1
|
Saade MB, Holden S, Kakinami L, McGrath JJ, Mathieu MÈ, Poirier P, Barnett TA, Beaucage P, Henderson M. Adiposity and cardiac autonomic function in children with a family history of obesity. Clin Auton Res 2024; 34:583-592. [PMID: 39304555 DOI: 10.1007/s10286-024-01063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Data on associations between adiposity and heart rate variability (HRV) in prepubertal children are limited. We examined the associations between adiposity indices and HRV, independent of lifestyle behaviors, comparing multiple indicators of adiposity, and explored differences between boys and girls. METHODS Data stem from 469 participants of the QUALITY cohort (630 children aged 8-10 years with a parental history of obesity). Adiposity indices included waist-to-height ratio, body mass index (BMI) percentiles and categories (overweight, obesity), dual-energy x-ray absorptiometry (DEXA) defined fat mass percentage and android/gynoid ratio. HRV indices in the frequency and the spectral domain were derived from a daytime 3-h Holter recording. Multivariable linear regression models were adjusted for age, sex, Tanner stage, physical activity, screen time, and fitness. Interactions between sex and adiposity were tested. RESULTS Greater adiposity was associated with decreased parasympathetic modulation and increased sympathetic dominance. Waist-to-height ratio was associated with lower parasympathetic activity: root mean square of the successive differences (RMSSD) [B = -23.32, 95% confidence interval (CI) -42.42, -4.22], pNN50 (B = -16.93, 95% CI - 28.58, - 5.27), LF/HF ratio (B = 1.83, 95% CI 0.97-2.70). Patterns of association were similar for android/gynoid ratio. Overweight was not associated with altered HRV. Obesity was negatively associated with RMSSD and pNN50 and positively with LF/HF ratio. Greater fat mass percentage was associated with lower RMSSD, pNN50, and HF, and increased LF/HF ratio. There were no differences between boys and girls. CONCLUSIONS Specific markers of adiposity relate to altered HRV in childhood, with waist-to-height ratio being potentially a more relevant marker of HRV than BMI and more pragmatic than percent body fat. TRIAL REGISTRATION NCT03356262, 11 November 2017.
Collapse
Affiliation(s)
- Marie-Béatrice Saade
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, 3175 Chemin Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, CHU de Rennes, Rennes, France
| | - Samuel Holden
- Department of Mathematics and Statistics, Concordia University, Montréal, QC, Canada
| | - Lisa Kakinami
- Department of Mathematics and Statistics, Concordia University, Montréal, QC, Canada
- PERFORM Centre, Concordia University, Montreal, QC, Canada
| | | | - Marie-Ève Mathieu
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, 3175 Chemin Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montreal, Canada
| | - Paul Poirier
- Faculté de Pharmacie, Université Laval, Quebec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie, Quebec, QC, Canada
| | - Tracie A Barnett
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, 3175 Chemin Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Family Medicine Department, McGill University, Montreal, QC, Canada
| | - Pierre Beaucage
- Department of biochemistry & chemistry, Faculty of Sciences, University of Moncton, Moncton, Canada
| | - Mélanie Henderson
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada.
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, 3175 Chemin Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
- School of Public Health, Department of Social and Preventive Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
2
|
Schlaich MP, Tsioufis K, Taddei S, Ferri C, Cooper M, Sindone A, Borghi C, Parissis J, Marketou M, Vintila AM, Farcas A, Kiuchi MG, Chandrappa S. Targeting the sympathetic nervous system with the selective imidazoline receptor agonist moxonidine for the management of hypertension: an international position statement. J Hypertens 2024; 42:2025-2040. [PMID: 38747424 DOI: 10.1097/hjh.0000000000003769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/22/2024] [Indexed: 10/30/2024]
Abstract
Hypertension is often linked with metabolic risk factors that share common pathophysiological pathways. Despite wide-spread availability of multiple drug classes, optimal blood pressure (BP) control remains challenging. Increased central sympathetic outflow is frequently neglected as a critical regulator of both circulatory and metabolic pathways and often remains unopposed therapeutically. Selective imidazoline receptor agonists (SIRAs) effectively reduce BP with a favorable side effect profile compared with older centrally acting antihypertensive drugs. Hard outcome data in hypertension, such as prevention of stroke, heart and kidney diseases, are not available with SIRAs. However, in direct comparisons, SIRAs were as effective as angiotensin-converting enzyme inhibitors, β-blockers, calcium channel blockers, and diuretics in lowering BP. Other beneficial effects on metabolic parameters in hypertensive patients with concomitant overweight and obesity have been documented with SIRAs. Here we review the existing evidence on the safety and efficacy of moxonidine, a widely available SIRA, compared with common antihypertensive agents and provide a consensus position statement based on inputs from 12 experts from Europe and Australia on SIRAs in hypertension management.
Collapse
Affiliation(s)
- Markus P Schlaich
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, The University of Western Australia, Perth, Australia
| | - Konstantinos Tsioufis
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa
| | - Claudio Ferri
- University of L'Aquila, MeSVA Department, UOC Internal Medicine & Nephrology, Hypertension and Cardiovascular Prevention Unit - San Salvatore Hospital, L'Aquila, Italy
| | | | - Andrew Sindone
- Heart Failure Unit, Concord Hospital and University of Sydney, Sydney, Australia
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - John Parissis
- University Clinic of Emergency Medicine, Attikon University Hospital, Athens
| | - Maria Marketou
- University of Crete, School of Medicine, Heraklion, Crete, Greece
| | - Ana Maria Vintila
- Internal Medicine and Cardiology Department, Carol Davila University of Medicine and Pharmacy Bucharest, Romania; Coltea Clinical Hospital, Bucharest
| | - Anca Farcas
- Department of Internal Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Romania
| | - Marcio G Kiuchi
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, The University of Western Australia, Perth, Australia
| | | |
Collapse
|
3
|
Barbut D, Kinney WA, Chen HH, Stewart AFR, Hecksher-Sørensen J, Zhang C, Fleming A, Zemel M, Zasloff M. A novel, centrally acting mammalian aminosterol, ENT-03, induces weight loss in obese and lean rodents. Diabetes Obes Metab 2024; 26:5701-5712. [PMID: 39307948 DOI: 10.1111/dom.15940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/10/2024] [Accepted: 08/22/2024] [Indexed: 11/05/2024]
Abstract
ENT-03, a spermine bile acid we recently discovered in the brain of newborn mice acts centrally to regulate energy and metabolism. Obese, diabetic (ob/ob) mice treated with five doses of ENT-03 over 2 weeks, demonstrated a rapid decrease in blood glucose levels into the range seen in non-obese animals, prior to any significant weight loss. Weight fell substantially thereafter as food intake decreased, and serum biochemical parameters normalized compared with both vehicle and pair-fed controls. To determine whether ENT-03 could be acting centrally, we injected a single dose of ENT-03 intracerebroventricularly to Sprague-Dawley rats. Weight fell significantly and remained below vehicle injected controls for an extended period. By autoradiography, ENT-03 localized to the arcuate nucleus of the hypothalamus, the choroid plexus and cerebrospinal fluid. Significant cFos activation occurred in multiple anatomical regions within the hypothalamus and brainstem involved in appetite suppression, food-entrained circadian rhythmicity, autonomic function, and growth. These data support a role for ENT-03 in the treatment of type 2 diabetes and obesity. Phase 1 studies in subjects with obesity and diabetes are currently in progress.
Collapse
Affiliation(s)
- Denise Barbut
- Enterin, Inc., Philadelphia, Pennsylvania, USA
- Enterin Research Institute, Philadelphia, Pennsylvania, USA
| | - William A Kinney
- Enterin, Inc., Philadelphia, Pennsylvania, USA
- Enterin Research Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | - Michael Zasloff
- Enterin, Inc., Philadelphia, Pennsylvania, USA
- Enterin Research Institute, Philadelphia, Pennsylvania, USA
- MedStar Georgetown Transplant Institute, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Yu A, Li X, Zhang W, Zhang Y, Chen X, Wang L, Xie M, Yang L. Adjunctive benefits of low-frequency transcutaneous electrical nerve stimulation for obesity frequent chronic conditions: a systematic review. Front Endocrinol (Lausanne) 2024; 15:1424771. [PMID: 39184140 PMCID: PMC11341397 DOI: 10.3389/fendo.2024.1424771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
Background Obesity is widely recognized for its role in predisposing individuals to a spectrum of chronic health conditions. Emerging preliminary evidence points to the potential benefits of low-frequency transcutaneous electrical nerve stimulation (Lo-TENS) in enhancing various health outcomes among those with obesity and associated disorders. Objective This systematic review was designed to assess the effectiveness of Lo-TENS for managing obesity and its related chronic diseases. Methods For this systematic review, we included randomized controlled trials that evaluated the impact of Lo-TENS on individuals with obesity and its associated chronic diseases. Results Eight trials encompassing 671 participants and spanning three unique populations: essential hypertension (EH), type 2 diabetes mellitus (T2DM), and obesity were deemed eligible for inclusion in this review. Compared to baseline measurements, Lo-TENS demonstrated a tendency to positively affect blood pressure in individuals with EH and metabolic parameters in those with T2DM. Nonetheless, the efficacy of Lo-TENS in treating obesity is not yet clear when contrasted with a no-intervention control group. When compared with other intervention modalities, three of the trials reported less favorable results. Conclusions Although Lo-TENS did not consistently surpass other treatments or yield substantial improvements, it generally provided greater benefits than the majority of placebo controls. This suggests that Lo-TENS could potentially serve as a beneficial adjunctive therapy in the management of obesity and its associated conditions. However, given the limited number of trials assessed, the elevated risk of bias within these studies, and the scarce evidence currently available, it is too early to reach definitive conclusions. Caution should be exercised when interpreting the current findings. There is an imperative for further high-quality research to thoroughly investigate and substantiate the efficacy of Lo-TENS in relation to obesity and its related disorders.
Collapse
Affiliation(s)
- An Yu
- Yunnan Key Laboratory for Basic Research On Bone and Joint Diseases &, Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan, China
| | - Xiang Li
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Kunming, Yunnan, China
| | - Wei Zhang
- Department of Rehabilitation Medicine, Yan An Hospital of Kunming City, Kunming, Yunnan, China
| | - Yazhou Zhang
- Department of Geriatrics, The Second People’s Hospital of Kunming, Kunming, Yunnan, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Kunming, Yunnan, China
| | - Liuyan Wang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Kunming, Yunnan, China
| | - Mei Xie
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Kunming, Yunnan, China
| | - Lei Yang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Kunming, Yunnan, China
| |
Collapse
|
5
|
Chen C, Chang Z, Kuja-Halkola R, D'Onofrio BM, Larsson H, Andell P, Lichtenstein P, Pettersson E. Associations Between General and Specific Mental Health Conditions in Young Adulthood and Cardiometabolic Complications in Middle Adulthood: A 40-Year Longitudinal Familial Coaggregation Study of 672,823 Swedish Individuals. Am J Psychiatry 2024; 181:651-657. [PMID: 38263878 DOI: 10.1176/appi.ajp.20220951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
OBJECTIVE Most mental disorders, when examined individually, are associated with an increased risk of cardiometabolic complications. However, these associations might be attributed to a general liability to psychopathology or confounded by unmeasured familial factors. The authors investigated the association between psychiatric conditions in young adulthood and the risk of cardiometabolic complications in middle adulthood, up to 40 years later. METHODS This cohort study (N=672,823) identified all individuals and their siblings born in Sweden between 1955 and 1962 and followed the cohort through 2013. Logistic regression models were used to estimate the bivariate associations between 10 psychiatric conditions or criminal convictions and five cardiometabolic complications in individuals. A general factor model was used to identify general, internalizing, externalizing, and psychotic factors based on the comorbidity among psychiatric conditions and criminal convictions. The cardiometabolic complications were then regressed on the latent general factor and three uncorrelated specific factors within a structural equation modeling framework in individuals and across sibling pairs. RESULTS Each psychiatric condition significantly increased the risk of cardiometabolic complications. These associations appeared nonspecific, as multivariate models indicated that most were attributable to the general factor of psychopathology, rather than to specific psychiatric conditions. There were no or only small associations between individuals' general psychopathology and their siblings' cardiometabolic complications. The same pattern was evident for the specific internalizing and psychotic factors. CONCLUSIONS Associations between mental disorders in early life and later long-term risk of cardiometabolic complications appeared to be attributable to a general liability to psychopathology. Familial coaggregation analyses suggested that the elevated risk could not be attributed to confounders shared within families. One possibility is that lifestyle-based interventions may reduce the risk of later cardiometabolic complications for patients with several mental disorders.
