1
|
Han C, Cheung VCK, Chan RHM. Aging amplifies sex differences in low alpha and low beta EEG oscillations. Neuroimage 2025:121231. [PMID: 40252876 DOI: 10.1016/j.neuroimage.2025.121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/30/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025] Open
Abstract
Biological sex profoundly shapes brain function, yet its precise influence on neural oscillations was poorly understood. Despite decades of research, studies investigating sex-based variations in electroencephalographic (EEG) signals have yielded inconsistent findings that obstructs what may be a potentially crucial source of inter-individual variability in brain function. To address this, we analyzed five publicly available resting-state datasets, comprising EEG data (n=445) and iEEG data (n=103). Three age ranges were defined, young adult (YA, 18-30 years), middle-aged adult (MA, 30-55 years) and older adult (OA, 55-75 years). Our results revealed striking age-dependent sex differences: OA group exhibited robust sex differences, with males showing heightened low alpha (8-9 Hz) activity in temporal regions and attenuated low beta (16-20 Hz) oscillations in parietal-occipital areas compared to females. Intriguingly, these sex-specific patterns were absent in YA group, suggesting a complex interplay between sex and aging in shaping brain dynamics. The MA groups fall in between YA and OA group. The increase of low beta band activity in older female adults is strongly associated with hip size and BMI. Furthermore, we identified consistent sex-related activity in the precentral gyrus with the results of scalp EEG, potentially driving the observed scalp EEG differences. This multi-level analysis allowed us to bridge the gap between cortical and scalp-level observations, providing a more comprehensive picture of sex-related neural dynamics. The distinct associations between sex-specific oscillatory patterns and several lifestyle factors demonstrates the complex interplay between sex, age, and neural oscillations, revealing the variability in brain dynamics. Our findings highlight the importance of careful demographic consideration in EEG research design to ensure fairness in capturing the full spectrum of neurophysiological diversity.
Collapse
Affiliation(s)
- Chuanliang Han
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Vincent C K Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Rosa H M Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Yang X, Qi F, Li C, Liu K, Yu H, Han Y, Chen Y, Sun Y, Li C. The impact of hyperventilation on brain alpha activity: An EEG study. Brain Res Bull 2025; 225:111343. [PMID: 40209944 DOI: 10.1016/j.brainresbull.2025.111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/12/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Hyperventilation (HV) is a major physiological risk factor in environments like high altitudes or hypoxic conditions, causing a range of physiological changes that can potentially impair cognitive functions. As an important bridge connecting brain physiological states and cognitive functions, the variation of alpha activity under the effect of HV has not been fully explored. To this end, this work aims to reveal the changes in EEG alpha activity induced by HV in terms of power spectrum and functional connectivity (FC). EEG data were recorded from 305 healthy young male subjects when they were under three stages: Pre-HV, HV, and Post-HV. Then, EEG power spectrum was estimated and adjusted by removing the aperiodic components. The alpha peak frequency (APF) and adjusted alpha peak frequency (aAPF) were both slowed from Pre-HV to HV and recovered in Post-HV, which revealed a U-shaped trend. Both the alpha peak power (AP) and adjusted alpha peak power (aAP) decreased during HV. FC was assessed via the weighted Phase Lag Index (wPLI), which exhibited a HV-related decrease followed by an increase in Post-HV, with a rightward lateralization shift. In summary, both the power spectrum and FC metrics showed a U-shaped tendency, suggesting a negative impact of HV on alpha activity. Our findings provide some of the first quantitative insights into the effects of HV on alpha activity, further confirming the regulatory patterns of HV on neural activity.
Collapse
Affiliation(s)
- Xiaodong Yang
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China; Naval Medical Center, Naval Medical University, Shanghai 200433, China
| | - Fugui Qi
- School of Biomedical Engineering, Fourth Military Medical University, 710032, China
| | - Chunhong Li
- Naval Medical Center, Naval Medical University, Shanghai 200433, China
| | - Kaixin Liu
- Naval Medical Center, Naval Medical University, Shanghai 200433, China
| | - Hao Yu
- Naval Medical Center, Naval Medical University, Shanghai 200433, China
| | - Yi Han
- Naval Medical Center, Naval Medical University, Shanghai 200433, China
| | - Ying Chen
- Naval Medical Center, Naval Medical University, Shanghai 200433, China
| | - Yu Sun
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Chuantao Li
- Naval Medical Center, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
3
|
Hsu P, Jobst C, Isabella SL, Domi T, Westmacott R, Dlamini N, Cheyne D. Cortical Oscillatory Activity and Motor Control in Pediatric Stroke Patients With Hemidystonia. Hum Brain Mapp 2025; 46:e70204. [PMID: 40186512 PMCID: PMC11971656 DOI: 10.1002/hbm.70204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Dystonia is a movement disorder characterized by repetitive muscle contractions, twisting movements, and abnormal posture, affecting 20% of pediatric arterial ischemic stroke (AIS) survivors. Recent studies have reported that children with dystonia are at higher risk of cognitive deficits. The connection between impaired motor outcomes and cognitive impairment in dystonia is not fully understood; dystonia might affect motor control alone, or it could also contribute to cognitive impairment through disruptions in higher-order motor processes. To assess the functional correlates underlying motor control in children with dystonia, we used magnetoencephalography (MEG) to measure frontal theta (4-8 Hz), motor beta (15-30 Hz), and sensorimotor gamma (60-90 Hz) activity during a "go"/"no-go" task. Beamformer-based source analysis was carried out on 19 post-stroke patients: nine with dystonia (mean age = 13.78, SD = 2.82, 8 females), 10 without dystonia (mean age = 12.90, SD = 3.54, 4 females), and 17 healthy controls (mean age = 12.82, SD = 2.72, 8 females). To evaluate inhibitory control, frontal theta activity was analyzed during correct "no-go" (successful withhold) trials. To assess motor execution and sensorimotor integration, movement time-locked beta and sensorimotor gamma activity were analyzed during correct "go" trials. Additionally, the Delis-Kaplan Executive Function System (DKEFS) color-word interference task was used as a non-motor, inhibitory control task to evaluate general cognitive inhibition abilities. During affected hand use, dystonia patients had higher "no-go" error rates (failed withhold) compared to all other groups. Dystonia patients also exhibited higher frontal theta power during correct withhold responses for both affected and unaffected hands compared to healthy controls. Furthermore, dystonia patients exhibited decreased movement-evoked gamma power and gamma peak frequency compared to non-dystonia patients and healthy controls. Movement-related beta desynchronization (ERD) activity was increased in non-dystonia patients for both hands compared to healthy participants. These results confirm that post-stroke dystonia is associated with impaired frontally mediated inhibitory control, as reflected by increased frontal theta power. Post-stroke dystonia patients also exhibited reduced motor gamma activity during movement, reflecting altered sensorimotor integration. The increased beta ERD activity in non-dystonia patients may suggest compensatory sensorimotor plasticity not observed in dystonia patients. These findings suggest that differences in motor outcomes in childhood stroke result from a combination of cognitive and motor deficits.
Collapse
Affiliation(s)
- Prisca Hsu
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Cecilia Jobst
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Silvia L. Isabella
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Trish Domi
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Robyn Westmacott
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Nomazulu Dlamini
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Paediatrics (Neurology)University of TorontoTorontoOntarioCanada
| | - Douglas Cheyne
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
4
|
Dede AJO, Xiao W, Vaci N, Cohen MX, Milne E. Exploring EEG resting state differences in autism: sparse findings from a large cohort. Mol Autism 2025; 16:13. [PMID: 39994801 PMCID: PMC11853566 DOI: 10.1186/s13229-025-00647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Autism is a complex neurodevelopmental condition, the precise neurobiological underpinnings of which remain elusive. Here, we focus on group differences in resting state EEG (rsEEG). Although many previous reports have pointed to differences between autistic and neurotypical participants in rsEEG, results have failed to replicate, sample sizes have typically been small, and only a small number of variables are reported in each study. METHODS Here, we combined five datasets to create a large sample of autistic and neurotypical individuals (n = 776) and extracted 726 variables from each participant's data. We computed effect sizes and split-half replication rate for group differences between autistic and neurotypical individuals for each EEG variable while accounting for age, sex and IQ. Bootstrapping analysis with different sample sizes was done to establish how effect size and replicability varied with sample size. RESULTS Despite the broad and exploratory approach, very few EEG measures varied with autism diagnosis, and when larger effects were found, the majority were not replicable under split-half testing. In the bootstrap analysis, smaller sample sizes were associated with larger effect sizes but lower replication rates. LIMITATIONS Although we extracted a comprehensive set of EEG signal components from the data, there is the possibility that measures more sensitive to group differences may exist outside the set that we tested. The combination of data from different laboratories may have obscured group differences. However, our harmonisation process was sufficient to reveal several expected maturational changes in the EEG (e.g. delta power reduction with age), providing reassurance regarding both the integrity of the data and the validity of our data-handling and analysis approaches. CONCLUSIONS Taken together, these data do not produce compelling evidence for a clear neurobiological signature that can be identified in autism. Instead, our results are consistent with heterogeneity in autism, and caution against studies that use autism diagnosis alone as a method to categorise complex and varied neurobiological profiles.
Collapse
Affiliation(s)
- Adam J O Dede
- School of Psychology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Medical and Social Sciences, Northwestern University, Chicago, USA
| | - Wenyi Xiao
- School of Psychology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Nemanja Vaci
- School of Psychology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael X Cohen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, 6525 EN, The Netherlands
| | - Elizabeth Milne
- School of Psychology, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
5
|
Choi BJ, Liu J. A low-cost transhumeral prosthesis operated via an ML-assisted EEG-head gesture control system. J Neural Eng 2025; 22:016031. [PMID: 39854835 DOI: 10.1088/1741-2552/adae35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/24/2025] [Indexed: 01/27/2025]
Abstract
Objective.Key challenges in upper limb prosthetics include a lack of effective control systems, the often invasive surgical requirements of brain-controlled limbs, and prohibitive costs. As a result, disuse rates remain high despite potential for increased quality of life. To address these concerns, this project developed a low cost, noninvasive transhumeral neuroprosthesis-operated via a combination of electroencephalography (EEG) signals and head gestures.Approach.To address the shortcomings of current noninvasive neural monitoring techniques-namely, single-channel EEG-we leveraged machine learning (ML), creating a neural network-based EEG interpretation algorithm. ML generation was guided by two underlying goals: (1) to improve overall system performance by combining discrete models using a prediction voting scheme, and (2) to favor modeldiversitywithin these new neural network ensembles, as opposed to individual modelperformance. EEG data from eight frequency bands was collected from human subjects to train a ML algorithm employing a hierarchical mixture-of-experts structure. We also implemented head gesture-based control to assist in the generation of additional stable classes for the control system.Main results.The final model performs competitively with existing EEG interpretation systems. Inertial measurement unit (IMU)-based head gestures supplement the neural control system, with 270° actuation of synovial elbow and radial wrist joints driven by intuitive corresponding head gestures. The brain-controlled prosthesis presented in this study costs US$300 to manufacture and achieved competitive performance on a Box and Block Test.Significance.These results suggest proof-of-concept for potential application as an alternative to current prosthetics, but it is important to note that the demonstration in this study remains exploratory. Future work includes broader clinical testing and exploring further uses for the developed ML system.
Collapse
Affiliation(s)
| | - Ji Liu
- Stony Brook University, Stony Brook, NY, United States of America
| |
Collapse
|
6
|
Wriessnegger SC, Leitner M, Kostoglou K. The brain under pressure: Exploring neurophysiological responses to cognitive stress. Brain Cogn 2024; 182:106239. [PMID: 39556965 DOI: 10.1016/j.bandc.2024.106239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Stress is an increasingly dominating part of our daily lives and higher performance requirements at work or to ourselves influence the physiological reaction of our body. Elevated stress levels can be reliably identified through electroencephalogram (EEG) and heart rate (HR) measurements. In this study, we examined how an arithmetic stress-inducing task impacted EEG and HR, establishing meaningful correlations between behavioral data and physiological recordings. Thirty-one healthy participants (15 females, 16 males, aged 20 to 37) willingly participated. Under time pressure, participants completed arithmetic calculations and filled out stress questionnaires before and after the task. Linear mixed effects (LME) allowed us to generate topographical association maps showing significant relations between EEG features (delta, theta, alpha, beta, and gamma power) and factors such as task difficulty, error rate, response time, stress scores, and HR. With task difficulty, we observed left centroparietal and parieto-occipital theta power decreases, and alpha power increases. Furthermore, frontal alpha, delta and theta activity increased with error rate and relative response time, while parieto-temporo-occipital alpha power decreased. Practice effects on EEG power included increases in temporal, parietal, and parieto-occipital theta and alpha activity. HR was positively associated with frontal delta, theta and alpha power whereas frontal gamma power decreases. Significant alpha laterality scores were observed for all factors except task difficulty and relative response time, showing overall increases in left parietal regions. Significant frontal alpha asymmetries emerged with increases in error rate, sex, run number, and HR and occipital alpha asymmetries were also found with run number and HR. Additionally we explored practice effects and noted sex-related differences in EEG features, HR, and questionnaire scores. Overall, our study enhances the understanding of EEG/ECG-based mental stress detection, crucial for early interventions, personalized treatment and objective stress assessment towards the development of a neuroadaptive system.
