1
|
Zhang FL, Li AY, Niu YL, Zhang K, Zhao MH, Huang JJ, Shen W. Identification of biomarkers in Parkinson's disease by comparative transcriptome analysis and WGCNA highlights the role of oligodendrocyte precursor cells. Front Aging Neurosci 2024; 16:1485722. [PMID: 39634657 PMCID: PMC11615075 DOI: 10.3389/fnagi.2024.1485722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background Parkinson's disease (PD) is an age-related neurodegenerative disease characterized by the death of dopamine neurons in the substantia nigra. A large number of studies have focused on dopamine neurons themselves, but so far, the pathogenesis of PD has not been fully elucidated. Results Here, we explored the significance of oligodendrocyte precursor cells (OPCs)/oligodendrocytes in the pathogenesis of PD using a bioinformatic approach. WGCNA analysis suggested that abnormal development of oligodendrocytes may play a key role in early PD. To verify the transcriptional dynamics of OPCs/oligodendrocytes, we performed differential analysis, cell trajectory construction, cell communication analysis and hdWGCNA analysis using single-cell data from PD patients. Interestingly, the results indicated that there was overlap between hub genes and differentially expressed genes (DEGs) in OPCs not in oligodendrocytes, suggesting that OPCs may be more sensitive to PD drivers. Then, we used ROC binary analysis model to identify five potential biomarkers, including AGPAT4, DNM3, PPP1R12B, PPP2R2B, and LINC00486. Conclusion In conclusion, our work highlights the potential role of OPCs in driving PD.
Collapse
Affiliation(s)
- Fa-Li Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Ai-Ying Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yi-Lin Niu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Kai Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Ming-Hui Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jiao-Jiao Huang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
2
|
Towns C, Fang ZH, Tan MMX, Jasaityte S, Schmaderer TM, Stafford EJ, Pollard M, Tilney R, Hodgson M, Wu L, Labrum R, Hehir J, Polke J, Lange LM, Schapira AHV, Bhatia KP, Singleton AB, Blauwendraat C, Klein C, Houlden H, Wood NW, Jarman PR, Morris HR, Real R. Parkinson's families project: a UK-wide study of early onset and familial Parkinson's disease. NPJ Parkinsons Dis 2024; 10:188. [PMID: 39420034 PMCID: PMC11487259 DOI: 10.1038/s41531-024-00778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/12/2024] [Indexed: 10/19/2024] Open
Abstract
The Parkinson's Families Project is a UK-wide study aimed at identifying genetic variation associated with familial and early-onset Parkinson's disease (PD). We recruited individuals with a clinical diagnosis of PD and age at motor symptom onset ≤45 years and/or a family history of PD in up to third-degree relatives. Where possible, we also recruited affected and unaffected relatives. We analysed DNA samples with a combination of single nucleotide polymorphism (SNP) array genotyping, multiplex ligation-dependent probe amplification (MLPA), and whole-genome sequencing (WGS). We investigated the association between identified pathogenic mutations and demographic and clinical factors such as age at motor symptom onset, family history, motor symptoms (MDS-UPDRS) and cognitive performance (MoCA). We performed baseline genetic analysis in 718 families, of which 205 had sporadic early-onset PD (sEOPD), 113 had familial early-onset PD (fEOPD), and 400 had late-onset familial PD (fLOPD). 69 (9.6%) of these families carried pathogenic variants in known monogenic PD-related genes. The rate of a molecular diagnosis increased to 28.1% in PD with motor onset ≤35 years. We identified pathogenic variants in LRRK2 in 4.2% of families, and biallelic pathogenic variants in PRKN in 3.6% of families. We also identified two families with SNCA duplications and three families with a pathogenic repeat expansion in ATXN2, as well as single families with pathogenic variants in VCP, PINK1, PNPLA6, PLA2G6, SPG7, GCH1, and RAB32. An additional 73 (10.2%) families were carriers of at least one pathogenic or risk GBA1 variant. Most early-onset and familial PD cases do not have a known genetic cause, indicating that there are likely to be further monogenic causes for PD.
Collapse
Affiliation(s)
- Clodagh Towns
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Simona Jasaityte
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Theresa M Schmaderer
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Eleanor J Stafford
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Miriam Pollard
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Russel Tilney
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Megan Hodgson
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Lesley Wu
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Robyn Labrum
- Neurogenetics Laboratory, National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - Jason Hehir
- Neurogenetics Laboratory, National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - James Polke
- Neurogenetics Laboratory, National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul R Jarman
- National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- UCL Movement Disorders Centre, University College London, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- UCL Movement Disorders Centre, University College London, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Westenberger A, Skrahina V, Usnich T, Beetz C, Vollstedt EJ, Laabs BH, Paul JJ, Curado F, Skobalj S, Gaber H, Olmedillas M, Bogdanovic X, Ameziane N, Schell N, Aasly JO, Afshari M, Agarwal P, Aldred J, Alonso-Frech F, Anderson R, Araújo R, Arkadir D, Avenali M, Balal M, Benizri S, Bette S, Bhatia P, Bonello M, Braga-Neto P, Brauneis S, Cardoso FEC, Cavallieri F, Classen J, Cohen L, Coletta D, Crosiers D, Cullufi P, Dashtipour K, Demirkiran M, de Carvalho Aguiar P, De Rosa A, Djaldetti R, Dogu O, dos Santos Ghilardi MG, Eggers C, Elibol B, Ellenbogen A, Ertan S, Fabiani G, Falkenburger BH, Farrow S, Fay-Karmon T, Ferencz GJ, Fonoff ET, Fragoso YD, Genç G, Gorospe A, Grandas F, Gruber D, Gudesblatt M, Gurevich T, Hagenah J, Hanagasi HA, Hassin-Baer S, Hauser RA, Hernández-Vara J, Herting B, Hinson VK, Hogg E, Hu MT, Hummelgen E, Hussey K, Infante J, Isaacson SH, Jauma S, Koleva-Alazeh N, Kuhlenbäumer G, Kühn A, Litvan I, López-Manzanares L, Luxmore M, Manandhar S, Marcaud V, Markopoulou K, Marras C, McKenzie M, Matarazzo M, Merello M, Mollenhauer B, Morgan JC, Mullin S, Musacchio T, Myers B, Negrotti A, Nieves A, Nitsan Z, Oskooilar N, Öztop-Çakmak Ö, Pal G, Pavese N, Percesepe A, Piccoli T, Pinto de Souza C, Prell T, Pulera M, Raw J, Reetz K, Reiner J, Rosenberg D, Ruiz-Lopez M, Ruiz Martinez J, Sammler E, Santos-Lobato BL, Saunders-Pullman R, Schlesinger I, Schofield CM, Schumacher-Schuh AF, Scott B, Sesar Á, Shafer SJ, Sheridan R, Silverdale M, Sophia R, Spitz M, Stathis P, Stocchi F, Tagliati M, Tai YF, Terwecoren A, Thonke S, Tönges L, Toschi G, Tumas V, Urban PP, Vacca L, Vandenberghe W, Valente EM, Valzania F, Vela-Desojo L, Weill C, Weise D, Wojcieszek J, Wolz M, Yahalom G, Yalcin-Cakmakli G, Zittel S, Zlotnik Y, Kandaswamy KK, Balck A, Hanssen H, Borsche M, Lange LM, Csoti I, Lohmann K, Kasten M, Brüggemann N, Rolfs A, Klein C, Bauer P. Relevance of genetic testing in the gene-targeted trial era: the Rostock Parkinson's disease study. Brain 2024; 147:2652-2667. [PMID: 39087914 PMCID: PMC11292909 DOI: 10.1093/brain/awae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 03/24/2024] [Indexed: 08/02/2024] Open
Abstract
Estimates of the spectrum and frequency of pathogenic variants in Parkinson's disease (PD) in different populations are currently limited and biased. Furthermore, although therapeutic modification of several genetic targets has reached the clinical trial stage, a major obstacle in conducting these trials is that PD patients are largely unaware of their genetic status and, therefore, cannot be recruited. Expanding the number of investigated PD-related genes and including genes related to disorders with overlapping clinical features in large, well-phenotyped PD patient groups is a prerequisite for capturing the full variant spectrum underlying PD and for stratifying and prioritizing patients for gene-targeted clinical trials. The Rostock Parkinson's disease (ROPAD) study is an observational clinical study aiming to determine the frequency and spectrum of genetic variants contributing to PD in a large international cohort. We investigated variants in 50 genes with either an established relevance for PD or possible phenotypic overlap in a group of 12 580 PD patients from 16 countries [62.3% male; 92.0% White; 27.0% positive family history (FH+), median age at onset (AAO) 59 years] using a next-generation sequencing panel. Altogether, in 1864 (14.8%) ROPAD participants (58.1% male; 91.0% White, 35.5% FH+, median AAO 55 years), a PD-relevant genetic test (PDGT) was positive based on GBA1 risk variants (10.4%) or pathogenic/likely pathogenic variants in LRRK2 (2.9%), PRKN (0.9%), SNCA (0.2%) or PINK1 (0.1%) or a combination of two genetic findings in two genes (∼0.2%). Of note, the adjusted positive PDGT fraction, i.e. the fraction of positive PDGTs per country weighted by the fraction of the population of the world that they represent, was 14.5%. Positive PDGTs were identified in 19.9% of patients with an AAO ≤ 50 years, in 19.5% of patients with FH+ and in 26.9% with an AAO ≤ 50 years and FH+. In comparison to the idiopathic PD group (6846 patients with benign variants), the positive PDGT group had a significantly lower AAO (4 years, P = 9 × 10-34). The probability of a positive PDGT decreased by 3% with every additional AAO year (P = 1 × 10-35). Female patients were 22% more likely to have a positive PDGT (P = 3 × 10-4), and for individuals with FH+ this likelihood was 55% higher (P = 1 × 10-14). About 0.8% of the ROPAD participants had positive genetic testing findings in parkinsonism-, dystonia/dyskinesia- or dementia-related genes. In the emerging era of gene-targeted PD clinical trials, our finding that ∼15% of patients harbour potentially actionable genetic variants offers an important prospect to affected individuals and their families and underlines the need for genetic testing in PD patients. Thus, the insights from the ROPAD study allow for data-driven, differential genetic counselling across the spectrum of different AAOs and family histories and promote a possible policy change in the application of genetic testing as a routine part of patient evaluation and care in PD.
Collapse
Affiliation(s)
- Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
| | - Volha Skrahina
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
| | - Christian Beetz
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
| | - Eva-Juliane Vollstedt
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
| | - Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Center Schleswig-Holstein, 23562 Lübeck, Schleswig-Holstein, Germany
| | - Jefri J Paul
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
| | - Filipa Curado
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
| | - Snezana Skobalj
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
| | - Hanaa Gaber
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
- Department of Clinical Project Management, IQVIA, 60549 Frankfurt am Main, Hessen, Germany
| | | | | | - Najim Ameziane
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
| | - Nathalie Schell
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
| | - Jan Olav Aasly
- Department of Neurology, St. Olavs Hospital, 7006 Trondheim, Trøndelag, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Mitra Afshari
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Pinky Agarwal
- Evergreen Health Neuroscience Institute, Kirkland, WA 98034, USA
| | - Jason Aldred
- Inland Northwest Research, Spokane, WA 99202, USA
| | - Fernando Alonso-Frech
- Department of Neurology, Movement Disorders Unit, Hospital Clínico San Carlos, 28040 Madrid, Madrid, Spain
| | | | - Rui Araújo
- Department of Neurology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Porto District, Portugal
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, 4200-319 Porto, Porto District, Portugal
| | - David Arkadir
- Department of Neurology, Faculty of Medicine, Hadassah Medical Organization, Hebrew University, 91120 Jerusalem, Jerusalem District, Israel
| | - Micol Avenali
- Neurogenetics Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Lombardy, Italy
| | - Mehmet Balal
- Department of Neurology, School of Medicine, Çukurova University, 01330 Adana, Adana, Turkey
| | - Sandra Benizri
- Movement Disorders Unit, Assuta Ramat Ha Hayal Hospital, 69710 Tel Aviv, Tel Aviv District, Israel
| | - Sagari Bette
- Parkinson’s Disease and Movement Disorders Center of Boca Raton, Boca Raton, FL 33486, USA
| | | | - Michael Bonello
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, Merseyside L9 7LJ, UK
| | - Pedro Braga-Neto
- Division of Neurology, Department of Clinical Medicine, Federal University of Ceará, 60430-140 Fortaleza, Brazil
- Center of Health Science, Universidade Estadual do Ceará, 60714-903 Fortaleza, Ceará, Brazil
| | | | - Francisco Eduardo Costa Cardoso
- Movement Disorders Unit, Neurology Service, Department of Internal Medicine, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Emilia-Romagna, Italy
| | - Joseph Classen
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Saxony, Germany
| | | | - Della Coletta
- Department of Neurology, Universidade do Estado do Amazonas, 69050-010 Manaus AM, Amazonas, Brazil
| | - David Crosiers
- Department of Neurology, Antwerp University Hospital, 2650 Edegem, Flemish, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Flemish, Belgium
| | - Paskal Cullufi
- Pediatric Department, University Hospital ‘Mother Teresa’, 1001 Tirana, Tirana County, Albania
| | - Khashayar Dashtipour
- Department of Neurology, Division of Movement Disorders, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Meltem Demirkiran
- Department of Neurology, School of Medicine, Çukurova University, 01330 Adana, Adana, Turkey
| | - Patricia de Carvalho Aguiar
- Department of Neurology and Neurosurgery, Hospital Israelita Albert Einstein, 05651-901 Sao Paulo, Sao Paulo, Brazil
| | - Anna De Rosa
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Campania Region, Italy
| | - Ruth Djaldetti
- Department of Neurology, Movement Disorders Clinic, Rabin Medical Center-Beilinson Hospital, 49100 Petach Tikva, Central District, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Tel Aviv District, Israel
| | - Okan Dogu
- Department of Neurology, Mersin University, 33343 Mersin, Mersin Province, Turkey
| | - Maria Gabriela dos Santos Ghilardi
- Laboratory of Neuroscience, Hospital Sírio-Libanês, 01308-050 São Paulo, São Paulo, Brazil
- Department of Neurology, University of São Paulo Medical School, 01246-903 São Paulo, São Paulo, Brazil
| | - Carsten Eggers
- Department of Neurology, University Hospital Marburg, 35037 Marburg, Hesse, Germany
- Department of Neurology, Knappschaftskrankenhaus Bottrop, 46242 Bottrop, North Rhine-Westphalia, Germany
| | - Bulent Elibol
- Department of Neurology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Ankara, Turkey
| | - Aaron Ellenbogen
- Michigan Institute for Neurological Disorders, Farmington Hills, MI 48334, USA
- Quest Research Institute, Farmington Hills, MI 48334, USA
| | - Sibel Ertan
- Department of Neurology, Koç University, 34450 Istanbul, Istanbul, Turkey
| | - Giorgio Fabiani
- Movement Disorders Unit, Hospital Angelina Caron, 83430-000 Curitiba, Paraná, Brazil
| | - Björn H Falkenburger
- Department of Neurology, University Hospital and Faculty of Medicine Carl Gustav Carus, 01307 Dresden, Saxony, Germany
| | - Simon Farrow
- Clinical Research Center of Nevada, Las Vegas, NV 89119, USA
| | - Tsviya Fay-Karmon
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Tel Aviv District, Israel
- Movement Disorders Institute and Department of Neurology, Chaim Sheba Medical Center, 52621 Ramat-Gan, Tel Aviv District, Israel
| | - Gerald J Ferencz
- Shore Neurology, RWJBarnabas Health Medical Group, Toms River, NJ 08755, USA
| | - Erich Talamoni Fonoff
- Laboratory of Neuroscience, Hospital Sírio-Libanês, 01308-050 São Paulo, São Paulo, Brazil
- Department of Neurology, University of São Paulo Medical School, 01246-903 São Paulo, São Paulo, Brazil
| | - Yara Dadalti Fragoso
- Department of Neurology, Universidade Metropolitana de Santos, 11070-100 Santos SP, São Paulo, Brazil
| | - Gençer Genç
