1
|
Cocoș R, Popescu BO. Scrutinizing neurodegenerative diseases: decoding the complex genetic architectures through a multi-omics lens. Hum Genomics 2024; 18:141. [PMID: 39736681 DOI: 10.1186/s40246-024-00704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
Neurodegenerative diseases present complex genetic architectures, reflecting a continuum from monogenic to oligogenic and polygenic models. Recent advances in multi-omics data, coupled with systems genetics, have significantly refined our understanding of how these data impact neurodegenerative disease mechanisms. To contextualize these genetic discoveries, we provide a comprehensive critical overview of genetic architecture concepts, from Mendelian inheritance to the latest insights from oligogenic and omnigenic models. We explore the roles of common and rare genetic variants, gene-gene and gene-environment interactions, and epigenetic influences in shaping disease phenotypes. Additionally, we emphasize the importance of multi-omics layers including genomic, transcriptomic, proteomic, epigenetic, and metabolomic data in elucidating the molecular mechanisms underlying neurodegeneration. Special attention is given to missing heritability and the contribution of rare variants, particularly in the context of pleiotropy and network pleiotropy. We examine the application of single-cell omics technologies, transcriptome-wide association studies, and epigenome-wide association studies as key approaches for dissecting disease mechanisms at tissue- and cell-type levels. Our review introduces the OmicPeak Disease Trajectory Model, a conceptual framework for understanding the genetic architecture of neurodegenerative disease progression, which integrates multi-omics data across biological layers and time points. This review highlights the critical importance of adopting a systems genetics approach to unravel the complex genetic architecture of neurodegenerative diseases. Finally, this emerging holistic understanding of multi-omics data and the exploration of the intricate genetic landscape aim to provide a foundation for establishing more refined genetic architectures of these diseases, enhancing diagnostic precision, predicting disease progression, elucidating pathogenic mechanisms, and refining therapeutic strategies for neurodegenerative conditions.
Collapse
Affiliation(s)
- Relu Cocoș
- Department of Medical Genetics, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
- Genomics Research and Development Institute, Bucharest, Romania.
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
2
|
Preman P, Moechars D, Fertan E, Wolfs L, Serneels L, Shah D, Lamote J, Poovathingal S, Snellinx A, Mancuso R, Balusu S, Klenerman D, Arranz AM, Fiers M, De Strooper B. APOE from astrocytes restores Alzheimer's Aβ-pathology and DAM-like responses in APOE deficient microglia. EMBO Mol Med 2024; 16:3113-3141. [PMID: 39528861 PMCID: PMC11628604 DOI: 10.1038/s44321-024-00162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The major genetic risk factor for Alzheimer's disease (AD), APOE4, accelerates beta-amyloid (Aβ) plaque formation, but whether this is caused by APOE expressed in microglia or astrocytes is debated. We express here the human APOE isoforms in astrocytes in an Apoe-deficient AD mouse model. This is not only sufficient to restore the amyloid plaque pathology but also induces the characteristic transcriptional pathological responses in Apoe-deficient microglia surrounding the plaques. We find that both APOE4 and the protective APOE2 from astrocytes increase fibrillar plaque deposition, but differentially affect soluble Aβ aggregates. Microglia and astrocytes show specific alterations in function of APOE genotype expressed in astrocytes. Our experiments indicate a central role of the astrocytes in APOE mediated amyloid plaque pathology and in the induction of associated microglia responses.
Collapse
Affiliation(s)
- Pranav Preman
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Daan Moechars
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Leen Wolfs
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Lutgarde Serneels
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Disha Shah
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Jochen Lamote
- VIB FACS Expertise Center, Center for Cancer Biology, Leuven, Belgium
| | | | - An Snellinx
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB-UAntwerp, Centre for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sriram Balusu
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Amaia M Arranz
- Laboratory of Humanized Models of Disease, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
- UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
3
|
Kimura T, Fujita K, Sakurai T, Niida S, Ozaki K, Shigemizu D. Whole-genome sequencing to identify rare variants in East Asian patients with dementia with Lewy bodies. NPJ AGING 2024; 10:52. [PMID: 39572598 PMCID: PMC11582613 DOI: 10.1038/s41514-024-00180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Dementia with Lewy bodies (DLB) is the second most common form of age-related dementia, following Alzheimer's disease (AD). DLB is associated with a worse prognosis than AD and is characterized by a more rapid progression of cognitive impairment and a poorer quality of life. In addition, the pathogenesis of DLB is less understood than that of AD, and only three genes-SNCA (α-synuclein), APOE (apolipoprotein E), and GBA1 (glucosylceramidase beta 1)-have been convincingly demonstrated to be associated with DLB. In this study, we utilized whole-genome sequencing data from 1744 Japanese individuals, comprising 45 DLB patients and 1699 cognitively normal older adults, aiming to identify new genes associated with DLB. Our genome-wide association studies of genes with potentially deleterious mutations identified the CDH23 gene as being associated with DLB, reaching a Bonferroni-corrected significance (P = 7.43 × 10-4). The gene contained three ethnicity-specific heterozygous missense variants (rs181275139, rs563688802, and rs137937502). CDH23 has been linked to deafness syndromes, and DLB patients carrying these mutations displayed symptoms of subjective hearing loss, suggesting a potential association between DLB onset and auditory impairment. Additionally, we explored human leukocyte antigen (HLA) genotypes associated with DLB but found no significant associations. This result suggests that the pathology of DLB differs from that of Parkinson's disease, which has been reported to have an association with HLA. Although a limitation of this study is the lack of replication of our findings, which require further validation in independent cohorts, our study enhances the understanding of the etiology of DLB in the Japanese population and provides new insights into the underlying mechanisms of its pathogenesis.
Collapse
Affiliation(s)
- Tetsuaki Kimura
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kosuke Fujita
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Takashi Sakurai
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Shumpei Niida
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Daichi Shigemizu
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| |
Collapse
|
4
|
Vekrellis K, Emmanouilidou E, Xilouri M, Stefanis L. α-Synuclein in Parkinson's Disease: 12 Years Later. Cold Spring Harb Perspect Med 2024; 14:a041645. [PMID: 39349314 PMCID: PMC11529858 DOI: 10.1101/cshperspect.a041645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
α-Synuclein (AS) is a small presynaptic protein that is genetically, biochemically, and neuropathologically linked to Parkinson's disease (PD) and related synucleinopathies. We present here a review of the topic of this relationship, focusing on more recent knowledge. In particular, we review the genetic evidence linking AS to familial and sporadic PD, including a number of recently identified point mutations in the SNCA gene. We briefly go over the relevant neuropathological findings, stressing the evidence indicating a correlation between aberrant AS deposition and nervous system dysfunction. We analyze the structural characteristics of the protein, in relation to both its physiologic and pathological conformations, with particular emphasis on posttranslational modifications, aggregation properties, and secreted forms. We review the interrelationship of AS with various cellular compartments and functions, with particular focus on the synapse and protein degradation systems. We finally go over the recent exciting data indicating that AS can provide the basis for novel robust biomarkers in the field of synucleinopathies, while at the same time results from the first clinical trials specifically targeting AS are being reported.
Collapse
Affiliation(s)
- Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Maria Xilouri
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Leonidas Stefanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11528, Greece; and Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| |
Collapse
|
5
|
Reus LM, Jansen IE, Tijms BM, Visser PJ, Tesi N, van der Lee SJ, Vermunt L, Peeters CFW, De Groot LA, Hok-A-Hin YS, Chen-Plotkin A, Irwin DJ, Hu WT, Meeter LH, van Swieten JC, Holstege H, Hulsman M, Lemstra AW, Pijnenburg YAL, van der Flier WM, Teunissen CE, del Campo Milan M. Connecting dementia risk loci to the CSF proteome identifies pathophysiological leads for dementia. Brain 2024; 147:3522-3533. [PMID: 38527854 PMCID: PMC11449142 DOI: 10.1093/brain/awae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
Genome-wide association studies have successfully identified many genetic risk loci for dementia, but exact biological mechanisms through which genetic risk factors contribute to dementia remains unclear. Integrating CSF proteomic data with dementia risk loci could reveal intermediate molecular pathways connecting genetic variance to the development of dementia. We tested to what extent effects of known dementia risk loci can be observed in CSF levels of 665 proteins [proximity extension-based (PEA) immunoassays] in a deeply-phenotyped mixed memory clinic cohort [n = 502, mean age (standard deviation, SD) = 64.1 (8.7) years, 181 female (35.4%)], including patients with Alzheimer's disease (AD, n = 213), dementia with Lewy bodies (DLB, n = 50) and frontotemporal dementia (FTD, n = 93), and controls (n = 146). Validation was assessed in independent cohorts (n = 99 PEA platform, n = 198, mass reaction monitoring-targeted mass spectroscopy and multiplex assay). We performed additional analyses stratified according to diagnostic status (AD, DLB, FTD and controls separately), to explore whether associations between CSF proteins and genetic variants were specific to disease or not. We identified four AD risk loci as protein quantitative trait loci (pQTL): CR1-CR2 (rs3818361, P = 1.65 × 10-8), ZCWPW1-PILRB (rs1476679, P = 2.73 × 10-32), CTSH-CTSH (rs3784539, P = 2.88 × 10-24) and HESX1-RETN (rs186108507, P = 8.39 × 10-8), of which the first three pQTLs showed direct replication in the independent cohorts. We identified one AD-specific association between a rare genetic variant of TREM2 and CSF IL6 levels (rs75932628, P = 3.90 × 10-7). DLB risk locus GBA showed positive trans effects on seven inter-related CSF levels in DLB patients only. No pQTLs were identified for FTD loci, either for the total sample as for analyses performed within FTD only. Protein QTL variants were involved in the immune system, highlighting the importance of this system in the pathophysiology of dementia. We further identified pQTLs in stratified analyses for AD and DLB, hinting at disease-specific pQTLs in dementia. Dissecting the contribution of risk loci to neurobiological processes aids in understanding disease mechanisms underlying dementia.
Collapse
Affiliation(s)
- Lianne M Reus
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, CA 90095 CA, USA
| | - Iris E Jansen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Psychiatry, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Niccoló Tesi
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Lisa Vermunt
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Carel F W Peeters
- Mathematical and Statistical Methods group (Biometris), Wageningen University and Research, Wageningen, 6708 PB Wageningen, The Netherlands
| | - Lisa A De Groot
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William T Hu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Rutgers-RWJ Medical School, Institute for Health, Health Care Policy, and Aging Research, Rutgers Biomedical and Health Sciences, New Brunswick, NJ 08901, USA
| | - Lieke H Meeter
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Marta del Campo Milan
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, 28003 Madrid, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, 08005 Barcelona, Spain
| |
Collapse
|
6
|
Shen MQ, Guo Q, Li W, Qian ZM. Apolipoprotein E deficiency leads to the polarization of splenic macrophages towards M1 phenotype by increasing iron content. Genes Immun 2024; 25:381-388. [PMID: 39103538 DOI: 10.1038/s41435-024-00290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Apolipoprotein E (ApoE) plays a crucial role in iron homeostasis in the body, while macrophages are the principal cells responsible for handling iron in mammals. However, it is unknown whether ApoE can affect the functional subtypes and the iron handling capacity of splenic macrophages (SM). Here, we investigated the effects of ApoE deficiency (ApoE-/-) on the polarization and iron content of SM and its potential mechanisms. ApoE-/- was found to induce a significant increase in the expressions of M1 marker genes CD86, IL-1β, IL-6, IL-12, TNF-α and iNOS and a reduction in M2 marker genes CD206, Arg-1, IL-10 and Ym-1 in SM of mice aged 28 weeks, Meanwhile, ApoE-/- caused a significant increase in iron content and expression of ferritin, transferrin receptor 1 (TfR1), iron regulatory protein 1 (IRP1) and heme oxygenase-1 (HO-1) and a reduction in ferroportin1 (Fpn1) in spleen and/or SM of mice aged 28 weeks. It was concluded that ApoE-/- can increase iron content through increased iron uptake mediated by TfR/ IRPs and decreased iron release mediated by Fpn1, leading to polarization of the SM to M1 phenotype.
Collapse
Affiliation(s)
- Meng-Qi Shen
- Institute of Translational and Precision Medicine, Nantong University, Nantong, Jiangsu, China
- School of Health Medicine, Nantong Polytechnic College, Nantong, China
| | - Qian Guo
- School of Medicine, Shanghai University, Shanghai, China.
| | - Wei Li
- Institute of Translational and Precision Medicine, Nantong University, Nantong, Jiangsu, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong, Jiangsu, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Hong H, Wang Y, Menard M, Buckley JA, Zhou L, Volpicelli-Daley L, Standaert DG, Qin H, Benveniste EN. Suppression of the JAK/STAT pathway inhibits neuroinflammation in the line 61-PFF mouse model of Parkinson's disease. J Neuroinflammation 2024; 21:216. [PMID: 39218899 PMCID: PMC11368013 DOI: 10.1186/s12974-024-03210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of α-synuclein (α-Syn) into insoluble aggregates called Lewy pathology. The Line 61 α-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human α-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human α-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-α-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-α-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45+ cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.
Collapse
Affiliation(s)
- Huixian Hong
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Yong Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Marissa Menard
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jessica A Buckley
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Laura Volpicelli-Daley
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA.
