1
|
Littig L, Sheth KN, Brickman AM, Mistry EA, de Havenon A. Blood Pressure and Cognitive Function in Older Adults. Clin Geriatr Med 2024; 40:597-613. [PMID: 39349034 PMCID: PMC11443062 DOI: 10.1016/j.cger.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
This review explores the extensive evidence linking hypertension with vascular cognitive impairment and dementia, emphasizing its role as a treatable risk factor. Drawing on observational data, it will elucidate how the chronicity of hypertension at different life stages amplifies cognitive decline risk. It explores the mechanisms underlying hypertension's association with dementia, assesses the neuroprotective properties of antihypertensive therapy, and evaluates novel blood pressure metrics and monitoring methods for their diagnostic and therapeutic potential in dementia management.
Collapse
Affiliation(s)
- Lauren Littig
- Department of Neurology, Yale University, 15 York Street, New Haven, CT 06510, USA
| | - Kevin N Sheth
- Department of Neurology, Yale University, 15 York Street, New Haven, CT 06510, USA; Center for Brain and Mind Health, Yale University, 15 York Street, New Haven, CT 06510, USA
| | - Adam M Brickman
- Department of Neurology, Columbia University Medical Center, 710 West 168 Street, New York, NY 10032, USA
| | - Eva A Mistry
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 260 Stetson Street, Cincinnati, OH 45267, USA
| | - Adam de Havenon
- Department of Neurology, Yale University, 15 York Street, New Haven, CT 06510, USA; Center for Brain and Mind Health, Yale University, 15 York Street, New Haven, CT 06510, USA.
| |
Collapse
|
2
|
Chen J, Zhao X, Liu H, Wang K, Xu X, Wang S, Li M, Zheng R, Zhou L, Bi Y, Xu Y. Association of systolic blood pressure variability with cognitive decline in type 2 diabetes: A post hoc analysis of a randomized clinical trial. J Diabetes 2024; 16:e70020. [PMID: 39470149 PMCID: PMC11519988 DOI: 10.1111/1753-0407.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND We aimed to explore the association between visit-to-visit systolic blood pressure variability (BPV) and cognitive function in individuals with type 2 diabetes. METHODS We performed a post hoc analysis of the Action to Control Cardiovascular Risk in Diabetes Memory in Diabetes (ACCORD-MIND) substudy. A total of 2867 diabetes patients with ≥3 BP measurements between the 4- and 20-month visits were included. Visit-to-visit systolic BPV was calculated. Cognitive decline was defined as a Mini-Mental State Exam (MMSE), Digit Symbol Substitution Test (DSST), or Rey Auditory Verbal Learning Test (RAVLT) score greater than 1 standard deviation (SD) below the baseline mean, or a Stroop test score more than 1 SD above the baseline mean. The associations of systolic BPV with risks of cognitive decline were examined using Cox proportional hazards models, and with changes in brain magnetic resonance imaging parameters were evaluated using mixed models. RESULTS The risk of cognitive decline defined by the DSST score (but not by other scores) increased significantly with systolic BPV quartiles (p for trend = 0.008), and there was a 55% increased risk for BPV quartile 4 versus quartile 1 (hazard ratio = 1.55, 95% confidence interval 1.10-2.19). Furthermore, a positive correlation was observed between systolic BPV and change in white matter lesion volume (β = 0.07, 95% CI 0.01-0.13). CONCLUSIONS A greater visit-to-visit systolic BPV was significantly associated with an increased risk of cognitive decline measured by DSST and an increase in white matter lesion volume in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Junmin Chen
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xuan Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Huidan Liu
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Kan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xiaoli Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Siyu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Libin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yufang Bi
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Mok VCT, Cai Y, Markus HS. Vascular cognitive impairment and dementia: Mechanisms, treatment, and future directions. Int J Stroke 2024; 19:838-856. [PMID: 39283037 PMCID: PMC11490097 DOI: 10.1177/17474930241279888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 10/21/2024]
Abstract
Worldwide, around 50 million people live with dementia, and this number is projected to triple by 2050. It has been estimated that 20% of all dementia cases have a predominant cerebrovascular pathology, while perhaps another 20% of vascular diseases contribute to a mixed dementia picture. Therefore, the vascular contribution to dementia affects 20 million people currently and will increase markedly in the next few decades, particularly in lower- and middle-income countries.In this review, we discuss the mechanisms of vascular cognitive impairment (VCI) and review management. VCI refers to the spectrum of cerebrovascular pathologies that contribute to any degree of cognitive impairment, ranging from subjective cognitive decline, to mild cognitive impairment, to dementia. While acute cognitive decline occurring soon after a stroke is the most recognized form of VCI, chronic cerebrovascular disease, in particular cerebral small-vessel disease, can cause insidious cognitive decline in the absence of stroke. Moreover, cerebrovascular disease not only commonly co-occurs with Alzheimer's disease (AD) and increases the probability that AD pathology will result in clinical dementia, but may also contribute etiologically to the development of AD pathologies.Despite its enormous health and economic impact, VCI has been a neglected research area, with few adequately powered trials of therapies, resulting in few proven treatments. Current management of VCI emphasizes prevention and treatment of stroke and vascular risk factors, with most evidence for intensive hypertension control. Reperfusion therapies in acute stroke may attenuate the risk of VCI. Associated behavioral symptoms such as apathy and poststroke emotionalism are common. We also highlight novel treatment strategies that will hopefully lead to new disease course-modifying therapies. Finally, we highlight the importance of including cognitive endpoints in large cardiovascular prevention trials and the need for an increased research focus and funding for this important area.
Collapse
Affiliation(s)
- Vincent Chung Tong Mok
- Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Gerald Choa Neuroscience Institute, Li Ka Shing Institute of Health Science, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Yuan Cai
- Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Gerald Choa Neuroscience Institute, Li Ka Shing Institute of Health Science, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Hayes-Larson E, Zhou Y, Wu Y, Mobley TM, Gee GC, Brookmeyer R, Whitmer RA, Gilsanz P, Kanaya AM, Mayeda ER. Heterogeneity in the effect of type 2 diabetes on dementia incidence in a diverse cohort of Asian American and non-Latino White older adults. Am J Epidemiol 2024; 193:1261-1270. [PMID: 38949483 PMCID: PMC11369220 DOI: 10.1093/aje/kwae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/25/2024] [Accepted: 04/16/2024] [Indexed: 07/02/2024] Open
Abstract
Dementia incidence is lower among Asian Americans than among Whites, despite higher prevalence of type 2 diabetes, a well-known dementia risk factor. Determinants of dementia, including type 2 diabetes, have rarely been studied in Asian Americans. We followed 4846 Chinese, 4129 Filipino, 2784 Japanese, 820 South Asian, and 123 360 non-Latino White members of a California-based integrated health-care delivery system from 2002 to 2020. We estimated dementia incidence rates by race/ethnicity and type 2 diabetes status, and we fitted Cox proportional hazards and Aalen additive hazards models for the effect of type 2 diabetes (assessed 5 years before baseline) on age of dementia diagnosis, controlling for sex/gender, educational attainment, nativity, height, race/ethnicity, and a race/ethnicity × diabetes interaction. Type 2 diabetes was associated with higher dementia incidence in Whites (hazard ratio [HR] = 1.46; 95% CI, 1.40-1.52). Compared with Whites, the estimated effect of diabetes was larger in South Asians (HR = 2.26; 95% CI, 1.48-3.44), slightly smaller in Chinese (HR = 1.32; 95% CI, 1.08-1.62) and Filipino (HR = 1.31; 95% CI, 1.08-1.60) individuals, and similar in Japanese individuals (HR = 1.44; 95% CI, 1.15-1.81). Heterogeneity in this association across Asian subgroups may be related to type 2 diabetes severity. Understanding this heterogeneity may inform prevention strategies to prevent dementia for all racial and ethnic groups.
Collapse
Affiliation(s)
- Eleanor Hayes-Larson
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Yixuan Zhou
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Yingyan Wu
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Taylor M Mobley
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Gilbert C Gee
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Ron Brookmeyer
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Rachel A Whitmer
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, United States
- UC Davis Health Alzheimer’s Disease Research Center, University of California, Davis, Sacramento, CA 95816, United States
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA 94588, United States
| | - Paola Gilsanz
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA 94588, United States
| | - Alka M Kanaya
- Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Elizabeth Rose Mayeda
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
5
|
de Galan BE. Diabetes and brain disorders, a new role for insulin? Neurosci Biobehav Rev 2024; 163:105775. [PMID: 38901787 DOI: 10.1016/j.neubiorev.2024.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Affiliation(s)
- Bastiaan E de Galan
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
van Sloten TT, Luchsinger JA, Launer LJ, Strachan M, Cukierman-Yaffe T, Gerstein HC, Sattar N, Biessels GJ. Call for effective therapies for preventing dementia in people with type 2 diabetes. Lancet Diabetes Endocrinol 2024; 12:510-513. [PMID: 38901446 DOI: 10.1016/s2213-8587(24)00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Affiliation(s)
- Thomas T van Sloten
- Department of Vascular Medicine and Diabetology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands.
| | - José A Luchsinger
- Department of Medicine, Columbia University Medical Center, New York, NY, USA; Department of Epidemiology, Columbia University Medical Center, New York, NY, USA
| | | | - Mark Strachan
- Metabolic Unit, Western General Hospital, Edinburgh, UK
| | - Tali Cukierman-Yaffe
- Division of Endocrinology and Metabolism, Sheba Medical Center, Epidemiology Department, School of Public Health, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hertzel C Gerstein
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, Netherlands
| |
Collapse
|
7
|
Templer S, Abdo S, Wong T. Preventing diabetes complications. Intern Med J 2024; 54:1264-1274. [PMID: 39023283 DOI: 10.1111/imj.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
The key aim of diabetes management is to prevent complications, which are a major cause of morbidity and mortality. At an individual level, people with diabetes are less likely than they were several decades ago to experience classical macrovascular and microvascular complications as a result of improvements in modifiable cardiovascular risk factors and preventive healthcare. However, a significant burden of diabetes complications persists at a population level because of the increasing incidence of diabetes, as well as longer lifetime exposure to diabetes because of younger diagnosis and increased life expectancy. Trials have shown that the most effective strategy for preventing complications of diabetes is a multifactorial approach focussing simultaneously on the management of diet, exercise, glucose levels, blood pressure and lipids. In addition to the cornerstone strategies of addressing diet, exercise and lifestyle measures, the introduction of newer glucose-lowering agents, including sodium-glucose transport protein 2 inhibitors and glucagon-like peptide-1 agonists, have brought about a paradigm shift in preventing the onset and progression of complications of type 2 diabetes, particularly cardiovascular and renal disease. The improvement in rates of classical complications of diabetes over time has been accompanied by a growing awareness of non-traditional complications, including non-alcoholic fatty liver disease. These emerging complications may not respond to a glycaemic-centred approach alone and highlight the importance of foundational strategies centred on lifestyle measures and supported by pharmaceutical therapy to achieve weight loss and reduce metabolic risk in patients living with diabetes.
Collapse
Affiliation(s)
- Sophie Templer
- Department of Endocrinology, Bankstown-Lidcombe Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Sarah Abdo
- Department of Endocrinology, Bankstown-Lidcombe Hospital, Sydney, New South Wales, Australia
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| | - Tang Wong
- Department of Endocrinology, Bankstown-Lidcombe Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Moran C, Whitmer RA, Dove Z, Lacy ME, Soh Y, Tsai A, Quesenberry CP, Karter AJ, Adams AS, Gilsanz P. HbA 1c variability associated with dementia risk in people with type 2 diabetes. Alzheimers Dement 2024; 20:5561-5569. [PMID: 38959429 PMCID: PMC11350038 DOI: 10.1002/alz.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Although poor glycemic control is associated with dementia, it is unknown if variability in glycemic control, even in those with optimal glycosylated hemoglobin A1c (HbA1c) levels, increases dementia risk. METHODS Among 171,964 people with type 2 diabetes, we evaluated the hazard of dementia association with long-term HbA1c variability using five operationalizations, including standard deviation (SD), adjusting for demographics and comorbidities. RESULTS The mean baseline age was 61 years (48% women). Greater HbA1c SD was associated with greater dementia hazard (adjusted hazard ratio = 1.15 [95% confidence interval: 1.12, 1.17]). In stratified analyses, higher HbA1c SD quintiles were associated with greater dementia hazard among those with a mean HbA1c < 6% (P = 0.0004) or 6% to 8% (P < 0.0001) but not among those with mean HbA1c ≥ 8% (P = 0.42). DISCUSSION Greater HbA1c variability is associated with greater dementia risk, even among those with HbA1c concentrations at ideal clinical targets. These findings add to the importance and clinical impact of recommendations to minimize glycemic variability. HIGHLIGHTS We observed a cohort of 171,964 people with type 2 diabetes (mean age 61 years). This cohort was based in Northern California between 1996 and 2018. We examined the association between glycosylated hemoglobin A1c (HbA1c) variability and dementia risk. Greater HbA1c variability was associated with greater dementia hazard. This was most evident among those with normal-low mean HbA1c concentrations.
