1
|
Sullivan KG, Bashaw GJ. Commissureless acts as a substrate adapter in a conserved Nedd4 E3 ubiquitin ligase pathway to promote axon growth across the midline. eLife 2025; 13:RP92757. [PMID: 40407164 PMCID: PMC12101832 DOI: 10.7554/elife.92757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2025] Open
Abstract
In both vertebrates and invertebrates, commissural neurons prevent premature responsiveness to the midline repellant Slit by downregulating surface levels of its receptor Roundabout1 (Robo1). In Drosophila, Commissureless (Comm) plays a critical role in this process; however, there is conflicting data on the underlying molecular mechanism. Here, we demonstrate that the conserved PY motifs in the cytoplasmic domain of Comm are required allow the ubiquitination and lysosomal degradation of Robo1. Disruption of these motifs prevents Comm from localizing to Lamp1 positive late endosomes and to promote axon growth across the midline in vivo. In addition, we conclusively demonstrate a role for Nedd4 in midline crossing. Genetic analysis shows that nedd4 mutations result in midline crossing defects in the Drosophila embryonic nerve cord, which can be rescued by introduction of exogenous Nedd4. Biochemical evidence shows that Nedd4 incorporates into a three-member complex with Comm and Robo1 in a PY motif-dependent manner. Finally, we present genetic evidence that Nedd4 acts with Comm in the embryonic nerve cord to downregulate Robo1 levels. Taken together, these findings demonstrate that Comm promotes midline crossing in the nerve cord by facilitating Robo1 ubiquitination by Nedd4, ultimately leading to its degradation.
Collapse
Affiliation(s)
- Kelly G Sullivan
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
2
|
Roze E, Dubacq C, Welniarz Q. Corticospinal Tract Development, Evolution, and Skilled Movements. Mov Disord 2025. [PMID: 40277091 DOI: 10.1002/mds.30199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
The evolution of the corticospinal tract (CST) is closely linked to the development of skilled voluntary movements in mammals. The main evolutionary divergence concerns the position of the CST within the spinal cord white matter and its postsynaptic targets in the grey matter. Here, we examine the developmental steps contributing to the CST projection pattern from an evolutionary point of view. Recent studies have highlighted the molecular mechanisms involved in these processes and how they relate to the acquisition of skilled movements. Comparison of the evolution of the CST in different species offers a new perspective on manual dexterity. In particular, it adds a new level of complexity to the classic view linking the evolution of the CST and the sequential improvement of skilled hand movements from rodents to primates. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Emmanuel Roze
- Sorbonne Université, INSERM, CNRS, Paris Brain Institute Institut du Cerveau, Paris, France
- Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Caroline Dubacq
- Sorbonne Université, INSERM, CNRS, Paris Brain Institute Institut du Cerveau, Paris, France
| | - Quentin Welniarz
- Sorbonne Université, INSERM, CNRS, Paris Brain Institute Institut du Cerveau, Paris, France
- Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
3
|
Nickerson KR, Sammoura FM, Zhou Y, Jaworski A. Slit-Robo signaling supports motor neuron avoidance of the spinal cord midline through DCC antagonism and other mechanisms. Front Cell Dev Biol 2025; 13:1563403. [PMID: 40276653 PMCID: PMC12018395 DOI: 10.3389/fcell.2025.1563403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Axon pathfinding and neuronal migration are orchestrated by attractive and repulsive guidance cues. In the mouse spinal cord, repulsion from Slit proteins through Robo family receptors and attraction to Netrin-1, mediated by the receptor DCC, control many aspects of neural circuit formation. This includes motor neuron wiring, where Robos help prevent both motor neuron cell bodies and axons from aberrantly crossing the spinal cord midline. These functions had been ascribed to Robo signaling being required to counter DCC-mediated attraction to Netrin-1 at the midline, either by mediating repulsion from midline-derived Slits or by silencing DCC signaling. However, the role of DCC in promoting motor neuron and axon midline crossing had not been directly tested. Here, we used in vivo mouse genetics and in vitro axon turning assays to further explore the interplay between Slit and Netrin signaling in motor neuron migration and axon guidance relative to the midline. We find that DCC is a major driver of midline crossing by motor axons, but not motor neuron cell bodies, when Robo1 and Robo2 are knocked out. Further, in vitro results indicate that Netrin-1 attracts motor axons and that Slits can modulate the chemotropic response to Netrin-1, converting it from attraction to repulsion. Our findings indicate that Robo signaling allows both motor neuron cell bodies and axons to avoid the midline, but that only motor axons require this pathway to antagonize DCC-dependent midline attraction, which likely involves a combination of mediating Slit repulsion and directly influencing Netrin-DCC signaling output.
Collapse
Affiliation(s)
- Kelsey R. Nickerson
- Department of Neuroscience, Brown University, Providence, RI, United States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Ferass M. Sammoura
- Department of Neuroscience, Brown University, Providence, RI, United States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Yonghong Zhou
- Department of Neuroscience, Brown University, Providence, RI, United States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Alexander Jaworski
- Department of Neuroscience, Brown University, Providence, RI, United States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States
| |
Collapse
|
4
|
Kim D, Jin H, Kang DH, Kim B. Sex-specific neurons instruct sexually dimorphic neurite branching via Netrin signaling in Caenorhabditis elegans. Curr Biol 2025; 35:1591-1600.e5. [PMID: 40101717 DOI: 10.1016/j.cub.2025.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 01/10/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Animals often exhibit sexually dimorphic behavior in mating, learning, and decision-making. These sexual dimorphisms arise due to sex differences in the structure and function of neural circuits, but how sexually dimorphic neural circuits are established remains less understood. In the nematode C. elegans, both males and hermaphrodites possess a set of sex-shared neurons with sexually dimorphic features that contribute to the observed sex differences in neural connectivity. Here, we focused on the motor neuron preanal cell body dorsal axon B (PDB) to investigate the molecular mechanism underlying sexually dimorphic neurite branching. The PDB neuron exhibits extensive neurite branches near the cell body in males but not in hermaphrodites. By manipulating the sexual identity of PDB neurons, we discovered that neurite branching is influenced by both cell-autonomous and non-autonomous factors. We found that the UNC-6/Netrin signaling is crucial for the elaborate PDB neurite branching in males. Specifically, UNC-6/Netrin, expressed in a set of male-specific neurons, induces the formation of PDB neurite branches. The cognate receptor UNC-40/deleted in colorectal cancer (DCC), located in the PDB neurites, plays a role in mediating neurite branching in response to the UNC-6/Netrin cue. Furthermore, we show that males with aberrant PDB neurite branches exhibit defects in male mating behavior, particularly in coordinating movements required for successful mating. Our findings provide insights into the establishment of sexually dimorphic neural circuits, demonstrating how an evolutionarily conserved molecular cue and its receptor can be utilized in this process.
Collapse
Affiliation(s)
- Dongyoung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - HoYong Jin
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Da-Hyun Kang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Byunghyuk Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
| |
Collapse
|
5
|
Nabeel Mustafa A, Salih Mahdi M, Ballal S, Chahar M, Verma R, Ali Al-Nuaimi AM, Kumar MR, Kadhim A Al-Hussein R, Adil M, Jasem Jawad M. Netrin-1: Key insights in neural development and disorders. Tissue Cell 2025; 93:102678. [PMID: 39719818 DOI: 10.1016/j.tice.2024.102678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024]
Abstract
Netrin-1, an essential extracellular protein, has gained significant attention due to its pivotal role in guiding axon and cell migration during embryonic development. The fundamental significance of netrin-1 in developmental biology is reflected in its high conservation across different species as a part of the netrin family. The bifunctional nature of netrin-1 demonstrates its functional versatility, as it can function as either a repellent or an attractant according to the context and the expressed receptors on the target cells including the deleted in colorectal cancer (DCC), the uncoordinated-5 (UNC5), DSCAM, Neogenin-1, Adenosine A2b and Draxin receptors. By directing axonal growth cones toward the appropriate targets, netrin-1 is a critical actor in the formation of the intricate architecture of the nervous system. Netrin-1 is believed to be involved in additional biological and pathological processes in addition to its traditional function in neural development. The behavior of a diverse array of cell types is influenced by controlling cell adhesion and movement, which is impacted by netrin-1. It is a molecule of interest in both developmental biology and clinical research because of its involvement in angiogenesis, tumorigenesis, inflammation, and tissue regeneration, as confirmed by recent studies. The therapeutic capability of netrin-1 in disorders such as cancer, neurodegenerative disorders, and cardiovascular diseases warrants significant attention.
Collapse
Affiliation(s)
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bengaluru, Karnataka, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, Rajasthan, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | | | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | | | | | | |
Collapse
|
6
|
Ho Ching Chan B, Hardy H, Requena T, Findlay A, Ioannidis J, Meunier D, Toms M, Moosajee M, Raper A, McGrew MJ, Rainger J. A stable NTN1 fluorescent reporter chicken reveals cell specific molecular signatures during optic fissure closure. Sci Rep 2025; 15:10096. [PMID: 40128351 PMCID: PMC11933247 DOI: 10.1038/s41598-025-94589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
NTN1 is expressed in a wide range of developmental tissues and is essential for normal development. Here we describe the generation of a Netrin-1 reporter chicken line (NTN1-T2A-eGFP) by targeting green fluorescent protein into the NTN1 locus using CRISPR/Cas9 methodology. Our strategy gave 100% transmission of heterozygous (NTN1T2A - eGFP/+) embryos in which GFP localisation faithfully replicated endogenous NTN1 expression in the optic fissure and neural tube floorplate. Furthermore, all NTN1T2A - eGFP/+ embryos and hatched birds appeared phenotypically normal. We applied this resource to a pertinent developmental context - coloboma is a structural eye malformation characterised by failure of epithelial fusion during optic fissure closure (OFC) and NTN1 is specifically expressed in fusion pioneer cells at the edges of the optic fissure. We therefore optimised the isolation of GFP expressing cells from embryonic NTN1T2A - eGFP/+ eyes using spectral fluorescence cell-sorting and applied transcriptomic profiling of pioneer cells, which revealed multiple new OFC markers and novel pathways for developmental tissue fusion and coloboma. This work provides a novel fluorescent NTN1 chicken reporter line with broad experimental utility and is the first to directly molecularly characterise pioneer cells during OFC.
