Aβ)‐induced necroptosis is not yet fully understood. In this study, we explored the role of RIPK1 in the SH‐SY5Y human neuroblastoma cells treated with Aβ 1–40 or Aβ 1–42. We showed that Aβ‐induced neuronal cell death was independent of apoptosis and autophagy pathways. Further analyses depicted that activation of RIPK1/MLKL‐dependant necroptosis pathway was observed in vitro. We demonstrated that inhibition of RIPK1 expression rescued the cells from Aβ‐induced neuronal cell death and ectopic expression of RIPK1 was found to enhance the stability of the endogenous APP. In summary, our findings demonstrated that Aβ can potentially drive necroptosis in an RIPK1‐MLKL‐dependent manner, proposing that RIPK1 plays an important role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Hong-Hao Chan
- School of Postgraduate Studies and Research, International Medical University, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Chooi-Ling Lim
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Rhun-Yian Koh
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Bahatyrevich-Kharitonik B, Medina-Guzman R, Flores-Cortes A, García-Cruzado M, Kavanagh E, Burguillos MA. Cell Death Related Proteins Beyond Apoptosis in the CNS. Front Cell Dev Biol 2022; 9:825747. [PMID: 35096845 PMCID: PMC8794922 DOI: 10.3389/fcell.2021.825747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cell death related (CDR) proteins are a diverse group of proteins whose original function was ascribed to apoptotic cell death signaling. Recently, descriptions of non-apoptotic functions for CDR proteins have increased. In this minireview, we comment on recent studies of CDR proteins outside the field of apoptosis in the CNS, encompassing areas such as the inflammasome and non-apoptotic cell death, cytoskeleton reorganization, synaptic plasticity, mitophagy, neurodegeneration and calcium signaling among others. Furthermore, we discuss the evolution of proteomic techniques used to predict caspase substrates that could potentially explain their non-apoptotic roles. Finally, we address new concepts in the field of non-apoptotic functions of CDR proteins that require further research such the effect of sexual dimorphism on non-apoptotic CDR protein function and the emergence of zymogen-specific caspase functions.
Collapse
Affiliation(s)
- Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Alicia Flores-Cortes
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Marta García-Cruzado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Edel Kavanagh
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Miguel Angel Burguillos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| |
Collapse
|
43
|
Lan Z, Chen Y, Jin J, Xu Y, Zhu X. Long Non-coding RNA: Insight Into Mechanisms of Alzheimer's Disease. Front Mol Neurosci 2022; 14:821002. [PMID: 35095418 PMCID: PMC8795976 DOI: 10.3389/fnmol.2021.821002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), a heterogeneous neurodegenerative disorder, is the most common cause of dementia accounting for an estimated 60–80% of cases. The pathogenesis of AD remains unclear, and no curative treatment is available so far. Increasing evidence has revealed a vital role of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), in AD. LncRNAs contribute to the pathogenesis of AD via modulating amyloid production, Tau hyperphosphorylation, mitochondrial dysfunction, oxidative stress, synaptic impairment and neuroinflammation. This review describes the biological functions and mechanisms of lncRNAs in AD, indicating that lncRNAs may provide potential therapeutic targets for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Zhen Lan
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yanting Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jiali Jin
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
- *Correspondence: Xiaolei Zhu
| |
Collapse
|
44
|
Welty S, Thathiah A, Levine AS. DNA Damage Increases Secreted Aβ40 and Aβ42 in Neuronal Progenitor Cells: Relevance to Alzheimer's Disease. J Alzheimers Dis 2022; 88:177-190. [PMID: 35570488 PMCID: PMC9277680 DOI: 10.3233/jad-220030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Recent studies suggest a strong association between neuronal DNA damage, elevated levels of amyloid-β (Aβ), and regions of the brain that degenerate in Alzheimer's disease (AD). OBJECTIVE To investigate the nature of this association, we tested the hypothesis that extensive DNA damage leads to an increase in Aβ40 and Aβ42 generation. METHODS We utilized an immortalized human neuronal progenitor cell line (NPCs), ReN VM GA2. NPCs or 20 day differentiated neurons were treated with hydrogen peroxide or etoposide and allowed to recover for designated times. Sandwich ELISA was used to assess secreted Aβ40 and Aβ42. Western blotting, immunostaining, and neutral comet assay were used to evaluate the DNA damage response and processes indicative of AD pathology. RESULTS We determined that global hydrogen peroxide damage results in increased cellular Aβ40 and Aβ42 secretion 24 h after treatment in ReN GA2 NPCs. Similarly, DNA double strand break (DSB)-specific etoposide damage leads to increased Aβ40 and Aβ42 secretion 2 h and 4 h after treatment in ReN GA2 NPCs. In contrast, etoposide damage does not increase Aβ40 and Aβ42 secretion in post-mitotic ReN GA2 neurons. CONCLUSION These findings provide evidence that in our model, DNA damage is associated with an increase in Aβ secretion in neuronal progenitors, which may contribute to the early stages of neuronal pathology in AD.
