1
|
Cho H, Lim J. The emerging role of gut hormones. Mol Cells 2024; 47:100126. [PMID: 39426686 PMCID: PMC11577206 DOI: 10.1016/j.mocell.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024] Open
Abstract
The gut is traditionally recognized as the central organ for the digestion and absorption of nutrients, however, it also functions as a significant endocrine organ, secreting a variety of hormones such as glucagon-like peptide 1, serotonin, somatostatin, and glucocorticoids. These gut hormones, produced by specialized intestinal epithelial cells, are crucial not only for digestive processes but also for the regulation of a wide range of physiological functions, including appetite, metabolism, and immune responses. While gut hormones can exert systemic effects, they also play a pivotal role in maintaining local homeostasis within the gut. This review discusses the role of the gut as an endocrine organ, emphasizing the stimuli, the newly discovered functions, and the clinical significance of gut-secreted hormones. Deciphering the emerging role of gut hormones will lead to a better understanding of gut homeostasis, innovative treatments for disorders in the gut, as well as systemic diseases.
Collapse
Affiliation(s)
- Hyeryeong Cho
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaechul Lim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Lafferty RA, Flatt PR, Irwin N. NPYR modulation: Potential for the next major advance in obesity and type 2 diabetes management? Peptides 2024; 179:171256. [PMID: 38825012 DOI: 10.1016/j.peptides.2024.171256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The approval of the glucagon-like peptide 1 (GLP-1) mimetics semaglutide and liraglutide for management of obesity, independent of type 2 diabetes (T2DM), has initiated a resurgence of interest in gut-hormone derived peptide therapies for the management of metabolic diseases, but side-effect profile is a concern for these medicines. However, the recent approval of tirzepatide for obesity and T2DM, a glucose-dependent insulinotropic polypeptide (GIP), GLP-1 receptor co-agonist peptide therapy, may provide a somewhat more tolerable option. Despite this, an increasing number of non-incretin alternative peptides are in development for obesity, and it stands to reason that other hormones will take to the limelight in the coming years, such as peptides from the neuropeptide Y family. This narrative review outlines the therapeutic promise of the neuropeptide Y family of peptides, comprising of the 36 amino acid polypeptides neuropeptide Y (NPY), peptide tyrosine-tyrosine (PYY) and pancreatic polypeptide (PP), as well as their derivatives. This family of peptides exerts a number of metabolically relevant effects such as appetite regulation and can influence pancreatic beta-cell survival. Although some of these actions still require full translation to the human setting, potential therapeutic application in obesity and type 2 diabetes is conceivable. However, like GLP-1 and GIP, the endogenous NPY, PYY and PP peptide forms are subject to rapid in vivo degradation and inactivation by the serine peptidase, dipeptidyl-peptidase 4 (DPP-4), and hence require structural modification to prolong circulating half-life. Numerous protective modification strategies are discussed in this regard herein, alongside related impact on biological activity profile and therapeutic promise.
Collapse
Affiliation(s)
- Ryan A Lafferty
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Peter R Flatt
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
3
|
Schüß C, Behr V, Beck-Sickinger AG. Illuminating the neuropeptide Y 4 receptor and its ligand pancreatic polypeptide from a structural, functional, and therapeutic perspective. Neuropeptides 2024; 105:102416. [PMID: 38430725 DOI: 10.1016/j.npep.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The neuropeptide Y4 receptor (Y4R), a rhodopsin-like G protein-coupled receptor (GPCR) and the hormone pancreatic polypeptide (PP) are members of the neuropeptide Y family consisting of four receptors (Y1R, Y2R, Y4R, Y5R) and three highly homologous peptide ligands (neuropeptide Y, peptide YY, PP). In this family, the Y4R is of particular interest as it is the only subtype with high affinity to PP over NPY. The Y4R, as a mediator of PP signaling, has a pivotal role in appetite regulation and energy homeostasis, offering potential avenues for the treatment of metabolic disorders such as obesity. PP as anorexigenic peptide is released postprandial from the pancreas in response to food intake, induces satiety signals and contributes to hamper excessive food intake. Moreover, this system was also described to be associated with different types of cancer: overexpression of Y4R have been found in human adenocarcinoma cells, while elevated levels of PP are related to the development of pancreatic endocrine tumors. The pharmacological relevance of the Y4R advanced the search for potent and selective ligands for this receptor subtype, which will be significantly progressed through the elucidation of the active state PP-Y4R cryo-EM structure. This review summarizes the development of novel PP-derived ligands, like Obinepitide as dual Y2R/Y4R agonist in clinical trials or UR-AK86c as small hexapeptide agonist with picomolar affinity, as well as the first allosteric modulators that selectively target the Y4R, e.g. VU0506013 as potent Y4R positive allosteric modulator or (S)-VU0637120 as allosteric antagonist. Here, we provide valuable insights into the complex physiological functions of the Y4R and PP and the pharmacological relevance of the system in appetite regulation to open up new avenues for the development of tool compounds for targeted therapies with potential applications in metabolic disorders.
Collapse
Affiliation(s)
- Corinna Schüß
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany.
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany
| | | |
Collapse
|
4
|
Gan HW, Cerbone M, Dattani MT. Appetite- and Weight-Regulating Neuroendocrine Circuitry in Hypothalamic Obesity. Endocr Rev 2024; 45:309-342. [PMID: 38019584 PMCID: PMC11074800 DOI: 10.1210/endrev/bnad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Since hypothalamic obesity (HyOb) was first described over 120 years ago by Joseph Babinski and Alfred Fröhlich, advances in molecular genetic laboratory techniques have allowed us to elucidate various components of the intricate neurocircuitry governing appetite and weight regulation connecting the hypothalamus, pituitary gland, brainstem, adipose tissue, pancreas, and gastrointestinal tract. On a background of an increasing prevalence of population-level common obesity, the number of survivors of congenital (eg, septo-optic dysplasia, Prader-Willi syndrome) and acquired (eg, central nervous system tumors) hypothalamic disorders is increasing, thanks to earlier diagnosis and management as well as better oncological therapies. Although to date the discovery of several appetite-regulating peptides has led to the development of a range of targeted molecular therapies for monogenic obesity syndromes, outside of these disorders these discoveries have not translated into the development of efficacious treatments for other forms of HyOb. This review aims to summarize our current understanding of the neuroendocrine physiology of appetite and weight regulation, and explore our current understanding of the pathophysiology of HyOb.
Collapse
Affiliation(s)
- Hoong-Wei Gan
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Manuela Cerbone
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Mehul Tulsidas Dattani
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
5
|
Liu H, Wang G, Zhang J, Lu B, Li D, Chen J. Inhalation of diesel exhaust particulate matter accelerates weight gain via regulation of hypothalamic appetite-related genes and gut microbiota metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133570. [PMID: 38309172 DOI: 10.1016/j.jhazmat.2024.133570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Mice exposed to diesel exhaust particulate matter (DEPM) exhibited accelerated weight gain. Several hypothalamic genes, hormones (serum Hypothalamic-Pituitary-Adrenal (HPA) axis hormones and gastrointestinal peptide tyrosine tyrosine (PYY)), metabolites (intrahepatic triglyceride (IHTG) and fecal short-chain fatty acids (SCFAs)), and gut microbiota structure, which may influence obesity and appetite regulation, were examined. The result suggested that DEPM-induced accelerated weight gain may be associated with increased expression of hypothalamic Gamma-aminobutyric acid (GABA) type B receptor, tight junction protein, and orexin receptors, in addition with decreased IHTG and repressed HPA axis. Moreover, changes in the structure of intestinal microbiota are also related to weight changes, especially for phylum Firmicutes, genus Lactobacillus, and the ratio of relative abundance of Firmicutes and Bacteroidetes (F/B). DEPM exposure also caused widespread increase in the levels of intestinal SCFAs, the concentrations of propionic acid and isobutyric acid were associated with weight gain rate and the abundance of some bacteria. Although DEPM exposure caused changes in expression of hypothalamic serotonin, NPY, and melanocortin receptors, they were not associated with weight changes. Furthermore, no significant difference in gastrointestinal PYY and expression of hypothalamic receptors for leptin, insulin, and glucagon-like peptide 1 receptors was observed between DEPM-exposed and control mice.
Collapse
Affiliation(s)
- Hou Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guicheng Wang
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai 200433, China
| | - Jin Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Bingjie Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Mukai Y, Okubo TS, Lazarus M, Ono D, Tanaka KF, Yamanaka A. Prostaglandin E 2 Induces Long-Lasting Inhibition of Noradrenergic Neurons in the Locus Coeruleus and Moderates the Behavioral Response to Stressors. J Neurosci 2023; 43:7982-7999. [PMID: 37734949 PMCID: PMC10669809 DOI: 10.1523/jneurosci.0353-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Neuronal activity is modulated not only by inputs from other neurons but also by various factors, such as bioactive substances. Noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons) are involved in diverse physiological functions, including sleep/wakefulness and stress responses. Previous studies have identified various substances and receptors that modulate LC-NA neuronal activity through techniques including electrophysiology, calcium imaging, and single-cell RNA sequencing. However, many substances with unknown physiological significance have been overlooked. Here, we established an efficient screening method for identifying substances that modulate LC-NA neuronal activity through intracellular calcium ([Ca2+]i) imaging using brain slices. Using both sexes of mice, we screened 53 bioactive substances, and identified five novel substances: gastrin-releasing peptide, neuromedin U, and angiotensin II, which increase [Ca2+]i, and pancreatic polypeptide and prostaglandin D2, which decrease [Ca2+]i Among them, neuromedin U induced the greatest response in female mice. In terms of the duration of [Ca2+]i change, we focused on prostaglandin E2 (PGE2), since it induces a long-lasting decrease in [Ca2+]i via the EP3 receptor. Conditional knock-out of the receptor in LC-NA neurons resulted in increased depression-like behavior, prolonged wakefulness in the dark period, and increased [Ca2+]i after stress exposure. Our results demonstrate the effectiveness of our screening method for identifying substances that modulate a specific neuronal population in an unbiased manner and suggest that stress-induced prostaglandin E2 can suppress LC-NA neuronal activity to moderate the behavioral response to stressors. Our screening method will contribute to uncovering previously unknown physiological functions of uncharacterized bioactive substances in specific neuronal populations.SIGNIFICANCE STATEMENT Bioactive substances modulate the activity of specific neuronal populations. However, since only a limited number of substances with predicted effects have been investigated, many substances that may modulate neuronal activity have gone unrecognized. Here, we established an unbiased method for identifying modulatory substances by measuring the intracellular calcium signal, which reflects neuronal activity. We examined noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons), which are involved in diverse physiological functions. We identified five novel substances that modulate LC-NA neuronal activity. We also found that stress-induced prostaglandin E2 (PGE2) may suppress LC-NA neuronal activity and influence behavioral outcomes. Our screening method will help uncover previously overlooked functions of bioactive substances and provide insight into unrecognized roles of specific neuronal populations.