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA.
| |
Collapse
|
8
|
Shantaraman A, Dammer EB, Ugochukwu O, Duong DM, Yin L, Carter EK, Gearing M, Chen-Plotkin A, Lee EB, Trojanowski JQ, Bennett DA, Lah JJ, Levey AI, Seyfried NT, Higginbotham L. Network proteomics of the Lewy body dementia brain reveals presynaptic signatures distinct from Alzheimer's disease. Mol Neurodegener 2024; 19:60. [PMID: 39107789 PMCID: PMC11302177 DOI: 10.1186/s13024-024-00749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Lewy body dementia (LBD), a class of disorders comprising Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), features substantial clinical and pathological overlap with Alzheimer's disease (AD). The identification of biomarkers unique to LBD pathophysiology could meaningfully advance its diagnosis, monitoring, and treatment. Using quantitative mass spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral prefrontal cortex (DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, Parkinson's disease (PD), PDD, and DLB diagnoses. We then analyzed co-expression network protein alterations in those with LBD, validated these disease signatures in two independent LBD datasets, and compared these findings to those observed in network analyses of AD cases. The LBD network revealed numerous groups or "modules" of co-expressed proteins significantly altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. A comparison of validated LBD signatures to those of AD identified distinct differences between the two diseases. Notably, synuclein-associated presynaptic modules were elevated in LBD but decreased in AD relative to controls. We also found that glial-associated matrisome signatures consistently elevated in AD were more variably altered in LBD, ultimately stratifying those LBD cases with low versus high burdens of concurrent beta-amyloid deposition. In conclusion, unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD frontal cortex distinct from alterations in AD. These results highlight the LBD brain network proteome as a promising source of biomarkers that could enhance clinical recognition and management.
Collapse
Affiliation(s)
- Anantharaman Shantaraman
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Obiadada Ugochukwu
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Luming Yin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - E Kathleen Carter
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Marla Gearing
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - James J Lah
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Lenora Higginbotham
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
9
|
Jonson C, Levine KS, Lake J, Hertslet L, Jones L, Patel D, Kim J, Bandres‐Ciga S, Terry N, Mata IF, Blauwendraat C, Singleton AB, Nalls MA, Yokoyama JS, Leonard HL. Assessing the lack of diversity in genetics research across neurodegenerative diseases: A systematic review of the GWAS Catalog and literature. Alzheimers Dement 2024; 20:5740-5756. [PMID: 39030740 PMCID: PMC11350004 DOI: 10.1002/alz.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 07/22/2024]
Abstract
The under-representation of non-European cohorts in neurodegenerative disease genome-wide association studies (GWAS) hampers precision medicine efforts. Despite the inherent genetic and phenotypic diversity in these diseases, GWAS research consistently exhibits a disproportionate emphasis on participants of European ancestry. This study reviews GWAS up to 2022, focusing on non-European or multi-ancestry neurodegeneration studies. We conducted a systematic review of GWAS results and publications up to 2022, focusing on non-European or multi-ancestry neurodegeneration studies. Rigorous article inclusion and quality assessment methods were employed. Of 123 neurodegenerative disease (NDD) GWAS reviewed, 82% predominantly featured European ancestry participants. A single European study identified over 90 risk loci, compared to a total of 50 novel loci in identified in all non-European or multi-ancestry studies. Notably, only six of the loci have been replicated. The significant under-representation of non-European ancestries in NDD GWAS hinders comprehensive genetic understanding. Prioritizing genomic diversity in future research is crucial for advancing NDD therapies and understanding. HIGHLIGHTS: Eighty-two percent of neurodegenerative genome-wide association studies (GWAS) focus on Europeans. Only 6 of 50 novel neurodegenerative disease (NDD) genetic loci have been replicated. Lack of diversity significantly hampers understanding of NDDs. Increasing diversity in NDD genetic research is urgently required. New initiatives are aiming to enhance diversity in NDD research.
Collapse
Affiliation(s)
- Caroline Jonson
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
- Pharmaceutical Sciences and Pharmacogenomics Graduate ProgramUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Kristin S. Levine
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
| | - Julie Lake
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- Laboratory of NeurogeneticsNational Institutes on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Linnea Hertslet
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
| | - Lietsel Jones
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
| | - Dhairya Patel
- Integrative Neurogenomics UnitLaboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Jeff Kim
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- Laboratory of NeurogeneticsNational Institutes on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Sara Bandres‐Ciga
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
| | - Nancy Terry
- Division of Library ServicesOffice of Research ServicesNational Institutes of HealthBethesdaMarylandUSA
| | - Ignacio F. Mata
- Genomic Medicine Institute, Lerner Research Institute, Genomic MedicineCleveland Clinic FoundationClevelandOhioUSA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- Integrative Neurogenomics UnitLaboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Andrew B. Singleton
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- Laboratory of NeurogeneticsNational Institutes on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Mike A. Nalls
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
- Laboratory of NeurogeneticsNational Institutes on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Jennifer S. Yokoyama
- Pharmaceutical Sciences and Pharmacogenomics Graduate ProgramUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Hampton L. Leonard
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
- Laboratory of NeurogeneticsNational Institutes on AgingNational Institutes of HealthBethesdaMarylandUSA
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| |
Collapse
|
10
|
Yang Y, Zhou ZD, Yi L, Tan BJW, Tan EK. Interaction between caffeine consumption & genetic susceptibility in Parkinson's disease: A systematic review. Ageing Res Rev 2024; 99:102381. [PMID: 38914264 DOI: 10.1016/j.arr.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Caffeine is one of the most consumed psychoactive substances globally. Caffeine-gene interactions in Parkinson's disease (PD) has not been systematically examined. OBJECTIVES To conduct a systematic review on the interaction between caffeine consumption and genetic susceptibility to PD. METHODOLOGY We conducted PubMed and Embase search using terms "Genetic association studies", "Caffeine", "polymorphism" and "Parkinson's disease", from inception till 2023. Of the initial 2391 studies, 21 case-control studies were included. The demographic, genetic and clinical data were extracted and analyzed. RESULTS We identified 21 studies which involved a total of 607,074 study subjects and 17 gene loci (SNCA, MAPT, HLA-DRA, NOS1, NOS3, GBA, ApoE, BST1, ESR2, NAT2, SLC2A13, LRRK2, NOS2A, GRIN2A, CYP1A2, ESR1, ADORA2A) have been investigated for the effect of gene-caffeine interaction and PD risk. The genes were identified through PD GWAS or involved in caffeine or related metabolism pathways. Based on the genetic association and interaction studies, only MAPT, SLC2A13, LRRK2, ApoE, NOS2A, GRIN2A, CYP1A2, and ADORA2A have been shown by at least one study to have a positive caffeine-gene interaction influencing the risk of PD. CONCLUSION Studies have shown an interaction between caffeine with genetic variants of MAPT, SLC2A13, LRRK2, ApoE, NOS2A, GRIN2A, CYP1A2, and ADORA2A in modulating the risk of PD. Due to the potential limitations of these discovery/pilot studies, further independent replication studies are needed. Better designed genetic association studies in multi-ancestry and admixed cohorts to identify potential shared or unique multivariate gene-environmental interactions, as well as functional studies of gene-caffeine interactions will be useful.
Collapse
Affiliation(s)
- Yujuan Yang
- Department of Neurology, National Neuroscience Institute, Singapore; Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore.
| | - Zhi Dong Zhou
- Department of Neurology, National Neuroscience Institute, Singapore; Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore.
| | - Lingxiao Yi
- Department of Neurology, National Neuroscience Institute, Singapore.
| | | | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore; Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore.
| |
Collapse
|
11
|
Doostparast Torshizi A, Truong DT, Hou L, Smets B, Whelan CD, Li S. Proteogenomic network analysis reveals dysregulated mechanisms and potential mediators in Parkinson's disease. Nat Commun 2024; 15:6430. [PMID: 39080267 PMCID: PMC11289099 DOI: 10.1038/s41467-024-50718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Parkinson's disease is highly heterogeneous across disease symptoms, clinical manifestations and progression trajectories, hampering the identification of therapeutic targets. Despite knowledge gleaned from genetics analysis, dysregulated proteome mechanisms stemming from genetic aberrations remain underexplored. In this study, we develop a three-phase system-level proteogenomic analytical framework to characterize disease-associated proteins and dysregulated mechanisms. Proteogenomic analysis identified 577 proteins that enrich for Parkinson's disease-related pathways, such as cytokine receptor interactions and lysosomal function. Converging lines of evidence identified nine proteins, including LGALS3, CSNK2A1, SMPD3, STX4, APOA2, PAFAH1B3, LDLR, HSPB1, BRK1, with potential roles in disease pathogenesis. This study leverages the largest population-scale proteomics dataset, the UK Biobank Pharma Proteomics Project, to characterize genetically-driven protein disturbances associated with Parkinson's disease. Taken together, our work contributes to better understanding of genome-proteome dynamics in Parkinson's disease and sets a paradigm to identify potential indirect mediators connected to GWAS signals for complex neurodegenerative disorders.
Collapse
Affiliation(s)
- Abolfazl Doostparast Torshizi
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA.
| | - Dongnhu T Truong
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Liping Hou
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Bart Smets
- Neuroscience Data Science, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christopher D Whelan
- Neuroscience Data Science, Janssen Research & Development, LLC, Cambridge, MA, USA
| | - Shuwei Li
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| |
Collapse
|
12
|
Geng C, Tan L, Chen C. Neuropsychiatric symptoms profile and markers of Alzheimer disease-type pathology in patients with Lewy body dementias. Brain Res 2024; 1833:148881. [PMID: 38519009 DOI: 10.1016/j.brainres.2024.148881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND To determine whether Lewy body dementia (LBD) patients with likely copathology of Alzheimer's disease (AD) exhibit greater neuropsychiatric symptom (NPS) compared to those without likely AD-type copathology. METHODS We enrolled 69 individuals diagnosed with Lewy body dementia (LBD), comprising both dementia with Lewy bodies (DLB) (n = 36) and Parkinson's disease dementia (PDD) (n = 33). These participants had accessible cerebrospinal fluid (CSF) markers related to Alzheimer's disease (AD) and cognitive data. We assessed CSF levels of β-amyloid 42 (Aβ42), phosphorylated tau (p-tau), and total tau (t-tau). Employing autopsy-validated CSF thresholds (t-tau/Aβ42 ratio > 0.3, n = 69), we categorized individuals into LBD with AD pathology (LBD + AD, n = 31) and LBD without apparent AD co-pathology (LBD - AD, n = 38). Moreover, the Hamilton Depression Scale (HAMD24), Hamilton Anxiety Scale (HAMA14), and Neuropsychiatric Inventory Questionnaire (NPI-Q) was used to assess the NPS. Spearman correlations were utilized to explore links between NPS and CSF marker profiles. RESULTS In terms of neuropsychiatric symptoms, LBD + AD patients demonstrated notably elevated levels of depressive symptoms (HAMD24) in comparison to LBD - AD patients (P < 0.001). However, based on PDD and DLB groups, no significant variations were noted in the neuropsychiatric symptoms(P>0.05). Moreover, CSF-derived biomarkers of Aβ42, and t-tau/Aβ42 were also associated with HAMD24 total scores in the LBD + AD subsample (P < 0.05). CONCLUSION There is an association between AD pathological markers and the NPS of LBD. The biologically based classification of LBD may be more advantageous in elucidating clinical heterogeneity than clinically defined syndromes.
Collapse
Affiliation(s)
- Chaofan Geng
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Leilei Tan
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chen Chen
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
13
|
Pavelka L, Rauschenberger A, Hemedan A, Ostaszewski M, Glaab E, Krüger R. Converging peripheral blood microRNA profiles in Parkinson's disease and progressive supranuclear palsy. Brain Commun 2024; 6:fcae187. [PMID: 38863572 PMCID: PMC11166179 DOI: 10.1093/braincomms/fcae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
MicroRNAs act via targeted suppression of messenger RNA translation in the DNA-RNA-protein axis. The dysregulation of microRNA(s) reflects the epigenetic changes affecting the cellular processes in multiple disorders. To understand the complex effect of dysregulated microRNAs linked to neurodegeneration, we performed a cross-sectional microRNA expression analysis in idiopathic Parkinson's disease (n = 367), progressive supranuclear palsy (n = 35) and healthy controls (n = 416) from the Luxembourg Parkinson's Study, followed by prediction modelling, enriched pathway analysis and target simulation of dysregulated microRNAs using probabilistic Boolean modelling. Forty-six microRNAs were identified to be dysregulated in Parkinson's disease versus controls and 16 in progressive supranuclear palsy versus controls with 4 overlapping significantly dysregulated microRNAs between the comparisons. Predictive power of microRNA subsets (including up to 100 microRNAs) was modest for differentiating Parkinson's disease or progressive supranuclear palsy from controls (maximal cross-validated area under the receiver operating characteristic curve 0.76 and 0.86, respectively) and low for progressive supranuclear palsy versus Parkinson's disease (maximal cross-validated area under the receiver operating characteristic curve 0.63). The enriched pathway analysis revealed natural killer cell pathway to be dysregulated in both, Parkinson's disease and progressive supranuclear palsy versus controls, indicating that the immune system might play an important role in both diseases. Probabilistic Boolean modelling of pathway dynamics affected by dysregulated microRNAs in Parkinson's disease and progressive supranuclear palsy revealed partially overlapping dysregulation in activity of the transcription factor EB, endoplasmic reticulum stress signalling, calcium signalling pathway, dopaminergic transcription and peroxisome proliferator-activated receptor gamma coactivator-1α activity, though involving different mechanisms. These findings indicated a partially convergent (sub)cellular end-point dysfunction at multiple levels in Parkinson's disease and progressive supranuclear palsy, but with distinctive underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lukas Pavelka
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg L-1210, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Armin Rauschenberger
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
- Competence Centre for Methodology and Statistics, Translational Medicine Operations Hub, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
| | - Ahmed Hemedan
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Marek Ostaszewski
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg L-1210, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| |
Collapse
|
14
|
Bousiges O, Cretin B, Muller C, Botzung A, Sanna L, Anthony P, Philippi N, Demuynck C, Blanc F. Involvement of ApoE4 in dementia with Lewy bodies in the prodromal and demented stages: evaluation of the Strasbourg cohort. GeroScience 2024; 46:1527-1542. [PMID: 37653269 PMCID: PMC10828291 DOI: 10.1007/s11357-023-00883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
ApoE4 as a risk factor for dementia with Lewy bodies (DLB) is still an issue. We sought to determine the involvement of ApoE4 according to different clinical parameters in our cohort of patients from Strasbourg, France. ApoE genotyping was performed on the AlphaLewyMA cohort. In this cohort, 197 patients were genotyped: 105 DLB patients, 37 Alzheimer's disease (AD) patients, 29 patients with AD/DLB comorbidity, and 26 control subjects (CS). The groups of patients were also classified according to the stage of evolution of the disease: prodromal or demented. We analyzed other parameters in relation to ApoE4 status, such as years of education (YOE) and Alzheimer CSF biomarkers. We observed a higher proportion of ApoE4 carriers in the AD (51.4%) and AD/DLB (72.4%) groups compared to the DLB (25.7%) and CS (11.5%) groups (p < 0.0001). We found a correlation between age at disease onset and YOE in the AD group (p = 0.039) but not in the DLB group (p = 0.056). Interestingly, in the DLB group, the subgroup of patients with high YOE (≥ 11) had significantly more patients with ApoE4 than the subgroup with low YOE (< 11). AD biomarkers did not seem to be impacted by the presence of ApoE4, except for Aβ42: DLB ApoE4-positive demented patients showed a more marked Aβ42 decrease. ApoE4 does not appear to be a risk factor for "pure" DLB patients. These results suggest a strong link between ApoE4 and amyloidopathy and consequently with AD. Trial registration: AlphaLewyMa, Identifier: NCT01876459, date of registration: June 12, 2013.