Collapse
Affiliation(s)
- Brian Ho Ching Chan
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
| | - Holly Hardy
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
| | - Teresa Requena
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
| | - Amy Findlay
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
| | - Jason Ioannidis
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
| | - Dominique Meunier
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
- National Avian Research Facility, The Roslin Institute, Greenwood Building, Midlothian, EH25 9RG, UK
| | - Maria Toms
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
- Francis Crick Institute, London, NW1 1AT, UK
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
- Francis Crick Institute, London, NW1 1AT, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Anna Raper
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
- Bioimaging and Flow Cytometry Facility, The Roslin Institute, Midlothian, EH25 9RG, UK
| | - Mike J McGrew
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
- National Avian Research Facility, The Roslin Institute, Greenwood Building, Midlothian, EH25 9RG, UK
| | - Joe Rainger
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK.
| |
Collapse
|
7
|
Ho CT, Evans EB, Lukasik K, O'Shaughnessy EC, Shah A, Hsu CH, Temple B, Bear JE, Gupton SL. Coro1A and TRIM67 collaborate in netrin-dependent neuronal morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644333. [PMID: 40166342 PMCID: PMC11957122 DOI: 10.1101/2025.03.20.644333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neuronal morphogenesis depends on extracellular guidance cues accurately instructing intracellular cytoskeletal remodeling. Here, we describe a novel role for the actin binding protein Coronin 1A (Coro1A) in neuronal morphogenesis, where it mediates responses to the axon guidance cue netrin-1. We found that Coro1A localizes to growth cones and filopodial structures and is required for netrindependent axon turning, branching, and corpus callosum development. We previously discovered that Coro1A interacts with TRIM67, a brain enriched E3 ubiquitin ligase that interacts with a netrin receptor and is also required for netrin-mediated neuronal morphogenesis. Loss of Coro1A and loss of TRIM67 shared similar phenotypes, suggesting that they may function together in the same netrin pathway. A Coro1A mutant deficient in binding TRIM67 was not able to rescue loss of Coro1A phenotypes, indicating that the interaction between Coro1A and TRIM67 is required for netrin responses. Together, our findings reveal that Coro1A is required for proper neuronal morphogenesis, where it collaborates with TRIM67 downstream of netrin.
Collapse
|
8
|
Toms M, Heppell C, Owen N, Malka S, Moosajee M, Genomics England Research Consortium. A Novel De Novo Missense Variant in Netrin-1 (NTN1) Associated With Chorioretinal Coloboma, Sensorineural Hearing Loss and Polydactyly. Clin Genet 2025; 107:292-299. [PMID: 39648562 PMCID: PMC11790524 DOI: 10.1111/cge.14651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Microphthalmia, anophthalmia and coloboma (MAC) comprise a highly heterogeneous spectrum of congenital ocular malformations with an estimated incidence of 1 in 5000 to 1 in 30 000 live births. Although there is likely to be a genetic component in the majority of cases, many remain without a molecular diagnosis. Netrin-1 was previously identified as a mediator of optic fissure closure from transcriptome analyses of chick and zebrafish and was shown to cause ocular coloboma when knocked out in both mouse and zebrafish. Here, we report the first patient with chorioretinal coloboma and microphthalmia harbouring a novel heterozygous likely pathogenic NTN1 missense variant, c.1483T>A p.(Tyr495Asn), validating a conserved gene function in ocular development. In addition, the patient displayed bilateral sensorineural hearing loss which was investigated by examining the sensory hair cells of ntn1a morphant zebrafish, suggesting a role for netrin-1 in hair cell development.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing and DiseaseUCL Institute of OphthalmologyLondonUK
- The Francis Crick InstituteLondonUK
| | - Cara Heppell
- Department of GeneticsMoorfields Eye Hospital NHS Foundation TrustLondonUK
| | - Nicholas Owen
- Development, Ageing and DiseaseUCL Institute of OphthalmologyLondonUK
| | - Samantha Malka
- Department of GeneticsMoorfields Eye Hospital NHS Foundation TrustLondonUK
| | - Mariya Moosajee
- Development, Ageing and DiseaseUCL Institute of OphthalmologyLondonUK
- The Francis Crick InstituteLondonUK
- Department of GeneticsMoorfields Eye Hospital NHS Foundation TrustLondonUK
| | | |
Collapse
|
9
|
Luan F, Cui Y, Huang R, Yang Z, Qiao S. Comprehensive pan-cancer analysis reveals NTN1 as an immune infiltrate risk factor and its potential prognostic value in SKCM. Sci Rep 2025; 15:3223. [PMID: 39863609 PMCID: PMC11762998 DOI: 10.1038/s41598-025-85444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression. For instance, inhibiting Netrin-1 has been shown to suppress tumor growth and epithelial-mesenchymal transition (EMT) characteristics in endometrial cancer. To further elucidate the influence of genes on tumors, we utilized a variety of machine learning techniques and found that NTN1 is strongly linked to multiple cancer types, suggesting it as a potential therapeutic target. This study aimed to elucidate the role of NTN1 in pan-cancer using multi-omics data and explore its potential as a prognostic biomarker in SKCM. Analysis of the TCGA, GTEx, and UALCAN databases revealed significant differences in NTN1 expression at both the mRNA and protein levels. Prognostic value was evaluated through univariate Cox regression and Kaplan-Meier methods. Mutation and methylation analyses were conducted using the cBioPortal and SMART databases. We identified genes interacting with and correlated to NTN1 through STRING and GEPIA2, respectively. Subsequently, we performed GO and KEGG enrichment analyses. The results suggested that NTN1 might be involved in crucial biological processes and pathways related to cancer development and progression, including cell adhesion, axon guidance, immune response, and various signaling pathways. We then explored the correlation between NTN1 and immune infiltration as well as immunotherapy using the ESTIMATE package, TIMER2.0, TISIDB, TIDE, TIMSO, and TCIA. The relationship between NTN1 and tumor heterogeneity, stemness, DNA methyltransferases, and MMR genes was also examined. Lastly, we constructed a nomogram based on NTN1 in SKCM and investigated its association with drug sensitivity. NTN1 expression was significantly associated with tumor immune infiltration, molecular subtypes, and clinicopathological features in various cancers. Genetic analysis revealed that Deep deletions were the most common type of NTN1 alteration. Additionally, a positive correlation was observed between NTN1 CNAs and its expression levels. In most cancers, NTN1 showed positive correlations with immune and stromal scores, as well as with specific immune cell populations. Its predictive value for immunotherapy response was comparable to that of tumor mutational burden. Furthermore, NTN1 exhibited positive correlations with tumor heterogeneity, stemness, DNA methyltransferase genes, and MMR genes. In SKCM, NTN1 was identified as an independent risk factor and demonstrated potential associations with multiple drugs. NTN1 exhibits substantial clinical utility as a prognostic marker and indicator of immune response across various tumor types. This comprehensive analysis provides insights into its potential implications in pan-cancer research.
Collapse
Affiliation(s)
- Fuxiang Luan
- The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yuying Cui
- The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Ruizhe Huang
- The First Clinical College of Changsha Medical University, Changsha, China
| | - Zhuojie Yang
- Academy of medical sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Shishi Qiao
- The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
10
|
Li MR, Zhou GR, Wang ZY, Li BY, Men SH, Yan ZG. TDCPP promotes apoptosis and inhibits the calcium signaling pathway in human neural stem cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 961:178429. [PMID: 39798459 DOI: 10.1016/j.scitotenv.2025.178429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) is an extensively used organophosphorus flame retardant (OFR). Previous studies have suggested that it has neurotoxic effects, but the neurotoxicity mechanism is still unclear. Neural stem cells are an important in vitro model for studying the neurotoxicity mechanism of pollutants. In this study, we investigated the neurotoxic effects and molecular mechanisms of TDCPP by using human induced pluripotent stem cells (hiPSCs)-derived neural stem cells. We found that TDCPP inhibited the viability of human neural stem cells (hNSCs), stimulated the generation of ROS, arrested the cell cycle in the S phase, and promoted apoptosis. A total of 387 differentially expressed genes were screened out by transcriptome sequencing analysis, and KEGG enrichment analysis showed that the "calcium signaling pathway" was the most significantly enriched. Further studies on the calcium signaling pathway showed that TDCPP disrupted intracellular calcium homeostasis and inhibited the activation of the Ca2+/CALM/CaN/CAMK signaling pathway and the expression levels of NFATC2 and GSK3β. In conclusion, TDCPP has significant toxicity on the calcium signaling pathway of human neural stem cells, which may affect the development process of the human nervous system.
Collapse
Affiliation(s)
- Ming-Rui Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guo-Rui Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zi-Ye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bo-Yang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shu-Hui Men
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhen-Guang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
11
|
Mutalik SP, Ho CT, O’Shaughnessy EC, Frasineanu AG, Shah AB, Gupton SL. TRIM9 Controls Growth Cone Responses to Netrin Through DCC and UNC5C. J Neurochem 2025; 169:e70002. [PMID: 39871643 PMCID: PMC11834693 DOI: 10.1111/jnc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits diverse axonal responses, beyond engaging the netrin receptor DCC and UNC5 family members, remains elusive. Here, we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: Attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1. We find that repulsive turning in a netrin gradient is blocked by knockdown of UNC5C, whereas attractive turning is impaired by knockdown of DCC. TRIM9 is a brain-enriched E3 ubiquitin ligase previously shown to bind and cluster the attractive receptor DCC at the plasma membrane and regulate netrin-dependent attractive responses. However, whether TRIM9 also regulated repulsive responses to netrin-1 remained to be seen. In this study, we show that TRIM9 localizes and interacts with both the attractive netrin receptor DCC and the repulsive netrin receptor, UNC5C. We find that deletion of murine Trim9 alters both attractive and repulsive axon turning and changes in growth cones size in response to murine netrin-1. TRIM9 was required for netrin-1-dependent changes in the surface levels of DCC and UNC5C in the growth cone during morphogenesis. We demonstrate that DCC at the membrane regulates the growth cone area and show that TRIM9 negatively regulates FAK activity in the absence of both repulsive and attractive concentrations of netrin-1. Together, our work demonstrates that TRIM9 interacts with and regulates both DCC and UNC5C during attractive and repulsive axonal responses to netrin-1.
Collapse
Affiliation(s)
- Sampada P. Mutalik
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Chris T. Ho
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ellen C. O’Shaughnessy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Anca G. Frasineanu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Aneri B. Shah
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Correspondence to: Stephanie L. Gupton ()
| |
Collapse
|
12
|
du Plessis AJ, Volpe JJ. Prosencephalic Development. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:38-65.e5. [DOI: 10.1016/b978-0-443-10513-5.00002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Mendes-da-Cruz DA, Lemos JP, Belorio EP, Savino W. Intrathymic Cell Migration: Implications in Thymocyte Development and T Lymphocyte Repertoire Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:139-175. [PMID: 40067586 DOI: 10.1007/978-3-031-77921-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
During the development of T cells in the thymus, differentiating thymocytes move through specific thymic compartments and interact with the cortical and medullary microenvironments of the thymic lobules. This migration is primarily controlled by adhesion molecules, such as extracellular matrix ligands and receptors, and soluble factors like chemokines that are important for thymocyte differentiation. The migration events driven by these molecules include the entry of lymphoid progenitors from the bone marrow, movement within the thymus, and the exit of mature thymocytes. Notably, the migration of developing T cells can also impact the positive and negative selection processes, which are crucial for preventing the development of self-reactive T cells. This chapter will focus on the key molecules involved in thymocyte migration and how their expression patterns may affect T cell development and the formation of T cell repertoires.