Collapse
Affiliation(s)
- Cen Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden (Chen, Chang, Kuja-Halkola, D'Onofrio, Larsson, Lichtenstein, Pettersson); Department of Psychological and Brain Sciences, Indiana University, Bloomington (D'Onofrio); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson); Unit of Cardiology, Department of Medicine, Karolinska Institutet, and Heart and Vascular Division, Karolinska University Hospital, Stockholm (Andell)
| | - Zheng Chang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden (Chen, Chang, Kuja-Halkola, D'Onofrio, Larsson, Lichtenstein, Pettersson); Department of Psychological and Brain Sciences, Indiana University, Bloomington (D'Onofrio); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson); Unit of Cardiology, Department of Medicine, Karolinska Institutet, and Heart and Vascular Division, Karolinska University Hospital, Stockholm (Andell)
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden (Chen, Chang, Kuja-Halkola, D'Onofrio, Larsson, Lichtenstein, Pettersson); Department of Psychological and Brain Sciences, Indiana University, Bloomington (D'Onofrio); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson); Unit of Cardiology, Department of Medicine, Karolinska Institutet, and Heart and Vascular Division, Karolinska University Hospital, Stockholm (Andell)
| | - Brian M D'Onofrio
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden (Chen, Chang, Kuja-Halkola, D'Onofrio, Larsson, Lichtenstein, Pettersson); Department of Psychological and Brain Sciences, Indiana University, Bloomington (D'Onofrio); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson); Unit of Cardiology, Department of Medicine, Karolinska Institutet, and Heart and Vascular Division, Karolinska University Hospital, Stockholm (Andell)
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden (Chen, Chang, Kuja-Halkola, D'Onofrio, Larsson, Lichtenstein, Pettersson); Department of Psychological and Brain Sciences, Indiana University, Bloomington (D'Onofrio); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson); Unit of Cardiology, Department of Medicine, Karolinska Institutet, and Heart and Vascular Division, Karolinska University Hospital, Stockholm (Andell)
| | - Pontus Andell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden (Chen, Chang, Kuja-Halkola, D'Onofrio, Larsson, Lichtenstein, Pettersson); Department of Psychological and Brain Sciences, Indiana University, Bloomington (D'Onofrio); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson); Unit of Cardiology, Department of Medicine, Karolinska Institutet, and Heart and Vascular Division, Karolinska University Hospital, Stockholm (Andell)
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden (Chen, Chang, Kuja-Halkola, D'Onofrio, Larsson, Lichtenstein, Pettersson); Department of Psychological and Brain Sciences, Indiana University, Bloomington (D'Onofrio); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson); Unit of Cardiology, Department of Medicine, Karolinska Institutet, and Heart and Vascular Division, Karolinska University Hospital, Stockholm (Andell)
| | - Erik Pettersson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden (Chen, Chang, Kuja-Halkola, D'Onofrio, Larsson, Lichtenstein, Pettersson); Department of Psychological and Brain Sciences, Indiana University, Bloomington (D'Onofrio); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson); Unit of Cardiology, Department of Medicine, Karolinska Institutet, and Heart and Vascular Division, Karolinska University Hospital, Stockholm (Andell)
| |
Collapse
|
6
|
Li X, Ma W, Zhou Y, Li C, Shi D, Kuang W, Wu J, Liao Y, Qiu Z, Zhou Z. Vaccine Targeting Alpha 1D-Adrenergic Receptor Improved Metabolic Syndrome in Mice. Cardiovasc Drugs Ther 2024; 38:539-554. [PMID: 36656412 PMCID: PMC11101575 DOI: 10.1007/s10557-022-07418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 01/20/2023]
Abstract
PURPOSE Metabolic syndrome (MetS) is a complex chronic disease that includes obesity and hypertension, with rising evidence demonstrating that sympathetic nervous system (SNS) activation plays a key role. Our team designed a therapeutic vaccine called ADRQβ-004 targeting the α1D-adrenergic receptor (α1D-AR). This study was performed to investigate whether the ADRQβ-004 vaccine improves MetS by modulating SNS activity. METHODS C57BL/6N mice were fed a high-fat diet (HFD) and Nω-nitro-L-arginine methyl ester (L-NAME) combination diet for 18 weeks to elicit MetS. The MetS mice were subcutaneously immunized with the ADRQβ-004 vaccine four times to evaluate the therapeutic efficacy in obesity and hypertension and other associated abnormalities related to MetS by conducting echocardiographic, histological, and biochemical analyses. RESULTS The ADRQβ-004 vaccine induced strong antibody production and maintained a high anti-ADR-004 antibody titer in MetS mice. The ADRQβ-004 vaccine improved obesity (P < 0.001) and decreased systolic blood pressure (P < 0.001). Improvements in dysregulated glucose homeostasis and dyslipidemia resulting from the ADRQβ-004 vaccine were also confirmed. Furthermore, the ADRQβ-004 vaccine attenuated cardiovascular functional (P = 0.015) and structural changes (P < 0.001), decreased fat accumulation (P = 0.012) and inflammation (P = 0.050) in the epididymal white adipose tissue, and alleviated hepatic steatosis (P = 0.043) involved in MetS. Moreover, the ADRQβ-004 vaccine improved systematic and visceral organs SNS activities in the MetS. CONCLUSION This study demonstrated for the first time that the ADRQβ-004 vaccine targeting α1D-AR improved obesity, hypertension, dyslipidemia, and dysglycemia, and further reduced end-organ damage, which may provide new motivation for MetS research.
Collapse
Affiliation(s)
- Xin Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenrui Ma
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanzhao Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chang Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingyang Shi
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenlong Kuang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiacheng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Institute of Cardiology, Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Institute of Cardiology, Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
7
|
Kim HR, Son M, Huh SJ, Moon SY, Moon H, Kang YW, Koh M, Lee JY. Relationship between METS-IR and thyroid cancer incidence in Korea: a nationwide population-based study. Front Oncol 2024; 14:1383864. [PMID: 38665956 PMCID: PMC11044182 DOI: 10.3389/fonc.2024.1383864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Background Several previous studies found a positive relationship between metabolic syndrome (MetS) and thyroid cancer (TC) risk. However, there is no research that has studied the relationship between the metabolic score for insulin resistance (METS-IR), a novel surrogate marker for IR, and TC incidence. Thus, we designed this retrospective cohort study to evaluate the relationship between the incidence of TC and METS-IR. Method We analyzed a cohort of 314,321 Korean adults aged over 40 years who participated in the National Health Screening Program from 2009 to 2010. The individuals were divided into four groups based on METS-IR quartiles. Follow-up was until the diagnosis of TC or death, or until December 31, 2019, if neither. The relationship between METS-IR and TC incidence was analyzed using the Cox proportional-hazards model with multi-variable adjustments. Results A total of 4,137 participants (1.3%) were diagnosed with TC during a mean follow-up of 9.5 ± 1.5 years. The population with Q1 METS-IR scores showed higher disease-free probabilities than those with Q4 METS-IR scores (p <0.001). The hazard ratio (95% confidential interval) for TC incidence in Q2, Q3, and Q4 METS-IR value were 1.14 (1.05 to 1.25), 1.21 (1.11 to 1.33), and 1.30 (1.18 to 1.42) compared with Q1 of METS-IR, respectively. The incidence of TC tended to increase with increasing METS-IR values in the total population, especially the male population in the restricted cubic spline. In subgroup analysis, the TC risk was more pronounced in the subgroups under 65 and with a BMI < 25 kg/m2. Conclusion METS-IR was positively correlated with TC incidence in Korea.
Collapse
Affiliation(s)
- Hye Ryeon Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Minkook Son
- Department of Physiology, Dong-A University College of Medicine, Busan, Republic of Korea
- Department of Data Sciences Convergence, Dong-A University Interdisciplinary Program, Busan, Republic of Korea
| | - Seok Jae Huh
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Sang Yi Moon
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Hyeyeon Moon
- Department of Internal Medicine, Yeongdo Hospital, Busan, Republic of Korea
| | - Yeo Wool Kang
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Myeongseok Koh
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jong Yoon Lee
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
8
|
Zeltner N, Wu HF, Saito-Diaz K, Sun X, Song M, Saini T, Grant C, James C, Thomas K, Abate Y, Howerth E, Kner P, Xu B. A modular platform to generate functional sympathetic neuron-innervated heart assembloids. RESEARCH SQUARE 2024:rs.3.rs-3894397. [PMID: 38562819 PMCID: PMC10984094 DOI: 10.21203/rs.3.rs-3894397/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The technology of human pluripotent stem cell (hPSC)-based 3D organoid/assembloid cultures has become a powerful tool for the study of human embryonic development, disease modeling and drug discovery in recent years. The autonomic sympathetic nervous system innervates and regulates almost all organs in the body, including the heart. Yet, most reported organoids to date are not innervated, thus lacking proper neural regulation, and hindering reciprocal tissue maturation. Here, we developed a simple and versatile sympathetic neuron (symN)-innervated cardiac assembloid without the need for bioengineering. Our human sympathetic cardiac assembloids (hSCAs) showed mature muscle structures, atrial to ventricular patterning, and spontaneous beating. hSCA-innervating symNs displayed neurotransmitter synthesis and functional regulation of the cardiac beating rate, which could be manipulated pharmacologically or optogenetically. We modeled symN-mediated cardiac development and myocardial infarction. This hSCAs provides a tool for future neurocardiotoxicity screening approaches and is highly versatile and modular, where the types of neuron (symN or parasympathetic or sensory neuron) and organoid (heart, lung, kidney) to be innervated may be interchanged.
Collapse
|
9
|
Wong CK, Hsiao RC, Chen MH, Yen CF. Predictive value of hyperhidrosis for the incidence of type 2 diabetes mellitus: A population-based cohort study in Taiwan. Kaohsiung J Med Sci 2024; 40:315-317. [PMID: 38146691 DOI: 10.1002/kjm2.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Affiliation(s)
- Chih-Kai Wong
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ray C Hsiao
- Department of Psychiatry, Children's Hospital and Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Mu-Hong Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Fang Yen
- Department of Psychiatry, School of Medicine College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Xue R, Wu Q, Guo L, Ye D, Cao Q, Zhang M, Xian Y, Chen M, Yan K, Zheng J. Pyridostigmine attenuated high-fat-diet induced liver injury by the reduction of mitochondrial damage and oxidative stress via α7nAChR and M3AChR. J Biochem Mol Toxicol 2024; 38:e23671. [PMID: 38454809 DOI: 10.1002/jbt.23671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Obesity is a major cause of nonalcohol fatty liver disease (NAFLD), which is characterized by hepatic fibrosis, lipotoxicity, inflammation, and apoptosis. Previous studies have shown that an imbalance in the autonomic nervous system is closely related to the pathogenesis of NAFLD. In this study, we investigated the effects of pyridostigmine (PYR), a cholinesterase (AChE) inhibitor, on HFD-induced liver injury and explored the potential mechanisms involving mitochondrial damage and oxidative stress. A murine model of HFD-induced obesity was established using the C57BL/6 mice, and PYR (3 mg/kg/d) or placebo was administered for 20 weeks. PYR reduced the body weight and liver weight of the HFD-fed mice. Additionally, the serum levels of IL-6, TNF-α, cholesterol, and triglyceride were significantly lower in the PYR-treated versus the untreated mice, corresponding to a decrease in hepatic fibrosis, lipid accumulation, and apoptosis in the former. Furthermore, the mitochondrial morphology improved significantly in the PYR-treated group. Consistently, PYR upregulated ATP production and the mRNA level of the mitochondrial dynamic factors OPA1, Drp1 and Fis1, and the mitochondrial unfolded protein response (UPRmt) factors LONP1 and HSP60. Moreover, PYR treatment activated the Keap1/Nrf2 pathway and upregulated HO-1 and NQO-1, which mitigated oxidative injury as indicated by decreased 8-OHDG, MDA and H2 O2 levels, and increased SOD activity. Finally, PYR elevated acetylcholine (ACh) levels by inhibiting AChE, and upregulated the α7nAChR and M3AChR proteins in the HFD-fed mice. PYR alleviated obesity-induced hepatic injury in mice by mitigating mitochondrial damage and oxidative stress via α7nAChR and M3AChR.
Collapse
Affiliation(s)
- Runqing Xue
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Qing Wu
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Lulu Guo
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Dan Ye
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Qing Cao
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Meng Zhang
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Yushan Xian
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Minchun Chen
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Kangkang Yan
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Jie Zheng
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| |
Collapse
|
11
|
Koutra E, Dimitriadis K, Pyrpyris N, Iliakis P, Fragkoulis C, Beneki E, Kasiakogias A, Tsioufis P, Tatakis F, Kordalis A, Tsiachris D, Aggeli K, Tsioufis K. Unravelling the effect of renal denervation on glucose homeostasis: more questions than answers? Acta Diabetol 2024; 61:267-280. [PMID: 38066299 PMCID: PMC10948574 DOI: 10.1007/s00592-023-02208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/07/2023] [Indexed: 03/20/2024]
Abstract
Renal Denervation (RDN) is an interventional, endovascular procedure used for the management of hypertension. The procedure itself aims to ablate the renal sympathetic nerves and to interrupt the renal sympathetic nervous system overactivation, thus decreasing blood pressure (BP) levels and total sympathetic drive in the body. Recent favorable evidence for RDN resulted in the procedure being included in the recent European Guidelines for the management of Hypertension, while RDN is considered the third pillar, along with pharmacotherapy, for managing hypertension. Sympathetic overactivation, however, is associated with numerous other pathologies, including diabetes, metabolic syndrome and glycemic control, which are linked to adverse cardiovascular health and outcomes. Therefore, RDN, via ameliorating sympathetic response, could be also proven beneficial for maintaining an euglycemic status in patients with cardiovascular disease, alongside its BP-lowering effects. Several studies have aimed, over the years, to provide evidence regarding the pathophysiological effects of RDN in glucose homeostasis as well as investigate the potential clinical benefits of the procedure in glucose and insulin homeostasis. The purpose of this review is, thus, to analyze the pathophysiological links between the autonomous nervous system and glycemic control, as well as provide an overview of the available preclinical and clinical data regarding the effect of RDN in glycemic control.