- Department of Neurology, Şişli Etfal Training and Research Hospital, University of Health Sciences, 34371 Istanbul, Istanbul, Turkey
| | - Arantza Gorospe
- Department of Neurology, de Navarra University Hospital, 31008 Pamplona, Navarre, Spain
| | - Francisco Grandas
- Movement Disorders Unit, University General Hospital Gregorio Marañón, 28007 Madrid, Madrid, Spain
| | - Doreen Gruber
- Movement Disorders Clinic, 14547 Beelitz-Heilstätten, Brandenburg, Germany
| | - Mark Gudesblatt
- NYU Langone South Shore Neurologic Associates, Islip, NY 11751, USA
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv University, 6423906 Tel Aviv, Tel Aviv District, Israel
| | - Johann Hagenah
- Department of Neurology, Westküstenklinikum Heide, 25746 Heide, Schleswig-Holstein, Germany
| | - Hasmet A Hanagasi
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Istanbul, Turkey
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Tel Aviv District, Israel
- Movement Disorders Institute and Department of Neurology, Chaim Sheba Medical Center, 52621 Ramat-Gan, Tel Aviv District, Israel
| | - Robert A Hauser
- University of South Florida Parkinson’s Disease and Movement Disorders Center of Excellence, Tampa, FL 33612, USA
| | - Jorge Hernández-Vara
- Neurology Department, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Catalonia, Spain
| | - Birgit Herting
- Neurological Clinic, Diakonie-Klinikum Schwäbisch Hall, 74523 Schwäbisch Hall, Baden-Württemberg, Germany
| | - Vanessa K Hinson
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elliot Hogg
- Department of Neurosurgery, Cedars-Sinai Medical Center, Movement Disorder Program, Los Angeles, CA 90048, USA
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK
| | - Eduardo Hummelgen
- Neurology Service, Hospital Angelina Caron, 83430-000 Curitiba, Paraná, Brazil
| | - Kelly Hussey
- University of South Florida Parkinson’s Disease and Movement Disorders Center of Excellence, Tampa, FL 33612, USA
| | - Jon Infante
- Service of Neurology, University Hospital ‘Marqués de Valdecilla (IDIVAL)’, University of Cantabria, and ‘Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)’, 39008 Santander, Cantabria, Spain
| | - Stuart H Isaacson
- Parkinson’s Disease and Movement Disorders Center of Boca Raton, Boca Raton, FL 33486, USA
| | - Serge Jauma
- Neurology Service, Hospital Universitari de Bellvitge, 08907 Barcelona, Catalonia, Spain
| | | | - Gregor Kuhlenbäumer
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Schleswig-Holstein, Germany
| | - Andrea Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, 10117 Berlin, Berlin, Germany
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, University of California San Diego Health, La Jolla, San Diego, CA 92037, USA
| | - Lydia López-Manzanares
- Department of Neurology, Movement Disorders Unit, La Princesa University Hospital, 28006 Madrid, Madrid, Spain
| | - McKenzie Luxmore
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Veronique Marcaud
- Department of Neurology, Saint Joseph Hospital, 75014 Paris, Île-de-France, France
| | - Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Neurology, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Connie Marras
- The Edmond J Safra Program in Parkinson’s Disease, Toronto Western Hospital, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | | | - Michele Matarazzo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Fundación Hospitales de Madrid, Hospital Universitario HM Puerta del Sur, HM Hospitales, 28938 Madrid, Madrid, Spain
| | - Marcelo Merello
- Movement Disorders Service FLENI, CONICET, C1428 Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, 34128 Kassel, Hesse, Germany
- Department of Neurology, University Medical Centre Göttingen, 37075 Göttingen, Lower Saxony, Germany
| | - John C Morgan
- Movement & Memory Disorder Programs, Department of Neurology, Augusta University Medical Center, Augusta, GA 30912, USA
| | - Stephen Mullin
- Institute of Translational and Stratified Medicine, University of Plymouth School of Medicine, Plymouth, Devon PL6 8BU, UK
| | - Thomas Musacchio
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Bavaria, Germany
| | | | - Anna Negrotti
- Department of General and Specialized Medicine, Neurology Unit, University Hospital of Parma, 43126 Parma, Emilia-Romagna, Italy
| | | | - Zeev Nitsan
- Department of Neurology, Barzilai Medical Center, 78278 Ashkelon, Southern District, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, 84105 Beer-Sheva, Southern District, Israel
| | - Nader Oskooilar
- Pharmacology Research Institute, Newport Beach, CA 92660, USA
| | - Özgür Öztop-Çakmak
- Department of Neurology, Koç University, 34450 Istanbul, Istanbul, Turkey
| | - Gian Pal
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, Tyne and Wear NE4 5PL, UK
| | - Antonio Percesepe
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Emilia-Romagna, Italy
| | - Tommaso Piccoli
- Unit of Neurology, Department of Biomedicine, Neurosciences and advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Sicily, Italy
| | - Carolina Pinto de Souza
- Department of Neurology, São Francisco Hospital, University of São Paulo, 01236-030 São Paulo, São Paulo, Brazil
| | - Tino Prell
- Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany
- Department of Geriatrics, Halle University Hospital, 06120 Halle, Saxony-Anhalt, Germany
| | - Mark Pulera
- Pharmacology Research Institute, Encino, CA 91316, USA
| | - Jason Raw
- Clinical Research Unit, Pennine Acute Hospitals NHS Trust, Oldham, Greater Manchester OL1 2JH, UK
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, 52074 Aachen, North Rhine-Westphalia, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Jülich, 52428 Jülich, North Rhine-Westphalia, Germany
| | - Johnathan Reiner
- Department of Neurology, Movement Disorders Clinic, Rabin Medical Center-Beilinson Hospital, 49100 Petach Tikva, Central District, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Tel Aviv District, Israel
| | - David Rosenberg
- Pharmacology Research Institute, Los Alamitos, CA 90720, USA
| | - Marta Ruiz-Lopez
- Department of Neurology, University Hospital Cruces, Biocruces Research Institute, 48903 Barakaldo, Basque Country, Spain
| | - Javier Ruiz Martinez
- Department of Neurology, Hospital Universitario Donostia, 20014 San Sebastian, Basque Country, Spain
| | - Esther Sammler
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | | | | - Ilana Schlesinger
- Rambam Health Care Campus, Technion Faculty of Medicine, 31096 Haifa, Haifa District, Israel
| | - Christine M Schofield
- Research and Development Unit, Royal Cornwall Hospitals Trust, Truro, Cornwall TR1 3LJ, UK
| | - Artur F Schumacher-Schuh
- Neurological Services, Clinical Hospital of Porto Alegre, 90035-903 Porto Alegre, Rio Grande do Sul, Brazil
| | - Burton Scott
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ángel Sesar
- Department of Neurology, University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Galicia, Spain
| | - Stuart J Shafer
- Vero Beach Neurology and Research Institute, Vero Beach, FL 32960, USA
| | - Ray Sheridan
- Geriatric Medicine, Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, Devon EX2 5DW, UK
| | - Monty Silverdale
- Division of Neurology, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, Greater Manchester M6 8HD, UK
| | - Rani Sophia
- Department of Geriatric Medicine, Yeovil Hospital, Yeovil, Somerset BA21 4AT, UK
| | - Mariana Spitz
- Neurology, Pedro Ernesto University Hospital, 20551-030 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pantelis Stathis
- Department of Neurology, Mediterraneo Hospital, 166 75 Glyfada-Athens, Attica, Greece
| | - Fabrizio Stocchi
- University and Institute for Research and Medical Care, IRCCS San Raffaele, 00166 Rome, Lazio, Italy
| | - Michele Tagliati
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK
| | - Yen F Tai
- Division of Medicine and Integrated Care, Charing Cross Hospital, Imperial College Healthcare Trust, London W6 8RF, UK
| | | | - Sven Thonke
- Department of Neurology, Klinikum Hanau, 63450 Hanau, Hesse, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital and Neurodegeneration Research, Protein Research Unit Ruhr (PURE), Ruhr University Bochum, 44791 Bochum, North Rhine-Westphalia, Germany
- Neurodegeneration Research, Protein Research Unit Ruhr (PURE), Ruhr University Bochum, 44791 Bochum, North Rhine-Westphalia, Germany
| | - Giulia Toschi
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Emilia-Romagna, Italy
| | - Vitor Tumas
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School of University of São Paulo, 14049-900 São Paulo, São Paulo, Brazil
| | - Peter Paul Urban
- Department of Neurology, Asklepios Klinik Barmbek, 22307 Hamburg, Hamburg, Germany
| | - Laura Vacca
- University and Institute for Research and Medical Care, IRCCS San Raffaele, 00166 Rome, Lazio, Italy
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Flanders, Belgium
- Department of Neurosciences, KU Leuven, 3000 Leuven, Flanders, Belgium
| | - Enza Maria Valente
- Neurogenetics Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Lombardy, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Emilia-Romagna, Italy
| | - Lydia Vela-Desojo
- Neurology Unit, Hospital Fundación Alcorcón, 28922 Madrid, Madrid, Spain
| | - Caroline Weill
- Neurogenetics Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - David Weise
- Department of Neurology, Asklepios Fachklinikum Stadtroda, 07646 Stadtroda, Thuringia, Germany
- Department of Neurology, University of Leipzig, 04103 Leipzig, Saxony, Germany
| | | | - Martin Wolz
- Department of Neurology, Elblandklinikum Meißen, 01662 Meißen, Saxony, Germany
| | - Gilad Yahalom
- Department of Neurology and the Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Jerusalem District, Israel
| | - Gul Yalcin-Cakmakli
- Department of Neurology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Ankara, Turkey
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Hamburg, Germany
| | - Yair Zlotnik
- Neurology Department, Soroka University Medical Center, 84101 Beer Sheva, Southern District, Israel
| | | | - Alexander Balck
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
- Department of Neurology, University of Lübeck, 23562 Lübeck, Schleswig-Holstein, Germany
| | - Henrike Hanssen
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
- Department of Neurology, University of Lübeck, 23562 Lübeck, Schleswig-Holstein, Germany
| | - Max Borsche
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
- Department of Neurology, University of Lübeck, 23562 Lübeck, Schleswig-Holstein, Germany
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
- Department of Neurology, University of Lübeck, 23562 Lübeck, Schleswig-Holstein, Germany
| | - Ilona Csoti
- Neurology Service, Hospital Universitari de Bellvitge, 08907 Barcelona, Catalonia, Spain
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
- Department of Neurology, University of Lübeck, 23562 Lübeck, Schleswig-Holstein, Germany
| | - Arndt Rolfs
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
- Department of Neurology, University of Rostock, 18057 Rostock, Mecklenburg-Vorpommern, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
| | - Peter Bauer
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
- Department of Internal Medicine, University of Rostock, 18057 Rostock, Mecklenburg-Vorpommern, Germany
| |
Collapse
|
4
|
Follett J, Guenther D, Xoi L, Amouri R, Ben Sassi S, Hentati F, Farrer MJ. Genetic Modifiers of LRRK2 Parkinson's Disease: A Replication Study in Arab-Berbers. Mov Disord 2024; 39:751-753. [PMID: 38291980 DOI: 10.1002/mds.29735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Affiliation(s)
- Jordan Follett
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Dylan Guenther
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Leyna Xoi
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Rim Amouri
- Mongi Ben Hamida National Institute of Neurology, La Rabta, Tunisia
| | - Samia Ben Sassi
- Mongi Ben Hamida National Institute of Neurology, La Rabta, Tunisia
| | - Faycel Hentati
- Mongi Ben Hamida National Institute of Neurology, La Rabta, Tunisia
| | - Matthew J Farrer
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Rizig M, Bandres-Ciga S, Makarious MB, Ojo OO, Crea PW, Abiodun OV, Levine KS, Abubakar SA, Achoru CO, Vitale D, Adeniji OA, Agabi OP, Koretsky MJ, Agulanna U, Hall DA, Akinyemi RO, Xie T, Ali MW, Shamim EA, Ani-Osheku I, Padmanaban M, Arigbodi OM, Standaert DG, Bello AH, Dean MN, Erameh CO, Elsayed I, Farombi TH, Okunoye O, Fawale MB, Billingsley KJ, Imarhiagbe FA, Jerez PA, Iwuozo EU, Baker B, Komolafe MA, Malik L, Nwani PO, Daida K, Nwazor EO, Miano-Burkhardt A, Nyandaiti YW, Fang ZH, Obiabo YO, Kluss JH, Odeniyi OA, Hernandez DG, Odiase FE, Tayebi N, Ojini FI, Sidranksy E, Onwuegbuzie GA, D'Souza AM, Osaigbovo GO, Berhe B, Osemwegie N, Reed X, Oshinaike OO, Leonard HL, Otubogun FM, Alvarado CX, Oyakhire SI, Ozomma SI, Samuel SC, Taiwo FT, Wahab KW, Zubair YA, Iwaki H, Kim JJ, Morris HR, Hardy J, Nalls MA, Heilbron K, Norcliffe-Kaufmann L, Blauwendraat C, Houlden H, Singleton A, Okubadejo NU. Identification of genetic risk loci and causal insights associated with Parkinson's disease in African and African admixed populations: a genome-wide association study. Lancet Neurol 2023; 22:1015-1025. [PMID: 37633302 PMCID: PMC10593199 DOI: 10.1016/s1474-4422(23)00283-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND An understanding of the genetic mechanisms underlying diseases in ancestrally diverse populations is an important step towards development of targeted treatments. Research in African and African admixed populations can enable mapping of complex traits, because of their genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. We aimed to do a comprehensive genome-wide assessment in African and African admixed individuals to better understand the genetic architecture of Parkinson's disease in these underserved populations. METHODS We performed a genome-wide association study (GWAS) in people of African and African admixed ancestry with and without Parkinson's disease. Individuals were included from several cohorts that were available as a part of the Global Parkinson's Genetics Program, the International Parkinson's Disease Genomics Consortium Africa, and 23andMe. A diagnosis of Parkinson's disease was confirmed clinically by a movement disorder specialist for every individual in each cohort, except for 23andMe, in which it was self-reported based on clinical diagnosis. We characterised ancestry-specific risk, differential haplotype structure and admixture, coding and structural genetic variation, and enzymatic activity. FINDINGS We included 197 918 individuals (1488 cases and 196 430 controls) in our genome-wide analysis. We identified a novel common risk factor for Parkinson's disease (overall meta-analysis odds ratio for risk of Parkinson's disease 1·58 [95% CI 1·37-1·80], p=2·397 × 10-14) and age at onset at the GBA1 locus, rs3115534-G (age at onset β=-2·00 [SE=0·57], p=0·0005, for African ancestry; and β=-4·15 [0·58], p=0·015, for African admixed ancestry), which was rare in non-African or non-African admixed populations. Downstream short-read and long-read whole-genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. The identified signal seems to be associated with decreased glucocerebrosidase activity. INTERPRETATION Our study identified a novel genetic risk factor in GBA1 in people of African ancestry, which has not been seen in European populations, and it could be a major mechanistic basis of Parkinson's disease in African populations. This population-specific variant exerts substantial risk on Parkinson's disease as compared with common variation identified through GWAS and it was found to be present in 39% of the cases assessed in this study. This finding highlights the importance of understanding ancestry-specific genetic risk in complex diseases, a particularly crucial point as the Parkinson's disease field moves towards targeted treatments in clinical trials. The distinctive genetics of African populations highlights the need for equitable inclusion of ancestrally diverse groups in future trials, which will be a valuable step towards gaining insights into novel genetic determinants underlying the causes of Parkinson's disease. This finding opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk of Parkinson's disease. FUNDING The Global Parkinson's Genetics Program, which is funded by the Aligning Science Across Parkinson's initiative, and The Michael J Fox Foundation for Parkinson's Research.