Collapse
Affiliation(s)
- S C Wriessnegger
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - M Leitner
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - K Kostoglou
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
7
|
Vandewouw MM, Sato J, Safar K, Rhodes N, Taylor MJ. The development of aperiodic and periodic resting-state power between early childhood and adulthood: New insights from optically pumped magnetometers. Dev Cogn Neurosci 2024; 69:101433. [PMID: 39126820 PMCID: PMC11350249 DOI: 10.1016/j.dcn.2024.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Neurophysiological signals, comprised of both periodic (e.g., oscillatory) and aperiodic (e.g., non-oscillatory) activity, undergo complex developmental changes between childhood and adulthood. With much of the existing literature primarily focused on the periodic features of brain function, our understanding of aperiodic signals is still in its infancy. Here, we are the first to examine age-related changes in periodic (peak frequency and power) and aperiodic (slope and offset) activity using optically pumped magnetometers (OPMs), a new, wearable magnetoencephalography (MEG) technology that is particularly well-suited for studying development. We examined age-related changes in these spectral features in a sample (N=65) of toddlers (1-3 years), children (4-5 years), young adults (20-26 years), and adults (27-38 years). Consistent with the extant literature, we found significant age-related decreases in the aperiodic slope and offset, and changes in peak frequency and power that were frequency-specific; we are the first to show that the effect sizes of these changes also varied across brain regions. This work not only adds to the growing body of work highlighting the advantages of using OPMs, especially for studying development, but also contributes novel information regarding the variation of neurophysiological changes with age across the brain.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
| | - Julie Sato
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Kristina Safar
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Natalie Rhodes
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Margot J Taylor
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Zhao Q, Luo Y, Mei X, Shao Z. Resting-state EEG patterns of preschool-aged boys with autism spectrum disorder: A pilot study. APPLIED NEUROPSYCHOLOGY. CHILD 2024; 13:413-420. [PMID: 37172019 DOI: 10.1080/21622965.2023.2211702] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Defective cognition development during preschool years is believed to be linked with core symptoms of autism spectrum disorder (ASD). Neurophysiological research on mechanisms underly the cognitive disabilities of preschool-aged children with ASD is scarce currently. This pilot study aimed to compare the resting spectral EEG power of preschool-aged boys with ASD with their matched typically developing peers. Children in the ASD group demonstrated reduced central and posterior absolute delta (1-4 Hz) and enhanced frontal absolute beta (12-30 Hz) and gamma (30-45 Hz). The relative power of the ASD group was elevated in delta, theta (4-8 Hz), alpha (8-12 Hz), beta, and gamma bands as compared to the controls. The theta/beta ratio decreased in the frontal regions and enhanced at Cz and Pz electrodes in the ASD group. Correlations between the inhibition and metacognition indices of the behavior rating inventory of executive function-preschool version (BRIEF-P) and the theta/beta ratio for children of both groups were significant. In conclusion, the present study revealed atypical resting spectral characteristics of boys with ASD at preschool ages. Future large-sampled studies for the generalization of our findings and a better understanding of the relationships between brain oscillations and phenotypes of ASD are warranted.
Collapse
Affiliation(s)
- Qin Zhao
- Rehabilitation Center for Children with Autism of Chongqing, Department of Child Health Care, Ninth People's Hospital of Chongqing, Beibei, Chongqing, China
| | - Yan Luo
- Department of Child Health Care, Guiyang Maternal and Child Health Care Hospital, Guiyang, China
| | - Xinjie Mei
- Department of Child Health Care, Guiyang Maternal and Child Health Care Hospital, Guiyang, China
| | - Zhi Shao
- Rehabilitation Center for Children with Autism of Chongqing, Department of Child Health Care, Ninth People's Hospital of Chongqing, Beibei, Chongqing, China
| |
Collapse
|
9
|
Barry RJ, De Blasio FM, Clarke AR, Duda AT, Munford BS. Age-Related Differences in Prestimulus EEG Affect ERPs and Behaviour in the Equiprobable Go/NoGo Task. Brain Sci 2024; 14:868. [PMID: 39335364 PMCID: PMC11429530 DOI: 10.3390/brainsci14090868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Detailed studies of the equiprobable auditory Go/NoGo task have allowed for the development of a sequential-processing model of the perceptual and cognitive processes involved. These processes are reflected in various components differentiating the Go and NoGo event-related potentials (ERPs). It has long been established that electroencephalography (EEG) changes through normal lifespan development. It is also known that ERPs and behaviour in the equiprobable auditory Go/NoGo task change from children to young adults, and again in older adults. Here, we provide a novel examination of links between in-task prestimulus EEG, poststimulus ERPs, and behaviour in three gender-matched groups: children (8-12 years), young adults (18-24 years), and older adults (59-74 years). We used a frequency Principal Component Analysis (f-PCA) to estimate prestimulus EEG components and a temporal Principal Component Analysis (t-PCA) to separately estimate poststimulus ERP Go and NoGo components in each age group to avoid misallocation of variance. The links between EEG components, ERP components, and behavioural measures differed markedly between the groups. The young adults performed best and accomplished this with the simplest EEG-ERP-behaviour brain dynamics pattern. The children performed worst, and this was reflected in the most complex brain dynamics pattern. The older adults showed some reduction in performance, reflected in an EEG-ERP-behaviour pattern with intermediate complexity between those of the children and young adults. These novel brain dynamics patterns hold promise for future developmental research.
Collapse
Affiliation(s)
- Robert J Barry
- Brain & Behaviour Research Institute, School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Frances M De Blasio
- Brain & Behaviour Research Institute, School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Adam R Clarke
- Brain & Behaviour Research Institute, School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Alexander T Duda
- Brain & Behaviour Research Institute, School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Beckett S Munford
- Brain & Behaviour Research Institute, School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
10
|
Ünsal E, Duygun R, Yemeniciler İ, Bingöl E, Ceran Ö, Güntekin B. From Infancy to Childhood: A Comprehensive Review of Event- and Task-Related Brain Oscillations. Brain Sci 2024; 14:837. [PMID: 39199528 PMCID: PMC11352659 DOI: 10.3390/brainsci14080837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Brain development from infancy through childhood involves complex structural and functional changes influenced by both internal and external factors. This review provides a comprehensive analysis of event and task-related brain oscillations, focusing on developmental changes across different frequency bands, including delta, theta, alpha, beta, and gamma. Electroencephalography (EEG) studies highlight that these oscillations serve as functional building blocks for sensory and cognitive processes, with significant variations observed across different developmental stages. Delta oscillations, primarily associated with deep sleep and early cognitive demands, gradually diminish as children age. Theta rhythms, crucial for attention and memory, display a distinct pattern in early childhood, evolving with cognitive maturation. Alpha oscillations, reflecting thalamocortical interactions and cognitive performance, increase in complexity with age. Beta rhythms, linked to active thinking and problem-solving, show developmental differences in motor and cognitive tasks. Gamma oscillations, associated with higher cognitive functions, exhibit notable changes in response to sensory stimuli and cognitive tasks. This review underscores the importance of understanding oscillatory dynamics to elucidate brain development and its implications for sensory and cognitive processing in childhood. The findings provide a foundation for future research on developmental neuroscience and potential clinical applications.
Collapse
Affiliation(s)
- Esra Ünsal
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Rümeysa Duygun
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
| | - İrem Yemeniciler
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Elifnur Bingöl
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Ömer Ceran
- Department of Pediatrics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey;
| | - Bahar Güntekin
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| |
Collapse
|
11
|
Saby JN, Mulcahey PJ, Benke TA, Peters SU, Standridge SM, Lieberman DN, Key AP, Percy AK, Nelson CA, Roberts TPL, Neul JL, Marsh ED. Electroencephalographic Correlates of Clinical Severity in the Natural history study of RTT and Related Disorders. Ann Neurol 2024; 96:175-186. [PMID: 38721759 DOI: 10.1002/ana.26948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/05/2024] [Accepted: 04/08/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE This study was undertaken to characterize quantitative electroencephalographic (EEG) features in participants from the Natural history study of RTT and Related Disorders and to assess the potential for these features to act as objective measures of cortical function for Rett syndrome (RTT). METHODS EEG amplitude and power features were derived from the resting EEG of 60 females with RTT (median age = 10.7 years) and 26 neurotypical females (median age = 10.6 years). Analyses focus on group differences and within the RTT group, associations between the EEG parameters and clinical severity. For a subset of participants (n = 20), follow-up data were available for assessing the reproducibility of the results and the stability in the parameters over 1 year. RESULTS Compared to neurotypical participants, participants with RTT had greater amplitude variability and greater low-frequency activity as reflected by greater delta power, more negative 1/f slope, and lower theta/delta, alpha/delta, beta/delta, alpha/theta, and beta/theta ratios. Greater delta power, more negative 1/f slope, and lower power ratios were associated with greater severity. Analyses of year 1 data replicated the associations between 1/f slope and power ratios and clinical severity and demonstrated good within-subject consistency in these measures. INTERPRETATION Overall, group comparisons reflected a greater predominance of lower versus higher frequency activity in participants with RTT, which is consistent with prior clinical interpretations of resting EEG in this population. The observed associations between the EEG power measures and clinical assessments and the repeatability of these measures underscore the potential for EEG to provide an objective measure of cortical function and clinical severity for RTT. ANN NEUROL 2024;96:175-186.
Collapse
Affiliation(s)
- Joni N Saby
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Timothy A Benke
- Department of Pediatrics, Neurology, Pharmacology, and Otolaryngology, School of Medicine and Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
| | - Sarika U Peters
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN, USA
| | - Shannon M Standridge
- Cincinnati Children's Hospital Medical Center, Division of Neurology and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David N Lieberman
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Alexandra P Key
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN, USA
| | - Alan K Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles A Nelson
- Laboratories of Cognitive Neuroscience, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Timothy P L Roberts
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey L Neul
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN, USA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Neurology Department and Orphan Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Socanski D, Ogrim G, Duric N. Children with ADHD and EEG abnormalities at baseline assessment, risk of epileptic seizures and maintenance on methylphenidate three years later. Ann Gen Psychiatry 2024; 23:22. [PMID: 38907242 PMCID: PMC11193234 DOI: 10.1186/s12991-024-00510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
PURPOSE This study aimed to assess the incidence of EEG abnormalities (EEG-ab) in children diagnosed with ADHD, investigate the risk of epileptic seizures (SZ) and maintenance on methylphenidate (MPH) over a three-year period. METHODS A total of 517 ADHD children aged 6-14 years were included. Baseline assessments included the identification of EEG-ab, ADHD inattentive subtype (ADHD-I), comorbid epilepsy, the use of antiepileptic drugs (AEDs) and the use of MPH. At the 3-year follow-up, assessments included the presence of EEG-ab, maintenance on MPH, AED usage, SZ risk in cases with EEG-epileptiform abnormalities (EEG-epi-ab), compared with control ADHD cases without EEG-epi-ab matched for age and gender. RESULTS EEG-ab were identified in 273 (52.8%) cases. No statistically significant differences were observed between the EEG-ab and EEG-non-ab groups in terms of age, gender, ADHD-I type or initial use of MPH. EEG non-epileptiform abnormalities (EEG-non-epi-ab) were found in 234 out of 478 (49%) cases without EEG-epi-ab. Notably, EEG-non-epi-ab occurred more frequently in the group of 39 cases with EEG-epi-ab (30/39 (76.9%) vs. 9/39, (21.3%), a subset selected for 3-year follow-up. At 3-year-follow-up no statistically significant difference was found in maintenance on MPH in ADHD cases with and without EEG-epi-ab. Nobody of ADHD cases without comorbid epilepsy or with comorbid epilepsy with achieved SZ freedom developed new SZ. Only 3 children with drug resistant epilepsy experienced SZs, without increase in SZ frequency. The disappearance rate of EEG-epi-ab was higher than that EEG-non-epi-ab (71.8% vs. 33.3%). CONCLUSIONS Children with and without EEG-ab exhibited similar patterns of MPH use (initial use, positive response, and maintenance on MPH). The presence of comorbid epilepsy and EEG-ab, with or without EEG-epi-ab, was not associated with an increased risk of SZ despite the use of MPH.
Collapse
Affiliation(s)
- Dobrinko Socanski
- Department of Child and Adolescent Psychiatry, Østfold Hospital Trust, Fredrikstad, Norway.
- Department of Child and Adolescent Psychiatry, Stavanger University Hospital, Stavanger, Norway.
| | - Geir Ogrim
- Neuropsychiatric Team, Åsebråten Clinic, Østfold Hospital Trust, Fredrikstad, Norway
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Nezla Duric
- Department of Child and Adolescent Psychiatry, Fonna Health Trust, Haugesund, Norway
| |
Collapse
|
13
|
Rier L, Rhodes N, Pakenham DO, Boto E, Holmes N, Hill RM, Reina Rivero G, Shah V, Doyle C, Osborne J, Bowtell RW, Taylor M, Brookes MJ. Tracking the neurodevelopmental trajectory of beta band oscillations with optically pumped magnetometer-based magnetoencephalography. eLife 2024; 13:RP94561. [PMID: 38831699 PMCID: PMC11149934 DOI: 10.7554/elife.94561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - optically pumped magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.