Collapse
Affiliation(s)
- Chris Moran
- School of Public Health and Preventive MedicineMonash UniversityMelbourneVictoriaAustralia
- Department of Geriatric MedicinePeninsula HealthMorningtonVictoriaAustralia
- Department of HomeAcute and Community, Alfred HealthCaulfieldVictoriaAustralia
- National Centre for Healthy AgeingFrankstonVictoriaAustralia
| | - Rachel A. Whitmer
- Division of EpidemiologyDepartment of Public Health SciencesUniversity of California, Medical Sciences 1‐CDavisCaliforniaUSA
- Kaiser Permanente Division of ResearchOaklandCaliforniaUSA
| | - Zoe Dove
- Kaiser Permanente Division of ResearchOaklandCaliforniaUSA
- California Northstate University, College of MedicineElk GroveCaliforniaUSA
| | - Mary E. Lacy
- Kaiser Permanente Division of ResearchOaklandCaliforniaUSA
- Department of EpidemiologyCollege of Public HealthUniversity of KentuckyLexingtonKentuckyUSA
| | - Yenee Soh
- Kaiser Permanente Division of ResearchOaklandCaliforniaUSA
| | - Ai‐Lin Tsai
- Kaiser Permanente Division of ResearchOaklandCaliforniaUSA
| | | | | | - Alyce S. Adams
- Kaiser Permanente Division of ResearchOaklandCaliforniaUSA
- Department of Epidemiology and Population Health and Health PolicySchool of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Paola Gilsanz
- Kaiser Permanente Division of ResearchOaklandCaliforniaUSA
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
9
|
González HM, Tarraf W, Stickel AM, Morlett A, González KA, Ramos AR, Rundek T, Gallo LC, Talavera GA, Daviglus ML, Lipton RB, Isasi C, Lamar M, Zeng D, DeCarli C. Glycemic Control, Cognitive Aging, and Impairment Among Diverse Hispanic/Latino Individuals: Study of Latinos- Investigation of Neurocognitive Aging (Hispanic Community Health Study/Study of Latinos). Diabetes Care 2024; 47:1152-1161. [PMID: 38684486 PMCID: PMC11208749 DOI: 10.2337/dc23-2003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Hispanic/Latino individuals in the U.S. have the highest prevalence of undiagnosed and untreated diabetes and are at increased risk for cognitive impairment. In this study, we examine glycemic control in relation to cognitive aging and impairment in a large prospective cohort of middle-aged and older Hispanic/Latino individuals of diverse heritages. RESEARCH DESIGN AND METHODS Study of Latinos-Investigation of Neurocognitive Aging (SOL-INCA) is a Hispanic Community Health Study/Study of Latinos (HCHS/SOL) ancillary study. HCHS/SOL is a multisite (Bronx, NY; Chicago, IL; Miami, FL; and San Diego, CA), probability sampled prospective cohort study. SOL-INCA enrolled 6,377 diverse Hispanic/Latino individuals aged 50 years and older (2016-2018). The primary outcomes were cognitive function, 7-year cognitive decline, and mild cognitive impairment (MCI). The primary glycemia exposure variables were measured from fasting blood samples collected at HCHS/SOL visit 1 (2008-2011). RESULTS Visit 1 mean age was 56.5 years ± 8.2 SD, and the average glycosylated hemoglobin A1C (HbA1c) was 6.12% (43.5 ± 14.6 mmol/mol). After covariate adjustment, higher HbA1c was associated with accelerated 7-year global (b = -0.045; 95% CI -0.070; -0.021; in z score units) and executive cognitive decline and a higher prevalence of MCI (odds ratio 1.20; 95% CI 1.11; 1.29). CONCLUSIONS Elevated HbA1c levels were associated with 7-year executive cognitive decline and increased MCI risk among diverse middle-aged and older Hispanic/Latino individuals. Our findings indicate that poor glycemic control in midlife may pose significant risks for cognitive decline and MCI later in life among Hispanic/Latino individuals of diverse heritages.
Collapse
Affiliation(s)
- Hector M. González
- Department of Neurosciences and the Shiley-Marcos Alzheimer’s Disease Research Center, University of California San Diego, San Diego, CA
| | - Wassim Tarraf
- Institute of Gerontology & Department of Healthcare Sciences, Wayne State University, Detroit, MI
| | | | - Alejandra Morlett
- Department of Neurosciences and the Shiley-Marcos Alzheimer’s Disease Research Center, University of California San Diego, San Diego, CA
| | - Kevin A. González
- Department of Neurosciences and the Shiley-Marcos Alzheimer’s Disease Research Center, University of California San Diego, San Diego, CA
| | - Alberto R. Ramos
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami, Miami, FL
| | - Tatjana Rundek
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami, Miami, FL
| | - Linda C. Gallo
- Department of Psychology, San Diego State University, San Diego, CA
| | | | - Martha L. Daviglus
- Institute for Minority Health Research, University of Illinois College of Medicine at Chicago, Chicago, IL
| | | | - Carmen Isasi
- Albert Einstein College of Medicine, New York, NY
| | - Melissa Lamar
- Institute for Minority Health Research, University of Illinois College of Medicine at Chicago, Chicago, IL
- Department of Psychiatry & Behavioral Sciences and Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL
| | - Donglin Zeng
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Charles DeCarli
- Department of Neurology and Alzheimer’s Disease Center, University of California Davis, Sacramento, CA
| |
Collapse
|
10
|
Leibold NS, Despa F. Neuroinflammation induced by amyloid-forming pancreatic amylin: Rationale for a mechanistic hypothesis. Biophys Chem 2024; 310:107252. [PMID: 38663120 PMCID: PMC11111340 DOI: 10.1016/j.bpc.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/15/2024]
Abstract
Amylin is a systemic neuroendocrine hormone co-expressed and co-secreted with insulin by pancreatic β-cells. In persons with thype-2 diabetes, amylin forms pancreatic amyloid triggering inflammasome and interleukin-1β signaling and inducing β-cell apoptosis. Here, we summarize recent progress in understanding the potential link between amyloid-forming pancreatic amylin and Alzheimer's disease (AD). Clinical data describing amylin pathology in AD alongside mechanistic studies in animals are reviewed. Data from multiple research teams indicate higher amylin concentrations are associated with increased frequency of cognitive impairment and amylin co-aggregates with β-amyloid in AD-type dementia. Evidence from rodent models further suggests cerebrovascular amylin accumulation as a causative factor underlying neurological deficits. Analysis of relevant literature suggests that modulating the amylin-interleukin-1β pathway may provide an approach for counteracting neuroinflammation in AD.
Collapse
Affiliation(s)
- Noah S Leibold
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
11
|
Leibold N, Bain JR, Despa F. Type-2 Diabetes, Pancreatic Amylin, and Neuronal Metabolic Remodeling in Alzheimer's Disease. Mol Nutr Food Res 2024; 68:e2200405. [PMID: 36708219 PMCID: PMC10374875 DOI: 10.1002/mnfr.202200405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/26/2022] [Indexed: 01/29/2023]
Abstract
Type-2 diabetes raises the risk for Alzheimer's disease (AD)-type dementia and the conversion from mild cognitive impairment to dementia, yet mechanisms connecting type-2 diabetes to AD remain largely unknown. Amylin, a pancreatic β-cell hormone co-secreted with insulin, participates in the central regulation of satiation, but also forms pancreatic amyloid in persons with type-2 diabetes and synergistically interacts with brain amyloid β (Aβ) pathology, in both sporadic and familial Alzheimer's disease (AD). Growing evidence from studies of tumor growth, together with early observations in skeletal muscle, indicates amylin as a potential trigger of cellular metabolic reprogramming. Because the blood, cerebrospinal fluid, and brain parenchyma in humans with AD have increased concentrations of amylin, amylin-mediated pathological processes in the brain may involve neuronal metabolic remodeling. This review summarizes recent progress in understanding the link between prediabetic hypersecretion of amylin and risk of neuronal metabolic remodeling and AD and suggests nutritional and medical effects of food constituents that might prevent and/or ameliorate amylin-mediated neuronal metabolic remodeling.
Collapse
Affiliation(s)
- Noah Leibold
- Department of Pharmacology and Nutritional Sciences, The University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, The University of Kentucky, Lexington, KY, USA
| | - James R. Bain
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Claude D. Pepper Older Americans Independence Center, and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, The University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, The University of Kentucky, Lexington, KY, USA
- Department of Neurology, The University of Kentucky, Lexington, KY, USA
| |
Collapse
|
12
|
Gustafson D, DiStefano PV, Wang XF, Wu R, Ghaffari S, Ching C, Rathnakumar K, Alibhai F, Syonov M, Fitzpatrick J, Boudreau E, Lau C, Galant N, Husain M, Li RK, Lee WL, Parekh RS, Monnier PP, Fish JE. Circulating small extracellular vesicles mediate vascular hyperpermeability in diabetes. Diabetologia 2024; 67:1138-1154. [PMID: 38489029 PMCID: PMC11058313 DOI: 10.1007/s00125-024-06120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
AIMS/HYPOTHESIS A hallmark chronic complication of type 2 diabetes mellitus is vascular hyperpermeability, which encompasses dysfunction of the cerebrovascular endothelium and the subsequent development of associated cognitive impairment. The present study tested the hypothesis that during type 2 diabetes circulating small extracellular vesicles (sEVs) exhibit phenotypic changes that facilitate pathogenic disruption of the vascular barrier. METHODS sEVs isolated from the plasma of a mouse model of type 2 diabetes and from diabetic human individuals were characterised for their ability to disrupt the endothelial cell (EC) barrier. The contents of sEVs and their effect on recipient ECs were assessed by proteomics and identified pathways were functionally interrogated with small molecule inhibitors. RESULTS Using intravital imaging, we found that diabetic mice (Leprdb/db) displayed hyperpermeability of the cerebrovasculature. Enhanced vascular leakiness was recapitulated following i.v. injection of sEVs from diabetic mice into non-diabetic recipient mice. Characterisation of circulating sEV populations from the plasma of diabetic mice and humans demonstrated increased quantity and size of sEVs compared with those isolated from non-diabetic counterparts. Functional experiments revealed that sEVs from diabetic mice or humans induced the rapid and sustained disruption of the EC barrier through enhanced paracellular and transcellular leak but did not induce inflammation. Subsequent sEV proteome and recipient EC phospho-proteome analysis suggested that extracellular vesicles (sEVs) from diabetic mice and humans modulate the MAPK/MAPK kinase (MEK) and Rho-associated protein kinase (ROCK) pathways, cell-cell junctions and actin dynamics. This was confirmed experimentally. Treatment of sEVs with proteinase K or pre-treatment of recipient cells with MEK or ROCK inhibitors reduced the hyperpermeability-inducing effects of circulating sEVs in the diabetic state. CONCLUSIONS/INTERPRETATION Diabetes is associated with marked increases in the concentration and size of circulating sEVs. The modulation of sEV-associated proteins under diabetic conditions can induce vascular leak through activation of the MEK/ROCK pathway. These data identify a new paradigm by which diabetes can induce hyperpermeability and dysfunction of the cerebrovasculature and may implicate sEVs in the pathogenesis of cognitive decline during type 2 diabetes.