Collapse
Affiliation(s)
| | - Julia Pereira Lemos
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Elizabeth Pinto Belorio
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Hooper KM, Jain VD, Gormly CJ, Sanderson BJ, Lundquist EA. Short- and long-range roles of UNC-6/Netrin in dorsal-ventral axon guidance in vivo in Caenorhabditis elegans. PLoS Genet 2025; 21:e1011526. [PMID: 39823521 PMCID: PMC11760026 DOI: 10.1371/journal.pgen.1011526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/24/2025] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Abstract
Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth. In C. elegans, analysis of dorsally-migrating growth cones during outgrowth has shown that growth cone polarity of filopodial extension is separable from the extent of growth cone protrusion. Growth cones are first polarized by UNC-6/Netrin, and subsequent regulation of protrusion by UNC-6/Netrin is based on this earlier-established polarity (the Polarity/Protrusion model). In both cases, short-range or even haptotactic mechanisms are invoked: in vertebrate spinal cord, interactions of growth cones with radial glia expressing Netrin-1; and in C. elegans, a potential close-range interaction that polarizes the growth cone. To explore potential short-range and long-range functions of UNC-6/Netrin, a potentially membrane-anchored transmembrane UNC-6 (UNC-6(TM)) was generated by genome editing. unc-6(tm) was hypomorphic for dorsal VD/DD axon pathfinding, indicating that it retained some unc-6 function. Polarity of VD growth cone filopodial protrusion was initially established in unc-6(tm), but was lost as the growth cones migrated away from the unc-6(tm) source in the ventral nerve cord. In contrast, ventral guidance of the AVM and PVM axons was equally severe in unc-6(tm) and unc-6(null). Together, these results suggest that unc-6(tm) retains short-range functions but lacks long-range functions due to reduced secreted UNC-6. Ectopic unc-6(+) expression from non-ventral sources did not dramatically perturb dorsal VD growth cone polarity or axon outgrowth, suggesting that ectopic UNC-6 cannot redirect polarity once it is established in the VD/DD neurons. This is not what would be expected of a growth cone dynamically reading a gradient of UNC-6, but is consistent with the Polarity/protrusion model of growth cone guidance away from UNC-6/Netrin.
Collapse
Affiliation(s)
- Kelsey M. Hooper
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America
| | - Vedant D. Jain
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America
| | - Celeste J. Gormly
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America
| | - Brian J. Sanderson
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America
| | - Erik A. Lundquist
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
15
|
Ghosh P, Wadsworth BC, Terry L, Evans TA. Evolutionary conservation of midline axon guidance activity between Drosophila and Tribolium Frazzled. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629797. [PMID: 39763719 PMCID: PMC11702761 DOI: 10.1101/2024.12.20.629797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The regulation of midline crossing of axons is of fundamental importance for the proper development of nervous system connectivity in bilaterian animals. A number of conserved axon guidance signaling pathways coordinate to attract or repel axons at the nervous system midline to ensure the proper regulation of midline crossing. The attractive Netrin-Frazzled/DCC (Net-Fra) signaling pathway is widely conserved among bilaterians, but it is not clear whether the mechanisms by which Net and Fra promote midline crossing are also conserved. In Drosophila, Fra can promote midline crossing via Netrin-dependent and Netrin-independent mechanisms, by acting as a canonical midline attractive receptor and also through a non-canonical pathway to inhibit midline repulsion via transcriptional regulation. To examine the conservation of Fra-dependent axon guidance mechanisms among insects, in this paper we compare the midline attractive roles of the Frazzled receptor in the fruit fly (Drosophila melanogaster) and flour beetle (Tribolium castaneum) using CRISPR/Cas9-mediated gene editing. We replace the Drosophila fra gene with sequences encoding Drosophila Fra (DmFra) or Tribolium Fra (TcFra) and examine midline crossing of axons in the ventral nerve cord of embryos carrying these modified alleles. We show that Tribolium Fra can fully substitute for Drosophila Fra to promote midline crossing of axons in the embryonic nervous system, suggesting that the mechanisms by which Frazzled regulates midline axon guidance may be evolutionarily conserved within insects.
Collapse
Affiliation(s)
- Piyasi Ghosh
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701
| | | | - Logan Terry
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701
| | - Timothy A. Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701
| |
Collapse
|
16
|
Alvarez S, Gupta S, Mercado-Ayon Y, Honeychurch K, Rodriguez C, Kawaguchi R, Butler SJ. Netrin1 patterns the dorsal spinal cord through modulation of Bmp signaling. Cell Rep 2024; 43:114954. [PMID: 39547237 PMCID: PMC11756817 DOI: 10.1016/j.celrep.2024.114954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
We have identified an unexpected role for netrin1, a canonical axonal guidance cue, as a suppressor of bone morphogenetic protein (Bmp) signaling in the developing dorsal spinal cord. Using a combination of gain- and loss-of-function approaches in chicken and mouse embryonic models, as well as mouse embryonic stem cells (mESCs), we have observed that manipulating the level of netrin1 specifically alters the patterning of the Bmp-dependent dorsal interneurons (dIs), dI1-dI3. Altered netrin1 levels also change Bmp signaling activity, as assessed using bioinformatic approaches, as well as monitoring phosophoSmad1/5/8 activation, the canonical intermediate of Bmp signaling, and Id levels, a known Bmp target. Together, these studies support the hypothesis that netrin1 acts from the intermediate spinal cord to regionally confine Bmp signaling to the dorsal spinal cord. Thus, netrin1 has reiterative activities shaping dorsal spinal circuits, first by regulating cell fate decisions and then acting as a guidance cue to direct axon extension.
Collapse
Affiliation(s)
- Sandy Alvarez
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sandeep Gupta
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yesica Mercado-Ayon
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kaitlyn Honeychurch
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cristian Rodriguez
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; CIRM Bridges to Research Program, California State University, Northridge, CA 91330, USA
| | - Riki Kawaguchi
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samantha J Butler
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual & Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Sullivan KG, Bashaw GJ. Commissureless acts as a substrate adapter in a conserved Nedd4 E3 ubiquitin ligase pathway to promote axon growth across the midline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.13.562283. [PMID: 37905056 PMCID: PMC10614773 DOI: 10.1101/2023.10.13.562283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In both vertebrates and invertebrates, commissural neurons prevent premature responsiveness to the midline repellant Slit by downregulating surface levels of its receptor Roundabout1 (Robo1). In Drosophila, Commissureless (Comm) plays a critical role in this process; however, there is conflicting data on the underlying molecular mechanism. Here, we demonstrate that the conserved PY motifs in the cytoplasmic domain of Comm are required allow the ubiquitination and lysosomal degradation of Robo1. Disruption of these motifs prevents Comm from localizing to Lamp1 positive late endosomes and to promote axon growth across the midline in vivo. In addition, we conclusively demonstrate a role for Nedd4 in midline crossing. Genetic analysis shows that nedd4 mutations result in midline crossing defects in the Drosophila embryonic nerve cord, which can be rescued by introduction of exogenous Nedd4. Biochemical evidence shows that Nedd4 incorporates into a three-member complex with Comm and Robo1 in a PY motif-dependent manner. Finally, we present genetic evidence that Nedd4 acts with Comm in the embryonic nerve cord to downregulate Robo1 levels. Taken together, these findings demonstrate that Comm promotes midline crossing in the nerve cord by facilitating Robo1 ubiquitination by Nedd4, ultimately leading to its degradation.
Collapse
Affiliation(s)
- Kelly G. Sullivan
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA, 19104, USA
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
K HS, R G, Veeraraghavan VP, Ramani P. Netrin 1 as a biomarker in cancer: scoping diagnostic, prognostic, and therapeutic perspectives with a focus on oral squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101982. [PMID: 39067640 DOI: 10.1016/j.jormas.2024.101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Goal of the review: The utilization of biomarkers to predict cancer risk, prognosis, and treatment outcomes is paramount. Netrin-1 (NTN1), known for its role in commissural axon guidance during embryonic development, has emerged as a versatile molecule with significant implications in cancer and neurobiology. Structurally resembling laminin, Netrin-1 regulates neuronal connectivity and plasticity in adulthood, influencing axonal and dendritic growth, neurotransmission, and cell migration. In addition to its neurological functions, Netrin-1 is increasingly recognized for its involvement in maintaining epithelial tissue and its regulatory roles in fundamental cellular processes, including adhesion, proliferation, differentiation, apoptosis, and angiogenesis. In cancer biology, Netrin-1's interactions with its receptors, such as DCC [Deleted in Colorectal Cancer] and UNC5 (a homolog of DCC), have been implicated in tumor progression across various physiological systems. Elevated levels of Netrin-1 in colorectal cancer and head and neck squamous cell carcinoma are correlated with increased tumorigenic potential, mediated through pathways involving NFκB activation and anti-apoptotic mechanisms. Mechanically induced hypermethylation and downstream signaling cascades that inhibit apoptosis and promote cell survival are observed upon Netrin-1 binding to DCC. Furthermore, Netrin-1 shows promise as a biomarker for detecting inflammatory activity in diseases such as multiple sclerosis and as a potential diagnostic, prognostic, and therapeutic indicator in oral squamous cell carcinoma. Elevated levels of Netrin-1 in bodily fluids, alongside immunohistochemical evidence, support its potential as a valuable clinical marker in cancer management. This abstract emphasizes Netrin-1's diverse biological roles, underscoring its potential as a diagnostic tool and therapeutic target in cancer research. The need for further exploration of Netrin-1's molecular interactions and clinical applications is urgent and crucial to advance personalized medicine approaches and enhance patient outcomes in oncology and neurology.
Collapse
Affiliation(s)
- Hema Shree K
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute Medical and Technical Science, Saveetha University, Chennai, India
| | - Gayathri R
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute Medical and Technical Science, Saveetha University, Chennai, India.