Collapse
Affiliation(s)
- Evaggelia Koutra
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece.
- , Dardanellion 146-148, 17123, Athens, Greece.
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Panagiotis Iliakis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Alexandros Kasiakogias
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Panagiotis Tsioufis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Fotis Tatakis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Athanasios Kordalis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Dimitrios Tsiachris
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Konstantina Aggeli
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| |
Collapse
|
12
|
Zsombok A, Desmoulins LD, Derbenev AV. Sympathetic circuits regulating hepatic glucose metabolism: where we stand. Physiol Rev 2024; 104:85-101. [PMID: 37440208 PMCID: PMC11281813 DOI: 10.1152/physrev.00005.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023] Open
Abstract
The prevalence of metabolic disorders, including type 2 diabetes mellitus, continues to increase worldwide. Although newer and more advanced therapies are available, current treatments are still inadequate and the search for solutions remains. The regulation of energy homeostasis, including glucose metabolism, involves an exchange of information between the nervous systems and peripheral organs and tissues; therefore, developing treatments to alter central and/or peripheral neural pathways could be an alternative solution to modulate whole body metabolism. Liver glucose production and storage are major mechanisms controlling glycemia, and the autonomic nervous system plays an important role in the regulation of hepatic functions. Autonomic nervous system imbalance contributes to excessive hepatic glucose production and thus to the development and progression of type 2 diabetes mellitus. At cellular levels, change in neuronal activity is one of the underlying mechanisms of autonomic imbalance; therefore, modulation of the excitability of neurons involved in autonomic outflow governance has the potential to improve glycemic status. Tissue-specific subsets of preautonomic neurons differentially control autonomic outflow; therefore, detailed information about neural circuits and properties of liver-related neurons is necessary for the development of strategies to regulate liver functions via the autonomic nerves. This review provides an overview of our current understanding of the hypothalamus-ventral brainstem-liver pathway involved in the sympathetic regulation of the liver, outlines strategies to identify organ-related neurons, and summarizes neuronal plasticity during diabetic conditions with a particular focus on liver-related neurons in the paraventricular nucleus.
Collapse
Affiliation(s)
- Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
13
|
Akumwami S, Morishita A, Iradukunda A, Kobara H, Nishiyama A. Possible organ-protective effects of renal denervation: insights from basic studies. Hypertens Res 2023; 46:2661-2669. [PMID: 37532952 DOI: 10.1038/s41440-023-01393-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023]
Abstract
Inappropriate sympathetic nervous activation is the body's response to biological stress and is thought to be involved in the development of various lifestyle-related diseases through an elevation in blood pressure. Experimental studies have shown that surgical renal denervation decreases blood pressure in hypertensive animals. Recently, minimally invasive catheter-based renal denervation has been clinically developed, which results in a reduction in blood pressure in patients with resistant hypertension. Accumulating evidence in basic studies has shown that renal denervation exerts beneficial effects on cardiovascular disease and chronic kidney disease. Interestingly, recent studies have also indicated that renal denervation improves glucose tolerance and inflammatory changes. In this review article, we summarize the evidence from animal studies to provide comprehensive insight into the organ-protective effects of renal denervation beyond changes in blood pressure.
Collapse
Affiliation(s)
- Steeve Akumwami
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| |
Collapse
|
14
|
Zhang S, Wang Q, Qu M, Chen Q, Bai X, Zhang Z, Zhou Q, Xie L. Hyperglycemia Induces Tear Reduction and Dry Eye in Diabetic Mice through the Norepinephrine-α 1 Adrenergic Receptor-Mitochondrial Impairment Axis of Lacrimal Gland. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:913-926. [PMID: 37088455 DOI: 10.1016/j.ajpath.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023]
Abstract
Dry eye syndrome is a common complication in diabetic patients with a prevalence of up to 54.3%. However, the pathogenic mechanisms underlying hyperglycemia-induced tear reduction and dry eye remain less understood. The present study indicated that both norepinephrine (NE) and tyrosine hydroxylase levels were elevated in the lacrimal gland of diabetic mice, accompanied by increased Fos proto-oncogene (c-FOS)+ cells in the superior cervical ganglion. However, the elimination of NE accumulation by surgical and chemical sympathectomy significantly ameliorated the reduction in tear production, suppressed abnormal inflammation of the lacrimal gland, and improved the severity of dry eye symptoms in diabetic mice. Among various adrenergic receptors (ARs), the α1 subtype played a predominant role in the regulation of tear production, as treatments of α1AR antagonists improved tear secretion in diabetic mice compared with βAR antagonist propranolol. Moreover, the α1AR antagonist alfuzosin treatment also alleviated functional impairments of the meibomian gland and goblet cells in diabetic mice. Mechanically, the α1AR antagonist rescued the mitochondrial bioenergetic deficit, increased the mitochondrial DNA copy numbers, and elevated the glutathione levels of the diabetic lacrimal gland. Overall, these results deciphered a previously unrecognized involvement of the NE-α1AR-mitochondrial bioenergetics axis in the regulation of tear production in the lacrimal gland, which may provide a potential strategy to counteract diabetic dry eye by interfering with the α1AR activity.
Collapse
Affiliation(s)
- Sai Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Mingli Qu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qing Chen
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xiaofei Bai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | | | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
15
|
Daniel JM, Lindsey SH, Mostany R, Schrader LA, Zsombok A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front Neuroendocrinol 2023; 70:101068. [PMID: 37061205 PMCID: PMC10725785 DOI: 10.1016/j.yfrne.2023.101068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA, United States.
| | - Sarah H Lindsey
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Laura A Schrader
- Department of Cell & Molecular Biology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Andrea Zsombok
- Department of Physiology and Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
16
|
Kiuchi MG, Carnagarin R, Matthews VB, Schlaich MP. Multi-organ denervation: a novel approach to combat cardiometabolic disease. Hypertens Res 2023; 46:1747-1758. [PMID: 37088807 PMCID: PMC10319631 DOI: 10.1038/s41440-023-01287-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/17/2023] [Accepted: 04/02/2023] [Indexed: 04/25/2023]
Abstract
Cardiometabolic disorders are associated with a substantial loss in quality of life and pose a large burden on healthcare systems worldwide. Overactivation of the sympathetic nervous system has been shown to be a key player in several aspects relating to cardiometabolic disturbances. While diet- and exercise-induced approaches to help reduce weight remains the main strategy to combat metabolic disorders, this is often difficult to achieve. Current pharmacological approaches result in variable responses in different patient cohorts and long-term efficacy may be limited by medication side effects and non-adherence in the long term. There is a clear clinical need for complementary therapies to curb the burden of cardiometabolic disease. One such approach may include interventional sympathetic neuromodulation of organs relevant to cardiometabolic control. Data from sham-controlled clinical trials demonstrate the feasibility, safety and efficacy of catheter-based renal denervation. In analogy, denervation of the common hepatic artery is now feasible in humans and may prove to be similarly useful in modulating sympathetic overdrive directed towards the liver, pancreas and duodenum. Such a targeted multi-organ neuromodulation strategy may beneficially influence multiple aspects of the cardiometabolic disease continuum including blood pressure, glucose and lipid control.
Collapse
Affiliation(s)
- Márcio Galindo Kiuchi
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Perth, WA, Australia.
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, WA, Australia.
- Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Kochanowska A, Rusztyn P, Szczerkowska K, Surma S, Gąsecka A, Jaguszewski MJ, Szarpak Ł, Filipiak KJ. Sodium-Glucose Cotransporter 2 Inhibitors to Decrease the Uric Acid Concentration-A Novel Mechanism of Action. J Cardiovasc Dev Dis 2023; 10:268. [PMID: 37504524 PMCID: PMC10380892 DOI: 10.3390/jcdd10070268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are glucose-lowering agents whose positive impact on cardiovascular risk has been described extensively. Not only do they influence lipid profile, blood pressure, atherosclerosis risk, hemoglobin level, and insulin resistance, but they also reduce cardiovascular events, all-cause mortality, and hospitalization rates. Some of these effects may be due to their impact on serum uric acid (SUA) concentration. Findings from nine meta-analyses showed that, indeed, SGLT2is significantly reduce SUA. The data on the drug- and dose-dependency of this effect were inconclusive. Several factors alternating the beneficial effects of SGLT2is on SUA, such as glycated hemoglobin concentration (HbA1c), presence of diabetes, and baseline SUA level, were described. Even though there is a consensus that the lowering of SUA by SGLT2is might be due to the increased urinary excretion rate of uric acid (UEUA) rather than its altered metabolism, the exact mechanism remains unknown. The influence of SGLT2is on SUA may not only be used in gout treatment but may also be of huge importance in explaining the observed pleiotropic effects of SGLT2is.
Collapse
Affiliation(s)
- Anna Kochanowska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Przemysław Rusztyn
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Karolina Szczerkowska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Miłosz J Jaguszewski
- 1st Department of Cardiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Łukasz Szarpak
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krzysztof J Filipiak
- Institute of Clinical Science, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland
- Department of Hypertensiology, Angiology and Internal Medicine, University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
18
|
Molinas AJR, Desmoulins LD, Davis RK, Gao H, Satou R, Derbenev AV, Zsombok A. High-Fat Diet Modulates the Excitability of Neurons within the Brain-Liver Pathway. Cells 2023; 12:1194. [PMID: 37190103 PMCID: PMC10137256 DOI: 10.3390/cells12081194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Stimulation of hepatic sympathetic nerves increases glucose production and glycogenolysis. Activity of pre-sympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus and in the ventrolateral and ventromedial medulla (VLM/VMM) largely influence the sympathetic output. Increased activity of the sympathetic nervous system (SNS) plays a role in the development and progression of metabolic diseases; however, despite the importance of the central circuits, the excitability of pre-sympathetic liver-related neurons remains to be determined. Here, we tested the hypothesis that the activity of liver-related neurons in the PVN and VLM/VMM is altered in diet-induced obese mice, as well as their response to insulin. Patch-clamp recordings were conducted from liver-related PVN neurons, VLM-projecting PVN neurons, and pre-sympathetic liver-related neurons in the ventral brainstem. Our data demonstrate that the excitability of liver-related PVN neurons increased in high-fat diet (HFD)-fed mice compared to mice fed with control diet. Insulin receptor expression was detected in a population of liver-related neurons, and insulin suppressed the firing activity of liver-related PVN and pre-sympathetic VLM/VMM neurons in HFD mice; however, it did not affect VLM-projecting liver-related PVN neurons. These findings further suggest that HFD alters the excitability of pre-autonomic neurons as well as their response to insulin.
Collapse
Affiliation(s)
- Adrien J. R. Molinas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70130, USA; (A.J.R.M.); (L.D.D.); (R.K.D.); (R.S.); (A.V.D.)
| | - Lucie D. Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70130, USA; (A.J.R.M.); (L.D.D.); (R.K.D.); (R.S.); (A.V.D.)
| | - Roslyn K. Davis
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70130, USA; (A.J.R.M.); (L.D.D.); (R.K.D.); (R.S.); (A.V.D.)
| | - Hong Gao
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70130, USA; (A.J.R.M.); (L.D.D.); (R.K.D.); (R.S.); (A.V.D.)
| | - Ryousuke Satou
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70130, USA; (A.J.R.M.); (L.D.D.); (R.K.D.); (R.S.); (A.V.D.)
| | - Andrei V. Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70130, USA; (A.J.R.M.); (L.D.D.); (R.K.D.); (R.S.); (A.V.D.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70130, USA
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70130, USA; (A.J.R.M.); (L.D.D.); (R.K.D.); (R.S.); (A.V.D.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70130, USA
| |
Collapse
|
19
|
de Moraes TL, Costa FO, Cabral DG, Fernandes DM, Sangaleti CT, Dalboni MA, Motta E Motta J, de Souza LA, Montano N, Irigoyen MC, Brines M, J Tracey K, Pavlov VA, Consolim Colombo FM. Brief periods of transcutaneous auricular vagus nerve stimulation improve autonomic balance and alter circulating monocytes and endothelial cells in patients with metabolic syndrome: a pilot study. Bioelectron Med 2023; 9:7. [PMID: 36998060 PMCID: PMC10064781 DOI: 10.1186/s42234-023-00109-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/11/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND There is emerging evidence that the nervous system regulates immune and metabolic alterations mediating Metabolic syndrome (MetS) pathogenesis via the vagus nerve. This study evaluated the effects of transcutaneous auricular vagus nerve stimulation (TAVNS) on key cardiovascular and inflammatory components of MetS. METHODS We conducted an open label, randomized (2:1), two-arm, parallel-group controlled trial in MetS patients. Subjects in the treatment group (n = 20) received 30 min of TAVNS with a NEMOS® device placed on the cymba conchae of the left ear, once weekly. Patients in the control group (n = 10) received no stimulation. Hemodynamic, heart rate variability (HRV), biochemical parameters, and monocytes, progenitor endothelial cells, circulating endothelial cells, and endothelial micro particles were evaluated at randomization, after the first TAVNS treatment, and again after 8 weeks of follow-up. RESULTS An improvement in sympathovagal balance (HRV analysis) was observed after the first TAVNS session. Only patients treated with TAVNS for 8 weeks had a significant decrease in office BP and HR, a further improvement in sympathovagal balance, with a shift of circulating monocytes towards an anti-inflammatory phenotype and endothelial cells to a reparative vascular profile. CONCLUSION These results are of interest for further study of TAVNS as treatment of MetS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Michael Brines
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Fernanda M Consolim Colombo
- Nove de Julho University - UNINOVE, São Paulo, Brazil.