Collapse
Affiliation(s)
- Mie Rizig
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mary B Makarious
- UCL Movement Disorders Centre, University College London, London, UK; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Peter Wild Crea
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Kristin S Levine
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International, Washington, DC, USA
| | | | | | - Dan Vitale
- Data Tecnica International, Washington, DC, USA
| | | | - Osigwe Paul Agabi
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Mathew J Koretsky
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Uchechi Agulanna
- Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Rufus Olusola Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, IL, USA
| | | | - Ejaz A Shamim
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Kaiser Permanente Mid-Atlantic States, Largo, MD, USA; MidAtlantic Permanente Research Institute, Rockville, MD, USA
| | | | - Mahesh Padmanaban
- Department of Neurology, University of Chicago Medicine, Chicago, IL, USA
| | | | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Marissa N Dean
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Inas Elsayed
- Faculty of Pharmacy, University of Gezira, Wadmadani, Sudan
| | | | - Olaitan Okunoye
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | | - Kimberley J Billingsley
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Pilar Alvarez Jerez
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Breeana Baker
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Laksh Malik
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Paul Osemeke Nwani
- Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| | - Kensuke Daida
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Abigail Miano-Burkhardt
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases, Tuebingen, Germany
| | | | - Jillian H Kluss
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Nahid Tayebi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francis Ibe Ojini
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Ellen Sidranksy
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Andrea M D'Souza
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Bahafta Berhe
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Xylena Reed
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International, Washington, DC, USA
| | | | - Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International, Washington, DC, USA
| | | | | | | | | | - Kolawole Wasiu Wahab
- University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria; University of Ilorin, Ilorin, Kwara State, Nigeria
| | | | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International, Washington, DC, USA
| | - Jonggeol Jeffrey Kim
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Huw R Morris
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | | | | | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Andrew Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Njideka Ulunma Okubadejo
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria; Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria.
| |
Collapse
|
6
|
Lüth T, Gabbert C, Koch S, König IR, Caliebe A, Laabs BH, Hentati F, Sassi SB, Amouri R, Spielmann M, Klein C, Grünewald A, Farrer MJ, Trinh J. Interaction of Mitochondrial Polygenic Score and Lifestyle Factors in LRRK2 p.Gly2019Ser Parkinsonism. Mov Disord 2023; 38:1837-1849. [PMID: 37482924 DOI: 10.1002/mds.29563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND A mitochondrial polygenic score (MGS) is composed of genes related to mitochondrial function and found to be associated with Parkinson's disease (PD) risk. OBJECTIVE To investigate the impact of the MGS and lifestyle/environment on age at onset (AAO) in LRRK2 p.Gly2019Ser parkinsonism (LRRK2-PD) and idiopathic PD (iPD). METHODS We included N = 486 patients with LRRK2-PD and N = 9259 with iPD from the Accelerating Medicines Partnership® Parkinson's Disease Knowledge Platform (AMP-PD), Fox Insight, and a Tunisian Arab-Berber founder population. Genotyping data were used to perform the MGS analysis. Additionally, lifestyle/environmental data were obtained from the PD Risk Factor Questionnaire (PD-RFQ). Linear regression models were used to assess the relationship between MGS, lifestyle/environment, and AAO. RESULTS Our derived MGS was significantly higher in PD cases compared with controls (P = 1.1 × 10-8 ). We observed that higher MGS was significantly associated with earlier AAO in LRRK2-PD (P = 0.047, β = -1.40) and there was the same trend with a smaller effect size in iPD (P = 0.231, β = 0.22). There was a correlation between MGS and AAO in LRRK2-PD patients of European descent (P = 0.049, r = -0.12) that was visibly less pronounced in Tunisians (P = 0.449, r = -0.05). We found that the MGS interacted with caffeinated soda consumption (P = 0.003, β = -5.65) in LRRK2-PD and with tobacco use (P = 0.010, β = 1.32) in iPD. Thus, patients with a high MGS had an earlier AAO only if they consumed caffeinated soda or were non-smokers. CONCLUSIONS The MGS was more strongly associated with earlier AAO in LRRK2-PD compared with iPD. Caffeinated soda consumption or tobacco use interacted with MGS to predict AAO. Our study suggests gene-environment interactions as modifiers of AAO in LRRK2-PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Theresa Lüth
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Sebastian Koch
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Faycel Hentati
- Neurology Department, National Institute of Neurology, Tunis, Tunisia
| | - Samia Ben Sassi
- Neurology Department, National Institute of Neurology, Tunis, Tunisia
| | - Rim Amouri
- Neurology Department, National Institute of Neurology, Tunis, Tunisia
| | - Malte Spielmann
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Anne Grünewald
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Hui Y, Ma Q, Zhou XR, Wang H, Dong JH, Gao LN, Zhang T, Li YY, Gong T. Immunological characterization and diagnostic models of RNA N6-methyladenosine regulators in Alzheimer's disease. Sci Rep 2023; 13:14588. [PMID: 37666846 PMCID: PMC10477294 DOI: 10.1038/s41598-023-41129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, and it displays both clinical and molecular variability. RNA N6-methyladenosine (m6A) regulators are involved in a wide range of essential cellular processes. In this study, we aimed to identify molecular signatures associated with m6A in Alzheimer's disease and use those signatures to develop a predictive model. We examined the expression patterns of m6A regulators and immune features in Alzheimer's disease using the GSE33000 dataset. We examined the immune cell infiltration and molecular groups based on m6A-related genes in 310 Alzheimer's disease samples. The WGCNA algorithm was utilized to determine differently expressed genes within each cluster. After evaluating the strengths and weaknesses of the random forest model, the support vector machine model, the generalized linear model, and eXtreme Gradient Boosting, the best machine model was selected. Methods such as nomograms, calibration curves, judgment curve analysis, and the use of independent data sets were used to verify the accuracy of the predictions made. Alzheimer's disease and non-disease Alzheimer's groups were compared to identify dysregulated m6A-related genes and activated immune responses. In Alzheimer's disease, two molecular clusters linked to m6A were identified. Immune infiltration analysis indicated substantial variation in protection between groups. Cluster 1 included processes like the Toll-like receptor signaling cascade, positive regulation of chromatin binding, and numerous malignancies; cluster 2 included processes like the cell cycle, mRNA transport, and ubiquitin-mediated proteolysis. With a lower residual and root mean square error and a larger area under the curve (AUC = 0.951), the Random forest machine model showed the greatest discriminative performance. The resulting random forest model was based on five genes, and it performed well (AUC = 0.894) on external validation datasets. Accuracy in predicting Alzheimer's disease subgroups was also shown by analyses of nomograms, calibration curves, and decision curves. In this research, we methodically outlined the tangled web of connections between m6A and AD and created a promising prediction model for gauging the correlation between m6A subtype risk and AD pathology.
Collapse
Affiliation(s)
- Yuan Hui
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Qi Ma
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xue-Rui Zhou
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Huan Wang
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jian-Hua Dong
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Li-Na Gao
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tian Zhang
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yan-Yi Li
- Department of Encephalopathy II, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Ting Gong
- Department of Encephalopathy II, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China.
| |
Collapse
|
8
|
Aleknonytė-Resch M, Trinh J, Leonard H, Delcambre S, Leitão E, Lai D, Smajić S, Orr-Urtreger A, Thaler A, Blauwendraat C, Sharma A, Makarious MB, Kim JJ, Lake J, Rahmati P, Freitag-Wolf S, Seibler P, Foroud T, Singleton AB, Grünewald A, Kaiser F, Klein C, Krawczak M, Dempfle A. Genome-wide case-only analysis of gene-gene interactions with known Parkinson's disease risk variants reveals link between LRRK2 and SYT10. NPJ Parkinsons Dis 2023; 9:102. [PMID: 37386035 PMCID: PMC10310744 DOI: 10.1038/s41531-023-00550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
The effects of one genetic factor upon Parkinson's disease (PD) risk may be modified by other genetic factors. Such gene-gene interaction (G×G) could explain some of the 'missing heritability' of PD and the reduced penetrance of known PD risk variants. Using the largest single nucleotide polymorphism (SNP) genotype data set currently available for PD (18,688 patients), provided by the International Parkinson's Disease Genomics Consortium, we studied G×G with a case-only (CO) design. To this end, we paired each of 90 SNPs previously reported to be associated with PD with one of 7.8 million quality-controlled SNPs from a genome-wide panel. Support of any putative G×G interactions found was sought by the analysis of independent genotype-phenotype and experimental data. A total of 116 significant pairwise SNP genotype associations were identified in PD cases, pointing towards G×G. The most prominent associations involved a region on chromosome 12q containing SNP rs76904798, which is a non-coding variant of the LRRK2 gene. It yielded the lowest interaction p-value overall with SNP rs1007709 in the promoter region of the SYT10 gene (interaction OR = 1.80, 95% CI: 1.65-1.95, p = 2.7 × 10-43). SNPs around SYT10 were also associated with the age-at-onset of PD in an independent cohort of carriers of LRRK2 mutation p.G2019S. Moreover, SYT10 gene expression during neuronal development was found to differ between cells from affected and non-affected p.G2019S carriers. G×G interaction on PD risk, involving the LRRK2 and SYT10 gene regions, is biologically plausible owing to the known link between PD and LRRK2, its involvement in neural plasticity, and the contribution of SYT10 to the exocytosis of secretory vesicles in neurons.
Collapse
Affiliation(s)
- Milda Aleknonytė-Resch
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
- Department of Computer Science, Kiel University, Kiel, Germany
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany
| | - Hampton Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Glen Echo, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Sylvie Delcambre
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
| | - Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Semra Smajić
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
| | - Avi Orr-Urtreger
- Neurological Institute, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avner Thaler
- Neurological Institute, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Arunabh Sharma
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Jonggeol Jeff Kim
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Julie Lake
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Pegah Rahmati
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Anne Grünewald
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
| | - Frank Kaiser
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany.
| |
Collapse
|
9
|
Sosero YL, Gan‐Or Z. LRRK2 and Parkinson's disease: from genetics to targeted therapy. Ann Clin Transl Neurol 2023; 10:850-864. [PMID: 37021623 PMCID: PMC10270275 DOI: 10.1002/acn3.51776] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
LRRK2 variants are implicated in both familial and sporadic PD. LRRK2-PD has a generally benign clinical presentation and variable pathology, with inconsistent presence of Lewy bodies and marked Alzheimer's disease pathology. The mechanisms underlying LRRK2-PD are still unclear, but inflammation, vesicle trafficking, lysosomal homeostasis, and ciliogenesis have been suggested, among others. As novel therapies targeting LRRK2 are under development, understanding the role and function of LRRK2 in PD is becoming increasingly important. Here, we outline the epidemiological, pathophysiological, and clinical features of LRRK2-PD, and discuss the arising therapeutic approaches targeting LRRK2 and possible future directions for research.
Collapse
Affiliation(s)
- Yuri L. Sosero
- Montreal Neurological InstituteMcGill UniversityMontréalQuébecH3A 1A1Canada
- Department of Human GeneticsMcGill UniversityMontréalQuébecH3A 1A1Canada
| | - Ziv Gan‐Or
- Montreal Neurological InstituteMcGill UniversityMontréalQuébecH3A 1A1Canada
- Department of Human GeneticsMcGill UniversityMontréalQuébecH3A 1A1Canada
- Department of Neurology and NeurosurgeryMcGill UniversityMontréalQuébecH3A 0G4Canada
| |
Collapse
|
10
|
Mata I, Salles P, Cornejo-Olivas M, Saffie P, Ross OA, Reed X, Bandres-Ciga S. LRRK2: Genetic mechanisms vs genetic subtypes. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:133-154. [PMID: 36803807 DOI: 10.1016/b978-0-323-85555-6.00018-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In 2004, the identification of pathogenic variants in the LRRK2 gene across several families with autosomal dominant late-onset Parkinson's disease (PD) revolutionized our understanding of the role of genetics in PD. Previous beliefs that genetics in PD was limited to rare early-onset or familial forms of the disease were quickly dispelled. Currently, we recognize LRRK2 p.G2019S as the most common genetic cause of both sporadic and familial PD, with more than 100,000 affected carriers across the globe. The frequency of LRRK2 p.G2019S is also highly variable across populations, with some regions of Asian or Latin America reporting close to 0%, contrasting to Ashkenazi Jews or North African Berbers reporting up to 13% and 40%, respectively. Patients with LRRK2 pathogenic variants are clinically and pathologically heterogeneous, highlighting the age-related variable penetrance that also characterizes LRRK2-related disease. Indeed, the majority of patients with LRRK2-related disease are characterized by a relatively mild Parkinsonism with less motor symptoms with variable presence of α-synuclein and/or tau aggregates, with pathologic pleomorphism widely described. At a functional cellular level, it is likely that pathogenic variants mediate a toxic gain-of-function of the LRRK2 protein resulting in increased kinase activity perhaps in a cell-specific manner; by contrast, some LRRK2 variants appear to be protective reducing PD risk by decreasing the kinase activity. Therefore, employing this information to define appropriate patient populations for clinical trials of targeted kinase LRRK2 inhibition strategies is very promising and demonstrates a potential future application for PD using precision medicine.
Collapse
Affiliation(s)
- Ignacio Mata
- Genomic Medicine Institute (GMI), Cleveland Clinic, Cleveland, OH, United States.
| | - Philippe Salles
- Corporación Centro de Trastornos del Movimiento (CETRAM), Lo Espejo, Santiago, Chile
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | - Paula Saffie
- Corporación Centro de Trastornos del Movimiento (CETRAM), Lo Espejo, Santiago, Chile
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics and Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol 2022; 22:657-673. [PMID: 35246670 PMCID: PMC8895080 DOI: 10.1038/s41577-022-00684-6] [Citation(s) in RCA: 588] [Impact Index Per Article: 196.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 01/18/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disease that affects peripheral organs as well as the central nervous system and involves a fundamental role of neuroinflammation in its pathophysiology. Neurohistological and neuroimaging studies support the presence of ongoing and end-stage neuroinflammatory processes in PD. Moreover, numerous studies of peripheral blood and cerebrospinal fluid from patients with PD suggest alterations in markers of inflammation and immune cell populations that could initiate or exacerbate neuroinflammation and perpetuate the neurodegenerative process. A number of disease genes and risk factors have been identified as modulators of immune function in PD and evidence is mounting for a role of viral or bacterial exposure, pesticides and alterations in gut microbiota in disease pathogenesis. This has led to the hypothesis that complex gene-by-environment interactions combine with an ageing immune system to create the 'perfect storm' that enables the development and progression of PD. We discuss the evidence for this hypothesis and opportunities to harness the emerging immunological knowledge from patients with PD to create better preclinical models with the long-term goal of enabling earlier identification of at-risk individuals to prevent, delay and more effectively treat the disease.
Collapse
Affiliation(s)
- Malú Gámez Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA.
| | - Rebecca L Wallings
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
| | - Madelyn C Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Mary K Herrick
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
| | - Cody E Keating
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
| | - Valerie Joers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
12
|
Moreira-Júnior RE, Souza RM, de Carvalho JG, Bergamini JP, Brunialti-Godard AL. Possible association between the lrrk2 gene and anxiety behavior: a systematic literature review. J Neurogenet 2022; 36:98-107. [PMID: 36415932 DOI: 10.1080/01677063.2022.2144293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alterations to the LRRK2 gene have been associated with Parkinson's disease and alcohol consumption in animals and humans. Furthermore, these disorders are strongly related to anxiety disorders (ADs). Thus, we investigated how the LRRK2 gene might influence anxiety in humans and mice. We elaborated a systematic review based on the PRISMA Statement of studies that investigated levels of anxiety in animal or human models with alterations in the LRRK2 gene. The search was conducted in the PubMed, Scopus, and Web of Science databases, and in reference lists with descriptors related to ADs and the LRRK2. From the 62 articles assessed for eligibility, 16 were included: 11 conducted in humans and seven, in mice. Lrrk2 KO mice and the LRRK2 G2019S, LRRK2 R1441G, and LRRK2 R1441C variants were addressed. Five articles reported an increase in anxiety levels concerning the LRRK2 variants. Decreased anxiety levels were observed in two articles, one focusing on the LRRK2 G2019S and the other, on the Lrrk2 KO mice. Eight other articles reported no differences in anxiety levels in individuals with Lrrk2 alterations compared to their healthy controls. This study discusses a possible influence between the LRRK2 gene and anxiety, adding information to the existing knowledge respecting the influence of genetics on anxiety.