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute Medical and Technical Science, Saveetha University, Chennai, India
| | - Pratibha Ramani
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute Medical and Technical Science, Saveetha University, Chennai, India
| |
Collapse
|
19
|
Chaudhari K, Zhang K, Yam PT, Zang Y, Kramer DA, Gagnon S, Schlienger S, Calabretta S, Michaud JF, Collins M, Wang J, Srour M, Chen B, Charron F, Bashaw GJ. A human DCC variant causing mirror movement disorder reveals that the WAVE regulatory complex mediates axon guidance by netrin-1-DCC. Sci Signal 2024; 17:eadk2345. [PMID: 39353037 PMCID: PMC11568466 DOI: 10.1126/scisignal.adk2345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/06/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
The axon guidance cue netrin-1 signals through its receptor DCC (deleted in colorectal cancer) to attract commissural axons to the midline. Variants in DCC are frequently associated with congenital mirror movements (CMMs). A CMM-associated variant in the cytoplasmic tail of DCC is located in a conserved motif predicted to bind to a regulator of actin dynamics called the WAVE (Wiskott-Aldrich syndrome protein-family verprolin homologous protein) regulatory complex (WRC). Here, we explored how this variant affects DCC function and may contribute to CMM. We found that a conserved WRC-interacting receptor sequence (WIRS) motif in the cytoplasmic tail of DCC mediated the interaction between DCC and the WRC. This interaction was required for netrin-1-mediated axon guidance in cultured rodent commissural neurons. Furthermore, the WIRS motif of Fra, the Drosophila DCC ortholog, was required for attractive signaling in vivo at the Drosophila midline. The CMM-associated R1343H variant of DCC, which altered the WIRS motif, prevented the DCC-WRC interaction and impaired axon guidance in cultured commissural neurons and in Drosophila. The findings reveal the WRC as a pivotal component of netrin-1-DCC signaling and uncover a molecular mechanism explaining how a human genetic variant in the cytoplasmic tail of DCC may lead to CMM.
Collapse
Affiliation(s)
- Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- These authors contributed equally
| | - Kaiyue Zhang
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B4, Canada
- These authors contributed equally
| | - Patricia T. Yam
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
| | - Yixin Zang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Sarah Gagnon
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sabrina Schlienger
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Sara Calabretta
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
| | - Jean-Francois Michaud
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
| | - Meagan Collins
- McGill University Health Center Research Institute, Montreal, QC, H4A 3J1, Canada
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Myriam Srour
- Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Quebec, Canada
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, H4A 3J1, Canada
- McGill University Health Center Research Institute, Montreal, QC, H4A 3J1, Canada
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Frédéric Charron
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
20
|
Curran BM, Nickerson KR, Yung AR, Goodrich LV, Jaworski A, Tessier-Lavigne M, Ma L. Multiple guidance mechanisms control axon growth to generate precise T-shaped bifurcation during dorsal funiculus development in the spinal cord. eLife 2024; 13:RP94109. [PMID: 39159057 PMCID: PMC11333043 DOI: 10.7554/elife.94109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
The dorsal funiculus in the spinal cord relays somatosensory information to the brain. It is made of T-shaped bifurcation of dorsal root ganglion (DRG) sensory axons. Our previous study has shown that Slit signaling is required for proper guidance during bifurcation, but loss of Slit does not affect all DRG axons. Here, we examined the role of the extracellular molecule Netrin-1 (Ntn1). Using wholemount staining with tissue clearing, we showed that mice lacking Ntn1 had axons escaping from the dorsal funiculus at the time of bifurcation. Genetic labeling confirmed that these misprojecting axons come from DRG neurons. Single axon analysis showed that loss of Ntn1 did not affect bifurcation but rather altered turning angles. To distinguish their guidance functions, we examined mice with triple deletion of Ntn1, Slit1, and Slit2 and found a completely disorganized dorsal funiculus. Comparing mice with different genotypes using immunolabeling and single axon tracing revealed additive guidance errors, demonstrating the independent roles of Ntn1 and Slit. Moreover, the same defects were observed in embryos lacking their cognate receptors. These in vivo studies thus demonstrate the presence of multi-factorial guidance mechanisms that ensure proper formation of a common branched axonal structure during spinal cord development.
Collapse
Affiliation(s)
- Bridget M Curran
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber, Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Kelsey R Nickerson
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain ScienceProvidenceUnited States
| | - Andrea R Yung
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Alexander Jaworski
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain ScienceProvidenceUnited States
| | | | - Le Ma
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber, Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaUnited States
| |
Collapse
|
21
|
Anitei M, Bruno F, Valkova C, Dau T, Cirri E, Mestres I, Calegari F, Kaether C. IER3IP1-mutations cause microcephaly by selective inhibition of ER-Golgi transport. Cell Mol Life Sci 2024; 81:334. [PMID: 39115595 PMCID: PMC11335259 DOI: 10.1007/s00018-024-05386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/22/2024]
Abstract
Mutations in the IER3IP1 (Immediate Early Response-3 Interacting Protein 1) gene can give rise to MEDS1 (Microcephaly with Simplified Gyral Pattern, Epilepsy, and Permanent Neonatal Diabetes Syndrome-1), a severe condition leading to early childhood mortality. The small endoplasmic reticulum (ER)-membrane protein IER3IP1 plays a non-essential role in ER-Golgi transport. Here, we employed secretome and cell-surface proteomics to demonstrate that the absence of IER3IP1 results in the mistrafficking of proteins crucial for neuronal development and survival, including FGFR3, UNC5B and SEMA4D. This phenomenon correlates with the distension of ER membranes and increased lysosomal activity. Notably, the trafficking of cargo receptor ERGIC53 and KDEL-receptor 2 are compromised, with the latter leading to the anomalous secretion of ER-localized chaperones. Our investigation extended to in-utero knock-down of Ier3ip1 in mouse embryo brains, revealing a morphological phenotype in newborn neurons. In summary, our findings provide insights into how the loss or mutation of a 10 kDa small ER-membrane protein can cause a fatal syndrome.
Collapse
Affiliation(s)
- Mihaela Anitei
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Francesca Bruno
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Christina Valkova
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Therese Dau
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Emilio Cirri
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Iván Mestres
- Center for Regenerative Therapies, TU-Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Federico Calegari
- Center for Regenerative Therapies, TU-Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Christoph Kaether
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany.
| |
Collapse
|
22
|
Zhang Y, Shen X, Deng S, Chen Q, Xu B. Neural Regulation of Vascular Development: Molecular Mechanisms and Interactions. Biomolecules 2024; 14:966. [PMID: 39199354 PMCID: PMC11353022 DOI: 10.3390/biom14080966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
As a critical part of the circulatory system, blood vessels transport oxygen and nutrients to every corner of the body, nourishing each cell, and also remove waste and toxins. Defects in vascular development and function are closely associated with many diseases, such as heart disease, stroke, and atherosclerosis. In the nervous system, the nervous and vascular systems are intricately connected in both development and function. First, peripheral blood vessels and nerves exhibit parallel distribution patterns. In the central nervous system (CNS), nerves and blood vessels form a complex interface known as the neurovascular unit. Second, the vascular system employs similar cellular and molecular mechanisms as the nervous system for its development. Third, the development and function of CNS vasculature are tightly regulated by CNS-specific signaling pathways and neural activity. Additionally, vascular endothelial cells within the CNS are tightly connected and interact with pericytes, astrocytes, neurons, and microglia to form the blood-brain barrier (BBB). The BBB strictly controls material exchanges between the blood and brain, maintaining the brain's microenvironmental homeostasis, which is crucial for the normal development and function of the CNS. Here, we comprehensively summarize research on neural regulation of vascular and BBB development and propose directions for future research.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xinyu Shen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Shunze Deng
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Qiurong Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
23
|
Liu J, Wang Y, Liu X, Han J, Tian Y. Spatiotemporal changes in Netrin/Dscam1 signaling dictate axonal projection direction in Drosophila small ventral lateral clock neurons. eLife 2024; 13:RP96041. [PMID: 39052321 PMCID: PMC11272162 DOI: 10.7554/elife.96041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Axon projection is a spatial- and temporal-specific process in which the growth cone receives environmental signals guiding axons to their final destination. However, the mechanisms underlying changes in axonal projection direction without well-defined landmarks remain elusive. Here, we present evidence showcasing the dynamic nature of axonal projections in Drosophila's small ventral lateral clock neurons (s-LNvs). Our findings reveal that these axons undergo an initial vertical projection in the early larval stage, followed by a subsequent transition to a horizontal projection in the early-to-mid third instar larvae. The vertical projection of s-LNv axons correlates with mushroom body calyx expansion, while the s-LNv-expressed Down syndrome cell adhesion molecule (Dscam1) interacts with Netrins to regulate the horizontal projection. During a specific temporal window, locally newborn dorsal clock neurons secrete Netrins, facilitating the transition of axonal projection direction in s-LNvs. Our study establishes a compelling in vivo model to probe the mechanisms of axonal projection direction switching in the absence of clear landmarks. These findings underscore the significance of dynamic local microenvironments in the complementary regulation of axonal projection direction transitions.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Yuedong Wang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Xian Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
- Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| |
Collapse
|
24
|
Onesto MM, Amin ND, Pan C, Chen X, Reis N, Valencia AM, Hudacova Z, McQueen JP, Tessier-Lavigne M, Paşca SP. Midline Assembloids Reveal Regulators of Human Axon Guidance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600229. [PMID: 38979350 PMCID: PMC11230451 DOI: 10.1101/2024.06.26.600229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Organizers are specialized cell populations that orchestrate cell patterning and axon guidance in the developing nervous system. Although non-human models have led to fundamental discoveries about the organization of the nervous system midline by the floor plate, an experimental model of human floor plate would enable broader insights into regulation of human neurodevelopment and midline connectivity. Here, we have developed stem cell-derived organoids resembling human floor plate (hFpO) and assembled them with spinal cord organoids (hSpO) to generate midline assembloids (hMA). We demonstrate that hFpO promote Sonic hedgehog-dependent ventral patterning of human spinal progenitors and Netrin-dependent guidance of human commissural axons, paralleling non-human models. To investigate evolutionary-divergent midline regulators, we profiled the hFpO secretome and identified 27 evolutionarily divergent genes between human and mouse. Utilizing the hMA platform, we targeted these candidates in an arrayed CRISPR knockout screen and reveal that GALNT2 , a gene involved in O-linked glycosylation, impairs floor plate-mediated guidance of commissural axons in humans. This novel platform extends prior axon guidance discoveries into human-specific neurobiology with implications for mechanisms of nervous system evolution and neurodevelopmental disorders.
Collapse
|
25
|
Pan D, Benkato KG, Han X, Zheng J, Kumar V, Wan M, Zheng J, Cao X. Senescence of endplate osteoclasts induces sensory innervation and spinal pain. eLife 2024; 12:RP92889. [PMID: 38896465 PMCID: PMC11186630 DOI: 10.7554/elife.92889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Spinal pain affects individuals of all ages and is the most common musculoskeletal problem globally. Its clinical management remains a challenge as the underlying mechanisms leading to it are still unclear. Here, we report that significantly increased numbers of senescent osteoclasts (SnOCs) are observed in mouse models of spinal hypersensitivity, like lumbar spine instability (LSI) or aging, compared to controls. The larger population of SnOCs is associated with induced sensory nerve innervation, as well as the growth of H-type vessels, in the porous endplate. We show that deletion of senescent cells by administration of the senolytic drug Navitoclax (ABT263) results in significantly less spinal hypersensitivity, spinal degeneration, porosity of the endplate, sensory nerve innervation, and H-type vessel growth in the endplate. We also show that there is significantly increased SnOC-mediated secretion of Netrin-1 and NGF, two well-established sensory nerve growth factors, compared to non-senescent OCs. These findings suggest that pharmacological elimination of SnOCs may be a potent therapy to treat spinal pain.