- University of São Paulo, Hypertension Unit, São Paulo, Brazil.
| |
Collapse
|
20
|
The Effects of SGLT2 Inhibitors on Liver Cirrhosis Patients with Refractory Ascites: A Literature Review. J Clin Med 2023; 12:jcm12062253. [PMID: 36983252 PMCID: PMC10056954 DOI: 10.3390/jcm12062253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Decompensated liver cirrhosis is often complicated by refractory ascites, and intractable ascites are a predictor of poor prognosis in patients with liver cirrhosis. The treatment of ascites in patients with cirrhosis is based on the use of aldosterone blockers and loop diuretics, and occasionally vasopressin receptor antagonists are also used. Recent reports suggest that sodium–glucose cotransporter 2 (SGLT2) inhibitors may be a new treatment for refractory ascites with a different mechanism with respect to conventional agents. The main mechanisms of ascites reduction with SGLT2 inhibitors appear to be natriuresis and osmotic diuresis. However, other mechanisms, including improvements in glucose metabolism and nutritional status, hepatoprotection by ketone bodies and adiponectin, amelioration of the sympathetic nervous system, and inhibition of the renin–angiotensin–aldosterone system, may also contribute to the reduction of ascites. This literature review describes previously reported cases in which SGLT2 inhibitors were used to effectively treat ascites caused by liver cirrhosis. The discussion of the mechanisms involved is expected to contribute to establishing SGLT2 therapy for ascites in the future.
Collapse
|
21
|
Herring RA, Parsons I, Shojaee-Moradie F, Stevenage M, Jackson N, Manders R, Umpleby AM, Fielding BA, Davies M, Russell-Jones DL. Effect of Dapagliflozin on Cardiac Function and Metabolic and Hormonal Responses to Exercise. J Clin Endocrinol Metab 2023; 108:888-896. [PMID: 36274035 DOI: 10.1210/clinem/dgac617] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/03/2022] [Indexed: 02/13/2023]
Abstract
OBJECTIVE This work aimed to investigate the effect of the SGLT2 inhibitor, dapagliflozin (DAPA), on cardiac function and the metabolic and hormonal response to moderate exercise in people with type 2 diabetes. METHODS This was a double-blind, placebo-controlled crossover study with a 4-week washout period. Nine participants were randomly assigned to receive either 4 weeks of DAPA or 4 weeks of placebo. After each treatment, they underwent an exercise protocol with 2 consecutive 10-minute stages at a constant load corresponding to 40% and 70% maximal oxygen consumption (VO2max), coupled with hormonal and metabolic analysis. A blinded transthoracic echocardiogram was performed 3 days later. RESULTS During the exercise protocol, glucose and lactate were lower (P < .0001 and P < .05, respectively) and β-hydroxybutyrate (BOBH) and growth hormone (GH) were higher (P < .0005 and P = .01) following DAPA treatment compared to placebo. There was a trend for lower insulin with DAPA. Adrenalin, noradrenalin, and glucagon were not different. Following DAPA participants demonstrated an increased mean peak diastolic mitral annular velocity (e') in comparison to placebo (P = .03). The indexed left atrial volume and right ventricular e" were reduced following DAPA compared with placebo (P = .045 and P = .042, respectively). Arterial stiffness was not different between treatments (DAPA 9.35 ± 0.60 m/s; placebo 9.07 ± 0.72 m/s). CONCLUSION During exercise, GH may be more important than catecholamines in driving the shift from glucose to fatty acid metabolism by SGLT2 inhibitors. The 4-week crossover design showed changes in cardiac function were rapid in onset and reversible.
Collapse
Affiliation(s)
- Roselle A Herring
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Iain Parsons
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
| | - Fariba Shojaee-Moradie
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
| | - Mary Stevenage
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
| | - Nicola Jackson
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Ralph Manders
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - A Margot Umpleby
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Barbara A Fielding
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Melanie Davies
- Diabetes Research Centre, University of Leicester, Leicester LE1 7RH, UK
- NIHR Leicester Biomedical Research Centre, Leicester LE5 4PW, UK
| | - David L Russell-Jones
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
22
|
Jiang Y, Rezai-Zadeh K, Desmoulins LD, Muenzberg H, Derbenev AV, Zsombok A. GABAergic leptin receptor-expressing neurons in the dorsomedial hypothalamus project to brown adipose tissue-related neurons in the paraventricular nucleus of mice. Auton Neurosci 2023; 245:103058. [PMID: 36538864 PMCID: PMC9899324 DOI: 10.1016/j.autneu.2022.103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Brown adipose tissue (BAT) contributes to energy homeostasis via nonshivering thermogenesis. The BAT is densely innervated by the sympathetic nervous system (SNS) and activity of pre-autonomic neurons modulates the sympathetic outflow. Leptin, an adipocyte hormone, alters energy homeostasis and thermogenesis of BAT via several neuronal circuits; however, the cellular effects of leptin on interscapular BAT (iBAT)-related neurons in the hypothalamus remain to be determined. In this study, we used pseudorabies virus (PRV) to identify iBAT-related neurons in the paraventricular nucleus (PVN) of the hypothalamus and test the hypothesis that iBAT-related PVN neurons are modulated by leptin. Inoculation of iBAT with PRV in leptin receptor reporter mice (Lepr:EGFP) demonstrated that a population of iBAT-related PVN neurons expresses Lepr receptors. Our electrophysiological findings revealed that leptin application caused hyperpolarization in some of iBAT-related PVN neurons. Bath application of leptin also modulated excitatory and inhibitory neurotransmission to most of iBAT-related PVN neurons. Using channel rhodopsin assisted circuit mapping we found that GABAergic and glutamatergic Lepr-expressing neurons in the dorsomedial hypothalamus/dorsal hypothalamic area (dDMH/DHA) project to PVN neurons; however, connected iBAT-related PVN neurons receive exclusively inhibitory signals from Lepr-expressing dDMH/DHA neurons.
Collapse
Affiliation(s)
- Yanyan Jiang
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America; Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | - Kavon Rezai-Zadeh
- Central Leptin Signaling, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America
| | - Heike Muenzberg
- Central Leptin Signaling, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America; Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America; Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America.
| |
Collapse
|
23
|
Dietary salt intake predicts future development of metabolic syndrome in the general population. Hypertens Res 2023; 46:236-243. [PMID: 36229525 DOI: 10.1038/s41440-022-01035-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 02/03/2023]
Abstract
Excessive dietary salt consumption is one of the most important risk factors for hypertension. Metabolic disorders often coexist with hypertension, and excess salt intake has been reported to underlie metabolic disorders, such as insulin resistance. Therefore, we tested the hypothesis that excessive dietary salt causes metabolic syndrome in the general population. In total, 13886 subjects who participated in our medical checkup were enrolled, and salt intake was assessed using a spot urine sample. The characteristics of participants with metabolic syndrome (n = 1630) were examined at baseline, and then participants without metabolic syndrome (n = 12256) were followed up with the endpoint being the development of metabolic syndrome. The average estimated salt intake in our participants was 8.72 ± 1.93 g/day. A significant association between salt intake and metabolic syndrome was obtained from the logistic regression analysis, and salt intake increased as the number of metabolic disorders in an individual increased at baseline (P < 0.001). During the median follow-up period of 52 months, 1669 participants developed metabolic syndrome. Kaplan-Meier analysis demonstrated an increased risk of metabolic syndrome across quartiles of baseline salt intake (log-rank, P < 0.001). In the Cox proportional hazard regression analysis where salt intake was taken as a continuous variable, salt intake at baseline was an independent predictor of developing metabolic syndrome. These results suggest that excessive salt intake is significantly associated with the development of metabolic syndrome in the general population. Salt may play an important role in the development of metabolic disorders and hypertension.
Collapse
|
24
|
Lauder L, Mahfoud F, Azizi M, Bhatt DL, Ewen S, Kario K, Parati G, Rossignol P, Schlaich MP, Teo KK, Townsend RR, Tsioufis C, Weber MA, Weber T, Böhm M. Hypertension management in patients with cardiovascular comorbidities. Eur Heart J 2022:6808663. [DOI: 10.1093/eurheartj/ehac395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Arterial hypertension is a leading cause of death globally. Due to ageing, the rising incidence of obesity, and socioeconomic and environmental changes, its incidence increases worldwide. Hypertension commonly coexists with Type 2 diabetes, obesity, dyslipidaemia, sedentary lifestyle, and smoking leading to risk amplification. Blood pressure lowering by lifestyle modifications and antihypertensive drugs reduce cardiovascular (CV) morbidity and mortality. Guidelines recommend dual- and triple-combination therapies using renin–angiotensin system blockers, calcium channel blockers, and/or a diuretic. Comorbidities often complicate management. New drugs such as angiotensin receptor-neprilysin inhibitors, sodium–glucose cotransporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, and non-steroidal mineralocorticoid receptor antagonists improve CV and renal outcomes. Catheter-based renal denervation could offer an alternative treatment option in comorbid hypertension associated with increased sympathetic nerve activity. This review summarises the latest clinical evidence for managing hypertension with CV comorbidities.
Collapse
Affiliation(s)
- Lucas Lauder
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University , Kirrberger Str. 1, 66421 Homburg , Germany
| | - Felix Mahfoud
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University , Kirrberger Str. 1, 66421 Homburg , Germany
| | - Michel Azizi
- Université Paris Cité, INSERM CIC1418 , F-75015 Paris , France
- AP-HP, Hôpital Européen Georges-Pompidou, Hypertension Department, DMU CARTE , F-75015 Paris , France
- FCRIN INI-CRCT , Nancy , France
| | - Deepak L Bhatt
- Brigham and Women’s Hospital Heart and Vascular Center, Harvard Medical School , Boston, MA , USA
| | - Sebastian Ewen
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University , Kirrberger Str. 1, 66421 Homburg , Germany
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine , Tochigi , Japan
| | - Gianfranco Parati
- Department of Medicine and Surgery, Cardiology Unit, University of Milano-Bicocca and Istituto Auxologico Italiano, IRCCS , Milan , Italy
| | - Patrick Rossignol
- FCRIN INI-CRCT , Nancy , France
- Université de Lorraine, INSERM, Centre d'Investigations Cliniques - Plurithématique 14-33 and INSERM U1116 , Nancy , France
- CHRU de Nancy , Nancy , France
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School—Royal Perth Hospital Unit, Medical Research Foundation, The University of Western Australia , Perth, WA , Australia
- Departments of Cardiology and Nephrology, Royal Perth Hospital , Perth, WA , Australia
| | - Koon K Teo
- Population Health Research Institute, McMaster University , Hamilton, ON , Canada
| | - Raymond R Townsend
- Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Costas Tsioufis
- National and Kapodistrian University of Athens, 1st Cardiology Clinic, Hippocratio Hospital , Athens , Greece
| | | | - Thomas Weber
- Department of Cardiology, Klinikum Wels-Grieskirchen , Wels , Austria
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University , Kirrberger Str. 1, 66421 Homburg , Germany
- Cape Heart Institute (CHI), Faculty of Health Sciences, University of Cape Town , Cape Town , South Africa
| |
Collapse
|
25
|
Xu Z, Tao L, Su H. The Complement System in Metabolic-Associated Kidney Diseases. Front Immunol 2022; 13:902063. [PMID: 35924242 PMCID: PMC9339597 DOI: 10.3389/fimmu.2022.902063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome (MS) is a group of clinical abnormalities characterized by central or abdominal obesity, hypertension, hyperuricemia, and metabolic disorders of glucose or lipid. Currently, the prevalence of MS is estimated about 25% in general population and is progressively increasing, which has become a challenging public health burden. Long-term metabolic disorders can activate the immune system and trigger a low-grade chronic inflammation named “metaflammation.” As an important organ involved in metabolism, the kidney is inevitably attacked by immunity disequilibrium and “metaflammation.” Recently, accumulating studies have suggested that the complement system, the most important and fundamental component of innate immune responses, is actively involved in the development of metabolic kidney diseases. In this review, we updated and summarized the different pathways through which the complement system is activated in a series of metabolic disturbances and the mechanisms on how complement mediate immune cell activation and infiltration, renal parenchymal cell damage, and the deterioration of renal function provide potential new biomarkers and therapeutic options for metabolic kidney diseases.