Collapse
Affiliation(s)
- Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Diagnostic Imaging, The Hospital for Sick ChildrenTorontoCanada
| | - Daisie O Pakenham
- Clinical Neurophysiology, Nottingham University Hospitals NHS Trust, Queens Medical CentreNottinghamUnited States
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | | | | | | | - Richard W Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | - Margot Taylor
- Diagnostic Imaging, The Hospital for Sick ChildrenTorontoCanada
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| |
Collapse
|
14
|
Tan E, Troller-Renfree SV, Morales S, Buzzell GA, McSweeney M, Antúnez M, Fox NA. Theta activity and cognitive functioning: Integrating evidence from resting-state and task-related developmental electroencephalography (EEG) research. Dev Cogn Neurosci 2024; 67:101404. [PMID: 38852382 PMCID: PMC11214181 DOI: 10.1016/j.dcn.2024.101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
The theta band is one of the most prominent frequency bands in the electroencephalography (EEG) power spectrum and presents an interesting paradox: while elevated theta power during resting state is linked to lower cognitive abilities in children and adolescents, increased theta power during cognitive tasks is associated with higher cognitive performance. Why does theta power, measured during resting state versus cognitive tasks, show differential correlations with cognitive functioning? This review provides an integrated account of the functional correlates of theta across different contexts. We first present evidence that higher theta power during resting state is correlated with lower executive functioning, attentional abilities, language skills, and IQ. Next, we review research showing that theta power increases during memory, attention, and cognitive control, and that higher theta power during these processes is correlated with better performance. Finally, we discuss potential explanations for the differential correlations between resting/task-related theta and cognitive functioning, and offer suggestions for future research in this area.
Collapse
Affiliation(s)
- Enda Tan
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20740, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20740, USA.
| | | | - Santiago Morales
- Department of Psychology, University of Southern California, CA 90007, USA
| | - George A Buzzell
- Department of Psychology, Florida International University, FL 33199, USA
| | - Marco McSweeney
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20740, USA
| | - Martín Antúnez
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20740, USA
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20740, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20740, USA
| |
Collapse
|
15
|
Tarullo AR, Evans D, Coetzee L, Lopera-Perez DC, Brady SP, Gabard-Durnam LJ, Fink G, Hamer DH, Yousafzai AK, Rockers PC. Neonatal Physical Growth Predicts Electroencephalography Power in Rural South African Children. Brain Sci 2024; 14:552. [PMID: 38928552 PMCID: PMC11201818 DOI: 10.3390/brainsci14060552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Anthropometric measures at birth, indexing prenatal growth, are associated with later cognitive development. Children in low- and middle-income countries (LMIC) are at elevated risk for impaired prenatal and early postnatal growth and enduring cognitive deficits. However, the associations of neonatal physical growth with neural activity are not well-characterized in LMIC contexts, given the dearth of early childhood neuroimaging research in these settings. The current study examined birth length, weight, and head circumference as predictors of EEG relative power over the first three years of life in rural Limpopo Province, South Africa, controlling for postnatal growth and socioeconomic status (SES). A larger head circumference at birth predicted lower relative gamma power, lower right hemisphere relative beta power, and higher relative alpha and theta power. A greater birth length also predicted lower relative gamma power. There were interactions with timepoints such that the associations of birth head circumference and length with EEG power were most pronounced at the 7-month assessment and were attenuated at the 17- and 36-month assessments. The results identify birth head circumference and length as specific predictors of infant neural activity within an under-resourced context.
Collapse
Affiliation(s)
- Amanda R. Tarullo
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Boston University, Boston, MA 02215, USA; (D.C.L.-P.); (S.P.B.)
| | - Denise Evans
- Health Economics and Epidemiology Research Office, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2041, South Africa; (D.E.)
| | - Lezanie Coetzee
- Health Economics and Epidemiology Research Office, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2041, South Africa; (D.E.)
| | - Diana C. Lopera-Perez
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Boston University, Boston, MA 02215, USA; (D.C.L.-P.); (S.P.B.)
| | - Shaina P. Brady
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Boston University, Boston, MA 02215, USA; (D.C.L.-P.); (S.P.B.)
| | | | - Günther Fink
- Swiss Tropical and Public Health Institute, 4123 Basel, Switzerland;
| | - Davidson H. Hamer
- Department of Global Health, Boston University School of Public Health, Boston, MA 02118, USA; (D.H.H.); (P.C.R.)
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aisha K. Yousafzai
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA 02120, USA;
| | - Peter C. Rockers
- Department of Global Health, Boston University School of Public Health, Boston, MA 02118, USA; (D.H.H.); (P.C.R.)
| |
Collapse
|
16
|
Shen G, Green HL, Franzen RE, Berman JI, Dipiero M, Mowad TG, Bloy L, Liu S, Airey M, Goldin S, Ku M, McBride E, Blaskey L, Kuschner ES, Kim M, Konka K, Roberts TPL, Edgar JC. Resting-State Activity in Children: Replicating and Extending Findings of Early Maturation of Alpha Rhythms in Autism Spectrum Disorder. J Autism Dev Disord 2024; 54:1961-1976. [PMID: 36932271 DOI: 10.1007/s10803-023-05926-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/19/2023]
Abstract
Resting-state alpha brain rhythms provide a foundation for basic as well as higher-order brain processes. Research suggests atypical maturation of the peak frequency of resting-state alpha activity (= PAF) in autism spectrum disorder (ASD). The present study examined resting-state alpha activity in young school-aged children, obtaining magnetoencephalographic (MEG) eyes-closed resting-state data from 47 typically developing (TD) males and 45 ASD males 6.0 to 9.3 years old. Results confirmed a higher PAF in ASD versus TD, and demonstrated that alpha power differences between groups were linked to the shift of PAF in ASD. Additionally, a higher PAF was associated with better cognitive performance in TD but not ASD. Finding thus suggested functional consequences of group differences in resting-state alpha activity.
Collapse
Affiliation(s)
- Guannan Shen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Radiology, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA.
| | - Heather L Green
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rose E Franzen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey I Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marissa Dipiero
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Theresa G Mowad
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Megan Airey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sophia Goldin
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew Ku
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emma McBride
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa Blaskey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Autism Research, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Autism Research, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kimberly Konka
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Kang JH, Bae JH, Jeon YJ. Age-Related Characteristics of Resting-State Electroencephalographic Signals and the Corresponding Analytic Approaches: A Review. Bioengineering (Basel) 2024; 11:418. [PMID: 38790286 PMCID: PMC11118246 DOI: 10.3390/bioengineering11050418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The study of the effects of aging on neural activity in the human brain has attracted considerable attention in neurophysiological, neuropsychiatric, and neurocognitive research, as it is directly linked to an understanding of the neural mechanisms underlying the disruption of the brain structures and functions that lead to age-related pathological disorders. Electroencephalographic (EEG) signals recorded during resting-state conditions have been widely used because of the significant advantage of non-invasive signal acquisition with higher temporal resolution. These advantages include the capability of a variety of linear and nonlinear signal analyses and state-of-the-art machine-learning and deep-learning techniques. Advances in artificial intelligence (AI) can not only reveal the neural mechanisms underlying aging but also enable the assessment of brain age reliably by means of the age-related characteristics of EEG signals. This paper reviews the literature on the age-related features, available analytic methods, large-scale resting-state EEG databases, interpretations of the resulting findings, and recent advances in age-related AI models.
Collapse
Affiliation(s)
- Jae-Hwan Kang
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (J.-H.K.); (J.-H.B.)
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jang-Han Bae
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (J.-H.K.); (J.-H.B.)
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Ju Jeon
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (J.-H.K.); (J.-H.B.)
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
18
|
Schneider JM, Behboudi MH, Maguire MJ. The Necessity of Taking Culture and Context into Account When Studying the Relationship between Socioeconomic Status and Brain Development. Brain Sci 2024; 14:392. [PMID: 38672041 PMCID: PMC11048655 DOI: 10.3390/brainsci14040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Decades of research has revealed a relationship between childhood socioeconomic status (SES) and brain development at the structural and functional levels. Of particular note is the distinction between income and maternal education, two highly correlated factors which seem to influence brain development through distinct pathways. Specifically, while a families' income-to-needs ratio is linked with physiological stress and household chaos, caregiver education influences the day-to-day language environment a child is exposed to. Variability in either one of these environmental experiences is related to subsequent brain development. While this work has the potential to inform public policies in a way that benefits children, it can also oversimplify complex factors, unjustly blame low-SES parents, and perpetuate a harmful deficit perspective. To counteract these shortcomings, researchers must consider sociodemographic differences in the broader cultural context that underlie SES-based differences in brain development. This review aims to address these issues by (a) identifying how sociodemographic mechanisms associated with SES influence the day-to-day experiences of children, in turn, impacting brain development, while (b) considering the broader cultural contexts that may differentially impact this relationship.
Collapse
Affiliation(s)
- Julie M. Schneider
- Department of Communication Sciences and Disorders, Louisiana State University, 72 Hatcher Hall, Field House Drive, Baton Rouge, LA 70803, USA;
| | - Mohammad Hossein Behboudi
- Callier Center for Communication Disorders, The University of Texas at Dallas, 1966 Inwood Road, Dallas, TX 75235, USA;
| | - Mandy J. Maguire
- Callier Center for Communication Disorders, The University of Texas at Dallas, 1966 Inwood Road, Dallas, TX 75235, USA;
- Center for Children and Families, The University of Texas at Dallas, 800 W Campbell Road, Dallas, TX 75080, USA
| |
Collapse
|
19
|
Candelaria-Cook FT, Schendel ME, Romero LL, Cerros C, Hill DE, Stephen JM. Sex-specific Differences in Resting Oscillatory Dynamics in Children with Prenatal Alcohol Exposure. Neuroscience 2024; 543:121-136. [PMID: 38387734 PMCID: PMC10954390 DOI: 10.1016/j.neuroscience.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
At rest children with prenatal alcohol exposure (PAE) exhibit impaired static and dynamic functional connectivity, along with decreased alpha oscillations. Sex-specific information regarding the impact of PAE on whole-brain resting-state gamma spectral power remains unknown. Eyes-closed and eyes-open MEG resting-state data were examined in 83 children, ages 6-13 years of age. Using a matched design, the sample consisted of 42 typically developing children (TDC) (22 males/20 females) and 41 children with PAE and/or a fetal alcohol spectrum disorders (FASD) diagnosis (21 males/20 females). Whole-brain source resting-state spectral power was examined to determine group and sex specific relationships. Within gamma, we found sex and group specific changes such that female participants with PAE/FASD had increased gamma power when compared to female TDC and male participants with PAE/FASD. These differences were detected in most source regions analyzed during both resting-states, and were observed across the age spectrum examined. Within delta, we found sex and group specific changes such that female participants with PAE/FASD had decreased delta power when compared to female TDC and male participants with PAE/FASD. The reduced delta oscillations in female participants with PAE/FASD were detected in several source regions during eyes-closed rest and were evident at younger ages. These results indicate PAE alters neural oscillations during rest in a sex-specific manner, with females with PAE/FASD showing the largest perturbations. These results further demonstrate PAE has global effects on resting-state spectral power and connectivity, creating long-term consequences by potentially disrupting the excitation/inhibition balance in the brain, interrupting normative neurodevelopment.
Collapse
Affiliation(s)
| | - Megan E Schendel
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Lucinda L Romero
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Cassandra Cerros
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Dina E Hill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
20
|
Iyer KK, Roberts JA, Waak M, Vogrin SJ, Kevat A, Chawla J, Haataja LM, Lauronen L, Vanhatalo S, Stevenson NJ. A growth chart of brain function from infancy to adolescence based on EEG. EBioMedicine 2024; 102:105061. [PMID: 38537603 PMCID: PMC11026939 DOI: 10.1016/j.ebiom.2024.105061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND In children, objective, quantitative tools that determine functional neurodevelopment are scarce and rarely scalable for clinical use. Direct recordings of cortical activity using routinely acquired electroencephalography (EEG) offer reliable measures of brain function. METHODS We developed and validated a measure of functional brain age (FBA) using a residual neural network-based interpretation of the paediatric EEG. In this cross-sectional study, we included 1056 children with typical development ranging in age from 1 month to 18 years. We analysed a 10- to 15-min segment of 18-channel EEG recorded during light sleep (N1 and N2 states). FINDINGS The FBA had a weighted mean absolute error (wMAE) of 0.85 years (95% CI: 0.69-1.02; n = 1056). A two-channel version of the FBA had a wMAE of 1.51 years (95% CI: 1.30-1.73; n = 1056) and was validated on an independent set of EEG recordings (wMAE = 2.27 years, 95% CI: 1.90-2.65; n = 723). Group-level maturational delays were also detected in a small cohort of children with Trisomy 21 (Cohen's d = 0.36, p = 0.028). INTERPRETATION A FBA, based on EEG, is an accurate, practical and scalable automated tool to track brain function maturation throughout childhood with accuracy comparable to widely used physical growth charts. FUNDING This research was supported by the National Health and Medical Research Council, Australia, Helsinki University Diagnostic Center Research Funds, Finnish Academy, Finnish Paediatric Foundation, and Sigrid Juselius Foundation.
