1
|
Frommel AY, Ghanizadeh-Kazerouni E, Dichiera A, Hunt BPV, Brauner CJ. Effects of ocean warming with stable and fluctuating ocean acidification on seawater transition in Chinook salmon smolts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177185. [PMID: 39454774 DOI: 10.1016/j.scitotenv.2024.177185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Anadromous salmon populations are declining in the Pacific Northwest, with high mortality during the transition from fresh- to seawater as smolts, a stage particularly vulnerable to adverse environmental conditions. This study seeks to explore the impacts of warming and ocean acidification on the transition of life in freshwater to life at sea in Chinook salmon smolts. In a fully factorial experiment, we transitioned Chinook salmon from fresh- to seawater at current and future conditions of temperature (13 °C and 16 °C, respectively) and ocean acidification (400 and 1400 atm CO2), including a fluctuating CO2 treatment (between control and high CO2) that may be more representative of natural environmental conditions associated with upwelling and tidal cycling. We hypothesized that constant elevated CO2 levels would impair smoltification success immediately following seawater transfer, but that fluctuating conditions would be even more physiologically challenging. We predicted that elevated temperatures would exacerbate these effects. To test this, we measured plasma ion concentrations, gill Na+/K+-ATPase (NKA) isoform mRNA and protein expression, as well as condition indices in freshwater and following 1, 3, 6, and 18 days in seawater at the respective treatments. We confirmed the existence of gill freshwater and seawater isoforms of NKA (α1a and α1b, respectively) in Chinook salmon for the first time, and found an upregulation of both isoforms in the fluctuating CO2 treatment but a reduction of the number of NKA α1b cells 3-days post seawater transfer at 13 °C. At 16 °C, NKA α1b was upregulated in high CO2 levels, with an elevated hematocrit indicating fish were likely stressed. Taken together, plasma ions, gill NKA and condition indices revealed a complex response to interacting warming and acidification during the first few days in seawater, however there were no longer-term adverse physiological responses. Thus, Chinook salmon appear to be relatively resilient to near-future climate change.
Collapse
Affiliation(s)
- Andrea Y Frommel
- Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | | | - Angelina Dichiera
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada; Virginia Institute of Marine Science, College of William and Mary, 1370 Greate Road, Gloucester Point, VA 23062, USA
| | - Brian P V Hunt
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2207 Main Mall, Vancouver, BC V6T 1Z4, Canada; Hakai Institute, PO Box 309, Heriot Bay, Quadra Island, BC V0P 1H0, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
2
|
Blondeau-Bidet E, Tine M, Gonzalez AA, Guinand B, Lorin-Nebel C. Coping with salinity extremes: Gill transcriptome profiling in the black-chinned tilapia (Sarotherodon melanotheron). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172620. [PMID: 38642748 DOI: 10.1016/j.scitotenv.2024.172620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/21/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Steeper and sometimes extreme salinity gradients increasingly affect aquatic organisms because of climate change. Hypersalinity habitats demand powerful physiological adaptive strategies. Few teleost species have the capacity to spend their whole life cycle in salinities way over seawater levels. Focusing on the multifunctional gill, we unraveled the tilapia S. melanotheron key strategies to cope with different environmental conditions, ranging from freshwater up to hypersaline habitats. De novo transcriptome assembly based on RNAseq allowed for the analysis of 40,967 annotated transcripts among samples collected in three wild populations at 0, 40 and 80 ‰. A trend analysis of the expression patterns revealed responses across the salinity gradient with different gene pathways involved. Genes linked to ion transport, pH regulation and cell surface receptor signaling were mainly upregulated in the high salinity habitat. We identified tight junction proteins that were critical in high salinity habitats and that were different from the well-known tightening junctional proteins identified and expressed in fresh water. Expression profiles also suggest a change in the vascular tone that could be linked to an osmorespiratory compromise not only in fresh water, but also in high salinity environments. A striking downregulation of genes linked to the immune system and to the heat shock response was observed suggesting an energetic trade-off between immunity and acclimation/adaptation in the hypersaline habitat. The high expression of transcripts coding for immune and heat shock response in the freshwater habitat suggests the establishment of powerful mechanisms to protect gills from environmental threats and to maintain protein integrity. Non-directional expression trends were also detected with an upregulation of genes only in the hypersaline habitat (80 ‰) or only in the marine habitat (40 ‰). Unravel physiological strategies in S. melanotheron populations will help to better understand the molecular basis of fish euryhalinity in salinity-contrasted environments.
Collapse
Affiliation(s)
| | - Mbaye Tine
- UFR of Agricultural Sciences, Aquaculture and Food Technologies (UFR S2ATA), Gaston Berger University, Saint-Louis, Senegal
| | | | - Bruno Guinand
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | | |
Collapse
|
3
|
Andreeva AM, Lamash N, Martemyanov VI, Vasiliev AS, Toropygin IY, Garina DV. High-density lipoprotein remodeling affects the osmotic properties of plasma in goldfish under critical salinity. JOURNAL OF FISH BIOLOGY 2024; 104:564-575. [PMID: 37927095 DOI: 10.1111/jfb.15607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
To investigate the stress response and physiological adaptations of goldfish (Carassius auratus) to critical salinity (CS) waters, we analyzed high-density lipoprotein (HDL) stoichiometry, stress markers (cortisol, glucose), and plasma osmotic properties (Na+ , osmolality, water content) using ichthyology, biochemistry, and proteomics approaches. After 21 days of exposure to CS, plasma concentrations of cortisol, glucose, and Na+ increased, indicating stress. Total plasma osmolality (Osmtotal ) and osmolality generated by inorganic (Osminorg ) and organic osmolytes (Osmorg ) also increased, the latter by ~2%. We associated the increase of Osmorg with (1) increased metabolite concentration (glucose), (2) dissociation of HDL particles resulting in increased HDL number per unit plasma volume (~1.5-2-fold) and (3) increased HDL osmotic activity. HDL remodeling may be the reason for the redistribution of bound and free water in plasma, which may contribute to water retention in plasma and, at the same time, to hemodynamic disturbances under CS conditions. The study's findings suggest that HDL remodeling is an important mechanism for maintaining osmotic homeostasis in fish, which is consistent with current capillary exchange models in vertebrates.
Collapse
Affiliation(s)
- Alla M Andreeva
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Nina Lamash
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
- A.V. Zhirmunsky National Scientifc Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - V I Martemyanov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - A S Vasiliev
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - I Yu Toropygin
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
- Institute of Biomedical Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - D V Garina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| |
Collapse
|
4
|
Ali W, Chen Y, Hassan MF, Wang T, Khatyan U, Sun J, Liu Z, Zou H. Osmoregulatory and immunological role of new canceled cells: Mitochondrial rich cells and its future perspective: A concise review. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:99-106. [PMID: 37905465 DOI: 10.1002/jez.2764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Mitochondrial-rich cells (MRCs) are one of the most significant canceled type of epithelial cells. Morphologically these cells are totally different from other epithelial cells. These cells primarily implicated in sea-water and fresh-water adaptation, and acid-base regulation. However, in this review paper, we explored some of the most intriguing biological and immune-related functional developmental networks of MRCs. The main pinpoint, MRCs perform a dynamic osmoregulatory and immunological functional role in the gut and male reproductive system. The Na+/K+_ATPase (NKA) and Na+/K+/2Cl cotransporter (NKCC) are key acidifying proteins of MRCs for the ion-transporting function for intestinal homeostasis and maintenance of acidifying the luminal microenvironment in the male reproductive system. Further more importantly, MRCs play a novel immunological role through the exocrine secretion of nano-scale exosomes and multivesicular bodies (MVBs) pathway, which is very essential for sperm maturation, motility, acrosome reaction, and male sex hormones, and these an essential events to produce male gametes with optimal fertilizing ability. This effort is expected to promote the novel immunological role of MRCs, which might be essential for nano-scale exosome secretion.
Collapse
Affiliation(s)
- Waseem Ali
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Yan Chen
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Mohammad Farooque Hassan
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Tao Wang
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Uzma Khatyan
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Jian Sun
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Zongping Liu
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Hui Zou
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Lee JW, Balasubramanian B. Impacts of Temperature on the Growth, Feed Utilization, Stress, and Hemato-Immune Responses of Cherry Salmon ( Oncorhynchus masou). Animals (Basel) 2023; 13:3870. [PMID: 38136907 PMCID: PMC10740505 DOI: 10.3390/ani13243870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Cherry salmon (Oncorhynchus masou) hold commercial value in aquaculture, and there is a need for controlled laboratory studies to isolate the specific effects of temperature on their growth, feeding, and well-being. We examined the effects of different temperatures (10 °C, 14 °C, 18 °C, and 22 °C) on juvenile cherry salmon (average mass 29.1 g) in triplicate tanks per treatment over eight weeks. The key parameters assessed included growth rate, feed efficiency, stress response, and hemato-immune responses. Our objectives were to determine the most and less favorable temperatures among the four designated temperatures and to assess the adverse effects associated with these less favorable temperatures. The results showed that body weight, growth rates, feed intake, and feed efficiency were significantly higher at 10 °C and 14 °C compared to 18 °C and 22 °C. Reduced appetite and feeding response were observed at 22 °C. Red blood cell parameters were significantly lower at 22 °C. At 10 °C, the results showed significantly increased plasma cortisol levels, gill Na+/K+-ATPase activity, body silvering, and decreased condition factors, suggesting potential smoltification. The potential smoltification decreased with increasing temperatures and disappeared at 22 °C. Furthermore, the plasma lysozyme concentrations significantly increased at 18 °C and 22 °C. In conclusion, our study identifies 10 °C and 14 °C as the temperatures most conducive to growth and feed performance in juvenile cherry salmon under these experimental conditions. However, temperatures of 22 °C or higher should be avoided to prevent compromised feeding, reduced health, disturbed immune responses, impaired growth, and feed performance.
Collapse
Affiliation(s)
- Jang-Won Lee
- Department of Integrative Biological Sciences and Industry, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | | |
Collapse
|
6
|
Shwe A, Krasnov A, Visnovska T, Ramberg S, Østbye TKK, Andreassen R. Differential Expression of miRNAs and Their Predicted Target Genes Indicates That Gene Expression in Atlantic Salmon Gill Is Post-Transcriptionally Regulated by miRNAs in the Parr-Smolt Transformation and Adaptation to Sea Water. Int J Mol Sci 2022; 23:ijms23158831. [PMID: 35955964 PMCID: PMC9369087 DOI: 10.3390/ijms23158831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022] Open
Abstract
Smoltification (parr-smolt transformation) is a complex developmental process consisting of developmental changes that lead to remodeling of the Atlantic salmon gill. Here, the expression changes of miRNAs and mRNAs were studied by small-RNA sequencing and microarray analysis, respectively, to identify miRNAs and their predicted targets associated with smoltification and subsequent sea water adaptation (SWA). In total, 18 guide miRNAs were identified as differentially expressed (gDE miRNAs). Hierarchical clustering analysis of expression changes divided these into one cluster of 13 gDE miRNAs with decreasing expression during smoltification and SWA that included the miRNA-146, miRNA-30 and miRNA-7132 families. Another smaller cluster that showed increasing expression consisted of miR-101a-3p, miR-193b-5p, miR-499a-5p, miR-727a-3p and miR-8159-5p. The gDE miRNAs were predicted to target 747 of the genes (DE mRNAs), showing expression changes in the microarray analysis. The predicted targets included genes encoding NKA-subunits, aquaporin-subunits, cystic fibrosis transmembrane conductance regulator and the solute carrier family. Furthermore, the predicted target genes were enriched in biological processes associated with smoltification and SWA (e.g., immune system, reactive oxygen species, stress response and extracellular matrix organization). Collectively, the results indicate that remodeling of the gill involves the post-transcriptional regulation of gene expression by the characterized gDE miRNAs.