Collapse
Affiliation(s)
- Starr Welty
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amantha Thathiah
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arthur Samuel Levine
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| |
Collapse
|
45
|
Abdelsayed EM, Medhat D, Mandour YM, Hanafi RS, Motaal AA. Niazimicin: A thiocarbamate glycoside from Moringa oleifera Lam. seeds with a novel neuroprotective activity. J Food Biochem 2021; 45:e13992. [PMID: 34747026 DOI: 10.1111/jfbc.13992] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Moringa oleifera (MO) known as the miracle tree is a famous nutritional source in many countries. In this study, the neuroprotective activity of MO seeds was investigated. Fractions of the 70% ethanol seed extract of MO were injected at a dose of 250 mg kg-1 day-1 to albino rats for 15 days, after-which induction of dementia was done using 100 mg/kg AlCl3 over 30 days. Results revealed that all fractions ameliorated the effects of AlCl3 where methylene chloride and ethyl acetate fractions, containing the major bioactive compound niazimicin (NZ), showed the best activities. Biological investigations proved NZ to be a highly potent neuroprotective drug lead as a first report, by causing a decrease in the levels of malondialdehyde, cholinesterase, nitric oxide (NO) and amyloid β by 47%, 34%, 53% and 59%, respectively, and increasing glutathione levels by 54%. Molecular docking studies suggested NZ neuroprotective effects to be mediated by inhibition of caspase-3 and inducible nitric oxide synthase enzymes. PRACTICAL APPLICATIONS: The current findings present the neuroprotective effect of Moringa oleifera seeds consumed as a food supplement and in daily diet. In addition, niazimicin is a promising lead for the development of novel agents against Alzheimer's disease as seen by the reported results.
Collapse
Affiliation(s)
- Eman M Abdelsayed
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia Medhat
- Department of Medical Biochemistry, National Research Centre, Giza, Egypt
| | - Yasmine M Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rasha S Hanafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Amira Abdel Motaal
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
46
|
Abstract
The innate immune system plays key roles in controlling Alzheimer's disease (AD), while secreting cytokines to eliminate pathogens and regulating brain homeostasis. Recent research in the field of AD has shown that the innate immune-sensing ability of pattern recognition receptors on brain-resident macrophages, known as microglia, initiates neuroinflammation, Aβ accumulation, neuronal loss, and memory decline in patients with AD. Advancements in understanding the role of innate immunity in AD have laid a strong foundation to elucidate AD pathology and devise therapeutic strategies for AD in the future. In this review, we highlight the present understanding of innate immune responses, inflammasome activation, inflammatory cell death pathways, and cytokine secretion in AD. We also discuss how the AD pathology influences these biological processes.
Collapse
Affiliation(s)
- SangJoon Lee
- Department of Infection Biology, Faculty of Medicine, 38515University of Tsukuba, Tsukuba, Japan
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, 34966Konyang University, Daejeon, South Korea
| | - Jin-Hyeob Ryu
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon, Republic of Korea.,BIORCHESTRA Co. Ltd., 245 Main St, Cambridge, MA 02142, USA
| |
Collapse
|
47
|
Shoshan-Barmatz V, Anand U, Nahon-Crystal E, Di Carlo M, Shteinfer-Kuzmine A. Adverse Effects of Metformin From Diabetes to COVID-19, Cancer, Neurodegenerative Diseases, and Aging: Is VDAC1 a Common Target? Front Physiol 2021; 12:730048. [PMID: 34671273 PMCID: PMC8521008 DOI: 10.3389/fphys.2021.730048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Metformin has been used for treating diabetes mellitus since the late 1950s. In addition to its antihyperglycemic activity, it was shown to be a potential drug candidate for treating a range of other diseases that include various cancers, cardiovascular diseases, diabetic kidney disease, neurodegenerative diseases, renal diseases, obesity, inflammation, COVID-19 in diabetic patients, and aging. In this review, we focus on the important aspects of mitochondrial dysfunction in energy metabolism and cell death with their gatekeeper VDAC1 (voltage-dependent anion channel 1) as a possible metformin target, and summarize metformin's effects in several diseases and gut microbiota. We question how the same drug can act on diseases with opposite characteristics, such as increasing apoptotic cell death in cancer, while inhibiting it in neurodegenerative diseases. Interestingly, metformin's adverse effects in many diseases all show VDAC1 involvement, suggesting that it is a common factor in metformin-affecting diseases. The findings that metformin has an opposite effect on various diseases are consistent with the fact that VDAC1 controls cell life and death, supporting the idea that it is a target for metformin.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | | | - Marta Di Carlo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
48
|