Collapse
Affiliation(s)
- Dakota Gustafson
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Peter V DiStefano
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Xue Fan Wang
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| | - Ruilin Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Siavash Ghaffari
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | - Faisal Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Michal Syonov
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
| | - Jessica Fitzpatrick
- Department of Medicine and Pediatrics, Women's College Hospital, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Emilie Boudreau
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Cori Lau
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Natalie Galant
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Mansoor Husain
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Warren L Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Rulan S Parekh
- Department of Medicine and Pediatrics, Women's College Hospital, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Philippe P Monnier
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
13
|
Xie Q, Nie M, Zhang F, Shao X, Wang J, Song J, Wang Y. An unexpected interaction between diabetes and cardiovascular diseases on cognitive function: A cross-sectional study. J Affect Disord 2024; 354:688-693. [PMID: 38521139 DOI: 10.1016/j.jad.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE Impaired cognitive function in older individuals significantly affects quality of life. The interaction between comorbid diabetes and cardiovascular disease (CVD) and its impact on cognitive impairment remains unclear. METHODS This study analyzed 2564 subjects from the National Health and Nutrition Examination Survey dataset. Cognitive function was measured using various scores, including CERAD Total Score, CERAD Delayed Recall Score (CDRS), Animal Fluency Total Score, and Digit Symbol Score. Multiple regression models were constructed to explore the relationship between different diseases and cognitive function, considering covariates such as age, sex, education, body mass index, alcohol intake, smoking, physical activity, kidney function, and hypertension. RESULTS After adjusting for multiple factors, the presence of CVD, diabetes, or both showed a significant negative association with the total cognitive score. The CDRS was associated with both CVD and diabetes. The Digit Symbol score was associated with the presence of CVD, diabetes, or both. No significant differences were found between patients with diabetes and CVD in cognitive test results. An interaction between CVD and diabetes was observed in relation to the CDRS but not in other test scores or the total score. CONCLUSION The individual impact of each disease on cognitive function was not significant. However, an interaction between CVD and diabetes was found when both diseases coexisted, specifically in relation to delayed learning ability.
Collapse
Affiliation(s)
- Qifei Xie
- Nuclear Medicine Department, the Third Affiliated Hospital of Soochow University, Soochow University, China; Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Meiling Nie
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Feifei Zhang
- Nuclear Medicine Department, the Third Affiliated Hospital of Soochow University, Soochow University, China
| | - Xiaoliang Shao
- Nuclear Medicine Department, the Third Affiliated Hospital of Soochow University, Soochow University, China
| | - Jianfeng Wang
- Nuclear Medicine Department, the Third Affiliated Hospital of Soochow University, Soochow University, China
| | - Juan Song
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China.
| | - Yuetao Wang
- Nuclear Medicine Department, the Third Affiliated Hospital of Soochow University, Soochow University, China.
| |
Collapse
|
14
|
Huang WQ, Lin Q, Tzeng CM. Leukoaraiosis: Epidemiology, Imaging, Risk Factors, and Management of Age-Related Cerebral White Matter Hyperintensities. J Stroke 2024; 26:131-163. [PMID: 38836265 PMCID: PMC11164597 DOI: 10.5853/jos.2023.02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/15/2024] [Indexed: 06/06/2024] Open
Abstract
Leukoaraiosis (LA) manifests as cerebral white matter hyperintensities on T2-weighted magnetic resonance imaging scans and corresponds to white matter lesions or abnormalities in brain tissue. Clinically, it is generally detected in the early 40s and is highly prevalent globally in individuals aged >60 years. From the imaging perspective, LA can present as several heterogeneous forms, including punctate and patchy lesions in deep or subcortical white matter; lesions with periventricular caps, a pencil-thin lining, and smooth halo; as well as irregular lesions, which are not always benign. Given its potential of having deleterious effects on normal brain function and the resulting increase in public health burden, considerable effort has been focused on investigating the associations between various risk factors and LA risk, and developing its associated clinical interventions. However, study results have been inconsistent, most likely due to potential differences in study designs, neuroimaging methods, and sample sizes as well as the inherent neuroimaging heterogeneity and multi-factorial nature of LA. In this article, we provided an overview of LA and summarized the current knowledge regarding its epidemiology, neuroimaging classification, pathological characteristics, risk factors, and potential intervention strategies.
Collapse
Affiliation(s)
- Wen-Qing Huang
- Department of Central Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lin
- Department of Neurology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Clinical Research Center for Neurological Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Clinical Research Center for Brain Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The Third Clinical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Chi-Meng Tzeng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
15
|
Teng Z, Feng J, Xie X, Xu J, Jiang X, Lv P. A Nomogram Including Total Cerebral Small Vessel Disease Burden Score for Predicting Mild Vascular Cognitive Impairment in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:1553-1562. [PMID: 38601039 PMCID: PMC11005931 DOI: 10.2147/dmso.s451862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
Background Total cerebral small vessel disease (CSVD) burden score is an important predictor of vascular cognitive impairment (VCI). However, few predictive models of VCI in type 2 diabetes mellitus (T2DM) patients have included the total CSVD burden score, especially in the early stage of VCI. Objective To develop and validate a nomogram that includes the total CSVD burden score to predict mild VCI in patients with T2DM. Methods A total of 322 eligible participants with T2DM who were divided into mild and normal cognitive groups were enrolled in this retrospective study. Demographic data, laboratory data and imaging markers of CSVD were collected. The total CSVD burden score was calculated by combining the different CSVD markers. Step-backward multivariable logistic regression analysis with the Akaike information criterion was applied to select significant predictors and develop a best-fit predictive nomogram. The performance of the nomogram was assessed in terms of discriminative ability, calibrated ability, and clinical usefulness. Results The nomogram model consisted of five variables: age, education, hemoglobin A1c level, serum homocysteine level, and total CSVD burden score. A nomogram with these variables showed good discriminative ability (area under the receiver operating characteristic curve was 0.801 in internal verification). In addition, the Hosmer-Lemeshow test (χ2 =9.226, P=0.417) and bootstrap-corrected calibration plot indicated that the nomogram had good calibration. The Brier score of the predictive model was 0.178. Decision curve analysis demonstrated that when the threshold probability ranged between 16% and 98%, the use of the nomogram to predict mild VCI in patients with T2DM provide a greater net benefit. Conclusions The nomogram, composed of age, education, stroke, HbA1c level, Hcy level, and total CSVD burden score, had good predictive accuracy and may provide clinicians with a practical tool for predicting the risk of mild VCI in T2DM patients.
Collapse
Affiliation(s)
- Zhenjie Teng
- Department of Neurology, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, People’s Republic of China
| | - Jing Feng
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Xiaohua Xie
- Department of Neurology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Jing Xu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Xin Jiang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, People’s Republic of China
| |
Collapse
|
16
|
Blair G, Appleton JP, Mhlanga I, Woodhouse LJ, Doubal F, Bath PM, Wardlaw JM. Design of trials in lacunar stroke and cerebral small vessel disease: review and experience with the LACunar Intervention Trial 2 (LACI-2). Stroke Vasc Neurol 2024:svn-2023-003022. [PMID: 38569894 DOI: 10.1136/svn-2023-003022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/02/2024] [Indexed: 04/05/2024] Open
Abstract
Cerebral small vessel disease (cSVD) causes lacunar stroke (25% of ischaemic strokes), haemorrhage, dementia, physical frailty, or is 'covert', but has no specific treatment. Uncertainties about the design of clinical trials in cSVD, which patients to include or outcomes to assess, may have delayed progress. Based on experience in recent cSVD trials, we reviewed ways to facilitate future trials in patients with cSVD.We assessed the literature and the LACunar Intervention Trial 2 (LACI-2) for data to inform choice of Participant, Intervention, Comparator, Outcome, including clinical versus intermediary endpoints, potential interventions, effect of outcome on missing data, methods to aid retention and reduce data loss. We modelled risk of missing outcomes by baseline prognostic variables in LACI-2 using binary logistic regression.Imaging versus clinical outcomes led to larger proportions of missing data. We present reasons for and against broad versus narrow entry criteria. We identified numerous repurposable drugs with relevant modes of action to test in various cSVD subtypes. Cognitive impairment is the most common clinical outcome after lacunar ischaemic stroke but was missing more frequently than dependency, quality of life or vascular events in LACI-2. Assessing cognitive status using Diagnostic and Statistical Manual for Mental Disorders Fifth Edition can use cognitive data from multiple sources and may help reduce data losses.Trials in patients with all cSVD subtypes are urgently needed and should use broad entry criteria and clinical outcomes and focus on ways to maximise collection of cognitive outcomes to avoid missing data.
Collapse
Affiliation(s)
| | - Jason P Appleton
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Iris Mhlanga
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Lisa J Woodhouse
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | | | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
17
|
Ciudin A, Hernández C, Simó-Servat O, Simó R. The usefulness of the retina for identifying people with type 2 diabetes with prodromal stages of dementia. Neurosci Biobehav Rev 2024; 159:105592. [PMID: 38365136 DOI: 10.1016/j.neubiorev.2024.105592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Type 2 diabetes (T2D) is associated with cognitive impairment and dementia. The detection of cognitive impairment is important because this population is at higher risk of experiencing difficulties in the self-management of diabetes. Mild cognitive impairment (MCI) often remains undiagnosed due to lack of simple tools for screening at large scale. This represents an important gap in the patients' management because subjects with diabetes and MCI are at high risk of progressing to dementia. Due to its developmental origin as a brain-derived tissue, the retina has been proposed as a potential means of non-invasive and readily accessible exploration of brain pathology. Recent evidence showed that retinal imaging and/or functional tests are correlated with the cognitive function and brain changes in T2D. Simple retinal functional tests (i.e. retinal microperimetry) have proven to be useful as reliable tool for the cognitive evaluation and monitoring in patients with T2D>65 years. This review gives an overall update on the usefulness of retinal imaging in identifying patients with T2D at risk of developing dementia.
Collapse
Affiliation(s)
- Andreea Ciudin
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Endocrinology Department, Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain; CIBERDEM (Instituto de Salud Carlos III), Madrid 28029, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Endocrinology Department, Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain; CIBERDEM (Instituto de Salud Carlos III), Madrid 28029, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Endocrinology Department, Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain; CIBERDEM (Instituto de Salud Carlos III), Madrid 28029, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Endocrinology Department, Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain; CIBERDEM (Instituto de Salud Carlos III), Madrid 28029, Spain.
| |
Collapse
|
18
|
Jung HH. Glycemic control and dementia risk in patients aged above and below 75 years. Diabetol Int 2024; 15:244-252. [PMID: 38524931 PMCID: PMC10959882 DOI: 10.1007/s13340-023-00684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 03/26/2024]
Abstract
Background There is a lack of data about the treatment effect of glycemic control on incident dementia in patients with advanced age. Methods In a nationwide Korean cohort of 79,076 diabetic patients 75 years or older and a representative cohort of 74,672 diabetics aged 50 to 74 years, multivariable-adjusted incidence of overt dementia was estimated across yearly-averaged on-treatment fasting blood glucose (FBG) levels. Results During 9-year follow-up, overt dementia was noted in 24,710 (31.2%) patients 75 years or older and in 5237 (7.0%) patients aged 50 to 74 years. For dementia risk, J-shaped associations were observed across on-treatment FBG levels (80-99, 100-109, 110-125, 126-139, 140-159, 160-179, and 180-900 mg/dl) in patients 75 years or older (respective incidence: 49.3, 45.7, 45.9, 45.7, 48.5, 51.5, and 57.9 per 1000 person-years) and in those aged 50 to 74 years (respective incidence: 8.9, 8.3, 7.7, 7.6, 8.0, 8.6, and 10.6 per 1000 person-years) with a significant interaction of FBG level and age group (P = 0.001). For all-cause mortality, the J-shaped association curve was left-shifted in patients 75 years or older (respective incidence: 64.9, 59.1, 57.6, 60.4, 64.0, 70.9, and 90.4 per 1000 person-years) relative to that in patients aged 50 to 74 years (respective incidence: 15.7, 13.4, 12.3, 12.2, 13.4, 15.7, and 21.8 per 1000 person-years; P < 0.001 for interaction). Conclusion The achieved glycemic level with the lowest risk for dementia and mortality was lower in older patients, and absolute risk increase related to poorly controlled glucose was greater in the elderly compared with younger patients. Supplementary Information The online version contains supplementary material available at 10.1007/s13340-023-00684-4.