Collapse
Affiliation(s)
- Kartik K Iyer
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - James A Roberts
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Michaela Waak
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Queensland Children's Hospital, Brisbane, Australia
| | | | - Ajay Kevat
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Queensland Children's Hospital, Brisbane, Australia
| | - Jasneek Chawla
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Queensland Children's Hospital, Brisbane, Australia
| | - Leena M Haataja
- Departments of Physiology and Clinical Neurophysiology, BABA Center, Paediatric Research Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Leena Lauronen
- Departments of Physiology and Clinical Neurophysiology, BABA Center, Paediatric Research Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sampsa Vanhatalo
- Departments of Physiology and Clinical Neurophysiology, BABA Center, Paediatric Research Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nathan J Stevenson
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
21
|
Fernández A, Cuesta P, Marcos A, Montenegro-Peña M, Yus M, Rodríguez-Rojo IC, Bruña R, Maestú F, López ME. Sex differences in the progression to Alzheimer's disease: a combination of functional and structural markers. GeroScience 2024; 46:2619-2640. [PMID: 38105400 PMCID: PMC10828170 DOI: 10.1007/s11357-023-01020-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Mild cognitive impairment (MCI) has been frequently interpreted as a transitional phase between healthy cognitive aging and dementia, particularly of the Alzheimer's disease (AD) type. Of note, few studies explored that transition from a multifactorial perspective, taking into consideration the effect of basic factors such as biological sex. In the present study 96 subjects with MCI (37 males and 59 females) were followed-up and divided into two subgroups according to their clinical outcome: "progressive" MCI (pMCI = 41), if they fulfilled the diagnostic criteria for AD at the end of follow-up; and "stable" MCI (sMCI = 55), if they remained with the initial diagnosis. Different markers were combined to characterize sex differences between groups, including magnetoencephalography recordings, cognitive performance, and brain volumes derived from magnetic resonance imaging. Results indicated that the pMCI group exhibited higher low-frequency activity, lower scores in neuropsychological tests and reduced brain volumes than the sMCI group, being these measures significantly correlated. When sex was considered, results revealed that this pattern was mainly due to the influence of the females' sample. Overall, females exhibited lower cognitive scores and reduced brain volumes. More interestingly, females in the pMCI group showed an increased theta activity that correlated with a more abrupt reduction of cognitive and volumetric scores as compared with females in the sMCI group and with males in the pMCI group. These findings suggest that females' brains might be more vulnerable to the effects of AD pathology, since regardless of age, they showed signs of more pronounced deterioration than males.
Collapse
Affiliation(s)
- Alberto Fernández
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
| | - Pablo Cuesta
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
- Department of Radiology, Rehabilitation and Physiotherapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Alberto Marcos
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
- Neurology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Mercedes Montenegro-Peña
- Centre for the Prevention of Cognitive Impairment, Madrid Salud, Madrid City Council, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Yus
- Radiology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Inmaculada Concepción Rodríguez-Rojo
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Nursing and Psysiotherapy, Universidad de Alcalá, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
- Department of Radiology, Rehabilitation and Physiotherapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - María Eugenia López
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain.
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain.
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
22
|
Rier L, Rhodes N, Pakenham D, Boto E, Holmes N, Hill RM, Rivero GR, Shah V, Doyle C, Osborne J, Bowtell R, Taylor MJ, Brookes MJ. The neurodevelopmental trajectory of beta band oscillations: an OPM-MEG study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.573933. [PMID: 38260246 PMCID: PMC10802362 DOI: 10.1101/2024.01.04.573933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - Optically Pumped Magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.
Collapse
Affiliation(s)
- Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Diagnostic Imaging,The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Daisie Pakenham
- Clinical Neurophysiology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Rd, Lenton, Nottingham NG7 2UH, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Vishal Shah
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Cody Doyle
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - James Osborne
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Margot J. Taylor
- Diagnostic Imaging,The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| |
Collapse
|
23
|
Potenzieri A, Uccella S, Preiti D, Pisoni M, Rosati S, Lavarello C, Bartolucci M, Debellis D, Catalano F, Petretto A, Nobili L, Fellin T, Tucci V, Ramenghi LA, Savardi A, Cancedda L. Early IGF-1 receptor inhibition in mice mimics preterm human brain disorders and reveals a therapeutic target. SCIENCE ADVANCES 2024; 10:eadk8123. [PMID: 38427732 PMCID: PMC10906931 DOI: 10.1126/sciadv.adk8123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
Besides recent advances in neonatal care, preterm newborns still develop sex-biased behavioral alterations. Preterms fail to receive placental insulin-like growth factor-1 (IGF-1), a major fetal growth hormone in utero, and low IGF-1 serum levels correlate with preterm poor neurodevelopmental outcomes. Here, we mimicked IGF-1 deficiency of preterm newborns in mice by perinatal administration of an IGF-1 receptor antagonist. This resulted in sex-biased brain microstructural, functional, and behavioral alterations, resembling those of ex-preterm children, which we characterized performing parallel mouse/human behavioral tests. Pharmacological enhancement of GABAergic tonic inhibition by the U.S. Food and Drug Administration-approved drug ganaxolone rescued functional/behavioral alterations in mice. Establishing an unprecedented mouse model of prematurity, our work dissects the mechanisms at the core of abnormal behaviors and identifies a readily translatable therapeutic strategy for preterm brain disorders.
Collapse
Affiliation(s)
- Alberto Potenzieri
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
- Università degli Studi di Genova, via Balbi, 5, 16126 Genoa, Italy
| | - Sara Uccella
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Patologia Neonatale, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Deborah Preiti
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Patologia Neonatale, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Matteo Pisoni
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Silvia Rosati
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Chiara Lavarello
- Core Facilities - Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Martina Bartolucci
- Core Facilities - Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Federico Catalano
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Andrea Petretto
- Core Facilities - Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Valter Tucci
- Genetics and Epigenetics of Behavior (GEB) Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Luca A. Ramenghi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
- Patologia Neonatale, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| |
Collapse
|
24
|
Meijs H, Voetterl H, Sack AT, van Dijk H, De Wilde B, Van Hecke J, Niemegeers P, Gordon E, Luykx JJ, Arns M. A posterior-alpha ageing network is differentially associated with antidepressant effects of venlafaxine and rTMS. Eur Neuropsychopharmacol 2024; 79:7-16. [PMID: 38000196 DOI: 10.1016/j.euroneuro.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder, but chances for remission largely decrease with each failed treatment attempt. It is therefore desirable to assign a given patient to the most promising individual treatment option as early as possible. We used a polygenic score (PGS) informed electroencephalography (EEG) data-driven approach to identify potential predictors for MDD treatment outcome. Post-hoc we conducted exploratory analyses in order to understand the results in depth. First, an EEG independent component analysis produced 54 functional brain networks in a large heterogeneous cohort of psychiatric patients (n = 4,045; 5-84 yrs.). Next, the network that was associated to PGS for antidepressant-response (PRS-AR) in an independent sample (n = 722) was selected: an age-related posterior alpha network that explained >60 % of EEG variance, and was highly stable over recording time. Translational analyses were performed in two other independent datasets to examine if the network was predictive of psychopharmacotherapy (n = 535) and/or repetitive transcranial magnetic stimulation (rTMS) and concomitant psychotherapy (PT; n = 186) outcome. The network predicted remission to venlafaxine (p = 0.015), resulting in a normalized positive predicted value (nPPV) of 138 %, and rTMS + PT - but in opposite direction for women (p = 0.002) relative to men (p = 0.018) - yielding a nPPV of 131 %. Blinded out-of-sample validations for venlafaxine (n = 29) and rTMS + PT (n = 36) confirmed the findings for venlafaxine, while results for rTMS + PT could not be replicated. These data suggest the existence of a relatively stable EEG posterior alpha aging network related to PGS-AR that has potential as MDD treatment predictor.
Collapse
Affiliation(s)
- Hannah Meijs
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Helena Voetterl
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Hanneke van Dijk
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, The Netherlands
| | - Bieke De Wilde
- Department of Psychiatry, Ziekenhuis Netwerk Antwerpen (ZNA), Antwerp, Belgium
| | - Jan Van Hecke
- Department of Psychiatry, Ziekenhuis Netwerk Antwerpen (ZNA), Antwerp, Belgium
| | - Peter Niemegeers
- Department of Psychiatry, Ziekenhuis Netwerk Antwerpen (ZNA), Antwerp, Belgium
| | - Evian Gordon
- Brain Resource Ltd, San Francisco, CA, United States of America
| | - Jurjen J Luykx
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
25
|
Peisch V, Rutter TM, Sargent C, Oommen R, Stein MA, Arnett AB. Longitudinal Stability of Neural Correlates of Pediatric Attention Deficit Hyperactivity Disorder: A Pilot Study of Event Related Potentials and Electroencephalography. J Atten Disord 2024; 28:493-511. [PMID: 38152891 PMCID: PMC10874625 DOI: 10.1177/10870547231214983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Stability and developmental effects of electroencephalography (EEG) and event related potential (ERP) correlates of ADHD are understudied. This pilot study examined stability and developmental changes in ERP and EEG metrics of interest. METHODS Thirty-seven 7 to 11-year-old children with ADHD and 15 typically developing (TD) children completed EEG twice, 11 to 36 months apart. A series of mixed effects linear models were run to examine stability and developmental effects of EEG and ERP metrics. RESULTS Stability and developmental effects of EEG and ERP correlates of ADHD varied considerably across metrics. P3 amplitude was stable over time and showed diverging developmental trajectories across groups. Developmental differences were apparent in error related ERPs and resting aperiodic exponent. Theta-beta ratio was stable over time among all children. CONCLUSIONS Developmental trajectories of EEG and ERP correlates of ADHD are candidate diagnostic markers. Replication with larger samples is needed.
Collapse
Affiliation(s)
- Virginia Peisch
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | | | | | | | | | - Anne B. Arnett
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
Kaushik P. QEEG Characterizations During Hyperventilation, Writing and Reading Conditions: A Pre-Post Cognitive-Behavioral Intervention Study on Students with Learning Difficulty. Clin EEG Neurosci 2024; 55:52-63. [PMID: 36591866 DOI: 10.1177/15500594221147158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Electroencephalography (EEG) has been used to measure neural correlates of cognitive and social development in children for decades. It is essential to evaluate the relationship between EEG parameters and cognitive measures to understand the mechanisms of learning problems better. Methods and procedure: Fifty school-going children with complaints of learning problems were studied. EEG and other cognitive measures were used to assess children before and after PEABLS; a cognitive-behavioral intervention was imparted. EEG was recorded while hyperventilation, writing, and reading conditions, and the values for absolute and relative powers were calculated. Results: The results suggested that the post-intervention absolute (in the theta and alpha bands) and relative (delta, theta, and alpha) power values were higher, and the relative power beta value was significantly lower at most of the electrodes in comparison to pre-intervention EEG measures. A significant high positive correlation in the children with learning problems between the relative power of alpha, beta O1O2, the relative power of theta, delta T3T4, and the academic scores, IQ, working memory, DTLD, and BGT values. Conclusion: These quantitative electroencephalogram findings in children with learning problems are related to cognitive measures. The findings could be due to brain immaturity and lack of learning opportunities.
Collapse
Affiliation(s)
- Pratima Kaushik
- Department of Psychology, Jesus and Mary College, University of Delhi, New Delhi, India
| |
Collapse
|
27
|
Neo WS, Foti D, Keehn B, Kelleher B. Resting-state EEG power differences in autism spectrum disorder: a systematic review and meta-analysis. Transl Psychiatry 2023; 13:389. [PMID: 38097538 PMCID: PMC10721649 DOI: 10.1038/s41398-023-02681-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Narrative reviews have described various resting-state EEG power differences in autism across all five canonical frequency bands, with increased power for low and high frequencies and reduced power for middle frequencies. However, these differences have yet to be quantified using effect sizes and probed robustly for consistency, which are critical next steps for clinical translation. Following PRISMA guidelines, we conducted a systematic review of published and gray literature on resting-state EEG power in autism. We performed 10 meta-analyses to synthesize and quantify differences in absolute and relative resting-state delta, theta, alpha, beta, and gamma EEG power in autism. We also conducted moderator analyses to determine whether demographic characteristics, methodological details, and risk-of-bias indicators might account for heterogeneous study effect sizes. Our literature search and study selection processes yielded 41 studies involving 1,246 autistic and 1,455 neurotypical individuals. Meta-analytic models of 135 effect sizes demonstrated that autistic individuals exhibited reduced relative alpha (g = -0.35) and increased gamma (absolute: g = 0.37, relative: g = 1.06) power, but similar delta (absolute: g = 0.06, relative: g = 0.10), theta (absolute: g = -0.03, relative: g = -0.15), absolute alpha (g = -0.17), and beta (absolute: g = 0.01, relative: g = 0.08) power. Substantial heterogeneity in effect sizes was observed across all absolute (I2: 36.1-81.9%) and relative (I2: 64.6-84.4%) frequency bands. Moderator analyses revealed that age, biological sex, IQ, referencing scheme, epoch duration, and use of gold-standard autism diagnostic instruments did not moderate study effect sizes. In contrast, resting-state paradigm type (eyes-closed versus eyes-open) moderated absolute beta, relative delta, and relative alpha power effect sizes, and resting-state recording duration moderated relative alpha power effect sizes. These findings support further investigation of resting-state alpha and gamma power as potential biomarkers for autism.