Collapse
Affiliation(s)
- Olivier Bousiges
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IMAGeS Team, University of Strasbourg and CNRS, Strasbourg, France.
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France.
| | - Benjamin Cretin
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IMAGeS Team, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Center), Geriatrics Department, Geriatric Day Hospital, Neurogeriatric Service, University Hospital of Strasbourg, Strasbourg, France
| | - Candice Muller
- CM2R (Research and Resources Memory Center), Geriatrics Department, Geriatric Day Hospital, Neurogeriatric Service, University Hospital of Strasbourg, Strasbourg, France
| | - Anne Botzung
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IMAGeS Team, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Center), Geriatrics Department, Geriatric Day Hospital, Neurogeriatric Service, University Hospital of Strasbourg, Strasbourg, France
| | - Lea Sanna
- CM2R (Research and Resources Memory Center), Geriatrics Department, Geriatric Day Hospital, Neurogeriatric Service, University Hospital of Strasbourg, Strasbourg, France
| | - Pierre Anthony
- CM2R, Neuropsychology Unit, Head and Neck Department, Neurology Department, University of Strasbourg, Strasbourg, France
- CM2R, Geriatrics Department and Neurology Department, Colmar General Hospital, Colmar, France
| | - Nathalie Philippi
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IMAGeS Team, University of Strasbourg and CNRS, Strasbourg, France
- CM2R, Neuropsychology Unit, Head and Neck Department, Neurology Department, University of Strasbourg, Strasbourg, France
| | - Catherine Demuynck
- CM2R (Research and Resources Memory Center), Geriatrics Department, Geriatric Day Hospital, Neurogeriatric Service, University Hospital of Strasbourg, Strasbourg, France
| | - Frédéric Blanc
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IMAGeS Team, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Center), Geriatrics Department, Geriatric Day Hospital, Neurogeriatric Service, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
15
|
Dodel R, Berg D, Duning T, Kalbe E, Meyer PT, Ramirez A, Storch A, Aarsland D, Jessen F. [Dementia with Lewy bodies: old and new knowledge - Part 1: clinical aspects and diagnostics]. DER NERVENARZT 2024; 95:353-361. [PMID: 38092983 PMCID: PMC11014876 DOI: 10.1007/s00115-023-01576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 04/13/2024]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia after Alzheimer's disease. Patients with DLB often have a poor prognosis, with worse outcomes than patients with Alzheimer's disease in terms of important parameters, such as quality of life, caregiver burden, health-related costs, frequency of hospital and nursing home admissions, shorter time to severe dementia, and lower survival. The DLB is frequently misdiagnosed and often undertreated. Therefore, it is critical to diagnose DLB as early as possible to ensure optimal care and treatment. OBJECTIVE The aim of this review article is to summarize the main recent findings on diagnostic tools, epidemiology and genetics of DLB. RESULTS Precise clinical diagnostic criteria exist for DLB that enable an etiologic assignment. Imaging techniques are used as standard in DLB, especially also to exclude non-neurodegenerative causes. In particular, procedures in nuclear medicine have a high diagnostic value. DISCUSSION The diagnosis is primarily based on clinical symptoms, although the development of in vivo neuroimaging and biomarkers is changing the scope of clinical diagnosis as well as research into this devastating disease.
Collapse
Affiliation(s)
- Richard Dodel
- Lehrstuhl für Geriatrie, Universität Duisburg-Essen, Virchowstraße 171, 45147, Essen, Deutschland.
| | - Daniela Berg
- Neurologische Klinik, Universität Kiel, Kiel, Deutschland
| | - Thomas Duning
- Neurologische Klinik, Universität Münster, Münster, Deutschland
| | - Elke Kalbe
- Medizinische Psychologie, Neuropsychologie und Gender Studies & Centrum für Neuropsychologische Diagnostik und Intervention (CeNDI), Universität Köln, Köln, Deutschland
| | - Philipp T Meyer
- Klinik für Nuklearmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Deutschland
| | - Alfredo Ramirez
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universität Köln, Köln, Deutschland
| | - Alexander Storch
- Klinik für Neurologie, Universität Rostock, Rostock, Deutschland
| | - Dag Aarsland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norwegen
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, Großbritannien
| | - Frank Jessen
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universität Köln, Köln, Deutschland
| |
Collapse
|
16
|
Katsumata Y, Fardo DW, Shade LMP, Wu X, Karanth SD, Hohman TJ, Schneider JA, Bennett DA, Farfel JM, Gauthreaux K, Mock C, Kukull WA, Abner EL, Nelson PT. Genetic associations with dementia-related proteinopathy: Application of item response theory. Alzheimers Dement 2024; 20:2906-2921. [PMID: 38460116 PMCID: PMC11032554 DOI: 10.1002/alz.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 03/11/2024]
Abstract
INTRODUCTION Although dementia-related proteinopathy has a strong negative impact on public health, and is highly heritable, understanding of the related genetic architecture is incomplete. METHODS We applied multidimensional generalized partial credit modeling (GPCM) to test genetic associations with dementia-related proteinopathies. Data were analyzed to identify candidate single nucleotide variants for the following proteinopathies: Aβ, tau, α-synuclein, and TDP-43. RESULTS Final included data comprised 966 participants with neuropathologic and WGS data. Three continuous latent outcomes were constructed, corresponding to TDP-43-, Aβ/Tau-, and α-synuclein-related neuropathology endophenotype scores. This approach helped validate known genotype/phenotype associations: for example, TMEM106B and GRN were risk alleles for TDP-43 pathology; and GBA for α-synuclein/Lewy bodies. Novel suggestive proteinopathy-linked alleles were also discovered, including several (SDHAF1, TMEM68, and ARHGEF28) with colocalization analyses and/or high degrees of biologic credibility. DISCUSSION A novel methodology using GPCM enabled insights into gene candidates for driving misfolded proteinopathies. HIGHLIGHTS Latent factor scores for proteinopathies were estimated using a generalized partial credit model. The three latent continuous scores corresponded well with proteinopathy severity. Novel genes associated with proteinopathies were identified. Several genes had high degrees of biologic credibility for dementia risk factors.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - David W. Fardo
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Xian Wu
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Shama D. Karanth
- Department of SurgeryCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
- UF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Julie A. Schneider
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - David A. Bennett
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Jose M. Farfel
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Kathryn Gauthreaux
- National Alzheimer's Coordinating CenterDepartment of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Charles Mock
- National Alzheimer's Coordinating CenterDepartment of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Walter A. Kukull
- National Alzheimer's Coordinating CenterDepartment of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Erin L. Abner
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Epidemiology and Environmental HealthUniversity of KentuckyLexingtonKentuckyUSA
| | - Peter T. Nelson
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PathologyDivision of NeuropathologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
17
|
Li W, Li JY. Overlaps and divergences between tauopathies and synucleinopathies: a duet of neurodegeneration. Transl Neurodegener 2024; 13:16. [PMID: 38528629 DOI: 10.1186/s40035-024-00407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Proteinopathy, defined as the abnormal accumulation of proteins that eventually leads to cell death, is one of the most significant pathological features of neurodegenerative diseases. Tauopathies, represented by Alzheimer's disease (AD), and synucleinopathies, represented by Parkinson's disease (PD), show similarities in multiple aspects. AD manifests extrapyramidal symptoms while dementia is also a major sign of advanced PD. We and other researchers have sequentially shown the cross-seeding phenomenon of α-synuclein (α-syn) and tau, reinforcing pathologies between synucleinopathies and tauopathies. The highly overlapping clinical and pathological features imply shared pathogenic mechanisms between the two groups of disease. The diagnostic and therapeutic strategies seemingly appropriate for one distinct neurodegenerative disease may also apply to a broader spectrum. Therefore, a clear understanding of the overlaps and divergences between tauopathy and synucleinopathy is critical for unraveling the nature of the complicated associations among neurodegenerative diseases. In this review, we discuss the shared and diverse characteristics of tauopathies and synucleinopathies from aspects of genetic causes, clinical manifestations, pathological progression and potential common therapeutic approaches targeting the pathology, in the aim to provide a timely update for setting the scheme of disease classification and provide novel insights into the therapeutic development for neurodegenerative diseases.
Collapse
Affiliation(s)
- Wen Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China
| | - Jia-Yi Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184, Lund, Sweden.
| |
Collapse
|
18
|
Walton RL, Koga S, Beasley AI, White LJ, Griesacker T, Murray ME, Kasanuki K, Hou X, Fiesel FC, Springer W, Uitti RJ, Fields JA, Botha H, Ramanan VK, Kantarci K, Lowe VJ, Jack CR, Ertekin-Taner N, Savica R, Graff-Radford J, Petersen RC, Parisi JE, Reichard RR, Graff-Radford NR, Ferman TJ, Boeve BF, Wszolek ZK, Dickson DW, Ross OA, Heckman MG. Role of GBA variants in Lewy body disease neuropathology. Acta Neuropathol 2024; 147:54. [PMID: 38472443 PMCID: PMC11049671 DOI: 10.1007/s00401-024-02699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 03/14/2024]
Abstract
Rare and common GBA variants are risk factors for both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the degree to which GBA variants are associated with neuropathological features in Lewy body disease (LBD) is unknown. Herein, we assessed 943 LBD cases and examined associations of 15 different neuropathological outcomes with common and rare GBA variants. Neuropathological outcomes included LBD subtype, presence of a high likelihood of clinical DLB (per consensus guidelines), LB counts in five cortical regions, tyrosine hydroxylase immunoreactivity in the dorsolateral and ventromedial putamen, ventrolateral substantia nigra neuronal loss, Braak neurofibrillary tangle (NFT) stage, Thal amyloid phase, phospho-ubiquitin (pS65-Ub) level, TDP-43 pathology, and vascular disease. Sequencing of GBA exons revealed a total of 42 different variants (4 common [MAF > 0.5%], 38 rare [MAF < 0.5%]) in our series, and 165 cases (17.5%) had a copy of the minor allele for ≥ 1 variant. In analysis of common variants, p.L483P was associated with a lower Braak NFT stage (OR = 0.10, P < 0.001). In gene-burden analysis, presence of the minor allele for any GBA variant was associated with increased odds of a high likelihood of DLB (OR = 2.00, P < 0.001), a lower Braak NFT stage (OR = 0.48, P < 0.001), a lower Thal amyloid phase (OR = 0.55, P < 0.001), and a lower pS65-Ub level (β: -0.37, P < 0.001). Subgroup analysis revealed that GBA variants were most common in LBD cases with a combination of transitional/diffuse LBD and Braak NFT stage 0-II or Thal amyloid phase 0-1, and correspondingly that the aforementioned associations of GBA gene-burden with a decreased Braak NFT stage and Thal amyloid phase were observed only in transitional or diffuse LBD cases. Our results indicate that in LBD, GBA variants occur most frequently in cases with greater LB pathology and low AD pathology, further informing disease-risk associations of GBA in PD, PD dementia, and DLB.
Collapse
Affiliation(s)
- Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Launia J White
- Division of Clinical Trials and Biostatistics, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, USA
| | | | | | - Koji Kasanuki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Julie A Fields
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Kejal Kantarci
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | - Clifford R Jack
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Joseph E Parisi
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - R Ross Reichard
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, USA.
| |
Collapse
|
19
|
Suzuki H, Egawa N, Imamura K, Kondo T, Enami T, Tsukita K, Suga M, Yada Y, Shibukawa R, Takahashi R, Inoue H. Mutant α-synuclein causes death of human cortical neurons via ERK1/2 and JNK activation. Mol Brain 2024; 17:14. [PMID: 38444039 PMCID: PMC10916047 DOI: 10.1186/s13041-024-01086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Synucleinopathies refer to a group of disorders characterized by SNCA/α-synuclein (α-Syn)-containing cytoplasmic inclusions and neuronal cell loss in the nervous system including the cortex, a common feature being cognitive impairment. Still, the molecular pathogenesis of cognitive decline remains poorly understood, hampering the development of effective treatments. Here, we generated induced pluripotent stem cells (iPSCs) derived from familial Parkinson's disease (PD) patients carrying SNCA A53T mutation, differentiating them into cortical neurons by a direct conversion method. Patient iPSCs-derived cortical neurons harboring mutant α-Syn exhibited increased α-Syn-positive aggregates, shorter neurites, and time-dependent vulnerability. Furthermore, RNA-sequencing analysis, followed by biochemical validation, identified the activation of the ERK1/2 and JNK cascades in cortical neurons with SNCA A53T mutation. This result was consistent with a reverted phenotype of neuronal death in cortical neurons when treated with ERK1/2 and JNK inhibitors, respectively. Our findings emphasize the role of ERK1/2 and JNK cascades in the vulnerability of cortical neurons in synucleinopathies, and they could pave the way toward therapeutic advancements for synucleinopathies.