Collapse
Affiliation(s)
- R E Moreira-Júnior
- Department of Genetics, Ecology and Evolution, Laboratory of Animal and Human Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - R M Souza
- Department of Genetics, Ecology and Evolution, Laboratory of Animal and Human Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - J G de Carvalho
- Department of Genetics, Ecology and Evolution, Laboratory of Animal and Human Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - J P Bergamini
- Department of Genetics, Ecology and Evolution, Laboratory of Animal and Human Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - A L Brunialti-Godard
- Department of Genetics, Ecology and Evolution, Laboratory of Animal and Human Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Tang X, Gonzalez-Latapi P, Marras C, Visanji NP, Yang W, Sato C, Lang AE, Rogaeva E, Zhang M. Epigenetic Clock Acceleration Is Linked to Age at Onset of Parkinson's Disease. Mov Disord 2022; 37:1831-1840. [PMID: 35921480 DOI: 10.1002/mds.29157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Aging is the strongest risk factor for Parkinson's disease (PD), which is a clinically heterogeneous movement disorder with highly variable age at onset. DNA methylation age (DNAm age) is an epigenetic clock that could reflect biological aging. OBJECTIVES The aim was to evaluate whether PD age at onset is associated with DNAm-age acceleration (difference between DNAm age and chronological age). METHODS We used the genome-wide Infinium MethylationEPIC array to assess DNAm age in discovery (n = 96) and replication (n = 182) idiopathic PD cohorts and a unique longitudinal LRRK2 cohort (n = 220) at four time points over a 3-year period, comprising 91 manifesting and 129 nonmanifesting G2019S carriers at baseline. Cox proportional hazard regression and multivariate linear regression were used to evaluate the relation between DNAm-age acceleration and PD age at onset, which was highly variable in manifesting G2019S carriers (36-75 years) and both idiopathic PD cohorts (26-77 and 35-81 years). RESULTS DNAm-age acceleration remained steady over the 3-year period in most G2019S carriers. It was strongly associated with age at onset in the LRRK2 cohort (P = 2.25 × 10-15 ) and discovery idiopathic PD cohort (P = 5.39 × 10-9 ), suggesting that every 5-year increase in DNAm-age acceleration is related to about a 6-year earlier onset. This link was replicated in an independent idiopathic PD cohort (P = 1.91 × 10-10 ). In each cohort, the faster-aging group has an increased hazard for an earlier onset (up to 255%). CONCLUSIONS This study is the first to demonstrate that DNAm-age acceleration is related to PD age at onset, which could be considered in disease-modifying clinical trials. Future studies should evaluate the stability of DNAm-age acceleration over longer time periods, especially for phenoconverters from nonmanifesting to manifesting individuals. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xuelin Tang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China
| | - Paulina Gonzalez-Latapi
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Naomi P Visanji
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Wanli Yang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Ekaterina Rogaeva
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Ming Zhang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China.,Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China.,Institute for Advanced Study, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Nishioka K, Imai Y, Yoshino H, Li Y, Funayama M, Hattori N. Clinical Manifestations and Molecular Backgrounds of Parkinson's Disease Regarding Genes Identified From Familial and Population Studies. Front Neurol 2022; 13:764917. [PMID: 35720097 PMCID: PMC9201061 DOI: 10.3389/fneur.2022.764917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past 20 years, numerous robust analyses have identified over 20 genes related to familial Parkinson's disease (PD), thereby uncovering its molecular underpinnings and giving rise to more sophisticated approaches to investigate its pathogenesis. α-Synuclein is a major component of Lewy bodies (LBs) and behaves in a prion-like manner. The discovery of α-Synuclein enables an in-depth understanding of the pathology behind the generation of LBs and dopaminergic neuronal loss. Understanding the pathophysiological roles of genes identified from PD families is uncovering the molecular mechanisms, such as defects in dopamine biosynthesis and metabolism, excessive oxidative stress, dysfunction of mitochondrial maintenance, and abnormalities in the autophagy–lysosome pathway, involved in PD pathogenesis. This review summarizes the current knowledge on familial PD genes detected by both single-gene analyses obeying the Mendelian inheritance and meta-analyses of genome-wide association studies (GWAS) from genome libraries of PD. Studying the functional role of these genes might potentially elucidate the pathological mechanisms underlying familial PD and sporadic PD and stimulate future investigations to decipher the common pathways between the diseases.
Collapse
Affiliation(s)
- Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- *Correspondence: Kenya Nishioka
| | - Yuzuru Imai
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Yuzuru Imai
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
15
|
Hereditary spastic paraplegia type 56: what a mouse can tell – a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Trinh J, Schymanski EL, Smajic S, Kasten M, Sammler E, Grünewald A. Molecular mechanisms defining penetrance of LRRK2-associated Parkinson's disease. MED GENET-BERLIN 2022; 34:103-116. [PMID: 38835904 PMCID: PMC11006382 DOI: 10.1515/medgen-2022-2127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of dominantly inherited Parkinson's disease (PD). LRRK2 mutations, among which p.G2019S is the most frequent, are inherited with reduced penetrance. Interestingly, the disease risk associated with LRRK2 G2019S can vary dramatically depending on the ethnic background of the carrier. While this would suggest a genetic component in the definition of LRRK2-PD penetrance, only few variants have been shown to modify the age at onset of patients harbouring LRRK2 mutations, and the exact cellular pathways controlling the transition from a healthy to a diseased state currently remain elusive. In light of this knowledge gap, recent studies also explored environmental and lifestyle factors as potential modifiers of LRRK2-PD. In this article, we (i) describe the clinical characteristics of LRRK2 mutation carriers, (ii) review known genes linked to LRRK2-PD onset and (iii) summarize the cellular functions of LRRK2 with particular emphasis on potential penetrance-related molecular mechanisms. This section covers LRRK2's involvement in Rab GTPase and immune signalling as well as in the regulation of mitochondrial homeostasis and dynamics. Additionally, we explored the literature with regard to (iv) lifestyle and (v) environmental factors that may influence the penetrance of LRRK2 mutations, with a view towards further exposomics studies. Finally, based on this comprehensive overview, we propose potential future in vivo, in vitro and in silico studies that could provide a better understanding of the processes triggering PD in individuals with LRRK2 mutations.
Collapse
Affiliation(s)
- Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Semra Smajic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Esther Sammler
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Department of Neurology, School of Medicine, Dundee, Ninewells Hospital, Dundee, UK
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
17
|
Seibler P, Rakovic A. Patient-derived cells - an irreplaceable tool for research of reduced penetrance in movement disorders. MED GENET-BERLIN 2022; 34:125-130. [PMID: 38835901 PMCID: PMC11006347 DOI: 10.1515/medgen-2022-2133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Movement disorders comprise a clinically, pathologically, and genetically heterogeneous group of diseases associated with the phenomenon of reduced penetrance. Penetrance refers to the likelihood that a clinical condition will occur when a particular genotype is present. Elucidating the cause of reduced penetrance may contribute to more personalized medicine by identifying genetic factors that may prevent individuals from developing disease. Therefore, patient material becomes an irreplaceable resource in this approach. It is needed to identify genetic modifiers of the disease in the first place and to subsequently elucidate underlying mechanisms in endogenous human cell models that provide the entire genetic background.
Collapse
Affiliation(s)
- Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
18
|
Fernández-Santiago R, Sharma M. What have we learned from genome-wide association studies (GWAS) in Parkinson's disease? Ageing Res Rev 2022; 79:101648. [PMID: 35595184 DOI: 10.1016/j.arr.2022.101648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/01/2022]
Abstract
After fifteen years of genome-wide association studies (GWAS) in Parkinson's disease (PD), what have we learned? Addressing this question will help catalogue the progress made towards elucidating disease mechanisms, improving the clinical utility of the identified loci, and envisioning how we can harness the strides to develop translational GWAS strategies. Here we review the advances of PD GWAS made to date while critically addressing the challenges and opportunities for next-generation GWAS. Thus, deciphering the missing heritability in underrepresented populations is currently at the reach of hand for a truly comprehensive understanding of the genetics of PD across the different ethnicities. Moreover, state-of-the-art GWAS designs hold a true potential for enhancing the clinical applicability of genetic findings, for instance, by improving disease prediction (PD risk and progression). Lastly, advanced PD GWAS findings, alone or in combination with clinical and environmental parameters, are expected to have the capacity for defining patient enriched cohorts stratified by genetic risk profiles and readily available for neuroprotective clinical trials. Overall, envisioning future strategies for advanced GWAS is currently timely and can be instrumental in providing novel genetic readouts essential for a true clinical translatability of PD genetic findings.
Collapse
|
19
|
Kumar S, Behl T, Sehgal A, Chigurupati S, Singh S, Mani V, Aldubayan M, Alhowail A, Kaur S, Bhatia S, Al-Harrasi A, Subramaniyan V, Fuloria S, Fuloria NK, Sekar M, Abdel Daim MM. Exploring the focal role of LRRK2 kinase in Parkinson's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32368-32382. [PMID: 35147886 DOI: 10.1007/s11356-022-19082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The major breakthroughs in our knowledge of how biology plays a role in Parkinson's disease (PD) have opened up fresh avenues designed to know the pathogenesis of disease and identify possible therapeutic targets. Mitochondrial abnormal functioning is a key cellular feature in the pathogenesis of PD. An enzyme, leucine-rich repeat kinase 2 (LRRK2), involved in both the idiopathic and familial PD risk, is a therapeutic target. LRRK2 has a link to the endolysosomal activity. Enhanced activity of the LRRK2 kinase, endolysosomal abnormalities and aggregation of autophagic vesicles with imperfectly depleted substrates, such as α-synuclein, are all seen in the substantia nigra dopaminergic neurons in PD. Despite the fact that LRRK2 is involved in endolysosomal and autophagic activity, it is undefined if inhibiting LRRK2 kinase activity will prevent endolysosomal dysfunction or minimise the degeneration of dopaminergic neurons. The inhibitor's capability of LRRK2 kinase to inhibit endolysosomal and neuropathological alterations in human PD indicates that LRRK2 inhibitors could have significant therapeutic usefulness in PD. G2019S is perhaps the maximum common mutation in PD subjects. Even though LRRK2's well-defined structure has still not been established, numerous LRRK2 inhibitors have been discovered. This review summarises the role of LRRK2 kinase in Parkinson's disease.
Collapse
Affiliation(s)
- Sachin Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Ahmed Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Satvinder Kaur
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy and Centre of Excellence for Biomaterials Engineering, AIMST University, Bedon, Kedah, Malaysia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy and Centre of Excellence for Biomaterials Engineering, AIMST University, Bedon, Kedah, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistrty, Faculty of Pharmacy and Health Science, Universiti Kuala Lumpur, Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | - Mohamed M Abdel Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
20
|
Senkevich K, Rudakou U, Gan-Or Z. New therapeutic approaches to Parkinson's disease targeting GBA, LRRK2 and Parkin. Neuropharmacology 2021; 202:108822. [PMID: 34626666 DOI: 10.1016/j.neuropharm.2021.108822] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/23/2023]
Abstract
Parkinson's disease (PD) is defined as a complex disorder with multifactorial pathogenesis, yet a more accurate definition could be that PD is not a single entity, but rather a mixture of different diseases with similar phenotypes. Attempts to classify subtypes of PD have been made based on clinical phenotypes or biomarkers. However, the most practical approach, at least for a portion of the patients, could be to classify patients based on genes involved in PD. GBA and LRRK2 mutations are the most common genetic causes or risk factors of PD, and PRKN is the most common cause of autosomal recessive form of PD. Patients carrying variants in GBA, LRRK2 or PRKN differ in some of their clinical characteristics, pathology and biochemical parameters. Thus, these three PD-associated genes are of special interest for drug development. Existing therapeutic approaches in PD are strictly symptomatic, as numerous clinical trials aimed at modifying PD progression or providing neuroprotection have failed over the last few decades. The lack of precision medicine approach in most of these trials could be one of the reasons why they were not successful. In the current review we discuss novel therapeutic approaches targeting GBA, LRRK2 and PRKN and discuss different aspects related to these genes and clinical trials.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada; First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Uladzislau Rudakou
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
21
|
Lai D, Alipanahi B, Fontanillas P, Schwantes-An TH, Aasly J, Alcalay RN, Beecham GW, Berg D, Bressman S, Brice A, Brockman K, Clark L, Cookson M, Das S, Van Deerlin V, Follett J, Farrer MJ, Trinh J, Gasser T, Goldwurm S, Gustavsson E, Klein C, Lang AE, Langston JW, Latourelle J, Lynch T, Marder K, Marras C, Martin ER, McLean CY, Mejia-Santana H, Molho E, Myers RH, Nuytemans K, Ozelius L, Payami H, Raymond D, Rogaeva E, Rogers MP, Ross OA, Samii A, Saunders-Pullman R, Schüle B, Schulte C, Scott WK, Tanner C, Tolosa E, Tomkins JE, Vilas D, Trojanowski JQ, Uitti R, Vance JM, Visanji NP, Wszolek ZK, Zabetian CP, Mirelman A, Giladi N, Orr Urtreger A, Cannon P, Fiske B, Foroud T. Genomewide Association Studies of LRRK2 Modifiers of Parkinson's Disease. Ann Neurol 2021; 90:76-88. [PMID: 33938021 PMCID: PMC8252519 DOI: 10.1002/ana.26094] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/03/2023]
Abstract
Objective The aim of this study was to search for genes/variants that modify the effect of LRRK2 mutations in terms of penetrance and age‐at‐onset of Parkinson's disease. Methods We performed the first genomewide association study of penetrance and age‐at‐onset of Parkinson's disease in LRRK2 mutation carriers (776 cases and 1,103 non‐cases at their last evaluation). Cox proportional hazard models and linear mixed models were used to identify modifiers of penetrance and age‐at‐onset of LRRK2 mutations, respectively. We also investigated whether a polygenic risk score derived from a published genomewide association study of Parkinson's disease was able to explain variability in penetrance and age‐at‐onset in LRRK2 mutation carriers. Results A variant located in the intronic region of CORO1C on chromosome 12 (rs77395454; p value = 2.5E‐08, beta = 1.27, SE = 0.23, risk allele: C) met genomewide significance for the penetrance model. Co‐immunoprecipitation analyses of LRRK2 and CORO1C supported an interaction between these 2 proteins. A region on chromosome 3, within a previously reported linkage peak for Parkinson's disease susceptibility, showed suggestive associations in both models (penetrance top variant: p value = 1.1E‐07; age‐at‐onset top variant: p value = 9.3E‐07). A polygenic risk score derived from publicly available Parkinson's disease summary statistics was a significant predictor of penetrance, but not of age‐at‐onset. Interpretation This study suggests that variants within or near CORO1C may modify the penetrance of LRRK2 mutations. In addition, common Parkinson's disease associated variants collectively increase the penetrance of LRRK2 mutations. ANN NEUROL 2021;90:82–94
Collapse
Affiliation(s)
- Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | | | | | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Jan Aasly
- Department of Neurology, St. Olavs Hospital, Trondheim, Norway
| | - Roy N Alcalay
- Department of Neurology, Columbia University, New York, NY
| | - Gary W Beecham
- John P. Hussman Institute for Human Genomics and Dr. John T. Macdonald Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany.,Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Susan Bressman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM), AP-HP, Inserm, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Kathrin Brockman
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Lorraine Clark
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Mark Cookson
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD
| | | | - Vivianna Van Deerlin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jordan Follett
- Laboratory of Neurogenetics and Neuroscience, Fixel Institute for Neurological Diseases, McKnight Brain Institute, L5-101D, UF Clinical and Translational Science Institute, University of Florida, Gainesville, FL
| | - Matthew J Farrer
- Laboratory of Neurogenetics and Neuroscience, Fixel Institute for Neurological Diseases, McKnight Brain Institute, L5-101D, UF Clinical and Translational Science Institute, University of Florida, Gainesville, FL
| | - Joanne Trinh
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Emil Gustavsson
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, Canada
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Canada
| | - J William Langston
- Departments of Neurology, Neuroscience, and Pathology, Stanford University School of Medicine, Stanford, CA
| | | | - Timothy Lynch
- Dublin Neurological Institute at the Mater Misericordiae University Hospital, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Karen Marder
- Department of Neurology and Psychiatry, Taub Institute and Sergievsky Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Canada
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics and Dr. John T. Macdonald Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL
| | - Cory Y McLean
- 23andMe, Inc., Sunnyvale, CA.,Google LLC, Cambridge, MA
| | | | - Eric Molho
- Department of Neurology, Albany Medical College, Albany, NY
| | | | - Karen Nuytemans
- John P. Hussman Institute for Human Genomics and Dr. John T. Macdonald Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL
| | - Laurie Ozelius
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Haydeh Payami
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Deborah Raymond
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Neurology, University of Toronto, Toronto, Canada
| | - Michael P Rogers
- Department of General Surgery, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Owen A Ross
- Departments of Neuroscience and Clinical Genomics, Mayo Clinic, Jacksonville, FL.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Ali Samii
- VA Puget Sound Health Care System and Department of Neurology, University of Washington, Seattle, WA
| | | | - Birgitt Schüle
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Claudia Schulte
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - William K Scott
- John P. Hussman Institute for Human Genomics and Dr. John T. Macdonald Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL
| | - Caroline Tanner
- University of California, San Francisco Veterans Affairs Health Care System, San Francisco, CA
| | - Eduardo Tolosa
- Parkinson Disease and Movement Disorders Unit, Hospital Clínic Universitari, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Dolores Vilas
- Parkinson Disease and Movement Disorders Unit, Hospital Clínic Universitari, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | -
- 23andMe, Inc., Sunnyvale, CA
| | - Ryan Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics and Dr. John T. Macdonald Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL
| | - Naomi P Visanji
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Canada
| | | | - Cyrus P Zabetian
- VA Puget Sound Health Care System and Department of Neurology, University of Washington, Seattle, WA
| | - Anat Mirelman
- Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avi Orr Urtreger
- Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Brian Fiske
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
22
|
Chittoor-Vinod VG, Nichols RJ, Schüle B. Genetic and Environmental Factors Influence the Pleomorphy of LRRK2 Parkinsonism. Int J Mol Sci 2021; 22:1045. [PMID: 33494262 PMCID: PMC7864502 DOI: 10.3390/ijms22031045] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/25/2022] Open
Abstract
Missense mutations in the LRRK2 gene were first identified as a pathogenic cause of Parkinson's disease (PD) in 2004. Soon thereafter, a founder mutation in LRRK2, p.G2019S (rs34637584), was described, and it is now estimated that there are approximately 100,000 people worldwide carrying this risk variant. While the clinical presentation of LRRK2 parkinsonism has been largely indistinguishable from sporadic PD, disease penetrance and age at onset can be quite variable. In addition, its neuropathological features span a wide range from nigrostriatal loss with Lewy body pathology, lack thereof, or atypical neuropathology, including a large proportion of cases with concomitant Alzheimer's pathology, hailing LRRK2 parkinsonism as the "Rosetta stone" of parkinsonian disorders, which provides clues to an understanding of the different neuropathological trajectories. These differences may result from interactions between the LRRK2 mutant protein and other proteins or environmental factors that modify LRRK2 function and, thereby, influence pathobiology. This review explores how potential genetic and biochemical modifiers of LRRK2 function may contribute to the onset and clinical presentation of LRRK2 parkinsonism. We review which genetic modifiers of LRRK2 influence clinical symptoms, age at onset, and penetrance, what LRRK2 mutations are associated with pleomorphic LRRK2 neuropathology, and which environmental modifiers can augment LRRK2 mutant pathophysiology. Understanding how LRRK2 function is influenced and modulated by other interactors and environmental factors-either increasing toxicity or providing resilience-will inform targeted therapeutic development in the years to come. This will allow the development of disease-modifying therapies for PD- and LRRK2-related neurodegeneration.