Collapse
Affiliation(s)
- Wei Siong Neo
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Dan Foti
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Brandon Keehn
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Bridgette Kelleher
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
28
|
Neuhaus E, Santhosh M, Kresse A, Aylward E, Bernier R, Bookheimer S, Jeste S, Jack A, McPartland JC, Naples A, Van Horn JD, Pelphrey K, Webb SJ. Frontal EEG alpha asymmetry in youth with autism: Sex differences and social-emotional correlates. Autism Res 2023; 16:2364-2377. [PMID: 37776030 PMCID: PMC10840952 DOI: 10.1002/aur.3032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
In youth broadly, EEG frontal alpha asymmetry (FAA) associates with affective style and vulnerability to psychopathology, with relatively stronger right activity predicting risk for internalizing and externalizing behaviors. In autistic youth, FAA has been related to ASD diagnostic features and to internalizing symptoms. Among our large, rigorously characterized, sex-balanced participant group, we attempted to replicate findings suggestive of altered FAA in youth with an ASD diagnosis, examining group differences and impact of sex assigned at birth. Second, we examined relations between FAA and behavioral variables (ASD features, internalizing, and externalizing) within autistic youth, examining effects by sex. Third, we explored whether the relation between FAA, autism features, and mental health was informed by maternal depression history. In our sample, FAA did not differ by diagnosis, age, or sex. However, youth with ASD had lower total frontal alpha power than youth without ASD. For autistic females, FAA and bilateral frontal alpha power correlated with social communication features, but not with internalizing or externalizing symptoms. For autistic males, EEG markers correlated with social communication features, and with externalizing behaviors. Exploratory analyses by sex revealed further associations between youth FAA, behavioral indices, and maternal depression history. In summary, findings suggest that individual differences in FAA may correspond to social-emotional and mental health behaviors, with different patterns of association for females and males with ASD. Longitudinal consideration of individual differences across levels of analysis (e.g., biomarkers, family factors, and environmental influences) will be essential to parsing out models of risk and resilience among autistic youth.
Collapse
Affiliation(s)
- Emily Neuhaus
- Seattle Children’s Research Institute; Center on Child Health, Behavior & Development
- University of Washington Psychiatry & Behavioral Sciences
| | - Megha Santhosh
- Seattle Children’s Research Institute; Center on Child Health, Behavior & Development
| | - Anna Kresse
- Columbia University, Mailman School of Public Health
| | - Elizabeth Aylward
- Seattle Children’s Research Institute, Center for Integrative Brain Research
| | | | - Susan Bookheimer
- University of California Los Angeles School of Medicine, Dept. of Psychiatry & Biobehavioral Sciences
- University of California Los Angeles, Intellectual and Developmental Disabilities Research Center
| | - Shafali Jeste
- University of California Los Angeles School of Medicine, Dept. of Psychiatry & Biobehavioral Sciences
- University of California Los Angeles, Intellectual and Developmental Disabilities Research Center
| | | | | | | | - John D. Van Horn
- University of Virginia, Dept. of Psychology
- University of Virginia, School of Data Science
| | - Kevin Pelphrey
- University of Virginia, Dept. of Psychology
- University of Virginia, Dept. of Neurology, Brain Institute & School of Education & Human Development
| | - Sara Jane Webb
- Seattle Children’s Research Institute; Center on Child Health, Behavior & Development
- University of Washington Psychiatry & Behavioral Sciences
- University of Washington, Intellectual and Developmental Disabilities Research Center
| | | |
Collapse
|
29
|
Modarres M, Cochran D, Kennedy DN, Frazier JA. Comparison of comprehensive quantitative EEG metrics between typically developing boys and girls in resting state eyes-open and eyes-closed conditions. Front Hum Neurosci 2023; 17:1237651. [PMID: 38021243 PMCID: PMC10659091 DOI: 10.3389/fnhum.2023.1237651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction A majority of published studies comparing quantitative EEG (qEEG) in typically developing (TD) children and children with neurodevelopmental or psychiatric disorders have used a control group (e.g., TD children) that combines boys and girls. This suggests a widespread supposition that typically developing boys and girls have similar brain activity at all locations and frequencies, allowing the data from TD boys and girls to be aggregated in a single group. Methods In this study, we have rigorously challenged this assumption by performing a comprehensive qEEG analysis on EEG recoding of TD boys (n = 84) and girls (n = 62), during resting state eyes-open and eyes-closed conditions (EEG recordings from Child Mind Institute's Healthy Brain Network (HBN) initiative). Our qEEG analysis was performed over narrow-band frequencies (e.g., separating low α from high α, etc.), included sex, age, and head size as covariates in the analysis, and encompassed computation of a wide range of qEEG metrics that included both absolute and relative spectral power levels, regional hemispheric asymmetry, and inter- and intra-hemispheric magnitude coherences as well as phase coherency among cortical regions. We have also introduced a novel compact yet comprehensive visual presentation of the results that allows comparison of the qEEG metrics of boys and girls for the entire EEG locations, pairs, and frequencies in a single graph. Results Our results show there are wide-spread EEG locations and frequencies where TD boys and girls exhibit differences in their absolute and relative spectral powers, hemispheric power asymmetry, and magnitude coherence and phase synchrony. Discussion These findings strongly support the necessity of including sex, age, and head size as covariates in the analysis of qEEG of children, and argue against combining data from boys and girls. Our analysis also supports the utility of narrow-band frequencies, e.g., dividing α, β, and γ band into finer sub-scales. The results of this study can serve as a comprehensive normative qEEG database for resting state studies in children containing both eyes open and eyes closed paradigms.
Collapse
Affiliation(s)
- Mo Modarres
- The Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - David Cochran
- The Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Chan Medical School/UMass Memorial Health Care, Worcester, MA, United States
| | - David N. Kennedy
- The Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Jean A. Frazier
- The Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Chan Medical School/UMass Memorial Health Care, Worcester, MA, United States
| |
Collapse
|
30
|
Troller-Renfree SV, Sperber JF, Hart ER, Costanzo MA, Gennetian LA, Meyer JS, Fox NA, Noble KG. Associations between maternal stress and infant resting brain activity among families residing in poverty in the U.S. Biol Psychol 2023; 184:108683. [PMID: 37716521 PMCID: PMC10842437 DOI: 10.1016/j.biopsycho.2023.108683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Growing evidence suggests that maternal experiences of stress shape children's functional brain activity in the first years of life. Individuals living in poverty are more likely to experience stress from a variety of sources. However, it is unclear how stress is related to resting brain activity among children born into poverty. The present study examines whether infants born into households experiencing poverty show differences in brain activity associated with maternal reports of experiencing stress. The analytic sample comprised 247 mother-infant dyads who completed maternal questionnaires characterizing stress, and for whom recordings of infant resting brain activity were obtained at 1 year of age (M=12.93 months, SD=1.66; 50% female). Mothers (40% Black, non-Hispanic, 40% Hispanic, 12% White, non-Hispanic) who reported higher stress had infants who showed more resting brain activity in the lower end of the frequency spectrum (relative theta power) and less resting brain activity in the middle range of the frequency spectrum (relative alpha power). While statistically detectable at the whole-brain level, follow-up exploratory analyses revealed that these effects were most apparent in electrodes over frontal and parietal regions of the brain. These findings held after adjusting for a variety of potentially confounding variables. Altogether, the present study suggests that, among families experiencing low economic resources, maternal reports of stress are associated with differences in patterns of infant resting brain activity during the first year of life.
Collapse
Affiliation(s)
| | | | - Emma R Hart
- Teachers College, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
31
|
Tan E, Tang A, Debnath R, Humphreys KL, Zeanah CH, Nelson CA, Fox NA. Resting brain activity in early childhood predicts IQ at 18 years. Dev Cogn Neurosci 2023; 63:101287. [PMID: 37531865 PMCID: PMC10407667 DOI: 10.1016/j.dcn.2023.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023] Open
Abstract
Resting brain activity has been widely used as an index of brain development in neuroscience and clinical research. However, it remains unclear whether early differences in resting brain activity have meaningful implications for predicting long-term cognitive outcomes. Using data from the Bucharest Early Intervention Project (Zeanah et al., 2003), we examined the impact of institutional rearing and the consequences of early foster care intervention on 18-year IQ. We found that higher resting theta electroencephalogram (EEG) power, reflecting atypical neurodevelopment, across three assessments from 22 to 42 months predicted lower full-scale IQ at 18 years, providing the first evidence that brain activity in early childhood predicts cognitive outcomes into adulthood. In addition, both institutional rearing and later (vs. earlier) foster care intervention predicted higher resting theta power in early childhood, which in turn predicted lower IQ at 18 years. These findings demonstrate that experientially-induced changes in brain activity early in life have profound impact on long-term cognitive development, highlighting the importance of early intervention for promoting healthy development among children living in disadvantaged environments.
Collapse
Affiliation(s)
- Enda Tan
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park 20740, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park 20740, USA.
| | - Alva Tang
- Department of Psychology, University of Texas at Dallas, Richardson 75080, USA.
| | - Ranjan Debnath
- Leibniz Institute for Neurobiology, Magdeburg 39118, Germany.
| | - Kathryn L Humphreys
- Department of Psychology and Human Development, Vanderbilt University, Nashville 37203, USA.
| | - Charles H Zeanah
- Department of Psychiatry and Behavioral Sciences, Tulane University, New Orleans 70118, USA.
| | - Charles A Nelson
- Boston Children's Hospital of Harvard Medical School, Boston 02115, USA; Harvard Graduate School of Education, Harvard University, Cambridge 02138, USA.
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park 20740, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park 20740, USA.
| |
Collapse
|
32
|
Kiss O, Goldstone A, de Zambotti M, Yüksel D, Hasler BP, Franzen PL, Brown SA, De Bellis MD, Nagel BJ, Nooner KB, Tapert SF, Colrain IM, Clark DB, Baker FC. Effects of emerging alcohol use on developmental trajectories of functional sleep measures in adolescents. Sleep 2023; 46:zsad113. [PMID: 37058610 PMCID: PMC10848227 DOI: 10.1093/sleep/zsad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/17/2023] [Indexed: 04/16/2023] Open
Abstract
STUDY OBJECTIVES Adolescence is characterized by significant brain development, accompanied by changes in sleep timing and architecture. It also is a period of profound psychosocial changes, including the initiation of alcohol use; however, it is unknown how alcohol use affects sleep architecture in the context of adolescent development. We tracked developmental changes in polysomnographic (PSG) and electroencephalographic (EEG) sleep measures and their relationship with emergent alcohol use in adolescents considering confounding effects (e.g. cannabis use). METHODS Adolescents (n = 94, 43% female, age: 12-21 years) in the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) study had annual laboratory PSG recordings across 4-years. Participants were no/low drinkers at baseline. RESULTS Linear mixed effect models showed developmental changes in sleep macrostructure and EEG, including a decrease in slow wave sleep and slow wave (delta) EEG activity with advancing age. Emergent moderate/heavy alcohol use across three follow-up years was associated with a decline in percentage rapid eye movement (REM) sleep over time, a longer sleep onset latency (SOL) and shorter total sleep time (TST) in older adolescents, and lower non-REM delta and theta power in males. CONCLUSIONS These longitudinal data show substantial developmental changes in sleep architecture. Emergent alcohol use during this period was associated with altered sleep continuity, architecture, and EEG measures, with some effects dependent on age and sex. These effects, in part, could be attributed to the effects of alcohol on underlying brain maturation processes involved in sleep-wake regulation.