Collapse
Affiliation(s)
- Alice Shwe
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Aleksei Krasnov
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway
| | - Sigmund Ramberg
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Tone-Kari K. Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Rune Andreassen
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
- Correspondence:
| |
Collapse
|
7
|
Jasim SA, Golgouneh S, Jaber MM, Indiaminov SI, Alsaikhan F, Hammid AT, Mustafa YF, Karim YS, Sultan MQ, Norbakhsh M. Effects of short-term exposure to the heavy metal, nickel chloride (Nicl 2) on gill histology and osmoregulation components of the gray mullet, Mugil cephalus. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109361. [PMID: 35525465 DOI: 10.1016/j.cbpc.2022.109361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/17/2022] [Accepted: 05/01/2022] [Indexed: 11/03/2022]
Abstract
The gray mullet, Mugil cephalus is an inshore and bottom-feeding fish species of Oman sea. Therefore, the gray mullet may be more exposed to heavy metal contamination, as the toxic impacts of heavy metals mullet has been reported in various studies. This study was conducted to evaluate the toxic effects of the heavy metal, nickel (as NiCl2) on osmoregulation of the gray mullet by measuring blood biochemicals, hormones, minerals and gill histology. Fish (10 fish/tank) were experimentally exposed to NiCl2 at three environmentally relevant concentrations of 5, 10 and 15 μg/l for 96 h. Then, fish were challenged with seawater (35 mg/l) for a period of 120 min. The samples (blood and gill tissue) were collected After 96 exposure to NiCl2 and during salinity challenge (30, 60 and 120 min post challenge). The plasma levels of cortisol and glucose significantly increased in NiCl2-exposed fish. In addition, cortisol increased in all experimental groups 30 min after salinity challenge and then returned gradually to the same levels as the control at 120 min post salinity challenge (PSC). The triiodothyronine (T3) and thyroxine (T4) levels significantly decreased in response to 10 and 15 μg/l NiCl2. In all groups, the thyroid hormones significantly elevated at 30 min PSC. After 30 min PSC, T3 levels in all NiCl2-exposed fish and T4 in the treatment, 10 μg/l NiCl2 remained unchanged throughout the salinity challenge. In the treatment, 5 μg/l NiCl2, T4 levels were recovered at 120 min PSC and reached the same levels as the control. Exposure of fish to high concentrations of NiCl2 and salinity stress increased the lactate levels. However, lactate levels in 5 and 10 μg/l NiCl2 groups were recovered at 120 min PSC and reached the same levels as the control. Furthermore, plasma protein increased in response to 10 and 15 μg/l NiCl2. At 30 PSC, the protein levels decreased in control and 5 μg/l NiCl2 group, while it remained unchanged in fish exposed to 10 and 15 μg/l NiCl2 throughout the salinity challenge. Exposure of fish to NiCl2 disrupted the electrolyte (Na+, Cl-) balance both before and after salinity challenge, which may be due to gill lesions induced by the heavy metal and following alternations in gill permeability. However, fish in 5 μg/l NiCl2 re-established the ionic balance in the blood at the end of salinity challenge period. The malondialdehyde (MDA) levels significantly increased in response to 10 and 15 μg/l NiCl2. The MDA levels returned to the same levels as the control group at 120 min PSC. The results of the present study showed that nickel-induced toxicity (especially at high concentrations) can reduce the osmoregulation capabilities of mullet. However, fish are able to recover from the toxic effects over time, if contamination be eliminated.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq.
| | - Sahar Golgouneh
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| | - Mustafa Musa Jaber
- Department of Medical Instruments Engineering Techniques, Dijlah University College, Baghdad 10021, Iraq; Department of Medical Instruments Engineering Techniques, Al-Farahidi University, Baghdad 10021, Iraq
| | - Sayit I Indiaminov
- Doctor of Medical Sciences, Department of Forensic Medicine, Samarkand State Medical Institute, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent 100047, Uzbekistan
| | - Fahad Alsaikhan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ali Thaeer Hammid
- Computer Engineering Department, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | | | | | - Maryam Norbakhsh
- Department of Microbiology, Faculty of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| |
Collapse
|
8
|
Lin YT, Lee TH. Rapid response of osmotic stress transcription factor 1 (OSTF1) expression to salinity challenge in gills of marine euryhaline milkfish (Chanos chanos). PLoS One 2022; 17:e0271029. [PMID: 35793350 PMCID: PMC9258805 DOI: 10.1371/journal.pone.0271029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/22/2022] [Indexed: 12/13/2022] Open
Abstract
Euryhaline teleosts can survive in environments with different salinities. Cortisol is an important hormone for acclimation to seawater (SW) of euryhaline teleosts. Osmotic stress transcription factor 1 (OSTF1), also called the transforming growth factor-beta stimulated clone 22 domain 3 (tsc22d3), was first reported in tilapia as an acute response gene and protein under hyperosmotic stress, and it is regulated by cortisol. To date, most studies on OSTF1 have focused on freshwater inhabitants, such as tilapia, medaka, and catadromous eel. The expression of OSTF1 and the correlation between OSTF1 and cortisol in marine inhabitant euryhaline teleosts, to our knowledge, remain unclear. This study reveals the changes in the expression levels of branchial OSTF1, plasma cortisol levels, and their correlation in the marine inhabitant milkfish with ambient salinities. The two sequences of milkfish TSC22D3 transcripts were classified as OSTF1a and OSTF1b. Both genes were expressed universally in all detected organs and tissues but were the most abundant in the liver. Similar gene expression levels of ostf1a and ostf1b were found in SW- and fresh water (FW)-acclimated milkfish gills, an important osmoregulatory organ. Within 12 hours of being transferred from FW to SW, the gene expression level of ostf1b increased significantly (4 folds) within 12 h, whereas the expression level of ostf1a remained constant. Moreover, cortisol levels increased rapidly after being transferred to a hyperosmotic environment. After an intraperitoneal injection of cortisol, the gene expression levels of ostf1a and ostf1b were elevated. However, under hyperosmotic stress, ostf1a gene expression remained stable. Overall, the results revealed that ostf1b was the primary gene in milkfish responding to hypertonic stress, and cortisol concentration increased after the transfer of milkfish from FW to SW. Furthermore, cortisol injection increased the expression of ostf1a and ostf1b. As a result, factors other than cortisol may activate ostf1b in milkfish gills in response to an environmental salinity challenge.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Ridgway MR, Tunnah L, Bernier NJ, Wilson JM, Wright PA. Novel spikey ionocytes are regulated by cortisol in the skin of an amphibious fish. Proc Biol Sci 2021; 288:20212324. [PMID: 34933603 PMCID: PMC8692953 DOI: 10.1098/rspb.2021.2324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/26/2021] [Indexed: 12/24/2022] Open
Abstract
Cortisol is a major osmoregulatory hormone in fishes. Cortisol acts upon the gills, the primary site of ionoregulation, through modifications to specialized ion-transporting cells called ionocytes. We tested the hypothesis that cortisol also acts as a major regulator of skin ionocyte remodelling in the amphibious mangrove rivulus (Kryptolebias marmoratus) when gill function ceases during the water-to-land transition. When out of water, K. marmoratus demonstrated a robust cortisol response, which was linked with the remodelling of skin ionocytes to increase cell cross-sectional area and Na+-K+-ATPase (NKA) content, but not when cortisol synthesis was chemically inhibited by metyrapone. Additionally, we discovered a novel morphology of skin-specific ionocyte that are spikey with multiple cell processes. Spikey ionocytes increased in density, cell cross-sectional area and NKA content during air exposure, but not in metyrapone-treated fish. Our findings demonstrate that skin ionocyte remodelling during the water-to-land transition in amphibious fish is regulated by cortisol, the same hormone that regulates gill ionocyte remodelling in salinity-challenged teleosts, suggesting conserved hormonal function across diverse environmental disturbances and organs in fishes.
Collapse
Affiliation(s)
- Megan R. Ridgway
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Louise Tunnah
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nicholas J. Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jonathan M. Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Patricia A. Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
10
|
Hayashi M, Maruoka S, Oikawa J, Ugachi Y, Shimizu M. Effects of Acclimation to Diluted Seawater on Metabolic and Growth Parameters of Underyearling Masu Salmon ( Oncorhynchus masou). Zoolog Sci 2021; 38:513-522. [PMID: 34854283 DOI: 10.2108/zs210048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022]
Abstract
We examined the effects of environmental salinity and feeding status on the growth and metabolic parameters of underyearling masu salmon. Fish were first acclimated to salinities of 0 (< 0.1), 11, or 22 psu for 10 days, after which time 50% of the fish in each group were fasted for 5 days followed by refeeding for 5 days. No effects on body length/weight were observed over the 20 days from the beginning of the experiment. Gill Na+, K+-ATPase (NKA) activity increased 20 and 10 days after transfer to water at 11 and 22 psu, respectively. Serum Na+ and Cl- levels were high in fish at 22 psu on day 20 but much lower than those in the environmental water, suggesting that fish at this salinity were able to hypo-osmoregulate. However, acclimation to 22 psu resulted in a reduction in feeding rate on day 20. Serum insulin-like growth factor (IGF)-I levels and liver glycogen content were reduced by fasting and restored after 5 days of refeeding, except in the fish at 22 psu. Intensities of serum IGFBP-1a and -1b bands were increased at higher salinities, whereas fasting/refeeding affected only IGFBP-1b. The present study suggests that acclimating masu salmon parr to 11 psu had no effect on metabolic and growth parameters, while 22 psu presumably suppressed their growth potential due to the possible energy cost or stress for osmoregulation. The disparate responses of circulating IGFBP-1a and -1b to higher salinity and fasting highlight their utility as indices of various catabolic statuses.
Collapse
Affiliation(s)
- Mizuki Hayashi
- School of Fisheries Sciences, Hakodate, Hokkaido 041-8611, Japan
| | - Shu Maruoka
- School of Fisheries Sciences, Hakodate, Hokkaido 041-8611, Japan
| | - Jin Oikawa
- Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yuki Ugachi
- Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan,
| |
Collapse
|
11
|
McGowan M, MacKenzie S, Steiropoulos N, Weidmann M. Testing of NKA expression by mobile real time PCR is an efficient indicator of smoltification status of farmed Atlantic salmon. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 544:737085. [PMID: 34789951 PMCID: PMC8386247 DOI: 10.1016/j.aquaculture.2021.737085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Assessment of seawater readiness of freshwater salmon smolts is a crucial husbandry step with economic implications in salmon aquaculture but current methods rely on delayed centralised enzymic activity measurement. The efficiency of a qRT-PCR assay for sodium potassium ATPase (NKA) α1a mRNA was tested in a 3-year study on 19 hatcheries across Scotland incorporating environmental factors such as temperature and metal contamination. The NKA qRT-PCR assay was transferred to a mobile laboratory and on-site testing was carried out at 3 hatchery sites. For the first two years standard enzymatic and gene expression assays had similar success rates in detecting smoltification (NKA activity 60%, qRT-PCR 57%). In the third year, all but one site were determined as sea water ready by qRT-PCR but only at 4 by enzymatic testing. On site testing with mobile qRT-PCR was successfully performed on four farm sites. Altogether, high sensitivity was shown for the in lab (98.9%, SE 0.24) and mobile (93.43%, SE 0.119) assays when tested using a quantitative RNA standard. Some indication for obscured smoltification assay results due to environmental increased heavy metal contamination was observed. Our results prove it is possible to test a smoltification marker on site and provide results on the day of testing during the smolt period allowing for informed decisions on seawater transfer.