Collapse
Affiliation(s)
- Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tatsuo S Okubo
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Chinese Institute for Brain Research, Beijing 102206, China
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
7
|
López-Méndez I, Maldonado-Rojas ADC, Uribe M, Juárez-Hernández E. Hunger & satiety signals: another key mechanism involved in the NAFLD pathway. Front Endocrinol (Lausanne) 2023; 14:1213372. [PMID: 37753211 PMCID: PMC10518611 DOI: 10.3389/fendo.2023.1213372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disease, although prevalence could change according to region, nowadays is considered a public health problem whose real impact on the health system is unknown. NAFLD has a multifactorial and complex pathophysiology, due to this, developing a unique and effective pharmacological treatment has not been successful in reverting or avoiding the progression of this liver disease. Even though NAFLD pathophysiology is known, all actual treatments are focused on modifying or regulating the metabolic pathways, some of which interplay with obesity. It has been known that impairments in hunger and satiety signals are associated with obesity, however, abnormalities in these signals in patients with NAFLD and obesity are not fully elucidated. To describe these mechanisms opens an additional option as a therapeutic target sharing metabolic pathways with NAFLD, therefore, this review aims to describe the hormones and peptides implicated in both hunger-satiety in NAFLD. It has been established that NAFLD pharmacological treatment cannot be focused on a single purpose; hence, identifying interplays that lead to adding or modifying current treatment options could also have an impact on another related outcome such as hunger or satiety signals.
Collapse
Affiliation(s)
- Iván López-Méndez
- Hepatology and Transplants Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
8
|
Zhao Y, Zhou Y, Chi J, Che K, Wang Y, Wang W. Obesity is associated with impaired postprandial pancreatic polypeptide secretion. Front Endocrinol (Lausanne) 2023; 14:1192311. [PMID: 37334299 PMCID: PMC10273268 DOI: 10.3389/fendo.2023.1192311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Objective This study aims to compare the levels of serum pancreatic polypeptide (PP), insulin (INS), C-peptide (C-P), and glucagon (GCG) before and after glucose stimulation in type 2 diabetes mellitus (T2DM) patients with different body mass indexes (BMI), analyze the relevant factors associated with PP secretion, and further investigate the role of PP in the development of obesity and diabetes. Methods Data were collected from 83 patients from the hospital. The subjects were divided into normal-weight group, overweight group, and obese group according to their BMI. All subjects were tested with the standard bread meal test (SBMT). PP and relevant parameters were measured, and the area under the curve (AUC) was calculated after 120 min of SBMT. AUCpp (AUC of PP) was used as the dependent variable, and the potential influencing factors were used as independent variables for multiple linear regression analysis. Results The obese and overweight groups had significantly lower PP secretion than the normal-weight group (485.95 pg·h/ml, 95% CI 76.16-895.74, p = 0.021; 664.61 pg·h/ml, 95% CI 285.46-1043.77, p = 0.001) at 60 min postprandial. PP secretion in the obese and overweight groups was also significantly lower than that in the normal-weight group (520.07 pg·h/ml, 95% CI 186.58-853.56, p = 0.003; 467.62 pg·h/ml, 95% CI 159.06-776.18, p = 0.003) at 120 min postprandial. AUCpp was negatively associated with BMI (r = -0.260, p = 0.017) and positively associated with AUCGCG (r = 0.501, p< 0.001). Multiple linear regression analysis showed that there was a linear correlation between AUCGCG, BMI, and AUCpp (p< 0.001, p = 0.008). The regression equation was calculated as follows: AUCpp = 1772.255-39.65 × BMI + 0.957 × AUCGCG (R2 = 54.1%, p< 0.001). Conclusion Compared with normal-weight subjects, overweight and obese subjects had impaired PP secretion after glucose stimulation. In T2DM patients, PP secretion was mainly affected by BMI and GCG. Clinical trial registry The Ethics Committee of the Affiliated Hospital of Qingdao University. Clinical trial registration http://www.chictr.org.cn, identifier ChiCTR2100047486.
Collapse
Affiliation(s)
- Yanyun Zhao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yue Zhou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingwei Chi
- Medical Research Center, Qingdao Key Laboratory of Thyroid Diseases, Qingdao, China
| | - Kui Che
- Medical Research Center, Qingdao Key Laboratory of Thyroid Diseases, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Wang
- Department of Hematology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Zhu W, Tanday N, Flatt PR, Irwin N. Pancreatic polypeptide revisited: Potential therapeutic effects in obesity-diabetes. Peptides 2023; 160:170923. [PMID: 36509169 DOI: 10.1016/j.peptides.2022.170923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Pancreatic polypeptide (PP), a member of the neuropeptide Y (NPY) family of peptides, is a hormone secreted from the endocrine pancreas with established actions on appetite regulation. Thus, through activation of hypothalamic neuropeptide Y4 (NPY4R or Y4) receptors PP induces satiety in animals and humans, suggesting potential anti-obesity actions. In addition, despite being actively secreted from pancreatic islets and evidence of local Y4 receptor expression, PP mediated effects on the endocrine pancreas have not been fully elucidated. To date, it appears that PP possesses an acute insulinostatic effect, similar to the impact of other peptides from the NPY family. However, it is interesting that prolonged activation of pancreatic Y1 receptors leads to established benefits on beta-cell turnover, preservation of beta-cell identity and improved insulin secretory responsiveness. This may hint towards possible similar anti-diabetic actions of sustained Y4 receptor modulation, since the Y1 and Y4 receptors trigger comparable cell signalling pathways. In terms of exploiting the prospective therapeutic promise of PP, this is severely restricted by a short circulating half-life as is the case for many regulatory peptide hormones. It follows that long-acting, enzyme resistant, forms of PP will be required to determine viability of the Y4 receptor as an anti-obesity and -diabetes drug target. The current review aims to refocus interest on the biology of PP and highlight opportunities for therapeutic development.
Collapse
|
10
|
Kang H, Park C, Choi YK, Bae J, Kwon S, Kim J, Choi C, Seok C, Im W, Choi HJ. Structural basis for Y2 receptor-mediated neuropeptide Y and peptide YY signaling. Structure 2023; 31:44-57.e6. [PMID: 36525977 DOI: 10.1016/j.str.2022.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Neuropeptide Y (NPY) and its receptors are expressed in various human tissues including the brain where they regulate appetite and emotion. Upon NPY stimulation, the neuropeptide Y1 and Y2 receptors (Y1R and Y2R, respectively) activate GI signaling, but their physiological responses to food intake are different. In addition, deletion of the two N-terminal amino acids of peptide YY (PYY(3-36)), the endogenous form found in circulation, can stimulate Y2R but not Y1R, suggesting that Y1R and Y2R may have distinct ligand-binding modes. Here, we report the cryo-electron microscopy structures of the PYY(3-36)‒Y2R‒Gi and NPY‒Y2R‒Gi complexes. Using cell-based assays, molecular dynamics simulations, and structural analysis, we revealed the molecular basis of the exclusive binding of PYY(3-36) to Y2R. Furthermore, we demonstrated that Y2R favors G protein signaling over β-arrestin signaling upon activation, whereas Y1R does not show a preference between these two pathways.
Collapse
Affiliation(s)
- Hyunook Kang
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaehee Park
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeol Kyo Choi
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Jungnam Bae
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chulwon Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
11
|
Saito D, Nakagawa Y, Sato T, Fukunaka A, Pereye OB, Maruyama N, Watada H, Fujitani Y. Establishment of an enzyme-linked immunosorbent assay for mouse pancreatic polypeptide clarifies the regulatory mechanism of its secretion from pancreatic γ cells. PLoS One 2022; 17:e0269958. [PMID: 35976945 PMCID: PMC9385059 DOI: 10.1371/journal.pone.0269958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic polypeptide (PP), secreted from γ cells of the islets of Langerhans, is a 36 amino-acid peptide encoded by the Ppy gene. Although previous studies have reported that PP causes a decrease in appetite, the molecular mechanism that regulates PP secretion has not been fully elucidated. Lack of understanding of the regulatory mechanism of PP secretion may be partially owing to the lack of assay systems that can specifically detect PP. We recently developed the mouse monoclonal antibody 23-2D3 that specifically recognizes PP. In the present study, we developed a sandwich enzyme-linked immunosorbent assay for the measurement of mouse PP, and directly monitored intracellular Ca2+ concentrations in Ppy-expressing cells from a newly developed reporter mouse. Using these systems, we identified agonists, such as carbachol and glucose-dependent insulinotropic polypeptide (GIP), which stimulate PP secretion. We further demonstrated that, unlike the case of GIP-induced insulin secretion from β cells, there is a unique mechanism by which PP secretion is triggered by an increase in intracellular Ca2+ concentrations via voltage-dependent calcium channels even in low-glucose conditions.
Collapse
Affiliation(s)
- Daisuke Saito
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuko Nakagawa
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Takashi Sato
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Ofejiro Blessing Pereye
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | | | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
- * E-mail:
| |
Collapse
|
12
|
Zhao Y, Zhou Y, Xiao M, Huang Y, Qi M, Kong Z, Chi J, Che K, Lv W, Dong B, Wang Y. Impaired glucose tolerance is associated with enhanced postprandial pancreatic polypeptide secretion. J Diabetes 2022; 14:334-344. [PMID: 35437937 PMCID: PMC9366580 DOI: 10.1111/1753-0407.13268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/05/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The purpose of this study is to compare serum pancreatic polypeptide (PP), insulin, C-peptide, and glucagon in different glucose tolerance stages; analyze the influencing factors of PP secretion; and further explore the role of PP in the pathogenesis of diabetes mellitus. METHODS Data were collected from 100 subjects from hospital. According to the results of oral glucose tolerance test (OGTT), the subjects were divided into a normal glucose tolerance (NGT) group, an impaired glucose regulation (IGR) group, and a newly diagnosed type 2 diabetes mellitus (T2DM) group. PP and the related parameters were measured, and the area under the curve (AUC) 120 min after OGTT was calculated. AUCpp (AUC of PP) was used as the dependent variable and the potentially influencing factors were used as the independent variable for multiple linear regression analysis. RESULTS Postprandial 60 min PP in the IGR group was higher than those in the NGT group (2973.80 [±547.49] pg·h/mL vs 2663.55 [±594.89] pg·h/mL, p < 0.05). AUCpp was significantly higher in the IGR group (428.76 pg·h/mL, 95% confidence interval [CI] [41.06 -816.46], p = 0.031) and newly diagnosed T2DM group (404.35 pg·h/mL, 95% CI [5.37-803.33], p = 0.047) than in the NGT group. AUCpp was negatively correlated with body mass index (BMI) (r = -0.235, p = 0.038) and positively correlated with postprandial 60 min blood glucose (r = 0.370, p = 0.001) and AUCbg (AUC of blood glucose) (r = 0.323, p = 0.007). Multiple linear regression analysis indicated that there was a linear correlation between BMI, AUCbg , and AUCpp (p = 0.004, p = 0.001), and the regression equation was calculated as: AUCpp = 6592.272 + 86.275 × AUCbg -95.291 × BMI (R2 = 12.7%, p < 0.05). CONCLUSIONS Compared with NGT subjects, IGR and T2DM patients have an enhanced postprandial PP secretion. In T2DMs, the secretion of PP is mainly affected by BMI and blood glucose.