Collapse
Affiliation(s)
- Hidefumi Suzuki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Naohiro Egawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Keiko Imamura
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Takayuki Kondo
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Takako Enami
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Kayoko Tsukita
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mika Suga
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yuichiro Yada
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ran Shibukawa
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Haruhisa Inoue
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
| |
Collapse
|
20
|
Carreras Mascaro A, Grochowska MM, Boumeester V, Dits NFJ, Bilgiҫ EN, Breedveld GJ, Vergouw L, de Jong FJ, van Royen ME, Bonifati V, Mandemakers W. LRP10 and α-synuclein transmission in Lewy body diseases. Cell Mol Life Sci 2024; 81:75. [PMID: 38315424 PMCID: PMC10844361 DOI: 10.1007/s00018-024-05135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Autosomal dominant variants in LRP10 have been identified in patients with Lewy body diseases (LBDs), including Parkinson's disease (PD), Parkinson's disease-dementia (PDD), and dementia with Lewy bodies (DLB). Nevertheless, there is little mechanistic insight into the role of LRP10 in disease pathogenesis. In the brains of control individuals, LRP10 is typically expressed in non-neuronal cells like astrocytes and neurovasculature, but in idiopathic and genetic cases of PD, PDD, and DLB, it is also present in α-synuclein-positive neuronal Lewy bodies. These observations raise the questions of what leads to the accumulation of LRP10 in Lewy bodies and whether a possible interaction between LRP10 and α-synuclein plays a role in disease pathogenesis. Here, we demonstrate that wild-type LRP10 is secreted via extracellular vesicles (EVs) and can be internalised via clathrin-dependent endocytosis. Additionally, we show that LRP10 secretion is highly sensitive to autophagy inhibition, which induces the formation of atypical LRP10 vesicular structures in neurons in human-induced pluripotent stem cells (iPSC)-derived brain organoids. Furthermore, we show that LRP10 overexpression leads to a strong induction of monomeric α-synuclein secretion, together with time-dependent, stress-sensitive changes in intracellular α-synuclein levels. Interestingly, patient-derived astrocytes carrying the c.1424 + 5G > A LRP10 variant secrete aberrant high-molecular-weight species of LRP10 in EV-free media fractions. Finally, we show that this truncated patient-derived LRP10 protein species (LRP10splice) binds to wild-type LRP10, reduces LRP10 wild-type levels, and antagonises the effect of LRP10 on α-synuclein levels and distribution. Together, this work provides initial evidence for a possible functional role of LRP10 in LBDs by modulating intra- and extracellular α-synuclein levels, and pathogenic mechanisms linked to the disease-associated c.1424 + 5G > A LRP10 variant, pointing towards potentially important disease mechanisms in LBDs.
Collapse
Affiliation(s)
- Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martyna M Grochowska
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Natasja F J Dits
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ece Naz Bilgiҫ
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Leonie Vergouw
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank Jan de Jong
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
21
|
Nasb M, Tao W, Chen N. Alzheimer's Disease Puzzle: Delving into Pathogenesis Hypotheses. Aging Dis 2024; 15:43-73. [PMID: 37450931 PMCID: PMC10796101 DOI: 10.14336/ad.2023.0608] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease characterized by both amnestic and non-amnestic clinical manifestations. It accounts for approximately 60-70% of all dementia cases worldwide. With the increasing number of AD patients, elucidating underlying mechanisms and developing corresponding interventional strategies are necessary. Hypotheses about AD such as amyloid cascade, Tau hyper-phosphorylation, neuroinflammation, oxidative stress, mitochondrial dysfunction, cholinergic, and vascular hypotheses are not mutually exclusive, and all of them play a certain role in the development of AD. The amyloid cascade hypothesis is currently the most widely studied; however, other hypotheses are also gaining support. This article summarizes the recent evidence regarding major pathological hypotheses of AD and their potential interplay, as well as the strengths and weaknesses of each hypothesis and their implications for the development of effective treatments. This could stimulate further studies and promote the development of more effective therapeutic strategies for AD.
Collapse
Affiliation(s)
| | | | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| |
Collapse
|
22
|
Dulski J, Uitti RJ, Beasley A, Hernandez D, Ramanan VK, Cahn EJ, Ren Y, Johnson PW, Quicksall ZS, Wszolek ZK, Ross OA, Heckman MG. Genetics of Parkinson's disease heterogeneity: A genome-wide association study of clinical subtypes. Parkinsonism Relat Disord 2024; 119:105935. [PMID: 38072719 PMCID: PMC10872335 DOI: 10.1016/j.parkreldis.2023.105935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION Substantial heterogeneity between individual patients in the clinical presentation of Parkinson's disease (PD) has led to the classification of distinct PD subtypes. However, genetic susceptibility factors for specific PD subtypes are not well understood. Therefore, the present study aimed to investigate the genetics of PD heterogeneity by performing a genome-wide association study (GWAS) of PD subtypes. METHODS A total of 799 PD patients were included and classified into tremor-dominant (TD) (N = 345), akinetic-rigid (AR) (N = 227), gait-difficulty (GD) (N = 82), and mixed (MX) (N = 145) phenotypic subtypes. After array genotyping and subsequent imputation, a total of 7,918,344 variants were assessed for association with each PD subtype using logistic regression models that were adjusted for age, sex, and the top five principal components of GWAS data. RESULTS We identified one genome-wide significant association (P < 5 × 10-8), which was between the MIR3976HG rs7504760 variant and the AR subtype (Odds ratio [OR] = 6.12, P = 2.57 × 10-8). Suggestive associations (P < 1 × 10-6) were observed regarding TD for RP11-497G19.3/RP11-497G19.1 rs7304254 (OR = 3.33, P = 3.89 × 10-7), regarding GD for HES2 rs111473931 (OR = 3.18, P = 6.85 × 10-7), RP11-400D2.3/CTD-2012I17.1 rs149082205 (OR = 8.96, P = 9.08 × 10-7), and RN7SL408P/SGK1 rs56161738 (OR = 2.97, P = 6.19 × 10-7), and regarding MX for MMRN2 rs112991171 (OR = 4.98, P = 1.02 × 10-7). CONCLUSION Our findings indicate that genetic variation may account for part of the clinical heterogeneity of PD. In particular, we found a novel genome-wide significant association between MIR3976HG variation and the AR PD subtype. Replication of these findings will be important in order to better define the genetic architecture of clinical variability in PD disease presentation.
Collapse
Affiliation(s)
- Jarosław Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA; Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland; Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., Gdansk, Poland; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Elliot J Cahn
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Yingxue Ren
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | - Patrick W Johnson
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | - Zachary S Quicksall
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
23
|
Goddard TR, Brookes KJ, Sharma R, Moemeni A, Rajkumar AP. Dementia with Lewy Bodies: Genomics, Transcriptomics, and Its Future with Data Science. Cells 2024; 13:223. [PMID: 38334615 PMCID: PMC10854541 DOI: 10.3390/cells13030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Dementia with Lewy bodies (DLB) is a significant public health issue. It is the second most common neurodegenerative dementia and presents with severe neuropsychiatric symptoms. Genomic and transcriptomic analyses have provided some insight into disease pathology. Variants within SNCA, GBA, APOE, SNCB, and MAPT have been shown to be associated with DLB in repeated genomic studies. Transcriptomic analysis, conducted predominantly on candidate genes, has identified signatures of synuclein aggregation, protein degradation, amyloid deposition, neuroinflammation, mitochondrial dysfunction, and the upregulation of heat-shock proteins in DLB. Yet, the understanding of DLB molecular pathology is incomplete. This precipitates the current clinical position whereby there are no available disease-modifying treatments or blood-based diagnostic biomarkers. Data science methods have the potential to improve disease understanding, optimising therapeutic intervention and drug development, to reduce disease burden. Genomic prediction will facilitate the early identification of cases and the timely application of future disease-modifying treatments. Transcript-level analyses across the entire transcriptome and machine learning analysis of multi-omic data will uncover novel signatures that may provide clues to DLB pathology and improve drug development. This review will discuss the current genomic and transcriptomic understanding of DLB, highlight gaps in the literature, and describe data science methods that may advance the field.
Collapse
Affiliation(s)
- Thomas R. Goddard
- Mental Health and Clinical Neurosciences Academic Unit, Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham NG7 2TU, UK
| | - Keeley J. Brookes
- Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Riddhi Sharma
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - Armaghan Moemeni
- School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
| | - Anto P. Rajkumar
- Mental Health and Clinical Neurosciences Academic Unit, Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham NG7 2TU, UK
| |
Collapse
|
24
|
Shantaraman A, Dammer EB, Ugochukwu O, Duong DM, Yin L, Carter EK, Gearing M, Chen-Plotkin A, Lee EB, Trojanowski JQ, Bennett DA, Lah JJ, Levey AI, Seyfried NT, Higginbotham L. Network Proteomics of the Lewy Body Dementia Brain Reveals Presynaptic Signatures Distinct from Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576728. [PMID: 38328211 PMCID: PMC10849701 DOI: 10.1101/2024.01.23.576728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Lewy body dementia (LBD), a class of disorders comprising Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), features substantial clinical and pathological overlap with Alzheimer's disease (AD). The identification of biomarkers unique to LBD pathophysiology could meaningfully advance its diagnosis, monitoring, and treatment. Using quantitative mass spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral prefrontal cortex (DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, Parkinson's disease (PD), PDD, and DLB diagnoses. We then analyzed co-expression network protein alterations in those with LBD, validated these disease signatures in two independent LBD datasets, and compared these findings to those observed in network analyses of AD cases. The LBD network revealed numerous groups or "modules" of co-expressed proteins significantly altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. A comparison of validated LBD signatures to those of AD identified distinct differences between the two diseases. Notably, synuclein-associated presynaptic modules were elevated in LBD but decreased in AD relative to controls. We also found that glial-associated matrisome signatures consistently elevated in AD were more variably altered in LBD, ultimately stratifying those LBD cases with low versus high burdens of concurrent beta-amyloid deposition. In conclusion, unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD frontal cortex distinct from alterations in AD. These results highlight the LBD brain network proteome as a promising source of biomarkers that could enhance clinical recognition and management.
Collapse
Affiliation(s)
- Anantharaman Shantaraman
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B. Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Obiadada Ugochukwu
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M. Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Luming Yin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - E. Kathleen Carter
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Marla Gearing
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - James J. Lah
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I. Levey
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lenora Higginbotham
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
25
|
Jonson C, Levine KS, Lake J, Hertslet L, Jones L, Patel D, Kim J, Bandres-Ciga S, Terry N, Mata IF, Blauwendraat C, Singleton AB, Nalls MA, Yokoyama JS, Leonard HL. Assessing the lack of diversity in genetics research across neurodegenerative diseases: a systematic review of the GWAS Catalog and literature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.08.24301007. [PMID: 38260595 PMCID: PMC10802650 DOI: 10.1101/2024.01.08.24301007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Importance The under-representation of participants with non-European ancestry in genome-wide association studies (GWAS) is a critical issue that has significant implications, including hindering the progress of precision medicine initiatives. This issue is particularly significant in the context of neurodegenerative diseases (NDDs), where current therapeutic approaches have shown limited success. Addressing this under-representation is crucial to harnessing the full potential of genomic medicine in underserved communities and improving outcomes for NDD patients. Objective Our primary objective was to assess the representation of non-European ancestry participants in genetic discovery efforts related to NDDs. We aimed to quantify the extent of inclusion of diverse ancestry groups in NDD studies and determine the number of associated loci identified in more inclusive studies. Specifically, we sought to highlight the disparities in research efforts and outcomes between studies predominantly involving European ancestry participants and those deliberately targeting non-European or multi-ancestry populations across NDDs. Evidence Review We conducted a systematic review utilizing existing GWAS results and publications to assess the inclusion of diverse ancestry groups in neurodegeneration and neurogenetics studies. Our search encompassed studies published up to the end of 2022, with a focus on identifying research that deliberately included non-European or multi-ancestry cohorts. We employed rigorous methods for the inclusion of identified articles and quality assessment. Findings Our review identified a total of 123 NDD GWAS. Strikingly, 82% of these studies predominantly featured participants of European ancestry. Endeavors specifically targeting non-European or multi-ancestry populations across NDDs identified only 52 risk loci. This contrasts with predominantly European studies, which reported over 90 risk loci for a single disease. Encouragingly, over 65% of these discoveries occurred in 2020 or later, indicating a recent increase in studies deliberately including non-European cohorts. Conclusions and relevance Our findings underscore the pressing need for increased diversity in neurodegenerative research. The significant under-representation of non-European ancestry participants in NDD GWAS limits our understanding of the genetic underpinnings of these diseases. To advance the field of neurodegenerative research and develop more effective therapies, it is imperative that future investigations prioritize and harness the genomic diversity present within and across global populations.