Collapse
Affiliation(s)
- Orsolya Kiss
- Center for Health Sciences, Bioscience Division, SRI International, Menlo Park, CA, USA
| | - Aimée Goldstone
- Center for Health Sciences, Bioscience Division, SRI International, Menlo Park, CA, USA
| | | | - Dilara Yüksel
- Center for Health Sciences, Bioscience Division, SRI International, Menlo Park, CA, USA
| | - Brant P Hasler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter L Franzen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sandra A Brown
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Michael D De Bellis
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Bonnie J Nagel
- School of Medicine, Division of Clinical Psychology, Oregon Health and Sciences University, Portland, OR, USA
| | - Kate B Nooner
- Psychology Department, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Ian M Colrain
- Center for Health Sciences, Bioscience Division, SRI International, Menlo Park, CA, USA
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fiona C Baker
- Center for Health Sciences, Bioscience Division, SRI International, Menlo Park, CA, USA
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
33
|
Stanojevic N, Fatic S, Jelicic L, Nenadovic V, Stokic M, Bilibajkic R, Subotic M, Boskovic Matic T, Konstantinovic L, Cirovic D. Resting-state EEG alpha rhythm spectral power in children with specific language impairment: a cross-sectional study. J Appl Biomed 2023; 21:113-120. [PMID: 37747311 DOI: 10.32725/jab.2023.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023] Open
Abstract
PURPOSE This study investigated EEG alpha rhythm spectral power in children with Specific Language Impairment (SLI) and compared it to typically developing children to better understand the electrophysiological characteristics of this disorder. Specifically, we explored resting-state EEG, because there are studies that point to it being linked to speech and language development. METHODS EEG recordings of 30 children diagnosed with specific language impairment and 30 typically developing children, aged 4.0-6.11 years, were carried out under eyes closed and eyes open conditions. Differences in alpha rhythm spectral power in relation to brain topography and experimental conditions were calculated. RESULTS In the eyes closed condition, alpha rhythm spectral power was statistically significantly lower in children with specific language impairment in the left temporal (T5) and occipital electrodes (O1, O2) than in typically developing children. In the eyes open condition, children with SLI showed significantly lower alpha rhythm spectral power in the left temporal (T3, T5), parietal (P3, Pz), and occipital electrodes (O1, O2). There were no statistically significant differences between the groups in relation to the relative change (the difference between average alpha rhythm spectral power during eyes closed condition and average alpha rhythm spectral power during eyes open condition divided by average alpha rhythm spectral power during eyes closed condition) in the alpha rhythm spectral power between the conditions. CONCLUSION Lower alpha rhythm spectral power in the left temporal, left, midline parietal, and occipital brain regions could be a valuable electrophysiological marker in children with SLI. Further investigation is needed to examine the connection between EEG alpha spectral power and general processing and memory deficits in patients with SLI.
Collapse
Affiliation(s)
- Nina Stanojevic
- Research & Development Institute "Life Activities Advancement Institute", Cognitive Neuroscience Department, Belgrade, Serbia
- Institute for Experimental Phonetics and Speech Pathology "Dorde Kostic", Department of Speech, Language, and Hearing Sciences, Belgrade, Serbia
| | - Saska Fatic
- Research & Development Institute "Life Activities Advancement Institute", Cognitive Neuroscience Department, Belgrade, Serbia
- Institute for Experimental Phonetics and Speech Pathology "Dorde Kostic", Department of Speech, Language, and Hearing Sciences, Belgrade, Serbia
| | - Ljiljana Jelicic
- Research & Development Institute "Life Activities Advancement Institute", Cognitive Neuroscience Department, Belgrade, Serbia
- Institute for Experimental Phonetics and Speech Pathology "Dorde Kostic", Department of Speech, Language, and Hearing Sciences, Belgrade, Serbia
| | - Vanja Nenadovic
- Institute for Experimental Phonetics and Speech Pathology "Dorde Kostic", Department of Speech, Language, and Hearing Sciences, Belgrade, Serbia
| | - Miodrag Stokic
- University of Belgrade, Faculty of Biology, Belgrade, Serbia
| | - Ruzica Bilibajkic
- Research & Development Institute "Life Activities Advancement Institute", Cognitive Neuroscience Department, Belgrade, Serbia
| | - Misko Subotic
- Research & Development Institute "Life Activities Advancement Institute", Cognitive Neuroscience Department, Belgrade, Serbia
| | - Tatjana Boskovic Matic
- University of Kragujevac, Faculty of Medical Sciences, University Clinical Center, Kragujevac, Serbia
| | - Ljubica Konstantinovic
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
- Clinic for Rehabilitation "Dr Miroslav Zotovic", Belgrade, Serbia
| | - Dragana Cirovic
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
- University Children's Hospital, Physical Medicine and Rehabilitation Department, Belgrade, Serbia
| |
Collapse
|
34
|
Stier C, Braun C, Focke NK. Adult lifespan trajectories of neuromagnetic signals and interrelations with cortical thickness. Neuroimage 2023; 278:120275. [PMID: 37451375 PMCID: PMC10443236 DOI: 10.1016/j.neuroimage.2023.120275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Oscillatory power and phase synchronization map neuronal dynamics and are commonly studied to differentiate the healthy and diseased brain. Yet, little is known about the course and spatial variability of these features from early adulthood into old age. Leveraging magnetoencephalography (MEG) resting-state data in a cross-sectional adult sample (n = 350), we probed lifespan differences (18-88 years) in connectivity and power and interaction effects with sex. Building upon recent attempts to link brain structure and function, we tested the spatial correspondence between age effects on cortical thickness and those on functional networks. We further probed a direct structure-function relationship at the level of the study sample. We found MEG frequency-specific patterns with age and divergence between sexes in low frequencies. Connectivity and power exhibited distinct linear trajectories or turning points at midlife that might reflect different physiological processes. In the delta and beta bands, these age effects corresponded to those on cortical thickness, pointing to co-variation between the modalities across the lifespan. Structure-function coupling was frequency-dependent and observed in unimodal or multimodal regions. Altogether, we provide a comprehensive overview of the topographic functional profile of adulthood that can form a basis for neurocognitive and clinical investigations. This study further sheds new light on how the brain's structural architecture relates to fast oscillatory activity.
Collapse
Affiliation(s)
- Christina Stier
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany; Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.
| | - Christoph Braun
- MEG-Center, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Niels K Focke
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
35
|
Jang C, Oh S, Lee H, Lee J, Song I, Park Y, Lee E, Joung YS. The impact of comorbid anxiety on quantitative EEG heterogeneity in children with attention-deficit/hyperactivity disorder. Front Psychiatry 2023; 14:1190713. [PMID: 37502808 PMCID: PMC10368871 DOI: 10.3389/fpsyt.2023.1190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Objective The objective of this study was to compare quantitative electroencephalography (Q-EEG) characteristics of children with Attention-deficit/hyperactivity disorder (ADHD), taking into account the presence of a comorbidity for anxiety disorder. It also sought to investigate the impact of comorbid anxiety on the Q-EEG heterogeneity of children with ADHD. Method A total of 141 children with ADHD but without comorbid anxiety (ADHD-Only), 25 children with a comorbidity for anxiety disorder (ADHD-ANX) and 43 children in the control group were assessed. To compare Q-EEG characteristics between groups, we performed ANCOVA (Analysis of Covariance) on relative power and theta/beta ratio (TBR) controlling for covariates such as age, sex, and FSIQ. Relative power values from 19 electrodes were averaged for three regions (frontal, central and posterior). Furthermore, cluster analysis (Ward's method) using the squared Euclidian distance was conducted on participants with ADHD to explore the impact of anxiety on the heterogeneity of Q-EEG characteristics in ADHD. Results There were no significant group differences in cognitive and behavioral measures. However, significant differences between groups were observed in the theta values in the central region, and the beta values in the frontal, central and posterior regions. In post hoc analyses, It was found that the ADHD-ANX group has significantly higher beta power values than the ADHD-Only group in all regions. For the theta/beta ratio, the ADHD-Only group had significantly higher values than the ADHD-ANX group in frontal, central and posterior regions. However, the control group did not show significant differences compared to both the ADHD-Only and ADHD-ANX group. Through clustering analysis, the participants in the ADHD-Only and ADHD-ANX groups were classified into four clusters. The ratios of children with comorbidities for anxiety disorder within each cluster were significantly different (χ2 = 10.018, p = 0.019). Conclusion Attention-deficit/hyperactivity disorder children with comorbid anxiety disorder showed lower theta power in the central region, higher beta power in all regions and lower TBR in all regions compared to those without comorbid anxiety disorder. The ratios of children with comorbidities for anxiety disorder within each cluster were significantly different.
Collapse
Affiliation(s)
- Changwon Jang
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Soowhan Oh
- Department of Psychiatry, Changwon Samsung Hospital, Changwon-si, Gyengsangnam-do, Republic of Korea
| | - Hyerin Lee
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Junho Lee
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Inmok Song
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Yerin Park
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Eunji Lee
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Yoo-Sook Joung
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Cainelli E, Vedovelli L, Carretti B, Bisiacchi P. EEG correlates of developmental dyslexia: a systematic review. ANNALS OF DYSLEXIA 2023; 73:184-213. [PMID: 36417146 PMCID: PMC10247570 DOI: 10.1007/s11881-022-00273-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/25/2022] [Indexed: 06/08/2023]
Abstract
Dyslexia is one of the most studied learning disorders. Despite this, its biological basis and main causes are still not fully understood. Electroencephalography (EEG) could be a powerful tool in identifying the underlying mechanisms, but knowledge of the EEG correlates of developmental dyslexia (DD) remains elusive. We aimed to systematically review the evidence on EEG correlates of DD and establish their quality. In July 2021, we carried out an online search of the PubMed and Scopus databases to identify published articles on EEG correlates in children with dyslexia aged 6 to 12 years without comorbidities. We follow the PRISMA guidelines and assess the quality using the Appraisal Tool questionnaire. Our final analysis included 49 studies (14% high quality, 63% medium, 20% low, and 2% very low). Studies differed greatly in methodology, making a summary of their results challenging. However, some points came to light. Even at rest, children with dyslexia and children in the control group exhibited differences in several EEG measures, particularly in theta and alpha frequencies; these frequencies appear to be associated with learning performance. During reading-related tasks, the differences between dyslexic and control children seem more localized in the left temporoparietal sites. The EEG activity of children with dyslexia and children in the control group differed in many aspects, both at rest and during reading-related tasks. Our data are compatible with neuroimaging studies in the same diagnostic group and expand the literature by offering new insights into functional significance.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, Via Venezia, 8, 35133, Padua, Italy.
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| | - Barbara Carretti
- Department of General Psychology, University of Padova, Via Venezia, 8, 35133, Padua, Italy
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padova, Via Venezia, 8, 35133, Padua, Italy
- Padova Neuroscience Centre, PNC, Padua, Italy
| |
Collapse
|
37
|
Deguire F, López-Arango G, Knoth IS, Côté V, Agbogba K, Lippé S. EEG repetition and change detection responses in infancy predict adaptive functioning in preschool age: a longitudinal study. Sci Rep 2023; 13:9980. [PMID: 37340003 DOI: 10.1038/s41598-023-34669-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 05/05/2023] [Indexed: 06/22/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are mostly diagnosed around the age of 4-5 years, which is too late considering that the brain is most susceptive to interventions during the first two years of life. Currently, diagnosis of NDDs is based on observed behaviors and symptoms, but identification of objective biomarkers would allow for earlier screening. In this longitudinal study, we investigated the relationship between repetition and change detection responses measured using an EEG oddball task during the first year of life and at two years of age, and cognitive abilities and adaptive functioning during preschool years (4 years old). Identification of early biomarkers is challenging given that there is a lot of variability in developmental courses among young infants. Therefore, the second aim of this study is to assess whether brain growth is a factor of interindividual variability that influences repetition and change detection responses. To obtain variability in brain growth beyond the normative range, infants with macrocephaly were included in our sample. Thus, 43 normocephalic children and 20 macrocephalic children were tested. Cognitive abilities at preschool age were assessed with the WPPSI-IV and adaptive functioning was measured with the ABAS-II. Time-frequency analyses were conducted on the EEG data. Results indicated that repetition and change detection responses in the first year of life predict adaptive functioning at 4 years of age, independently of head circumference. Moreover, our findings suggested that brain growth explains variability in neural responses mostly in the first years of life, so that macrocephalic children did not display repetition suppression responses, while normocephalic children did. This longitudinal study demonstrates that the first year of life is an important period for the early screening of children at risk of developing NDDs.
Collapse
Affiliation(s)
- Florence Deguire
- Psychology Department, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada.
- Pôle en neuropsychologie et neuroscience cognitive et computationnelle (CerebrUM), University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada.
- Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada.
| | - Gabriela López-Arango
- Psychology Department, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada
- Pôle en neuropsychologie et neuroscience cognitive et computationnelle (CerebrUM), University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada
- Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
| | - Inga Sophia Knoth
- Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
| | - Valérie Côté
- Psychology Department, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada
- Pôle en neuropsychologie et neuroscience cognitive et computationnelle (CerebrUM), University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada
- Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
| | - Kristian Agbogba
- Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
- École de technologie supérieure, University of Quebec, 1100 Notre-Dame W, Montreal, QC, Canada
| | - Sarah Lippé
- Psychology Department, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada
- Pôle en neuropsychologie et neuroscience cognitive et computationnelle (CerebrUM), University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada
- Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
| |
Collapse
|
38
|
Xu F, Xu Y, Wang Y, Niu K, Li Y, Wang P, Li Y, Sun J, Chen Q, Wang X. Language-related brain areas in childhood epilepsy with centrotemporal spikes studied with MEG. Clin Neurophysiol 2023; 152:11-21. [PMID: 37257319 DOI: 10.1016/j.clinph.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE Children with self-limited epilepsy with centrotemporal spikes (SeLECTS) typically indicate cognitive impairment with widespread speech impairment. We explored how epilepsy affects language-related brain areas and areas in their vicinity. METHODS Twenty-two children with SeLECTS and declined verbal comprehension (DVC), 21 with SeLECTS and normal verbal comprehension (NVC), and 23 healthy controls (HCs) underwent high-sampling magnetoencephalography recordings. According to a previous study, 24 language-related regions of interest were selected bilaterally, and the relative spectral power was estimated using a minimum norm estimate. RESULTS The highest mean power spectral density was observed in the delta band for the DVC group, in the theta band for the NVC group, and in the alpha band for HCs within language-specific brain regions. The distinctions between the DVC and NVC groups in the delta and theta frequency bands were primarily concentrated in the right linguistic brain area. CONCLUSIONS Children with SeLECTS may have developmental problems in language-related brain areas, with different developmental levels observed in the DVC, NVC, and HC groups. The DVC group could have inferior speech comprehension due to a more significant number of seizures and more left-sided spike locations. SIGNIFICANCE Children having SeLECTS showed impaired brain maturation, leading to associated language impairment.