Collapse
Affiliation(s)
- Hae Hyuk Jung
- Department of Medicine, Kangwon National University School of Medicine, Kangwondaehakgil, Chuncheon, Gangwon-Do 24341 South Korea
- Department of Medicine, Kangwon National University Hospital, 156 Baekryung-ro, Chuncheon, Gangwon-do 24289 South Korea
| |
Collapse
|
19
|
Cukierman-Yaffe T, Ramasundarahettige C, Bosch J, Gerstein HC. Effect of basal insulin and omega 3 fatty acids on cognitive impairment in dysglycaemia: An exploratory analysis of the ORIGIN trial. Diabetes Obes Metab 2024; 26:1180-1187. [PMID: 38204215 DOI: 10.1111/dom.15412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
AIM The outcomes reduction with an initial glargine intervention (ORIGIN) trial reported that, allocation to insulin glargine-mediated normoglycaemia versus standard care, and to omega 3 fatty acids versus placebo had a neutral effect on cognitive test scores when analysed as continuous variables. Analyses of these scores as standardized categorical variables using a previously validated strategy may yield different results. MATERIALS AND METHODS The ORIGIN trial recruited participants with dysglycaemia and additional cardiovascular risk factors from 573 sites in 40 countries. They completed a mini mental state examination and a subset completed the digit symbol substitution test at baseline and up to three subsequent visits. The effect of the interventions on country-standardized substantive cognitive impairment, defined as the first occurrence of a baseline-adjusted follow-up mini mental state examination or digit symbol substitution test score ≥1.5 standard deviations below the baseline mean score in each participant's country was assessed using Cox proportional hazards models. RESULTS During a median follow-up of 6.2 years, 2627 of 11 682 people (22.5%) developed country-standardized substantive cognitive impairment. The hazard of this outcome was reduced by 9% (hazard ratio 0.91, 95% confidence interval 0.85, 0.99; p = .023) in participants assigned to insulin glargine (21.6%) versus standard care (23.3%). Conversely, the hazard of this outcome was not affected by assignment to omega 3 fatty acid versus placebo (hazard ratio 0.93, 95% confidence interval 0.86, 1.01; p = .074). CONCLUSIONS In this post hoc exploratory analysis, insulin glargine-mediated normoglycaemia but not omega 3 fatty acids reduced the hazard of substantive cognitive impairment in people with dysglycaemia and additional cardiovascular risk factors.
Collapse
Affiliation(s)
- Tali Cukierman-Yaffe
- Division of Endocrinology & Metabolism, Sheba Medical Center, Ramat Gan, Israel
- Epidemiology Department, School of Public Health, Faculty of Medicine, Herczeg Institute of Aging, Tel-Aviv University, Tel Aviv, Israel
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Chinthanie Ramasundarahettige
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
- School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jackie Bosch
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
- School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Hertzel C Gerstein
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Ip BYM, Ko H, Lam BYK, Au LWC, Lau AYL, Huang J, Kwok AJ, Leng X, Cai Y, Leung TWH, Mok VCT. Current and Future Treatments of Vascular Cognitive Impairment. Stroke 2024; 55:822-839. [PMID: 38527144 DOI: 10.1161/strokeaha.123.044174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Affiliation(s)
- Bonaventure Yiu Ming Ip
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
- Kwok Tak Seng Centre for Stroke Research and Intervention, Hong Kong SAR, China (B.Y.M.I., X.L., T.W.H.L.)
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Bonnie Yin Ka Lam
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Lisa Wing Chi Au
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Alexander Yuk Lun Lau
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
| | - Junzhe Huang
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Andrew John Kwok
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Xinyi Leng
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Kwok Tak Seng Centre for Stroke Research and Intervention, Hong Kong SAR, China (B.Y.M.I., X.L., T.W.H.L.)
| | - Yuan Cai
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Thomas Wai Hong Leung
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Kwok Tak Seng Centre for Stroke Research and Intervention, Hong Kong SAR, China (B.Y.M.I., X.L., T.W.H.L.)
| | - Vincent Chung Tong Mok
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| |
Collapse
|
21
|
Yu C, Wang Y, Zhang B, Xu X, Zhang W, Ding Q, Miao Y, Hou Y, Ma X, Wu T, Yang S, Fu L, Zhang Z, Zhou J, Bi Y. Associations between complexity of glucose time series and cognitive function in adults with type 2 diabetes. Diabetes Obes Metab 2024; 26:840-850. [PMID: 37994378 DOI: 10.1111/dom.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
AIMS To characterize the comparative contributions of different glycaemic indicators to cognitive dysfunction, and further investigate the associations between the most significant indicator and cognitive function, along with related cerebral alterations. MATERIALS AND METHODS We performed a cross-sectional study in 449 subjects with type 2 diabetes who completed continuous glucose monitoring and cognitive assessments. Of these, 139 underwent functional magnetic resonance imaging to evaluate cerebral structure and olfactory neural circuit alterations. Relative weight and Sobol's sensitivity analyses were employed to characterize the comparative contributions of different glycaemic indicators to cognitive dysfunction. RESULTS Complexity of glucose time series index (CGI) was found to have a more pronounced association with mild cognitive impairment (MCI) compared to glycated haemoglobin, time in range, and standard deviation. The proportion and multivariable-adjusted odds ratios (ORs) for MCI increased with descending CGI tertile (Tertile 1: reference group [≥4.0]; Tertile 2 [3.6-4.0] OR 1.23, 95% confidence interval [CI] 0.68-2.24; Tertile 3 [<3.6] OR 2.27, 95% CI 1.29-4.00). Decreased CGI was associated with cognitive decline in executive function and attention. Furthermore, individuals with decreased CGI displayed reduced olfactory activation in the left orbitofrontal cortex (OFC) and disrupted functional connectivity between the left OFC and right posterior cingulate gyrus. Mediation analysis demonstrated that the left OFC activation partially mediated the associations between CGI and executive function. CONCLUSION Decreased glucose complexity closely relates to cognitive dysfunction and olfactory brain activation abnormalities in diabetes.
Collapse
Affiliation(s)
- Congcong Yu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yaxin Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiang Xu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qun Ding
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yingwen Miao
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yinjiao Hou
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Xuelin Ma
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianyu Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Sijue Yang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Linqing Fu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhou Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| |
Collapse
|
22
|
Boyd ED, Zhang L, Ding G, Li L, Lu M, Li Q, Huang R, Kaur J, Hu J, Chopp M, Zhang Z, Jiang Q. The Glymphatic Response to the Development of Type 2 Diabetes. Biomedicines 2024; 12:401. [PMID: 38398003 PMCID: PMC10886551 DOI: 10.3390/biomedicines12020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The glymphatic system has recently been shown to be important in neurological diseases, including diabetes. However, little is known about how the progressive onset of diabetes affects the glymphatic system. The aim of this study is to investigate the glymphatic system response to the progressive onset of diabetes in a rat model of type 2 diabetic mellitus. Male Wistar rats (n = 45) with and without diabetes were evaluated using MRI glymphatic tracer kinetics, functional tests, and brain tissue immunohistochemistry. Our data demonstrated that the contrast agent clearance impairment gradually progressed with the diabetic duration. The MRI data showed that an impairment in contrast clearance occurred prior to the cognitive deficits detected using functional tests and permitted the detection of an early DM stage compared to the immuno-histopathology and cognitive tests. Additionally, the quantitative MRI markers of brain waste clearance demonstrated region-dependent sensitivity in glymphatic impairment. The improved sensitivity of MRI markers in the olfactory bulb and the whole brain at an early DM stage may be attributed to the important role of the olfactory bulb in the parenchymal efflux pathway. MRI can provide sensitive quantitative markers of glymphatic impairment during the progression of DM and can be used as a valuable tool for the early diagnosis of DM with a potential for clinical application.
Collapse
Affiliation(s)
- Edward D. Boyd
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Lian Li
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Mei Lu
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA;
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Rui Huang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Jasleen Kaur
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI 48202, USA;
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Department of Neurology, Wayne State University, Detroit, MI 28202, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Neurology, Wayne State University, Detroit, MI 28202, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Department of Neurology, Wayne State University, Detroit, MI 28202, USA
| |
Collapse
|
23
|
Wang K, Zhao S, Lee EKP, Yau SZM, Wu Y, Hung CT, Yeoh EK. Risk of Dementia Among Patients With Diabetes in a Multidisciplinary, Primary Care Management Program. JAMA Netw Open 2024; 7:e2355733. [PMID: 38345817 PMCID: PMC10862158 DOI: 10.1001/jamanetworkopen.2023.55733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/19/2023] [Indexed: 02/15/2024] Open
Abstract
Importance Although poorly controlled diabetes is associated with a higher incidence of dementia, few studies have examined the association of diabetes management interventions with dementia incidence. Objective To examine the association of receiving a multidisciplinary diabetes management program (the Risk Assessment and Management Program-Diabetes Mellitus [RAMP-DM]) that enables better glycemic control with subsequent risk of dementia incidence and the association of dementia with glycemic control. Design, Setting, and Participants This territory-wide, retrospective, matched cohort study with more than 8 years of follow-up was conducted using electronic health care records from all the patients who used public health care services in Hong Kong from 2011 to 2019. Eligible participants included all patients with type 2 diabetes (T2D) who were managed in primary care settings. Patients who received RAMP-DM were matched in a 1:1 ratio with patients who received usual care only. Data analysis occurred from April 2023 to July 2023. Exposures Diagnosis of T2D, hemoglobin A1C (HbA1C) level, and attendance at a general outpatient clinic or family medicine clinic. Patients received either RAMP-DM or usual care. Main Outcomes and Measures Incidence of all-cause dementia and subtypes of dementia were compared between the RAMP-DM and usual care participants using a Cox proportional hazard model with other baseline characteristics, biomarkers, and medication history adjusted. HbA1C levels were measured as a secondary outcome. Results Among the 55 618 matched participants (mean [SD] age, 62.28 [11.90] years; 28 561 female [51.4%]; 27 057 male [48.6%]), including the 27 809 patients in the RAMP-DM group and 27 809 patients in the usual care group, patients had been diagnosed with T2D for a mean (SD) of 5.90 (4.20) years. During a median (IQR) follow-up period of 8.4 (6.8-8.8) years, 1938 patients in the RAMP-DM group (6.97%) and 2728 patients in the usual care group (9.81%) received a diagnosis of dementia. Compared with those receiving usual care, RAMP-DM participants had a lower risk of developing all-cause dementia (adjusted hazard ratio [aHR], 0.72; 95% CI, 0.68-0.77; P < .001), Alzheimer disease (aHR, 0.85; 95% CI, 0.76-0.96; P = .009), vascular dementia (aHR, 0.61; 95% CI, 0.51-0.73; P < .001), and other or unspecified dementia (aHR, 0.71; 95% CI, 0.66-0.77; P < .001). Compared with having a mean HbA1C level during the first 3 years after cohort entry between 6.5% and 7.5%, a higher risk of dementia incidence was detected for patients with a 3-year mean HbA1C level greater than 8.5% (aHR, 1.54; 95% CI, 1.31-1.80]), between 7.5% and 8.5% (aHR, 1.33; 95% CI, 1.19-1.48), between 6% and 6.5% (aHR, 1.17; 95% CI, 1.07-1.29), and 6% or less (aHR, 1.39; 95% CI, 1.24-1.57). Conclusions and Relevance In this cohort study of patients with T2D, the findings strengthened evidence of an association of glycemic control with dementia incidence, and revealed that a multidisciplinary primary care diabetes management program was associated with beneficial outcomes for T2D patients against dementia and its major subtypes. A moderate glycemic control target of HbA1C between 6.5% and 7.5% was associated with lower dementia incidence.
Collapse
Affiliation(s)
- Kailu Wang
- Centre for Health Systems and Policy Research, Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Eric Kam-Pui Lee
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Susan Zi-May Yau
- Centre for Health Systems and Policy Research, Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yushan Wu
- Centre for Health Systems and Policy Research, Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Tim Hung
- Centre for Health Systems and Policy Research, Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Eng-Kiong Yeoh
- Centre for Health Systems and Policy Research, Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Kuate Defo A, Bakula V, Pisaturo A, Labos C, Wing SS, Daskalopoulou SS. Diabetes, antidiabetic medications and risk of dementia: A systematic umbrella review and meta-analysis. Diabetes Obes Metab 2024; 26:441-462. [PMID: 37869901 DOI: 10.1111/dom.15331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
AIMS The objective of this umbrella review and meta-analysis was to evaluate the effect of diabetes on risk of dementia, as well as the mitigating effect of antidiabetic treatments. MATERIALS AND METHODS We conducted a systematic umbrella review on diabetes and its treatment, and a meta-analysis focusing on treatment. We searched MEDLINE/PubMed, Embase, PsycINFO, CINAHL and the Cochrane Library for systematic reviews and meta-analyses assessing the risk of cognitive decline/dementia in individuals with diabetes until 2 July 2023. We conducted random-effects meta-analyses to obtain risk ratios and 95% confidence intervals estimating the association of metformin, thiazolidinediones, pioglitazone, dipeptidyl peptidase-4 inhibitors, α-glucosidase inhibitors, meglitinides, insulin, sulphonylureas, glucagon-like peptide-1 receptor agonists (GLP1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) with risk of dementia from cohort/case-control studies. The subgroups analysed included country and world region. Risk of bias was assessed with the AMSTAR tool and Newcastle-Ottawa Scale. RESULTS We included 100 reviews and 27 cohort/case-control studies (N = 3 046 661). Metformin, thiazolidinediones, pioglitazone, GLP1RAs and SGLT2is were associated with significant reduction in risk of dementia. When studies examining metformin were divided by country, the only significant effect was for the United States. Moreover, the effect of metformin was significant in Western but not Eastern populations. No significant effect was observed for dipeptidyl peptidase-4 inhibitors, α-glucosidase inhibitors, or insulin, while meglitinides and sulphonylureas were associated with increased risk. CONCLUSIONS Metformin, thiazolidinediones, pioglitazone, GLP1RAs and SGLT2is were associated with reduced risk of dementia. More longitudinal studies aimed at determining their relative benefit in different populations should be conducted.