Collapse
Affiliation(s)
- Caroline Jonson
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
- Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA USA
| | - Kristin S. Levine
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
| | - Julie Lake
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD USA 20892
| | - Linnea Hertslet
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
| | - Lietsel Jones
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
| | - Dhairya Patel
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jeff Kim
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD USA 20892
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
| | - Nancy Terry
- Division of Library Services, Office of Research Services, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Ignacio F. Mata
- Genomic Medicine Institute, Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD USA 20892
| | - Mike A. Nalls
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD USA 20892
| | - Jennifer S. Yokoyama
- Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA USA
| | - Hampton L. Leonard
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD USA 20892
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
26
|
Demby T, Gross PS, Mandelblatt J, Huang JK, Rebeck GW. The chemotherapeutic agent doxorubicin induces brain senescence, with modulation by APOE genotype. Exp Neurol 2024; 371:114609. [PMID: 37944881 PMCID: PMC11302516 DOI: 10.1016/j.expneurol.2023.114609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Many cancer patients experience serious cognitive problems related to their treatment, which can greatly affect their quality of life. The molecular mechanisms of this cancer chemotherapy-induced cognitive impairment (CICI) are unknown, thus slowing the development of preventative approaches. We hypothesized that cancer chemotherapies could induce cellular senescence in the brain, creating a pro-inflammatory environment and damaging normal brain communication. We tested this hypothesis using the common chemotherapeutic agent doxorubicin in two independent mouse models. In the first model, we used mice that express tdTomato under the pdkn2a (p16) promoter; p16 is a regulator of cellular senescence, and its upregulation is denoted by the presence of fluorescently tagged cells. Two weeks after exposure to three doses of 5 mg/kg doxorubicin, the number of tdTomato positive cells were increased nearly three-fold in both the cerebral cortex and the hippocampus. tdTomato staining co-localized with neurons, microglia, oligodendrocyte precursor cells, and endothelial cells, but not astrocytes. In the second model, we used APOE knock-in mice, since the APOE4 allele is a risk factor for CICI in humans and mouse models. We isolated RNA from the cerebral cortex of APOE3 and APOE4 mice from one to 21 days after a single dose of 10 mg/kg doxorubicin. Using NanoString analysis of over 700 genes related to neuroinflammation and RT-qPCR analysis of cerebral cortex transcripts, we found two-fold induction of four senescence-related genes at three weeks in the APOE4 mice compared to the APOE3 control mice: p21(cdkn1a), p16, Gadd45a, and Egr1. We conclude that doxorubicin promotes cellular senescence pathways in the brain, supporting the hypothesis that drugs to eliminate senescent cells could be useful in preventing CICI.
Collapse
Affiliation(s)
- Tamar Demby
- National Institute of Diabetes and Digestive and Kidney Disease, Bethesda, MD, United States of America
| | - Phillip S Gross
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States of America
| | - Jeanne Mandelblatt
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center and Georgetown Lombardi Institute for Cancer and Aging Research, Georgetown University, Washington, DC, United States of America
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, DC, United States of America.
| |
Collapse
|
27
|
Bettencourt C, Skene N, Bandres-Ciga S, Anderson E, Winchester LM, Foote IF, Schwartzentruber J, Botia JA, Nalls M, Singleton A, Schilder BM, Humphrey J, Marzi SJ, Toomey CE, Kleifat AA, Harshfield EL, Garfield V, Sandor C, Keat S, Tamburin S, Frigerio CS, Lourida I, Ranson JM, Llewellyn DJ. Artificial intelligence for dementia genetics and omics. Alzheimers Dement 2023; 19:5905-5921. [PMID: 37606627 PMCID: PMC10841325 DOI: 10.1002/alz.13427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023]
Abstract
Genetics and omics studies of Alzheimer's disease and other dementia subtypes enhance our understanding of underlying mechanisms and pathways that can be targeted. We identified key remaining challenges: First, can we enhance genetic studies to address missing heritability? Can we identify reproducible omics signatures that differentiate between dementia subtypes? Can high-dimensional omics data identify improved biomarkers? How can genetics inform our understanding of causal status of dementia risk factors? And which biological processes are altered by dementia-related genetic variation? Artificial intelligence (AI) and machine learning approaches give us powerful new tools in helping us to tackle these challenges, and we review possible solutions and examples of best practice. However, their limitations also need to be considered, as well as the need for coordinated multidisciplinary research and diverse deeply phenotyped cohorts. Ultimately AI approaches improve our ability to interrogate genetics and omics data for precision dementia medicine. HIGHLIGHTS: We have identified five key challenges in dementia genetics and omics studies. AI can enable detection of undiscovered patterns in dementia genetics and omics data. Enhanced and more diverse genetics and omics datasets are still needed. Multidisciplinary collaborative efforts using AI can boost dementia research.
Collapse
Affiliation(s)
- Conceicao Bettencourt
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Nathan Skene
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Emma Anderson
- Department of Mental Health of Older People, Division of Psychiatry, University College London, London, UK
| | | | - Isabelle F Foote
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jeremy Schwartzentruber
- Open Targets, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
- Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, California, USA
| | - Juan A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Mike Nalls
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Data Tecnica International LLC, Washington, DC, USA
| | - Andrew Singleton
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian M Schilder
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Jack Humphrey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Christina E Toomey
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Ahmad Al Kleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eric L Harshfield
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Victoria Garfield
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, London, UK
| | - Cynthia Sandor
- UK Dementia Research Institute. School of Medicine, Cardiff University, Cardiff, UK
| | - Samuel Keat
- UK Dementia Research Institute. School of Medicine, Cardiff University, Cardiff, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Section, University of Verona, Verona, Italy
| | - Carlo Sala Frigerio
- UK Dementia Research Institute, Queen Square Institute of Neurology, University College London, London, UK
| | | | | | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK
- The Alan Turing Institute, London, UK
| |
Collapse
|
28
|
Vuic B, Milos T, Tudor L, Nikolac Perkovic M, Konjevod M, Nedic Erjavec G, Farkas V, Uzun S, Mimica N, Svob Strac D. Pharmacogenomics of Dementia: Personalizing the Treatment of Cognitive and Neuropsychiatric Symptoms. Genes (Basel) 2023; 14:2048. [PMID: 38002991 PMCID: PMC10671071 DOI: 10.3390/genes14112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Dementia is a syndrome of global and progressive deterioration of cognitive skills, especially memory, learning, abstract thinking, and orientation, usually affecting the elderly. The most common forms are Alzheimer's disease, vascular dementia, and other (frontotemporal, Lewy body disease) dementias. The etiology of these multifactorial disorders involves complex interactions of various environmental and (epi)genetic factors and requires multiple forms of pharmacological intervention, including anti-dementia drugs for cognitive impairment, antidepressants, antipsychotics, anxiolytics and sedatives for behavioral and psychological symptoms of dementia, and other drugs for comorbid disorders. The pharmacotherapy of dementia patients has been characterized by a significant interindividual variability in drug response and the development of adverse drug effects. The therapeutic response to currently available drugs is partially effective in only some individuals, with side effects, drug interactions, intolerance, and non-compliance occurring in the majority of dementia patients. Therefore, understanding the genetic basis of a patient's response to pharmacotherapy might help clinicians select the most effective treatment for dementia while minimizing the likelihood of adverse reactions and drug interactions. Recent advances in pharmacogenomics may contribute to the individualization and optimization of dementia pharmacotherapy by increasing its efficacy and safety via a prediction of clinical outcomes. Thus, it can significantly improve the quality of life in dementia patients.
Collapse
Affiliation(s)
- Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Vladimir Farkas
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| |
Collapse
|
29
|
Weintraub D. What's in a Name? The Time Has Come to Unify Parkinson's Disease and Dementia with Lewy Bodies. Mov Disord 2023; 38:1977-1981. [PMID: 37614069 DOI: 10.1002/mds.29590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Daniel Weintraub
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Harvey J, Pishva E, Chouliaras L, Lunnon K. Elucidating distinct molecular signatures of Lewy body dementias. Neurobiol Dis 2023; 188:106337. [PMID: 37918758 DOI: 10.1016/j.nbd.2023.106337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023] Open
Abstract
Dementia with Lewy bodies and Parkinson's disease dementia are common neurodegenerative diseases that share similar neuropathological profiles and spectra of clinical symptoms but are primarily differentiated by the order in which symptoms manifest. The question of whether a distinct molecular pathological profile could distinguish these disorders is yet to be answered. However, in recent years, studies have begun to investigate genomic, epigenomic, transcriptomic and proteomic differences that may differentiate these disorders, providing novel insights in to disease etiology. In this review, we present an overview of the clinical and pathological hallmarks of Lewy body dementias before summarizing relevant research into genetic, epigenetic, transcriptional and protein signatures in these diseases, with a particular interest in those resolving "omic" level changes. We conclude by suggesting future research directions to address current gaps and questions present within the field.
Collapse
Affiliation(s)
- Joshua Harvey
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Ehsan Pishva
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Leonidas Chouliaras
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Specialist Dementia and Frailty Service, Essex Partnership University NHS Foundation Trust, Epping, UK
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
31
|
Hou X, Heckman MG, Fiesel FC, Koga S, Soto-Beasley AI, Watzlawik JO, Zhao J, Valentino RR, Johnson PW, White LJ, Quicksall ZS, Reddy JS, Bras J, Guerreiro R, Zhao N, Bu G, Dickson DW, Ross OA, Springer W. Genome-wide association study identifies APOE and ZMIZ1 variants as mitophagy modifiers in Lewy body disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.16.23297100. [PMID: 37905059 PMCID: PMC10615013 DOI: 10.1101/2023.10.16.23297100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The PINK1-PRKN pathway mediates a critical quality control to maintain mitochondrial health and function. Together the kinase-ligase pair identifies and decorate damaged mitochondria with phosphorylated ubiquitin (p-S65-Ub). This selective label serves as the mitophagy tag and facilitates their degradation via autophagy-lysosome system. While complete loss of PINK1 or PRKN function causes early-onset Parkinson disease, much broader mitophagy impairments are emerging across neurodegenerative disorders. We previously found age- and disease-dependent accumulation of p-S65-Ub signal in the hippocampus of autopsy brains with Lewy body disease (LBD). However, the contribution of genetic variation to mitochondrial damage and p-S65-Ub levels remains unknown in LBD cases. To identify novel regulators of PINK1-PRKN mitophagy in LBD, we performed an unbiased genome-wide association study of hippocampal p-S65-Ub level with 1,012 autopsy confirmed LBD samples. Using an established, mostly automated workflow, hippocampal sections were immunostained for p-S65-Ub, scanned, and quantified with unbiased algorithms. Functional validation of the significant hit was performed in animal model and human induced pluripotent stem cells (hiPSCs). We identified a strong association with p-S65-Ub for APOE4 (rs429358; β : 0.50, 95% CI: 0.41 to 0.69; p =8.67x10 -25 ) and a genome-wide significant association for ZMIZ1 (rs6480922; β : -0.33, 95% CI: -0.45 to -0.22; p =1.42x10 -8 ). The increased p-S65-Ub levels in APOE4 -carrier may be mediated by both co-pathology-dependent and -independent mechanisms, which was confirmed in Apoe-targeted replacement mice and hiPSC-derived astrocytes. Intriguingly, ZMIZ1 rs6480922 also significantly associated with increased brain weight and reduced neuropathological burden indicating a potential role as a resilience factor. Our findings nominate novel mitophagy regulators in LBD brain ( ZMIZ1 locus) and highlight a strong association of APOE4 with mitophagy alteration. With APOE4 being the strongest known risk factor for clinical Alzheimer's disease and dementia with Lewy bodies, our findings suggest a common mechanistic link underscoring the importance of mitochondrial quality control.
Collapse
|
32
|
Tunold JA, Tan MMX, Koga S, Geut H, Rozemuller AJM, Valentino R, Sekiya H, Martin NB, Heckman MG, Bras J, Guerreiro R, Dickson DW, Toft M, van de Berg WDJ, Ross OA, Pihlstrøm L. Lysosomal polygenic risk is associated with the severity of neuropathology in Lewy body disease. Brain 2023; 146:4077-4087. [PMID: 37247383 PMCID: PMC10545498 DOI: 10.1093/brain/awad183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Intraneuronal accumulation of misfolded α-synuclein is the pathological hallmark of Parkinson's disease and dementia with Lewy bodies, often co-occurring with variable degrees of Alzheimer's disease related neuropathology. Genetic association studies have successfully identified common variants associated with disease risk and phenotypic traits in Lewy body disease, yet little is known about the genetic contribution to neuropathological heterogeneity. Using summary statistics from Parkinson's disease and Alzheimer's disease genome-wide association studies, we calculated polygenic risk scores and investigated the relationship with Lewy, amyloid-β and tau pathology. Associations were nominated in neuropathologically defined samples with Lewy body disease from the Netherlands Brain Bank (n = 217) and followed up in an independent sample series from the Mayo Clinic Brain Bank (n = 394). We also generated stratified polygenic risk scores based on single-nucleotide polymorphisms annotated to eight functional pathways or cell types previously implicated in Parkinson's disease and assessed for association with Lewy pathology in subgroups with and without significant Alzheimer's disease co-pathology. In an ordinal logistic regression model, the Alzheimer's disease polygenic risk score was associated with concomitant amyloid-β and tau pathology in both cohorts. Moreover, both cohorts showed a significant association between lysosomal pathway polygenic risk and Lewy pathology, which was more consistent than the association with a general Parkinson's disease risk score and specific to the subset of samples without significant concomitant Alzheimer's disease related neuropathology. Our findings provide proof of principle that the specific risk alleles a patient carries for Parkinson's and Alzheimer's disease also influence key aspects of the underlying neuropathology in Lewy body disease. The interrelations between genetic architecture and neuropathology are complex, as our results implicate lysosomal risk loci specifically in the subset of samples without Alzheimer's disease co-pathology. Our findings hold promise that genetic profiling may help predict the vulnerability to specific neuropathologies in Lewy body disease, with potential relevance for the further development of precision medicine in these disorders.