Collapse
|
26
|
Chi ZC. Metabolic associated fatty liver disease is a disease related to sympathetic nervous system activation. Shijie Huaren Xiaohua Zazhi 2022; 30:465-476. [DOI: 10.11569/wcjd.v30.i11.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Strong evidence from animal and human studies shows that sympathetic nervous system (SNS) activation is a key factor in the development of metabolic associated fatty liver disease (MAFLD). Activation of the sympathetic nervous system plays an important role in the pathogenesis of obesity, metabolic syndrome, diabetes, hypertension, and MAFLD. When genetically susceptible subjects are exposed to a variety of epigenetic changes, their liver damage may develop into MAFLD. Thus, the pathogenesis of MAFLD is complex, involving the complex interaction of insulin resistance, abnormal hormone secretion, obesity, diet, genetic factors, immune activation, gut microbiota, and other factors. In these processes, the role of sympathetic nerves cannot be underestimated. Notably, SNS has been proposed as a therapeutic target for MAFLD by inhibiting sympathetic nerves. It is worthy of further discussion and research.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
27
|
Targeting Features of the Metabolic Syndrome Through Sympatholytic Effects of SGLT2 Inhibition. Curr Hypertens Rep 2022; 24:67-74. [PMID: 35235172 PMCID: PMC8942945 DOI: 10.1007/s11906-022-01170-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The moderate glucose-lowering effect of sodium glucose co-transporter 2 (SGLT2) inhibitors is unlikely to explain SGLT2 inhibitor-mediated beneficial outcomes, and unravelling the underlying mechanisms is a high priority in the research community. Given the dominant pathophysiologic role of the sympathetic nervous system activation in conditions such as hypertension and perturbed glucose homeostasis, it is pertinent to postulate that SGLT2 inhibitors may exert their beneficial effects at least in part via sympathetic inhibition. RECENT FINDINGS SGLT2 inhibitors have shown enormous potential to improve cardiovascular outcomes in patients with type 2 diabetes, and their therapeutic potential is currently being investigated in a range of associated comorbidities such as heart failure and chronic kidney disease. Indeed, recent experimental data in relevant animal models highlight a bidirectional interaction between sympathetic nervous system activation and SGLT2 expression, and this facilitates several of the features associated with SGLT2 inhibition observed in clinical trials including improved glucose metabolism, weight loss, increased diuresis, and lowering of blood pressure. Currently available data highlight the various levels of interaction between the sympathetic nervous system and SGLT2 expression and explores the potential for SGLT2 inhibition as a therapeutic strategy in conditions commonly characterised by sympathetic activation.
Collapse
|
28
|
Azzam O, Matthews VB, Schlaich MP. Interaction between sodium-glucose co-transporter 2 and the sympathetic nervous system. Curr Opin Nephrol Hypertens 2022; 31:135-141. [PMID: 35086983 DOI: 10.1097/mnh.0000000000000767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Sodium-glucose co-transporter 2 (SGLT2) inhibitors have taken centre stage in research and therapeutic efforts to modulate hard clinical outcomes in patients with heightened cardiovascular and renal risk profiles. Sympathetic nervous system (SNS) activation is a prominent feature across several cardiovascular and renal disease states. This review reflects on the remarkable clinical impact of SGLT2 inhibitors on cardiorenal outcomes, and navigates the evidence for a proposed clinically relevant interaction between SGLT2 and the SNS. RECENT FINDINGS SGLT2 inhibitors exert several pleiotropic effects beyond glucose-lowering. These include, but are not limited to, diuresis and natriuresis, blood pressure lowering, reduction in inflammation and oxidative stress, stimulation of erythropoiesis, and improvement in cardiac energetics. Treatment with SGLT2 inhibitors is associated with significant improvement in cardiorenal outcomes irrespective of diabetes status. In addition, evidence from preclinical studies points to a strong signal of a bidirectional temporal association between SGLT2 inhibition and reduction in SNS activation. SUMMARY Ongoing preclinical and clinical trials aimed at unravelling the proposed interaction between SGLT and SNS will enhance our understanding of their individual and/or collective contributions to cardiovascular disease progression and guide future targeted therapeutic interventions.
Collapse
Affiliation(s)
- Omar Azzam
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, The University of Western Australia
- Department of Medicine, Royal Perth Hospital
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Biomedical Science - Royal Perth Hospital Unit, University of Western Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, The University of Western Australia
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
29
|
Low heart rate variability from 10-s electrocardiograms is associated with development of non-alcoholic fatty liver disease. Sci Rep 2022; 12:1062. [PMID: 35058515 PMCID: PMC8776891 DOI: 10.1038/s41598-022-05037-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Reduced heart rate variability (HRV) is reflective of autonomic imbalance. However, its impact on non-alcoholic fatty liver disease (NAFLD) is unknown. We investigated the association between 10-s HRV and incident NAFLD. A cohort of 154,286 Korean adults with no NAFLD at baseline were followed up. 10-s electrocardiograms were used to estimate two time-domain HRV, the standard deviation of normal-to-normal intervals (SDNN) and the root mean square of successive differences in RR intervals (RMSSD). Hepatic steatosis (HS) and liver fibrosis were assessed using ultrasonography and the fibrosis-4 index (FIB-4). A total of 27,279 incident HS (median follow up of 4.2 years) and 1250 incident HS plus high FIB-4 (median follow up of 4.2 years) cases were identified at follow-up. The multivariable adjusted hazard ratios (aHRs) (95% confidence intervals [CIs]) in a model with time-dependent variables for incident HS, comparing the lowest quintile to the highest and reference quintile of the RMSSD, was 1.43 (1.37-1.49), and the corresponding HR for incident HS plus intermediate/high FIB-4 was 1.70 (1.35-2.15). Similarly, SDNN was inversely associated with incident HS and HS plus intermediate/high FIB-4. The results were similar using the NAFLD fibrosis score. Autonomic imbalance assessed by HRV may help to identify individuals at a high risk of HS and its progression and warrant further studies.
Collapse
|
30
|
Tang R, Fan Y, Luo M, Zhang D, Xie Z, Huang F, Wang Y, Liu G, Wang Y, Lin S, Chen R. General and Central Obesity Are Associated With Increased Severity of the VMS and Sexual Symptoms of Menopause Among Chinese Women: A Longitudinal Study. Front Endocrinol (Lausanne) 2022; 13:814872. [PMID: 35557846 PMCID: PMC9086713 DOI: 10.3389/fendo.2022.814872] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/24/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Strong evidence has linked overweight and obesity to increased risks of cardiovascular disease and all-cause mortality in Chinese populations. Menopause is considered associated with increased obesity and central body fat distribution. However, the correlation between obesity and menopausal symptoms has not been well studied. OBJECTIVE To examine the associations between obesity or abdominal obesity and menopausal symptoms as women progressed from premenopausal to postmenopausal status. DESIGN This study included 430 midlife Chinese women who had experienced natural menopause and were followed up for 10 years. Physical examinations and questionnaires should be completed annually. The questionnaires include the Menopause-Specific Quality of Life questionnaire, the Hospital Anxiety and Depression Scale, and other physical and behavioral factors. RESULTS Among women who were not obese (n=345) or not abdominal obese (n=372) at baseline, 5.8% and 31.7% became obese or abdominal obese at the recent follow-up visit, respectively. Women at the recent follow-up visit had an increased body mass index (BMI) by 0.14%, and the waist-to-hip ratio (WHR) increased by 5.2% compared with the data at baseline. In multivariate analysis, more frequent hot flashes, moderate/severe bothered vasomotor symptoms (VMS), mild bothered sexual functioning, and less anxiety symptoms were significantly associated with obesity. Increasing age, moderate/severe bothered VMS, and less anxiety symptoms were independently associated with abdominal obesity. Multivariable analysis also showed that less education level is independently associated with both obesity and abdominal obesity. CONCLUSION Our findings suggest that the proportion of obesity and abdominal obesity increased gradually during menopause. The increase of abdominal obesity is more rapidly than obesity in middle-aged women. Both obesity and abdominal obesity are related with severe or frequent VMS and anxiety symptoms in Chinese women. Although the proportion of obese women in China is lower than in western countries, the problem of abdominal obesity and related complications cannot be ignored.
Collapse
Affiliation(s)
- Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Yubo Fan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Min Luo
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Duoduo Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Zhuolin Xie
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Yuchen Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Gaifen Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaping Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Shouqing Lin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
- *Correspondence: Rong Chen,
| |
Collapse
|
31
|
Obesity-Related Metabolic Dysfunction in Dairy Cows and Horses: Comparison to Human Metabolic Syndrome. Life (Basel) 2021; 11:life11121406. [PMID: 34947937 PMCID: PMC8705694 DOI: 10.3390/life11121406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity has become a serious health problem with frequent occurrence both in human and animal populations. It is estimated that it may affect over 85% of the human population and 70–80% of horses and cows by 2030. Fat cow syndrome (FCS) is a combination of metabolic, digestive, infectious, and reproductive disorders that affects obese periparturient dairy cows, and occurs most frequently in loose-housing systems, where periparturient and dry cows are fed and managed in one group disregarding the lactation stages. Equine metabolic syndrome (EMS) was named after human metabolic syndrome (MetS) and has insulin dysregulation as a central and consistent feature. It is often associated with obesity, although EMS may occur in a lean phenotype as well. Other inconsistent features of EMS are cardiovascular changes and adipose dysregulation. Laminitis is the main clinical consequence of EMS. MetS holds a 30-years old lead in research and represents a clustering of risk factors that comprise abdominal obesity, dyslipidemia, hypertension, and hyperglycemia (impaired fasting glucose or type 2 diabetes mellitus—T2DM), which are associated with doubled atherosclerotic cardiovascular disease risk, and a 5-fold increased risk for T2DM. The main aim of this review is to provide critical information for better understanding of the underlying mechanisms of obesity-related metabolic dysfunction in animals, especially in cows and horses, in comparison with MetS. Human medicine studies can offer suitable candidate mechanisms to fill the existing gap in the literature, which might be indispensable for owners to tackle FCS, EMS, and their consequences.
Collapse
|
32
|
Li Z, Li Q, Wang L, Li C, Xu M, Duan Y, Ma L, Li T, Chen Q, Wang Y, Wang Y, Feng J, Yin X, Wang X, Han J, Lu C. Targeting mitochondria-inflammation circle by renal denervation reduces atheroprone endothelial phenotypes and atherosclerosis. Redox Biol 2021; 47:102156. [PMID: 34607159 PMCID: PMC8498003 DOI: 10.1016/j.redox.2021.102156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE The disruption of mitochondrial redox homeostasis in endothelial cells (ECs) can cause chronic inflammation, a substantial contributor to the development of atherosclerosis. Chronic sympathetic hyperactivity can enhance oxidative stress to induce endothelial dysfunction. We determined if renal denervation (RDN), the strategy reducing sympathetic tone, can protect ECs by ameliorating mitochondrial reactive oxygen species (ROS)-induced inflammation to reduce atherosclerosis. METHODS AND RESULTS ApoE deficient (ApoE-/-) mice were conducted RDN or sham operation before 20-week high-fat diet feeding. Atherosclerosis, EC phenotype and mitochondrial morphology were determined. In vitro, human arterial ECs were treated with norepinephrine to determine the mechanisms for RDN-inhibited endothelial inflammation. RDN reduced atherosclerosis, EC mitochondrial oxidative stress and inflammation. Mechanistically, the chronic sympathetic hyperactivity increased circulating norepinephrine and mitochondrial monoamine oxidase A (MAO-A) activity. MAO-A activation-impaired mitochondrial homeostasis resulted in ROS accumulation and NF-κB activation, thereby enhancing expression of atherogenic and proinflammatory molecules in ECs. It also suppressed mitochondrial function regulator PGC-1α, with involvement of NF-κB and oxidative stress. Inactivation of MAO-A by RDN disrupted the positive-feedback regulation between mitochondrial dysfunction and inflammation, thereby inhibiting EC atheroprone phenotypic alterations and atherosclerosis. CONCLUSIONS The interplay between MAO-A-induced mitochondrial oxidative stress and inflammation in ECs is a key driver in atherogenesis, and it can be reduced by RDN.