Collapse
Affiliation(s)
- Michael McGowan
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Simon MacKenzie
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | | | - Manfred Weidmann
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
- Medizinische Hochschule Brandenburg Theodor Fontane, Senftenberg, Germany
| |
Collapse
|
12
|
Vargas-Chacoff L, Regish AM, Weinstock A, Björnsson BT, McCormick SD. Effects of long-term cortisol treatment on growth and osmoregulation of Atlantic salmon and brook trout. Gen Comp Endocrinol 2021; 308:113769. [PMID: 33794274 DOI: 10.1016/j.ygcen.2021.113769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
Cortisol is the final product of the hypothalamic-pituitary-interrenal (HPI) axis and acts as a gluco- and mineralo-corticoid in fish. Long-term elevations of cortisol have been linked to reduced growth in fishes, but the mechanism(s) and relative sensitivities of species are still unclear. We carried out experiments to examine the relative effects of cortisol on growth and gill NKA activity in two salmonids: Atlantic salmon (Salmo salar) and brook trout (Salvelinus fontinalis). Treatment with intraperitoneal cortisol implants for 30 days resulted in reduced growth in both species, but with greater sensitivity to cortisol in brook trout. Gill NKA activity was strongly upregulated by cortisol in Atlantic salmon, and weakly upregulated in brook trout but with no statistically significant effect. Cortisol treatment resulted in reduced plasma levels of insulin-like growth factor I and increased plasma growth hormone levels in Atlantic salmon. Our results demonstrate that there are species differences in the sensitivity of growth and osmoregulation to cortisol, even among species in the same family (Salmonidae).
Collapse
Affiliation(s)
- L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile; U.S. Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA, USA; Fondap-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| | - A M Regish
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA, USA
| | - A Weinstock
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA, USA
| | - B Th Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - S D McCormick
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA, USA; Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
13
|
Vargas-Chacoff L, Dann F, Paschke K, Oyarzún-Salazar R, Nualart D, Martínez D, Wilson JM, Guerreiro PM, Navarro JM. Freshening effect on the osmotic response of the Antarctic spiny plunderfish Harpagifer antarcticus. JOURNAL OF FISH BIOLOGY 2021; 98:1558-1571. [PMID: 33452810 DOI: 10.1111/jfb.14676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Global warming is having a significant impact around the world, modifying environmental conditions in many areas, including in zones that have been thermally stable for thousands of years, such as Antarctica. Stenothermal sedentary intertidal fish species may suffer due to warming, notably if this causes water freshening from increased freshwater inputs. Acute decreases in salinity, from 33 down to 5, were used to assess osmotic responses to environmental salinity fluctuations in Antarctic spiny plunderfish Harpagifer antarcticus, in particular to evaluate if H. antarcticus is able to cope with freshening and to describe osmoregulatory responses at different levels (haematological variables, muscle water content, gene expression, NKA activity). H. antarcticus were acclimated to a range of salinities (33 as control, 20, 15, 10 and 5) for 1 week. At 5, plasma osmolality and calcium concentration were both at their lowest, while plasma cortisol and percentage muscle water content were at their highest. At the same salinity, gill and intestine Na+ -K+ -ATPase (NKA) activities were at their lowest and highest, respectively. In kidney, NKA activity was highest at intermediate salinities (15 and 10). The salinity-dependent NKA mRNA expression patterns differed depending on the tissue. Marked changes were also observed in the expression of genes coding membrane proteins associated with ion and water transport, such as NKCC2, CFTR and AQP8, and in the expression of mRNA for the regulatory hormone prolactin (PRL) and its receptor (PRLr). Our results demonstrate that freshening causes osmotic imbalances in H. antarcticus, apparently due to reduced capacity of both transport and regulatory mechanisms of key organs to maintain homeostasis. This has implications for fish species that have evolved in stable environmental conditions in the Antarctic, now threatened by climate change.
Collapse
Affiliation(s)
- Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco Dann
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
| | - Kurt Paschke
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Ricardo Oyarzún-Salazar
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Daniela Nualart
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Danixa Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Jonathan M Wilson
- Wilfrid Laurier University, Waterloo, Ontario, Canada
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Matosinhos, Portugal
| | | | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
14
|
McCormick SD, Taylor ML, Regish AM. Cortisol is an osmoregulatory and glucose-regulating hormone in Atlantic sturgeon, a basal ray-finned fish. ACTA ACUST UNITED AC 2020; 223:223/18/jeb220251. [PMID: 32938687 DOI: 10.1242/jeb.220251] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/19/2020] [Indexed: 12/31/2022]
Abstract
Our current understanding of the hormonal control of ion regulation in aquatic vertebrates comes primarily from studies on teleost fishes, with relatively little information on more basal fishes. We investigated the role of cortisol in regulating seawater tolerance and its underlying mechanisms in an anadromous chondrostean, the Atlantic sturgeon (Acipenser oxyrinchus). Exposure of freshwater-reared Atlantic sturgeon to seawater (25 ppt) resulted in transient (1-3 day) increases in plasma chloride, cortisol and glucose levels and long-term (6-14 day) increases in the abundance of gill Na+/K+/2Cl- cotransporter (NKCC), which plays a critical role in salt secretion in teleosts. The abundance of gill V-type H+-ATPase, which is thought to play a role in ion uptake in fishes, decreased after exposure to seawater. Gill Na+/K+-ATPase activity did not increase in 25 ppt seawater, but did increase in fish gradually acclimated to 30 ppt. Treatment of Atlantic sturgeon in freshwater with exogenous cortisol resulted in dose-dependent increases in cortisol, glucose and gill NKCC and H+-ATPase abundance. Our results indicate that cortisol has an important role in regulating mechanisms for ion secretion and uptake in sturgeon and provide support for the hypothesis that control of osmoregulation and glucose by corticosteroids is a basal trait of jawed vertebrates.
Collapse
Affiliation(s)
- Stephen D McCormick
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA
| | - Meghan L Taylor
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA
| | - Amy M Regish
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA
| |
Collapse
|
15
|
Alderman SL, Dilkumar CM, Avey SR, Farrell AP, Kennedy CJ, Gillis TE. Effects of diluted bitumen exposure and recovery on the seawater acclimation response of Atlantic salmon smolts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105419. [PMID: 32014643 DOI: 10.1016/j.aquatox.2020.105419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Petrogenic chemicals are common and widespread contaminants in the aquatic environment. In Canada, increased extraction of bitumen from the oil sands and transport of the major crude oil export product, diluted bitumen (dilbit), amplifies the risk of a spill and contamination of Canadian waterways. Fish exposed to sublethal concentrations of crude oil can experience a variety of adverse physiological effects including osmoregulatory dysfunction. As regulation of water and ion balance is crucial during the seawater transition of anadromous fish, the hypothesis that dilbit impairs seawater acclimation in Atlantic salmon smolts (a fish at risk of exposure in Canada) was tested. Smolts were exposed for 24 d to the water-soluble fraction of dilbit in freshwater, and then transferred directly to seawater or allowed a 1 wk depuration period in uncontaminated freshwater prior to seawater transfer. The seawater acclimation response was quantified at 1 and 7 d post-transfer using established hematological, tissue, and molecular endpoints including gill Na+/K+-ATPase gene expression (nka). All smolts, irrespective of dilbit exposure, increased serum Na+ concentrations and osmolality within 1 d of seawater transfer. The recovery of these parameters to freshwater values by 7 d post-transfer was likely driven by the increased expression and activity of Na+/K+-ATPase in the gill. Histopathological changes in the gill were not observed; however, CYP1A-like immunoreactivity was detected in the pillar cells of gill lamellae of fish exposed to 67.9 μg/L PAC. Concentration-specific changes in kidney expression of a transmembrane water channel, aquaporin 3, occurred during seawater acclimation, but were resolved with 1 wk of depuration and were not associated with histopathological changes. In conclusion, apart from a robust CYP response in the gill, dilbit exposure did not greatly impact common measures of seawater acclimation, suggesting that significant osmoregulatory dysfunction is unlikely to occur if Atlantic salmon smolts are exposed sub-chronically to dilbit.
Collapse
Affiliation(s)
- Sarah L Alderman
- Department of Integrative Biology, University of Guelph, Ontario, Canada.
| | | | - Sean R Avey
- Department of Integrative Biology, University of Guelph, Ontario, Canada
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, British Columbia, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, British Columbia, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Ontario, Canada
| |
Collapse
|
16
|
Vargas-Chacoff L, Arjona FJ, Ruiz-Jarabo I, García-Lopez A, Flik G, Mancera JM. Water temperature affects osmoregulatory responses in gilthead sea bream (Sparus aurata L.). J Therm Biol 2020; 88:102526. [PMID: 32126001 DOI: 10.1016/j.jtherbio.2020.102526] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 11/26/2022]
Abstract
Sea bream (Sparus aurata Linneaus) was acclimated to three salinity concentrations, viz. 5 (LSW), 38 (SW) and 55psμ (HSW) and three water temperatures regimes (12, 19 and 26 °C) for five weeks. Osmoregulatory capacity parameters (plasma osmolality, sodium, chloride, cortisol, and branchial and renal Na+,K+-ATPase activities) were also assessed. Salinity and temperature affected all of the parameters tested. Our results indicate that environmental temperature modulates capacity in sea bream, independent of environmental salinity, and set points of plasma osmolality and ion concentrations depend on both ambient salinity and temperature. Acclimation to extreme salinity resulted in stress, indicated by elevated basal plasma cortisol levels. Response to salinity was affected by ambient temperature. A comparison between branchial and renal Na+,K+-ATPase activities appears instrumental in explaining salinity and temperature responses. Sea bream regulate branchial enzyme copy numbers (Vmax) in hyperosmotic media (SW and HSW) to deal with ambient temperature effects on activity; combinations of high temperatures and salinity may exceed the adaptive capacity of sea bream. Salinity compromises the branchial enzyme capacity (compared to basal activity at a set salinity) when temperature is elevated and the scope for temperature adaptation becomes smaller at increasing salinity. Renal Na+,K+-ATPase capacity appears fixed and activity appears to be determined by temperature.
Collapse
Affiliation(s)
- Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| | - Francisco J Arjona
- Departamento de Biología, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain; Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - Ignacio Ruiz-Jarabo
- Departamento de Biología, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Angel García-Lopez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, 11510, Puerto Real, Cádiz, Spain
| | - Gert Flik
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - Juan M Mancera
- Departamento de Biología, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
17
|
Vasadia DJ, Zippay ML, Place SP. Characterization of thermally sensitive miRNAs reveals a central role of the FoxO signaling pathway in regulating the cellular stress response of an extreme stenotherm, Trematomus bernacchii. Mar Genomics 2019; 48:100698. [PMID: 31307923 DOI: 10.1016/j.margen.2019.100698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023]
Abstract
Despite the lack of an inducible heat shock response (HSR), the Antarctic notothenioid fish, Trematomus bernacchii, has retained a level of physiological plasticity that can at least partially compensate for the effects of acute heat stress. Over the last decade, both physiological and transcriptomic studies have signaled these fish can mitigate the effects of acute heat stress by employing other aspects of the cellular stress response (CSR) that help confer thermotolerance as well as drive homeostatic mechanisms during long-term thermal acclimations. However, the regulatory mechanisms that determine temperature-induced changes in gene expression remain largely unexplored in this species. Therefore, this study utilized next generation sequencing coupled with an in silico approach to explore the regulatory role of microRNAs in governing the transcriptomic level response observed in this Antarctic notothenioid with respect to the CSR. Using RNAseq, we characterized the expression of 125 distinct miRNA orthologues in T. bernacchii gill tissue. Additionally, we identified 12 miRNAs that appear to be thermally responsive based on differential expression (DE) analyses performed between fish acclimated to control (-1.5 °C) and an acute heat stress (+4 °C). We further characterized the functional role of these DE miRNAs using bioinformatics pipelines to identify putative gene targets of the DE miRNAs and subsequent gene set enrichment analyses, which together suggest these miRNAs are involved in regulating diverse aspects of the CSR in T. bernacchii.