Collapse
Affiliation(s)
| | - R. Jeremy Nichols
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Birgitt Schüle
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| |
Collapse
|
23
|
Brown EE, Blauwendraat C, Trinh J, Rizig M, Nalls MA, Leveille E, Ruskey JA, Jonvik H, Tan MMX, Bandres-Ciga S, Hassin-Baer S, Brockmann K, Infante J, Tolosa E, Ezquerra M, Ben Romdhan S, Benmahdjoub M, Arezki M, Mhiri C, Hardy J, Singleton AB, Alcalay RN, Gasser T, Grosset DG, Williams NM, Pittman A, Gan-Or Z, Fernandez-Santiago R, Brice A, Lesage S, Farrer M, Wood N, Morris HR. Analysis of DNM3 and VAMP4 as genetic modifiers of LRRK2 Parkinson's disease. Neurobiol Aging 2021; 97:148.e17-148.e24. [PMID: 32873436 PMCID: PMC7762821 DOI: 10.1016/j.neurobiolaging.2020.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 01/01/2023]
Abstract
The LRRK2 gene has rare (p.G2019S) and common risk variants for Parkinson's disease (PD). DNM3 has previously been reported as a genetic modifier of the age at onset in PD patients carrying the LRRK2 p.G2019S mutation. We analyzed this effect in a new cohort of LRRK2 p.G2019S heterozygotes (n = 724) and meta-analyzed our data with previously published data (n = 754). VAMP4 is in close proximity to DNM3, and was associated with PD in a recent study, so it is possible that variants in this gene may be important. We also analyzed the effect of VAMP4 rs11578699 on LRRK2 penetrance. Our analysis of DNM3 in previously unpublished data does not show an effect on age at onset in LRRK2 p.G2019S carriers; however, the inter-study heterogeneity may indicate ethnic or population-specific effects of DNM3. There was no evidence for linkage disequilibrium between DNM3 and VAMP4. Analysis of sporadic patients stratified by the risk variant LRRK2 rs10878226 indicates a possible interaction between common variation in LRRK2 and VAMP4 in disease risk.
Collapse
Affiliation(s)
- Emmeline E Brown
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Mie Rizig
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International, Glen Echo, MD, USA
| | - Etienne Leveille
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Hallgeir Jonvik
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - Manuela M X Tan
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Sheba Medical Center, Tel HaShomer, Israel; Movement Disorders Institute, Sheba Medical Center, Tel HaShomer, Israel
| | - Kathrin Brockmann
- Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University Clinic Tu¨bingen, Tu¨bingen, Germany
| | - Jon Infante
- Service of Neurology, University Hospital "Marqués de Valdecilla (IDIVAL)", University of Cantabria; "Centro de Investigación Biomédica en Red de Enfermedades, Neurodegenerativas (CIBERNED)", Santander, Spain
| | - Eduardo Tolosa
- Laboratory of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | - Mario Ezquerra
- Laboratory of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | - Sawssan Ben Romdhan
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | | | | | - Chokri Mhiri
- Frantz Fanon Hospital, CHU Blida, Blida, Algeria
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK; UCL Movement Disorders Centre, University College London, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Thomas Gasser
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tu¨bingen, Tu¨bingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tu¨bingen, Germany
| | - Donald G Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK; Institute of Neuroscience & Psychology, University of Glasgow, Glasgow, UK
| | - Nigel M Williams
- Division of Psychological Medicine & Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Alan Pittman
- Department of Clinical Genetics, St George's, University of London, London, UK
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Ruben Fernandez-Santiago
- Laboratory of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | - Alexis Brice
- Research Unit U1127 at INSERM, Research Unit UMR 7225 at the French National Centre for Scientific Research (CNRS) Research Unit UMR_1127 at Sorbonne Université, Institutet du Cerveau et de la Moëlle épinière (ICM), Paris, France
| | - Suzanne Lesage
- Research Unit U1127 at INSERM, Research Unit UMR 7225 at the French National Centre for Scientific Research (CNRS) Research Unit UMR_1127 at Sorbonne Université, Institutet du Cerveau et de la Moëlle épinière (ICM), Paris, France
| | - Matthew Farrer
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas Wood
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
24
|
Skrahina V, Gaber H, Vollstedt EJ, Förster TM, Usnich T, Curado F, Brüggemann N, Paul J, Bogdanovic X, Zülbahar S, Olmedillas M, Skobalj S, Ameziane N, Bauer P, Csoti I, Koleva-Alazeh N, Grittner U, Westenberger A, Kasten M, Beetz C, Klein C, Rolfs A. The Rostock International Parkinson's Disease (ROPAD) Study: Protocol and Initial Findings. Mov Disord 2020; 36:1005-1010. [PMID: 33314351 PMCID: PMC8246975 DOI: 10.1002/mds.28416] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
Background Genetic stratification of Parkinson's disease (PD) patients facilitates gene‐tailored research studies and clinical trials. The objective of this study was to describe the design of and the initial data from the Rostock International Parkinson's Disease (ROPAD) study, an epidemiological observational study aiming to genetically characterize ~10,000 participants. Methods Recruitment criteria included (1) clinical diagnosis of PD, (2) relative of participant with a reportable LRRK2 variant, or (3) North African Berber or Ashkenazi Jew. DNA analysis involved up to 3 successive steps: (1) variant (LRRK2) and gene (GBA) screening, (2) panel sequencing of 68 PD‐linked genes, and (3) genome sequencing. Results Initial data based on the first 1360 participants indicated that the ROPAD enrollment strategy revealed a genetic diagnostic yield of ~14% among a PD cohort from tertiary referral centers. Conclusions The ROPAD screening protocol is feasible for high‐throughput genetic characterization of PD participants and subsequent prioritization for gene‐focused research efforts and clinical trials. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | | | | | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | | | | - Ilona Csoti
- Parkinson-Center, Gertrudisklinik Biskirchen, Leun, Germany
| | | | | | | | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | | |
Collapse
|
25
|
Lüth T, König IR, Grünewald A, Kasten M, Klein C, Hentati F, Farrer M, Trinh J. Age at Onset of LRRK2 p.Gly2019Ser Is Related to Environmental and Lifestyle Factors. Mov Disord 2020; 35:1854-1858. [PMID: 32875616 DOI: 10.1002/mds.28238] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The effect of environmental and lifestyle factors on patients with LRRK2 (leucine-rich repeat kinase 2) p.Gly2019Ser (LRRK2+ /PD+ ) compared to idiopathic PD (iPD) has yet to be thoroughly investigated. METHODS In a homogeneous Tunisian Arab Berber population, we recruited 200 idiopathic PD and 199 LRRK2 p.Gly2019Ser mutation carriers, of whom 142 had PD (LRRK2+ /PD+ ) and 57 were unaffected (LRRK2+ /PD- ). Case report form (CRF) questionnaires (motor and non-motor symptoms) including the Geoparkinson Questionnaire were used to assess environmental and lifestyle factors. RESULTS In LRRK2+ /PD+ , tobacco use was significantly associated with a later median age at onset (AAO). The median AAO was 60 years (interquartile range = 52-67.25) for tobacco users, compared to 52 years (interquartile range = 45.25-61) for non-users (P = 0.0042 at adjusted α = 0.025). Additionally, we observed an independent but additive effect of black tea consumption and tobacco use. CONCLUSIONS Our data suggest that tobacco and black tea have a protective effect on age at onset in LRRK2+ /PD+ . © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Theresa Lüth
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Anne Grünewald
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Faycel Hentati
- Service de Neurologie, Institut National de Neurologie, La Rabta, Tunis, Tunisia
| | - Matthew Farrer
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
26
|
Delcambre S, Ghelfi J, Ouzren N, Grandmougin L, Delbrouck C, Seibler P, Wasner K, Aasly JO, Klein C, Trinh J, Pereira SL, Grünewald A. Mitochondrial Mechanisms of LRRK2 G2019S Penetrance. Front Neurol 2020; 11:881. [PMID: 32982917 PMCID: PMC7477385 DOI: 10.3389/fneur.2020.00881] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022] Open
Abstract
Several mutations in leucine-rich repeat kinase-2 (LRRK2) have been associated with Parkinson's disease (PD). The most common substitution, G2019S, interferes with LRRK2 kinase activity, which is regulated by autophosphorylation. Yet, the penetrance of this gain-of-function mutation is incomplete, and thus far, few factors have been correlated with disease status in carriers. This includes (i) LRRK2 autophosphorylation in urinary exosomes, (ii) serum levels of the antioxidant urate, and (iii) abundance of mitochondrial DNA (mtDNA) transcription-associated 7S DNA. In light of a mechanistic link between LRRK2 kinase activity and mtDNA lesion formation, we previously investigated mtDNA integrity in fibroblasts from manifesting (LRRK2+/PD+) and non-manifesting carriers (LRRK2+/PD−) of the G2019S mutation as well as from aged-matched controls. In our published study, mtDNA major arc deletions correlated with PD status, with manifesting carriers presenting the highest levels. In keeping with these findings, we now further explored mitochondrial features in fibroblasts derived from LRRK2+/PD+ (n = 10), LRRK2+/PD− (n = 21), and control (n = 10) individuals. In agreement with an accumulation of mtDNA major arc deletions, we also detected reduced NADH dehydrogenase activity in the LRRK2+/PD+ group. Moreover, in affected G2019S carriers, we observed elevated mitochondrial mass and mtDNA copy numbers as well as increased expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates antioxidant signaling. Taken together, these results implicate mtDNA dyshomeostasis—possibly as a consequence of impaired mitophagy—in the penetrance of LRRK2-associated PD. Our findings are a step forward in the pursuit of unveiling markers that will allow monitoring of disease progression of LRRK2 mutation carriers.
Collapse
Affiliation(s)
- Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nassima Ouzren
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Léa Grandmougin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catherine Delbrouck
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Kobi Wasner
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jan O Aasly
- Department of Neuromedicine and Movement Science, Department of Neurology, St. Olav's Hospital, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Joanne Trinh
- Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Sandro L Pereira
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
27
|
Shutinoski B, Hakimi M, Harmsen IE, Lunn M, Rocha J, Lengacher N, Zhou YY, Khan J, Nguyen A, Hake-Volling Q, El-Kodsi D, Li J, Alikashani A, Beauchamp C, Majithia J, Coombs K, Shimshek D, Marcogliese PC, Park DS, Rioux JD, Philpott DJ, Woulfe JM, Hayley S, Sad S, Tomlinson JJ, Brown EG, Schlossmacher MG. Lrrk2 alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Sci Transl Med 2020; 11:11/511/eaas9292. [PMID: 31554740 DOI: 10.1126/scitranslmed.aas9292] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 12/27/2018] [Accepted: 05/11/2019] [Indexed: 12/20/2022]
Abstract
Variants in the leucine-rich repeat kinase-2 (LRRK2) gene are associated with Parkinson's disease, leprosy, and Crohn's disease, three disorders with inflammation as an important component. Because of its high expression in granulocytes and CD68-positive cells, LRRK2 may have a function in innate immunity. We tested this hypothesis in two ways. First, adult mice were intravenously inoculated with Salmonella typhimurium, resulting in sepsis. Second, newborn mouse pups were intranasally infected with reovirus (serotype 3 Dearing), which induced encephalitis. In both mouse models, wild-type Lrrk2 expression was protective and showed a sex effect, with female Lrrk2-deficient animals not controlling infection as well as males. Mice expressing Lrrk2 carrying the Parkinson's disease-linked p.G2019S mutation controlled infection better, with reduced bacterial growth and longer animal survival during sepsis. This gain-of-function effect conferred by the p.G2019S mutation was mediated by myeloid cells and was abolished in animals expressing a kinase-dead Lrrk2 variant, p.D1994S. Mouse pups with reovirus-induced encephalitis that expressed the p.G2019S Lrrk2 mutation showed increased mortality despite lower viral titers. The p.G2019S mutant Lrrk2 augmented immune cell chemotaxis and generated more reactive oxygen species during virulent infection. Reovirus-infected brains from mice expressing the p.G2019S mutant Lrrk2 contained higher concentrations of α-synuclein. Animals expressing one or two p.D1994S Lrrk2 alleles showed lower mortality from reovirus-induced encephalitis. Thus, Lrrk2 alleles may alter the course of microbial infections by modulating inflammation, and this may be dependent on the sex and genotype of the host as well as the type of pathogen.
Collapse
Affiliation(s)
- Bojan Shutinoski
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Mansoureh Hakimi
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Irene E Harmsen
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Michaela Lunn
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Juliana Rocha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nathalie Lengacher
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Yi Yuan Zhou
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Jasmine Khan
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Angela Nguyen
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Quinton Hake-Volling
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Daniel El-Kodsi
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Juan Li
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Azadeh Alikashani
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claudine Beauchamp
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jay Majithia
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kevin Coombs
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Derya Shimshek
- Novartis Institutes of BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Paul C Marcogliese
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - David S Park
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - John D Rioux
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - John M Woulfe
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Julianna J Tomlinson
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Earl G Brown
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Michael G Schlossmacher
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
28
|
Sadhukhan D, Biswas A, Bhaduri A, Sarkar N, Biswas A, Das SK, Banerjee TK, Ray K, Ray J. Role of LRRK2 variant p.Gly2019Ser in patients with Parkinsonism. Indian J Med Res 2020; 151:592-597. [PMID: 32719233 PMCID: PMC7602925 DOI: 10.4103/ijmr.ijmr_25_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background & objectives: Parkinsonian disorder, including Parkinson's disease (PD), is an aetiologically complex neurodegenerative disorder. Mutations in leucine-rich repeat kinase 2 (LRRK2) gene have been implicated in an autosomal dominant form of PD with variable penetrance. The identification of a common LRRK2 variant (p.Gly2019Ser) in dementia with Lewy bodies indicated its potential role in Parkinsonian disorder. The current study was aimed to identify the p.Gly2019Ser variant in Indian patients with Parkinsonian disorder. Methods: The patient group consisting of 412 classical PD patients, 107 PD patients with cognitive impairment, 107 patients with Parkinson plus syndrome and 200 unrelated controls were recruited from eastern part of India. The allele representing p.Gly2019Ser variant was screened by polymerase chain reaction followed by restriction fragment length polymorphism analysis. Results: The p.Gly2019Ser variant was identified in an East Indian young-onset female PD patient in a heterozygous state having several motor and autonomic problems without disturbed cognition. Her younger brother, sister and elder son harbouring the same mutation were asymptomatic carriers for the variant. However, the influence of DNM3 on decreased disease onset in this family was not clear. Interpretation & conclusions: Identification of the p.Gly2019Ser variant in only one patient among a large number of Indian patients (n=626) with Parkinsonian disorder in our study suggests a limited role of the LRRK2 variant towards disease pathogenesis.