Collapse
Affiliation(s)
- Yanyun Zhao
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Yue Zhou
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Min Xiao
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Yajing Huang
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Mengmeng Qi
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Zili Kong
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Jingwei Chi
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Kui Che
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Wenshan Lv
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Bingzi Dong
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yangang Wang
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
13
|
Anderson ZT, Dawson AD, Slominski AT, Harris ML. Current Insights Into the Role of Neuropeptide Y in Skin Physiology and Pathology. Front Endocrinol (Lausanne) 2022; 13:838434. [PMID: 35418942 PMCID: PMC8996770 DOI: 10.3389/fendo.2022.838434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropeptide Y is widely distributed within the body and has long been implicated as a contributor to skin disease based on the correlative clinical data. However, until recently, there have been few empirical investigations to determine whether NPY has a pathophysiological role in the skin. Due to appearance-altering phenotypes of atopic dermatitis, psoriasis, and vitiligo, those suffering from these diseases often face multiple forms of negative social attention. This often results in psychological stress, which has been shown to exacerbate inflammatory skin diseases - creating a vicious cycle that perpetuates disease. This has been shown to drive severe depression, which has resulted in suicidal ideation being a comorbidity of these diseases. Herein, we review what is currently known about the associations of NPY with skin diseases and stress. We also review and provide educated guessing what the effects NPY can have in the skin. Inflammatory skin diseases can affect physical appearance to have significant, negative impacts on quality of life. No cure exists for these conditions, highlighting the need for identification of novel proteins/neuropetides, like NPY, that can be targeted therapeutically. This review sets the stage for future investigations into the role of NPY in skin biology and pathology to stimulate research on therapeutic targeting NPY signaling in order to combat inflammatory skin diseases.
Collapse
Affiliation(s)
- Zoya T. Anderson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alex D. Dawson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, United States
- Veteran Administration Medical Center, Birmingham, AL, United States
| | - Melissa L. Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
14
|
Andersen DB, Holst JJ. Peptides in the regulation of glucagon secretion. Peptides 2022; 148:170683. [PMID: 34748791 DOI: 10.1016/j.peptides.2021.170683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
Glucose homeostasis is maintained by the glucoregulatory hormones, glucagon, insulin and somatostatin, secreted from the islets of Langerhans. Glucagon is the body's most important anti-hypoglycemic hormone, mobilizing glucose from glycogen stores in the liver in response to fasting, thus maintaining plasma glucose levels within healthy limits. Glucagon secretion is regulated by both circulating nutrients, hormones and neuronal inputs. Hormones that may regulate glucagon secretion include locally produced insulin and somatostatin, but also urocortin-3, amylin and pancreatic polypeptide, and from outside the pancreas glucagon-like peptide-1 and 2, peptide tyrosine tyrosine and oxyntomodulin, glucose-dependent insulinotropic polypeptide, neurotensin and ghrelin, as well as the hypothalamic hormones arginine-vasopressin and oxytocin, and calcitonin from the thyroid. Each of these hormones have distinct effects, ranging from regulating blood glucose, to regulating appetite, stomach emptying rate and intestinal motility, which makes them interesting targets for treating metabolic diseases. Awareness regarding the potential effects of the hormones on glucagon secretion is important since secretory abnormalities could manifest as hyperglycemia or even lethal hypoglycemia. Here, we review the effects of each individual hormone on glucagon secretion, their interplay, and how treatments aimed at modulating the plasma levels of these hormones may also influence glucagon secretion and glycemic control.
Collapse
Affiliation(s)
- Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
15
|
Fukaishi T, Nakagawa Y, Fukunaka A, Sato T, Hara A, Nakao K, Saito M, Kohno K, Miyatsuka T, Tamaki M, Matsuhisa M, Matsuoka TA, Yamada T, Watada H, Fujitani Y. Characterisation of Ppy-lineage cells clarifies the functional heterogeneity of pancreatic beta cells in mice. Diabetologia 2021; 64:2803-2816. [PMID: 34498099 PMCID: PMC8563568 DOI: 10.1007/s00125-021-05560-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Pancreatic polypeptide (PP) cells, which secrete PP (encoded by the Ppy gene), are a minor population of pancreatic endocrine cells. Although it has been reported that the loss of beta cell identity might be associated with beta-to-PP cell-fate conversion, at present, little is known regarding the characteristics of Ppy-lineage cells. METHODS We used Ppy-Cre driver mice and a PP-specific monoclonal antibody to investigate the association between Ppy-lineage cells and beta cells. The molecular profiles of endocrine cells were investigated by single-cell transcriptome analysis and the glucose responsiveness of beta cells was assessed by Ca2+ imaging. Diabetic conditions were experimentally induced in mice by either streptozotocin or diphtheria toxin. RESULTS Ppy-lineage cells were found to contribute to the four major types of endocrine cells, including beta cells. Ppy-lineage beta cells are a minor subpopulation, accounting for 12-15% of total beta cells, and are mostly (81.2%) localised at the islet periphery. Unbiased single-cell analysis with a Ppy-lineage tracer demonstrated that beta cells are composed of seven clusters, which are categorised into two groups (i.e. Ppy-lineage and non-Ppy-lineage beta cells). These subpopulations of beta cells demonstrated distinct characteristics regarding their functionality and gene expression profiles. Ppy-lineage beta cells had a reduced glucose-stimulated Ca2+ signalling response and were increased in number in experimental diabetes models. CONCLUSIONS/INTERPRETATION Our results indicate that an unexpected degree of beta cell heterogeneity is defined by Ppy gene activation, providing valuable insight into the homeostatic regulation of pancreatic islets and future therapeutic strategies against diabetes. DATA AVAILABILITY The single-cell RNA sequence (scRNA-seq) analysis datasets generated in this study have been deposited in the Gene Expression Omnibus (GEO) under the accession number GSE166164 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE166164 ).
Collapse
Affiliation(s)
- Takahiro Fukaishi
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Nakagawa
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Takashi Sato
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Akemi Hara
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Keiko Nakao
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Michiko Saito
- Institute for Research Initiatives, Nara Institute of Science and Technology (NAIST), Nara, Japan
- Bio-science Research Center, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kenji Kohno
- Institute for Research Initiatives, Nara Institute of Science and Technology (NAIST), Nara, Japan
| | - Takeshi Miyatsuka
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Motoyuki Tamaki
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Munehide Matsuhisa
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Taka-Aki Matsuoka
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan.
| |
Collapse
|
16
|
Gjermeni E, Kirstein AS, Kolbig F, Kirchhof M, Bundalian L, Katzmann JL, Laufs U, Blüher M, Garten A, Le Duc D. Obesity-An Update on the Basic Pathophysiology and Review of Recent Therapeutic Advances. Biomolecules 2021; 11:1426. [PMID: 34680059 PMCID: PMC8533625 DOI: 10.3390/biom11101426] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity represents a major public health problem with a prevalence increasing at an alarming rate worldwide. Continuous intensive efforts to elucidate the complex pathophysiology and improve clinical management have led to a better understanding of biomolecules like gut hormones, antagonists of orexigenic signals, stimulants of fat utilization, and/or inhibitors of fat absorption. In this article, we will review the pathophysiology and pharmacotherapy of obesity including intersection points to the new generation of antidiabetic drugs. We provide insight into the effectiveness of currently approved anti-obesity drugs and other therapeutic avenues that can be explored.
Collapse
Affiliation(s)
- Erind Gjermeni
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany;
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Anna S. Kirstein
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Florentien Kolbig
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Michael Kirchhof
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Linnaeus Bundalian
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
| | - Julius L. Katzmann
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Batty MJ, Chabrier G, Sheridan A, Gage MC. Metabolic Hormones Modulate Macrophage Inflammatory Responses. Cancers (Basel) 2021; 13:cancers13184661. [PMID: 34572888 PMCID: PMC8467249 DOI: 10.3390/cancers13184661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Macrophages are a type of immune cell which play an important role in the development of cancer. Obesity increases the risk of cancer and obesity also causes disruption to the normal levels of hormones that are produced to coordinate metabolism. Recent research now shows that these metabolic hormones also play important roles in macrophage immune responses and so through macrophages, disrupted metabolic hormone levels may promote cancer. This review article aims to highlight and summarise these recent findings so that the scientific community may better understand how important this new area of research is, and how these findings can be capitalised on for future scientific studies. Abstract Macrophages are phagocytotic leukocytes that play an important role in the innate immune response and have established roles in metabolic diseases and cancer progression. Increased adiposity in obese individuals leads to dysregulation of many hormones including those whose functions are to coordinate metabolism. Recent evidence suggests additional roles of these metabolic hormones in modulating macrophage inflammatory responses. In this review, we highlight key metabolic hormones and summarise their influence on the inflammatory response of macrophages and consider how, in turn, these hormones may influence the development of different cancer types through the modulation of macrophage functions.
Collapse
|
18
|
Verbeure W, Rotondo A, Janssen P, Carbone F, Tack J. Supraphysiological effects of pancreatic polypeptide on gastric motor function and nutrient tolerance in humans. Physiol Rep 2021; 9:e15002. [PMID: 34435472 PMCID: PMC8387790 DOI: 10.14814/phy2.15002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/24/2022] Open
Abstract
Pancreatic polypeptide (PP) is known to affect food intake. In this exploratory study, we set out to investigate its supraphysiological effect on food tolerance, gastric accommodation, and emptying. In 12 healthy volunteers, 0, 3, or 10 pmol*kg-1 *min-1 PP was administered intravenously (PP0, PP3 or PP10). Thirty minutes thereafter, nutrient drink infusion (60 ml*min-1 ) through a nasogastric feeding tube was started until maximum satiation. Gastric accommodation was assessed by measuring the intragastric pressure (IGP; nasogastric manometry). In a separate test, the effect of PP0 or PP10 on gastric emptying was tested in 10 healthy volunteers and assessed using the 13 C breath test. Results are presented as mean ± SEM, and p < 0.05 was considered significant. For the IGP test, PP increased ingested nutrient volume: 886 ± 93, 1059 ± 124, and 1025 ± 125 ml for PP0, PP3, and PP10, respectively (p = 0.048). In all groups, Nadir IGP values were reached upon food intake (transformed values: 1.5 ± 0.2, 1.7 ± 0.3, and 1.6 ± 0.3 mmHg for PP0, PP3, and PP10, respectively; NS) to return to baseline thereafter. For the gastric emptying study, volunteers ingested a similar nutrient volume: 802 ± 119 and 1089 ± 128 ml (p = 0.016), and gastric half-emptying time was 281 ± 52 and 249 ± 37 min for PP0 and PP10, respectively (NS). No significant correlation between tolerated nutrient volume and IGP drop (R² < 0.01; p = 0.88 for PP0 vs. PP3 and R² =0.07; p = 0.40 for PP0 vs. PP10, respectively) or gastric half-emptying time (R² = 0.12; p = 0.32) was found. A supraphysiological PP dose enhances food tolerance; however, this effect is not mediated through gastric motility. CLINICAL TRIAL REGISTRY NUMBER: NCT03854708 is obtained from clinicaltrials.gov.