Collapse
Affiliation(s)
- Dipali J Vasadia
- Sonoma State University, Department of Biology, Rohnert Park, CA 94928, United States of America
| | - Mackenzie L Zippay
- Sonoma State University, Department of Biology, Rohnert Park, CA 94928, United States of America
| | - Sean P Place
- Sonoma State University, Department of Biology, Rohnert Park, CA 94928, United States of America.
| |
Collapse
|
18
|
Martos-Sitcha JA, Cádiz L, Gozdowska M, Kulczykowska E, Martínez-Rodríguez G, Mancera JM. Arginine Vasotocin and Cortisol Co-regulate Vasotocinergic, Isotocinergic, Stress, and Thyroid Pathways in the Gilthead Sea Bream ( Sparus aurata). Front Physiol 2019; 10:261. [PMID: 30949066 PMCID: PMC6437069 DOI: 10.3389/fphys.2019.00261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/28/2019] [Indexed: 11/17/2022] Open
Abstract
In teleosts, a complex interaction between several endocrine axes modulates physiological functions related to metabolism, stress, and osmoregulation. Although many studies in fish underline the interconnection between the hypothalamic–pituitary–interrenal (HPI) and hypothalamic–pituitary–thyroid (HPT) endocrine axes, their relationship with the vasotocinergic and isotocinergic systems remains unknown. The aim of the present study is therefore to shed light on the potential cross-regulations between HPT, HPI, and the vasotocinergic and isotocinergic axes in gilthead sea bream (Sparus aurata) at hypothalamic, hypophyseal, and plasma levels. Sea breams were administered with intraperitoneal slow-release implants containing different doses of vasotocin (the active peptide in vasotocinergic system) or cortisol (the last component of HPI axis). Plasma osmolality was higher in active neuropeptides vasotocin (Avt)-treated fish, indicating an osmoregulatory function of this hormone. Low concentrations of Avt increased hypothalamic arginine vasotocin precursor (avt) mRNA levels and increased Avt storage in the pituitary. Avt treatment down-regulated hypothalamic arginine vasotocin receptor v1a-type (avtrv1a), suggesting a negative paracrine co-regulation of the HPI axis due to the close location of avtrv1a and adrenocorticotropin hormone (Acth) cells in the anterior pituitary. Furthermore, the up-regulation observed in arginine vasotocin receptor v2-type (avtrv2) suggests their involvement in metabolic and cortisol-related pathways in the hypothalamus. The decrease in isotocin (It) pituitary storage and the up-regulation of it receptor, observed in the Avt-treated group, reinforce the idea of an interconnection between the vasotocinergic and isotocinergic systems. Cortisol and Avt administration each inhibited the HPI axis, down-regulating crh gene expression in the absence of variations in corticotropin releasing hormone binding protein (crhbp). Finally, both hormonal treatments activated the HPT axis via up-regulation of trh and down-regulation of thrb. Our results provide evidence for strong interactions among the Avt/It, HPI, and HPT axes of marine teleosts, particularly at the hypothalamic level.
Collapse
Affiliation(s)
- Juan Antonio Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina, Campus de Excelencia Internacional del Mar, University of Cádiz, Cádiz, Spain.,Department of Marine Biology and Aquacuture, Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, Cádiz, Spain
| | - Laura Cádiz
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina, Campus de Excelencia Internacional del Mar, University of Cádiz, Cádiz, Spain
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquacuture, Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, Cádiz, Spain
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina, Campus de Excelencia Internacional del Mar, University of Cádiz, Cádiz, Spain
| |
Collapse
|
19
|
Zhou Y, Lei Y, Cao Z, Chen X, Sun Y, Xu Y, Guo W, Wang S, Liu C. A β-defensin gene of Trachinotus ovatus might be involved in the antimicrobial and antiviral immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:105-115. [PMID: 30448509 DOI: 10.1016/j.dci.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 05/06/2023]
Abstract
Defensins are a group of small cationic and cysteine-rich peptides that are important components of the innate immune system. However, studies on defensins in teleosts are very limited, particularly studies on defensin functions through in vivo assays. In this study, we cloned and identified one β-defensin (TroBD) the golden pompano, Trachinotus ovatus, and analyzed the functions of TroBD in both in vivo and in vitro assays. TroBD is composed of 63 amino acids and shares high sequence identities (27.27-98.41%) with known β-defensins of other teleosts. The protein has a signature motif of six conserved cysteine residues within the mature peptide. The expression of TroBD was most abundant in the head kidney and spleen and was significantly upregulated following infection by Vibrio harveyi and viral nervous necrosis virus (VNNV). Purified recombinant TroBD (rTroBD) inhibited the growth of V. harveyi, and its antimicrobial activity was influenced by salt concentration. TroBD was found to have a chemotactic effect on macrophages in vitro. The results of an in vivo study demonstrated that TroBD overexpression/knockdown in T. ovatus significantly reduced/increased bacterial colonization or viral copy numbers in tissues. Taken together, these results indicate that TroBD plays a significant role in both antibacterial and antiviral immunity and provide new avenues for protection against pathogen infection in the aquaculture industry.
Collapse
Affiliation(s)
- Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Yang Lei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Xiaojuan Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China.
| | - Yue Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Weiliang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China
| | - Shifeng Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Chunsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| |
Collapse
|
20
|
Jing YP, An H, Zhang S, Wang N, Zhou S. Protein kinase C mediates juvenile hormone-dependent phosphorylation of Na +/K +-ATPase to induce ovarian follicular patency for yolk protein uptake. J Biol Chem 2018; 293:20112-20122. [PMID: 30385509 DOI: 10.1074/jbc.ra118.005692] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/11/2018] [Indexed: 12/21/2022] Open
Abstract
In oviparous animals, vitellogenesis is prerequisite to egg production and embryonic growth after oviposition. For successful insect vitellogenesis and oogenesis, vitellogenin (Vg) synthesized in the fat body (homologue to vertebrate liver and adipose tissue) must pass through the intercellular channels, a condition known as patency in the follicular epithelium, to reach the surface of oocytes. This process is controlled by juvenile hormone (JH) in many insect species, but the underlying mechanisms remain elusive. Previous work has suggested the possible involvement of Na+/K+-ATPase in patency initiation, but again, the regulatory cascade of Na+/K+-ATPase for patency initiation has been lacking. Using the migratory locust Locusta migratoria as a model system, we report here that RNAi-mediated knockdown of gene coding for Na+/K+-ATPase, inhibition of its phosphorylation, or suppression of its activity causes loss of patency, resulting in blocked Vg uptake, arrested oocyte maturation, and impaired ovarian growth. JH triggers G protein-coupled receptor (GPCR), receptor tyrosine kinase (RTK), phospholipase C (PLC), inositol trisphosphate receptor (IP3R), and protein kinase C (PKC) to phosphorylate Na+/K+-ATPase α-subunit at amino acid residue Ser8, consequently activating Na+/K+-ATPase for the induction of patency in vitellogenic follicular epithelium. Our results thus point to a previously unidentified mechanism by which JH induces the phosphorylation and activation of Na+/K+-ATPase via a signaling cascade of GPCR, RTK, PLC, IP3R, and PKC. The findings advance our understanding of JH regulation in insect vitellogenesis and oogenesis.
Collapse
Affiliation(s)
- Yu-Pu Jing
- From the Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Hongli An
- From the Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shanjing Zhang
- From the Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ningbo Wang
- From the Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shutang Zhou
- From the Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
21
|
Souza IDC, Morozesk M, Bonomo MM, Azevedo VC, Sakuragui MM, Elliott M, Matsumoto ST, Wunderlin DA, Baroni MV, Monferrán MV, Fernandes MN. Differential biochemical responses to metal/metalloid accumulation in organs of an edible fish (Centropomus parallelus) from Neotropical estuaries. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:260-269. [PMID: 29886313 DOI: 10.1016/j.ecoenv.2018.05.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/25/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Metal/metalloid accumulation in fish organs elicits biochemical responses indicating the overall fish and environmental health status. This study evaluated the bioaccumulation of metals and metalloid in relation to a suite of biochemical biomarkers (superoxide dismutase, catalase, glutathione-S-transferase, Na+/K+-ATPase, H+-ATPase, acetylcholinesterase activities and the levels of glutathione, metallothionein, lipid peroxidation and oxidized protein) in different organs of fish, Centropomus parallelus, in Vitória Bay and Santa Cruz estuaries (State of Espírito Santo, Brazil) with distinct contamination levels. Metal and metalloid concentrations differ in each organ and were significantly higher in winter than in summer. Chemometric evaluation performed between metal/metalloid accumulation and the biomarkers revealed a complex scenario in which the biomarker responses depend on both metal accumulation and organ/tissue sensitivity. The metal levels in gills indicate fish contamination mainly via water and the low sensitivity of this organ to most metals. Biomarker responses suggested that the metal elimination pathway is through the gills and kidney. The hepatopancreas and kidneys were the most important detoxification organs while muscle was the less reactive tissue. In general, the finding suggested that, C. parallelus is partly able to tolerate such metal contamination. However, it is emphasized that the biomarker responses imply an energetic cost and may affect the growth rate and reproduction. Given the ecological and economic importance of C. parallelus, the level of toxic metals/metalloids in juvenile fish is an important early-warning for the maintenance, conservation and commercial use of this species.
Collapse
Affiliation(s)
- Iara da C Souza
- Universidade Federal de São Carlos, Departamento de Ciências Fisiológicas, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil; Institute of Estuarine & Coastal Studies (IECS), University of Hull, Hull HU6 7RX, UK.
| | - Mariana Morozesk
- Universidade Federal de São Carlos, Departamento de Ciências Fisiológicas, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Marina M Bonomo
- Universidade Federal de São Carlos, Departamento de Ciências Fisiológicas, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Vinicius C Azevedo
- Universidade Federal de São Carlos, Departamento de Ciências Fisiológicas, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Marise M Sakuragui
- Universidade Federal de São Carlos, Departamento de Ciências Fisiológicas, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Michael Elliott
- Institute of Estuarine & Coastal Studies (IECS), University of Hull, Hull HU6 7RX, UK
| | - Silvia T Matsumoto
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Ave. Fernando Ferrari, 514, 29075-100 Vitória, Espírito Santo, Brazil
| | - Daniel A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de los Alimentos Córdoba; CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - María V Baroni
- ICYTAC: Instituto de Ciencia y Tecnología de los Alimentos Córdoba; CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Magdalena V Monferrán
- ICYTAC: Instituto de Ciencia y Tecnología de los Alimentos Córdoba; CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Marisa N Fernandes
- Universidade Federal de São Carlos, Departamento de Ciências Fisiológicas, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| |
Collapse
|
22
|
Wosnick N, Bendhack F, Leite RD, Morais RN, Freire CA. Benzocaine-induced stress in the euryhaline teleost, Centropomus parallelus and its implications for anesthesia protocols. Comp Biochem Physiol A Mol Integr Physiol 2018; 226:32-37. [PMID: 30056161 DOI: 10.1016/j.cbpa.2018.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 11/26/2022]
Abstract
The use of anesthetic in fish farming is a traditional practice which aims to reduce the stress caused by transport and handling. However, anesthesia-induction protocols are commonly established and implemented without proper physiological/behavioral evaluation. Additionally, concentration and time of exposure to the anesthetic are often set without considering species-specific responses. The fat snook (Centropomus parallelus) is a fish with great potential for aquaculture. Given its remarkable euryhalinity, it can grow in fresh- or seawater. Most studies on fat snook anesthesia tested natural compounds (essential oils) instead of traditional anesthetics. However, the use of benzocaine is much more common in the commercial sector, as it is easy to obtain and of relatively low cost. The present study aimed at analyzing the effects benzocaine exposure on glucose and cortisol plasma levels (two traditional stress markers in teleost fish), as well as on plasma osmolality, chloride and magnesium, (indicators of osmo-ionic allostasis) in animals acclimated to different salinities. Results showed that while osmo-ionic allostasis was strictly maintained across the treatments, time of anesthesia had a strong positive relationship to plasma cortisol and glucose, regardless the salinity of exposure and acclimation. The results are discussed as they relate to anesthesia protocols and how stress response generated by time of anesthesia may challenge farming flexibility.