Collapse
Affiliation(s)
- Dayu Pan
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kheiria Gamal Benkato
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Xuequan Han
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jinjian Zheng
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Vijay Kumar
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Mei Wan
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Junying Zheng
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Xu Cao
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
26
|
Hampl M, Jandová N, Lusková D, Nováková M, Szotkowská T, Čada Š, Procházka J, Kohoutek J, Buchtová M. Early embryogenesis in CHDFIDD mouse model reveals facial clefts and altered cranial neurogenesis. Dis Model Mech 2024; 17:dmm050261. [PMID: 38511331 PMCID: PMC11212636 DOI: 10.1242/dmm.050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
CDK13-related disorder, also known as congenital heart defects, dysmorphic facial features and intellectual developmental disorder (CHDFIDD) is associated with mutations in the CDK13 gene encoding transcription-regulating cyclin-dependent kinase 13 (CDK13). Here, we focused on the development of craniofacial structures and analyzed early embryonic stages in CHDFIDD mouse models, with one model comprising a hypomorphic mutation in Cdk13 and exhibiting cleft lip/palate, and another model comprising knockout of Cdk13, featuring a stronger phenotype including midfacial cleft. Cdk13 was found to be physiologically expressed at high levels in the mouse embryonic craniofacial structures, namely in the forebrain, nasal epithelium and maxillary mesenchyme. We also uncovered that Cdk13 deficiency leads to development of hypoplastic branches of the trigeminal nerve including the maxillary branch. Additionally, we detected significant changes in the expression levels of genes involved in neurogenesis (Ache, Dcx, Mef2c, Neurog1, Ntn1, Pou4f1) within the developing palatal shelves. These results, together with changes in the expression pattern of other key face-specific genes (Fgf8, Foxd1, Msx1, Meis2 and Shh) at early stages in Cdk13 mutant embryos, demonstrate a key role of CDK13 in the regulation of craniofacial morphogenesis.
Collapse
Affiliation(s)
- Marek Hampl
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic
| | - Nela Jandová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic
| | - Denisa Lusková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Monika Nováková
- Department of Chemistry and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Tereza Szotkowská
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic
| | - Jan Procházka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jiri Kohoutek
- Department of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic
| |
Collapse
|
27
|
Hernandez-Morato I, Koss S, Honzel E, Pitman MJ. Netrin-1 as A neural guidance protein in development and reinnervation of the larynx. Ann Anat 2024; 254:152247. [PMID: 38458575 DOI: 10.1016/j.aanat.2024.152247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Neural guidance proteins participate in motor neuron migration, axonal projection, and muscle fiber innervation during development. One of the guidance proteins that participates in axonal pathfinding is Netrin-1. Despite the well-known role of Netrin-1 in embryogenesis of central nervous tissue, it is still unclear how the expression of this guidance protein contributes to primary innervation of the periphery, as well as reinnervation. This is especially true in the larynx where Netrin-1 is upregulated within the intrinsic laryngeal muscles after nerve injury and where blocking of Netrin-1 alters the pattern of reinnervation of the intrinsic laryngeal muscles. Despite this consistent finding, it is unknown how Netrin-1 expression contributes to guidance of the axons towards the larynx. Improved knowledge of Netrin-1's role in nerve regeneration and reinnervation post-injury in comparison to its role in primary innervation during embryological development, may provide insights in the search for therapeutics to treat nerve injury. This paper reviews the known functions of Netrin-1 during the formation of the central nervous system and during cranial nerve primary innervation. It also describes the role of Netrin-1 in the formation of the larynx and during recurrent laryngeal reinnervation following nerve injury in the adult.
Collapse
Affiliation(s)
- Ignacio Hernandez-Morato
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States; Department of Anatomy and Embryology, School of Medicine, Complutense University of Madrid, Madrid, Madrid, Spain.
| | - Shira Koss
- ENT Associates of Nassau County, Levittown, NY, United States
| | - Emily Honzel
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
28
|
Masuda A, Nishida K, Ajima R, Saga Y, Bakhtan M, Klar A, Hirata T, Zhu Y. A global gene regulatory program and its region-specific regulator partition neurons into commissural and ipsilateral projection types. SCIENCE ADVANCES 2024; 10:eadk2149. [PMID: 38781326 PMCID: PMC11114196 DOI: 10.1126/sciadv.adk2149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Understanding the genetic programs that drive neuronal diversification into classes and subclasses is key to understand nervous system development. All neurons can be classified into two types: commissural and ipsilateral, based on whether their axons cross the midline or not. However, the gene regulatory program underlying this binary division is poorly understood. We identified a pair of basic helix-loop-helix transcription factors, Nhlh1 and Nhlh2, as a global transcriptional mechanism that controls the laterality of all floor plate-crossing commissural axons in mice. Mechanistically, Nhlh1/2 play an essential role in the expression of Robo3, the key guidance molecule for commissural axon projections. This genetic program appears to be evolutionarily conserved in chick. We further discovered that Isl1, primarily expressed in ipsilateral neurons within neural tubes, negatively regulates the Robo3 induction by Nhlh1/2. Our findings elucidate a gene regulatory strategy where a conserved global mechanism intersects with neuron class-specific regulators to control the partitioning of neurons based on axon laterality.
Collapse
Affiliation(s)
- Aki Masuda
- National Institute of Genetics, Graduate University for Advanced Studies, Sokendai, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiko Nishida
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Rieko Ajima
- National Institute of Genetics, Graduate University for Advanced Studies, Sokendai, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yumiko Saga
- National Institute of Genetics, Graduate University for Advanced Studies, Sokendai, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Marah Bakhtan
- Department of Medical Neurobiology, IMRIC, Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Avihu Klar
- Department of Medical Neurobiology, IMRIC, Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Tatsumi Hirata
- National Institute of Genetics, Graduate University for Advanced Studies, Sokendai, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yan Zhu
- National Institute of Genetics, Graduate University for Advanced Studies, Sokendai, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
29
|
Hu L, Liu XY, Zhao L, Hu ZB, Li ZX, Liu WT, Song NN, Hu YQ, Jiang LP, Zhang L, Tao YC, Zhang Q, Chen JY, Lang B, Wang YB, Yue L, Ding YQ. Ventricular Netrin-1 deficiency leads to defective pyramidal decussation and mirror movement in mice. Cell Death Dis 2024; 15:343. [PMID: 38760361 PMCID: PMC11101614 DOI: 10.1038/s41419-024-06719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
The corticospinal tract (CST) is the principal neural pathway responsible for conducting voluntary movement in the vertebrate nervous system. Netrin-1 is a well-known guidance molecule for midline crossing of commissural axons during embryonic development. Families with inherited Netrin-1 mutations display congenital mirror movements (CMM), which are associated with malformations of pyramidal decussation in most cases. Here, we investigated the role of Netrin-1 in CST formation by generating conditional knockout (CKO) mice using a Gfap-driven Cre line. A large proportion of CST axons spread laterally in the ventral medulla oblongata, failed to decussate and descended in the ipsilateral spinal white matter of Ntn1Gfap CKO mice. Netrin-1 mRNA was expressed in the ventral ventricular zone (VZ) and midline, while Netrin-1 protein was transported by radial glial cells to the ventral medulla, through which CST axons pass. The level of transported Netrin-1 protein was significantly reduced in Ntn1Gfap CKO mice. In addition, Ntn1Gfap CKO mice displayed increased symmetric movements. Our findings indicate that VZ-derived Netrin-1 deletion leads to an abnormal trajectory of the CST in the spinal cord due to the failure of CST midline crossing and provides novel evidence supporting the idea that the Netrin-1 signalling pathway is involved in the pathogenesis of CMM.
Collapse
Affiliation(s)
- Ling Hu
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
| | - Xi-Yue Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Li Zhao
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Zhi-Bin Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Xuan Li
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Wei-Tang Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Yun-Qing Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Luo-Peng Jiang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yun-Chao Tao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qiong Zhang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Jia-Yin Chen
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410083, China
| | - Yu-Bing Wang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Lei Yue
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
30
|
Mutalik SP, O'Shaughnessy EC, Ho CT, Gupton SL. TRIM9 controls growth cone responses to netrin through DCC and UNC5C. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593135. [PMID: 38765979 PMCID: PMC11100671 DOI: 10.1101/2024.05.08.593135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits these diverse axonal responses, beyond engaging the attractive receptor DCC and repulsive receptors of the UNC5 family, remains elusive. Here we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1. TRIM9 is a brain-enriched E3 ubiquitin ligase previously shown to bind and cluster the attractive receptor DCC at the plasma membrane and regulate netrin-dependent attractive responses. However, whether TRIM9 also regulated repulsive responses to netrin-1 remained to be seen. In this study, we show that TRIM9 localizes and interacts with both the attractive netrin receptor DCC and the repulsive netrin receptor, UNC5C, and that deletion of murine Trim9 alters both attractive and repulsive responses to murine netrin-1. TRIM9 was required for netrin-1-dependent changes in surface levels of DCC and total levels of UNC5C in the growth cone during morphogenesis. We demonstrate that DCC at the membrane regulates growth cone area and show that TRIM9 negatively regulates FAK activity in the absence of netrin-1. We investigate membrane dynamics of the UNC5C receptor using pH-mScarlet fused to the extracellular domain of UNC5C. Minutes after netrin addition, levels of UNC5C at the plasma membrane drop in a TRIM9-independent fashion, however TRIM9 regulated the mobility of UNC5C in the plasma membrane in the absence of netrin-1. Together this work demonstrates that TRIM9 interacts with and regulates both DCC and UNC5C during attractive and repulsive axonal responses to netrin-1.
Collapse
|
31
|
Jeong M, Won J, Lim KS, Jeon CY, Choe Y, Jang JH, Ha CM, Yoon JH, Lee Y, Oh YS. Comparative Anatomy of the Dentate Mossy Cells in Nonhuman Primates: Their Spatial Distributions and Axonal Projections Compared With Mouse Mossy Cells. eNeuro 2024; 11:ENEURO.0151-24.2024. [PMID: 38688719 DOI: 10.1523/eneuro.0151-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Glutamatergic mossy cells (MCs) mediate associational and commissural connectivity, exhibiting significant heterogeneity along the septotemporal axis of the mouse dentate gyrus (DG). However, it remains unclear whether the neuronal features of MCs are conserved across mammals. This study compares the neuroanatomy of MCs in the DG of mice and monkeys. The MC marker, calretinin, distinguishes two subpopulations: septal and temporal. Dual-colored fluorescence labeling is utilized to compare the axonal projection patterns of these subpopulations. In both mice and monkeys, septal and temporal MCs project axons across the longitudinal axis of the ipsilateral DG, indicating conserved associational projections. However, unlike in mice, no MC subpopulations in monkeys make commissural projections to the contralateral DG. In monkeys, temporal MCs send associational fibers exclusively to the inner molecular layer, while septal MCs give rise to wide axonal projections spanning multiple molecular layers, akin to equivalent MC subpopulations in mice. Despite conserved septotemporal heterogeneity, interspecies differences are observed in the topological organization of septal MCs, particularly in the relative axonal density in each molecular layer along the septotemporal axis of the DG. In summary, this comparative analysis sheds light on both conserved and divergent features of MCs in the DG of mice and monkeys. These findings have implications for understanding functional differentiation along the septotemporal axis of the DG and contribute to our knowledge of the anatomical evolution of the DG circuit in mammals.