Collapse
Affiliation(s)
- Wout Verbeure
- Translational Research Center for Gastrointestinal DisordersKULeuvenBelgium
| | - Alessandra Rotondo
- Translational Research Center for Gastrointestinal DisordersKULeuvenBelgium
| | - Pieter Janssen
- Translational Research Center for Gastrointestinal DisordersKULeuvenBelgium
| | - Florencia Carbone
- Translational Research Center for Gastrointestinal DisordersKULeuvenBelgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal DisordersKULeuvenBelgium
| |
Collapse
|
19
|
Yang CH, Onda DA, Oakhill JS, Scott JW, Galic S, Loh K. Regulation of Pancreatic β-Cell Function by the NPY System. Endocrinology 2021; 162:6213414. [PMID: 33824978 DOI: 10.1210/endocr/bqab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 01/24/2023]
Abstract
The neuropeptide Y (NPY) system has been recognized as one of the most critical molecules in the regulation of energy homeostasis and glucose metabolism. Abnormal levels of NPY have been shown to contribute to the development of metabolic disorders including obesity, cardiovascular diseases, and diabetes. NPY centrally promotes feeding and reduces energy expenditure, while the other family members, peptide YY (PYY) and pancreatic polypeptide (PP), mediate satiety. New evidence has uncovered additional functions for these peptides that go beyond energy expenditure and appetite regulation, indicating a more extensive function in controlling other physiological functions. In this review, we will discuss the role of the NPY system in the regulation of pancreatic β-cell function and its therapeutic implications for diabetes.
Collapse
Affiliation(s)
- Chieh-Hsin Yang
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Danise-Ann Onda
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jonathan S Oakhill
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - John W Scott
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| | - Sandra Galic
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kim Loh
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
20
|
Perez-Frances M, van Gurp L, Abate MV, Cigliola V, Furuyama K, Bru-Tari E, Oropeza D, Carreaux T, Fujitani Y, Thorel F, Herrera PL. Pancreatic Ppy-expressing γ-cells display mixed phenotypic traits and the adaptive plasticity to engage insulin production. Nat Commun 2021; 12:4458. [PMID: 34294685 PMCID: PMC8298494 DOI: 10.1038/s41467-021-24788-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
The cellular identity of pancreatic polypeptide (Ppy)-expressing γ-cells, one of the rarest pancreatic islet cell-type, remains elusive. Within islets, glucagon and somatostatin, released respectively from α- and δ-cells, modulate the secretion of insulin by β-cells. Dysregulation of insulin production raises blood glucose levels, leading to diabetes onset. Here, we present the genetic signature of human and mouse γ-cells. Using different approaches, we identified a set of genes and pathways defining their functional identity. We found that the γ-cell population is heterogeneous, with subsets of cells producing another hormone in addition to Ppy. These bihormonal cells share identity markers typical of the other islet cell-types. In mice, Ppy gene inactivation or conditional γ-cell ablation did not alter glycemia nor body weight. Interestingly, upon β-cell injury induction, γ-cells exhibited gene expression changes and some of them engaged insulin production, like α- and δ-cells. In conclusion, we provide a comprehensive characterization of γ-cells and highlight their plasticity and therapeutic potential.
Collapse
Affiliation(s)
- Marta Perez-Frances
- Department of Genetic Medicine & Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Léon van Gurp
- Department of Genetic Medicine & Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maria Valentina Abate
- Department of Genetic Medicine & Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valentina Cigliola
- Department of Genetic Medicine & Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Regeneration Next, Duke University, Durham, NC, USA
| | - Kenichiro Furuyama
- Department of Genetic Medicine & Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Eva Bru-Tari
- Department of Genetic Medicine & Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Oropeza
- Department of Genetic Medicine & Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Taïna Carreaux
- Department of Genetic Medicine & Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yoshio Fujitani
- Lab. of Developmental Biology & Metabolism, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Fabrizio Thorel
- Department of Genetic Medicine & Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine & Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
21
|
Louzao MC, Costas C, Abal P, Suzuki T, Watanabe R, Vilariño N, Carrera C, Boente-Juncal A, Vale C, Vieytes MR, Botana LM. Serotonin involvement in okadaic acid-induced diarrhoea in vivo. Arch Toxicol 2021; 95:2797-2813. [PMID: 34148100 PMCID: PMC8298366 DOI: 10.1007/s00204-021-03095-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
The consumption of contaminated shellfish with okadaic acid (OA) group of toxins leads to diarrhoeic shellfish poisoning (DSP) characterized by a set of symptoms including nausea, vomiting and diarrhoea. These phycotoxins are Ser/Thr phosphatase inhibitors, which produce hyperphosphorylation in cellular proteins. However, this inhibition does not fully explain the symptomatology reported and other targets could be relevant to the toxicity. Previous studies have indicated a feasible involvement of the nervous system. We performed a set of in vivo approaches to elucidate whether neuropeptide Y (NPY), Peptide YY (PYY) or serotonin (5-HT) was implicated in the early OA-induced diarrhoea. Fasted Swiss female mice were administered NPY, PYY(3-36) or cyproheptadine intraperitoneal prior to oral OA treatment (250 µg/kg). A non-significant delay in diarrhoea onset was observed for NPY (107 µg/kg) and PYY(3-36) (1 mg/kg) pre-treatment. On the contrary, the serotonin antagonist cyproheptadine was able to block (10 mg/kg) or delay (0.1 and 1 mg/kg) diarrhoea onset suggesting a role of 5-HT. This is the first report of the possible involvement of serotonin in OA-induced poisoning.
Collapse
Affiliation(s)
- M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - Celia Costas
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Paula Abal
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Toshiyuki Suzuki
- Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, Yokohama, 236-8648, Japan
| | - Ryuichi Watanabe
- Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, Yokohama, 236-8648, Japan
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Cristina Carrera
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Andrea Boente-Juncal
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Carmen Vale
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
22
|
Wanka L, Behr V, Beck-Sickinger AG. Arrestin-dependent internalization of rhodopsin-like G protein-coupled receptors. Biol Chem 2021; 403:133-149. [PMID: 34036761 DOI: 10.1515/hsz-2021-0128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/28/2021] [Indexed: 01/14/2023]
Abstract
The internalization of G protein-coupled receptors (GPCRs) is an important mechanism regulating the signal strength and limiting the opportunity of receptor activation. Based on the importance of GPCRs, the detailed knowledge about the regulation of signal transduction is crucial. Here, current knowledge about the agonist-induced, arrestin-dependent internalization process of rhodopsin-like GPCRs is reviewed. Arrestins are conserved molecules that act as key players within the internalization process of many GPCRs. Based on highly conserved structural characteristics within the rhodopsin-like GPCRs, the identification of arrestin interaction sites in model systems can be compared and used for the investigation of internalization processes of other receptors. The increasing understanding of this essential regulation mechanism of receptors can be used for drug development targeting rhodopsin-like GPCRs. Here, we focus on the neuropeptide Y receptor family, as these receptors transmit various physiological processes such as food intake, energy homeostasis, and regulation of emotional behavior, and are further involved in pathophysiological processes like cancer, obesity and mood disorders. Hence, this receptor family represents an interesting target for the development of novel therapeutics requiring the understanding of the regulatory mechanisms influencing receptor mediated signaling.
Collapse
Affiliation(s)
- Lizzy Wanka
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| |
Collapse
|
23
|
Hansen HH, Grønlund RV, Baader-Pagler T, Haebel P, Tammen H, Larsen LK, Jelsing J, Vrang N, Klein T. Characterization of combined linagliptin and Y2R agonist treatment in diet-induced obese mice. Sci Rep 2021; 11:8060. [PMID: 33850212 PMCID: PMC8044192 DOI: 10.1038/s41598-021-87539-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 02/01/2023] Open
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitors improve glycemic control by prolonging the action of glucagon-like peptide-1 (GLP-1). In contrast to GLP-1 analogues, DPP-IV inhibitors are weight-neutral. DPP-IV cleavage of PYY and NPY gives rise to PYY3-36 and NPY3-36 which exert potent anorectic action by stimulating Y2 receptor (Y2R) function. This invites the possibility that DPP-IV inhibitors could be weight-neutral by preventing conversion of PYY/NPY to Y2R-selective peptide agonists. We therefore investigated whether co-administration of an Y2R-selective agonist could unmask potential weight lowering effects of the DDP-IV inhibitor linagliptin. Male diet-induced obese (DIO) mice received once daily subcutaneous treatment with linagliptin (3 mg/kg), a Y2R-selective PYY3-36 analogue (3 or 30 nmol/kg) or combination therapy for 14 days. While linagliptin promoted marginal weight loss without influencing food intake, the PYY3-36 analogue induced significant weight loss and transient suppression of food intake. Both compounds significantly improved oral glucose tolerance. Because combination treatment did not further improve weight loss and glucose tolerance in DIO mice, this suggests that potential negative modulatory effects of DPP-IV inhibitors on endogenous Y2R peptide agonist activity is likely insufficient to influence weight homeostasis. Weight-neutrality of DPP-IV inhibitors may therefore not be explained by counter-regulatory effects on PYY/NPY responses.
Collapse
Affiliation(s)
| | | | - Tamara Baader-Pagler
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co., Biberach, Germany
| | - Peter Haebel
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co., Biberach, Germany
| | | | | | - Jacob Jelsing
- Gubra, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Niels Vrang
- Gubra, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Thomas Klein
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co., Biberach, Germany
| |
Collapse
|
24
|
Graham GV, Conlon JM, Moffett RC, Abdel-Wahab YH, Flatt PR. Effects of long-acting analogues of lamprey GLP-1 and paddlefish glucagon on alpha- to beta-cell transdifferentiation in an insulin-deficient transgenic mouse model. J Pept Sci 2021; 27:e3328. [PMID: 33843129 DOI: 10.1002/psc.3328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
The abilities of the long-acting, dual-agonist anti-diabetic peptides [D-Ala2 ]palmitoyl-lamprey GLP-1 and [D-Ser2 ]palmitoyl-paddlefish glucagon to induce α-cell to β-cell transdifferentiation were investigated in GluCreERT2 ;ROSA26-eYFP mice. These animals have been genetically engineered so that yellow fluorescent protein is specifically expressed in glucagon-producing α-cells, thereby allowing cell lineage tracing. Insulin deficiency was produced by treatment of the mice with multiple low doses of streptozotocin. Administration of the peptides (twice daily intraperitoneal injections of 25 nmol/kg body weight over 10 days) to streptozotocin-treated mice produced significant (P < 0.05) increases in pancreatic insulin content and plasma insulin concentrations compared with control mice. Immunohistochemical studies demonstrated a significant (P < 0.05) increase in the % of cells staining for both insulin and fluorescent protein in islets located in the head region of the pancreas (from 10.0 ± 1.3% of total cells in untreated mice to 20.0 ± 3.85% in mice treated with D-Ala2 ]palmitoyl-lamprey GLP-1 and to 17.3 ± 1.1% in mice treated with [D-Ser2 ]palmitoyl-paddlefish glucagon). Corresponding effects upon islets in the tail region were not significant. The data indicate an improvement in β-cell mass and positive effects on transdifferentiation of glucagon-producing to insulin-producing cells. The study provides further evidence that proglucagon-derived peptides from phylogenetical ancient fish show therapeutic potential for treatment of diabetes.