Collapse
Affiliation(s)
- Natascha Wosnick
- Departamento de Fisiologia, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil.
| | - Fabiano Bendhack
- Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, Brazil
| | - Renata D Leite
- Departamento de Zoologia, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| | - Rosana N Morais
- Departamento de Fisiologia, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| | - Carolina A Freire
- Departamento de Fisiologia, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
23
|
Shifts in the relationship between mRNA and protein abundance of gill ion-transporters during smolt development and seawater acclimation in Atlantic salmon (Salmo salar). Comp Biochem Physiol A Mol Integr Physiol 2018; 221:63-73. [DOI: 10.1016/j.cbpa.2018.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 11/24/2022]
|
24
|
Gullian Klanian M, Zapata Pérez O, Vela-Magaña MA. Phenotypic plasticity in gene expression and physiological response in red drum Sciaenops ocellatus exposed to a long-term freshwater environment. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:73-85. [PMID: 28900798 DOI: 10.1007/s10695-017-0414-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Red drum (Sciaenops ocellatus) is a euryhaline fish commonly found in the Gulf of Mexico and along the Atlantic coast of North America. Because of high commercial demand and its euryhaline characteristics, aquaculture of this species has diversified from marine to low-salinity aquaculture systems. In recent years, interest in the feasibility of producing red drum in inland freshwater systems has grown and this prompted us to investigate its osmoregulatory capacity after rearing for 8 months in a freshwater aquaculture system. We compared the activities of several genes and enzymes involved in the osmoregulatory process in freshwater-acclimatized (FW) and seawater (SW) red drum. The gene expression profiles were variable: the expression of genes encoding Na+/K+-ATPase (NKA) and the cystic fibrosis transmembrane regulator (CFTR) was slightly higher in SW than FW fish, while phosphoenolpyruvate carboxykinase (PEPCK) and the glucocorticoid receptor messenger RNA (mRNA) levels were higher in FW red drum. The total plasma K concentration was 60.3% lower, and gill NKA activity was 63.5% lower in FW than in SW fish. PEPCK activity was twofold higher in FW than in SW red drum. Similarly, liver glycogen was 60% higher in FW fish. In summary, both gene expression and the enzyme activity data support the phenotypic plasticity of red drum and suggest that the limited capacity for ion homeostasis observed, in particular the low plasma K concentration, was due to the composition of freshwater and does not necessarily reflect a physiological inability to osmoregulate.
Collapse
Affiliation(s)
- Mariel Gullian Klanian
- Universidad Marista de Mérida, Periférico Norte Tablaje Catastral 13941 Carretera Mérida- Progreso, Post Office Box 97300, Mérida, Yucatán, Mexico.
| | - Omar Zapata Pérez
- CINVESTAV-IPN, Unidad Mérida Km 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Miguel Angel Vela-Magaña
- Universidad Marista de Mérida, Periférico Norte Tablaje Catastral 13941 Carretera Mérida- Progreso, Post Office Box 97300, Mérida, Yucatán, Mexico
| |
Collapse
|
25
|
Rind K, Beyrend D, Blondeau-Bidet E, Charmantier G, Cucchi P, Lignot JH. Effects of different salinities on the osmoregulatory capacity of Mediterranean sticklebacks living in freshwater. J Zool (1987) 2017. [DOI: 10.1111/jzo.12491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- K. Rind
- Shaheed Benazir Bhutto University; Shaheed benazirabad Pakistan
| | - D. Beyrend
- MARBEC; MARine Biodiversity, Exploitation and Conservation; University of Montpellier; Montpellier France
| | - E. Blondeau-Bidet
- MARBEC; MARine Biodiversity, Exploitation and Conservation; University of Montpellier; Montpellier France
| | - G. Charmantier
- MARBEC; MARine Biodiversity, Exploitation and Conservation; University of Montpellier; Montpellier France
| | - P. Cucchi
- MARBEC; MARine Biodiversity, Exploitation and Conservation; University of Montpellier; Montpellier France
| | - J.-H. Lignot
- MARBEC; MARine Biodiversity, Exploitation and Conservation; University of Montpellier; Montpellier France
| |
Collapse
|
26
|
Influence of water salinity on genes implicated in somatic growth, lipid metabolism and food intake in Pejerrey ( Odontesthes bonariensis ). Comp Biochem Physiol B Biochem Mol Biol 2017; 210:29-38. [DOI: 10.1016/j.cbpb.2017.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/06/2017] [Accepted: 05/21/2017] [Indexed: 01/06/2023]
|
27
|
Cappello T, Pereira P, Maisano M, Mauceri A, Pacheco M, Fasulo S. Advances in understanding the mechanisms of mercury toxicity in wild golden grey mullet (Liza aurata) by 1H NMR-based metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:139-148. [PMID: 27814529 DOI: 10.1016/j.envpol.2016.10.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Mercury (Hg) is recognized as a dangerous contaminant due to its bioaccumulation and biomagnification within trophic levels, leading to serious health risks to aquatic biota. Therefore, there is an urgent need to unravel the mechanisms underlying the toxicity of Hg. To this aim, a metabolomics approach based on protonic nuclear magnetic resonance (1H NMR), coupled with chemometrics, was performed on the gills of wild golden grey mullets L. aurata living in an Hg-polluted area in Ria de Aveiro (Portugal). Gills were selected as target organ due to their direct and continuous interaction with the surrounding environment. As a consequence of accumulated inorganic Hg and methylmercury, severe changes in the gill metabolome were observed, indicating a compromised health status of mullets. Numerous metabolites, i.e. amino acids, osmolytes, carbohydrates, and nucleotides, were identified as potential biomarkers of Hg toxicity in fish gills. Specifically, decrease of taurine and glycerophosphocholine, along with increased creatine level, suggested Hg interference with the ion-osmoregulatory processes. The rise of lactate indicated anaerobic metabolism enhancement. Moreover, the increased levels of amino acids suggested the occurrence of protein catabolism, further supported by the augmented alanine, involved in nitrogenous waste excretion. Increased level of isobutyrate, a marker of anoxia, was suggestive of onset of hypoxic stress at the Hg contaminated site. Moreover, the concomitant reduction in glycerophosphocholine and phosphocholine reflected the occurrence of membrane repair processes. Finally, perturbation in antioxidant defence system was revealed by the depletion in glutathione and its constituent amino acids. All these data were also compared to the differential Hg-induced metabolic responses previously observed in liver of the same mullets (Brandão et al., 2015). Overall, the environmental metabolomics approach demonstrated its effectiveness in the evaluation of Hg toxicity mechanisms in wild fish under realistic environmental conditions, uncovering tissue-specificities regarding Hg toxic effects namely in gills and liver.
Collapse
Affiliation(s)
- Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Patrícia Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angela Mauceri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Salvatore Fasulo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
28
|
Kwok KWH, Dong W, Marinakos SM, Liu J, Chilkoti A, Wiesner MR, Chernick M, Hinton DE. Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation. Nanotoxicology 2016; 10:1306-17. [DOI: 10.1080/17435390.2016.1206150] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kevin W. H. Kwok
- Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China,
| | - Wu Dong
- Nicholas School of the Environment and Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC, USA,
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tong Liao, China,
| | | | - Jie Liu
- Department of Biomedical Engineering, and
| | - Ashutosh Chilkoti
- Department of Chemistry, Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC, USA
| | - Mark R. Wiesner
- Department of Chemistry, Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC, USA
| | - Melissa Chernick
- Nicholas School of the Environment and Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC, USA,
| | - David E. Hinton
- Nicholas School of the Environment and Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC, USA,
| |
Collapse
|
29
|
Boudour-Boucheker N, Boulo V, Charmantier-Daures M, Anger K, Charmantier G, Lorin-Nebel C. Osmoregulation in larvae and juveniles of two recently separated Macrobrachium species: Expression patterns of ion transporter genes. Comp Biochem Physiol A Mol Integr Physiol 2016; 195:39-45. [DOI: 10.1016/j.cbpa.2016.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/02/2016] [Accepted: 02/07/2016] [Indexed: 11/27/2022]
|
30
|
Chase DA, Flynn EE, Todgham AE. Survival, growth and stress response of juvenile tidewater goby, Eucyclogobius newberryi, to interspecific competition for food. CONSERVATION PHYSIOLOGY 2016; 4:cow013. [PMID: 27293761 PMCID: PMC4845346 DOI: 10.1093/conphys/cow013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/27/2016] [Accepted: 03/16/2016] [Indexed: 06/06/2023]
Abstract
Reintroduction of endangered fishes to historic habitat has been used as a recovery tool; however, these fish may face competition from other fishes that established in their native habitat since extirpation. This study investigated the physiological response of tidewater goby, Eucyclogobius newberryi, an endangered California fish, when competing for food with threespine stickleback, Gasterosteus aculeatus, a native species, and rainwater killifish, Lucania parva, a non-native species. Survival, growth and physiological indicators of stress (i.e. cortisol, glucose and lactate concentrations) were assessed for juvenile fish held for 28 days in two food-limited conditions. When fed a 75% ration, survival of E. newberryi was significantly lower when held with G. aculeatus. In all fish assemblages, weight and relative condition decreased then stabilized over the 28 day experiment, while length remained unchanged. Whole-body cortisol in E. newberryi was not affected by fish assemblage; however, glucose and lactate concentrations were significantly higher with conspecifics than with other fish assemblages. When fed a 50% ration, survival of E. newberryi decreased during the second half of the experiment, while weight and relative condition decreased and length remained unchanged in all three fish assemblages. Cortisol concentrations were significantly higher for all fish assemblages compared with concentrations at the start of the experiment, whereas glucose and lactate concentrations were depressed relative to concentrations at the start of the experiment, with the magnitude of decrease dependent on the species assemblage. Our findings indicate that E. newberryi exhibited reduced growth and an elevated generalized stress response during low food availability. In response to reduced food availability, competition with G. aculeatus had the greatest physiological effect on E. newberryi, with minimal effects from the non-native L. parva. This study presents the first reported cortisol, glucose and lactate concentrations in response to chronic stress for E. newberryi.