Collapse
Affiliation(s)
- Zhuqing Li
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qi Li
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Li Wang
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Chao Li
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Mengping Xu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Department of Cardiology, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, 230036, China
| | - Likun Ma
- Department of Cardiology, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, 230036, China
| | - Tingting Li
- Department of Cardiology, The First Center Clinical College of Tianjin Medical University, Tianjin, 300070, China
| | - Qiao Chen
- Department of Cardiology, The First Center Clinical College of Tianjin Medical University, Tianjin, 300070, China
| | - Yilin Wang
- Department of Cardiology, The First Center Clinical College of Tianjin Medical University, Tianjin, 300070, China
| | - Yanxin Wang
- Department of Cardiology, The First Center Clinical College of Tianjin Medical University, Tianjin, 300070, China
| | - Jiaxin Feng
- Department of Cardiology, The First Center Clinical College of Tianjin Medical University, Tianjin, 300070, China
| | - Xuemei Yin
- Department of Cardiology, The First Center Clinical College of Tianjin Medical University, Tianjin, 300070, China
| | - Xiaolin Wang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Chengzhi Lu
- School of Medicine, Nankai University, Tianjin, 300071, China; Department of Cardiology, Tianjin First Center Hospital, Tianjin, 300192, China.
| |
Collapse
|
33
|
Comparison of EQ-5D-3L and metabolic components between patients with hyperhidrosis and the general population: a propensity score matching analysis. Qual Life Res 2021; 30:2591-2599. [PMID: 33974220 DOI: 10.1007/s11136-021-02856-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE It is important to understand the characteristics of patients with hyperhidrosis, which are different from the general population, for treating hyperhidrosis. Sympathetic overactivity, which might play an important role in hyperhidrosis, can contribute to metabolic diseases and the decreased quality of life (QoL). We compared the metabolic components and health-related QoL between patients with hyperhidrosis and the general population. METHODS We conducted a case-control study and compared the characteristics of the patients (N = 196) with hyperhidrosis and propensity score-matched controls (N = 196) selected from the Korean National Health and Nutrition Examination Survey. Metabolic components and EQ-5D-3L (EQ-5D) index were compared using a two-way mixed analysis of covariance after adjusting for confounders. RESULTS Patients with hyperhidrosis had significantly higher waist circumference (estimated mean values ± SD for patients and the control group, 85.5 ± 10.8 cm vs 81.3 ± 10.3 cm, p < 0.001), blood pressure (SBP, 121.1 ± 16.9 vs 111.7 ± 10.3, p < 0.001 AND DBP, 77.5 ± 12.8 vs 73.6 ± 8.6, p < 0.001, respectively), fasting glucose (97.1 ± 11.3 vs 91.5 ± 9.2, p < 0.001), and the number of components of metabolic syndrome (1.4 ± 1.3 vs 1.0 ± 1.2, p = 0.002), and significantly lower estimated glomerular filtration rate (144.3 ± 53.2 vs 158.3 ± 55.7, p = 0.002) and EQ-5D values (estimated mean values (standard error) for patients and the control group, 0.92 (0.01) vs 0.97 (0.01), p < 0.001) compared to the control group after adjustment. CONCLUSION The patients with hyperhidrosis had more central obesity and unfavorable metabolic parameters and a lower EQ-5D index compared with the general population, emphasizing clinical importance of hyperhidrosis to be cured in aspect of metabolic components as well as patients' QOL.
Collapse
|
34
|
Morgalla MH, Fritschle H, Vosseler A, Benkendorff C, Lamprinou A, Heni M, Fritsche A. Influence of Spinal Cord Stimulation on Insulin Sensitivity in Chronic Pain Patients. Exp Clin Endocrinol Diabetes 2021; 130:17-21. [PMID: 34255321 DOI: 10.1055/a-1525-3339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND OBJECTIVE This prospective, sham-controlled, randomized, cross-over study (NCT03637075), was designed to test the hypothesis that spinal cord stimulation (SCS) for the treatment of pain can also improve glucose metabolism and insulin sensitivity when compared to sham stimulation. METHODS Ten non-diabetic participants (5 females, mean age 48.8 years) who had an SCS system implanted for the treatment of chronic neuropathic pain were studied. Whilst applying a hyperinsulinemic-euglycemic clamp, sham-stimulation and tonic stimulation were performed for 45 min (n=4) or 60 min (n=6) in each case randomly. The insulin sensitivity index and pain levels were determined. A second investigation, BurstDR stimulation was also conducted and the result was compared to that of sham stimulation (cross-over design). RESULTS The insulin sensitivity improved significantly under the tonic stimulation when compared to the sham stimulation (p=0.037). BurstDR stimulation independently did not lead to a significantly improved insulin sensitivity compared to that after sham stimulation (p=0.16). We also examined the pain during the test and found no significant difference between sham and tonic stimulation (p=0.687). CONCLUSION The results of this study show that tonic stimulation used for the treatment of pain could also improve glucose metabolism and insulin sensitivity. Further investigations are required to investigate the clinical relevance of the role of glucose metabolism in diabetic chronic pain participants and its underlying mechanisms.
Collapse
Affiliation(s)
| | | | - Andreas Vosseler
- Medical Clinic IV, University of Tübingen, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Apostolia Lamprinou
- Medical Clinic IV, University of Tübingen, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Heni
- Medical Clinic IV, University of Tübingen, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Fritsche
- Medical Clinic IV, University of Tübingen, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
35
|
Xiong W, Meng XF, Zhang C. NLRP3 Inflammasome in Metabolic-Associated Kidney Diseases: An Update. Front Immunol 2021; 12:714340. [PMID: 34305953 PMCID: PMC8297462 DOI: 10.3389/fimmu.2021.714340] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Metabolic syndrome (MS) is a group of complex metabolic disorders syndrome, which refers to the pathological state of metabolism disorder of protein, fat, carbohydrate and other substances in human body. The kidney is an important organ of metabolism, and various metabolic disorders can lead to the abnormalities in the structure and function of the kidney. The recognition of pathogenesis and treatment measures of renal damage in MS is a very important part for the renal function preserve. Inflammatory response caused by various metabolic factors is a protective mechanism of the body, but persistent inflammation will become a harmful factor and aggravate kidney damage. Inflammasomes are sensors of the innate immune system that play crucial roles in initiating inflammation in response to acute infections and chronic diseases. They are multiprotein complex composed of cytoplasmic sensors (mainly NLR family members), apoptosis-associated speck-like protein (ASC or PYCARD) and pro-caspase-1. After receiving exogenous and endogenous stimuli, the sensors begin to assemble inflammasome and then promote the release of inflammatory cytokines IL-1β and IL-18, resulting in a special way of cell death named pyroptosis. In the kidney, NLRP3 inflammasome can be activated by a variety of pathways, which eventually leads to inflammatory infiltration, renal intrinsic cell damage and renal function decline. This paper reviews the function and specific regulatory mechanism of inflammasome in kidney damage caused by various metabolic disorders, which will provide a new therapeutic perspective and targets for kidney diseases.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Fang Meng
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Torres H, Huesing C, Burk DH, Molinas AJR, Neuhuber WL, Berthoud HR, Münzberg H, Derbenev AV, Zsombok A. Sympathetic innervation of the mouse kidney and liver arising from prevertebral ganglia. Am J Physiol Regul Integr Comp Physiol 2021; 321:R328-R337. [PMID: 34231420 DOI: 10.1152/ajpregu.00079.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sympathetic nervous system (SNS) plays a crucial role in the regulation of renal and hepatic functions. Although sympathetic nerves to the kidney and liver have been identified in many species, specific details are lacking in the mouse. In the absence of detailed information of sympathetic prevertebral innervation of specific organs, selective manipulation of a specific function will remain challenging. Despite providing major postganglionic inputs to abdominal organs, limited data are available about the mouse celiac-superior mesenteric complex. We used tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DbH) reporter mice to visualize abdominal prevertebral ganglia. We found that both the TH and DbH reporter mice are useful models for identification of ganglia and nerve bundles. We further tested if the celiac-superior mesenteric complex provides differential inputs to the mouse kidney and liver. The retrograde viral tracer, pseudorabies virus (PRV)-152 was injected into the cortex of the left kidney or the main lobe of the liver to identify kidney-projecting and liver-projecting neurons in the celiac-superior mesenteric complex. iDISCO immunostaining and tissue clearing were used to visualize unprecedented anatomical detail of kidney-related and liver-related postganglionic neurons in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia compared with TH-positive neurons. Kidney-projecting neurons were restricted to the suprarenal and aorticorenal ganglia, whereas only sparse labeling was observed in the celiac-superior mesenteric complex. In contrast, liver-projecting postganglionic neurons were observed in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia, suggesting spatial separation between the sympathetic innervation of the mouse kidney and liver.
Collapse
Affiliation(s)
- Hayden Torres
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Clara Huesing
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - David H Burk
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Adrien J R Molinas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana
| | | | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana.,Brain Institute, Tulane University, New Orleans, Louisiana
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana.,Brain Institute, Tulane University, New Orleans, Louisiana
| |
Collapse
|
37
|
Association of Urine Metanephrine Levels with CardiometaBolic Risk: An Observational Retrospective Study. J Clin Med 2021; 10:jcm10091967. [PMID: 34064307 PMCID: PMC8125207 DOI: 10.3390/jcm10091967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/20/2023] Open
Abstract
No research has explored the role of catecholamine metabolites in the stratification of cardiovascular risk. We aimed to evaluate the relationship between urine metanephrines and cardiometabolic risk/complications. In this retrospective cross-sectional study, we collected the data of 1374 patients submitted to the evaluation of urine metanephrines at the City of Health and Science University Hospital of Turin between 2007 and 2015, mainly for investigating the suspicion of secondary hypertension or the secretion of an adrenal lesion. The univariate analysis showed associations between metanephrines and cardiometabolic variables/parameters, particularly considering noradrenaline metabolite. At univariate regression, normetanephrine was associated with hypertensive cardiomyopathy (OR = 1.18, 95% CI 1.11–1.25; p < 0.001) and metabolic syndrome (OR = 1.11, 95% CI 1.03–1.20; p = 0.004), while metanephrine was associated with hypertensive cardiomyopathy (OR = 1.23, 95% CI 1.06–1.43; p = 0.006) and microalbuminuria (OR = 1.30, 95% CI 1.03–1.60; p = 0.018). At multivariate regression, considering all major cardiovascular risk factors as possible confounders, normetanephrine retained a significant association with hypertensive cardiomyopathy (OR = 1.14, 95% CI 1.07–1.22; p < 0.001) and metabolic syndrome (OR = 1.10, 95% CI 1.02–1.19; p = 0.017). Moreover, metanephrine retained a significant association with the presence of hypertensive cardiomyopathy (OR = 1.18, 95% CI 1.01–1.41; p = 0.049) and microalbuminuria (OR = 1.34, 95% CI 1.03–1.69; p = 0.019). The study showed a strong relationship between metanephrines and cardiovascular complications/metabolic alterations. Individuals with high levels of these indirect markers of sympathetic activity should be carefully monitored, and they may benefit from an aggressive treatment to reduce the cardiometabolic risk.
Collapse
|
38
|
Morigny P, Boucher J, Arner P, Langin D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol 2021; 17:276-295. [PMID: 33627836 DOI: 10.1038/s41574-021-00471-8] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
In mammals, the white adipocyte is a cell type that is specialized for storage of energy (in the form of triacylglycerols) and for energy mobilization (as fatty acids). White adipocyte metabolism confers an essential role to adipose tissue in whole-body homeostasis. Dysfunction in white adipocyte metabolism is a cardinal event in the development of insulin resistance and associated disorders. This Review focuses on our current understanding of lipid and glucose metabolic pathways in the white adipocyte. We survey recent advances in humans on the importance of adipocyte hypertrophy and on the in vivo turnover of adipocytes and stored lipids. At the molecular level, the identification of novel regulators and of the interplay between metabolic pathways explains the fine-tuning between the anabolic and catabolic fates of fatty acids and glucose in different physiological states. We also examine the metabolic alterations involved in the genesis of obesity-associated metabolic disorders, lipodystrophic states, cancers and cancer-associated cachexia. New challenges include defining the heterogeneity of white adipocytes in different anatomical locations throughout the lifespan and investigating the importance of rhythmic processes. Targeting white fat metabolism offers opportunities for improved patient stratification and a wide, yet unexploited, range of therapeutic opportunities.
Collapse
Affiliation(s)
- Pauline Morigny
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Toulouse, France
- University of Toulouse, Paul Sabatier University, I2MC, UMR1297, Toulouse, France
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Toulouse, France.
- University of Toulouse, Paul Sabatier University, I2MC, UMR1297, Toulouse, France.
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France.