Collapse
Affiliation(s)
- Galyna V Graham
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, UK
| | - J Michael Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, UK
| | - R Charlotte Moffett
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, UK
| | - Yasser H Abdel-Wahab
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, UK
| | - Peter R Flatt
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, UK
| |
Collapse
|
25
|
Honda K. Peripheral regulation of food intake in chickens: adiposity signals, satiety signals and others. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1898296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- K. Honda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
26
|
Tyszkiewicz-Nwafor M, Jowik K, Dutkiewicz A, Krasinska A, Pytlinska N, Dmitrzak-Weglarz M, Suminska M, Pruciak A, Skowronska B, Slopien A. Neuropeptide Y and Peptide YY in Association with Depressive Symptoms and Eating Behaviours in Adolescents across the Weight Spectrum: From Anorexia Nervosa to Obesity. Nutrients 2021; 13:nu13020598. [PMID: 33670342 PMCID: PMC7917982 DOI: 10.3390/nu13020598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
Neuropeptide Y (NPY) and peptide YY (PYY) are involved in metabolic regulation. The purpose of the study was to assess the serum levels of NPY and PYY in adolescents with anorexia nervosa (AN) or obesity (OB), as well as in a healthy control group (CG). The effects of potential confounders on their concentrations were also analysed. Eighty-nine adolescents were included in this study (AN = 30, OB = 30, and CG = 29). Anthropometric measurements and psychometric assessment of depressive symptoms, eating behaviours, body attitudes, and fasting serum levels of NPY and PYY were analysed. The AN group presented severe depressive symptoms, while the OB group held different attitudes towards the body. The levels of NPY were lower in the AN and OB groups as compared with the CG. The PYY levels were higher in the OB group than in the AN group and the CG. The severity of eating disorder symptoms predicted fasting serum concentrations of NPY. Lower levels of NPY in AN, as well as in OB suggests the need to look for a common link in the mechanism of this effect. Higher level of PYY in OB may be important in explaining complex etiopathogenesis of the disease. The psychopathological symptoms may have an influence on the neurohormones regulating metabolism.
Collapse
Affiliation(s)
- Marta Tyszkiewicz-Nwafor
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.J.); (A.D.); (N.P.); (A.S.)
- Correspondence:
| | - Katarzyna Jowik
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.J.); (A.D.); (N.P.); (A.S.)
| | - Agata Dutkiewicz
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.J.); (A.D.); (N.P.); (A.S.)
| | - Agata Krasinska
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.K.); (M.S.); (B.S.)
| | - Natalia Pytlinska
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.J.); (A.D.); (N.P.); (A.S.)
| | - Monika Dmitrzak-Weglarz
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Marta Suminska
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.K.); (M.S.); (B.S.)
| | - Agata Pruciak
- Institute of Plant Protection—National Research Institute, Research Centre of Quarantine, Invasive and Genetically Modified Organisms, 60-318 Poznan, Poland;
| | - Bogda Skowronska
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.K.); (M.S.); (B.S.)
| | - Agnieszka Slopien
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.J.); (A.D.); (N.P.); (A.S.)
| |
Collapse
|
27
|
Schaper SJ, Hofmann T, Wölk E, Weibert E, Rose M, Stengel A. Pancreatic Polypeptide but Not Other Members of the Neuropeptide Y Family Shows a Moderate Association With Perceived Anxiety in Obese Men. Front Hum Neurosci 2020; 14:578578. [PMID: 33192409 PMCID: PMC7604387 DOI: 10.3389/fnhum.2020.578578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023] Open
Abstract
Neuropeptide Y (NPY), peptide tyrosine tyrosine (PYY), and pancreatic polypeptide (PP) are important mediators in the bidirectional communication along the gut-brain-axis. Best known for their role in the regulation of appetite and food intake they are considered to play a crucial role in the development of obesity. Additionally, mounting evidence indicates a regulatory function in anxiety, mood and stress resilience with potential sex differences. In the present study, we examined the associations of NPY, PYY, and PP plasma levels with anxiety, depressiveness and perceived stress in obese patients. We analyzed 144 inpatients (90 female, 54 male, BMI mean: 49.4 kg/m2) in a naturalistic treatment setting for obesity and its somatic and mental comorbidities. Fasting blood samples were taken, and patients completed psychometric self-assessment questionnaires (GAD-7, PHQ-9, PSQ-20) within the first week after admission and before discharge. Plasma concentrations of the peptides were measured by ELISA. Women showed significant higher anxiety (GAD-7: 8.13 ± 5.67 vs. 5.93 ± 5.42, p = 0.04) and stress scores (PSQ-20: 52.62 ± 23.5 vs. 41.23 ± 22.53, p = 0.01) than men. In the longitudinal analysis women with a clinically relevant improvement of anxiety (≥ 5 points on GAD-7, p < 0.001) also showed significant improvements in depression (PHQ-9: 38%, p = 0.002) and PSQ-20 scores (23%, p = 0.005) while anxiety-improved male patients only improved in the subscale tension of the PSQ-20 (34%, p = 0.02). In men we observed a positive correlation of PP with anxiety scores (GAD-7: r = 0.41, p = 0.007) and with age (r = 0.49, p = 0.001) on admission while NPY negatively correlated with age (r = -0.38, p = 0.01). In contrast, there were no significant associations (p > 0.05) in female subjects in the cross-sectional as well as in the longitudinal analysis. In conclusion, women suffering from morbid obesity showed greater psychological comorbidity and considerable interactions among them. Despite that we solely observed associations of PP with anxiety and age with NPY and PP in men, suggesting a possible influence of sex hormones on the NPY system. However, improvement of anxiety scores did not lead to significant changes in NPY.
Collapse
Affiliation(s)
- Selina Johanna Schaper
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Hofmann
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ellen Wölk
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elena Weibert
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Matthias Rose
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, United States
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
28
|
Koliaki C, Liatis S, Dalamaga M, Kokkinos A. The Implication of Gut Hormones in the Regulation of Energy Homeostasis and Their Role in the Pathophysiology of Obesity. Curr Obes Rep 2020; 9:255-271. [PMID: 32647952 DOI: 10.1007/s13679-020-00396-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review provides an update on the role of gut hormones and their interactions in the regulation of energy homeostasis, describes gut hormone adaptations in obesity and in response to weight loss, and summarizes the current evidence on the role of gut hormone-based therapies for obesity treatment. RECENT FINDINGS Gut hormones play a key role in regulating eating behaviour, energy and glucose homeostasis. Dysregulated gut hormone responses have been proposed to be pathogenetically involved in the development and perpetuation of obesity. Summarizing the major gut hormone changes in obesity, obese individuals are characterized by blunted postprandial ghrelin suppression, loss of premeal ghrelin peaks, impaired diurnal ghrelin variability and reduced fasting and postprandial levels of anorexigenic peptides. Adaptive alterations of gut hormone levels are implicated in weight regain, thus complicating hypocaloric dietary interventions, and can further explain the profound weight loss and metabolic improvement following bariatric surgery. A plethora of compounds mimicking gut hormone changes after bariatric surgery are currently under investigation, introducing a new era in the pharmacotherapy of obesity. The current trend is to combine different gut hormone receptor agonists and target multiple systems simultaneously, in order to replicate as closely as possible the gut hormone milieu after bariatric surgery and circumvent the counter-regulatory adaptive changes associated with dietary energy restriction. An increasing number of preclinical and early-phase clinical trials reveal the additive benefits obtained with dual or triple gut peptide receptor agonists in reducing body weight and improving glycaemia. Gut hormones act as potent regulators of energy and glucose homeostasis. Therapeutic strategies targeting their levels or receptors emerge as a promising approach to treat patients with obesity and hyperglycaemia.
Collapse
Affiliation(s)
- Chrysi Koliaki
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece.
| | - Stavros Liatis
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece
| |
Collapse
|
29
|
Ramírez-Orozco RE, García-Ruiz R, Morales P, Villalón CM, Villafán-Bernal JR, Marichal-Cancino BA. Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding. Curr Neuropharmacol 2020; 17:947-960. [PMID: 31146657 PMCID: PMC7052828 DOI: 10.2174/1570159x17666190118143014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 01/28/2023] Open
Abstract
Endocannabinoids are ancient biomolecules involved in several cellular (e.g., metabolism) and physiological (e.g., eating behaviour) functions. Indeed, eating behaviour alterations in marijuana users have led to investigate the orexigen-ic/anorexigenic effects of cannabinoids in animal/human models. This increasing body of research suggests that the endo-cannabinoid system plays an important role in feeding control. Accordingly, within the endocannabinoid system, canna-binoid receptors, enzymes and genes represent potential therapeutic targets for dealing with multiple metabolic and behav-ioural dysfunctions (e.g., obesity, anorexia, etc.). Paradoxically, our understanding on the endocannabinoid system as a cel-lular mediator is yet limited. For example: (i) only two cannabinoid receptors have been classified, but they are not enough to explain the pharmacological profile of several experimental effects induced by cannabinoids; and (ii) several orphan G pro-tein-coupled receptors (GPCRs) interact with cannabinoids and we do not know how to classify them (e.g., GPR18, GPR55 and GPR119; amongst others). On this basis, the present review attempts to summarize the lines of evidence supporting the potential role of GPR18, GPR55 and GPR119 in metabolism and feeding control that may explain some of the divergent effects and puzzling data re-lated to cannabinoid research. Moreover, their therapeutic potential in feeding behaviour alterations will be considered.