Collapse
Affiliation(s)
- Daniel A Chase
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Erin E Flynn
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
31
|
Ferreira-Martins D, Coimbra J, Antunes C, Wilson JM. Effects of salinity on upstream-migrating, spawning sea lamprey, Petromyzon marinus. CONSERVATION PHYSIOLOGY 2016; 4:cov064. [PMID: 27293744 PMCID: PMC4765514 DOI: 10.1093/conphys/cov064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/26/2015] [Indexed: 05/07/2023]
Abstract
The sea lamprey, Petromyzon marinus, is an anadromous, semelparous species that is vulnerable to endangered in parts of its native range due in part to loss of spawning habitat because of man-made barriers. The ability of lampreys to return to the ocean or estuary and search out alternative spawning river systems would be limited by their osmoregulatory ability in seawater. A reduction in tolerance to salinity has been documented in migrants, although the underlying mechanisms have not been characterized. We examined the capacity for marine osmoregulation in upstream spawning migrants by characterizing the physiological effects of salinity challenge from a molecular perspective. Estuarine-captured migrants held in freshwater (FW) for ∼1 week (short-term acclimation) or 2 months (long-term acclimation) underwent an incremental salinity challenge until loss of equilibrium occurred and upper thresholds of 25 and 17.5, respectively, occurred. Regardless of salinity tolerance, all lamprey downregulated FW ion-uptake mechanisms [gill transcripts of Na(+):Cl(-) cotransporter (NCC/slc12a3) and epithelial Na(+) channel (ENaC/scnn1) and kidney Na(+)/K(+)-ATPase (NKA) protein and activity but not transcript]. At their respective salinity limits, lamprey displayed a clear osmoregulatory failure and were unable to regulate [Na(+)] and [Cl(-)] in plasma and intestinal fluid within physiological limits, becoming osmocompromised. A >90% drop in haematocrit indicated haemolysis, and higher plasma concentrations of the cytosolic enzymes alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase indicated damage to other tissues, including liver. However, >80% of short-term FW-acclimated fish were able to osmoregulate efficiently, with less haemolysis and tissue damage. This osmoregulatory ability was correlated with significant upregulation of the secretory form of Na(+):K(+):2Cl(-) cotransporter (NKCC1/slc12a2) transcript levels and the re-emergence of seawater-type ionocytes detected through immunohistochemical NKA immunoreactivity in the gill, the central ionoregulatory organ. This work sheds light on the molecular and physiological limits to the potential return to seawater for lampreys searching for alternative FW systems in which to spawn.
Collapse
Affiliation(s)
- D. Ferreira-Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, ICBAS, Universidade do Porto, Porto, Portugal
| | - J. Coimbra
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, ICBAS, Universidade do Porto, Porto, Portugal
| | - C. Antunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
- Aquamuseu do Rio Minho, Vila Nova de Cerveira, Portugal
| | - J. M. Wilson
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
32
|
Choi YJ, Kim NN, Choi YU, Choi CY. Changes of physiological rhythms ofN-methyl-d-aspartate receptors in the chum salmonOncorhynchus keta: effect of seawater acclimation during the parr-smolt transformation. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1084155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Cádiz L, Román-Padilla J, Gozdowska M, Kulczykowska E, Martínez-Rodríguez G, Mancera JM, Martos-Sitcha JA. Cortisol modulates vasotocinergic and isotocinergic pathways in the gilthead sea bream. ACTA ACUST UNITED AC 2014; 218:316-25. [PMID: 25524977 DOI: 10.1242/jeb.113944] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the present study, we assessed the responses of the vasotocinergic and isotocinergic systems to chronic stress induced by cortisol administration in the gilthead sea bream (Sparus aurata). Pituitary and plasma arginine vasotocin (AVT) and isotocin (IT) levels, as well as hypothalamic pro-vasotocin (pro-VT) and pro-isotocin (pro-IT) mRNA expression levels, were analysed. In addition, the mRNA levels of three receptors, AVTR type V1a2, AVTR type V2 and ITR, were analysed in several target organs associated with the following physiological processes: (i) integration and control (hypothalamus), (ii) metabolism and its control (liver and hypothalamus), (iii) osmoregulation (gills) and (iv) stress response (head kidney). Specimens were injected intraperitoneally with slow-release implants (5 μL g(-1) body mass) containing coconut oil alone (control group) or with cortisol (50 μg g(-1) body mass; cortisol group). Both AVT and IT synthesis and release were correlated with plasma cortisol values, suggesting a potential interaction between both hormonal systems and cortisol administration. Our results suggest that the activation of hepatic metabolism as well as the hypothalamic control of metabolic processes provide the energy necessary to overcome stress, which could be partly mediated by AVTRs and ITR. Upregulation of branchial AVT and IT receptor expression following cortisol treatment suggests an involvement of the vasotocinergic and isotocinergic systems in the regulation of ion channels/transporters during stressful situations. Finally, changes in AVT and IT receptor mRNA expression in the head kidney suggest these nonapeptides participate in feedback mechanisms that regulate the synthesis/release of cortisol. Our results indicate a relationship between cortisol and both the vasotocinergic and isotocinergic systems during simulated chronic stress in S. aurata.
Collapse
Affiliation(s)
- Laura Cádiz
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Cádiz, Spain Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), 11510 Puerto Real, Cádiz, Spain
| | - Javier Román-Padilla
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of the Polish Academy of Sciences, 81-712 Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of the Polish Academy of Sciences, 81-712 Sopot, Poland
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), 11510 Puerto Real, Cádiz, Spain
| | - Juan M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Juan A Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Cádiz, Spain Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
34
|
Zikos A, Seale AP, Lerner DT, Grau EG, Korsmeyer KE. Effects of salinity on metabolic rate and branchial expression of genes involved in ion transport and metabolism in Mozambique tilapia (Oreochromis mossambicus). Comp Biochem Physiol A Mol Integr Physiol 2014; 178:121-31. [PMID: 25193178 DOI: 10.1016/j.cbpa.2014.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of two rearing salinities, and acute salinity transfer, on the energetic costs of osmoregulation and the expression of metabolic and osmoregulatory genes in the gill of Mozambique tilapia. Using automated, intermittent-flow respirometry, measured standard metabolic rates (SMRs) of tilapia reared in seawater (SW, 130 mg O₂ kg⁻¹ h⁻¹) were greater than those reared in fresh water (FW, 103 mg O₂ kg⁻¹ h⁻¹), when normalized to a common mass of 0.05 kg and at 25±1°C. Transfer from FW to 75% SW increased SMR within 18h, to levels similar to SW-reared fish, while transfer from SW to FW decreased SMR to levels similar to FW-reared fish. Branchial gene expression of Na⁺-K⁺-2Cl⁻ cotransporter (NKCC), an indicator of SW-type mitochondria-rich (MR) cells, was positively correlated with SMR, while Na⁺-Cl⁻ cotransporter (NCC), an indicator of FW-type MR cells, was negatively correlated. Principal Components Analysis also revealed that branchial expression of cytochrome c oxidase subunit IV (COX-IV), glycogen phosphorylase (GP), and a putative mitochondrial biogenesis regulator in fish, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), were correlated with a higher SMR, plasma osmolality, and environmental salinity, while expression of glycogen synthase (GS), PGC-1β, and nuclear respiratory factor 1 (NRF-1) had negative correlations. These results suggest that the energetic costs of osmoregulation are higher in SW than in FW, which may be related to the salinity-dependent differences in osmoregulatory mechanisms found in the gills of Mozambique tilapia.
Collapse
Affiliation(s)
- Aris Zikos
- Department of Natural Sciences, Hawai'i Pacific University, Kāne'ohe, HI 96744, USA
| | - Andre P Seale
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI 96744, USA
| | - Darren T Lerner
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI 96744, USA; University of Hawai'i Sea Grant College Program, University of Hawai'i, Honolulu, HI 96822, USA
| | - E Gordon Grau
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI 96744, USA
| | - Keith E Korsmeyer
- Department of Natural Sciences, Hawai'i Pacific University, Kāne'ohe, HI 96744, USA.
| |
Collapse
|
35
|
Breves JP, McCormick SD, Karlstrom RO. Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia. Gen Comp Endocrinol 2014; 203:21-8. [PMID: 24434597 PMCID: PMC4096611 DOI: 10.1016/j.ygcen.2013.12.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/20/2013] [Accepted: 12/29/2013] [Indexed: 11/30/2022]
Abstract
The peptide hormone prolactin is a functionally versatile hormone produced by the vertebrate pituitary. Comparative studies over the last six decades have revealed that a conserved function for prolactin across vertebrates is the regulation of ion and water transport in a variety of tissues including those responsible for whole-organism ion homeostasis. In teleost fishes, prolactin was identified as the "freshwater-adapting hormone", promoting ion-conserving and water-secreting processes by acting on the gill, kidney, gut and urinary bladder. In mammals, prolactin is known to regulate renal, intestinal, mammary and amniotic epithelia, with dysfunction linked to hypogonadism, infertility, and metabolic disorders. Until recently, our understanding of the cellular mechanisms of prolactin action in fishes has been hampered by a paucity of molecular tools to define and study ionocytes, specialized cells that control active ion transport across branchial and epidermal epithelia. Here we review work in teleost models indicating that prolactin regulates ion balance through action on ion transporters, tight-junction proteins, and water channels in ionocytes, and discuss recent advances in our understanding of ionocyte function in the genetically and embryonically accessible zebrafish (Danio rerio). Given the high degree of evolutionary conservation in endocrine and osmoregulatory systems, these studies in teleost models are contributing novel mechanistic insight into how prolactin participates in the development, function, and dysfunction of osmoregulatory systems across the vertebrate lineage.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| | - Stephen D McCormick
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA; USGS, Conte Anadromous Fish Research Center, Turners Falls, MA 01376, USA
| | - Rolf O Karlstrom
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
36
|
Nakajima T, Shimura H, Yamazaki M, Fujioka Y, Ura K, Hara A, Shimizu M. Lack of hormonal stimulation prevents the landlocked Biwa salmon (Oncorhynchus masou subspecies) from adapting to seawater. Am J Physiol Regul Integr Comp Physiol 2014; 307:R414-25. [PMID: 24944245 DOI: 10.1152/ajpregu.00474.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Landlocking of salmon relaxes selective pressures on hypoosmoregulatory ability (seawater adaptability) and may lead to the abandonment of its physiological system. However, little is known about the mechanism and consequence of the process. Biwa salmon is a strain/subspecies of Oncorhynchus masou that has been landlocked in Lake Biwa for an exceptionally long period (about 500,000 years) and has low ability to adapt to seawater. We compared activity of gill Na(+),K(+)-ATPase (NKA) of Biwa salmon with those of anadromous strains of the same species (masu and amago salmon) during downstream migration periods and after exogenous hormone treatment. Gill NKA activity in anadromous strains increased during their migration periods, while that in Biwa salmon remained low. However, treatments of Biwa salmon with growth hormone (GH) and cortisol increased gill NKA activity. Cortisol treatment also improved the whole body seawater adaptability of Biwa salmon. Receptors for GH and cortisol responded to hormonal treatments, whereas their mRNA levels during downstream migration period were essentially unchanged in Biwa salmon. Circulating levels of cortisol in masu salmon showed a peak during downstream migration period, while no such increase was seen in Biwa salmon. The present results indicate that Biwa salmon can improve its seawater adaptability by exogenous hormonal treatment, and hormone receptors are capable of responding to the signals. However, secretion of the endogenous hormone (cortisol) was not activated during the downstream migration period, which explains, at least in part, their low ability to adapt to seawater.