Collapse
Affiliation(s)
- Fengyuan Xu
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Xu
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yingfan Wang
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Niu
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Wang
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yanzhang Li
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- Country MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
39
|
Reynolds A, Vranic-Peters M, Lai A, Grayden DB, Cook MJ, Peterson A. Prognostic interictal electroencephalographic biomarkers and models to assess antiseizure medication efficacy for clinical practice: A scoping review. Epilepsia 2023; 64:1125-1174. [PMID: 36790369 DOI: 10.1111/epi.17548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Antiseizure medication (ASM) is the primary treatment for epilepsy. In clinical practice, methods to assess ASM efficacy (predict seizure freedom or seizure reduction), during any phase of the drug treatment lifecycle, are limited. This scoping review identifies and appraises prognostic electroencephalographic (EEG) biomarkers and prognostic models that use EEG features, which are associated with seizure outcomes following ASM initiation, dose adjustment, or withdrawal. We also aim to summarize the population and context in which these biomarkers and models were identified and described, to understand how they could be used in clinical practice. Between January 2021 and October 2022, four databases, references, and citations were systematically searched for ASM studies investigating changes to interictal EEG or prognostic models using EEG features and seizure outcomes. Study bias was appraised using modified Quality in Prognosis Studies criteria. Results were synthesized into a qualitative review. Of 875 studies identified, 93 were included. Biomarkers identified were classed as qualitative (visually identified by wave morphology) or quantitative. Qualitative biomarkers include identifying hypsarrhythmia, centrotemporal spikes, interictal epileptiform discharges (IED), classifying the EEG as normal/abnormal/epileptiform, and photoparoxysmal response. Quantitative biomarkers were statistics applied to IED, high-frequency activity, frequency band power, current source density estimates, pairwise statistical interdependence between EEG channels, and measures of complexity. Prognostic models using EEG features were Cox proportional hazards models and machine learning models. There is promise that some quantitative EEG biomarkers could be used to assess ASM efficacy, but further research is required. There is insufficient evidence to conclude any specific biomarker can be used for a particular population or context to prognosticate ASM efficacy. We identified a potential battery of prognostic EEG biomarkers, which could be combined with prognostic models to assess ASM efficacy. However, many confounders need to be addressed for translation into clinical practice.
Collapse
Affiliation(s)
- Ashley Reynolds
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Michaela Vranic-Peters
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Alan Lai
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - David B Grayden
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark J Cook
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Andre Peterson
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
McSweeney M, Morales S, Valadez EA, Buzzell GA, Yoder L, Fifer WP, Pini N, Shuffrey LC, Elliott AJ, Isler JR, Fox NA. Age-related trends in aperiodic EEG activity and alpha oscillations during early- to middle-childhood. Neuroimage 2023; 269:119925. [PMID: 36739102 DOI: 10.1016/j.neuroimage.2023.119925] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Age-related structural and functional changes that occur during brain development are critical for cortical development and functioning. Previous electroencephalography (EEG) and magnetoencephalography (MEG) studies have highlighted the utility of power spectra analyses and have uncovered age-related trends that reflect perceptual, cognitive, and behavioural states as well as their underlying neurophysiology. The aim of the current study was to investigate age-related change in aperiodic and periodic alpha activity across a large sample of pre- and school-aged children (N = 502, age range 4 -11-years-of-age). Power spectra were extracted from baseline EEG recordings (eyes closed, eyes open) for each participant and parameterized into aperiodic activity to derive the offset and exponent parameters and periodic alpha oscillatory activity to derive the alpha peak frequency and the associated power estimates. Multilevel models were run to investigate age-related trends and condition-dependent changes for each of these measures. We found quadratic age-related effects for both the aperiodic offset and exponent. In addition, we observed increases in periodic alpha peak frequency as a function of age. Aperiodic measures and periodic alpha power were larger in magnitude during eyes closed compared to the eyes open baseline condition. Taken together, these results advance our understanding of the maturational patterns/trajectories of brain development during early- to middle-childhood.
Collapse
Affiliation(s)
- Marco McSweeney
- Department of Human Development and Quantitative Methodology, University of Maryland, 3304 Benjamin Building, College Park, MD 20742, USA.
| | - Santiago Morales
- Department of Psychology, University of Southern California, USA
| | - Emilio A Valadez
- Department of Human Development and Quantitative Methodology, University of Maryland, 3304 Benjamin Building, College Park, MD 20742, USA
| | - George A Buzzell
- Department of Psychology and the Center for Children and Families, Florida International University, USA
| | - Lydia Yoder
- Department of Human Development and Quantitative Methodology, University of Maryland, 3304 Benjamin Building, College Park, MD 20742, USA
| | - William P Fifer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA; Department of Paediatrics, Columbia University Irving Medical Center, New York, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, USA
| | - Nicolò Pini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, USA
| | - Lauren C Shuffrey
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, USA
| | - Amy J Elliott
- Avera Research Institute, USA; Department of Paediatrics, University of South Dakota School of Medicine, USA
| | - Joseph R Isler
- Department of Paediatrics, Columbia University Irving Medical Center, New York, USA
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, 3304 Benjamin Building, College Park, MD 20742, USA
| |
Collapse
|
41
|
Xie YH, Zhang YM, Fan FF, Song XY, Liu L. Functional role of frontal electroencephalogram alpha asymmetry in the resting state in patients with depression: A review. World J Clin Cases 2023; 11:1903-1917. [PMID: 36998965 PMCID: PMC10044961 DOI: 10.12998/wjcc.v11.i9.1903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Depression is a psychological disorder that affects the general public worldwide. It is particularly important to make an objective and accurate diagnosis of depression, and the measurement methods of brain activity have gradually received increasing attention. Resting electroencephalogram (EEG) alpha asymmetry in patients with depression shows changes in activation of the alpha frequency band of the left and right frontal cortices. In this paper, we review the findings of the relationship between frontal EEG alpha asymmetry in the resting state and depression. Based on worldwide studies, we found the following: (1) Compared with individuals without depression, those with depression showed greater right frontal EEG alpha asymmetry in the resting state. However, the pattern of frontal EEG alpha asymmetry in the resting state in depressive individuals seemed to disappear with age; (2) Compared with individuals without maternal depression, those with maternal depression showed greater right frontal EEG alpha asymmetry in the resting state, which indicated that genetic or experience-based influences have an impact on frontal EEG alpha asymmetry at rest; and (3) Frontal EEG alpha asymmetry in the resting state was stable, and little or no change occurred after antidepressant treatment. Finally, we concluded that the contrasting results may be due to differences in methodology, clinical characteristics, and participant characteristics.
Collapse
Affiliation(s)
- Yu-Hong Xie
- Psychology College of Teacher Education, Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Ye-Min Zhang
- Psychology College of Teacher Education, Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Fan-Fan Fan
- Psychology College of Teacher Education, Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Xi-Yan Song
- Psychology College of Teacher Education, Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Lei Liu
- Psychology College of Teacher Education, Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo 315211, Zhejiang Province, China
| |
Collapse
|
42
|
Sajno E, Bartolotta S, Tuena C, Cipresso P, Pedroli E, Riva G. Machine learning in biosignals processing for mental health: A narrative review. Front Psychol 2023; 13:1066317. [PMID: 36710855 PMCID: PMC9880193 DOI: 10.3389/fpsyg.2022.1066317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Machine Learning (ML) offers unique and powerful tools for mental health practitioners to improve evidence-based psychological interventions and diagnoses. Indeed, by detecting and analyzing different biosignals, it is possible to differentiate between typical and atypical functioning and to achieve a high level of personalization across all phases of mental health care. This narrative review is aimed at presenting a comprehensive overview of how ML algorithms can be used to infer the psychological states from biosignals. After that, key examples of how they can be used in mental health clinical activity and research are illustrated. A description of the biosignals typically used to infer cognitive and emotional correlates (e.g., EEG and ECG), will be provided, alongside their application in Diagnostic Precision Medicine, Affective Computing, and brain-computer Interfaces. The contents will then focus on challenges and research questions related to ML applied to mental health and biosignals analysis, pointing out the advantages and possible drawbacks connected to the widespread application of AI in the medical/mental health fields. The integration of mental health research and ML data science will facilitate the transition to personalized and effective medicine, and, to do so, it is important that researchers from psychological/ medical disciplines/health care professionals and data scientists all share a common background and vision of the current research.
Collapse
Affiliation(s)
- Elena Sajno
- Humane Technology Lab, Università Cattolica del Sacro Cuore, Milan, Italy,Department of Computer Science, University of Pisa, Pisa, Italy,*Correspondence: Elena Sajno, ✉
| | - Sabrina Bartolotta
- ExperienceLab, Università Cattolica del Sacro Cuore, Milan, Italy,Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Cosimo Tuena
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Pietro Cipresso
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy,Department of Psychology, University of Turin, Turin, Italy
| | - Elisa Pedroli
- Department of Psychology, eCampus University, Novedrate, Italy
| | - Giuseppe Riva
- Humane Technology Lab, Università Cattolica del Sacro Cuore, Milan, Italy,Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
43
|
Candelaria-Cook FT, Schendel ME, Flynn L, Cerros C, Kodituwakku P, Bakhireva LN, Hill DE, Stephen JM. Decreased resting-state alpha peak frequency in children and adolescents with fetal alcohol spectrum disorders or prenatal alcohol exposure. Dev Cogn Neurosci 2022; 57:101137. [PMID: 35878441 PMCID: PMC9310113 DOI: 10.1016/j.dcn.2022.101137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can result in long-lasting changes to physical, behavioral, and cognitive functioning in children. PAE might result in decreased white matter integrity, corticothalamic tract integrity, and alpha cortical oscillations. Previous investigations of alpha oscillations in PAE/fetal alcohol spectrum disorder (FASD) have focused on average spectral power at specific ages; therefore, little is known about alpha peak frequency (APF) or its developmental trajectory making this research novel. Using resting-state MEG data, APF was determined from parietal/occipital regions in participants with PAE/FASD or typically developing controls (TDC). In total, MEG data from 157 infants, children, and adolescents ranging in age from 6 months to 17 years were used, including 17 individuals with PAE, 61 individuals with an FASD and 84 TDC. In line with our hypothesis, we found that individuals with PAE/FASD had significantly reduced APF relative to TDC. Both age and group were significantly related to APF with differences between TDC and PAE/FASD persisting throughout development. We did not find evidence that sex or socioeconomic status had additional impact on APF. Reduced APF in individuals with an FASD/PAE may represent a long-term deficit and demonstrates the detrimental impact prenatal alcohol exposure can have on neurophysiological processes.
Collapse
Affiliation(s)
| | - Megan E Schendel
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Lucinda Flynn
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Cassandra Cerros
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Piyadasa Kodituwakku
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ludmila N Bakhireva
- Substance Use Research and Education Center, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Dina E Hill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
44
|
Freschl J, Azizi LA, Balboa L, Kaldy Z, Blaser E. The development of peak alpha frequency from infancy to adolescence and its role in visual temporal processing: A meta-analysis. Dev Cogn Neurosci 2022; 57:101146. [PMID: 35973361 PMCID: PMC9399966 DOI: 10.1016/j.dcn.2022.101146] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 01/19/2023] Open
Abstract
While it has been shown that alpha frequency increases over development (Stroganova et al., 1999), a precise trajectory has not yet been specified, making it challenging to constrain theories linking alpha rhythms to perceptual development. We conducted a comprehensive review of studies measuring resting-state occipital peak alpha frequency (PAF, the frequency exhibiting maximum power) from birth to 18 years of age. From 889 potentially relevant studies, we identified 40 reporting PAF (109 samples; 3882 subjects). A nonlinear regression revealed that PAF increases quickly in early childhood (from 6.1 Hz at 6 months to 8.4 Hz at 5 years) and levels off in adolescence (9.7 Hz at 13 years), with an asymptote at 10.1 Hz. We found no effect of resting state procedure (eyes-open versus eyes-closed) or biological sex. PAF has been implicated as a clock on visual temporal processing, with faster frequencies associated with higher visual temporal resolution. Psychophysical studies have shown that temporal resolution reaches adult levels by 5 years of age (Freschl et al., 2019, 2020). The fact that PAF reaches the adult range of 8-12 Hz by that age strengthens the link between PAF and temporal resolution.