Collapse
Affiliation(s)
- Dipanwita Sadhukhan
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Arindam Biswas
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Arunima Bhaduri
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Neelanjana Sarkar
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Atanu Biswas
- Department of Neuromedicine, Bangur Institute of Neurosciences, Institute of Postgraduate Medical Education & Research, Kolkata, India
| | - Shyamal K Das
- Department of Neuromedicine, Bangur Institute of Neurosciences, Institute of Postgraduate Medical Education & Research, Kolkata, India
| | | | - Kunal Ray
- Academy of Scientific & Innovative Research, New Delhi, India
| | - Jharna Ray
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| |
Collapse
|
29
|
Singleton A, Hardy J. Progress in the genetic analysis of Parkinson's disease. Hum Mol Genet 2020; 28:R215-R218. [PMID: 31518392 DOI: 10.1093/hmg/ddz183] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/19/2023] Open
Abstract
The pace of genetic discovery in complex disease has accelerated exponentially over the last decade. Our fund of knowledge of the foundational genetics in disease has never been as great. There is a clear path forward to the resolution of the genetic architecture toward a point at which we will saturate the biological understanding of disease through genetics. This understanding continues to provide fundamental insights into disease biology and, with the advent of new data and methodologies, the path from gene to function is becoming clearer and cleaner. In this opinion piece, we discuss progress in the genetics of Parkinson disease. We explore what genetics has revealed thus far in the context of disease biology. We highlight mitophagy/autophagy, dopamine metabolism and the adaptive immune system. We try and link these findings together to give a holistic view of pathogenesis with the underlying theme that disease pathogenesis relates to a failure of damage response pathways. In the 1990s, Parkinson's disease was regarded a non-genetic disorder. Since that time, however, a huge number of Mendelian loci and risk loci have been identified by positional cloning and by genome-wide association studies. In this review, it is not our intent to list each gene and locus and review their identification [Hernandez, D.G., Reed, X. and Singleton, A.B. (2016) Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J. Neurochem., 139 Suppl 1, 59-74] but rather to outline the pathogenetic mechanisms that these analyses are revealing and then, given the large number of loci already identified, to lay out what we hope future analyses may help us understand, both in terms of disease mechanisms and for risk prediction for the syndrome.
Collapse
Affiliation(s)
- Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - John Hardy
- Dementia Research Institute and Department of Neurodegeneration and Reta Lila Weston Laboratories, Institute of Neurology, London, UK
| |
Collapse
|
30
|
Aasly JO. Long-Term Outcomes of Genetic Parkinson's Disease. J Mov Disord 2020; 13:81-96. [PMID: 32498494 PMCID: PMC7280945 DOI: 10.14802/jmd.19080] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects 1–2% of people by the age of 70 years. Age is the most important risk factor, and most cases are sporadic without any known environmental or genetic causes. Since the late 1990s, mutations in the genes SNCA, PRKN, LRRK2, PINK1, DJ-1, VPS35, and GBA have been shown to be important risk factors for PD. In addition, common variants with small effect sizes are now recognized to modulate the risk for PD. Most studies in genetic PD have focused on finding new genes, but few have studied the long-term outcome of patients with the specific genetic PD forms. Patients with known genetic PD have now been followed for more than 20 years, and we see that they may have distinct and different prognoses. New therapeutic possibilities are emerging based on the genetic cause underlying the disease. Future medication may be based on the pathophysiology individualized to the patient’s genetic background. The challenge is to find the biological consequences of different genetic variants. In this review, the clinical patterns and long-term prognoses of the most common genetic PD variants are presented.
Collapse
Affiliation(s)
- Jan O Aasly
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway.,Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
31
|
Clinical characterization of patients with leucine-rich repeat kinase 2 genetic variants in Japan. J Hum Genet 2020; 65:771-781. [PMID: 32398759 DOI: 10.1038/s10038-020-0772-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Variants of leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of familial Parkinson's disease (PD). We aimed to investigate the genetic and clinical features of patients with PD and LRRK2 variants in Japan by screening for LRRK2 variants in three exons (31, 41, and 48), which include the following pathogenic mutations: p.R1441C, p.R1441G, p.R1441H, p.G2019S, and p.I2020T. Herein, we obtained data containing LRRK2 variants derived from 1402 patients with PD (653 with sporadic PD and 749 with familial PD). As a result, we successfully detected pathogenic variants (four with p.R1441G, five with p.R1441H, seven with p.G2019S, and seven with p.I2020T) and other rare variants (two with p.V1447M, one with p.V1450I, one with p.T1491delT, and one with p.H2391Q). Two risk variants, p.P1446L and p.G2385R, were found in 10 and 146 patients, respectively. Most of the patients presented the symptoms resembling a common type of PD, such as middle-aged onset, tremor, akinesia, rigidity, and gait disturbance. Dysautonomia, cognitive decline, and psychosis were rarely observed. Each known pathogenic variant had a different founder in our cohort proven by haplotype analysis. The generation study revealed that the LRRK2 variants p.G2019S and p.I2020T were derived 3500 and 1300 years ago, respectively. Our findings present overviews of the prevalence and distribution of LRRK2 variants in Japanese cohorts.
Collapse
|
32
|
Ohnmacht J, May P, Sinkkonen L, Krüger R. Missing heritability in Parkinson's disease: the emerging role of non-coding genetic variation. J Neural Transm (Vienna) 2020; 127:729-748. [PMID: 32248367 PMCID: PMC7242266 DOI: 10.1007/s00702-020-02184-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by a complex interplay of genetic and environmental factors. For the stratification of PD patients and the development of advanced clinical trials, including causative treatments, a better understanding of the underlying genetic architecture of PD is required. Despite substantial efforts, genome-wide association studies have not been able to explain most of the observed heritability. The majority of PD-associated genetic variants are located in non-coding regions of the genome. A systematic assessment of their functional role is hampered by our incomplete understanding of genotype-phenotype correlations, for example through differential regulation of gene expression. Here, the recent progress and remaining challenges for the elucidation of the role of non-coding genetic variants is reviewed with a focus on PD as a complex disease with multifactorial origins. The function of gene regulatory elements and the impact of non-coding variants on them, and the means to map these elements on a genome-wide level, will be delineated. Moreover, examples of how the integration of functional genomic annotations can serve to identify disease-associated pathways and to prioritize disease- and cell type-specific regulatory variants will be given. Finally, strategies for functional validation and considerations for suitable model systems are outlined. Together this emphasizes the contribution of rare and common genetic variants to the complex pathogenesis of PD and points to remaining challenges for the dissection of genetic complexity that may allow for better stratification, improved diagnostics and more targeted treatments for PD in the future.
Collapse
Affiliation(s)
- Jochen Ohnmacht
- LCSB, University of Luxembourg, Belvaux, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Patrick May
- LCSB, University of Luxembourg, Belvaux, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Rejko Krüger
- LCSB, University of Luxembourg, Belvaux, Luxembourg.
- Luxembourg Institute of Health (LIH), Transversal Translational Medicine, Strassen, Luxembourg.
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.
| |
Collapse
|
33
|
Alpha-Synuclein and LRRK2 in Synaptic Autophagy: Linking Early Dysfunction to Late-Stage Pathology in Parkinson's Disease. Cells 2020; 9:cells9051115. [PMID: 32365906 PMCID: PMC7290471 DOI: 10.3390/cells9051115] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
The lack of effective disease-modifying strategies is the major unmet clinical need in Parkinson’s disease. Several experimental approaches have attempted to validate cellular targets and processes. Of these, autophagy has received considerable attention in the last 20 years due to its involvement in the clearance of pathologic protein aggregates and maintenance of neuronal homeostasis. However, this strategy mainly addresses a very late stage of the disease, when neuropathology and neurodegeneration have likely “tipped over the edge” and disease modification is extremely difficult. Very recently, autophagy has been demonstrated to modulate synaptic activity, a process distinct from its catabolic function. Abnormalities in synaptic transmission are an early event in neurodegeneration with Leucine-Rich Repeat Kinase 2 (LRRK2) and alpha-synuclein strongly implicated. In this review, we analyzed these processes separately and then discussed the unification of these biomolecular fields with the aim of reconstructing a potential “molecular timeline” of disease onset and progression. We postulate that the elucidation of these pathogenic mechanisms will form a critical basis for the design of novel, effective disease-modifying therapies that could be applied early in the disease process.
Collapse
|
34
|
Hu F, Zhang W, Meng W, Ma Y, Zhang X, Xu Y, Wang P, Gu Y. Ferrocene-labeled and purification-free electrochemical biosensor based on ligase chain reaction for ultrasensitive single nucleotide polymorphism detection. Anal Chim Acta 2020; 1109:9-18. [PMID: 32252909 DOI: 10.1016/j.aca.2020.02.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 11/29/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are crucial during the early diagnosis of a given disease as well as in evaluating their response to certain drugs. Thus, this study sought the development of ferrocene (Fc)-labeled electrochemical biosensor for SNP detection. This proposed system involves the ligation of four short probes (e.g., A, B, A', and B', where B' is labeled with an Fc-tag) in the presence of target DNA via ligase chain reaction (LCR), resulting in the formation of Fc-tagged duplex AB-A'B' in 2n. Subsequently, immobilization of the Fc-tagged duplex AB-A'B' on a single-stranded DNA capture probe (SC-DNA)-carboxyl multi-wall carbon nanotube (MWCNT-COOH) modified glassy carbon electrode (GCE) was accomplished through hybridization. Owing to the specificity of hybridization, and the use of Fc as electrochemical probe for detection of duplex AB-A'B', such strategy realized directly analysis of LCR products without the need for purification. By taking advantage of the thermal stability and high-discrimination ability of HiFi Taq DNA ligase for single-base differences, the specificity of hybridization, the EGFR T790 M mutant DNA (MT-DNA) biosensor was developed to offer a low limit of detection (0.75 aM), a high discrimination of single-base mismatches [as low as 0.01% (molar fraction)], a wide linear range of more than 7 orders of magnitude (1 aM-10 pM), and the recovery rates (95.3%-107.8%) from human serum samples. Thus, the biosensor under development was found to be economical, highly-sensitive, and exceptionally selective for detection of SNPs, and as well as extending the versatile applications of LCR to offer great potential for diagnosis and individual clinical regimens.
Collapse
Affiliation(s)
- Fang Hu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Wancun Zhang
- Department of Pediatric Oncology Surgery, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450018, China
| | - Wei Meng
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuxiang Ma
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xianwei Zhang
- Department of Pediatric Oncology Surgery, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450018, China
| | - Ying Xu
- Department of Pediatric Oncology Surgery, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450018, China
| | - Peng Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
35
|
Iwaki H, Blauwendraat C, Makarious MB, Bandrés-Ciga S, Leonard HL, Gibbs JR, Hernandez DG, Scholz SW, Faghri F, Nalls MA, Singleton AB. Penetrance of Parkinson's Disease in LRRK2 p.G2019S Carriers Is Modified by a Polygenic Risk Score. Mov Disord 2020; 35:774-780. [PMID: 31958187 DOI: 10.1002/mds.27974] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/08/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Although the leucine-rich repeat kinase 2 p.G2019S mutation has been demonstrated to be a strong risk factor for PD, factors that contribute to penetrance among carriers, other than aging, have not been well identified. OBJECTIVES To evaluate whether a cumulative genetic risk identified in the recent genome-wide study is associated with penetrance of PD among p.G2019S mutation carriers. METHODS We included p.G2019S heterozygote carriers with European ancestry in three genetic cohorts in which the mutation carriers with and without PD were selectively recruited. We also included the carriers from two data sets: one from a case-control setting without selection of mutation carriers and the other from a population sampling. Associations between polygenic risk score constructed from 89 variants reported recently and PD were tested and meta-analyzed. We also explored the interaction of age and PRS. RESULTS After excluding eight homozygotes, 833 p.G2019S heterozygote carriers (439 PD and 394 unaffected) were analyzed. Polygenic risk score was associated with a higher penetrance of PD (odds ratio: 1.34; 95% confidence interval: [1.09, 1.64] per +1 standard deviation; P = 0.005). In addition, associations with polygenic risk score and penetrance were stronger in the younger participants (main effect: odds ratio 1.28 [1.04, 1.58] per +1 standard deviation; P = 0.022; interaction effect: odds ratio 0.78 [0.64, 0.94] per +1 standard deviation and + 10 years of age; P = 0.008). CONCLUSIONS Our results suggest that there is a genetic contribution for penetrance of PD among p.G2019S carriers. These results have important etiological consequences and potential impact on the selection of subjects for clinical trials. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA.,Data Tecnica International, Glen Echo, Maryland, USA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara Bandrés-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - J Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Sonja W Scholz
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Faraz Faghri
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA.,Data Tecnica International, Glen Echo, Maryland, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Ren C, Ding Y, Wei S, Guan L, Zhang C, Ji Y, Wang F, Yin S, Yin P. G2019S Variation in LRRK2: An Ideal Model for the Study of Parkinson's Disease? Front Hum Neurosci 2019; 13:306. [PMID: 31551736 PMCID: PMC6738350 DOI: 10.3389/fnhum.2019.00306] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and has plagued humans for more than 200 years. The etiology and detailed pathogenesis of PD is unclear, but is currently believed to be the result of the interaction between genetic and environmental factors. Studies have found that PD patients with the LRRK2:G2019S variation have the typical clinical manifestations of PD, which may be familial or sporadic, and have age-dependent pathogenic characteristics. Therefore, the LRRK2:G2019S variation may be an ideal model to study the interaction of multiple factors such as genetic, environmental and natural aging factors in PD in the future. This article reviewed the progress of LRRK2:G2019S studies in PD research in order to provide new research ideas and directions for the pathogenesis and treatment of PD.
Collapse
Affiliation(s)
- Chao Ren
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yu Ding
- Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shizhuang Wei
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Lina Guan
- Department of Neurosurgical Intensive Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Caiyi Zhang
- Department of Emergency and Rescue Medicine, Xuzhou Medical University, Xuzhou, China
| | - Yongqiang Ji
- Department of Nephrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Shaohua Yin
- Department of Nursing, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Peiyuan Yin
- Department of Blood Supply, Yantai Center Blood Station, Yantai, China
| |
Collapse
|
37
|
Lewis PA. Leucine rich repeat kinase 2: a paradigm for pleiotropy. J Physiol 2019; 597:3511-3521. [PMID: 31124140 DOI: 10.1113/jp276163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
The LRRK2 gene, coding for leucine rich repeat kinase 2 (LRRK2), is a key player in the genetics of Parkinson's disease. Despite extensive efforts, LRRK2 has proved remarkably evasive with regard to attempts to understand both the role it plays in disease and its normal physiological function. At least part of why LRRK2 has been so difficult to define is that it appears to be many things to many cellular functions and diseases - a pleiotropic actor at both the genetic and the molecular level. Gaining greater insight into the mechanisms and pathways allowing LRRK2 to act in this manner will have implications for our understanding of the role of genes in the aetiology of complex disease, the molecular underpinnings of signal transduction pathways in the cell, and drug discovery in the genome era.