Collapse
Affiliation(s)
- Takuro Nakajima
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | - Haruka Shimura
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | - Miyuki Yamazaki
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | | | - Kazuhiro Ura
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | - Akihiko Hara
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan;
| |
Collapse
|
37
|
Lerner DT, Sheridan MA, McCormick SD. Estrogenic compounds decrease growth hormone receptor abundance and alter osmoregulation in Atlantic salmon. Gen Comp Endocrinol 2012; 179:196-204. [PMID: 22906423 DOI: 10.1016/j.ygcen.2012.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/28/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
Exposure of Atlantic salmon smolts to estrogenic compounds is shown to compromise several aspects of smolt development. We sought to determine the underlying endocrine mechanisms of estrogen impacts on the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis. Smolts in freshwater (FW) were either injected 3 times over 10 days with 2 μgg(-1) 17β-estradiol (E2) or 150μgg(-1) 4-nonylphenol (NP). Seawater (SW)-acclimated fish received intraperitoneal implants of 30 μgg(-1) E2 over two weeks. Treatment with these estrogenic compounds increased hepatosomatic index and total plasma calcium. E2 and NP reduced maximum growth hormone binding by 30-60% in hepatic and branchial membranes in FW and SW, but did not alter the dissociation constant. E2 and NP treatment decreased plasma levels of IGF-I levels in both FW and SW. In FW E2 and NP decreased plasma GH whereas in SW plasma GH increased after E2 treatment. Compared to controls, plasma chloride concentrations of E2-treated fish were decreased 5.5mM in FW and increased 10.5mM in SW. There was no effect of NP or E2 on gill sodium-potassium adenosine triphosphatase (Na(+)/K(+)-ATPase) activity in FW smolts, whereas E2 treatment in SW reduced gill Na(+)/K(+)-ATPase activity and altered the number and size of ionocytes. Our data indicate that E2 downregulates the GH/IGF-I-axis and SW tolerance which may be part of its normal function for reproduction and movement into FW. We conclude that the mechanism of endocrine disruption of smolt development by NP is in part through alteration of the GH/IGF-I axis via reduced GH receptor abundance.
Collapse
Affiliation(s)
- Darren T Lerner
- Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
38
|
Mechanism of osmoregulatory adaptation in tilapia. Mol Biol Rep 2012; 40:925-31. [PMID: 23054028 DOI: 10.1007/s11033-012-2133-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
The shortage of freshwater resource in many countries leads to a shift to develop aquaculture in brackish water and sea water. Tilapias are euryhaline that can thrive from freshwater to full sea water. They and their hybrids are the best candidate species for cultivation in brackish habitats. Thus, understanding their osmoregulatory mechanisms will help to breed or genetically engineer salt tolerant species. In this paper, we review recent progress in understanding the mechanisms of osmoregulatory adaptations in tilapia.
Collapse
|
39
|
Hiroi J, Kaneko T, Seikai T, Tanaka M. Developmental Sequence of Chloride Cells in the Body Skin and Gills of Japanese Flounder (Paralichthys olivaceus) Larvae. Zoolog Sci 2012; 15:455-60. [PMID: 18462024 DOI: 10.2108/0289-0003(1998)15[455:dsocci]2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/1998] [Accepted: 05/14/1998] [Indexed: 11/17/2022]
Abstract
The developmental sequence of chloride cells was examined in both the body skin and gills of Japanese flounder (Paralichthys olivaceus) larvae by whole-mount immunocytochemistry using an antiserum specific for Na(+),K(+)-ATPase. In premetamorphic larvae at 0 and 4 days after hatching (days 0 and 4), immunoreactive chloride cells were distributed only in the yolk-sac membrane and body skin. Premetamorphic larvae at days 8-18 possessed both cutaneous and branchial chloride cells. Large chloride cells in the skin of premetamorphic larvae often formed multicellular complexes, suggestive of their ion-secreting function. Cutaneous chloride cells decreased in size and density at the beginning of metamorphosis (days 21 and 24), and disappeared at the metamorphic climax (days 28 and 33). In contrast, branchial chloride cells first appeared at day 8, and increased during metamorphosis. These results indicate that the site for ion secretion in seawater may shift from cutaneous to branchial chloride cells during metamorphosis. The appearance of branchial chloride cells before the differentiation of gill lamellae suggests that the primary function of the gills during the early development is ion regulation rather than gas exchanges.
Collapse
|
40
|
Hiroi J, McCormick SD. New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir Physiol Neurobiol 2012; 184:257-68. [PMID: 22850177 DOI: 10.1016/j.resp.2012.07.019] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 11/29/2022]
Abstract
Teleost fishes are able to acclimatize to seawater by secreting excess NaCl by means of specialized "ionocytes" in the gill epithelium. Antibodies against Na(+)/K(+)-ATPase (NKA) have been used since 1996 as a marker for identifying branchial ionocytes. Immunohistochemistry of NKA by itself and in combination with Na(+)/K(+)/2Cl(-) cotransporter and CFTR Cl(-) channel provided convincing evidence that ionocytes are functional during seawater acclimation, and also revealed morphological variations in ionocytes among teleost species. Recent development of antibodies to freshwater- and seawater-specific isoforms of the NKA alpha-subunit has allowed functional distinction of ion absorptive and secretory ionocytes in Atlantic salmon. Cutaneous ionocytes of tilapia embryos serve as a model for branchial ionocytes, allowing identification of 4 types: two involved in ion uptake, one responsible for salt secretion and one with unknown function. Combining molecular genetics, advanced imaging techniques and immunohistochemistry will rapidly advance our understanding of both the unity and diversity of ionocyte function and regulation in fish osmoregulation.
Collapse
Affiliation(s)
- Junya Hiroi
- Department of Anatomy, St. Marianna University School of Medicine, 2-16-1 Sugao, Kawasaki 216-8511, Japan.
| | | |
Collapse
|
41
|
Garcia-Santos S, Vargas-Chacoff L, Ruiz-Jarabo I, Varela JL, Mancera JM, Fontaínhas-Fernandes A, Wilson JM. Metabolic and osmoregulatory changes and cell proliferation in gilthead sea bream (Sparus aurata) exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:270-278. [PMID: 20933284 DOI: 10.1016/j.ecoenv.2010.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 08/13/2010] [Accepted: 08/18/2010] [Indexed: 05/30/2023]
Abstract
The impact of cadmium on metabolism and osmoregulation was assessed in gilthead sea bream (Sparus aurata). Seawater acclimated fish were injected intraperitoneally with a sublethal dose of cadmium (1.25 mg Cd/kg body wt). After 7 days, half of the injected fish were sampled. The remaining fish were transferred to hypersaline water and sampled 4 days later. Gill and kidney Na(+)/K(+)-ATPase activities, plasma levels of cortisol, several metabolites and osmolytes, as well as osmolality were measured. Hepatosomatic index and condition factor were calculated. The expression levels of Na(+)/K(+)-ATPase, heat shock proteins (HSP70, HSP90) and proliferating cell nuclear antigen was assessed by western blotting. Cadmium treatment adversely affected the Na(+)/K(+)-ATPase activity, although, there was no perturbation in ion homeostasis and the animals were not compromised following transfer to hypersaline water. Increased cell proliferation and Hsp90 expression likely contributed to the attenuation of the deleterious effects of cadmium exposure.
Collapse
Affiliation(s)
- Sofia Garcia-Santos
- Universidade de Trás-os-Montes e Alto Douro e Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas, Vila Real, Portugal.
| | | | | | | | | | | | | |
Collapse
|
42
|
Rhee JS, Kim RO, Seo JS, Lee J, Lee YM, Lee JS. Effects of salinity and endocrine-disrupting chemicals on expression of prolactin and prolactin receptor genes in the euryhaline hermaphroditic fish, Kryptolebias marmoratus. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:413-23. [PMID: 20620225 DOI: 10.1016/j.cbpc.2010.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 07/02/2010] [Accepted: 07/04/2010] [Indexed: 11/15/2022]
Abstract
Prolactin plays an essential role in ion uptake as well as reduction in ion and water permeability of osmoregulatory surfaces in euryhaline fish. Kryptolebias marmoratus is a euryhaline fish with unique internal self-fertilization. In order to understand the effect of different salinities and environmental endocrine-disrupting chemicals (EDCs) on the regulation of prolactin (PRL) and prolactin receptor (PRLR) genes, the full-length sequences of PRL and two PRLR genes were cloned from K. marmoratus. The expression pattern of K. marmoratus PRL (Km-PRL) and PRLR (Km-PRLR1, Km-PRLR2) mRNAs was analyzed in different developmental stages (2dpf to 5h post-hatching) and tissues of hermaphrodite fish. To investigate the effects of salinity changes and EDC exposure, the mRNA expression pattern of PRL, PRLR1 and PRLR2 was analyzed in exposed fish. The Km-PRL mRNA in the hermaphrodite was predominantly expressed in the brain/pituitary, the Km-PRLR1 mRNA was highly expressed in the intestine, while the Km-PRLR2 mRNA was intensively expressed in the gills. The expression of the Km-PRL mRNA generally increased from stage 1 (2 dpf) to stage 3 (12 dpf) in a developmental, stage-dependent manner. It decreased in stage 4 (12 dpf) and the hatching stage (stage 5). Km-PRLR1 and Km-PRLR2 mRNAs showed a gradual increase in expression from stage 1 (2 dpf) to stage 4 (12 dpf) and decreased by stage 5 (5 h post-hatching). Also, both mRNAs of PRLR showed a different expression pattern after exposure to different salinity concentrations (0, 33, and 50 ppt) in juvenile fish. The expression of PRL mRNA was upregulated at 0 ppt, but was downregulated at a moderately higher salinity concentration (33 to 50 ppt). The Km-PRLR1 mRNA showed upregulation at freshwater stress (0 ppt) compared to other concentrations of salinity (33 ppt to 50 ppt). The Km-PRLR2 mRNA was marginally upregulated at freshwater stress (0 ppt), but was downregulated at a higher salinity concentration (50 ppt) and showed no significant change in expression at 33 ppt salinity. Interestingly, both mRNAs showed upregulation in the brain (e.g. Km-PRL) and intestine (e.g. Km-PRLR1) after EDC exposure. These findings suggested that Km-PRL and two Km-PRLR mRNAs would be useful in analyzing the effect of different salinities as well as the modulatory effect of EDC exposure on these gene expressions in K. marmoratus.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | |
Collapse
|
43
|
McCormick SD, Regish AM, Christensen AK. Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. ACTA ACUST UNITED AC 2010; 212:3994-4001. [PMID: 19946077 DOI: 10.1242/jeb.037275] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gill Na(+)/K(+)-ATPase (NKA) in teleost fishes is involved in ion regulation in both freshwater and seawater. We have developed and validated rabbit polyclonal antibodies specific to the NKA alpha1a and alpha1b protein isoforms of Atlantic salmon (Salmo salar Linnaeus), and used western blots and immunohistochemistry to characterize their size, abundance and localization. The relative molecular mass of NKA alpha1a is slightly less than that for NKA beta1b. The abundance of gill NKA alpha1a was high in freshwater and became nearly undetectable after seawater acclimation. NKA alpha1b was present in small amounts in freshwater and increased 13-fold after seawater acclimation. Both NKA isoforms were detected only in chloride cells. NKA alpha1a was located in both filamental and lamellar chloride cells in freshwater, whereas in seawater it was present only as a faint background in filamental chloride cells. In freshwater, NKA alpha1b was found in a small number of filamental chloride cells, and after seawater acclimation it was found in all chloride cells on the filament and lamellae. Double simultaneous immunofluorescence indicated that NKA alpha1a and alpha1b are located in different chloride cells in freshwater. In many chloride cells in seawater, NKA alpha1b was present in greater amounts in the subapical region than elsewhere in the cell. The combined patterns in abundance and immunolocalization of these two isoforms can explain the salinity-related changes in total NKA and chloride cell abundance. The results indicate that there is a freshwater and a seawater isoform of NKA alpha-subunit in the gills of Atlantic salmon and that they are present in distinct chloride cells.