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
39
|
Carnagarin R, Tan K, Adams L, Matthews VB, Kiuchi MG, Marisol Lugo Gavidia L, Lambert GW, Lambert EA, Herat LY, Schlaich MP. Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD)-A Condition Associated with Heightened Sympathetic Activation. Int J Mol Sci 2021; 22:ijms22084241. [PMID: 33921881 PMCID: PMC8073135 DOI: 10.3390/ijms22084241] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver disease affecting a quarter of the global population and is often associated with adverse health outcomes. The increasing prevalence of MAFLD occurs in parallel to that of metabolic syndrome (MetS), which in fact plays a major role in driving the perturbations of cardiometabolic homeostasis. However, the mechanisms underpinning the pathogenesis of MAFLD are incompletely understood. Compelling evidence from animal and human studies suggest that heightened activation of the sympathetic nervous system is a key contributor to the development of MAFLD. Indeed, common treatment strategies for metabolic diseases such as diet and exercise to induce weight loss have been shown to exert their beneficial effects at least in part through the associated sympathetic inhibition. Furthermore, pharmacological and device-based approaches to reduce sympathetic activation have been demonstrated to improve the metabolic alterations frequently present in patients with obesity, MetSand diabetes. Currently available evidence, while still limited, suggests that sympathetic activation is of specific relevance in the pathogenesis of MAFLD and consequentially may offer an attractive therapeutic target to attenuate the adverse outcomes associated with MAFLD.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Kearney Tan
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Leon Adams
- Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Vance B. Matthews
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Marcio G. Kiuchi
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Leslie Marisol Lugo Gavidia
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Gavin W. Lambert
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (G.W.L.); (E.A.L.)
- Human Neurotransmitter Lab, Melbourne, VIC 3004, Australia
| | - Elisabeth A. Lambert
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (G.W.L.); (E.A.L.)
- Human Neurotransmitter Lab, Melbourne, VIC 3004, Australia
| | - Lakshini Y. Herat
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Markus P. Schlaich
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
- Neurovascular Hypertension and Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
- Correspondence: ; Tel.: +61-8-9224-0382; Fax: +61-8-9224-0374
| |
Collapse
|
40
|
Sen T, Heerspink HJL. A kidney perspective on the mechanism of action of sodium glucose co-transporter 2 inhibitors. Cell Metab 2021; 33:732-739. [PMID: 33691091 DOI: 10.1016/j.cmet.2021.02.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/25/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Sodium glucose co-transporter (SGLT) 2 inhibitors reduce the risk of kidney failure in patients with and without type 2 diabetes (T2D). Although the precise underlying mechanisms for these nephroprotective effects are incompletely understood, various hypotheses have been proposed including reductions in intraglomerular pressure through restoration of tubuloglomerular feedback, blood pressure reduction and favorable effects on vascular function, reduction in tubular workload and hypoxia, and metabolic effects resulting in increased autophagy. Here, we review these mechanisms, which may also explain the beneficial effects of SGLT2 inhibitors on kidney function in patients without T2D.
Collapse
Affiliation(s)
- Taha Sen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; The George Institute for Global Health, Sydney, Australia.
| |
Collapse
|
41
|
Abstract
OBJECTIVE The microneurographic technique has shown that sympathetic overactivity may characterize patients with the metabolic syndrome. However, technical and methodological limitations of the studies prevented to draw definite conclusions. The present meta-analysis evaluated 16 microneurographic studies including 650 individuals, 444 metabolic syndrome patients and 206 healthy controls, respectively. The analysis was primarily based on muscle sympathetic nerve traffic (MSNA) quantified by microneurography in metabolic syndrome. METHODS Assessment was extended to the relationships of MSNA with an indirect neuroadrenergic marker, such as heart rate (HR), anthropometric variables, as BMI, waist-hip ratio and metabolic profile. RESULTS Metabolic syndrome individuals displayed MSNA values (means ± SEM) significantly greater than controls (58.6 ± 4.8 versus 41.6 ± 4.1 bursts/100 heart beats, P < 0.01). This result was independent on the concomitant presence of sleep apnea and drug treatment. MSNA was directly and significantly related to clinic SBP (r = 0.91, P < 0.01) but not to BMI (r = 0.17, P = NS), whereas no significant relationship was found between MSNA and metabolic variables included in the definition of metabolic syndrome. No significant correlation was found between MSNA and HR. CONCLUSION These data provide evidence that metabolic syndrome is characterized by a marked increase (about 30%) in MSNA. They also show that among the variables included in metabolic syndrome definition and related to the sympathetic overdrive blood pressure appears to be the most important one, at variance from what described in obesity in which metabolic and anthropometric factors play a major role. Finally in metabolic syndrome HR does not appear to represent a faithful mirror of the occurring sympathetic activation.
Collapse
|
42
|
He S, Gu H, Yang J, Su Q, Li X, Qin L. Hemoglobin concentration is associated with the incidence of metabolic syndrome. BMC Endocr Disord 2021; 21:53. [PMID: 33740939 PMCID: PMC7980652 DOI: 10.1186/s12902-021-00719-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND An association between hemoglobin and metabolic syndrome (MetS) has been reported. However, the relationships between hemoglobin and individual MetS components remain unclear. Therefore, we investigated these associations at baseline and at the 3-year follow-up. METHODS We enrolled 9960 middle-aged and elderly subjects (6726 women and 3234 men) and performed a 3-year follow-up cohort study. All subjects completed a questionnaire and underwent anthropometric measurements and laboratory tests. Logistic regression models were developed to assess the association between hemoglobin and MetS and its components. RESULTS MetS was present in 45.1% of women and 41.4% of men at baseline. The hemoglobin concentration was positively correlated with SBP, DBP, TGs, WC, FPG, insulin, HOMA-IR, BMI and uric acid (p < 0.05). The mean hemoglobin concentration was higher in subjects with hypertension, high TGs, abdominal obesity or elevated FPG (p < 0.01). At follow-up, elevated hemoglobin correlated with an increased incidence and ORs for MetS, high TGs, low HDL-c, hyperuricemia and NAFLD but not abdominal obesity, BP or FPG in women. Increased hemoglobin corresponded with an increased incidence and ORs for MetS, abdominal obesity, low HDL-c, hyperuricemia and NAFLD but not BP, high TGs or FPG in men. CONCLUSIONS Hemoglobin may play a role in predicting new-onset MetS in both women and men. Hemoglobin was notably correlated with future risk of high TGs, low HDL-c, hyperuricemia, and NAFLD among women and abdominal obesity, low HDL-c, hyperuricemia, and NAFLD among men.
Collapse
Affiliation(s)
- Sunyue He
- Department of Endocrinology, Xinhua Hospital Chongming Branch, School of Medicine, Shanghai Jiaotong University, 25 Nanmen Road, Shanghai, 202150, China
| | - Hongxia Gu
- Department of Endocrinology, Xinhua Hospital Chongming Branch, School of Medicine, Shanghai Jiaotong University, 25 Nanmen Road, Shanghai, 202150, China
| | - Jie Yang
- Department of Endocrinology, Xinhua Hospital Chongming Branch, School of Medicine, Shanghai Jiaotong University, 25 Nanmen Road, Shanghai, 202150, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiaoyong Li
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Li Qin
- Department of Endocrinology, Xinhua Hospital Chongming Branch, School of Medicine, Shanghai Jiaotong University, 25 Nanmen Road, Shanghai, 202150, China.
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
43
|
Sangaleti CT, Katayama KY, De Angelis K, Lemos de Moraes T, Araújo AA, Lopes HF, Camacho C, Bortolotto LA, Michelini LC, Irigoyen MC, Olofsson PS, Barnaby DP, Tracey KJ, Pavlov VA, Consolim Colombo FM. The Cholinergic Drug Galantamine Alleviates Oxidative Stress Alongside Anti-inflammatory and Cardio-Metabolic Effects in Subjects With the Metabolic Syndrome in a Randomized Trial. Front Immunol 2021; 12:613979. [PMID: 33776997 PMCID: PMC7991724 DOI: 10.3389/fimmu.2021.613979] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The metabolic syndrome (MetS) is an obesity-associated disorder of pandemic proportions and limited treatment options. Oxidative stress, low-grade inflammation and altered neural autonomic regulation, are important components and drivers of pathogenesis. Galantamine, an acetylcholinesterase inhibitor and a cholinergic drug that is clinically-approved (for Alzheimer's disease) has been implicated in neural cholinergic regulation of inflammation in several conditions characterized with immune and metabolic derangements. Here we examined the effects of galantamine on oxidative stress in parallel with inflammatory and cardio-metabolic parameters in subjects with MetS. Trial Design and Methods: The effects of galantamine treatment, 8 mg daily for 4 weeks or placebo, followed by 16 mg daily for 8 weeks or placebo were studied in randomly assigned subjects with MetS (n = 22 per group) of both genders. Oxidative stress, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase activities, lipid and protein peroxidation, and nitrite levels were analyzed before and at the end of the treatment. In addition, plasma cytokine and adipokine levels, insulin resistance (HOMA-IR) and other relevant cardio-metabolic indices were analyzed. Autonomic regulation was also examined by heart rate variability (HRV) before treatment, and at every 4 weeks of treatment. Results: Galantamine treatment significantly increased antioxidant enzyme activities, including SOD [+1.65 USOD/mg protein, [95% CI 0.39-2.92], P = 0.004] and CAT [+0.93 nmol/mg, [95% CI 0.34-1.51], P = 0.01], decreased lipid peroxidation [thiobarbituric acid reactive substances [log scale 0.72 pmol/mg, [95% CI 0.46-1.07], P = 0.05], and systemic nitrite levels [log scale 0.83 μmol/mg protein, [95% CI 0.57-1.20], P = 0.04] compared with placebo. In addition, galantamine significantly alleviated the inflammatory state and insulin resistance, and decreased the low frequency/high frequency ratio of HRV, following 8 and 12 weeks of drug treatment. Conclusion: Low-dose galantamine alleviates oxidative stress, alongside beneficial anti-inflammatory, and metabolic effects, and modulates neural autonomic regulation in subjects with MetS. These findings are of considerable interest for further studies with the cholinergic drug galantamine to ameliorate MetS.
Collapse
Affiliation(s)
- Carine Teles Sangaleti
- Hypertension Unit, University of São Paulo (USP), São Paulo, Brazil
- Postgraduate Program in Health Science, Midwestern State University (UNICENTRO), Paraná, Brazil
| | - Keyla Yukari Katayama
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | - Kátia De Angelis
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
- Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Tércio Lemos de Moraes
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | | | - Heno F. Lopes
- Hypertension Unit, University of São Paulo (USP), São Paulo, Brazil
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | - Cleber Camacho
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | | | - Lisete Compagno Michelini
- Biomedical Sciences Institute Department of Physiology and Biophysics, University of São Paulo (USP), São Paulo, Brazil
| | | | - Peder S. Olofsson
- Laboratory of Immunobiology, Department of Medicine, Center for Bioelectronic Medicine, Karolinska Institutet, Stockholm, Sweden
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Douglas P. Barnaby
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Fernanda Marciano Consolim Colombo
- Hypertension Unit, University of São Paulo (USP), São Paulo, Brazil
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| |
Collapse
|
44
|
Role of the sympathetic nervous system in cardiometabolic control: implications for targeted multiorgan neuromodulation approaches. J Hypertens 2021; 39:1478-1489. [PMID: 33657580 DOI: 10.1097/hjh.0000000000002839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sympathetic overdrive plays a key role in the perturbation of cardiometabolic homeostasis. Diet-induced and exercise-induced weight loss remains a key strategy to combat metabolic disorders, but is often difficult to achieve. Current pharmacological approaches result in variable responses in different patient cohorts and long-term efficacy may be limited by medication intolerance and nonadherence. A clinical need exists for complementary therapies to curb the burden of cardiometabolic diseases. One such approach may include interventional sympathetic neuromodulation of organs relevant to cardiometabolic control. The experience from catheter-based renal denervation studies clearly demonstrates the feasibility, safety and efficacy of such an approach. In analogy, denervation of the common hepatic artery is now feasible in humans and may prove to be similarly useful in modulating sympathetic overdrive directed towards the liver, pancreas and duodenum. Such a targeted multiorgan neuromodulation strategy may beneficially influence multiple aspects of the cardiometabolic disease continuum offering a holistic approach.
Collapse
|
45
|
Margonato D, Galati G, Mazzetti S, Cannistraci R, Perseghin G, Margonato A, Mortara A. Renal protection: a leading mechanism for cardiovascular benefit in patients treated with SGLT2 inhibitors. Heart Fail Rev 2021; 26:337-345. [PMID: 32901315 PMCID: PMC7895775 DOI: 10.1007/s10741-020-10024-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
Initially developed as glucose-lowering drugs, sodium-glucose co-transporter type 2 inhibitors (SGLT2i) have demonstrated to be effective agents for the risk reduction of cardiovascular (CV) events in patients with type 2 diabetes mellitus (T2DM). Subsequently, data has emerged showing a significant CV benefit in patients treated with SGLT2i regardless of diabetes status. Renal protection has been initially evaluated in CV randomized trials only as secondary endpoints; nonetheless, the positive results gained have rapidly led to the evaluation of nephroprotection as primary outcome in the CREDENCE trial. Different renal and vascular mechanisms can account for the CV and renal benefits enlightened in recent literature. As clinical guidelines rapidly evolve and the role of SGLT2i appears to become pivotal for CV, T2DM, and kidney disease management, in this review, we analyze the renal effects of SGLT2, the benefits derived from its inhibition, and how this may result in the multiple CV and renal benefits evidenced in recent clinical trials.