Collapse
Affiliation(s)
- Minseok Jeong
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Youngshik Choe
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| | - Jin-Hyeok Jang
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Chang Man Ha
- Research Division and Brain Research Core Facilities, Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| | - Yongjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yong-Seok Oh
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| |
Collapse
|
32
|
Hooper KM, Lundquist EA. Short- and long-range roles of UNC-6/Netrin in dorsal-ventral axon guidance in vivo in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590737. [PMID: 38712249 PMCID: PMC11071391 DOI: 10.1101/2024.04.23.590737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth. In C. elegans, analysis of dorsally-migrating growth cones during outgrowth has shown that growth cone polarity of filopodial extension is separable from the extent of growth cone protrusion. Growth cones are first polarized by UNC-6/Netrin, and subsequent regulation of protrusion by UNC-6/Netrin is based on this earlier-established polarity (the Polarity/Protrusion model). In both cases, short-range or even haptotactic mechanisms are invoked: in vertebrate spinal cord, interactions of growth cones with radial glia expressing Netrin-1; and in C. elegans, a potential close-range interaction that polarizes the growth cone. To explore potential short-range and long-range functions of UNC-6/Netrin, a potentially membrane-anchored transmembrane UNC-6 (UNC-6(TM)) was generated by genome editing. Unc-6(tm) was hypomorphic for dorsal VD/DD axon pathfinding, indicating that it retained some unc-6 function. Polarity of VD growth cone filopodial protrusion was initially established in unc-6(tm), but was lost as the growth cones migrated away from the unc-6(tm) source in the ventral nerve cord. In contrast, ventral guidance of the AVM and PVM axons was equally severe in unc-6(tm) and unc-6(null). Together, these results suggest that unc-6(tm) retains short-range functions but lacks long-range functions. Finally, ectopic unc-6(+) expression from non-ventral sources could rescue dorsal and ventral guidance defects in unc-6(tm) and unc-6(null). Thus, a ventral directional source of UNC-6 was not required for dorsal-ventral axon guidance, and UNC-6 can act as a permissive, not instructive, cue for dorsal-ventral axon guidance. Possibly, UNC-6 is a permissive signal that activates cell-intrinsic polarity; or UNC-6 acts with another signal that is required in a directional manner. In either case, the role of UNC-6 is to polarize the pro-protrusive activity of UNC-40/DCC in the direction of outgrowth.
Collapse
Affiliation(s)
- Kelsey M. Hooper
- University of Kansas, Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology
| | - Erik A. Lundquist
- University of Kansas, Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology
| |
Collapse
|
33
|
Curran BM, Nickerson KR, Yung AR, Goodrich LV, Jaworski A, Tessier-Lavigne M, Ma L. Multiple Guidance Mechanisms Control Axon Growth to Generate Precise T-shaped Bifurcation during Dorsal Funiculus Development in the Spinal Cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.17.567638. [PMID: 38014092 PMCID: PMC10680847 DOI: 10.1101/2023.11.17.567638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The dorsal funiculus in the spinal cord relays somatosensory information to the brain. It is made of T-shaped bifurcation of dorsal root ganglion (DRG) sensory axons. Our previous study has shown that Slit signaling is required for proper guidance during bifurcation, but loss of Slit does not affect all DRG axons. Here, we examined the role of the extracellular molecule Netrin-1 (Ntn1). Using wholemount staining with tissue clearing, we showed that mice lacking Ntn1 have axons escaping from the dorsal funiculus at the time of bifurcation. Genetic labeling confirmed that these misprojecting axons come from DRG neurons. Single axon analysis showed that loss of Ntn1 does not affect bifurcation but rather alters turning angles. To distinguish their guidance functions, we examined mice with triple deletion of Ntn1, Slit1, and Slit2 and found a completely disorganized dorsal funiculus. Comparing mice with different genotypes using immunolabeling and single axon tracing revealed additive guidance errors, demonstrating the independent roles of Ntn1 and Slit. Moreover, the same defects were observed in embryos lacking their cognate receptors. These in vivo studies thus demonstrate the presence of multi-factorial guidance mechanisms that ensure proper formation of a common branched axonal structure during spinal cord development.
Collapse
Affiliation(s)
- Bridget M Curran
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| | - Kelsey R Nickerson
- Department of Neuroscience, Brown University, Providence, RI 02912
- Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI 02912
| | - Andrea R Yung
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Alexander Jaworski
- Department of Neuroscience, Brown University, Providence, RI 02912
- Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI 02912
| | | | - Le Ma
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
34
|
Takahashi H, Hisata K, Iguchi R, Kikuchi S, Ogasawara M, Satoh N. scRNA-seq analysis of cells comprising the amphioxus notochord. Dev Biol 2024; 508:24-37. [PMID: 38224933 DOI: 10.1016/j.ydbio.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
Cephalochordates occupy a key phylogenetic position for deciphering the origin and evolution of chordates, since they diverged earlier than urochordates and vertebrates. The notochord is the most prominent feature of chordates. The amphioxus notochord features coin-shaped cells bearing myofibrils. Notochord-derived hedgehog signaling contributes to patterning of the dorsal nerve cord, as in vertebrates. However, properties of constituent notochord cells remain unknown at the single-cell level. We examined these properties using Iso-seq analysis, single-cell RNA-seq analysis, and in situ hybridization (ISH). Gene expression profiles broadly categorize notochordal cells into myofibrillar cells and non-myofibrillar cells. Myofibrillar cells occupy most of the central portion of the notochord, and some cells extend the notochordal horn to both sides of the ventral nerve cord. Some notochord myofibrillar genes are not expressed in myotomes, suggesting an occurrence of myofibrillar genes that are preferentially expressed in notochord. On the other hand, non-myofibrillar cells contain dorsal, lateral, and ventral Müller cells, and all three express both hedgehog and Brachyury. This was confirmed by ISH, although expression of hedgehog in ventral Müller cells was minimal. In addition, dorsal Müller cells express neural transmission-related genes, suggesting an interaction with nerve cord. Lateral Müller cells express hedgehog and other signaling-related genes, suggesting an interaction with myotomes positioned lateral to the notochord. Ventral Müller cells also expressed genes for FGF- and EGF-related signaling, which may be associated with development of endoderm, ventral to the notochord. Lateral Müller cells were intermediate between dorsal/ventral Müller cells. Since vertebrate notochord contributes to patterning and differentiation of ectoderm (nerve cord), mesoderm (somite), and endoderm, this investigation provides evidence that an ancestral or original form of vertebrate notochord is present in extant cephalochordates.
Collapse
Affiliation(s)
- Hiroki Takahashi
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan.
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Rin Iguchi
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 262-8522, Japan
| | - Sakura Kikuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 262-8522, Japan.
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| |
Collapse
|
35
|
Mitchell KJ. Variability in Neural Circuit Formation. Cold Spring Harb Perspect Biol 2024; 16:a041504. [PMID: 38253418 PMCID: PMC10910361 DOI: 10.1101/cshperspect.a041504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The study of neural development is usually concerned with the question of how nervous systems get put together. Variation in these processes is usually of interest as a means of revealing these normative mechanisms. However, variation itself can be an object of study and is of interest from multiple angles. First, the nature of variation in both the processes and the outcomes of neural development is relevant to our understanding of how these processes and outcomes are encoded in the genome. Second, variation in the wiring of the brain in humans may underlie variation in all kinds of psychological and behavioral traits, as well as neurodevelopmental disorders. And third, genetic variation that affects circuit development provides the raw material for evolutionary change. Here, I examine these different aspects of variation in circuit development and consider what they may tell us about these larger questions.
Collapse
Affiliation(s)
- Kevin J Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
36
|
Shalabi S, Belayachi A, Larrivée B. Involvement of neuronal factors in tumor angiogenesis and the shaping of the cancer microenvironment. Front Immunol 2024; 15:1284629. [PMID: 38375479 PMCID: PMC10875004 DOI: 10.3389/fimmu.2024.1284629] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Emerging evidence suggests that nerves within the tumor microenvironment play a crucial role in regulating angiogenesis. Neurotransmitters and neuropeptides released by nerves can interact with nearby blood vessels and tumor cells, influencing their behavior and modulating the angiogenic response. Moreover, nerve-derived signals may activate signaling pathways that enhance the production of pro-angiogenic factors within the tumor microenvironment, further supporting blood vessel growth around tumors. The intricate network of communication between neural constituents and the vascular system accentuates the potential of therapeutically targeting neural-mediated pathways as an innovative strategy to modulate tumor angiogenesis and, consequently, neoplastic proliferation. Hereby, we review studies that evaluate the precise molecular interplay and the potential clinical ramifications of manipulating neural elements for the purpose of anti-angiogenic therapeutics within the scope of cancer treatment.
Collapse
Affiliation(s)
- Sharif Shalabi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Ali Belayachi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Montréal, QC, Canada
- Ophthalmology, Université de Montréal, boul. Édouard-Montpetit, Montréal, QC, Canada
| |
Collapse
|
37
|
Wang M, Fan J, Shao Z. Cellular and Molecular Mechanisms Underlying Synaptic Subcellular Specificity. Brain Sci 2024; 14:155. [PMID: 38391729 PMCID: PMC10886843 DOI: 10.3390/brainsci14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Chemical synapses are essential for neuronal information storage and relay. The synaptic signal received or sent from spatially distinct subcellular compartments often generates different outcomes due to the distance or physical property difference. Therefore, the final output of postsynaptic neurons is determined not only by the type and intensity of synaptic inputs but also by the synaptic subcellular location. How synaptic subcellular specificity is determined has long been the focus of study in the neurodevelopment field. Genetic studies from invertebrates such as Caenorhabditis elegans (C. elegans) have uncovered important molecular and cellular mechanisms required for subcellular specificity. Interestingly, similar molecular mechanisms were found in the mammalian cerebellum, hippocampus, and cerebral cortex. This review summarizes the comprehensive advances in the cellular and molecular mechanisms underlying synaptic subcellular specificity, focusing on studies from C. elegans and rodents.