Collapse
Affiliation(s)
- Ricardo E Ramírez-Orozco
- Departamento de Nutricion y Cultura Fisica, Centro de Ciencias de la Salud, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags, Mexico
| | - Ricardo García-Ruiz
- Departamento de Fisiologia, Facultad de Medicina. Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Paula Morales
- Instituto de Quimica Fisica Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Carlos M Villalón
- Departamento de Farmacobiologia, Cinvestav- Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330 Ciudad de Mexico, Mexico
| | - J Rafael Villafán-Bernal
- Departamento de Cirugia, Centro de Ciencias de la Salud, Universidad Autonoma de Aguascalientes, CP 20131 Aguascalientes, Ags, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiologia y Farmacologia, Centro de Ciencias Basicas, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags, Mexico
| |
Collapse
|
30
|
Leitch VD, Brassill MJ, Rahman S, Butterfield NC, Ma P, Logan JG, Boyde A, Evans H, Croucher PI, Batterham RL, Williams GR, Bassett JHD. PYY is a negative regulator of bone mass and strength. Bone 2019; 127:427-435. [PMID: 31306808 PMCID: PMC6715792 DOI: 10.1016/j.bone.2019.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Bone loss in anorexia nervosa and following bariatric surgery is associated with an elevated circulating concentration of the gastrointestinal, anorexigenic hormone, peptide YY (PYY). Selective deletion of the PYY receptor Y1R in osteoblasts or Y2R in the hypothalamus results in high bone mass, but deletion of PYY in mice has resulted in conflicting skeletal phenotypes leading to uncertainty regarding its role in the regulation of bone mass. As PYY analogs are under development for treatment of obesity, we aimed to clarify the relationship between PYY and bone mass. METHODS The skeletal phenotype of Pyy knockout (KO) mice was investigated during growth (postnatal day P14) and adulthood (P70 and P186) using X-ray microradiography, micro-CT, back-scattered electron scanning electron microscopy (BSE-SEM), histomorphometry and biomechanical testing. RESULTS Bones from juvenile and Pyy KO mice were longer (P < 0.001), with decreased bone mineral content (P < 0.001). Whereas, bones from adult Pyy KO mice had increased bone mineral content (P < 0.05) with increased mineralisation of both cortical (P < 0.001) and trabecular (P < 0.001) compartments. Long bones from adult Pyy KO mice were stronger (maximum load P < 0.001), with increased stiffness (P < 0.01) and toughness (P < 0.05) compared to wild-type (WT) control mice despite increased cortical vascularity and porosity (P < 0.001). The increased bone mass and strength in Pyy KO mice resulted from increases in trabecular (P < 0.01) and cortical bone formation (P < 0.05). CONCLUSIONS These findings demonstrate that PYY acts as a negative regulator of osteoblastic bone formation, implicating increased PYY levels in the pathogenesis of bone loss during anorexia or following bariatric surgery.
Collapse
Affiliation(s)
- Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Mary Jane Brassill
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Sofia Rahman
- Centre for Obesity Research, University College London, London WC1E 6JF, United Kingdom
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Pattara Ma
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Alan Boyde
- Queen Mary University of London, Oral BioEngineering, Bart's and The London School of Medicine and Dentistry, London E1 4NS, United Kingdom
| | - Holly Evans
- Sheffield Myeloma Research Team, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Peter I Croucher
- The Garvan Institute of Medical Research and St. Vincent's Clinical School, University of New South Wales Medicine, Sydney, New South Wales 2010, Australia
| | - Rachel L Batterham
- Centre for Obesity Research, University College London, London WC1E 6JF, United Kingdom; National Institute of Health Research, University College London Hospitals Biomedical Research Centre, London Q1T 7DN, United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom.
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom.
| |
Collapse
|
31
|
Zhong S, Zhou Z, Liang Y, Cheng X, Li Y, Teng W, Zhao M, Liu C, Guan M, Zhao C. Targeting strategies for chemotherapy-induced peripheral neuropathy: does gut microbiota play a role? Crit Rev Microbiol 2019; 45:369-393. [PMID: 31106639 DOI: 10.1080/1040841x.2019.1608905] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, often irreversible condition that produces severe neurological deficits. Emerging data suggest that chemotherapy also exerts detrimental effects on gut microbiota composition and intestinal permeability, contributing to dysbiosis and inflammation. Compared with other complications associated with chemotherapy, such as diarrhoea and mucositis, CIPN is of particular concern because it is the most common reason for terminating or suspending treatment. However, specific and effective curative treatment strategies are lacking. In this review, we provide an update on current preclinical and clinical understandings about the role of gut microbiota in CIPN. The gut microbiota serves as an intersection between the microbiome-gut-brain and the neuroimmune-endocrine axis, forming a complex network that can directly or indirectly affect key components involved in the manifestations of CIPN. Herein, we discuss several potential mechanisms within the context of the networks and summarize alterations in gut microbiome induced by chemotherapeutic drugs, providing great potential for researchers to target pathways associated with the gut microbiome and overcome CIPN.
Collapse
Affiliation(s)
- Shanshan Zhong
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University , Shenyang , PR China
| | - Yifan Liang
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Xi Cheng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University , Shenyang , PR China
| | - Weiyu Teng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Mei Zhao
- Department of Cardiology, Shengjing Hospital of China Medical University , Shenyang , PR China
| | - Chang Liu
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Meiting Guan
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Chuansheng Zhao
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| |
Collapse
|
32
|
|
33
|
Cataldo Bascuñan LR, Lyons C, Bennet H, Artner I, Fex M. Serotonergic regulation of insulin secretion. Acta Physiol (Oxf) 2019; 225:e13101. [PMID: 29791774 DOI: 10.1111/apha.13101] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022]
Abstract
The exact physiological role for the monoamine serotonin (5-HT) in modulation of insulin secretion is yet to be fully understood. Although the presence of this monoamine in islets of Langerhans is well established, it is only with recent advances that the complex signalling network in islets involving 5-HT is being unravelled. With more than fourteen different 5-HT receptors expressed in human islets and receptor-independent mechanisms in insulin-producing β-cells, our understanding of 5-HT's regulation of insulin secretion is increasing. It is now widely accepted that failure of the pancreatic β-cell to release sufficient amounts of insulin is the main cause of type 2 diabetes (T2D), an ongoing global epidemic. In this context, 5-HT signalling may be of importance. In fact, 5-HT may serve an essential role in regulating the release of insulin and glucagon, the two main hormones that control glucose and lipid homoeostasis. In this review, we will discuss past and current understanding of 5-HT's role in the endocrine pancreas.
Collapse
Affiliation(s)
- L. R. Cataldo Bascuñan
- Endocrine Cell Differentiation and Function Group; Stem Cell Centre; Lund University; Lund Sweden
| | - C. Lyons
- Department of Clinical Sciences in Malmö; Unit of Molecular Metabolism; Lund University Diabetes Centre; Lund University; Malmö Sweden
- Clinical Research Center; Lund University; Malmö Sweden
- Malmö University Hospital; Lund University; Malmö Sweden
| | - H. Bennet
- Department of Clinical Sciences in Malmö; Unit of Molecular Metabolism; Lund University Diabetes Centre; Lund University; Malmö Sweden
- Clinical Research Center; Lund University; Malmö Sweden
- Malmö University Hospital; Lund University; Malmö Sweden
| | - I. Artner
- Endocrine Cell Differentiation and Function Group; Stem Cell Centre; Lund University; Lund Sweden
| | - M. Fex
- Department of Clinical Sciences in Malmö; Unit of Molecular Metabolism; Lund University Diabetes Centre; Lund University; Malmö Sweden
- Clinical Research Center; Lund University; Malmö Sweden
- Malmö University Hospital; Lund University; Malmö Sweden
| |
Collapse
|
34
|
Mazzoni M, Karunaratne TB, Sirri F, Petracci M, De Giorgio R, Sternini C, Clavenzani P. Enteroendocrine profile of α-transducin and α-gustducin immunoreactive cells in the chicken (Gallus domesticus) gastrointestinal tract. Poult Sci 2018; 97:4063-4072. [PMID: 29955800 PMCID: PMC6162362 DOI: 10.3382/ps/pey279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
The enteroendocrine profile and distribution patterns of the taste signaling molecules, α-gustducin (Gαgust) and α-transducin (Gαtran) protein subunits, were studied in the gastrointestinal (GI) tract of the chicken (Gallus domesticus) using double labeling immunohistochemistry. Gαtran or Gαgust immunoreactivity was observed in enteroendocrine cells (EEC) expressing different peptides throughout the entire GI tract with different density. In the proventriculus tubular gland, Gαtran or Gαgust/gastrin (GAS) immunoreactive (-IR) cells were more abundant than Gαtran/or Gαgust containing glucagon-like peptide-1 (GLP-1) or peptide YY (PYY), whereas only few Gαtran or Gαgust cells co-stored ghrelin (GHR) or 5-hydroxytryptamine (5-HT). In the pyloric mucosa, many Gαtran or Gαgust-IR cells co-expressed GAS or GHR, with less Gαtran or Gαgust cells containing GLP-1, PYY, or 5-HT. In the small intestine, a considerable subset of Gαtran or Gαgust-IR cells co-expressed 5-HT in the villi of the duodenum and ileum, PYY in the villi of the jejunum, CCK or GLP-1 in the villi of the ileum, and GHR in the duodenum crypts. In the large intestine, many Gαtran or Gαgust-IR cells contained 5-HT or GLP-1 in the villi of the rectum, whereas some Gαtran/Gαgust-IR cells co-expressed PYY- or CCK-, and few Gαtran/Gαgust-IR cells were positive for GHR-IR. In the cecum, several Gαtran or Gαgust-IR cells were IR for 5-HT. Finally, many Gαtran/Gαgust cells containing 5-HT were observed in the villi and crypts of the cloaca, whereas there were few Gαtran or Gαgust/CCK-IR cells. The demonstration that Gα-subunits are expressed in the chicken GI enteroendocrine system supports the involvement of taste signaling machinery in the chicken chemosensing processes.
Collapse
Affiliation(s)
- M Mazzoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - T B Karunaratne
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Italy
| | - F Sirri
- Department of Agricultural and Food Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - M Petracci
- Department of Agricultural and Food Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - R De Giorgio
- Department of Medical Sciences, University of Ferrara, Nuovo Arcispedale S.Anna, in Cona, 44121 Ferrara, Italy
| | - C Sternini
- CURE/DDRC, Division of Digestive Diseases, Departments Medicine and Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - P Clavenzani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| |
Collapse
|
35
|
Abstract
Neuroendocrine tumours (NETs) are neoplasms that arise from neuroendocrine cells. Neuroendocrine cells and their tumours can secrete a wide range of amines and polypeptide hormones into the systemic circulation. This feature has triggered widespread investigation into circulating biomarkers for the diagnosis of NETs as well as for the prediction of the biological behaviour of tumour cells. Classic examples of circulating biomarkers for gastroenteropancreatic NETs include chromogranin A, neuron-specific enolase and pancreatic polypeptide as well as hormones that elicit clinical syndromes, such as serotonin and its metabolites, insulin, glucagon and gastrin. Biomarker metrics of general markers for diagnosing all gastroenteropancreatic NET subtypes are limited, but specific hormonal measurements can be of diagnostic value in select cases. In the past decade, methods for detecting circulating transcripts and tumour cells have been developed to improve the diagnosis of patients with NETs. Concurrently, modern scanning techniques and superior radiotracers for functional imaging have markedly expanded the options for clinicians dealing with NETs. Here, we review the latest research on biomarkers in the NET field to provide clinicians with a comprehensive overview of relevant diagnostic biomarkers that can be implemented in dedicated situations.