Collapse
Affiliation(s)
- Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
38
|
Yang ZH, Li YS, Shi MM, Yang J, Liu YT, Mao CY, Fan Y, Hu XC, Shi CH, Xu YM. SNCA but not DNM3 and GAK modifies age at onset of LRRK2-related Parkinson's disease in Chinese population. J Neurol 2019; 266:1796-1800. [PMID: 31041581 DOI: 10.1007/s00415-019-09336-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recently, rs2421947 in DNM3 (dynamin 3) was reported as a genetic modifier of age at onset (AAO) of LRRK2 G2019S-related Parkinson's disease (PD) in a genome-wide association study in Arab-Berber population. Rs356219 in SNCA (α-synuclein) was also reported to regulate the AAO of LRRK2-related PD in European populations, and GAK (Cyclin G-associated kinase) rs1524282 was reported to be associated with an increased PD risk with an interaction with SNCA rs356219. G2019S variant is rare in Asian populations, whereas two other Asian-specific LRRK2 variants, G2385R and R1628P, are more frequent with a twofold increased risk of PD. METHODS In this study, we investigated whether rs2421947, rs356219 and rs1524282 modified AAO in LRRK2-related PD patients in Han Chinese population. We screened LRRK2 G2385R and R1628P variants in 732 PD patients and 1992 healthy controls, and genotyped DNM3 rs2421947, SNCA rs356219 and GAK rs1524282 among the LRRK2 carriers. RESULTS The SNCA rs356219-G allele was found to increase the risk of PD in LRRK2 carriers (OR 1.50, 95%CI 1.08-2.01, P = 0.016), and the AAO of AG + GG genotypes was 4 years earlier than AA genotype (P = 0.006). Nonetheless, no similar association was found in DNM3 rs2421947 and GAK rs1524282. CONCLUSIONS Our results show that SNCA but not DNM3 or GAK is associated with AAO of LRRK2-PD patients in Chinese population.
Collapse
Affiliation(s)
- Zhi-Hua Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Yu-Sheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Meng-Meng Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Yu-Tao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Cheng-Yuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Xin-Chao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China.
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
39
|
Del Rey NLG, Quiroga-Varela A, Garbayo E, Carballo-Carbajal I, Fernández-Santiago R, Monje MHG, Trigo-Damas I, Blanco-Prieto MJ, Blesa J. Advances in Parkinson's Disease: 200 Years Later. Front Neuroanat 2018; 12:113. [PMID: 30618654 PMCID: PMC6306622 DOI: 10.3389/fnana.2018.00113] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
When James Parkinson described the classical symptoms of the disease he could hardly foresee the evolution of our understanding over the next two hundred years. Nowadays, Parkinson’s disease is considered a complex multifactorial disease in which genetic factors, either causative or susceptibility variants, unknown environmental cues, and the potential interaction of both could ultimately trigger the pathology. Noteworthy advances have been made in different fields from the clinical phenotype to the decoding of some potential neuropathological features, among which are the fields of genetics, drug discovery or biomaterials for drug delivery, which, though recent in origin, have evolved swiftly to become the basis of research into the disease today. In this review, we highlight some of the key advances in the field over the past two centuries and discuss the current challenges focusing on exciting new research developments likely to come in the next few years. Also, the importance of pre-motor symptoms and early diagnosis in the search for more effective therapeutic options is discussed.
Collapse
Affiliation(s)
- Natalia López-González Del Rey
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana Quiroga-Varela
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Neuroscience, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Elisa Garbayo
- Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Iria Carballo-Carbajal
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Rubén Fernández-Santiago
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Laboratory of Parkinson Disease and other Neurodegenerative Movement Disorders, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Mariana H G Monje
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Department of Anatomy, Histology and Neuroscience, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Inés Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María J Blanco-Prieto
- Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
40
|
Wallen ZD, Chen H, Hill-Burns EM, Factor SA, Zabetian CP, Payami H. Plasticity-related gene 3 ( LPPR1) and age at diagnosis of Parkinson disease. Neurol Genet 2018; 4:e271. [PMID: 30338293 PMCID: PMC6186025 DOI: 10.1212/nxg.0000000000000271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To identify modifiers of age at diagnosis of Parkinson disease (PD). METHODS Genome-wide association study (GWAS) included 1,950 individuals with PD from the NeuroGenetics Research Consortium (NGRC) study. Replication was conducted in the Parkinson's, Genes and Environment study, including 209 prevalent (PAGEP) and 517 incident (PAGEI) PD cases. Cox regression was used to test association with age at diagnosis. Individuals without neurologic disease were used to rule out confounding. Gene-level analysis and functional annotation were conducted using Functional Mapping and Annotation of GWAS platform (FUMA). RESULTS The GWAS revealed 2 linked but seemingly independent association signals that mapped to LPPR1 on chromosome 9. LPPR1 was significant in gene-based analysis (p = 1E-8). The top signal (rs17763929, hazard ratio [HR] = 1.88, p = 5E-8) replicated in PAGEP (HR = 1.87, p = 0.01) but not in PAGEI. The second signal (rs73656147) was robust with no evidence of heterogeneity (HR = 1.95, p = 3E-6 in NGRC; HR = 2.14, p = 1E-3 in PAGEP + PAGEI, and HR = 2.00, p = 9E-9 in meta-analysis of NGRC + PAGEP + PAGEI). The associations were with age at diagnosis, not confounded by age in patients or in the general population. The PD-associated regions included variants with Combined Annotation Dependent Depletion (CADD) scores = 10-19 (top 1%-10% most deleterious mutations in the genome), a missense with predicted destabilizing effect on LPPR1, an expression quantitative trait locus (eQTL) for GRIN3A (false discovery rate [FDR] = 4E-4), and variants that overlap with enhancers in LPPR1 and interact with promoters of LPPR1 and 9 other brain-expressed genes (Hi-C FDR < 1E-6). CONCLUSIONS Through association with age at diagnosis, we uncovered LPPR1 as a modifier gene for PD. LPPR1 expression promotes neuronal regeneration after injury in animal models. Present data provide a strong foundation for mechanistic studies to test LPPR1 as a driver of response to damage and a therapeutic target for enhancing neuroregeneration and slowing disease progression.
Collapse
Affiliation(s)
- Zachary D Wallen
- Department of Neurology (Z.D.W., E.M.H.-B., H.P.), University of Alabama at Birmingham, Birmingham, AL; Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing, MI; Department of Neurology (S.A.F.), Jean & Paul Amos Parkinson's Disease and Movement Disorder Program, Emory University School of Medicine, Atlanta, GA; VA Puget Sound Health Care System and Department of Neurology (C.P.Z.), University of Washington, Seattle, WA; and Center for Genomic Medicine (H.P.), HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | - Honglei Chen
- Department of Neurology (Z.D.W., E.M.H.-B., H.P.), University of Alabama at Birmingham, Birmingham, AL; Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing, MI; Department of Neurology (S.A.F.), Jean & Paul Amos Parkinson's Disease and Movement Disorder Program, Emory University School of Medicine, Atlanta, GA; VA Puget Sound Health Care System and Department of Neurology (C.P.Z.), University of Washington, Seattle, WA; and Center for Genomic Medicine (H.P.), HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | - Erin M Hill-Burns
- Department of Neurology (Z.D.W., E.M.H.-B., H.P.), University of Alabama at Birmingham, Birmingham, AL; Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing, MI; Department of Neurology (S.A.F.), Jean & Paul Amos Parkinson's Disease and Movement Disorder Program, Emory University School of Medicine, Atlanta, GA; VA Puget Sound Health Care System and Department of Neurology (C.P.Z.), University of Washington, Seattle, WA; and Center for Genomic Medicine (H.P.), HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | - Stewart A Factor
- Department of Neurology (Z.D.W., E.M.H.-B., H.P.), University of Alabama at Birmingham, Birmingham, AL; Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing, MI; Department of Neurology (S.A.F.), Jean & Paul Amos Parkinson's Disease and Movement Disorder Program, Emory University School of Medicine, Atlanta, GA; VA Puget Sound Health Care System and Department of Neurology (C.P.Z.), University of Washington, Seattle, WA; and Center for Genomic Medicine (H.P.), HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | - Cyrus P Zabetian
- Department of Neurology (Z.D.W., E.M.H.-B., H.P.), University of Alabama at Birmingham, Birmingham, AL; Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing, MI; Department of Neurology (S.A.F.), Jean & Paul Amos Parkinson's Disease and Movement Disorder Program, Emory University School of Medicine, Atlanta, GA; VA Puget Sound Health Care System and Department of Neurology (C.P.Z.), University of Washington, Seattle, WA; and Center for Genomic Medicine (H.P.), HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | - Haydeh Payami
- Department of Neurology (Z.D.W., E.M.H.-B., H.P.), University of Alabama at Birmingham, Birmingham, AL; Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing, MI; Department of Neurology (S.A.F.), Jean & Paul Amos Parkinson's Disease and Movement Disorder Program, Emory University School of Medicine, Atlanta, GA; VA Puget Sound Health Care System and Department of Neurology (C.P.Z.), University of Washington, Seattle, WA; and Center for Genomic Medicine (H.P.), HudsonAlpha Institute for Biotechnology, Huntsville, AL
| |
Collapse
|
41
|
Zhang M, Ferrari R, Tartaglia MC, Keith J, Surace EI, Wolf U, Sato C, Grinberg M, Liang Y, Xi Z, Dupont K, McGoldrick P, Weichert A, McKeever PM, Schneider R, McCorkindale MD, Manzoni C, Rademakers R, Graff-Radford NR, Dickson DW, Parisi JE, Boeve BF, Petersen RC, Miller BL, Seeley WW, van Swieten JC, van Rooij J, Pijnenburg Y, van der Zee J, Van Broeckhoven C, Le Ber I, Van Deerlin V, Suh E, Rohrer JD, Mead S, Graff C, Öijerstedt L, Pickering-Brown S, Rollinson S, Rossi G, Tagliavini F, Brooks WS, Dobson-Stone C, Halliday GM, Hodges JR, Piguet O, Binetti G, Benussi L, Ghidoni R, Nacmias B, Sorbi S, Bruni AC, Galimberti D, Scarpini E, Rainero I, Rubino E, Clarimon J, Lleó A, Ruiz A, Hernández I, Pastor P, Diez-Fairen M, Borroni B, Pasquier F, Deramecourt V, Lebouvier T, Perneczky R, Diehl-Schmid J, Grafman J, Huey ED, Mayeux R, Nalls MA, Hernandez D, Singleton A, Momeni P, Zeng Z, Hardy J, Robertson J, Zinman L, Rogaeva E. A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain 2018; 141:2895-2907. [PMID: 30252044 PMCID: PMC6158742 DOI: 10.1093/brain/awy238] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022] Open
Abstract
The G4C2-repeat expansion in C9orf72 is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. The high phenotypic heterogeneity of C9orf72 patients includes a wide range in age of onset, modifiers of which are largely unknown. Age of onset could be influenced by environmental and genetic factors both of which may trigger DNA methylation changes at CpG sites. We tested the hypothesis that age of onset in C9orf72 patients is associated with some common single nucleotide polymorphisms causing a gain or loss of CpG sites and thus resulting in DNA methylation alterations. Combined analyses of epigenetic and genetic data have the advantage of detecting functional variants with reduced likelihood of false negative results due to excessive correction for multiple testing in genome-wide association studies. First, we estimated the association between age of onset in C9orf72 patients (n = 46) and the DNA methylation levels at all 7603 CpG sites available on the 450 k BeadChip that are mapped to common single nucleotide polymorphisms. This was followed by a genetic association study of the discovery (n = 144) and replication (n = 187) C9orf72 cohorts. We found that age of onset was reproducibly associated with polymorphisms within a 124.7 kb linkage disequilibrium block tagged by top-significant variation, rs9357140, and containing two overlapping genes (LOC101929163 and C6orf10). A meta-analysis of all 331 C9orf72 carriers revealed that every A-allele of rs9357140 reduced hazard by 30% (P = 0.0002); and the median age of onset in AA-carriers was 6 years later than GG-carriers. In addition, we investigated a cohort of C9orf72 negative patients (n = 2634) affected by frontotemporal dementia and/or amyotrophic lateral sclerosis; and also found that the AA-genotype of rs9357140 was associated with a later age of onset (adjusted P = 0.007 for recessive model). Phenotype analyses detected significant association only in the largest subgroup of patients with frontotemporal dementia (n = 2142, adjusted P = 0.01 for recessive model). Gene expression studies of frontal cortex tissues from 25 autopsy cases affected by amyotrophic lateral sclerosis revealed that the G-allele of rs9357140 is associated with increased brain expression of LOC101929163 (a non-coding RNA) and HLA-DRB1 (involved in initiating immune responses), while the A-allele is associated with their reduced expression. Our findings suggest that carriers of the rs9357140 GG-genotype (linked to an earlier age of onset) might be more prone to be in a pro-inflammatory state (e.g. by microglia) than AA-carriers. Further, investigating the functional links within the C6orf10/LOC101929163/HLA-DRB1 pathway will be critical to better define age-dependent pathogenesis of frontotemporal dementia and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ming Zhang
- Shanghai First Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute for Advanced Study, Tongji University, Shanghai, China
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Raffaele Ferrari
- Department of Molecular Neuroscience, Institute of Neurology, UCL, London, UK
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Krembil Neuroscience Center, University Health Network Memory clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Julia Keith
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Ezequiel I Surace
- Laboratorio de Biología Molecular, Departamento de Neuropatología, Instituto de Investigaciones Neurológicas Dr. Raúl Carrea (FLENI), Buenos Aires, Argentina
| | - Uri Wolf
- Baycrest Health Science, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Mark Grinberg
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Yan Liang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Zhengrui Xi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Kyle Dupont
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Philip McGoldrick
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Anna Weichert
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Paul M McKeever
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Raphael Schneider
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | | | - Claudia Manzoni
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology and Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Bruce L Miller
- Department of Neurology, University of California San Francisco Memory and Aging Center, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology and Department of Pathology, University of California San Francisco Memory and Aging Center, San Francisco, CA, USA
| | | | | | - Yolande Pijnenburg
- Alzheimer Center, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Julie van der Zee
- Neurodegenerative Brain Diseases, Center of Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases, Center of Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Isabelle Le Ber
- Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et la Moelle épinière (ICM), Paris, France
- Reference Center for Rare and Young Dementias, Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Hopital Pitié-Salpêtrière, Paris, France
| | - Vivianna Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - EunRan Suh
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Caroline Graff
- Division of Neurogeriatrics, Alzheimer Research Center, Karolinska Institutet, Solna, Sweden
- Genetics Unit, Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Linn Öijerstedt
- Division of Neurogeriatrics, Alzheimer Research Center, Karolinska Institutet, Solna, Sweden
- Genetics Unit, Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Stuart Pickering-Brown
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, University of Manchester, UK
| | - Sara Rollinson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, University of Manchester, UK
| | - Giacomina Rossi
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Fabrizio Tagliavini
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - William S Brooks
- Neuroscience Research Australia and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Carol Dobson-Stone
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - John R Hodges
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
- Australian Research Council Centre of Excellence in Cognition and its Disorders, Sydney, Australia
| | - Olivier Piguet
- Australian Research Council Centre of Excellence in Cognition and its Disorders, Sydney, Australia
- School of Psychology and Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Giuliano Binetti
- MAC Memory Center, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Don Gnocchi, Florence, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre, Lamezia Terme, Azienda Sanitaria Provinciale Catanzaro, Italy
| | - Daniela Galimberti
- Neurodegenerative Disease Unit, University of Milan, Fondazione Ca’ Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Elio Scarpini
- Neurodegenerative Disease Unit, University of Milan, Fondazione Ca’ Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Innocenzo Rainero
- Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Elisa Rubino
- Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Jordi Clarimon
- IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Agustin Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Isabel Hernández
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pau Pastor
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Barcelona, Spain
- Fundació per la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Monica Diez-Fairen
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Barcelona, Spain
- Fundació per la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Florence Pasquier
- National Reference Center for Young Onset Dementia, Neurology Department, Centre Hospitalier Régional Universitaire de Lille, University Hospital, Inserm U1171, DistAlz, Lille, France
| | - Vincent Deramecourt
- National Reference Center for Young Onset Dementia, Neurology Department, Centre Hospitalier Régional Universitaire de Lille, University Hospital, Inserm U1171, DistAlz, Lille, France
| | - Thibaud Lebouvier
- National Reference Center for Young Onset Dementia, Neurology Department, Centre Hospitalier Régional Universitaire de Lille, University Hospital, Inserm U1171, DistAlz, Lille, France
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
- Department of Psychiatry and Psychotherapy, Division of Mental Health in Older Adults and Alzheimer Therapy and Research Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Imperial College London, School of Public Health, Neuroepidemiology and Ageing Research Unit, London, UK
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
| | - Jordan Grafman
- Cognitive Neurology and Alzheimer’s Center, Department of Psychiatry, Feinberg School of Medicine Chicago, IL, USA
- Department of Psychology, Weinberg College of Arts and Sciences Northwestern University Chicago, IL, USA
| | - Edward D Huey
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
- The Gertrude H. Sergievsky Center, The Departments of Neurology, Psychiatry, Epidemiology, School of Public Health, Columbia University, New York, NY, USA
| | - Michael A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | | | - Zhen Zeng
- Merck & Co., Inc, Kenilworth, NJ, USA
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, UCL, London, UK
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Lorne Zinman
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Elloumi-Zghal H, Chaabouni Bouhamed H. Genetics and genomic medicine in Tunisia. Mol Genet Genomic Med 2018; 6:134-159. [PMID: 29663716 PMCID: PMC5902400 DOI: 10.1002/mgg3.392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 01/19/2023] Open
Abstract
Genetics and genomic medicine in Tunisia.