Collapse
Affiliation(s)
- Alvin Kuate Defo
- Vascular Health Unit, Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Veselko Bakula
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Christopher Labos
- Vascular Health Unit, Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Simon S Wing
- Division of Endocrinology & Metabolism, Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Stella S Daskalopoulou
- Vascular Health Unit, Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Internal Medicine, Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Meirelles O, Arnette A, Guðnason V, Launer LJ. The magnitude and direction of the relationship between risk factor and cognition depends on age: a pooled analysis of 5 community-based studies. Eur J Epidemiol 2024; 39:161-169. [PMID: 38180594 PMCID: PMC10904440 DOI: 10.1007/s10654-023-01087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024]
Abstract
The mixed evidence of the association between high levels of cardiovascular risk factors (CVRF) and the risk for cognitive impairment may be due to confounding of age across studies. We pooled and harmonized individual-level data (30,967 persons, age range 42-96 years) from five prospective cohorts to investigate by 1 year age increments to investigate whether or not there is change in slope describing the association of CVRF to a cognitive outcome (Digit Symbol Substitution Test; DSST). The CVRF included: systolic and diastolic blood pressure, total cholesterol, fasting glucose and body mass index. Linear and quadratic piecewise regression models were fit to the trajectory patterns of these slopes (betas). The pattern of yearly slope changes showed higher CVRF were associated with lower DSST, but associations attenuated toward zero as age increased for all but DBP where 1 year slopes for DBP changed direction from negative to positive from mid- to late-age. Age is not only a driver of cognitive decline-age also modifies the direction and strength of the association of cognitive function to CVRF and cohort age may be one reason why the evidence for CVRF-CD association is mixed.
Collapse
Affiliation(s)
- Osorio Meirelles
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Anthony Arnette
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Vilmundur Guðnason
- Icelandic Heart Association, Kopavagur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| |
Collapse
|
26
|
Tian C, Ye Z, McCoy RG, Pan Y, Bi C, Gao S, Ma Y, Chen M, Yu J, Lu T, Hong LE, Kochunov P, Ma T, Chen S, Liu S. The causal effect of HbA1c on white matter brain aging by two-sample Mendelian randomization analysis. Front Neurosci 2024; 17:1335500. [PMID: 38274506 PMCID: PMC10808780 DOI: 10.3389/fnins.2023.1335500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Background Poor glycemic control with elevated levels of hemoglobin A1c (HbA1c) is associated with increased risk of cognitive impairment, with potentially varying effects between sexes. However, the causal impact of poor glycemic control on white matter brain aging in men and women is uncertain. Methods We used two nonoverlapping data sets from UK Biobank cohort: gene-outcome group (with neuroimaging data, (N = 15,193; males/females: 7,101/8,092)) and gene-exposure group (without neuroimaging data, (N = 279,011; males/females: 122,638/156,373)). HbA1c was considered the exposure and adjusted "brain age gap" (BAG) was calculated on fractional anisotropy (FA) obtained from brain imaging as the outcome, thereby representing the difference between predicted and chronological age. The causal effects of HbA1c on adjusted BAG were studied using the generalized inverse variance weighted (gen-IVW) and other sensitivity analysis methods, including Mendelian randomization (MR)-weighted median, MR-pleiotropy residual sum and outlier, MR-using mixture models, and leave-one-out analysis. Results We found that for every 6.75 mmol/mol increase in HbA1c, there was an increase of 0.49 (95% CI = 0.24, 0.74; p-value = 1.30 × 10-4) years in adjusted BAG. Subgroup analyses by sex and age revealed significant causal effects of HbA1c on adjusted BAG, specifically among men aged 60-73 (p-value = 2.37 × 10-8). Conclusion Poor glycemic control has a significant causal effect on brain aging, and is most pronounced among older men aged 60-73 years, which provides insights between glycemic control and the susceptibility to age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Cheng Tian
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Engineering Research Center of Big Data Applied Technology, Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan, China
| | - Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Rozalina G. McCoy
- Division of Endocrinology, Diabetes, & Nutrition, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
- University of Maryland Institute for Health Computing, Bethesda, MD, United States
| | - Yezhi Pan
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Chuan Bi
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Si Gao
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Yizhou Ma
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Mo Chen
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jiaao Yu
- Department of Mathematics, University of Maryland, College Park, MD, United States
| | - Tong Lu
- Department of Mathematics, University of Maryland, College Park, MD, United States
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD, United States
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Song Liu
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Engineering Research Center of Big Data Applied Technology, Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan, China
| |
Collapse
|
27
|
Gao R, Zhan M, Ke S, Wu K, He G, Qi L, Liu X, Liu X, Wang L, Liu L. Potential risk factors for mild cognitive impairment among patients with type 2 diabetes experiencing hypoglycemia. Diabetes Res Clin Pract 2024; 207:111036. [PMID: 38049036 DOI: 10.1016/j.diabres.2023.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
AIMS This study examined the association between hypoglycemia and mild cognitive impairment (MCI) among patients with type 2 diabetes mellitus (T2DM) and identified risk factors for MCI in patients with hypoglycemia. METHODS In this retrospective study, 328 patients with T2DM were screened in 2019 and followed up in 2022. Cognitive performance was assessed using the Montreal Cognitive Assessment (MoCA). The diagnosis of MCI was based on established criteria. Risk ratio (RR) with 95 % confidence intervals (CI) was calculated to estimate the risk of MCI. Univariate and multivariate logistic regression analyses were conducted to identify risk factors for MCI in those with hypoglycemia. RESULTS Patients with hypoglycemia had lower cognitive performance 3 years later. The RR of MCI was 2.221 (95 % CI 1.269-3.885). Multivariate logistic analysis showed that low grip strength, existing diabetic retinopathy (DR), and multiple hypoglycemia episodes were associated with higher odds of MCI in patients with hypoglycemia (adjusted odds ratio [OR] 0.909 [95 % CI 0.859-0.963]), 3.078 [95 % CI 1.158-12.358], and 4.642 [95 % CI 1.284-16.776], respectively, all P < 0.05). CONCLUSIONS Hypoglycemia increased MCI risk among patients with T2DM. Low grip strength, DR, and multiple hypoglycemia episodes may be potential risk factors for hypoglycemia-associated MCI.
Collapse
Affiliation(s)
- Ruonan Gao
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Menglan Zhan
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sujie Ke
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Kejun Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Guanlian He
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liqin Qi
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoying Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaohong Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lijing Wang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Libin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
28
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Stanton RC, Gabbay RA. 13. Older Adults: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S244-S257. [PMID: 38078580 PMCID: PMC10725804 DOI: 10.2337/dc24-s013] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
29
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Cusi K, Ekhlaspour L, Fleming TK, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Napoli N, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Stanton RC, Verduzco-Gutierrez M, Younossi ZM, Gabbay RA. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S52-S76. [PMID: 38078591 PMCID: PMC10725809 DOI: 10.2337/dc24-s004] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
30
|
Pajewski NM, Donohue MC, Raman R, Espeland MA. Ascertainment and Statistical Issues for Randomized Trials of Cardiovascular Interventions for Cognitive Impairment and Dementia. Hypertension 2024; 81:45-53. [PMID: 37732473 PMCID: PMC10840823 DOI: 10.1161/hypertensionaha.123.19941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
There has been considerable progress in the prevention and treatment of cardiovascular disease, reducing the population burden of cardiovascular morbidity and mortality. Recently, some randomized trials, including the SPRINT (Systolic Blood Pressure Intervention Trial), have suggested that improvements in cardiovascular risk factors may also slow cognitive decline and reduce the eventual development of dementia. Unfortunately, the randomized trial template that has been used repeatedly to successfully demonstrate reductions in major adverse cardiac events faces several design and analytic obstacles when applied in the context of cognitive decline and dementia. Here, we review these obstacles, motivated by SPRINT and the context of selecting an appropriate cognitive end point for future preventive randomized trials. A few options are available, spanning neuropsychological test scores or composites reflecting specific domains of cognitive function, adjudicated cognitive impairment, or potentially physiological biomarkers. This choice entails considerations around statistical power, modes of ascertainment, the clinical relevance of treatment effects, a myriad of statistical issues (interval censoring, missing data, the competing risk of death, practice effects, etc), as well as ethical considerations around equipoise. Collectively, these considerations indicate that trials aiming to mitigate the cardiovascular contribution to cognitive decline and dementia will generally need to be large, inclusive of a wide age range of older adults, and with multiple years of follow-up.
Collapse
Affiliation(s)
- Nicholas M. Pajewski
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Michael C. Donohue
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine of the University of Southern California, San Diego, CA
| | - Rema Raman
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine of the University of Southern California, San Diego, CA
| | - Mark A. Espeland
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC
- Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
31
|
Lee KJ, Bae HJ. What have clinical trials taught us about brain health? CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 6:100199. [PMID: 38235315 PMCID: PMC10792690 DOI: 10.1016/j.cccb.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
The Global Burden of Disease Study projects an almost tripling of dementia cases worldwide in the next 30 years making it important to recognize and understand modifiable risks and preventatives for cognitive impairment. Recent studies suggest that prevention or treatment of cardiovascular risks may be an important strategy to prevent or slow the progression of cognitive impairment. In 2017, the American Heart Association and American Stroke Association introduced metrics for "optimal brain health". These metrics defined brain health in terms of ideal health behaviors and factors. Since then and leading up to 2017, a number of clinical trials have been conducted to investigate the potential of modification of cardiovascular risks on prevention of dementia or cognitive impairment and thus, enhancement of brain health. This discussion is a review of findings from clinical trials focusing on interventions, including antihypertensive agents, glycemic control and lipid-lowering therapies, multidomain approaches, and antithrombotic medications. Notably, the results highlight the promise of intensive blood pressure lowering strategies and multidomain approaches, as evidenced by the FINGER trial. The review also discusses the potential of treatment or prevention of cerebral small vessel disease (cSVD) and the application of Mendelian randomization as a strategy to preserve brain structure and function.
Collapse
Affiliation(s)
- Keon-Joo Lee
- Department of Neurology, Korea University Guro Hospital, Seoul, South Korea
| | - Hee-Joon Bae
- Department of Neurology and Cerebrovascular Center, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
32
|
An JR, Wang QF, Sun GY, Su JN, Liu JT, Zhang C, Wang L, Teng D, Yang YF, Shi Y. The Role of Iron Overload in Diabetic Cognitive Impairment: A Review. Diabetes Metab Syndr Obes 2023; 16:3235-3247. [PMID: 37872972 PMCID: PMC10590583 DOI: 10.2147/dmso.s432858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023] Open
Abstract
It is well documented that diabetes mellitus (DM) is strongly associated with cognitive decline and structural damage to the brain. Cognitive deficits appear early in DM and continue to worsen as the disease progresses, possibly due to different underlying mechanisms. Normal iron metabolism is necessary to maintain normal physiological functions of the brain, but iron deposition is one of the causes of some neurodegenerative diseases. Increasing evidence shows that iron overload not only increases the risk of DM, but also contributes to the development of cognitive impairment. The current review highlights the role of iron overload in diabetic cognitive impairment (DCI), including the specific location and regulation mechanism of iron deposition in the diabetic brain, the factors that trigger iron deposition, and the consequences of iron deposition. Finally, we also discuss possible therapies to improve DCI and brain iron deposition.