Collapse
Affiliation(s)
- Mengqing Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Jiale Fan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| |
Collapse
|
38
|
Gavrish M, Kustova A, Celis Suescún JC, Bessa P, Mitina N, Tarabykin V. Molecular mechanisms of corpus callosum development: a four-step journey. Front Neuroanat 2024; 17:1276325. [PMID: 38298831 PMCID: PMC10827913 DOI: 10.3389/fnana.2023.1276325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
The Corpus Callosum (CC) is a bundle of axons connecting the cerebral hemispheres. It is the most recent structure to have appeared during evolution of placental mammals. Its development is controlled by a very complex interplay of many molecules. In humans it contains almost 80% of all commissural axons in the brain. The formation of the CC can be divided into four main stages, each controlled by numerous intracellular and extracellular molecular factors. First, a newborn neuron has to specify an axon, leave proliferative compartments, the Ventricular Zone (VZ) and Subventricular Zone (SVZ), migrate through the Intermediate Zone (IZ), and then settle at the Cortical Plate (CP). During the second stage, callosal axons navigate toward the midline within a compact bundle. Next stage is the midline crossing into contralateral hemisphere. The last step is targeting a defined area and synapse formation. This review provides an insight into these four phases of callosal axons development, as well as a description of the main molecular players involved.
Collapse
Affiliation(s)
- Maria Gavrish
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Angelina Kustova
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Juan C. Celis Suescún
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Paraskevi Bessa
- Charité Hospital, Institute of Cell Biology and Neurobiology, Berlin, Germany
| | - Natalia Mitina
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victor Tarabykin
- Charité Hospital, Institute of Cell Biology and Neurobiology, Berlin, Germany
| |
Collapse
|
39
|
Boutin L, Roger E, Gayat E, Depret F, Blot-Chabaud M, Chadjichristos CE. The role of CD146 in renal disease: from experimental nephropathy to clinics. J Mol Med (Berl) 2024; 102:11-21. [PMID: 37993561 DOI: 10.1007/s00109-023-02392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
Vascular endothelial dysfunction is a major risk factor in the development of renal diseases. Recent studies pointed out a major interest for the inter-endothelial junction protein CD146, as its expression is modulated during renal injury. Indeed, some complex mechanisms involving this adhesion molecule and its multiple ligands are observed in a large number of renal diseases in fundamental or clinical research. The purpose of this review is to summarize the most recent literature on the role of CD146 in renal pathophysiology, from experimental nephropathy to clinical trials.
Collapse
Affiliation(s)
- Louis Boutin
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, University Paris Cité, 75010, Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, University Paris Cité, 75010, Paris, France
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
| | - Elena Roger
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
- Faculty of Medicine, Sorbonne University, 75013, Paris, France
| | - Etienne Gayat
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, University Paris Cité, 75010, Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, University Paris Cité, 75010, Paris, France
| | - François Depret
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, University Paris Cité, 75010, Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, University Paris Cité, 75010, Paris, France
| | | | - Christos E Chadjichristos
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France.
- Faculty of Medicine, Sorbonne University, 75013, Paris, France.
| |
Collapse
|
40
|
Mackiewicz J, Lisek M, Boczek T. Targeting CaN/NFAT in Alzheimer's brain degeneration. Front Immunol 2023; 14:1281882. [PMID: 38077352 PMCID: PMC10701682 DOI: 10.3389/fimmu.2023.1281882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca2+-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Collapse
Affiliation(s)
| | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
41
|
Alvarez S, Gupta S, Honeychurch K, Mercado-Ayon Y, Kawaguchi R, Butler SJ. Netrin1 patterns the dorsal spinal cord through modulation of Bmp signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565384. [PMID: 37961605 PMCID: PMC10635094 DOI: 10.1101/2023.11.02.565384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
We have identified an unexpected role for netrin1 as a suppressor of bone morphogenetic protein (Bmp) signaling in the developing dorsal spinal cord. Using a combination of gain- and loss-of-function approaches in chicken, embryonic stem cell (ESC), and mouse models, we have observed that manipulating the level of netrin1 specifically alters the patterning of the Bmp-dependent dorsal interneurons (dIs), dI1-dI3. Altered netrin1 levels also change Bmp signaling activity, as measured by bioinformatics, and monitoring phosophoSmad1/5/8 activation, the canonical intermediate of Bmp signaling, and Id levels, a known Bmp target. Together, these studies support the hypothesis that netrin1 acts from the intermediate spinal cord to regionally confine Bmp signaling to the dorsal spinal cord. Thus, netrin1 has reiterative activities shaping dorsal spinal circuits, first by regulating cell fate decisions and then acting as a guidance cue to direct axon extension.
Collapse
|
42
|
Rapti G. Regulation of axon pathfinding by astroglia across genetic model organisms. Front Cell Neurosci 2023; 17:1241957. [PMID: 37941606 PMCID: PMC10628440 DOI: 10.3389/fncel.2023.1241957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/07/2023] [Indexed: 11/10/2023] Open
Abstract
Glia and neurons are intimately associated throughout bilaterian nervous systems, and were early proposed to interact for patterning circuit assembly. The investigations of circuit formation progressed from early hypotheses of intermediate guideposts and a "glia blueprint", to recent genetic and cell manipulations, and visualizations in vivo. An array of molecular factors are implicated in axon pathfinding but their number appears small relatively to circuit complexity. Comprehending this circuit complexity requires to identify unknown factors and dissect molecular topographies. Glia contribute to both aspects and certain studies provide molecular and functional insights into these contributions. Here, I survey glial roles in guiding axon navigation in vivo, emphasizing analogies, differences and open questions across major genetic models. I highlight studies pioneering the topic, and dissect recent findings that further advance our current molecular understanding. Circuits of the vertebrate forebrain, visual system and neural tube in zebrafish, mouse and chick, the Drosophila ventral cord and the C. elegans brain-like neuropil emerge as major contexts to study glial cell functions in axon navigation. I present astroglial cell types in these models, and their molecular and cellular interactions that drive axon guidance. I underline shared principles across models, conceptual or technical complications, and open questions that await investigation. Glia of the radial-astrocyte lineage, emerge as regulators of axon pathfinding, often employing common molecular factors across models. Yet this survey also highlights different involvements of glia in embryonic navigation or pioneer axon pathfinding, and unknowns in the molecular underpinnings of glial cell functions. Future cellular and molecular investigations should complete the comprehensive view of glial roles in circuit assembly.
Collapse
Affiliation(s)
- Georgia Rapti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
43
|
Smith CS, Álvarez Z, Qiu R, Sasselli IR, Clemons T, Ortega JA, Vilela-Picos M, Wellman H, Kiskinis E, Stupp SI. Enhanced Neuron Growth and Electrical Activity by a Supramolecular Netrin-1 Mimetic Nanofiber. ACS NANO 2023; 17:19887-19902. [PMID: 37793046 DOI: 10.1021/acsnano.3c04572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Neurotrophic factors are essential not only for guiding the organization of the developing nervous system but also for supporting the survival and growth of neurons after traumatic injury. In the central nervous system (CNS), inhibitory factors and the formation of a glial scar after injury hinder the functional recovery of neurons, requiring exogenous therapies to promote regeneration. Netrin-1, a neurotrophic factor, can initiate axon guidance, outgrowth, and branching, as well as synaptogenesis, through activation of deleted in colorectal cancer (DCC) receptors. We report here the development of a nanofiber-shaped supramolecular mimetic of netrin-1 with monomers that incorporate a cyclic peptide sequence as the bioactive component. The mimetic structure was found to activate the DCC receptor in primary cortical neurons using low molar ratios of the bioactive comonomer. The supramolecular nanofibers enhanced neurite outgrowth and upregulated maturation as well as pre- and postsynaptic markers over time, resulting in differences in electrical activity similar to neurons treated with the recombinant netrin-1 protein. The results suggest the possibility of using the supramolecular structure as a therapeutic to promote regenerative bioactivity in CNS injuries.
Collapse
Affiliation(s)
- Cara S Smith
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Biomaterials for Neural Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - Ruomeng Qiu
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ivan R Sasselli
- Centro de Fisica de Materiales (CFM), CSIC-UPV/EHU, San Sebastián 20018, Spain
| | - Tristan Clemons
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - J Alberto Ortega
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Marcos Vilela-Picos
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Haley Wellman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Evangelos Kiskinis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
44
|
Ducarouge B, Redavid AR, Victoor C, Chira R, Fonseca A, Hervieu M, Bergé R, Lengrand J, Vieugué P, Neves D, Goddard I, Richaud M, Laval PA, Rama N, Goldschneider D, Paradisi A, Gourdin N, Chabaud S, Treilleux I, Gadot N, Ray-Coquard I, Depil S, Decaudin D, Némati F, Marangoni E, Mery-Lamarche E, Génestie C, Tabone-Eglinger S, Devouassoux-Shisheboran M, Moore KJ, Gibert B, Mehlen P, Bernet A. Netrin-1 blockade inhibits tumor associated Myeloid-derived suppressor cells, cancer stemness and alleviates resistance to chemotherapy and immune checkpoint inhibitor. Cell Death Differ 2023; 30:2201-2212. [PMID: 37633969 PMCID: PMC10589209 DOI: 10.1038/s41418-023-01209-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/28/2023] Open
Abstract
Drug resistance and cancer relapse represent significant therapeutic challenges after chemotherapy or immunotherapy, and a major limiting factor for long-term cancer survival. Netrin-1 was initially identified as a neuronal navigation cue but has more recently emerged as an interesting target for cancer therapy, which is currently clinically investigated. We show here that netrin-1 is an independent prognostic marker for clinical progression of breast and ovary cancers. Cancer stem cells (CSCs)/Tumor initiating cells (TICs) are hypothesized to be involved in clinical progression, tumor relapse and resistance. We found a significant correlation between netrin-1 expression and cancer stem cell (CSC) markers levels. We also show in different mice models of resistance to chemotherapies that netrin-1 interference using a therapeutic netrin-1 blocking antibody alleviates resistance to chemotherapy and triggers an efficient delay in tumor relapse and this effect is associated with CSCs loss. We also demonstrate that netrin-1 interference limits tumor resistance to immune checkpoint inhibitor and provide evidence linking this enhanced anti-tumor efficacy to a decreased recruitment of a subtype of myeloid-derived suppressor cells (MDSCs) called polymorphonuclear (PMN)-MDSCs. We have functionally demonstrated that these immune cells promote CSCs features and, consequently, resistance to anti-cancer treatments. Together, these data support the view of both a direct and indirect contribution of netrin-1 to cancer stemness and we propose that this may lead to therapeutic opportunities by combining conventional chemotherapies and immunotherapies with netrin-1 interfering drugs.