Collapse
Affiliation(s)
- Julie Freschl
- University of Massachusetts Boston, Boston, MA, USA; Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA.
| | | | | | - Zsuzsa Kaldy
- University of Massachusetts Boston, Boston, MA, USA
| | - Erik Blaser
- University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
45
|
Liao YC, Guo NW, Su BY, Chen SJ, Tsai HF. Effects of Twenty Hours of Neurofeedback-Based Neuropsychotherapy on the Executive Functions and Achievements among ADHD Children. Clin EEG Neurosci 2022; 53:387-398. [PMID: 35611492 DOI: 10.1177/15500594221101693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective. Neurofeedback can reduce ADHD symptoms; however, current programs are relatively long, with fewer concerns about executive function (EF). The present study aimed to investigate a 20-hour combined computerized training neurofeedback program. Methods. Fifty ADHD children were randomly assigned to either the experimental group (EXP) or the wait-list control group (CON), who took training after the post-tests. The EF measures were the Tower of London (ToL), Wisconsin Card Sorting Test (WCST), and Comprehensive Nonverbal Attention Test (CNAT). SNAP-IV and questionnaires reported by parents constituted the behavioral measures. Two-way repeated-measures ANOVA and bootstrapping dependent t-tests were also used. Results. The F-tests revealed the interaction effects on ADHD symptoms and math scores. The EXP had increased the ToL scores, decreased the error and perseverative error rates on WCST, as well as the dysexecutive index on CNAT in the t-test. Conclusions. The training effects were related to behavioral symptoms and functions, EFs, and generalized achievement performances. We suggest that future studies could apply to different patients and examine the maintenance of the program.
Collapse
Affiliation(s)
- Yu-Chi Liao
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Clinical Psychology Center, Asia University Hospital, Taichung, Taiwan
| | - Nai-Wen Guo
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Taichung, Taiwan.,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Taichung, Taiwan
| | - Bei-Yi Su
- Department of Psychology, Chung-Shan Medical University, Taichung, Taiwan.,Room of Clinical Psychology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | | |
Collapse
|
46
|
Begum‐Ali J, Goodwin A, Mason L, Pasco G, Charman T, Johnson MH, Jones EJ. Altered theta-beta ratio in infancy associates with family history of ADHD and later ADHD-relevant temperamental traits. J Child Psychol Psychiatry 2022; 63:1057-1067. [PMID: 35187652 PMCID: PMC9540467 DOI: 10.1111/jcpp.13563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Uncovering the neural mechanisms that underlie symptoms of attention deficit hyperactivity disorder (ADHD) requires studying brain development prior to the emergence of behavioural difficulties. One new approach to this is prospective studies of infants with an elevated likelihood of developing ADHD. METHODS We used a prospective design to examine an oscillatory electroencephalography profile that has been widely studied in both children and adults with ADHD - the balance between lower and higher frequencies operationalised as the theta-beta ratio (TBR). In the present study, we examined TBR in 136 10-month-old infants (72 male and 64 female) with/without an elevated likelihood of developing ADHD and/or a comparison disorder (Autism Spectrum Disorder; ASD). RESULTS Infants with a first-degree relative with ADHD demonstrated lower TBR than infants without a first-degree relative with ADHD. Further, lower TBR at 10 months was positively associated with temperament dimensions conceptually related to ADHD at 2 years. TBR was not altered in infants with a family history of ASD. CONCLUSIONS This is the first demonstration that alterations in TBR are present prior to behavioural symptoms of ADHD. However, these alterations manifest differently than those sometimes observed in older children with an ADHD diagnosis. Importantly, altered TBR was not seen in infants at elevated likelihood of developing ASD, suggesting a degree of specificity to ADHD. Taken together, these findings demonstrate that there are brain changes associated with a family history of ADHD observable in the first year of life.
Collapse
Affiliation(s)
- Jannath Begum‐Ali
- Centre for Brain and Cognitive DevelopmentDepartment of Psychological SciencesBirkbeck, University of LondonLondonUK
| | - Amy Goodwin
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Luke Mason
- Centre for Brain and Cognitive DevelopmentDepartment of Psychological SciencesBirkbeck, University of LondonLondonUK
| | - Greg Pasco
- Psychology DepartmentInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Tony Charman
- Psychology DepartmentInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Mark H. Johnson
- Centre for Brain and Cognitive DevelopmentDepartment of Psychological SciencesBirkbeck, University of LondonLondonUK,Department of PsychologyUniversity of CambridgeCambridgeUK
| | - Emily J.H. Jones
- Centre for Brain and Cognitive DevelopmentDepartment of Psychological SciencesBirkbeck, University of LondonLondonUK
| | | |
Collapse
|
47
|
Gu Y, Li X, Chen S, Li X. Effect of Rhythmic and Nonrhythmic Brain Activity on Power Spectral Analysis in Children With Attention Deficit Hyperactivity Disorder. IEEE Trans Cogn Dev Syst 2022. [DOI: 10.1109/tcds.2021.3094516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yue Gu
- Key Laboratory of Computer Vision and System, Ministry of Education, School of Computer Science and Engineering, and the Engineering Research Center of Learning-Based Intelligent System, Ministry of Education, Tianjin University of Technology, Tianjin, China
| | - Xue Li
- Key Laboratory of Computer Vision and System, Ministry of Education, School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Shengyong Chen
- Key Laboratory of Computer Vision and System, Ministry of Education, School of Computer Science and Engineering, and the Engineering Research Center of Learning-Based Intelligent System, Ministry of Education, Tianjin University of Technology, Tianjin, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
48
|
Tröndle M, Popov T, Dziemian S, Langer N. Decomposing the role of alpha oscillations during brain maturation. eLife 2022; 11:e77571. [PMID: 36006005 PMCID: PMC9410707 DOI: 10.7554/elife.77571] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/26/2022] [Indexed: 12/21/2022] Open
Abstract
Childhood and adolescence are critical stages of the human lifespan, in which fundamental neural reorganizational processes take place. A substantial body of literature investigated accompanying neurophysiological changes, focusing on the most dominant feature of the human EEG signal: the alpha oscillation. Recent developments in EEG signal-processing show that conventional measures of alpha power are confounded by various factors and need to be decomposed into periodic and aperiodic components, which represent distinct underlying brain mechanisms. It is therefore unclear how each part of the signal changes during brain maturation. Using multivariate Bayesian generalized linear models, we examined aperiodic and periodic parameters of alpha activity in the largest openly available pediatric dataset (N=2529, age 5-22 years) and replicated these findings in a preregistered analysis of an independent validation sample (N=369, age 6-22 years). First, the welldocumented age-related decrease in total alpha power was replicated. However, when controlling for the aperiodic signal component, our findings provided strong evidence for an age-related increase in the aperiodic-adjusted alpha power. As reported in previous studies, also relative alpha power revealed a maturational increase, yet indicating an underestimation of the underlying relationship between periodic alpha power and brain maturation. The aperiodic intercept and slope decreased with increasing age and were highly correlated with total alpha power. Consequently, earlier interpretations on age-related changes of total alpha power need to be reconsidered, as elimination of active synapses rather links to decreases in the aperiodic intercept. Instead, analyses of diffusion tensor imaging data indicate that the maturational increase in aperiodic-adjusted alpha power is related to increased thalamocortical connectivity. Functionally, our results suggest that increased thalamic control of cortical alpha power is linked to improved attentional performance during brain maturation.
Collapse
Affiliation(s)
- Marius Tröndle
- Department of Psychology, University of Zurich, Methods of Plasticity ResearchZurichSwitzerland
- University Research Priority Program (URPP) Dynamic of Healthy AgingZurichSwitzerland
| | - Tzvetan Popov
- Department of Psychology, University of Zurich, Methods of Plasticity ResearchZurichSwitzerland
- University Research Priority Program (URPP) Dynamic of Healthy AgingZurichSwitzerland
| | - Sabine Dziemian
- Department of Psychology, University of Zurich, Methods of Plasticity ResearchZurichSwitzerland
- University Research Priority Program (URPP) Dynamic of Healthy AgingZurichSwitzerland
| | - Nicolas Langer
- Department of Psychology, University of Zurich, Methods of Plasticity ResearchZurichSwitzerland
- University Research Priority Program (URPP) Dynamic of Healthy AgingZurichSwitzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich & ETH ZurichZurichSwitzerland
| |
Collapse
|
49
|
Richard S, Gabriel S, John S, Emmanuel M, John-Mary V. The focused quantitative EEG bio-marker in studying childhood atrophic encephalopathy. Sci Rep 2022; 12:13437. [PMID: 35927445 PMCID: PMC9352776 DOI: 10.1038/s41598-022-17062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Although it is a normal involution process in advanced age, brain atrophy—also termed atrophic encephalopathy—can also occur prematurely in childhood as a consequential effect of brain tissues injury through trauma or central nervous system infection, though in both normal and premature occurrences this condition always presents with loss of volume relative to the skull. A common tool for the functional study of brain activities is an electroencephalogram, but analyses of this have reportedly identified mismatches between qualitative and quantitative forms, particularly in the use of Delta-alpha ratio (DAR) indices, meaning that the values may be case dependent. The current study thus examines the value of Focused Occipital Beta-Alpha Ratio (FOBAR) as a modified biomarker for evaluating brain functional changes resulting from brain atrophy. This cross-sectional design study involves 260 patients under 18 years of age. Specifically, 207 patients with brain atrophy are compared with 53 control subjects with CT scan-proven normal brain volume. All the children underwent digital electroencephalography with brain mapping. Results show that alpha posterior dominant rhythm was present in 88 atrophic children and 44 controls. Beta as posterior dominant rhythm was present in an overwhelming 91.5% of atrophic subjects, with 0.009 p-values. The focused occipital Beta-alpha ratio correlated significantly with brain volume loss presented in diagonal brain fraction. The FOBAR and DAR values of the QEEG showed no significant correlation. This work concludes that QEEG cerebral dysfunctional studies may be etiologically and case dependent from the nature of the brain injury. Also, the focused Beta-alpha ratio of the QEEG is a prospective and potential biomarker of consideration in studying childhood atrophic encephalopathy.
Collapse
Affiliation(s)
- Sungura Richard
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania.
| | - Shirima Gabriel
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania
| | - Spitsbergen John
- Department of Neuroscience, Western Michigan University, Kalamazoo, MI, USA
| | - Mpolya Emmanuel
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania
| | - Vianney John-Mary
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
50
|
Featherstone RE, Shimada T, Crown LM, Melnychenko O, Yi J, Matsumoto M, Tajinda K, Mihara T, Adachi M, Siegel SJ. Calcium/calmodulin-dependent protein kinase IIα heterozygous knockout mice show electroencephalogram and behavioral changes characteristic of a subpopulation of schizophrenia and intellectual impairment. Neuroscience 2022; 499:104-117. [PMID: 35901933 DOI: 10.1016/j.neuroscience.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022]
Abstract
Cognitive deficit remains an intractable symptom of schizophrenia, accounting for substantial disability. Despite this, little is known about the cause of cognitive dysfunction in schizophrenia. Recent studies suggest that schizophrenia patients show several changes in dentate gyrus structure and functional characteristic of immaturity. The immature dentate gyrus (iDG) has been replicated in several mouse models, most notably the αCaMKII heterozygous mouse (CaMKIIa-hKO). The current study characterizes behavioral phenotypes of CaMKIIa-hKO mice and determines their neurophysiological profile using electroencephalogram (EEG) recording from hippocampus. CaMKIIa-hKO mice were hypoactive in home-cage environment; however, they displayed less anxiety-like phenotype, suggestive of impulsivity-like behavior. In addition, severe cognitive dysfunction was evident in CaMKIIa-hKO mice as examined by novel object recognition and contextual fear conditioning. Several EEG phenomena established in both patients and relevant animal models indicate key pathological changes associated with the disease, include auditory event-related potentials and time-frequency EEG oscillations. CaMKIIa-hKO mice showed altered event-related potentials characterized by an increase in amplitude of the N40 and P80, as well as increased P80 latency. These mice also showed increased power in theta range time-frequency measures. Additionally, CaMKIIa-hKO mice showed spontaneous bursts of spike wave activity, possibly indicating absence seizures. The GABAB agonist baclofen increased, while the GABAB antagonist CGP35348 and the T-Type Ca2+ channel blocker Ethosuximide decreased spike wave burst frequency. None of these changes in event-related potentials or EEG oscillations are characteristic of those observed in general population of patients with schizophrenia; yet, CaMKIIa-hKO mice likely model a subpopulation of patients with schizophrenia.
Collapse
Affiliation(s)
- Robert E Featherstone
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | - Takeshi Shimada
- Drug Discovery Research, Astellas Pharma, Inc, Tsukuba, Japan
| | - Lindsey M Crown
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | - Olya Melnychenko
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | - Janice Yi
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | | | | | - Takuma Mihara
- Drug Discovery Research, Astellas Pharma, Inc, Tsukuba, Japan
| | - Megumi Adachi
- Astellas Research Institute of America, San Diego, CA, USA.
| | - Steven J Siegel
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA.
| |
Collapse
|