Lessard-Beaudoin M, M Gonzalez L, AlOtaibi M, Chouinard-Watkins R, Plourde M, Calon F, Graham RK. Diet enriched in omega-3 fatty acids alleviates olfactory system deficits in APOE4 transgenic mice. Eur J Neurosci 2021; 54:7092-7108. [PMID: 34549475 DOI: 10.1111/ejn.15472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Olfactory dysfunction is observed in several neurological disorders including Mild Cognitive Impairment (MCI) and Alzheimer disease (AD). These deficits occur early and correlate with global cognitive performance, depression and degeneration of olfactory regions in the brain. Despite extensive human studies, there has been little characterization of the olfactory system in models of AD. In order to determine if olfactory structural and/or molecular phenotypes are observed in a model expressing a genetic risk factor for AD, we assessed the olfactory bulb (OB) in APOE4 transgenic mice. A significant decrease in OB weight was observed at 12 months of age in APOE4 mice concurrent with inflammation and decreased NeuN expression. In order to determine if a diet rich in omega-3s may alleviate the olfactory system phenotypes observed, we assessed WT and APOE4 mice on a docosahexaenoic acid (DHA) diet. APOE4 mice on a DHA diet did not present with atrophy of the OB, and the alterations in NeuN and IBA-1 expression were alleviated. Furthermore, alterations in caspase mRNA and protein expression in the APOE4 OB were not observed with a DHA diet. Similar to the human AD condition, OB atrophy is an early phenotype in the APOE4 mice and concurrent with inflammation. These data support a link between the structural olfactory brain region atrophy and the olfactory dysfunction observed in AD and suggest that inflammation and cell death pathways may contribute to the olfactory deficits observed. Furthermore, the results suggest that diets enriched in DHA may provide benefit to APOE4 allele carriers.
Collapse
Affiliation(s)
- Melissa Lessard-Beaudoin
- Research Center on Aging, CIUSSS de L'Estrie - CHUS, Sherbrooke, Quebec, Canada.,Department of Pharmacology and Physiology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Laura M Gonzalez
- Research Center on Aging, CIUSSS de L'Estrie - CHUS, Sherbrooke, Quebec, Canada.,Department of Pharmacology and Physiology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Majed AlOtaibi
- Research Center on Aging, CIUSSS de L'Estrie - CHUS, Sherbrooke, Quebec, Canada.,Department of Pharmacology and Physiology, University of Sherbrooke, Sherbrooke, Quebec, Canada.,Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Raphaël Chouinard-Watkins
- Research Center on Aging, CIUSSS de L'Estrie - CHUS, Sherbrooke, Quebec, Canada.,Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Melanie Plourde
- Research Center on Aging, CIUSSS de L'Estrie - CHUS, Sherbrooke, Quebec, Canada.,Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frederic Calon
- Faculty of Pharmacy, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Rona K Graham
- Research Center on Aging, CIUSSS de L'Estrie - CHUS, Sherbrooke, Quebec, Canada.,Department of Pharmacology and Physiology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
49
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
50
|
Grewal AK, Singh TG, Sharma D, Sharma V, Singh M, Rahman MH, Najda A, Walasek-Janusz M, Kamel M, Albadrani GM, Akhtar MF, Saleem A, Abdel-Daim MM. Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed Pharmacother 2021; 140:111729. [PMID: 34044274 DOI: 10.1016/j.biopha.2021.111729] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are the primary cause of disabilities in the elderly people. Growing evidence indicates that oxidative stress, mitochondrial dysfunction, neuroinflammation and apoptosis are associated with aging and the basis of most neurodegenerative disorders. Quercetin is a flavonoid with significant pharmacological effects and promising therapeutic potential. It is widely distributed among plants and typically found in daily diets mainly in fruits and vegetables. It shows a number of biological properties connected to its antioxidant activity. Neuroprotection by quercetin has been reported in many in vitro as well as in in vivo studies. However, the exact mechanism of action is still mystery and similarly there are a number of hypothesis exploring the mechanism of neuroprotection. Quercetin enhances neuronal longevity and neurogenesis by modulating and inhibiting wide number of pathways. This review assesses the food sources of quercetin, its pharmacokinetic profile, structure activity relationship and its pathophysiological role in various NDDs and it also provides a synopsis of the literature exploring the relationship between quercetin and various downstream signalling pathways modulated by quercetin for neuroprotection for eg. nuclear factor erythroid 2-related factor 2 (Nrf2), Paraoxonase-2 (PON2), c-Jun N-terminal kinase (JNK), Tumour Necrosis Factor alpha (TNF-α), Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α), Sirtuins, Mitogen-activated protein kinases (MAPKs) signalling cascades, CREB (Cyclic AMP response element binding protein) and Phosphoinositide 3- kinase(PI3K/Akt). Therefore, the aim of the present review was to elaborate on the cellular and molecular mechanisms of the quercetin involved in the protection against NDDs.
Collapse
Affiliation(s)
| | | | - Deepak Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland.
| | - Magdalena Walasek-Janusz
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland.
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt.
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan.
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|