Collapse
Affiliation(s)
- Jon-Anders Tunold
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hanneke Geut
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Program Neurodegeneration, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Rebecca Valentino
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nicholas B Martin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Program Neurodegeneration, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
33
|
Huang X, Wang C, Zhang T, Li R, Chen L, Leung KL, Lakso M, Zhou Q, Zhang H, Wong G. PIWI-interacting RNA expression regulates pathogenesis in a Caenorhabditis elegans model of Lewy body disease. Nat Commun 2023; 14:6137. [PMID: 37783675 PMCID: PMC10545829 DOI: 10.1038/s41467-023-41881-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that regulate gene expression, yet their molecular functions in neurobiology are unclear. While investigating neurodegeneration mechanisms using human α-syn(A53T)Tg and AβTg;α-syn(A53T)Tg pan-neuronal overexpressing strains, we unexpectedly observed dysregulation of piRNAs. RNAi screening revealed that knock down of piRNA biogenesis genes improved thrashing behavior; further, a tofu-1 gene deletion ameliorated phenotypic deficits in α-syn(A53T)Tg and AβTg;α-syn(A53T)Tg transgenic strains. piRNA expression was extensively downregulated and H3K9me3 marks were decreased after tofu-1 deletion in α-syn(A53T)Tg and AβTg;α-syn(A53T)Tg strains. Dysregulated piRNAs targeted protein degradation genes suggesting that a decrease of piRNA expression leads to an increase of degradation ability in C. elegans. Finally, we interrogated piRNA expression in brain samples from PD patients. piRNAs were observed to be widely overexpressed at late motor stage. In this work, our results provide evidence that piRNAs are mediators in pathogenesis of Lewy body diseases and suggest a molecular mechanism for neurodegeneration in these and related disorders.
Collapse
Affiliation(s)
- Xiaobing Huang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Changliang Wang
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 510799, China
| | - Tianjiao Zhang
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Rongzhen Li
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, 515063, China
| | - Ka Lai Leung
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Merja Lakso
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Qinghua Zhou
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, China
| | - Hongjie Zhang
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Garry Wong
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China.
| |
Collapse
|
34
|
Talyansky S, Le Guen Y, Kasireddy N, Belloy ME, Greicius MD. APOE-ε4 and BIN1 increase risk of Alzheimer's disease pathology but not specifically of Lewy body pathology. Acta Neuropathol Commun 2023; 11:149. [PMID: 37700353 PMCID: PMC10496176 DOI: 10.1186/s40478-023-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/22/2023] [Indexed: 09/14/2023] Open
Abstract
Lewy body (LB) pathology commonly occurs in individuals with Alzheimer's disease (AD) pathology. However, it remains unclear which genetic risk factors underlie AD pathology, LB pathology, or AD-LB co-pathology. Notably, whether APOE-ε4 affects risk of LB pathology independently from AD pathology is controversial. We adapted criteria from the literature to classify 4,985 subjects from the National Alzheimer's Coordinating Center (NACC) and the Rush University Medical Center as AD-LB co-pathology (AD+LB+), sole AD pathology (AD+LB-), sole LB pathology (AD-LB+), or no pathology (AD-LB-). We performed a meta-analysis of a genome-wide association study (GWAS) per subpopulation (NACC/Rush) for each disease phenotype compared to the control group (AD-LB-), and compared the AD+LB+ to AD+LB- groups. APOE-ε4 was significantly associated with risk of AD+LB- and AD+LB+ compared to AD-LB-. However, APOE-ε4 was not associated with risk of AD-LB+ compared to AD-LB- or risk of AD+LB+ compared to AD+LB-. Associations at the BIN1 locus exhibited qualitatively similar results. These results suggest that APOE-ε4 is a risk factor for AD pathology, but not for LB pathology when decoupled from AD pathology. The same holds for BIN1 risk variants. These findings, in the largest AD-LB neuropathology GWAS to date, distinguish the genetic risk factors for sole and dual AD-LB pathology phenotypes. Our GWAS meta-analysis summary statistics, derived from phenotypes based on postmortem pathologic evaluation, may provide more accurate disease-specific polygenic risk scores compared to GWAS based on clinical diagnoses, which are likely confounded by undetected dual pathology and clinical misdiagnoses of dementia type.
Collapse
Affiliation(s)
- Seth Talyansky
- Department of Neurology and Neurological Sciences, Stanford University, 290 Jane Stanford Way, E265, Stanford, CA, 94305-5090, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, 290 Jane Stanford Way, E265, Stanford, CA, 94305-5090, USA.
- Institut du Cerveau, Paris Brain Institute - ICM, Paris, France.
| | - Nandita Kasireddy
- Department of Neurology and Neurological Sciences, Stanford University, 290 Jane Stanford Way, E265, Stanford, CA, 94305-5090, USA
| | - Michael E Belloy
- Department of Neurology and Neurological Sciences, Stanford University, 290 Jane Stanford Way, E265, Stanford, CA, 94305-5090, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University, 290 Jane Stanford Way, E265, Stanford, CA, 94305-5090, USA
| |
Collapse
|
35
|
Voicu V, Tataru CP, Toader C, Covache-Busuioc RA, Glavan LA, Bratu BG, Costin HP, Corlatescu AD, Ciurea AV. Decoding Neurodegeneration: A Comprehensive Review of Molecular Mechanisms, Genetic Influences, and Therapeutic Innovations. Int J Mol Sci 2023; 24:13006. [PMID: 37629187 PMCID: PMC10455143 DOI: 10.3390/ijms241613006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders often acquire due to genetic predispositions and genomic alterations after exposure to multiple risk factors. The most commonly found pathologies are variations of dementia, such as frontotemporal dementia and Lewy body dementia, as well as rare subtypes of cerebral and cerebellar atrophy-based syndromes. In an emerging era of biomedical advances, molecular-cellular studies offer an essential avenue for a thorough recognition of the underlying mechanisms and their possible implications in the patient's symptomatology. This comprehensive review is focused on deciphering molecular mechanisms and the implications regarding those pathologies' clinical advancement and provides an analytical overview of genetic mutations in the case of neurodegenerative disorders. With the help of well-developed modern genetic investigations, these clinically complex disturbances are highly understood nowadays, being an important step in establishing molecularly targeted therapies and implementing those approaches in the physician's practice.
Collapse
Affiliation(s)
- Victor Voicu
- Pharmacology, Toxicology and Clinical Psychopharmacology, “Carol Davila” University of Medicine and Pharmacy in Bucharest, 020021 Bucharest, Romania;
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Calin Petre Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
36
|
Lloyd GM, Long B, Quintin S, Sorrentino ZA, Gorion KMM, Bell BM, Carrillo D, Sullivan P, Borchelt D, Giasson BI. Carboxyl truncation of α-synuclein occurs early and is influenced by human APOE genotype in transgenic mouse models of α-synuclein pathogenesis. Acta Neuropathol Commun 2023; 11:119. [PMID: 37482615 PMCID: PMC10363304 DOI: 10.1186/s40478-023-01623-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023] Open
Abstract
Post-translational modifications to the carboxyl (C) terminus domain of α-synuclein can play an important role in promoting the pathologic aggregation of α-synuclein. Various cleavages that diminish this highly charged, proline-rich region can result in exposure of hydrophobic, aggregation-prone regions, thereby accelerating the aggregation kinetics of α-synuclein into misfolded, pathologic forms. C-terminally truncated forms of α-synuclein are abundant in human diseased brains compared to controls, suggesting a role in disease pathogenesis. Factors that alter the homeostatic proteolytic processing of α-synuclein may ultimately tip the balance towards a progressive disease state. Apolipoprotein E (APOE) has been implicated in the acceleration of cognitive impairment in patients with Lewy body diseases. The APOE4 isoform has been found to cause dysregulation in the endosomal-lysosomal pathway, which could result in altered α-synuclein degradation as a potential mechanism for promoting its pathologic misfolding. Herein, we investigate the spatiotemporal accumulation of C-terminally truncated α-synuclein in a seeded and progressive mouse model of synucleinopathy. Furthermore, we study how this process is influenced in the context of mice that are altered to express either the human APOE3 or APOE4 isoforms. We found that specific C-terminal truncation of α-synuclein occurs at early stages of pathogenesis. We also found that proteolytic processing of this domain differs across various brain regions and is influenced by the presence of different human APOE isoforms. Our data demonstrate an early pathogenic role for C-terminally truncated α-synuclein, and highlight the influence of APOE isoforms in modulating its impact.
Collapse
Affiliation(s)
- Grace M Lloyd
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Brooke Long
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Stephan Quintin
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Zachary A Sorrentino
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kimberly-Marie M Gorion
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Brach M Bell
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Denise Carrillo
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Patrick Sullivan
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - David Borchelt
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
37
|
Talyansky S, Guen YL, Kasireddy N, Belloy ME, Greicius MD. APOE - ε 4 and BIN1 increase risk of Alzheimer's disease pathology but not specifically of Lewy body pathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.21.23288938. [PMID: 37503074 PMCID: PMC10371184 DOI: 10.1101/2023.04.21.23288938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Lewy body (LB) pathology commonly occurs in individuals with Alzheimer's disease (AD) pathology. However, it remains unclear which genetic risk factors underlie AD pathology, LB pathology, or AD-LB co-pathology. Notably, whether APOE - ε 4 affects risk of LB pathology independently from AD pathology is controversial. We adapted criteria from the literature to classify 4,985 subjects from the National Alzheimer's Coordinating Center (NACC) and the Rush University Medical Center as AD-LB co-pathology (AD + LB + ), sole AD pathology (AD + LB - ), sole LB pathology (AD - LB + ), or no pathology (AD - LB - ). We performed a meta-analysis of a genome-wide association study (GWAS) per subpopulation (NACC/Rush) for each disease phenotype compared to the control group (AD - LB - ), and compared the AD + LB + to AD + LB - groups. APOE - ε 4 was significantly associated with risk of AD + LB - and AD + LB + compared to AD - LB - . However, APOE - ε 4 was not associated with risk of AD - LB + compared to AD - LB - or risk of AD + LB + compared to AD + LB - . Associations at the BIN1 locus exhibited qualitatively similar results. These results suggest that APOE - ε 4 is a risk factor for AD pathology, but not for LB pathology when decoupled from AD pathology. The same holds for BIN1 risk variants. These findings, in the largest AD-LB neuropathology GWAS to date, distinguish the genetic risk factors for sole and dual AD-LB pathology phenotypes. Our GWAS meta-analysis summary statistics, derived from phenotypes based on postmortem pathologic evaluation, may provide more accurate disease-specific polygenic risk scores compared to GWAS based on clinical diagnoses, which are likely confounded by undetected dual pathology and clinical misdiagnoses of dementia type.
Collapse
Affiliation(s)
- Seth Talyansky
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Institut du Cerveau – Paris Brain Institute – ICM, Paris, France
| | - Nandita Kasireddy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael E. Belloy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael D. Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
38
|
Reynolds RH, Wagen AZ, Lona-Durazo F, Scholz SW, Shoai M, Hardy J, Gagliano Taliun SA, Ryten M. Local genetic correlations exist among neurodegenerative and neuropsychiatric diseases. NPJ Parkinsons Dis 2023; 9:70. [PMID: 37117178 PMCID: PMC10147945 DOI: 10.1038/s41531-023-00504-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/30/2023] Open
Abstract
Genetic correlation ([Formula: see text]) between traits can offer valuable insight into underlying shared biological mechanisms. Neurodegenerative diseases overlap neuropathologically and often manifest comorbid neuropsychiatric symptoms. However, global [Formula: see text] analyses show minimal [Formula: see text] among neurodegenerative and neuropsychiatric diseases. Importantly, local [Formula: see text] s can exist in the absence of global relationships. To investigate this possibility, we applied LAVA, a tool for local [Formula: see text] analysis, to genome-wide association studies of 3 neurodegenerative diseases (Alzheimer's disease, Lewy body dementia and Parkinson's disease) and 3 neuropsychiatric disorders (bipolar disorder, major depressive disorder and schizophrenia). We identified several local [Formula: see text] s missed in global analyses, including between (i) all 3 neurodegenerative diseases and schizophrenia and (ii) Alzheimer's and Parkinson's disease. For those local [Formula: see text] s identified in genomic regions containing disease-implicated genes, such as SNCA, CLU and APOE, incorporation of expression quantitative trait loci identified genes that may drive genetic overlaps between diseases. Collectively, we demonstrate that complex genetic relationships exist among neurodegenerative and neuropsychiatric diseases, highlighting putative pleiotropic genomic regions and genes. These findings imply sharing of pathogenic processes and the potential existence of common therapeutic targets.
Collapse
Affiliation(s)
- Regina H Reynolds
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Aaron Z Wagen
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, London, UK
- Neurodegeneration Biology Laboratory, The Francis Crick Institute, London, UK
| | - Frida Lona-Durazo
- Montréal Heart Institute, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Maryam Shoai
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - John Hardy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Sarah A Gagliano Taliun
- Montréal Heart Institute, Montréal, QC, Canada
- Department of Medicine & Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK.
| |
Collapse
|
39
|
Lou T, Tao B, Chen M. Relationship of Apolipoprotein E with Alzheimer's Disease and Other Neurological Disorders: An Updated Review. Neuroscience 2023; 514:123-140. [PMID: 36736614 DOI: 10.1016/j.neuroscience.2023.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) and other neurodegenerative diseases, for which there is no effective cure, cause great social burden. Apolipoprotein E (APOE) is an important lipid transporter, which has been shown to have a close relationship with AD and other neurological disorders in an increasing number of studies, suggesting its potential as a therapeutic target. In this review, we summarize the recent advances in clinical and basic research on the role of APOE in the pathogenesis of multiple neurological diseases, with an emphasis on the new associations between APOE and AD, and between APOE and depression. The progress of APOE research in Parkinson's disease (PD) and some other neurological diseases is briefly discussed.