Collapse
Affiliation(s)
- Johannes Hofland
- ENETS Center of Excellence, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands.
| | - Wouter T Zandee
- ENETS Center of Excellence, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Wouter W de Herder
- ENETS Center of Excellence, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
36
|
Li R, Li Y, Su Y, Shen D, Dai P, Li C. Short-term ingestion of deoxynivalenol in naturally contaminated feed alters piglet performance and gut hormone secretion. Anim Sci J 2018; 89:1134-1143. [PMID: 29808618 DOI: 10.1111/asj.13034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/06/2018] [Indexed: 12/19/2022]
Abstract
The mycotoxin deoxynivalenol (DON) generally exists in cereals and affects human and animal health. The aim of this study is to analyze the impacts of DON in naturally contaminated feed on piglet growth performance and intestinal hormone secretion in the short term. We randomly divided 5-week-old piglets into four groups: Control, DON 1,000, DON 2,000 and DON 3,000 groups. Piglets received a feed naturally contaminated with DON (approximately 400, 1,000, 2,000 or 3,000 μg/kg) for 21 days. Body weight showed no significant difference following exposure to DON. The balance of anti-oxidation and oxidation was disrupted by DON after 21 days. The concentration of tumor necrosis factor-alpha (TNF-α) and cyclooxgenase-2 (COX-2) significantly increased (p < .001) in all DON-treated groups. Gut anorexigenic hormone secretion of peptide YY (PYY) and cholecystokinin (CCK) had a time- and dose-dependent relationship with DON exposure; however, there was no effect on orexigenic hormone ghrelin secretion. Changes of histomorphology in the jejunum were observed in DON-treated groups, including villi flattening and fusion, and apical necrosis of villi. These results indicated that DON could suppress piglet growth performance and alter gut hormone secretion in the short term.
Collapse
Affiliation(s)
- Ruonan Li
- Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yansen Li
- Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongteng Su
- Jiangsu Aomai Bio-Tech Company, Nanjing White Horse National Modern Agricultural High-Tech Industrial Park, Nanjing, China
| | - Dan Shen
- Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Pengyuan Dai
- Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chunmei Li
- Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Cheng X, Voss U, Ekblad E. Tuft cells: Distribution and connections with nerves and endocrine cells in mouse intestine. Exp Cell Res 2018; 369:105-111. [PMID: 29758188 DOI: 10.1016/j.yexcr.2018.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/31/2022]
Abstract
Tuft cells are gastrointestinal (GI) sensory cells recognized by their characteristic shape and their microvilli "tuft". Aims of the present study were to elucidate their regional distribution and spatial connections with satiety associated endocrine cells and nerve fibers throughout the intestinal tract. C57BL/6 J mice were used in the experiments. The small intestine was divided into five segments, and the large intestine was kept undivided. The segments were coiled into "Swiss rolls". Numbers and topographic distribution of tuft cells and possible contacts with endocrine cells and nerve fibers were estimated in the different segments, using immunocytochemistry. Tuft cells were found throughout the intestines; the highest number was in proximal small intestine. Five percent of tuft cells were found in close proximity to cholecystokinin-immunoreactive (IR) endocrine cells and up to 10% were in contact with peptide YY- and glucagon-like peptide-1-IR endocrine cells. Sixty percent of tuft cells in the small intestine and 40% in the large intestine were found in contact with nerve fibers. Calcitonin gene-related peptide-IR fibers constituted one-third of the fiber-contacts in the small intestine and two-thirds in the large intestine. These observations highlight the possibility of tuft cells as modulators of GI activities in response to luminal signaling.
Collapse
Affiliation(s)
- Xiaowen Cheng
- Department of Experimental Medical Science, Unit of Neurogastroenterology, Lund University, Sölvegatan 19, BMC B11, SE-22184 Lund, Sweden.
| | - Ulrikke Voss
- Department of Experimental Medical Science, Unit of Neurogastroenterology, Lund University, Sölvegatan 19, BMC B11, SE-22184 Lund, Sweden.
| | - Eva Ekblad
- Department of Experimental Medical Science, Unit of Neurogastroenterology, Lund University, Sölvegatan 19, BMC B11, SE-22184 Lund, Sweden.
| |
Collapse
|
38
|
Abstract
Islets of Langerhans are islands of endocrine cells scattered throughout the pancreas. A number of new studies have pointed to the potential for conversion of non-β islet cells in to insulin-producing β-cells to replenish β-cell mass as a means to treat diabetes. Understanding normal islet cell mass and function is important to help advance such treatment modalities: what should be the target islet/β-cell mass, does islet architecture matter to energy homeostasis, and what may happen if we lose a particular population of islet cells in favour of β-cells? These are all questions to which we will need answers for islet replacement therapy by transdifferentiation of non-β islet cells to be a reality in humans. We know a fair amount about the biology of β-cells but not quite as much about the other islet cell types. Until recently, we have not had a good grasp of islet mass and distribution in the human pancreas. In this review, we will look at current data on islet cells, focussing more on non-β cells, and on human pancreatic islet mass and distribution.
Collapse
Affiliation(s)
- Gabriela Da Silva Xavier
- Section of Functional Genomics and Cell Biology, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston B15 2TT, UK.
| |
Collapse
|
39
|
Sun EWL, Martin AM, Young RL, Keating DJ. The Regulation of Peripheral Metabolism by Gut-Derived Hormones. Front Endocrinol (Lausanne) 2018; 9:754. [PMID: 30662430 PMCID: PMC6328484 DOI: 10.3389/fendo.2018.00754] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Enteroendocrine cells lining the gut epithelium constitute the largest endocrine organ in the body and secrete over 20 different hormones in response to cues from ingested foods and changes in nutritional status. Not only do these hormones convey signals from the gut to the brain via the gut-brain axis, they also act directly on metabolically important peripheral targets in a highly concerted fashion to maintain energy balance and glucose homeostasis. Gut-derived hormones released during fasting tend to be orexigenic and have hyperglycaemic potential. Conversely, gut hormones secreted postprandially generally promote satiety and facilitate glucose clearance. Although some of the metabolic benefits conferred by bariatric surgeries have been ascribed to changes in the secretory profiles of various gut hormones, the therapeutic potential of the enteroendocrine system as a viable target against metabolic diseases remain largely underexploited, except for incretin-mimetics. This review provides a brief overview of the physiological importance and highlights the therapeutic potential of the following gut hormones: serotonin, glucose-dependent insulinotropic peptide, glucagon-like peptide 1, oxyntomodulin, peptide YY, insulin-like peptide 5, and ghrelin.
Collapse
Affiliation(s)
- Emily W. L. Sun
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Alyce M. Martin
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Richard L. Young
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Damien J. Keating
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Damien J. Keating
| |
Collapse
|
40
|
Lach G, Schellekens H, Dinan TG, Cryan JF. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics 2018; 15:36-59. [PMID: 29134359 PMCID: PMC5794698 DOI: 10.1007/s13311-017-0585-0] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling. Given the emerging role of the gut-brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut-brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome-gut-brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota-gut-brain signaling in health and stress-related psychiatric illnesses.
Collapse
Affiliation(s)
- Gilliard Lach
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Harriet Schellekens
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Food for Health Ireland, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.
- Food for Health Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
41
|
Abstract
Although the brain is well established as a master regulator of homeostasis in peripheral tissues, central regulation of bone mass represents a novel and rapidly expanding field of study. This review examines the current understanding of central regulation of the skeleton, exploring several of the key pathways connecting brain to bone and their implications both in mice and the clinical setting. Our understanding of central bone regulation has largely progressed through examination of skeletal responses downstream of nutrient regulatory pathways in the hypothalamus. Mutations and modulation of these pathways, in cases such as leptin deficiency, induce marked bone phenotypes, which have provided vital insights into central bone regulation. These studies have identified several central neuropeptide pathways that stimulate well-defined changes in bone cell activity in response to changes in energy homeostasis. In addition, this work has highlighted the endocrine nature of the skeleton, revealing a complex cross talk that directly regulates other organ systems. Our laboratory has studied bone-active neuropeptide pathways and defined osteoblast-based actions that recapitulate central pathways linking bone, fat, and glucose homeostasis. Studies of neural control of bone have produced paradigm-shifting changes in our understanding of the skeleton and its relationship with the wider array of organ systems.
Collapse
Affiliation(s)
- Alexander Corr
- 1 The Division of Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,2 Faculty of Science, University of Bath, Bath, United Kingdom
| | - James Smith
- 1 The Division of Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,2 Faculty of Science, University of Bath, Bath, United Kingdom
| | - Paul Baldock
- 1 The Division of Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,3 Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia.,4 School of Medicine Sydney, University of Notre Dame Australia, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
Reid AMA, Wilson PW, Caughey SD, Dixon LM, D'Eath RB, Sandilands V, Boswell T, Dunn IC. Pancreatic PYY but not PPY expression is responsive to short-term nutritional state and the pancreas constitutes the major site of PYY mRNA expression in chickens. Gen Comp Endocrinol 2017; 252:226-235. [PMID: 28694054 PMCID: PMC5576917 DOI: 10.1016/j.ygcen.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
PP-fold peptides such as peptide YY (PYY) and pancreatic polypeptide (PPY) are known to play key roles in vertebrate energy homeostasis. Until recently, no gene sequence was available for avian PYY and therefore a gap in knowledge of regulation of its expression exists in avian species. Here we further evidence the mRNA sequence for chicken PYY and show that the pancreas is the major site of its mRNA expression, with a secondary peak of expression around the distal jejunum, in contrast to mammals where the large intestine is the major site of PYY expression. We also demonstrate that pancreatic PYY expression is responsive to short-term and long-term nutritional state, increasing within hours of feeding, in contrast to intestinal PYY which does not fluctuate to the same extent, and pancreatic PPY which appears to be primarily determined by long-term energy state. Both pancreatic PYY and PPY expression were found to exhibit ontogeny, being evenly distributed throughout the pancreas in young (2wk) chicks but having a decreasing splenic to duodenal gradient by adolescence (12wk).