Collapse
Affiliation(s)
- Ji-Ren An
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
- College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, People’s Republic of China
| | - Qing-Feng Wang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Gui-Yan Sun
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Jia-Nan Su
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Jun-Tong Liu
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Chi Zhang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Li Wang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Dan Teng
- He University, Shenyang, 110163, People’s Republic of China
| | - Yu-Feng Yang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Yan Shi
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| |
Collapse
|
33
|
Zimmerman SC, Ferguson EL, Choudhary V, Ranatunga DK, Oni-Orisan A, Hayes-Larson E, Duarte Folle A, Mayeda ER, Whitmer RA, Gilsanz P, Power MC, Schaefer C, Glymour MM, Ackley SF. Metformin Cessation and Dementia Incidence. JAMA Netw Open 2023; 6:e2339723. [PMID: 37878309 PMCID: PMC10600586 DOI: 10.1001/jamanetworkopen.2023.39723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023] Open
Abstract
Importance Prior studies suggested that metformin may be associated with reduced dementia incidence, but associations may be confounded by disease severity and prescribing trends. Cessation of metformin therapy in people with diabetes typically occurs due to signs of kidney dysfunction but sometimes is due to less serious adverse effects associated with metformin. Objective To investigate the association of terminating metformin treatment for reasons unrelated to kidney dysfunction with dementia incidence. Design, Setting, and Participants This cohort study was conducted at Kaiser Permanente Northern California, a large integrated health care delivery system, among a cohort of metformin users born prior to 1955 without history of diagnosed kidney disease at metformin initiation. Dementia follow-up began with the implementation of electronic health records in 1996 and continued to 2020. Data were analyzed from November 2021 through September 2023. Exposures A total of 12 220 early terminators, individuals who stopped metformin with normal estimated glomerular filtration rate (eGFR), were compared with routine metformin users, who had not yet terminated metformin treatment or had terminated (with or without restarting) after their first abnormal eGFR measurement. Early terminators were matched with routine users of the same age and gender who had diabetes for the same duration. Main outcomes and measures The outcome of interest was all-cause incident dementia. Follow-up for early terminators and their matched routine users was started at age of termination for the early terminator. Survival models adjusted for sociodemographic characteristics and comorbidities at the time of metformin termination (or matched age). Mediation models with HbA1c level and insulin usage 1 and 5 years after termination tested whether changes in blood glucose or insulin usage explained associations between early termination of metformin and dementia incidence. Results The final analytic sample consisted of 12 220 early terminators (5640 women [46.2%]; mean [SD] age at start of first metformin prescription, 59.4 [9.0] years) and 29 126 routine users (13 582 women [46.6%]; mean [SD] age at start of first metformin prescription, 61.1 [8.9] years). Early terminators had 1.21 times the hazard of dementia diagnosis compared with routine users (hazard ratio, 1.21; 95% CI, 1.12 to 1.30). In mediation analysis, contributions to this association by changes in HbA1c level or insulin use ranged from no contribution (0.00 years; 95% CI, -0.02 to 0.02 years) for insulin use at 5 years after termination to 0.07 years (95% CI, 0.02 to 0.13 years) for HbA1c level at 1 year after termination, suggesting that the association was largely independent of changes in HbA1c level and insulin usage. Conclusions and Relevance In this study, terminating metformin treatment was associated with increased dementia incidence. This finding may have important implications for clinical treatment of adults with diabetes and provides additional evidence that metformin is associated with reduced dementia risk.
Collapse
Affiliation(s)
- Scott C. Zimmerman
- Department of Epidemiology and Statistics, University of California, San Francisco
| | - Erin L. Ferguson
- Department of Epidemiology and Statistics, University of California, San Francisco
| | | | - Dilrini K. Ranatunga
- Kaiser Permanente Division of Research, Oakland, California
- Now with Kaiser Permanente Research Bank, Oakland, CA
| | | | - Eleanor Hayes-Larson
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles
| | - Aline Duarte Folle
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles
| | - Elizabeth Rose Mayeda
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles
| | - Rachel A. Whitmer
- Kaiser Permanente Division of Research, Oakland, California
- Department of Public Health Sciences, University of California, Davis
| | - Paola Gilsanz
- Department of Epidemiology and Statistics, University of California, San Francisco
- Kaiser Permanente Division of Research, Oakland, California
| | - Melinda C. Power
- Department of Epidemiology, George Washington University Milken Institute School of Public Health, Washington, District of Columbia
| | | | - M. Maria Glymour
- Department of Epidemiology, Boston University, Boston, Massachusetts
| | - Sarah F. Ackley
- Department of Epidemiology, Boston University, Boston, Massachusetts
| |
Collapse
|
34
|
Diviccaro S, Cioffi L, Piazza R, Caruso D, Melcangi RC, Giatti S. Neuroactive Steroid-Gut Microbiota Interaction in T2DM Diabetic Encephalopathy. Biomolecules 2023; 13:1325. [PMID: 37759725 PMCID: PMC10527303 DOI: 10.3390/biom13091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The pathological consequences of type 2 diabetes mellitus (T2DM) also involve the central nervous system; indeed, T2DM patients suffer from learning and memory disabilities with a higher risk of developing dementia. Although several factors have been proposed as possible contributors, how neuroactive steroids and the gut microbiome impact brain pathophysiology in T2DM remain unexplored. On this basis, in male Zucker diabetic fatty (ZDF) rats, we studied whether T2DM alters memory abilities using the novel object recognition test, neuroactive steroid levels by liquid chromatography-tandem mass spectrometry, hippocampal parameters using molecular assessments, and gut microbiome composition using 16S next-generation sequencing. Results obtained reveal that T2DM worsens memory abilities and that these are correlated with increased levels of corticosterone in plasma and with a decrease in allopregnanolone in the hippocampus, where neuroinflammation, oxidative stress, and mitochondrial dysfunction were reported. Interestingly, our analysis highlighted a small group of taxa strictly related to both memory impairment and neuroactive steroid levels. Overall, the data underline an interesting role for allopregnanolone and microbiota that may represent candidates for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.D.); (L.C.); (D.C.); (R.C.M.)
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.D.); (L.C.); (D.C.); (R.C.M.)
| | - Rocco Piazza
- Dipartimento di Medicina e Chirurgia, Università di Milano—Bicocca, 20126 Milan, Italy;
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.D.); (L.C.); (D.C.); (R.C.M.)
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.D.); (L.C.); (D.C.); (R.C.M.)
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.D.); (L.C.); (D.C.); (R.C.M.)
| |
Collapse
|
35
|
Lai HTM, Chang K, Sharabiani MTA, Valabhji J, Gregg EW, Middleton L, Majeed A, Pearson-Stuttard J, Millett C, Bottle A, Vamos EP. Twenty-year trajectories of cardio-metabolic factors among people with type 2 diabetes by dementia status in England: a retrospective cohort study. Eur J Epidemiol 2023; 38:733-744. [PMID: 36869989 PMCID: PMC10276060 DOI: 10.1007/s10654-023-00977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
To assess 20-year retrospective trajectories of cardio-metabolic factors preceding dementia diagnosis among people with type 2 diabetes (T2D). We identified 227,145 people with T2D aged > 42 years between 1999 and 2018. Annual mean levels of eight routinely measured cardio-metabolic factors were extracted from the Clinical Practice Research Datalink. Multivariable multilevel piecewise and non-piecewise growth curve models assessed retrospective trajectories of cardio-metabolic factors by dementia status from up to 19 years preceding dementia diagnosis (dementia) or last contact with healthcare (no dementia). 23,546 patients developed dementia; mean (SD) follow-up was 10.0 (5.8) years. In the dementia group, mean systolic blood pressure increased 16-19 years before dementia diagnosis compared with patients without dementia, but declined more steeply from 16 years before diagnosis, while diastolic blood pressure generally declined at similar rates. Mean body mass index followed a steeper non-linear decline from 11 years before diagnosis in the dementia group. Mean blood lipid levels (total cholesterol, LDL, HDL) and glycaemic measures (fasting plasma glucose and HbA1c) were generally higher in the dementia group compared with those without dementia and followed similar patterns of change. However, absolute group differences were small. Differences in levels of cardio-metabolic factors were observed up to two decades prior to dementia diagnosis. Our findings suggest that a long follow-up is crucial to minimise reverse causation arising from changes in cardio-metabolic factors during preclinical dementia. Future investigations which address associations between cardiometabolic factors and dementia should account for potential non-linear relationships and consider the timeframe when measurements are taken.
Collapse
Affiliation(s)
- Heidi T M Lai
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, St Dunstan's Road, London, W6 8RP, UK.
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK.
| | - Kiara Chang
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, St Dunstan's Road, London, W6 8RP, UK
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| | - Mansour T A Sharabiani
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| | - Jonathan Valabhji
- NHS England, London, UK
- Department of Diabetes and Endocrinology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
- Division of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Edward W Gregg
- School of Population Health, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Lefkos Middleton
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Azeem Majeed
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Jonathan Pearson-Stuttard
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Health Analytics, Lane Clark & Peacock LLP, London, UK
- Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Christopher Millett
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, St Dunstan's Road, London, W6 8RP, UK
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
- Public Health Research Centre, Comprehensive Health Research Center, NOVA National School of Public Health, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Alex Bottle
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| | - Eszter P Vamos
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, St Dunstan's Road, London, W6 8RP, UK
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
36
|
Embury CM, Lord GH, Drincic AT, Desouza CV, Wilson TW. Glycemic control level alters working memory neural dynamics in adults with type 2 diabetes. Cereb Cortex 2023; 33:8333-8341. [PMID: 37005060 PMCID: PMC10321117 DOI: 10.1093/cercor/bhad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Poor glycemic control in type 2 diabetes has been associated with accentuated age-related cognitive decline, although the underlying neural mechanisms are not well understood. The current study sought to identify the impact of glycemic control on the neural dynamics serving working memory in adults with type 2 diabetes. Participants (n = 34, ages = 55-73) performed a working memory task while undergoing MEG. Significant neural responses were examined relative to poorer (A1c > 7.0%) or tighter glycemic control (A1c < 7.0%). Those with poorer glycemic control showed diminished responses within left temporal and prefrontal regions during encoding and showed diminished responses within right occipital cortex during maintenance but showed an enhanced activity in the left temporal, occipital, and cerebellar regions during maintenance. Notably, left temporal activity in encoding and left lateral occipital activity in maintenance significantly predicted performance on the task such that diminished temporal activity led to longer reaction times, which were driven by the poorer glycemic control group. Greater lateral occipital activity during maintenance was associated with both lower accuracy and longer reaction times across all participants. These findings suggest that glycemic control has a robust impact on the neural dynamics serving working memory, with distinct effects by subprocess (e.g. encoding vs. maintenance) and direct effects on behavior.
Collapse
Affiliation(s)
- Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, United States
- Department of Psychology, University of Nebraska, Omaha, NE 68182, United States
| | - Grace H Lord
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, UNMC, Omaha, NE 68198, United States
| | - Andjela T Drincic
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, UNMC, Omaha, NE 68198, United States
| | - Cyrus V Desouza
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, UNMC, Omaha, NE 68198, United States
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, United States
- Department of Psychology, University of Nebraska, Omaha, NE 68182, United States
| |
Collapse
|
37
|
Moran C, Lacy ME, Whitmer RA, Tsai AL, Quesenberry CP, Karter AJ, Adams AS, Gilsanz P. Glycemic Control Over Multiple Decades and Dementia Risk in People With Type 2 Diabetes. JAMA Neurol 2023; 80:597-604. [PMID: 37067815 PMCID: PMC10111232 DOI: 10.1001/jamaneurol.2023.0697] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 04/18/2023]
Abstract
Importance The levels of glycemic control associated with the lowest risk of dementia in people with type 2 diabetes are unknown. This knowledge is critical to inform patient-centered glycemic target setting. Objective To examine the associations between cumulative exposure to various ranges of glycated hemoglobin (HbA1c) concentrations with dementia risk across sex and racial and ethnic groups and the association of current therapeutic glycemic targets with dementia risk. Design, Setting, and Participants This cohort study included members of the Kaiser Permanente Northern California integrated health care system with type 2 diabetes who were aged 50 years or older during the study period from January 1, 1996, to September 30, 2015. Individuals with fewer than 2 HbA1c measurements during the study period, prevalent dementia at baseline, or less than 3 years of follow-up were excluded. Data were analyzed from February 2020 to January 2023. Exposures Time-updated cumulative exposure to HbA1c thresholds. At each HbA1c measurement, participants were categorized based on the percentage of their HbA1c measurements that fell into the following categories: less than 6%, 6% to less than 7%, 7% to less than 8%, 8% to less than 9%, 9% to less than 10%, and 10% or more of total hemoglobin (to convert percentage of total hemoglobin to proportion of total hemoglobin, multiply by 0.01). Main Outcomes and Measures Dementia diagnosis was identified using International Classification of Diseases, Ninth Revision codes from inpatient and outpatient encounters. Cox proportional hazards regression models estimated the association of time-varying cumulative glycemic exposure with dementia, adjusting for age, race and ethnicity, baseline health conditions, and number of HbA1c measurements. Results A total of 253 211 participants were included. The mean (SD) age of participants was 61.5 (9.4) years, and 53.1% were men. The mean (SD) duration of follow-up was 5.9 (4.5) years. Participants with more than 50% of HbA1c measurements at 9% to less than 10% or 10% or more had greater risk of dementia compared with those who had 50% or less of measurements in those categories (HbA1c 9% to <10%: adjusted hazard ratio [aHR], 1.31 [95% CI, 1.15-1.51]; HbA1c≥10%: aHR, 1.74 [95% CI, 1.62-1.86]). By contrast, participants with more than 50% of HbA1c concentrations less than 6%, 6% to less than 7%, or 7% to less than 8% had lower risk of dementia (HbA1c<6%: aHR, 0.92 [95% CI, 0.88-0.97]; HbA1c 6% to <7%: aHR, 0.79 [95% CI, 0.77-0.81]; HbA1c 7% to <8%: aHR, 0.93 [95% CI, 0.89-0.97]). Conclusions and Relevance In this study dementia risk was greatest among adults with cumulative HbA1c concentrations of 9% or more. These results support currently recommended relaxed glycemic targets for older people with type 2 diabetes.