![]()
Collapse
|
43
|
Berge-Seidl V, Pihlstrøm L, Wszolek ZK, Ross OA, Toft M. No evidence for DNM3 as genetic modifier of age at onset in idiopathic Parkinson's disease. Neurobiol Aging 2018; 74:236.e1-236.e5. [PMID: 30340792 DOI: 10.1016/j.neurobiolaging.2018.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a disorder with highly variable clinical phenotype. The identification of genetic variants modifying age at onset and other traits is of great interest because it may provide insight into disease mechanisms and potential therapeutic targets. A variant in the DNM3 gene (rs2421947) has been reported as a genetic modifier of age at onset in LRRK2-associated PD. To test the possible effect of genetic variation in DNM3 on age at onset in idiopathic PD, we examined rs2421947 in a total of 5918 patients with PD from seven data sets. We also assessed the potential effect of all common variants in the DNM3 locus. There was no significant association between rs2421947 and age at onset in any of the individual studies. Meta-analysis of the seven studies was nonsignificant and the between-study heterogeneity was minimal. No other common variants within the DNM3 locus affected age at onset. In conclusion, we find no evidence of an association between DNM3 variants and age at onset in idiopathic PD.
Collapse
Affiliation(s)
- Victoria Berge-Seidl
- Department of Neurology, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
44
|
Foo JN, Tan LC, Au WL, Prakash KM, Liu J, Tan EK. No association of DNM3 with age of onset in Asian Parkinson's disease. Eur J Neurol 2018; 26:827-829. [PMID: 30133089 DOI: 10.1111/ene.13785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/17/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Genetic variability in DNM3 has been shown to modify age of onset of Parkinson's disease (PD) among LRRK2 Gly2019Ser carriers in North African Arab-Berber populations. In Asian populations, the Gly2019Ser mutation is rare or absent but two other LRRK2 variants, Gly2385Arg and Arg1628PPro, increase PD risk. We aimed to determine whether the DNM3 locus was associated with age of PD onset in both carriers and non-carriers of LRRK2 risk variants in Asians. METHODS We analyzed the association of DNM3 rs2421947 genotypes with age of PD onset in 3645 Chinese samples, of which 369 carried at least one of two Asian LRRK2 risk variants. RESULTS DNM3 rs2421947 genotypes were not associated with age of PD onset in Chinese samples. We observed no heterogeneity in the effect of rs2421947 between the Asian LRRK2 risk variant carriers and non-carriers. CONCLUSIONS DNM3 rs2421947 was not associated with age of PD onset in LRRK2 risk variant carriers and non-carriers in Chinese samples. Further studies in other Asian populations will be of interest.
Collapse
Affiliation(s)
- J N Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - L C Tan
- Department of Neurology, National Neuroscience Institute, Singapore
| | - W-L Au
- Department of Neurology, National Neuroscience Institute, Singapore
| | - K-M Prakash
- Department of Neurology, National Neuroscience Institute, Singapore
| | - J Liu
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - E-K Tan
- Department of Neurology, National Neuroscience Institute, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
45
|
Genetic Modifiers of Neurodegeneration in a Drosophila Model of Parkinson's Disease. Genetics 2018; 209:1345-1356. [PMID: 29907646 DOI: 10.1534/genetics.118.301119] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/03/2018] [Indexed: 11/18/2022] Open
Abstract
Disease phenotypes can be highly variable among individuals with the same pathogenic mutation. There is increasing evidence that background genetic variation is a strong driver of disease variability in addition to the influence of environment. To understand the genotype-phenotype relationship that determines the expressivity of a pathogenic mutation, a large number of backgrounds must be studied. This can be efficiently achieved using model organism collections such as the Drosophila Genetic Reference Panel (DGRP). Here, we used the DGRP to assess the variability of locomotor dysfunction in a LRRK2 G2019S Drosophila melanogaster model of Parkinson's disease (PD). We find substantial variability in the LRRK2 G2019S locomotor phenotype in different DGRP backgrounds. A genome-wide association study for candidate genetic modifiers reveals 177 genes that drive wide phenotypic variation, including 19 top association genes. Genes involved in the outgrowth and regulation of neuronal projections are enriched in these candidate modifiers. RNAi functional testing of the top association and neuronal projection-related genes reveals that pros, pbl, ct, and CG33506 significantly modify age-related dopamine neuron loss and associated locomotor dysfunction in the Drosophila LRRK2 G2019S model. These results demonstrate how natural genetic variation can be used as a powerful tool to identify genes that modify disease-related phenotypes. We report novel candidate modifier genes for LRRK2 G2019S that may be used to interrogate the link between LRRK2, neurite regulation and neuronal degeneration in PD.
Collapse
|
46
|
Fu JF, Klyuzhin I, Liu S, Shahinfard E, Vafai N, McKenzie J, Neilson N, Mabrouk R, Sacheli MA, Wile D, McKeown MJ, Stoessl AJ, Sossi V. Investigation of serotonergic Parkinson's disease-related covariance pattern using [ 11C]-DASB/PET. Neuroimage Clin 2018; 19:652-660. [PMID: 29946508 PMCID: PMC6014591 DOI: 10.1016/j.nicl.2018.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/01/2018] [Accepted: 05/19/2018] [Indexed: 11/19/2022]
Abstract
We used positron emission tomography imaging with [11C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)- benzonitrile (DASB) and principal component analysis to investigate whether a specific Parkinson's disease (PD)-related spatial covariance pattern could be identified for the serotonergic system. We also explored if non-manifesting leucine-rich repeat kinase 2 (LRRK2) mutation carriers, with normal striatal dopaminergic innervation as measured with [11C]-dihydrotetrabenazine (DTBZ), exhibit a distinct spatial covariance pattern compared to healthy controls and subjects with manifest PD. 15 subjects with sporadic PD, eight subjects with LRRK2 mutation-associated PD, nine LRRK2 non-manifesting mutation carriers, and nine healthy controls participated in the study. The analysis was applied to the DASB non-displaceable binding potential values evaluated in 42 pre-defined regions of interest. PD was found to be associated with a specific spatial covariance pattern, comprising relatively decreased DASB binding in the caudate, putamen and substantia nigra and relatively preserved binding in the hypothalamus and hippocampus; the expression of this pattern in PD subjects was significantly higher than in healthy controls (P < 0.001) and correlated significantly with disease duration (P < 0.01) and with DTBZ binding in the more affected putamen (P < 0.01). The LRRK2 non-manifesting mutation carriers expressed a different pattern, also significantly different from healthy controls (P < 0.001), comprising relatively decreased DASB binding in the pons, pedunculopontine nucleus, thalamus and rostral raphe nucleus, and with relatively preserved binding in the hypothalamus, amygdala, hippocampus and substantia nigra. This pattern was not present in either sporadic or LRRK2 mutation-associated PD subjects. These findings, although obtained with a relatively limited number of subjects, suggest that specific and overall distinct spatial serotonergic patterns may be associated with PD and LRRK2 mutations. Alterations in regions where relative upregulation is observed in both patterns may be indicative of compensatory mechanisms preceding or protecting from disease manifestation.
Collapse
Affiliation(s)
- Jessie Fanglu Fu
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.
| | - Ivan Klyuzhin
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shuying Liu
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Elham Shahinfard
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Nasim Vafai
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Jessamyn McKenzie
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Nicole Neilson
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Rostom Mabrouk
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Matthew A Sacheli
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Daryl Wile
- University of British Columbia, Okanagan Southern Medical Program, Kelowna, BC, Canada
| | - Martin J McKeown
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Mestre TA, Pont-Sunyer C, Kausar F, Visanji NP, Ghate T, Connolly BS, Gasca-Salas C, Kern DS, Jain J, Slow EJ, Faust-Socher A, Kasten M, Wadia PM, Zadikoff C, Kumar P, de Bie RM, Thomsen T, Lang AE, Schüle B, Klein C, Tolosa E, Marras C. Clustering of motor and nonmotor traits in leucine-rich repeat kinase 2 G2019S Parkinson's disease nonparkinsonian relatives: A multicenter family study. Mov Disord 2018; 33:960-965. [PMID: 29665080 DOI: 10.1002/mds.27272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The objective of this study was to determine phenotypic features that differentiate nonparkinsonian first-degree relatives of PD leucine-rich repeat kinase 2 (LRRK2) G2019S multiplex families, regardless of carrier status, from healthy controls because nonparkinsonian individuals in multiplex families seem to share a propensity to present neurological features. METHODS We included nonparkinsonian first-degree relatives of LRRK2 G2019S familial PD cases and unrelated healthy controls participating in established multiplex family LRRK2 cohorts. Study participants underwent neurologic assessment including cognitive screening, olfaction testing, and questionnaires for daytime sleepiness, depression, and anxiety. We used a multiple logistic regression model with backward variable selection, validated with bootstrap resampling, to establish the best combination of motor and nonmotor features that differentiates nonparkinsonian first-degree relatives of LRRK2 G2019S familial PD cases from unrelated healthy controls. RESULTS We included 142 nonparkinsonian family members and 172 unrelated healthy controls. The combination of past or current symptoms of anxiety (adjusted odds ratio, 4.16; 95% confidence interval, 2.01-8.63), less daytime sleepiness (adjusted odds ratio [1 unit], 0.90; 95% confidence interval, 0.83-0.97], and worse motor UPDRS score (adjusted odds ratio [1 unit], 1.4; 95% confidence interval, 1.20-1.67) distinguished nonparkinsonian family members, regardless of LRRK2 G2019S mutation status, from unrelated healthy controls. The model accuracy was good (area under the curve = 79.3%). CONCLUSIONS A set of motor and nonmotor features distinguishes first-degree relatives of LRRK2 G2019S probands, regardless of mutation status, from unrelated healthy controls. Environmental or non-LRRK2 genetic factors in LRRK2-associated PD may influence penetrance of the LRRK2 G2019S mutation. The relationship of these features to actual PD risk requires longitudinal observation of LRRK2 familial PD cohorts. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tiago A Mestre
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada.,Parkinson's Disease and Movement Disorders Center, Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, University of Ottawa Brain and Mind Institute, Ottawa, Canada (current affiliation)
| | - Claustre Pont-Sunyer
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain.,Neurology Unit, Hospital General de Granollers, Universitat Internacional de Catalunya, Granollers, Spain, Barcelona
| | - Farah Kausar
- Parkinson's Institute and Clinical Center, Sunnyvale, California, USA
| | - Naomi P Visanji
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada
| | - Taneera Ghate
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada
| | - Barbara S Connolly
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada
| | - Carmen Gasca-Salas
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada.,Centro Integral en Neurociencias Abarca Cidón, Hospitales de Madrid Hospitales Puerta del Sur, CEU San Pablo University, Madrid, Spain (current affiliation)
| | - Drew S Kern
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada.,Department of Neurology, Movement Disorders Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA (current affiliation)
| | - Jennifer Jain
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada
| | - Elizabeth J Slow
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada
| | - Achinoam Faust-Socher
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Pettarusp M Wadia
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada.,Department of Neurology, Jaslok Hospital and Research Centre, Mumbai, India (current affiliation)
| | - Cindy Zadikoff
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada
| | - Prakash Kumar
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada
| | - Ronald M de Bie
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada.,Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (current affiliation)
| | - Teri Thomsen
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada.,Neurology Department, University of Iowa, Iowa City, Iowa, USA (current affiliation)
| | - Anthony E Lang
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada
| | - Birgitt Schüle
- Parkinson's Institute and Clinical Center, Sunnyvale, California, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Eduardo Tolosa
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Connie Marras
- Movement Disorders Centre, Toronto Western Hospital, and the Edmond J Safra program in Parkinson's Research, Toronto, Canada
| |
Collapse
|
48
|
Sheehan P, Yue Z. Deregulation of autophagy and vesicle trafficking in Parkinson's disease. Neurosci Lett 2018; 697:59-65. [PMID: 29627340 DOI: 10.1016/j.neulet.2018.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized pathologically by the selective loss of dopaminergic neurons in the substantia nigra and the intracellular accumulation of α-synuclein in the Lewy bodies. While the pathogenic mechanisms of PD are poorly understood, many lines of evidence point to a role of altered autophagy and membrane trafficking in the development of the disease. Emerging studies show that connections between the deregulation of autophagy and synaptic vesicle (SV) trafficking may contribute to PD. Here we review the evidence that many PD related-genes have roles in both autophagy and SV trafficking and examine how deregulation of these pathways contributes to PD pathogenesis. This review also discusses recent studies aimed at uncovering the role of PD-linked genes in autophagy-lysosome function.
Collapse
Affiliation(s)
- Patricia Sheehan
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Zhenyu Yue
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, USA.
| |
Collapse
|
49
|
Fernández-Santiago R, Garrido A, Infante J, González-Aramburu I, Sierra M, Fernández M, Valldeoriola F, Muñoz E, Compta Y, Martí MJ, Ríos J, Tolosa E, Ezquerra M. α-synuclein (SNCA) but not dynamin 3 (DNM3) influences age at onset of leucine-rich repeat kinase 2 (LRRK2) Parkinson's disease in Spain. Mov Disord 2018; 33:637-641. [PMID: 29473656 DOI: 10.1002/mds.27295] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/10/2017] [Accepted: 12/08/2017] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES A recent study showed that Arab-Berbers GG homozygous at rs2421947(C/G) in the dynamin 3 gene (DNM3) had 12.5 years earlier age at onset of leucine-rich repeat kinase 2 (LRRK2)-associated Parkinson's disease (PD) (L2PD). We explored whether this variant modulates the L2PD age at onset in Spain. METHODS We genotyped rs2421947 in 329 participants (210 L2PD patients, 119 L2PD nonmanifesting p.G2019S carriers), and marker rs356219 (A/G) in the α-synuclein gene (SNCA). RESULTS By Kaplan Meier and Cox regression analyses, we did not find an association of the DNM3 polymorphism with L2PD age at onset. However, we found an association of the SNCA marker with up to an 11 years difference in the L2PD median age at onset (58 years for GG carriers vs 69 years for AA). CONCLUSION Our results indicate that SNCA rs356219 but not dynamin 3 DNM3 rs2421947 modifies the penetrance of the mutation G2019S in the Spanish population by influencing the L2PD age at onset. These findings suggest that different genetic modifiers may influence the L2PD age at onset in different populations. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rubén Fernández-Santiago
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Alicia Garrido
- Movement Disorders Unit, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Jon Infante
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, Santander, Spain
| | - Isabel González-Aramburu
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, Santander, Spain
| | - María Sierra
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, Santander, Spain
| | - Manel Fernández
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Francesc Valldeoriola
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Esteban Muñoz
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Yaroslau Compta
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - María-José Martí
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - José Ríos
- Medical Statistics Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer and Hospital Clinic, Barcelona, Spain.,Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduardo Tolosa
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Mario Ezquerra
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | | |
Collapse
|
50
|
Matarazzo M, Wile D, Mackenzie M, Stoessl AJ. PET Molecular Imaging in Familial Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:177-223. [DOI: 10.1016/bs.irn.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|