Collapse
Affiliation(s)
- Angus M A Reid
- Roslin Institute, University of Edinburgh, EH25 9RG, Scotland, United Kingdom.
| | - Peter W Wilson
- Roslin Institute, University of Edinburgh, EH25 9RG, Scotland, United Kingdom
| | - Sarah D Caughey
- Roslin Institute, University of Edinburgh, EH25 9RG, Scotland, United Kingdom
| | - Laura M Dixon
- Scotland's Rural College (SRUC), Edinburgh EH9 3JG, Scotland, United Kingdom
| | - Rick B D'Eath
- Scotland's Rural College (SRUC), Edinburgh EH9 3JG, Scotland, United Kingdom
| | - Victoria Sandilands
- SRUC Avian Science Research Centre, Auchincruive, KA6 5HW, Scotland, United Kingdom
| | - Timothy Boswell
- School of Biology, Newcastle University, NE1 7RU, England, United Kingdom
| | - Ian C Dunn
- Roslin Institute, University of Edinburgh, EH25 9RG, Scotland, United Kingdom
| |
Collapse
|
43
|
Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The Role of the Autonomic Nervous System in the Pathophysiology of Obesity. Front Physiol 2017; 8:665. [PMID: 28966594 PMCID: PMC5606212 DOI: 10.3389/fphys.2017.00665] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
Obesity is reaching epidemic proportions globally and represents a major cause of comorbidities, mostly related to cardiovascular disease. The autonomic nervous system (ANS) dysfunction has a two-way relationship with obesity. Indeed, alterations of the ANS might be involved in the pathogenesis of obesity, acting on different pathways. On the other hand, the excess weight induces ANS dysfunction, which may be involved in the haemodynamic and metabolic alterations that increase the cardiovascular risk of obese individuals, i.e., hypertension, insulin resistance and dyslipidemia. This article will review current evidence about the role of the ANS in short-term and long-term regulation of energy homeostasis. Furthermore, an increased sympathetic activity has been demonstrated in obese patients, particularly in the muscle vasculature and in the kidneys, possibily contributing to increased cardiovascular risk. Selective leptin resistance, obstructive sleep apnea syndrome, hyperinsulinemia and low ghrelin levels are possible mechanisms underlying sympathetic activation in obesity. Weight loss is able to reverse metabolic and autonomic alterations associated with obesity. Given the crucial role of autonomic dysfunction in the pathophysiology of obesity and its cardiovascular complications, vagal nerve modulation and sympathetic inhibition may serve as therapeutic targets in this condition.
Collapse
Affiliation(s)
- Daniela Guarino
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy.,Institute of Clinical Physiology of CNRPisa, Italy.,Scuola Superiore Sant'AnnaPisa, Italy
| | - Monica Nannipieri
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | | | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Rosa Maria Bruno
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| |
Collapse
|
44
|
Schubert M, Stichel J, Du Y, Tough IR, Sliwoski G, Meiler J, Cox HM, Weaver CD, Beck-Sickinger AG. Identification and Characterization of the First Selective Y4 Receptor Positive Allosteric Modulator. J Med Chem 2017; 60:7605-7612. [DOI: 10.1021/acs.jmedchem.7b00976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mario Schubert
- Faculty
of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jan Stichel
- Faculty
of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Yu Du
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Iain R. Tough
- Wolfson
Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, U.K
| | - Gregory Sliwoski
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jens Meiler
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Helen M. Cox
- Wolfson
Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, U.K
| | - C. David Weaver
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Annette G. Beck-Sickinger
- Faculty
of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
45
|
Page AJ, Kentish SJ. Plasticity of gastrointestinal vagal afferent satiety signals. Neurogastroenterol Motil 2017; 29. [PMID: 27781333 DOI: 10.1111/nmo.12973] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
The vagal link between the gastrointestinal tract and the central nervous system (CNS) has numerous vital functions for maintaining homeostasis. The regulation of energy balance is one which is attracting more and more attention due to the potential for exploiting peripheral hormonal targets as treatments for conditions such as obesity. While physiologically, this system is well tuned and demonstrated to be effective in the regulation of both local function and promoting/terminating food intake the neural connection represents a susceptible pathway for disruption in various disease states. Numerous studies have revealed that obesity in particularly is associated with an array of modifications in vagal afferent function from changes in expression of signaling molecules to altered activation mechanics. In general, these changes in vagal afferent function in obesity further promote food intake instead of the more desirable reduction in food intake. It is essential to gain a comprehensive understanding of the mechanisms responsible for these detrimental effects before we can establish more effective pharmacotherapies or lifestyle strategies for the treatment of obesity and the maintenance of weight loss.
Collapse
Affiliation(s)
- A J Page
- Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia.,Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - S J Kentish
- Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia.,Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,School of Medicine, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
46
|
Honda K, Saneyasu T, Kamisoyama H. Gut Hormones and Regulation of Food Intake in Birds. J Poult Sci 2017; 54:103-110. [PMID: 32908415 PMCID: PMC7477125 DOI: 10.2141/jpsa.0160100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
Gut hormones act as appetite regulatory hormones in mammals. For example, the hunger hormone ghrelin, which is released from the stomach before food intake, stimulates appetite. In contrast, satiety hormones such as cholecystokinin, glucagon-like peptide-1, and peptide YY, which are released from the intestines after food intake, suppress appetite. The effects of these peptides on food intake have been shown to be similar in both mammals and fishes. However, evidence suggests that the physiological roles of these gut hormones may be different between birds and other vertebrates. This review summarizes the current information on the roles of gut hormones in the regulation of food intake in birds, especially in chickens.
Collapse
Affiliation(s)
- Kazuhisa Honda
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takaoki Saneyasu
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hiroshi Kamisoyama
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
47
|
Aoki K, Kondo M, Okuda M, Saneyasu T, Honda K, Kamisoyama H. Identification, expression analysis, and functional characterization of peptide YY in chickens (Gallus gallus domesticus). Gen Comp Endocrinol 2017; 242:11-17. [PMID: 27118705 DOI: 10.1016/j.ygcen.2016.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/05/2016] [Accepted: 04/22/2016] [Indexed: 01/04/2023]
Abstract
Peptide YY (PYY) functions as a postprandial satiety signal in mammals. However, the genomic information and physiological roles of chicken PYY have not yet been clarified, although PYY peptide was isolated from chicken intestines in 1992. In this study, we identified a full-length complementary DNA (cDNA) sequence encoding the chicken PYY precursor. The deduced amino acid sequence of chicken PYY was completely consistent with the previously identified peptide sequence. PYY mRNA was abundantly expressed in the small intestine compared with the large intestine. PYY mRNA levels in the jejunum were significantly higher during ad libitum feeding compared with fasting, suggesting that intestinal PYY expression is altered in response to nutritional status in chicks. Intravenous administration of PYY significantly suppressed food intake in chicks. Furthermore, neuropeptide Y receptor Y2, a possible target of PYY, was expressed in various brain regions including the appetite-regulating centers in chicks. This is the first evidence that the intestinal hormone PYY may function as an anorexigenic hormone in chicks.
Collapse
Affiliation(s)
- Koji Aoki
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Makoto Kondo
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Mika Okuda
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takaoki Saneyasu
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kazuhisa Honda
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | - Hiroshi Kamisoyama
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
48
|
Yan P, Jia J, Yang G, Wang D, Sun C, Li W. Duplication of neuropeptide Y and peptide YY in Nile tilapia Oreochromis niloticus and their roles in food intake regulation. Peptides 2017; 88:97-105. [PMID: 27988351 DOI: 10.1016/j.peptides.2016.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
In vertebrates, the neuropeptide Y (NPY) family peptides have been recognized as key players in food intake regulation. NPY centrally promotes feeding, while peptide YY (PYY) and pancreatic polypeptide (PP) mediate satiety. The teleost tetraploidization is well-known to generate duplicates of both NPY and PYY; however, the functional diversification between the duplicate genes, especially in the regulation of food intake, remains unknown. In this study, we identified the two duplicates of NPY and PYY in Nile tilapia (Oreochromis niloticus). Both NPYa and NPYb were primarily expressed in the central nervous system (CNS), but the mRNA levels of NPYb were markedly lower than those of NPYa. Hypothalamic mRNA expression of NPYa, but not NPYb, decreased after feeding and increased after 7-days of fasting. However, both NPYa and NPYb caused a significant increase in food intake after an intracranial injection of 50ng/g body weight dose. PYYb, one of the duplicates of PYY, had an extremely high expression in the foregut and midgut, whereas another form of duplicate PYYa showed only moderate expression in the CNS. Both hypothalamic PYYa and foregut PYYb mRNA expression increased after feeding and decreased after 7-days of fasting. Furthermore, the intracranial injection of PYYb decreased food intake, but PYYa had no significant effect. Our results suggested that although the mature peptides of NPYa and NPYb can both stimulate food intake, NPYa is the main endogenous functional NPY for feeding regulation. A functional division has been identified in the duplicates of PYY, which deems PYYb as a gut-derived anorexigenic peptide and PYYa as a CNS-specific PYY in Nile tilapia.
Collapse
Affiliation(s)
- Peipei Yan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, Research Institute of Sun Yat-Sen University in Shen Zhen, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Jirong Jia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, Research Institute of Sun Yat-Sen University in Shen Zhen, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Guokun Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, Research Institute of Sun Yat-Sen University in Shen Zhen, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Dongfang Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, Research Institute of Sun Yat-Sen University in Shen Zhen, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, Research Institute of Sun Yat-Sen University in Shen Zhen, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, Research Institute of Sun Yat-Sen University in Shen Zhen, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China.
| |
Collapse
|
49
|
Appetite responses to high-fat meals or diets of varying fatty acid composition: a comprehensive review. Eur J Clin Nutr 2017; 71:1154-1165. [DOI: 10.1038/ejcn.2016.250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023]
|
50
|
Khan D, Vasu S, Moffett RC, Irwin N, Flatt PR. Influence of neuropeptide Y and pancreatic polypeptide on islet function and beta-cell survival. Biochim Biophys Acta Gen Subj 2017; 1861:749-758. [PMID: 28069397 DOI: 10.1016/j.bbagen.2017.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND In the present study we assessed the impact of neuropeptide Y receptor (NPYR) modulators, neuropeptide Y (NPY) and pancreatic polypeptide (PP), on islet function and beta-cell survival. METHODS The effects of NPY and PP on beta-cell function were examined in BRIN BD11 and 1.1B4 beta-cells, as well as isolated mouse islets. Involvement of both peptides in pancreatic islet adaptations to streptozotocin and hydrocortisone, as well as effects on beta-cell proliferation and apoptosis was also evaluated. RESULTS Neither NPY nor PP affected in vivo glucose disposal or insulin secretion in mice. However, both peptides inhibited (p<0.05 to p<0.001) glucose stimulated insulin secretion from rat and human beta-cells. NPY exerted similar insulinostatic effects in isolated mouse islets. NPY and PP inhibited alanine-induced changes in BRIN BD11 cell membrane potential and (Ca2+)i. Streptozotocin treatment decreased and hydrocortisone treatment increased beta-cell mass in mice. In addition, streptozotocin, but not hydrocortisone, increased PP cell area. Streptozotocin also shifted the normal co-localisation of NPY with PP, towards more pronounced co-expression with somatostatin in delta-cells. Both streptozotocin and hydrocortisone increased pancreatic exocrine expression of NPY. More detailed in vitro investigations revealed that NPY, but not PP, augmented (p<0.01) BRIN BD11 beta-cell proliferation. In addition, both peptides exerted protective effects against streptozotocin-induced DNA damage in beta-cells. CONCLUSION These data emphasise the involvement of PP, and particularly NPY, in the regulation of beta-cell mass and function. GENERAL SIGNIFICANCE Modulation of PP and NPY signalling is suitable for further evaluation and possible clinical development for the treatment of diabetes.
Collapse
Affiliation(s)
- Dawood Khan
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Srividya Vasu
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK.
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|