Collapse
Affiliation(s)
- Benjamin Ducarouge
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France
| | - Anna-Rita Redavid
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Camille Victoor
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France
| | - Ruxanda Chira
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France
| | | | - Maëva Hervieu
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Roméo Bergé
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France
| | - Justine Lengrand
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France
| | - Pauline Vieugué
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - David Neves
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France
| | - Isabelle Goddard
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Mathieu Richaud
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Pierre-Alexandre Laval
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Nicolas Rama
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | | | - Andrea Paradisi
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Nicolas Gourdin
- Targeting of the Tumor and its Immune Environnement, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | | | | | - Nicolas Gadot
- Pathology Department, Centre Léon Bérard, Lyon, France
| | | | | | - Didier Decaudin
- Laboratory of Preclinical Investigations, Translational Research Department, Institut Curie, Université Paris-Sciences-et-Lettres, 75005, Paris, France
| | - Fariba Némati
- Laboratory of Preclinical Investigations, Translational Research Department, Institut Curie, Université Paris-Sciences-et-Lettres, 75005, Paris, France
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigations, Translational Research Department, Institut Curie, Université Paris-Sciences-et-Lettres, 75005, Paris, France
| | | | | | | | | | - Kathryn J Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France.
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France.
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France.
| | - Agnes Bernet
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France.
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France.
| |
Collapse
|
45
|
Herrera A, Menendez A, Ochoa A, Bardia L, Colombelli J, Pons S. Neurogenesis redirects β-catenin from adherens junctions to the nucleus to promote axonal growth. Development 2023; 150:dev201651. [PMID: 37519286 PMCID: PMC10482005 DOI: 10.1242/dev.201651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Here, we show that, in the developing spinal cord, after the early Wnt-mediated Tcf transcription activation that confers dorsal identity to neural stem cells, neurogenesis redirects β-catenin from the adherens junctions to the nucleus to stimulate Tcf-dependent transcription in a Wnt-independent manner. This new β-catenin activity regulates genes implicated in several aspects of contralateral axon growth, including axon guidance and adhesion. Using live imaging of ex-vivo chick neural tube, we showed that the nuclear accumulation of β-catenin and the rise in Tcf-dependent transcription both initiate before the dismantling of the adherens junctions and remain during the axon elongation process. Notably, we demonstrated that β-catenin activity in post-mitotic cells depends on TCF7L2 and is central to spinal commissural axon growth. Together, our results reveal Wnt-independent Tcf/β-catenin regulation of genes that control the growth and guidance of commissural axons in chick spinal cord.
Collapse
Affiliation(s)
- Antonio Herrera
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Anghara Menendez
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Andrea Ochoa
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Lídia Bardia
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Julien Colombelli
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Sebastian Pons
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| |
Collapse
|
46
|
Temporal control of neuronal wiring. Semin Cell Dev Biol 2023; 142:81-90. [PMID: 35644877 DOI: 10.1016/j.semcdb.2022.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/22/2022]
Abstract
Wiring an animal brain is a complex process involving a staggering number of cell-types born at different times and locations in the developing brain. Incorporation of these cells into precise circuits with high fidelity is critical for animal survival and behavior. Assembly of neuronal circuits is heavily dependent upon proper timing of wiring programs, requiring neurons to express specific sets of genes (sometimes transiently) at the right time in development. While cell-type specificity of genetic programs regulating wiring has been studied in detail, mechanisms regulating proper timing and coordination of these programs across cell-types are only just beginning to emerge. In this review, we discuss some temporal regulators of wiring programs and how their activity is controlled over time and space. A common feature emerges from these temporal regulators - they are induced by cell-extrinsic cues and control transcription factors capable of regulating a highly cell-type specific set of target genes. Target specificity in these contexts comes from cell-type specific transcription factors. We propose that the spatiotemporal specificity of wiring programs is controlled by the combinatorial activity of temporal programs and cell-type specific transcription factors. Going forward, a better understanding of temporal regulators will be key to understanding the mechanisms underlying brain wiring, and will be critical for the development of in vitro models like brain organoids.
Collapse
|
47
|
Schlienger S, Yam PT, Balekoglu N, Ducuing H, Michaud JF, Makihara S, Kramer DK, Chen B, Fasano A, Berardelli A, Hamdan FF, Rouleau GA, Srour M, Charron F. Genetics of mirror movements identifies a multifunctional complex required for Netrin-1 guidance and lateralization of motor control. SCIENCE ADVANCES 2023; 9:eadd5501. [PMID: 37172092 PMCID: PMC10181192 DOI: 10.1126/sciadv.add5501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/06/2023] [Indexed: 05/14/2023]
Abstract
Mirror movements (MM) disorder is characterized by involuntary movements on one side of the body that mirror intentional movements on the opposite side. We performed genetic characterization of a family with autosomal dominant MM and identified ARHGEF7, a RhoGEF, as a candidate MM gene. We found that Arhgef7 and its partner Git1 bind directly to Dcc. Dcc is the receptor for Netrin-1, an axon guidance cue that attracts commissural axons to the midline, promoting the midline crossing of axon tracts. We show that Arhgef7 and Git1 are required for Netrin-1-mediated axon guidance and act as a multifunctional effector complex. Arhgef7/Git1 activates Rac1 and Cdc42 and inhibits Arf1 downstream of Netrin-1. Furthermore, Arhgef7/Git1, via Arf1, mediates the Netrin-1-induced increase in cell surface Dcc. Mice heterozygous for Arhgef7 have defects in commissural axon trajectories and increased symmetrical paw placements during skilled walking, a MM-like phenotype. Thus, we have delineated how ARHGEF7 mutation causes MM.
Collapse
Affiliation(s)
- Sabrina Schlienger
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Patricia T. Yam
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Nursen Balekoglu
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hugo Ducuing
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Jean-Francois Michaud
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Shirin Makihara
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Daniel K. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada
- Division of Neurology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli (IS), Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Fadi F. Hamdan
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC H3T1C5, Canada
| | - Guy A. Rouleau
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC H3T1C5, Canada
- Department of Human Genetics, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Myriam Srour
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC H4A 3J1, Canada
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Frederic Charron
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
48
|
Dailey-Krempel B, Martin AL, Jo HN, Junge HJ, Chen Z. A tug of war between DCC and ROBO1 signaling during commissural axon guidance. Cell Rep 2023; 42:112455. [PMID: 37149867 DOI: 10.1016/j.celrep.2023.112455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/07/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Dynamic and coordinated axonal responses to changing environments are critical for establishing neural connections. As commissural axons migrate across the CNS midline, they are suggested to switch from being attracted to being repelled in order to approach and to subsequently leave the midline. A molecular mechanism that is hypothesized to underlie this switch in axonal responses is the silencing of Netrin1/Deleted in Colorectal Carcinoma (DCC)-mediated attraction by the repulsive SLIT/ROBO1 signaling. Using in vivo approaches including CRISPR-Cas9-engineered mouse models of distinct Dcc splice isoforms, we show here that commissural axons maintain responsiveness to both Netrin and SLIT during midline crossing, although likely at quantitatively different levels. In addition, full-length DCC in collaboration with ROBO3 can antagonize ROBO1 repulsion in vivo. We propose that commissural axons integrate and balance the opposing DCC and Roundabout (ROBO) signaling to ensure proper guidance decisions during midline entry and exit.
Collapse
Affiliation(s)
| | - Andrew L Martin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ha-Neul Jo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Harald J Junge
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhe Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
49
|
Okada M, Takano T, Ikegawa Y, Ciesielski H, Nishida H, Yoo SK. Oncogenic stress-induced Netrin is a humoral signaling molecule that reprograms systemic metabolism in Drosophila. EMBO J 2023:e111383. [PMID: 37140455 DOI: 10.15252/embj.2022111383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/01/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Cancer exerts pleiotropic, systemic effects on organisms, leading to health deterioration and eventually to organismal death. How cancer induces systemic effects on remote organs and the organism itself still remains elusive. Here we describe a role for NetrinB (NetB), a protein with a particularly well-characterized role as a tissue-level axon guidance cue, in mediating oncogenic stress-induced organismal, metabolic reprogramming as a systemic humoral factor. In Drosophila, Ras-induced dysplastic cells upregulate and secrete NetB. Inhibition of either NetB from the transformed tissue or its receptor in the fat body suppresses oncogenic stress-induced organismal death. NetB from the dysplastic tissue remotely suppresses carnitine biosynthesis in the fat body, which is critical for acetyl-CoA generation and systemic metabolism. Supplementation of carnitine or acetyl-CoA ameliorates organismal health under oncogenic stress. This is the first identification, to our knowledge, of a role for the Netrin molecule, which has been studied extensively for its role within tissues, in humorally mediating systemic effects of local oncogenic stress on remote organs and organismal metabolism.
Collapse
Affiliation(s)
- Morihiro Okada
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
| | - Tomomi Takano
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
| | - Yuko Ikegawa
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hanna Ciesielski
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Division of Developmental Biology and Regenerative Medicine, Kobe University, Kobe, Japan
| | - Hiroshi Nishida
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Division of Cell Physiology, Kobe University, Kobe, Japan
| | - Sa Kan Yoo
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Division of Developmental Biology and Regenerative Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
50
|
Li Y, Xia Y, Jiang T, Chen Z, Shen Y, Lin J, Xie L, Gu C, Lv J, Lu C, Zhang D, Xu H, Yang L, Xu Z, Wang L. Long noncoding RNA DIAPH2-AS1 promotes neural invasion of gastric cancer via stabilizing NSUN2 to enhance the m5C modification of NTN1. Cell Death Dis 2023; 14:260. [PMID: 37037818 PMCID: PMC10086070 DOI: 10.1038/s41419-023-05781-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Neural invasion (NI) is a vital pathological characteristic of gastric cancer (GC), which correlates with tumor recurrence and a worse prognosis. Long noncoding RNAs (lncRNAs) play critical roles in various biological processes. However, the involvement of lncRNAs in NI of GC (GC-NI) remains unclear. DIAPH2-AS1 was upregulated in NI-positive GC tissues, which was confirmed by qRT-PCR. The higher expression of DIAPH2-AS1 predicted NI and worse survival for GC patients. Both in vitro and in vivo experiments, including wound-healing assay, Transwell assay, DRG-GC cells co-culture model, the mouse sciatic nerve model, and the lung metastasis model, indicated that DIAPH2-AS1 promoted the migration, invasion, and NI potential of GC cells. Mechanistically, pulldown assay and RNA immunoprecipitation assay revealed that DIAPH2-AS1 interacted with NSUN2. Subsequent experiments indicated that DIAPH2-AS1 stabilized NSUN2 from ubiquitin-proteasomal degradation via masking the K577 and K579 of NSUN2. The protection of DIAPH2-AS1 on NSUN2 improved the stability of NTN1 mRNA via m5C modification, which finally induced GC-NI. Our work uncovered DIAPH2-AS1 as a novel oncogenic lncRNA in GC-NI and validated the DIAPH2-AS1-NSUN2-NTN1 axis as a potential therapeutic target for NI-positive GC.
Collapse
Affiliation(s)
- Ying Li
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yiwen Xia
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Tianlu Jiang
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zetian Chen
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yikai Shen
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Jie Lin
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Li Xie
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Chao Gu
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, Jiangsu Province, China
| | - Jialun Lv
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Chen Lu
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Diancai Zhang
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Hao Xu
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Li Yang
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zekuan Xu
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| | - Linjun Wang
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|