Collapse
Affiliation(s)
- Chris Moran
- National Centre for Healthy Ageing, Melbourne, Australia
- Peninsula Clinical School, Monash University, Melbourne, Australia
- Department of Geriatric Medicine, Peninsula Health, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Mary E. Lacy
- Kaiser Permanente Division of Research, Oakland, California
- College of Public Health, Department of Epidemiology, University of Kentucky, Lexington
| | - Rachel A. Whitmer
- Kaiser Permanente Division of Research, Oakland, California
- Division of Epidemiology, School of Medicine, University of California, Davis
| | - Ai-Lin Tsai
- Kaiser Permanente Division of Research, Oakland, California
| | | | | | - Alyce S. Adams
- Kaiser Permanente Division of Research, Oakland, California
- Department of Epidemiology and Population Health and Health Policy, School of Medicine, Stanford University, Stanford, California
| | - Paola Gilsanz
- Kaiser Permanente Division of Research, Oakland, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| |
Collapse
|
38
|
Longo M, Di Meo I, Caruso P, Francesca Muscio M, Scappaticcio L, Maio A, Ida Maiorino M, Bellastella G, Signoriello G, Knop FK, Rosaria Rizzo M, Esposito K. Circulating levels of endothelial progenitor cells are associated with better cognitive function in older adults with glucagon-like peptide 1 receptor agonist-treated type 2 diabetes. Diabetes Res Clin Pract 2023; 200:110688. [PMID: 37116797 DOI: 10.1016/j.diabres.2023.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
AIMS To evaluate cognitive function in subjects with type 2 diabetes (T2D) treated with glucagon-like peptide 1 receptor agonist (GLP-1RA) plus metformin or metformin alone and its association with endothelial progenitor cells (EPCs). METHODS Adults with T2D treated with GLP-1RA plus metformin (GLP-1RA + MET) or MET alone for at least 12 months were included. Montreal Cognitive Assessment test (MoCA), Mini-Mental State Examination (MMSE), Mini Nutritional Assessment (MNA) and disability tests were administered. Circulating levels of seven EPCs phenotypes were measured by flow cytometry. RESULTS A total of 154 elderly patients were included, of whom 78 in GLP-1RA + MET group and 76 in MET group. The GLP-1RA + MET group showed better cognitive function as indicated by a significant higher MoCA and MMSE scores, and higher levels of CD34+ CD133+, CD133+ KDR+, and CD34+ CD133+ KDR+ as compared with MET group. The number of CD34+ CD133+ KDR+ cells was an independent predictor of higher MoCA, MMSE and MNA scores. CONCLUSIONS People with T2D on GLP-1RA + MET treatment had better cognitive function and higher circulating levels of EPCs as compared with those on MET alone warranting further studies to understand the interrelationship between EPCs, GLP-RA treatment and cognitive health.
Collapse
Affiliation(s)
- Miriam Longo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Irene Di Meo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Geriatrics and Internal Medicine, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paola Caruso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Francesca Muscio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Geriatrics and Internal Medicine, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lorenzo Scappaticcio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonietta Maio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Ida Maiorino
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Bellastella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Signoriello
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Geriatrics and Internal Medicine, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Katherine Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
39
|
Brenowitz WD, Fornage M, Launer LJ, Habes M, Davatzikos C, Yaffe K. Alzheimer's Disease Genetic Risk, Cognition, and Brain Aging in Midlife. Ann Neurol 2023; 93:629-634. [PMID: 36511390 PMCID: PMC9974745 DOI: 10.1002/ana.26569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/10/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
We examined associations of an Alzheimer's disease (AD) Genetic Risk Score (AD-GRS) and midlife cognitive and neuroimaging outcomes in 1,252 middle-aged participants (311 with brain MRI). A higher AD-GRS based on 25 previously identified loci (excluding apolipoprotein E [APOE]) was associated with worse Montreal Cognitive Assessment (-0.14 standard deviation [SD] [95% confidence interval {CI}: -0.26, -0.02]), older machine learning predicted brain age (2.35 years[95%CI: 0.01, 4.69]), and white matter hyperintensity volume (0.35 SD [95% CI: 0.00, 0.71]), but not with a composite cognitive outcome, total brain, or hippocampal volume. APOE ε4 allele was not associated with any outcomes. AD risk genes beyond APOE may contribute to subclinical differences in cognition and brain health in midlife. ANN NEUROL 2023;93:629-634.
Collapse
Affiliation(s)
- Willa D Brenowitz
- Departments of Psychiatry and Behavioral Sciences, Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Myriam Fornage
- The University of Texas, Health Science Center at Houston, Houston, Texas, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, Maryland, USA
| | - Mohamad Habes
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kristine Yaffe
- Departments of Psychiatry and Behavioral Sciences, Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| |
Collapse
|
40
|
Meirelles O, Arnette A, Gudnason V, Launer L. The rocky road of 55 years of change in the relationship of cardiovascular risk factors to cognition. RESEARCH SQUARE 2023:rs.3.rs-2557208. [PMID: 36824902 PMCID: PMC9949226 DOI: 10.21203/rs.3.rs-2557208/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The mixed evidence that high levels of cardiovascular risk factors (CVRF) are associated with lower cognitive test scores of may be due to confounding of age across studies. We pooled and harmonized individual-level data (30,967 persons, age range 42-96y) from five prospective cohorts to examine the trajectories of betas estimating 1-year-age associations of a cognitive outcome (Digit Symbol Substitution Test; DSST) to five CVRF: systolic and e blood pressure, total cholesterol, fasting glucose and body mass index. Linear and quadratic piecewise regression models were fit to the trajectory patterns of these betas. The trajectories showed with each 1-year age increment, higher CVRF were associated with lower DSST, but associations attenuated toward zero as age increased. In addition, the pattern across age of each CVRF-DSST trajectory ranged from linear to non-liner. Without accounting for participant age in cohort comparisons, conclusions about the potential benefit on cognitive function of modifiable CVRF control will continue to be mixed and lead to delays in developing prevention programs.
Collapse
Affiliation(s)
| | | | | | - L Launer
- National Institute on Aging Intramural Research Program
| |
Collapse
|
41
|
Gupta D, Wilhalme H, Sauder G, Moin T. Cognitive screening among older adults with diabetes across diverse clinic settings. Diabetes Res Clin Pract 2023; 196:110184. [PMID: 36436551 DOI: 10.1016/j.diabres.2022.110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
AIMS Diabetes increases risk of cognitive dysfunction and dementia, which can make it harder to manage diabetes. We aimed to examine cognitive screening for older adults with diabetes in 1) endocrine (Endo), 2) geriatric (Geri) and 3) multidisciplinary endocrine-geriatric (Geri-Endo), to study differences between these settings and to elucidate risk factors of cognitive dysfunction. METHODS We performed cognitive screening for subsets of patients ≥ age 65 with diabetes in one large healthcare system. We compared results and differences from the three clinic types and used adjusted multivariate logistic regression models to predict risk of cognitive dysfunction. RESULTS Among 198 patients screened, those in Geri-Endo (N = 86) and Geri (N = 32) were more likely to have lower Mini-Cog scores, higher prevalence of hypertension and cardiovascular (CV) events. Endo and Geri-Endo patients had longer durations of diabetes, higher incidence of hypoglycemia, and were more likely to use insulin. Age > 75 years (p = 0.0105), previous CV events (p = 0.0006) and body mass index < 30 (p = 0.0115) were significantly associated with lower Mini-Cog scores. CONCLUSIONS Our study shows that cognitive screening can help identify at risk older adults with diabetes. Thus, yearly screening should be part of routine diabetes care.
Collapse
Affiliation(s)
- Deepashree Gupta
- Division of Endocrinology, Diabetes & Metabolism, David Geffen School of Medicine at University of California- Los Angeles (UCLA), United States.
| | - Holly Wilhalme
- Statistics Core, Department of Medicine, David Geffen School of Medicine at UCLA, United States
| | - Gabriela Sauder
- Community Practice Network, Department of Family Medicine at UCLA, United States
| | - Tannaz Moin
- Division of Endocrinology, Diabetes & Metabolism, David Geffen School of Medicine at University of California- Los Angeles (UCLA), United States; HSR&D Center for the Study of Healthcare Innovation, Implementation & Policy, VA Greater Los Angeles Healthcare System, United States
| |
Collapse
|
42
|
Cullinane PW, de Pablo Fernandez E, König A, Outeiro TF, Jaunmuktane Z, Warner TT. Type 2 Diabetes and Parkinson's Disease: A Focused Review of Current Concepts. Mov Disord 2023; 38:162-177. [PMID: 36567671 DOI: 10.1002/mds.29298] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 12/27/2022] Open
Abstract
Highly reproducible epidemiological evidence shows that type 2 diabetes (T2D) increases the risk and rate of progression of Parkinson's disease (PD), and crucially, the repurposing of certain antidiabetic medications for the treatment of PD has shown early promise in clinical trials, suggesting that the effects of T2D on PD pathogenesis may be modifiable. The high prevalence of T2D means that a significant proportion of patients with PD may benefit from personalized antidiabetic treatment approaches that also confer neuroprotective benefits. Therefore, there is an immediate need to better understand the mechanistic relation between these conditions and the specific molecular pathways affected by T2D in the brain. Although there is considerable evidence that processes such as insulin signaling, mitochondrial function, autophagy, and inflammation are involved in the pathogenesis of both PD and T2D, the primary aim of this review is to highlight the evidence showing that T2D-associated dysregulation of these pathways occurs not only in the periphery but also in the brain and how this may facilitate neurodegeneration in PD. We also discuss the challenges involved in disentangling the complex relationship between T2D, insulin resistance, and PD, as well as important questions for further research. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patrick W Cullinane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Eduardo de Pablo Fernandez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom.,Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom.,Queen Square Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Queen Square Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
43
|
Dao L, Choi S, Freeby M. Type 2 diabetes mellitus and cognitive function: understanding the connections. Curr Opin Endocrinol Diabetes Obes 2023; 30:7-13. [PMID: 36385094 DOI: 10.1097/med.0000000000000783] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW To review the connection between type 2 diabetes and cognitive dysfunction, including its epidemiology, potential mechanisms of pathophysiology, risk factors, possible prevention, and treatment considerations. RECENT FINDINGS Diabetes is a risk factor for mild cognitive decline, in addition to Alzheimer's disease and vascular dementia. Duration of diabetes, concomitant vascular or associated co-morbidities, hyper- and hypoglycemia may lead to worsening cognitive dysfunction. Unfortunately, there is a lack of evidence-based guidance on the prevention of cognitive dysfunction in the diabetes population. Studies of diabetes medications, including metformin, glucagon-like peptide-1 (GLP-1) receptor agonists, and sodium-glucose cotransporter-2 inhibitors (SGLT2) have shown some benefit with cardiovascular morbidity and may affect cognition. In the absence of clearly defined preventive tools, diabetes practice guidelines recommend annual cognitive screening as standard of care in adults with diabetes aged 65 years or older. SUMMARY People living with diabetes are at risk for significant decline in cognitive function. Epidemiology and risk factors are well defined. Prevention and treatment strategies are limited and require further study.