Collapse
Affiliation(s)
- Davide Margonato
- Heart Failure Unit and Department of Cardiology, Policlinico di Monza, Via Amati 111, 20900, Monza, Italy.
- Department of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Giuseppe Galati
- Heart Failure Unit and Department of Cardiology, San Raffaele Hospital and Scientific Institute (IRCCS), Milan, Italy
| | - Simone Mazzetti
- Heart Failure Unit and Department of Cardiology, Policlinico di Monza, Via Amati 111, 20900, Monza, Italy
| | - Rosa Cannistraci
- Department of Medicine and Surgery, Università Degli Studi di Milano Bicocca, & Policlinico di Monza, Monza, Italy
| | - Gianluca Perseghin
- Department of Medicine and Surgery, Università Degli Studi di Milano Bicocca, & Policlinico di Monza, Monza, Italy
| | - Alberto Margonato
- Heart Failure Unit and Department of Cardiology, San Raffaele Hospital and Scientific Institute (IRCCS), Milan, Italy
| | - Andrea Mortara
- Heart Failure Unit and Department of Cardiology, Policlinico di Monza, Via Amati 111, 20900, Monza, Italy
| |
Collapse
|
46
|
Labarca G, Schmidt A, Dreyse J, Jorquera J, Enos D, Torres G, Barbe F. Efficacy of continuous positive airway pressure (CPAP) in patients with obstructive sleep apnea (OSA) and resistant hypertension (RH): Systematic review and meta-analysis. Sleep Med Rev 2021; 58:101446. [PMID: 33607443 DOI: 10.1016/j.smrv.2021.101446] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Approximately 70-85% of patients with resistant hypertension (RH) report obstructive sleep apnea (OSA). However, whether therapy with continuous positive airway pressure (CPAP) improves blood pressure (BP) in this population is not clear. We performed a systematic review and meta-analysis of randomized controlled trials (RCTs) to determine the efficacy of CPAP in patients with OSA and RH. Two reviewers performed the literature search, risk of bias analysis, and data extraction. The pooled data were analyzed in a meta-analysis using the DerSimonian-Laird method. We calculated the mean difference (MD) in systolic blood pressure (SBP) and diastolic blood pressure (DBP) measured at 24 h and in the daytime and nighttime. We also evaluated changes in aortic stiffness and aldosterone excretion. A total of 10 RCTs and 606 participants were included. CPAP was associated with changes in 24-h SBP (-5.06 mmHg; CI, -7.98, -2.13), 24-h DBP (-4.21 mmHg; CI, -6.5, -1.93), daytime SBP (-2.34 mmHg; CI, -6.94, +2.27), daytime DBP (-2.14 mmHg; CI, -4.96, -0.67), nighttime SBP (-4.15 mmHg; CI, -7.01, -1.29), and nighttime DBP (-1.95 mmHg; CI, -3.32, -0.57). We found no benefit for aortic stiffness, but it did lead to a mild reduction in aldosterone secretion. CPAP therapy improved BP, especially nighttime BP, in this population.
Collapse
Affiliation(s)
- Gonzalo Labarca
- Faculty of Medicine, University of Concepcion, Concepcion, Chile; Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.
| | - Alexia Schmidt
- Faculty of Medicine, University of Concepcion, Concepcion, Chile
| | - Jorge Dreyse
- Centro de Enfermedades Respiratorias y Grupo de Estudio Trastornos Respiratorios del Sueño (GETRS) Clínica Las Condes, Santiago, Chile
| | - Jorge Jorquera
- Centro de Enfermedades Respiratorias y Grupo de Estudio Trastornos Respiratorios del Sueño (GETRS) Clínica Las Condes, Santiago, Chile
| | - Daniel Enos
- Faculty of Medicine, University of Concepcion, Concepcion, Chile; Nefrology, Complejo Asistencial Dr. Victor Rios Ruiz, Los Angeles, Chile
| | - Gerard Torres
- Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Ferran Barbe
- Hospital Universitari Arnau de Vilanova, Lleida, Spain
| |
Collapse
|
47
|
Ueda K, Janiczek DM, Casey DP. Arterial Stiffness Predicts General Anesthesia-Induced Vasopressor-Resistant Hypotension in Patients Taking Angiotensin-Converting Enzyme Inhibitors. J Cardiothorac Vasc Anesth 2021; 35:73-80. [PMID: 32921603 PMCID: PMC8528715 DOI: 10.1053/j.jvca.2020.08.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Patients chronically treated with angiotensin-converting enzyme inhibitors (ACEIs) may develop hypotension after induction of general anesthesia. A fraction of these patients are resistant to therapeutic doses of vasopressors, which poses serious concerns for hemodynamic management. The authors hypothesized that the patients who develop refractory hypotension, compared with those who do not, show lower central arterial stiffness due to the profound effect of ACEIs. DESIGN Prospective observational study. SETTING Single tertiary center. INTERVENTIONS Fifty surgical patients chronically treated with ACEIs were enrolled. Prior to surgery, all the patients had central arterial stiffness assessment measured by carotid-femoral pulse-wave velocity. Patients were categorized into 2 groups according to the systolic blood pressure response during the first 10 minutes after induction of general anesthesia: a vasopressor-resistant hypotension group requiring more than 200 µg phenylephrine, or a control group requiring no more than 200 µg of phenylephrine to maintain systolic blood pressure above 90 mmHg during the study period. MEASUREMENTS AND MAIN RESULTS Carotid-femoral pulse-wave velocity was significantly lower in the vasopressor-resistant hypotension group compared to the control group (7.6 [7.2-8.3] m/s v 9.9 [8.7-12.0] m/s, p = 0.001 [Hodges-Lehman median difference 2.2, 95% confidence interval = 1.1-4.4]). CONCLUSION These findings suggested that preoperative measurement of carotid-femoral pulse-wave velocity in patients chronically treated with ACEIs could help identify patients at increased risk of developing hypotension refractory to vasopressors after induction of general anesthesia.
Collapse
Affiliation(s)
- Kenichi Ueda
- Department of Anesthesia, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA; Department of Anesthesia, Kameda General Hospital, Chiba, Japan.
| | - David M Janiczek
- Department of Anesthesiology, University of Illinois-Chicago, Chicago, IL
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| |
Collapse
|
48
|
Katsimardou A, Imprialos K, Stavropoulos K, Sachinidis A, Doumas M, Athyros V. Hypertension in Metabolic Syndrome: Novel Insights. Curr Hypertens Rev 2020; 16:12-18. [PMID: 30987573 DOI: 10.2174/1573402115666190415161813] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Metabolic syndrome (MetS) is characterized by the simultaneous presence of obesity, hypertension, dyslipidemia and hyperglycemia in an individual, leading to increased cardiovascular disease (CVD) risk. It affects almost 35% of the US adult population, while its prevalence increases with age. Elevated blood pressure is the most frequent component of the syndrome; however, until now, the optimal antihypertensive regiment has not been defined. OBJECTIVE The purpose of this review is to present the proposed definitions for the metabolic syndrome, as well as the prevalence of hypertension in this condition. Moreover, evidence regarding the metabolic properties of the different antihypertensive drug classes and their effect on MetS will be displayed. METHODS A comprehensive review of the literature was performed to identify data from clinical studies for the prevalence, pathophysiology and treatment of hypertension in the metabolic syndrome. RESULTS Hypertension is present in almost 80% of patients with metabolic syndrome. The use of thiazide diuretics and b-blockers has been discouraged in this population; however, new evidence suggests their use under specific conditions. Calcium channel blockers seem to exert a neutral effect on MetS, while renin-angiotensin system inhibitors are believed to be of the most benefit, although differences exist between the different agents of this category. CONCLUSION Controversy still exists regarding the optimal antihypertensive treatment for hypertension in MetS. Due to the high prevalence of hypertension in this population, more data from clinical trials are needed in the future.
Collapse
Affiliation(s)
- Alexandra Katsimardou
- 2nd Prop Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| | | | | | - Alexandros Sachinidis
- 2nd Prop Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| | - Michalis Doumas
- 2nd Prop Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| | - Vasilios Athyros
- 2nd Prop Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
49
|
Effect of Adrenergic Agonists on High-Fat Diet-Induced Hepatic Steatosis in Mice. Int J Mol Sci 2020; 21:ijms21249392. [PMID: 33321735 PMCID: PMC7764675 DOI: 10.3390/ijms21249392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
The autonomic nervous system, consisting of sympathetic and parasympathetic branches, plays an important role in regulating metabolic homeostasis. The sympathetic nervous system (SNS) regulates hepatic lipid metabolism by regulating adrenergic receptor activation, resulting in the stimulation of hepatic very-low-density lipoprotein-triglyceride (TG) production in vivo. However, only a few studies on the relationship between SNS and hepatic steatosis have been reported. Here, we investigate the effect of adrenergic receptor agonists on hepatic steatosis in mice fed a high-fat diet (HFD). The α-adrenergic receptor agonist phenylephrine (10 mg/kg/d) or the β-adrenergic receptor agonist isoproterenol (30 mg/kg/d) was coadministered with HFD to male mice. After five weeks, hepatic steatosis, TG levels, and hepatic fat metabolism-related biomarkers were examined. HFD treatment induced hepatic steatosis, and cotreatment with phenylephrine, but not isoproterenol, attenuated this effect. Phenylephrine administration upregulated the mRNA levels of hepatic peroxisome proliferator-activated receptor alpha and its target genes (such as carnitine palmitoyltransferase 1) and increased hepatic β-hydroxybutyrate levels. Additionally, phenylephrine treatment increased the expression of the autophagosomal marker LC3-II but decreased that of p62, which is selectively degraded during autophagy. These results indicate that phenylephrine inhibits hepatic steatosis through stimulation of β-oxidation and autophagy in the liver.
Collapse
|
50
|
Pope ZC, Gabriel KP, Whitaker KM, Chen LY, Schreiner PJ, Jacobs DR, Sternfeld B, Carr JJ, Lloyd-Jones DM, Pereira MA. Association between Objective Activity Intensity and Heart Rate Variability: Cardiovascular Disease Risk Factor Mediation (CARDIA). Med Sci Sports Exerc 2020; 52:1314-1321. [PMID: 32427750 DOI: 10.1249/mss.0000000000002259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE We evaluated the associations between accelerometer-estimated physical activity (PA) intensity and heart rate variability (HRV) and examined mediation of these associations by glycemic control indices and other cardiovascular disease risk factors. METHODS Data were from 1668 participants (X[Combining Overline]age = 45.9 ± 3.5 yr, 58.0% female, 39.9% black) who participated in year 20 (2005-2006) of the Coronary Artery Risk Development in Young Adults Fitness Study. The ActiGraph 7164 estimated participants' mean minutes per day of vigorous-intensity PA (VPA), moderate-intensity PA (MPA), and light-intensity PA (LPA) over 7 d. Three sequential 10-s 12-lead ECG strips were used to derive standard deviation of all normal RR intervals (SDNN) and root mean square of all successive RR intervals (rMSSD) HRV. Mediators representing glycemic control indices included fasting glucose, fasting insulin, and 2-h oral glucose tolerance, with other mediators being traditional cardiovascular disease risk factors. Multiple linear regression assessed independent associations of PA intensity with HRV per 1-SD. Mediation analyses computed the proportion of the PA-HRV association attributable to physiological mediators. RESULTS Participants averaged 2.7 ± 6.2 min·d, 33.0 ± 22.0 min·d, and 360.2 ± 83.8 min·d of VPA, MPA, and LPA, respectively, with mean values for SDNN (32.6 ± 22.4 ms) and rMSSD (34.0 ± 24.8 ms) similar. After adjustment for demographic and lifestyle behaviors, VPA was associated with both HRV metrics (SDNN: std beta = 0.06 [0.03, 0.10]; rMSSD: std beta = 0.08 [0.05, 0.12]) and LPA with rMSSD only (std beta = 0.05 [0.01, 0.08]). Fasting insulin and glucose mediated 11.6% to 20.7% of the association of VPA and LPA with HRV, with triglycerides also potentially mediating these associations (range, 9.6%-13.4%). CONCLUSIONS Accelerometer-estimated VPA was associated with higher (i.e., improved) HRV. Light-intensity PA also demonstrated a positive association. Mediation analyses suggested these associations may be most attributable to glucose-insulin dynamics.
Collapse
Affiliation(s)
- Zachary C Pope
- Division of Epidemiology and Community Health, University of Minnesota, School of Public Health, Minneapolis, MN
| | | | - Kara M Whitaker
- Department of Health and Human Physiology and Department of Epidemiology, University of Iowa, Iowa City, IA
| | - Lin Y Chen
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, University of Minnesota, School of Public Health, Minneapolis, MN
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, School of Public Health, Minneapolis, MN
| | | | - J Jeffrey Carr
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Mark A Pereira
- Division of Epidemiology and Community Health, University of Minnesota, School of Public Health, Minneapolis, MN
| |
Collapse
|