Collapse
Affiliation(s)
- Tianwen Lou
- The First Clinical Medical College, Anhui Medical University, Hefei, China; Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Borui Tao
- The First Clinical Medical College, Anhui Medical University, Hefei, China; Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
40
|
Sensi SL, Russo M, Tiraboschi P. Biomarkers of diagnosis, prognosis, pathogenesis, response to therapy: Convergence or divergence? Lessons from Alzheimer's disease and synucleinopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:187-218. [PMID: 36796942 DOI: 10.1016/b978-0-323-85538-9.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Alzheimer's disease (AD) is the most common disorder associated with cognitive impairment. Recent observations emphasize the pathogenic role of multiple factors inside and outside the central nervous system, supporting the notion that AD is a syndrome of many etiologies rather than a "heterogeneous" but ultimately unifying disease entity. Moreover, the defining pathology of amyloid and tau coexists with many others, such as α-synuclein, TDP-43, and others, as a rule, not an exception. Thus, an effort to shift our AD paradigm as an amyloidopathy must be reconsidered. Along with amyloid accumulation in its insoluble state, β-amyloid is becoming depleted in its soluble, normal states, as a result of biological, toxic, and infectious triggers, requiring a shift from convergence to divergence in our approach to neurodegeneration. These aspects are reflected-in vivo-by biomarkers, which have become increasingly strategic in dementia. Similarly, synucleinopathies are primarily characterized by abnormal deposition of misfolded α-synuclein in neurons and glial cells and, in the process, depleting the levels of the normal, soluble α-synuclein that the brain needs for many physiological functions. The soluble to insoluble conversion also affects other normal brain proteins, such as TDP-43 and tau, accumulating in their insoluble states in both AD and dementia with Lewy bodies (DLB). The two diseases have been distinguished by the differential burden and distribution of insoluble proteins, with neocortical phosphorylated tau deposition more typical of AD and neocortical α-synuclein deposition peculiar to DLB. We propose a reappraisal of the diagnostic approach to cognitive impairment from convergence (based on clinicopathologic criteria) to divergence (based on what differs across individuals affected) as a necessary step for the launch of precision medicine.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pietro Tiraboschi
- Division of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
41
|
Toledo JB, Abdelnour C, Weil RS, Ferreira D, Rodriguez-Porcel F, Pilotto A, Wyman-Chick KA, Grothe MJ, Kane JPM, Taylor A, Rongve A, Scholz S, Leverenz JB, Boeve BF, Aarsland D, McKeith IG, Lewis S, Leroi I, Taylor JP. Dementia with Lewy bodies: Impact of co-pathologies and implications for clinical trial design. Alzheimers Dement 2023; 19:318-332. [PMID: 36239924 PMCID: PMC9881193 DOI: 10.1002/alz.12814] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 02/01/2023]
Abstract
Dementia with Lewy bodies (DLB) is clinically defined by the presence of visual hallucinations, fluctuations, rapid eye movement (REM) sleep behavioral disorder, and parkinsonism. Neuropathologically, it is characterized by the presence of Lewy pathology. However, neuropathological studies have demonstrated the high prevalence of coexistent Alzheimer's disease, TAR DNA-binding protein 43 (TDP-43), and cerebrovascular pathologic cases. Due to their high prevalence and clinical impact on DLB individuals, clinical trials should account for these co-pathologies in their design and selection and the interpretation of biomarkers values and outcomes. Here we discuss the frequency of the different co-pathologies in DLB and their cross-sectional and longitudinal clinical impact. We then evaluate the utility and possible applications of disease-specific and disease-nonspecific biomarkers and how co-pathologies can impact these biomarkers. We propose a framework for integrating multi-modal biomarker fingerprints and step-wise selection and assessment of DLB individuals for clinical trials, monitoring target engagement, and interpreting outcomes in the setting of co-pathologies.
Collapse
Affiliation(s)
- Jon B Toledo
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas, USA
| | - Carla Abdelnour
- Fundació ACE. Barcelona Alzheimer Treatment and Research Center, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Rimona S Weil
- Dementia Research Centre, Wellcome Centre for Human Neuroimaging, Movement Disorders Consortium, National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer's Research, Karolinska Institutet, Stockholm, Sweden
| | | | - Andrea Pilotto
- Department of Clinical and Experimental Sciences, University of Brescia, Parkinson's Disease Rehabilitation Centre, FERB ONLUS-S, Isidoro Hospital, Trescore Balneario (BG), Italy
| | - Kathryn A Wyman-Chick
- HealthPartners Center for Memory and Aging and Struthers Parkinson's Center, Saint Paul, Minnesota, USA
| | - Michel J Grothe
- Instituto de Biomedicina de Sevilla (IBiS), Unidad de Trastornos del Movimiento, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Joseph P M Kane
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Angela Taylor
- Lewy Body Dementia Association, Lilburn, Georgia, USA
| | - Arvid Rongve
- Department of Research and Innovation, Institute of Clinical Medicine (K1), Haugesund Hospital, Norway and The University of Bergen, Bergen, Norway
| | - Sonja Scholz
- Department of Neurology, National Institute of Neurological Disorders and Stroke, Neurodegenerative Diseases Research Unit, Johns Hopkins University Medical Center, Baltimore, Maryland, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bradley F Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Ian G McKeith
- Newcastle University Translational and Clinical Research Institute (NUTCRI, Newcastle upon Tyne, UK
| | - Simon Lewis
- ForeFront Parkinson's Disease Research Clinic, School of Medical Sciences, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Iracema Leroi
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - John P Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
42
|
From protein biomarkers to proteomics in dementia with Lewy Bodies. Ageing Res Rev 2023; 83:101771. [PMID: 36328346 DOI: 10.1016/j.arr.2022.101771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Dementia with Lewy Bodies (DLB) is the second most common neurodegenerative dementia. Despite considerable research progress, there remain gaps in our understanding of the pathophysiology and there is no disease-modifying treatment. Proteomics is a powerful tool to elucidate complex biological pathways across heterogenous conditions. This review summarizes the widely used proteomic methods and presents evidence for protein dysregulation in the brain and peripheral tissues in DLB. Proteomics of post-mortem brain tissue shows that DLB shares common features with other dementias, such as synaptic dysfunction, but retains a unique protein signature. Promising diagnostic biomarkers are being identified in cerebrospinal fluid (CSF), blood, and peripheral tissues, such as serum Heart-type fatty acid binding protein. Research is needed to track these changes from the prodromal stage to established dementia, with standardized workflows to ensure replicability. Identifying novel protein targets in causative biological pathways could lead to the development of new targeted therapeutics or the stratification of participants for clinical trials.
Collapse
|
43
|
Krohn L, Heilbron K, Blauwendraat C, Reynolds RH, Yu E, Senkevich K, Rudakou U, Estiar MA, Gustavsson EK, Brolin K, Ruskey JA, Freeman K, Asayesh F, Chia R, Arnulf I, Hu MTM, Montplaisir JY, Gagnon JF, Desautels A, Dauvilliers Y, Gigli GL, Valente M, Janes F, Bernardini A, Högl B, Stefani A, Ibrahim A, Šonka K, Kemlink D, Oertel W, Janzen A, Plazzi G, Biscarini F, Antelmi E, Figorilli M, Puligheddu M, Mollenhauer B, Trenkwalder C, Sixel-Döring F, Cochen De Cock V, Monaca CC, Heidbreder A, Ferini-Strambi L, Dijkstra F, Viaene M, Abril B, Boeve BF, Scholz SW, Ryten M, Bandres-Ciga S, Noyce A, Cannon P, Pihlstrøm L, Nalls MA, Singleton AB, Rouleau GA, Postuma RB, Gan-Or Z. Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects. Nat Commun 2022; 13:7496. [PMID: 36470867 PMCID: PMC9722930 DOI: 10.1038/s41467-022-34732-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/03/2022] [Indexed: 12/11/2022] Open
Abstract
Rapid-eye movement (REM) sleep behavior disorder (RBD), enactment of dreams during REM sleep, is an early clinical symptom of alpha-synucleinopathies and defines a more severe subtype. The genetic background of RBD and its underlying mechanisms are not well understood. Here, we perform a genome-wide association study of RBD, identifying five RBD risk loci near SNCA, GBA, TMEM175, INPP5F, and SCARB2. Expression analyses highlight SNCA-AS1 and potentially SCARB2 differential expression in different brain regions in RBD, with SNCA-AS1 further supported by colocalization analyses. Polygenic risk score, pathway analysis, and genetic correlations provide further insights into RBD genetics, highlighting RBD as a unique alpha-synucleinopathy subpopulation that will allow future early intervention.
Collapse
Affiliation(s)
- Lynne Krohn
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | | | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Regina H Reynolds
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - Eric Yu
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Konstantin Senkevich
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Uladzislau Rudakou
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Mehrdad A Estiar
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Emil K Gustavsson
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Kajsa Brolin
- Lund University, Translational Neurogenetics Unit, Department of Experimental Medical Science, Lund, Sweden
| | - Jennifer A Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Kathryn Freeman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Isabelle Arnulf
- Sleep Disorders Unit, Pitié Salpêtrière Hospital, APHP-Sorbonne, Paris Brain Insitute and Sorbonne University, Paris, France
| | - Michele T M Hu
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jacques Y Montplaisir
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Jean-François Gagnon
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
| | - Alex Desautels
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Institute Neuroscience Montpellier Inserm, Montpellier, France
| | - Gian Luigi Gigli
- Clinical Neurology Unit, Department of Neurosciences, University Hospital of Udine, Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Department of Neurosciences, University Hospital of Udine, Udine, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Francesco Janes
- Clinical Neurology Unit, Department of Neurosciences, University Hospital of Udine, Udine, Italy
| | - Andrea Bernardini
- Clinical Neurology Unit, Department of Neurosciences, University Hospital of Udine, Udine, Italy
| | - Birgit Högl
- Sleep Disorders Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ambra Stefani
- Sleep Disorders Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Abubaker Ibrahim
- Sleep Disorders Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Karel Šonka
- Department of Neurology and Centre of Clinical Neuroscience, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - David Kemlink
- Department of Neurology and Centre of Clinical Neuroscience, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Wolfgang Oertel
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Annette Janzen
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Giuseppe Plazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Francesco Biscarini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Elena Antelmi
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michela Figorilli
- Department of Medical Sciences and Public Health, Sleep Disorder Research Center, University of Cagliari, Cagliari, Italy
| | - Monica Puligheddu
- Department of Medical Sciences and Public Health, Sleep Disorder Research Center, University of Cagliari, Cagliari, Italy
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurology, University Medical Centre Goettingen, Goettingen, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurology, University Medical Centre Goettingen, Goettingen, Germany
| | - Friederike Sixel-Döring
- Department of Neurology, Philipps-University, Marburg, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Valérie Cochen De Cock
- Sleep and Neurology Unit, Beau Soleil Clinic, Montpellier, France
- EuroMov Digital Health in Motion, University of Montpellier IMT Mines Ales, Montpellier, France
| | - Christelle Charley Monaca
- University Lille North of France, Department of Clinical Neurophysiology and Sleep Center, CHU Lille, Lille, France
| | - Anna Heidbreder
- Institute of Sleep Medicine and Neuromuscular Disorders, University of Münster, Münster, Germany
| | - Luigi Ferini-Strambi
- Department of Neurological Sciences, Università Vita-Salute San Raffaele, Milan, Italy
| | - Femke Dijkstra
- Laboratory for Sleep Disorders, St. Dimpna Regional Hospital, Geel, Belgium
- Department of Neurology, St. Dimpna Regional Hospital, Geel, Belgium
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Mineke Viaene
- Laboratory for Sleep Disorders, St. Dimpna Regional Hospital, Geel, Belgium
- Department of Neurology, St. Dimpna Regional Hospital, Geel, Belgium
| | - Beatriz Abril
- Sleep disorder Unit, Carémeau Hospital, University Hospital of Nîmes, Nîmes, France
| | | | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Alastair Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
- Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology, London, UK
| | | | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mike A Nalls
- Data Tecnica International, Glen Echo, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Ronald B Postuma
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
44
|
Levy G, Levin B, Engelhardt E. Advancing the Genetics of Lewy Body Disorders with Disease-Modifying Treatments in Mind. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2200011. [PMID: 36911298 PMCID: PMC9993470 DOI: 10.1002/ggn2.202200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/13/2022] [Indexed: 11/06/2022]
Abstract
In this article, a caveat for advancing the genetics of Lewy body disorders is raised, given the nosological controversy about whether to consider dementia with Lewy bodies (DLB) and Parkinson's disease (PD) as one entity or two separate entities. Using the framework of the sufficient and component causes model of causation, as further developed into an evolution-based model of causation, it is proposed that a disease of complex etiology is defined as having a relatively high degree of sharing of the component causes (a genetic or environmental factor), that is, a low degree of heterogeneity of the sufficient causes. Based on this definition, only if the sharing of component causes within each of two diseases is similar to their combined sharing can lumping be warranted. However, it is not known whether the separate and combined sharing are similar before conducting the etiologic studies. This means that lumping DLB and PD can be counterproductive as it can decrease the ability to detect component causes despite the potential benefit of conducting studies with larger sample sizes. In turn, this is relevant to the development of disease-modifying treatments, because non-overlapping causal genetic factors may result in distinct pathogenetic pathways providing promising targets for interventions.