Collapse
Affiliation(s)
- S D McCormick
- USGS, Conte Anadromous Fish Research Center, Turners Falls, MA, USA.
| | | | | |
Collapse
|
44
|
López-Galindo C, Vargas-Chacoff L, Nebot E, Casanueva JF, Rubio D, Solé M, Mancera JM. Biomarker responses in Solea senegalensis exposed to sodium hypochlorite used as antifouling. CHEMOSPHERE 2010; 78:885-893. [PMID: 20022624 DOI: 10.1016/j.chemosphere.2009.11.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 11/09/2009] [Accepted: 11/16/2009] [Indexed: 05/28/2023]
Abstract
The time-course stress responses (0, 1, 2, and 7 d) was assessed in plasmatic, branchial and renal parameters of juveniles Solea senegalensis exposed to different concentrations of the antifouling sodium hypochlorite (0.1, 0.2, and 0.5mgL(-1)). These stress responses were only assessed for the total length of exposure (7d) at the lowest NaClO concentration due to the high toxicity of this chemical. In addition, the xenobiotic metabolism responses were evaluated by means of enzymatic activities of ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPX), catalase (CAT), and carboxylesterase (CbE) in liver; as well as GST, GPX, CAT and acetylcholinesterase (AChE) in gill. Oxidative stress damage due to sodium hypochlorite exposure was measured by lipid peroxidation levels in liver and gill. Concentrations of 0.2 and 0.5mgL(-1) produced lethal effects after 1d and 2h of exposure, respectively. After 1d of exposure to sublethal concentration of sodium hypochlorite (0.1mgL(-1)) osmoregulatory (osmolality and chloride) and stress (cortisol, glucose and lactate) plasmatic parameters were enhanced to respect at control fish. However after 3 or 7d these parameters returned to control values. No effects were observed on plasma protein and triglyceride levels or on gill and kidney Na(+)/K(+)-ATPase activities. Diverse gill pathologies such as hypertrophy, lamellar fusion and an increase in goblet cell number and size were observed after 7d of exposure. Most biochemical parameters related to xenobiotic metabolism and oxidative stress were also significantly affected which suggests that seawater affected by sodium hypochlorite discharges from power plants, is able to alter the fish xenobiotic metabolism and generate oxidative stress.
Collapse
Affiliation(s)
- Cristina López-Galindo
- Departamento de Tecnologías del Medio Ambiente, Universidad de Cádiz, Puerto Real, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
McGuire A, Aluru N, Takemura A, Weil R, Wilson JM, Vijayan MM. Hyperosmotic shock adaptation by cortisol involves upregulation of branchial osmotic stress transcription factor 1 gene expression in Mozambique Tilapia. Gen Comp Endocrinol 2010; 165:321-9. [PMID: 19651127 DOI: 10.1016/j.ygcen.2009.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/21/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
Abstract
The Mozambique tilapia (Oreochromis mossambicus) is a euryhaline species that does not survive direct seawater exposure. Cortisol is involved in re-establishing electrolyte homeostasis in seawater and is thought to play a role in allowing tilapia to cope with abrupt seawater exposure, but the mechanism(s) are far from clear. Recently, osmotic stress transcription factor 1 (OSTF1) was identified as a key signaling molecule involved in hyperosmotic stress adaptation in tilapia. Consequently, we tested the hypothesis that upregulation of OSTF1 expression by cortisol is a key response for hyperosmotic stress adaptation in tilapia. Fish were exposed to different salinities over a 24h period, while a major electrolyte disturbance and mortality was observed only with full-strength seawater exposure. Therefore, we administered cocoa butter implants of cortisol (50mg/kg) intraperitoneally to tilapia maintained in fresh water and after three days exposed these fish to full-strength seawater. There was 50% mortality in the control fish upon seawater exposure, but this was abolished by cortisol treatment. Abrupt seawater exposure did not affect plasma cortisol levels, while, as expected, exogenous administration of this steroid elevated plasma cortisol levels both in fresh water and seawater. Cortisol treatment significantly induced OSTF1 gene expression in fresh water tilapia, and also enhanced further the seawater-induced OSTF1 mRNA abundance. Plasma osmolality decreased, while gill Na(+)/K(+)-ATPase activity was suppressed in the cortisol group in seawater compared to the sham group. This corresponded with a significant reduction in gill ionocyte size and Na(+)/K(+)-ATPase activity and protein expression after seawater exposure. Cortisol did not modify liver metabolism, but significantly suppressed gill metabolic capacity in seawater. Overall, cortisol adapts tilapia to a hyperosmotic shock associated with abrupt seawater exposure. This involves upregulation of OSTF1 gene expression and a concomitant suppression of branchial metabolism in tilapia.
Collapse
Affiliation(s)
- Alison McGuire
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Allen PJ, Cech JJ, Kültz D. Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon. J Comp Physiol B 2009; 179:903-20. [PMID: 19517116 PMCID: PMC2745624 DOI: 10.1007/s00360-009-0372-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 11/25/2022]
Abstract
Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na(+), K(+)-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na(+), K(+)-ATPase content. Kidneys were analyzed for Na(+), K(+)-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na(+), K(+)-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na(+), K(+)-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na(+), K(+)-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO(3) (-) and 2CO(3) (2-)) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size.
Collapse
Affiliation(s)
- Peter J Allen
- Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.
| | | | | |
Collapse
|
47
|
He X, Zhuang P, Zhang L, Xie C. Osmoregulation in juvenile Chinese sturgeon (Acipenser sinensis Gray) during brackish water adaptation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:223-230. [PMID: 19343518 DOI: 10.1007/s10695-008-9230-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Accepted: 05/07/2008] [Indexed: 05/27/2023]
Abstract
The osmoregulation capabilities of 7-month-old juvenile Chinese sturgeon (Acipenser sinensis Gray) (128.8 +/- 15 g) transferred directly from fresh water (0 per thousand, 46 mOsmol kg(-1)) to brackish water (10 per thousand, 273 mOsmol kg(-1)) were studied over a 20-day period. Changes in serum osmolarity, chloride (Cl(-)), sodium (Na+), potassium (K+) and calcium (Ca2+) ion concentrations, as well as gill and spiral valve Na+,K+-ATPase activities were measured at 3, 12, 24, 72, 216 and 480 h after transfer to BW. The serum osmolarity and ion concentrations (Na+, Cl(-) and Ca2+) increased immediately after the transference to BW, reaching maximum at 24 h and returned to a new steady state at 216 h, while the FW control group maintained basal levels which showed lower (P < 0.05) than the BW group. Gill Na+,K+-ATPase activity of BW group exhibited an abrupt decrease in the first 3 h after transfer, but began to increase at 3 h, reaching a peak value at 24 h, and returned to a new steady state at 216 h. The differences between gill Na+,K+-ATPase activity of BW and FW fish were significant (P < 0.05) after 12 h. In contrast, Na+,K+-ATPase activity of the spiral valve showed transient increase after transference from FW to BW, and then decreased rapidly at 3 h, reaching the lowest at 24 h after transference. At 216 h after exposure to BW, Na+,K+-ATPase activities of the spiral valve increased slowly to the levels of FW control. The results of our study indicate the existence of hyposmoregulatory adaptive mechanisms in 7-month-old juvenile Chinese sturgeon which enable this fish to acclimate itself successfully to brackish water.
Collapse
Affiliation(s)
- Xugang He
- Fisheries College, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | |
Collapse
|
48
|
Mitrovic D, Perry SF. The effects of thermally induced gill remodeling on ionocyte distribution and branchial chloride fluxes in goldfish (Carassius auratus). ACTA ACUST UNITED AC 2009; 212:843-52. [PMID: 19252001 DOI: 10.1242/jeb.025999] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Experiments were performed to evaluate the effects of temperature-induced changes in functional gill lamellar surface area on the distribution of ionocytes and branchial chloride fluxes in goldfish (Carassius auratus). In fish acclimated to warm water (25 degrees C), the ionocytes were scattered along the lamellae and within the interlamellar regions of the filament. In cold water (7 degrees C), the ionocytes were largely absent from the lamellae and filaments but instead were mostly confined to the outer regions of an interlamellar cell mass (ILCM) that formed within the interlamellar channels. Using a ;time-differential double fluorescent staining' technique, it was determined that in fish transferred from 25 degrees to 7 degrees C, the ionocytes on the outer edge of (and within) the ILCM originated predominantly from the migration of pre-existing ionocytes and to a lesser extent from the differentiation of progenitor cells. Despite the greater functional lamellar surface area in the warm-water-acclimated fish, there was no associated statistically significant increase in passive branchial Cl(-) efflux. Because the paracellular efflux of polyethylene glycol was increased 2.5-fold at the warmer temperature, it would suggest that goldfish specifically regulate (minimize) Cl(-) loss that otherwise would accompany the increasing functional lamellar surface area. In contrast to predictions, the numbers and sizes of individual ionocytes was inversely related to functional lamellar surface area resulting in a markedly greater ionocyte surface area in fish acclimated to cold water (5219+/-438 compared with 2103+/-180 microm(2) mm(-1) of filament). Paradoxically, the activity of Na(+)/K(+)-ATPase (as measured at room temperature) also was lower in the cold-water fish (0.43+/-0.06 compared with 1.28+/-0.15 micromol mg(-1) protein h(-1)) despite the greater numbers of ionocytes. There were no statistically significant differences in the rates of Cl(-) uptake in the two groups of fish despite the differences in ionocyte abundance. It is possible that to maintain normal rates of Cl(-) uptake, a greater ionocyte surface area is required in the cold-water fish that possess an ILCM because of the unfavorable positioning of the ionocytes on and within the ILCM, a structure lacking any obvious blood supply.
Collapse
Affiliation(s)
- D Mitrovic
- Department of Biology, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| | | |
Collapse
|
49
|
Gene and protein expression for prolactin, growth hormone and somatolactin in Sparus aurata: seasonal variations. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:130-5. [PMID: 19250974 DOI: 10.1016/j.cbpb.2009.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/16/2009] [Accepted: 02/16/2009] [Indexed: 12/26/2022]
Abstract
The seasonal variation of PRL, GH and SL gene and protein expression has been analyzed in gilthead sea bream (Sparus aurata) pituitaries using Real-Time Q-PCR and Western Blots, respectively. Animals were cultured in earthen ponds under natural photoperiod, temperature and salinity conditions. Samples were taken during winter 2005 (January), spring 2005 (April), summer 2005 (July) and autumn 2005 (October). Beta-actin, used as the housekeeping gene both for Q-RT-PCR and Western analysis, did not present significant differences among seasons. Higher expression was observed during spring and autumn for PRL, summer and winter for GH, and spring for SL. Expression of PRI, GH and SL, presented seasonal variation, suggesting that these hormones could play a role in the molecular signal transduction of environmental factors (especially of photoperiod and temperature) in eurythermal fish.
Collapse
|
50
|
Elevated spring temperature stimulates growth, but not smolt development, in anadromous Arctic charr. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:596-601. [DOI: 10.1016/j.cbpa.2008.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 07/14/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
|