Collapse
Affiliation(s)
- Lisa Dao
- Division of Endocrinology, Diabetes and Metabolism, David Geffen School of Medicine UCLA
| | - Sarah Choi
- UCLA School of Nursing, Los Angeles, California, USA
| | - Matthew Freeby
- Division of Endocrinology, Diabetes and Metabolism, David Geffen School of Medicine UCLA
| |
Collapse
|
44
|
ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Collins BS, Cusi K, Hilliard ME, Isaacs D, Johnson EL, Kahan S, Khunti K, Leon J, Lyons SK, Perry ML, Prahalad P, Pratley RE, Seley JJ, Stanton RC, Gabbay RA, on behalf of the American Diabetes Association. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46:S49-S67. [PMID: 36507651 PMCID: PMC9810472 DOI: 10.2337/dc23-s004] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
45
|
Sugimoto T, Tokuda H, Miura H, Kawashima S, Ando T, Kuroda Y, Matsumoto N, Fujita K, Uchida K, Kishino Y, Sakurai T. Cross-sectional association of metrics derived from continuous glucose monitoring with cognitive performance in older adults with type 2 diabetes. Diabetes Obes Metab 2023; 25:222-228. [PMID: 36082514 DOI: 10.1111/dom.14866] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 12/14/2022]
Abstract
AIM To examine the association between continuous glucose monitoring (CGM)-derived metrics and cognitive performance in older adults with type 2 diabetes (T2D). MATERIALS AND METHODS A total of 100 outpatients with T2D aged 70 years or older were analysed. Participants underwent CGM for 14 days. As CGM-derived metrics, mean sensor glucose (SG), glucose coefficient of variation (CV), time in range (TIR; 70-180 mg/dl), time above range (TAR; > 180 mg/dl) and time below range (TBR; < 70 mg/dl), were calculated. Participants underwent cognitive tests, including the Japanese version of the Montreal Cognitive Assessment (MoCA-J), a delayed word-recall test from the Alzheimer's Disease Assessment Scale-cognitive subscale, a digit symbol substitution test, a letter word fluency test, a trail-making test (TMT) and digit span test (DSP). RESULTS In multiple regression analyses adjusted for confounders, a higher mean SG was associated with a lower performance in MoCA-J and TMT part B (TMT-B) (P < .05). A higher TAR was associated with a lower performance in TMT-B and DSP-backward (P < .05). By contrast, a higher TIR was associated with better function in TMT-B and DSP-backward (P < .05). Furthermore, CV and TBR were not associated with any cognitive function. CONCLUSION Hyperglycaemia metrics and TIR derived from CGM are associated with cognitive functions, especially with executive function and working memory, in older adults with T2D.
Collapse
Affiliation(s)
- Taiki Sugimoto
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
- Center for Comprehensive Care and Research on Memory Disorders, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Haruhiko Tokuda
- Department of Clinical Laboratory, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Endocrinology and Metabolism, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hisayuki Miura
- Department of Endocrinology and Metabolism, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Home Care and Regional Liaison Promotion, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shuji Kawashima
- Department of Endocrinology and Metabolism, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takafumi Ando
- Human-Centered Mobility Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yujiro Kuroda
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Nanae Matsumoto
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kosuke Fujita
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kazuaki Uchida
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Yoshinobu Kishino
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Cognition and Behavior Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Sakurai
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
- Center for Comprehensive Care and Research on Memory Disorders, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Cognition and Behavior Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
46
|
Abrahamian H, Kautzky-Willer A, Rießland-Seifert A, Lebherz-Eichinger D, Fasching P, Ebenbichler C, Kautzky A, Toplak H. [Mental disorders and diabetes mellitus (Update 2023)]. Wien Klin Wochenschr 2023; 135:225-236. [PMID: 37101044 PMCID: PMC10133031 DOI: 10.1007/s00508-022-02117-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 04/28/2023]
Abstract
Psychiatric disorders and psychological problems are common in patients with diabetes mellitus. There is a twofold increase in depression which is associated with suboptimal glycemic control and increased morbidity and mortality. Other psychiatric disorders with a higher incidence of diabetes are cognitive impairment, dementia, disturbed eating behavior, anxiety disorders, schizophrenia, bipolar disorders and borderline personality disorder. The coincidence of mental disorders and diabetes has unfavorable influences on metabolic control and micro- and macroangiopathic complications. Improvement of therapeutic outcome is a challenge in the modern health care system. The intentions behind this position paper are to rise awareness of this special set of problems, to intensify cooperation between involved health care providers and to reduce incidence of diabetes mellitus as well as morbidity and mortality from diabetes in this patient group.
Collapse
Affiliation(s)
| | - Alexandra Kautzky-Willer
- Gender Medicine Unit, Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich.
| | - Angelika Rießland-Seifert
- 1. Psychiatrische Abteilung mit Zentrum für Psychotherapie und Psychosomatik, Klinik Penzing, Wien, Österreich
| | | | - Peter Fasching
- Medizinische Abteilung für Endokrinologie, Rheumatologie und Akutgeriatrie, Klinik Ottakring, Wien, Österreich
| | - Christoph Ebenbichler
- Universitätsklinik für Innere Medizin I, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Alexander Kautzky
- Klinische Abteilung für Sozialpsychiatrie, Medizinische Universitätsklinik für Psychiatrie und Psychotherapie, Wien, Österreich
| | - Hermann Toplak
- Klinische Abteilung für Endokrinologie und Diabetologie, Universitätsklinik für , Innere Medizin, Medizinische Universität Graz, Graz, Österreich
| |
Collapse
|
47
|
Davidson S, Allenback G, Decourt B, Sabbagh MN. Type 2 Diabetes Comorbidity and Cognitive Decline in Patients with Alzheimer's Disease. J Alzheimers Dis 2023; 95:1573-1584. [PMID: 37718812 DOI: 10.3233/jad-230489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Although insulin dysregulation and resistance likely participate in Alzheimer's disease (AD) etiologies, little is known about the correlation between type 2 diabetes mellitus (T2DM) and the progression of cognitive decline in patients with AD. OBJECTIVE To determine whether AD patients with T2DM experience more rapid cognitive decline than those without T2DM. METHODS All cognitive performance data and the presence or absence of T2DM comorbidity in patients with AD were derived from the US National Alzheimer's Coordinating Center's (NACC) Uniform Data Set (UDS). A search of the UDS identified 3,055 participants with AD who had more than one epoch completed. The data set culled clinically diagnosed AD dementia patients who were assessed for diabetes type identified during at least 1 visit. These patients were divided into 2 groups based on whether they had a diagnosis of T2DM. The data from these groups were then analyzed for differences in cognitive decline based on neuropsychological test battery scores and a Clinician Dementia Rating using a general linear model. RESULTS Comparisons of the mean scores for 16 selected tests from the neuropsychological test battery showed no significant differences in baseline scores and scores at subsequent visits between the T2DM and nondiabetic groups. CONCLUSIONS The results revealed no differences in cognitive decline metrics over the course of 5 visits in either study group. These data indicate that the presence of T2DM does not increase the rate of cognitive decline in AD. This finding contradicts expected disease burden and will need to be explored further.
Collapse
Affiliation(s)
- Skylar Davidson
- Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Gayle Allenback
- Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Boris Decourt
- Translational Neurodegenerative Research Lab, Roseman University, Las Vegas, NV, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Science Center, School of Medicine, Lubbock, TX, USA
| | - Marwan N Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
48
|
ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Collins BS, Hilliard ME, Isaacs D, Johnson EL, Kahan S, Khunti K, Leon J, Lyons SK, Perry ML, Prahalad P, Pratley RE, Jeffrie Seley J, Stanton RC, Gabbay RA, on behalf of the American Diabetes Association. 13. Older Adults: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46:S216-S229. [PMID: 36507638 PMCID: PMC9810468 DOI: 10.2337/dc23-s013] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
49
|
Moonen JE, Nasrallah IM, Detre JA, Dolui S, Erus G, Davatzikos C, Meirelles O, Bryan NR, Launer LJ. Race, sex, and mid-life changes in brain health: Cardia MRI substudy. Alzheimers Dement 2022; 18:2428-2437. [PMID: 35142033 PMCID: PMC9360196 DOI: 10.1002/alz.12560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 12/03/2021] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To examine longitudinal race and sex differences in mid-life brain health and to evaluate whether cardiovascular health (CVH) or apolipoprotein E (APOE) ε4 explain differences. METHODS The study included 478 Black and White participants (mean age: 50 years). Total (TBV), gray (GMV), white (WMV), and white matter hyperintensity (WMH) volumes and GM-cerebral blood flow (CBF) were acquired with 3T-magnetic resonance imaging at baseline and 5-year follow-up. Analyses were based on general linear models. RESULTS There were race x sex interactions for GMV (P-interaction = .004) and CBF (P-interaction = .01) such that men showed more decline than women, and this was most evident in Blacks. Blacks compared to Whites had a significantly greater increase in WMH (P = .002). All sex-race differences in change were marginally attenuated by CVH and APOE ε4. CONCLUSION Race-sex differences in brain health emerge by mid-life. Identifying new environmental factors beyond CVH is needed to develop early interventions to maintain brain health.
Collapse
Affiliation(s)
- Justine E Moonen
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institute of Health, LEPS/IRP/NIA/NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA, Tel: 410-558-8292
| | - Ilya M Nasrallah
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA 19104, US
| | - John A Detre
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA 19104, US
| | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA 19104, US
| | - Guray Erus
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA 19104, US
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School for advanced Medicine, 3400 Civic Center Boulevard Atrium, Ground Floor, Philadelphia, PA 19104, US
| | - Osorio Meirelles
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institute of Health, LEPS/IRP/NIA/NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA, Tel: 410-558-8292
| | - Nick R Bryan
- Department of Radiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, Austin, US
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institute of Health, LEPS/IRP/NIA/NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA, Tel: 410-558-8292
| |
Collapse
|
50
|
Casten R, Leiby BE, Kelley M, Rovner BW. A randomized controlled trial to test the efficacy of a diabetes behavioral intervention to prevent memory decline in older blacks/African Americans with diabetes and mild cognitive impairment. Contemp Clin Trials 2022; 123:106977. [PMID: 36341847 PMCID: PMC9787831 DOI: 10.1016/j.cct.2022.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The prevalence of dementia in Blacks/African Americans (AAs) is almost twice that of Whites. Inequities in access to health care, socioeconomic conditions, and diabetes contribute to this disparity. Poorly controlled diabetes, which is more prevalent in Blacks/AAs, causes microvascular disease and neurodegeneration and increases dementia risk. Improving glycemic control, therefore, may prevent cognitive decline. To address this issue, we developed Diabetes Regulation for Eyesight and Memory (DREAM), a community health worker (CHW)-led behavioral intervention to improve diabetes self-management and thereby prevent cognitive decline. DREAM consists of home-based diabetes education, goal setting, and telehealth visits with a diabetes nurse educator. Exploratory aims will investigate whether APOE genotype moderates and retinal biomarkers mediate treatment effects. This report describes the trial's rationale, methodology, and study procedures. (clinicaltrials.gov identifier NCT04259047). METHODS This randomized controlled trial will test the efficacy of DREAM to prevent decline in memory (primary outcome) in Blacks/AAs aged 65+ with poorly controlled diabetes and Mild Cognitive Impairment (MCI). Two hundred participants will be randomized to DREAM or an attention control condition, and will receive 11 in-home treatment sessions over two years. Outcome data are collected at 6, 12, 18, and 24 months. The primary outcome is verbal learning as measured by Hopkins Verbal Learning Test (HVLT) Total Recall scores. Participants will have retinal imaging at baseline, 12, and 24 months. CONCLUSIONS This research aims to prevent cognitive decline in older Blacks/AAs with diabetes and MCI. If successful, this research will preserve health in an underserved population and reduce racial health disparities.
Collapse
Affiliation(s)
- Robin Casten
- Department of Psychiatry and Human Behavior, Sidney Kimmel Medical College at Thomas, Jefferson University, 1015 Walnut Street, Suite 709, Philadelphia, PA 19107, USA.
| | - Benjamin E Leiby
- Division of Biostatistics, Department of Pharmacology, Physiology, and Cancer Biology, Sidney, Kimmel Medical College at Thomas Jefferson University, 130 S. 19(th) St, 17(th) Floor, Philadelphia, PA 19107, USA.
| | - Megan Kelley
- Department of Neurology, Sidney Kimmel Medical College at Thomas Jefferson University, 1015, Walnut Street, Suite 709, Philadelphia, PA 19107, USA.
| | - Barry W Rovner
- Departments of Neurology, Psychiatry, and Ophthalmology, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA.
| |
Collapse
|