Collapse
Affiliation(s)
| | - Bruce Levin
- Department of BiostatisticsMailman School of Public HealthColumbia UniversityNew York10032USA
| | - Eliasz Engelhardt
- Instituto de Neurologia Deolindo Couto and Instituto de PsiquiatriaUniversidade Federal do Rio de JaneiroRio de Janeiro22290‐140Brazil
| |
Collapse
|
45
|
Agbomi LL, Onuoha CP, Nathaniel SI, Coker-Ayo OO, Bailey-Taylor MJ, Roley LT, Poupore N, Goodwin RL, Nathaniel TI. Gender differences in Parkinson's disease with dementia and dementia with Lewy bodies. AGING AND HEALTH RESEARCH 2022. [DOI: 10.1016/j.ahr.2022.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
46
|
Phillips JR, Matar E, Ehgoetz Martens KA, Moustafa AA, Halliday GM, Lewis SJG. Exploring the Sensitivity of Prodromal Dementia with Lewy Bodies Research Criteria. Brain Sci 2022; 12:1594. [PMID: 36552054 PMCID: PMC9775171 DOI: 10.3390/brainsci12121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is an insidious neurodegenerative disease characterised by a precipitous decline in cognition, sleep disturbances, motor impairment and psychiatric features. Recently, criteria for prodromal DLB (pDLB) including clinical features and biomarkers have been put forward to aid the classification and research of this ambiguous cohort of patients. Researchers can use these criteria to classify patients with mild cognitive impairment (MCI) with Lewy bodies (MCI-LB) as either possible (either one core clinical feature or one biomarker are present) or probable pDLB (at least two core clinical features, or one core clinical feature and at least one biomarker present). However, as isolated REM sleep behaviour disorder (iRBD) confirmed with polysomnography (PSG) can be included as both a clinical and a biomarker feature, potentially reducing the specificity of these diagnostic criteria. To address this issue, the current study classified a cohort of 47 PSG-confirmed iRBD patients as probable prodromal DLB only in the presence of an additional core feature or if there was an additional non-PSG biomarker. Thirteen iRBD patients demonstrated MCI (iRBD-MCI). In the iRBD-MCI group, one presented with parkinsonism and was thus classified as probable pDLB, whilst the remaining 12 were classified as only possible pDLB. All patients performed three tasks designed to measure attentional deficits, visual hallucinations and visuospatial impairment. Patients also attended clinical follow-ups to monitor for transition to DLB or another synucleinopathy. Findings indicated that the only patient categorised by virtue of having two core clinical features as probable pDLB transitioned over 28 months to a diagnosis of DLB. The performance of this probable pDLB patient was also ranked second-highest for their hallucinatory behaviours and had comparatively lower visuospatial accuracy. These findings highlight the need for more stringent diagnostic research criteria for pDLB, given that only one of the 13 patients who would have satisfied the current guidelines for probable pDLB transitioned to DLB after two years and was indeed the patient with two orthogonal core clinical features.
Collapse
Affiliation(s)
- Joseph R. Phillips
- Faculty of Medicine and Health, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology & Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, NSW 2145, Australia
| | - Elie Matar
- Faculty of Medicine and Health, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Kaylena A. Ehgoetz Martens
- Faculty of Medicine and Health, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
- Department of Kinesiology, Faculty of Health, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ahmed A. Moustafa
- Department of Human Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, Johannesburg 2092, South Africa
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, QLD 4217, Australia
| | - Glenda M. Halliday
- Faculty of Medicine and Health, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
- Dementia and Movement Disorders Laboratory, Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Simon J. G. Lewis
- Faculty of Medicine and Health, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
47
|
Real R, Martinez-Carrasco A, Reynolds RH, Lawton MA, Tan MMX, Shoai M, Corvol JC, Ryten M, Bresner C, Hubbard L, Brice A, Lesage S, Faouzi J, Elbaz A, Artaud F, Williams N, Hu MTM, Ben-Shlomo Y, Grosset DG, Hardy J, Morris HR. Association between the LRP1B and APOE loci in the development of Parkinson's disease dementia. Brain 2022; 146:1873-1887. [PMID: 36348503 PMCID: PMC10151192 DOI: 10.1093/brain/awac414] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease is one of the most common age-related neurodegenerative disorders. Although predominantly a motor disorder, cognitive impairment and dementia are important features of Parkinson's disease, particularly in the later stages of the disease. However, the rate of cognitive decline varies among Parkinson's disease patients, and the genetic basis for this heterogeneity is incompletely understood. To explore the genetic factors associated with rate of progression to Parkinson's disease dementia, we performed a genome-wide survival meta-analysis of 3,923 clinically diagnosed Parkinson's disease cases of European ancestry from four longitudinal cohorts. In total, 6.7% of individuals with Parkinson's disease developed dementia during study follow-up, on average 4.4 ± 2.4 years from disease diagnosis. We have identified the APOE ε4 allele as a major risk factor for the conversion to Parkinson's disease dementia [hazards ratio = 2.41 (1.94-3.00), P = 2.32 × 10-15], as well as a new locus within the ApoE and APP receptor LRP1B gene [hazards ratio = 3.23 (2.17-4.81), P = 7.07 × 10-09]. In a candidate gene analysis, GBA variants were also identified to be associated with higher risk of progression to dementia [hazards ratio = 2.02 (1.21-3.32), P = 0.007]. CSF biomarker analysis also implicated the amyloid pathway in Parkinson's disease dementia, with significantly reduced levels of amyloid β42 (P = 0.0012) in Parkinson's disease dementia compared to Parkinson's disease without dementia. These results identify a new candidate gene associated with faster conversion to dementia in Parkinson's disease and suggest that amyloid-targeting therapy may have a role in preventing Parkinson's disease dementia.
Collapse
Affiliation(s)
- Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alejandro Martinez-Carrasco
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Regina H Reynolds
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Michael A Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Maryam Shoai
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Mina Ryten
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Leon Hubbard
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Suzanne Lesage
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Johann Faouzi
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Centre Inria de Paris, 75012 Paris, France
| | - Alexis Elbaz
- Centre for Research in Epidemiology and Population Health, INSERM U1018, Team "Exposome, heredity, cancer, and health", 94807 Villejuif, France
| | - Fanny Artaud
- Centre for Research in Epidemiology and Population Health, INSERM U1018, Team "Exposome, heredity, cancer, and health", 94807 Villejuif, France
| | - Nigel Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Michele T M Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford OX1 3QU, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow G51 4TF, UK
| | - John Hardy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
48
|
Sommerer Y, Dobricic V, Schilling M, Ohlei O, Bartrés-Faz D, Cattaneo G, Demuth I, Düzel S, Franzenburg S, Fuß J, Lindenberger U, Pascual-Leone Á, Sabet SS, Solé-Padullés C, Tormos JM, Vetter VM, Wesse T, Franke A, Lill CM, Bertram L. Epigenome-Wide Association Study in Peripheral Tissues Highlights DNA Methylation Profiles Associated with Episodic Memory Performance in Humans. Biomedicines 2022; 10:2798. [PMID: 36359320 PMCID: PMC9687249 DOI: 10.3390/biomedicines10112798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The decline in episodic memory (EM) performance is a hallmark of cognitive aging and an early clinical sign in Alzheimer’s disease (AD). In this study, we conducted an epigenome-wide association study (EWAS) using DNA methylation (DNAm) profiles from buccal and blood samples for cross-sectional (n = 1019) and longitudinal changes in EM performance (n = 626; average follow-up time 5.4 years) collected under the auspices of the Lifebrain consortium project. The mean age of participants with cross-sectional data was 69 ± 11 years (30−90 years), with 50% being females. We identified 21 loci showing suggestive evidence of association (p < 1 × 10−5) with either or both EM phenotypes. Among these were SNCA, SEPW1 (both cross-sectional EM), ITPK1 (longitudinal EM), and APBA2 (both EM traits), which have been linked to AD or Parkinson’s disease (PD) in previous work. While the EM phenotypes were nominally significantly (p < 0.05) associated with poly-epigenetic scores (PESs) using EWASs on general cognitive function, none remained significant after correction for multiple testing. Likewise, estimating the degree of “epigenetic age acceleration” did not reveal significant associations with either of the two tested EM phenotypes. In summary, our study highlights several interesting candidate loci in which differential DNAm patterns in peripheral tissue are associated with EM performance in humans.
Collapse
Affiliation(s)
- Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Marcel Schilling
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Campus Clínic August Pi i Sunyer, Casanova, 143, 08036 Barcelona, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Garcilaso, 57, 08027 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Plaça Cívica, Bellaterra, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles, Badalona, 08916 Barcelona, Spain
| | - Ilja Demuth
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases, Division of Lipid Metabolism, Charité—Universitätsmedizin Berlin (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin), Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Álvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Garcilaso, 57, 08027 Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, 1200 Centre St., Boston, MA 02131, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Sanaz Sedghpour Sabet
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Campus Clínic August Pi i Sunyer, Casanova, 143, 08036 Barcelona, Spain
| | - Josep M. Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Garcilaso, 57, 08027 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Plaça Cívica, Bellaterra, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles, Badalona, 08916 Barcelona, Spain
| | - Valentin Max Vetter
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases, Division of Lipid Metabolism, Charité—Universitätsmedizin Berlin (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tanja Wesse
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Christina M. Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Institute of Epidemiology and Social Medicine, University of Münster, Domagkstr. 3, 48149 Münster, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, London W68RP, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway
| |
Collapse
|
49
|
Tábuas-Pereira M, Guerreiro R, Kun-Rodrigues C, Almeida MR, Brás J, Santana I. Whole-exome sequencing reveals PSEN1 and ATP7B combined variants as a possible cause of early-onset Lewy body dementia: a case study of genotype-phenotype correlation. Neurogenetics 2022; 23:279-283. [PMID: 36114914 PMCID: PMC9669161 DOI: 10.1007/s10048-022-00699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Dementia with Lewy bodies is a neurodegenerative disease, sharing features with Parkinson's and Alzheimer's diseases. We report a case of a patient dementia with Lewy bodies carrying combined PSEN1 and ATP7B mutations. A man developed dementia with Lewy bodies starting at the age of 60 years. CSF biomarkers were of Alzheimer's disease and DaTSCAN was abnormal. Whole-exome sequencing revealed a heterozygous p.Ile408Thr PSEN1 variant and a homozygous p.Arg616Trp ATP7B variant. This case reinstates the need of considering ATP7B mutations when evaluating a patient with parkinsonism and supports p.Ile408Thr as a pathogenic PSEN1 variant.
Collapse
Affiliation(s)
- Miguel Tábuas-Pereira
- Neurology Department, Centro Hospitalar E Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-045, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Centro Académico Clínico de Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Célia Kun-Rodrigues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Maria Rosário Almeida
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Brás
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Isabel Santana
- Neurology Department, Centro Hospitalar E Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-045, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Centro Académico Clínico de Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
50
|
LRP1 is a neuronal receptor for α-synuclein uptake and spread. Mol Neurodegener 2022; 17:57. [PMID: 36056345 PMCID: PMC9438229 DOI: 10.1186/s13024-022-00560-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aggregation and spread of α-synuclein (α-Syn) protein and related neuronal toxicity are the key pathological features of Parkinson's disease (PD) and Lewy body dementia (LBD). Studies have shown that pathological species of α-Syn and tau can spread in a prion-like manner between neurons, although these two proteins have distinct pathological roles and contribute to different neurodegenerative diseases. It is reported that the low-density lipoprotein receptor-related protein 1 (LRP1) regulates the spread of tau proteins; however, the molecular regulatory mechanisms of α-Syn uptake and spread, and whether it is also regulated by LRP1, remain poorly understood. METHODS We established LRP1 knockout (LRP1-KO) human induced pluripotent stem cells (iPSCs) isogenic lines using a CRISPR/Cas9 strategy and generated iPSC-derived neurons (iPSNs) to test the role of LRP1 in α-Syn uptake. We treated the iPSNs with fluorescently labeled α-Syn protein and measured the internalization of α-Syn using flow cytometry. Three forms of α-Syn species were tested: monomers, oligomers, and pre-formed fibrils (PFFs). To examine whether the lysine residues of α-Syn are involved in LRP1-mediated uptake, we capped the amines of lysines on α-Syn with sulfo-NHS acetate and then measured the internalization. We also tested whether the N-terminus of α-Syn is critical for LRP1-mediated internalization. Lastly, we investigated the role of Lrp1 in regulating α-Syn spread with a neuronal Lrp1 conditional knockout (Lrp1-nKO) mouse model. We generated adeno-associated viruses (AAVs) that allowed for distinguishing the α-Syn expression versus spread and injected them into the hippocampus of six-month-old Lrp1-nKO mice and the littermate wild type (WT) controls. The spread of α-Syn was evaluated three months after the injection. RESULTS We found that the uptake of both monomeric and oligomeric α-Syn was significantly reduced in iPSNs with LRP1-KO compared with the WT controls. The uptake of α-Syn PFFs was also inhibited in LRP1-KO iPSNs, albeit to a much lesser extent compared to α-Syn monomers and oligomers. The blocking of lysine residues on α-Syn effectively decreased the uptake of α-Syn in iPSNs and the N-terminus of α-Syn was critical for LRP1-mediated α-Syn uptake. Finally, in the Lrp1-nKO mice, the spread of α-Syn was significantly reduced compared with the WT littermates. CONCLUSIONS We identified LRP1 as a key regulator of α-Syn neuronal uptake, as well as an important mediator of α-Syn spread in the brain. This study provides new knowledge on the physiological and pathological role of LRP1 in α-Syn trafficking and pathology, offering insight for the treatment of synucleinopathies.
Collapse
|