1
|
Michelini S, Greco S, Vaia N, Puleo V, Pellegrino P, Di Vincenzo A, Michelini S, Herbst KL, Goteri G, Luca T, Castorina S, Giordano A, Ciarmela P, Cinti S. Endothelial cell alterations in capillaries of adipose tissue from patients affected by lipedema. Obesity (Silver Spring) 2025; 33:695-708. [PMID: 40077894 PMCID: PMC11937865 DOI: 10.1002/oby.24244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 03/14/2025]
Abstract
OBJECTIVE This study aimed to evaluate adipose tissue of lipedema patients. METHODS Gluteo-femoral (affected area) and interscapular (nonaffected area) adipose tissue from 10 lean patients affected by lipedema stage 1 to 2 was studied and compared with tissue from 10 patients with obesity and 12 lean patients. RESULTS The main features were alterations of capillaries with wall thickening (p ≤ 0.0001), endothelial and pericyte hyperplasia (p = 0.03 and p = 0.004), hypodense areas in basal membrane, and endothelial degeneration with exfoliation of degenerated cells into the capillary lumen. Adipocytes were larger (hypertrophic) in affected (P ≤ 0.0001) and nonaffected (p = 0.0003) areas compared with those with obesity and who were lean (both p ≤ 0.0001). Frequently the cytoplasm of adipocytes contained massive deposition of calcium crystals as revealed by Von Kossa staining (p = 0.023) and electron microscopy. CD68 immunoreactive macrophages were more abundant in affected areas (p = 0.005), and their number was similar to that found in fat from patients with obesity (p = 0.17). Despite adipocyte hypertrophy and inflammation, lack of the healthy marker perilipin-1 and the presence of crown-like structures were only rarely seen, while they were quite frequent in patients with obesity. CONCLUSIONS Our data support the idea that cell alterations happen in the early stages of adipocyte development (endothelium/pericyte) in the adipose organ of women affected by lipedema.
Collapse
Affiliation(s)
- Sandro Michelini
- Vascular Diagnostics and Rehabilitation ServiceMarino HospitalRomeItaly
- Physical Medicine and RehabilitationSan Giovanni Battista HospitalRomeItaly
| | - Stefania Greco
- Department of Experimental and Clinical Medicine, Center of ObesityUniversità Politecnica delle Marche (Polytechnic University of Marche)AnconaItaly
| | - Nicola Vaia
- Plastic, Reconstructive and Aesthetic SurgeryEuropean HospitalRomeItaly
| | - Valeria Puleo
- Department of Science and Public HealthCatholic University Policlinico GemelliRomeItaly
| | - Pamela Pellegrino
- Department of Experimental and Clinical Medicine, Center of ObesityUniversità Politecnica delle Marche (Polytechnic University of Marche)AnconaItaly
| | - Angelica Di Vincenzo
- Department of Experimental and Clinical Medicine, Center of ObesityUniversità Politecnica delle Marche (Polytechnic University of Marche)AnconaItaly
| | - Serena Michelini
- Physical Medicine and RehabilitationSan Giovanni Battista HospitalRomeItaly
| | | | - Gaia Goteri
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy and HistopathologyUniversità Politecnica delle Marche (Polytechnic University of Marche)AnconaItaly
| | - Tonia Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia"University of CataniaCataniaItaly
| | - Sergio Castorina
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia"University of CataniaCataniaItaly
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Center of ObesityUniversità Politecnica delle Marche (Polytechnic University of Marche)AnconaItaly
- Istituto di Ricovero e Cura a Carattere Scientifico (Scientific Institute for Research, Hospitalization and Health Care), Istituto Nazionale di Ricovero e Cura per Anziani (National Institute of Hospitalization and Care for the Elderly) (IRCCS/INRCA)AnconaItaly
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Center of ObesityUniversità Politecnica delle Marche (Polytechnic University of Marche)AnconaItaly
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of ObesityUniversità Politecnica delle Marche (Polytechnic University of Marche)AnconaItaly
| |
Collapse
|
2
|
Ji SM, Yoo H, Kim JI, Choi MJ, Cheon HG. Melatonin induces white-to-beige adipocyte transdifferentiation through melatonin receptor 1-mediated direct browning and indirect M2 polarization. Mol Cell Endocrinol 2025; 597:112439. [PMID: 39653309 DOI: 10.1016/j.mce.2024.112439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Previous studies have shown that melatonin induces adipocyte browning in vivo. However, the underlying mechanisms of melatonin action at the cellular level remain elusive. In this study, we investigated the mechanisms underlying melatonin-induced browning in 3T3-L1 adipocytes and RAW 264.7 macrophages. Melatonin caused the transdifferentiation of fully differentiated white adipocytes into beige adipocytes, which involves the activation of melatonin receptor 1, followed by increased phosphorylation of p38 MAPK and Akt. Both luzindole (LZ), a non-selective melatonin receptor antagonist, and selective melatonin receptor 1 knockdown attenuated the browning effects of melatonin. Melatonin also induced M2 polarization in RAW 264.7, involving the melatonin receptor 1-Src-STAT3/STAT6 phosphorylation signaling cascade. Melatonin-treated M2-conditioned medium (CM) contained increased levels of catecholamine (CA) and induced beige adipocytes when treated with differentiated 3T3-L1 white adipocytes. In vivo oral administration of melatonin to high-fat diet (HFD)-induced obese (DIO) mice reduced body weight, accompanied by increased expression of uncoupling protein-1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in subcutaneous adipose tissues. Moreover, arginase-1 (Arg1) and mannose receptor C type-1 (MRC1) levels were markedly higher in the melatonin-treated groups, suggesting that melatonin induces adipose browning and M2 polarization in vivo. Collectively, melatonin-induced adipocyte browning appeared to be reflected by the sum of melatonin receptor 1-activated direct browning effects and indirect M2 polarization-mediated effects.
Collapse
MESH Headings
- Animals
- Melatonin/pharmacology
- Mice
- 3T3-L1 Cells
- Cell Transdifferentiation/drug effects
- Adipocytes, Beige/metabolism
- Adipocytes, Beige/drug effects
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- RAW 264.7 Cells
- Male
- Mice, Inbred C57BL
- Signal Transduction/drug effects
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT1/genetics
- Cell Polarity/drug effects
- Macrophages/metabolism
- Macrophages/drug effects
- Diet, High-Fat
- Obesity/metabolism
- Obesity/pathology
- Uncoupling Protein 1/metabolism
- Uncoupling Protein 1/genetics
- Tryptamines
Collapse
Affiliation(s)
- Seong Mi Ji
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Hana Yoo
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Jea Il Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, 21999, Republic of Korea
| | - Mi Jin Choi
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
3
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
4
|
Luca T, Pezzino S, Puleo S, Castorina S. Lesson on obesity and anatomy of adipose tissue: new models of study in the era of clinical and translational research. J Transl Med 2024; 22:764. [PMID: 39143643 PMCID: PMC11323604 DOI: 10.1186/s12967-024-05547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/28/2024] [Indexed: 08/16/2024] Open
Abstract
Obesity is a serious global illness that is frequently associated with metabolic syndrome. Adipocytes are the typical cells of adipose organ, which is composed of at least two different tissues, white and brown adipose tissue. They functionally cooperate, interconverting each other under physiological conditions, but differ in their anatomy, physiology, and endocrine functions. Different cellular models have been proposed to study adipose tissue in vitro. They are also useful for elucidating the mechanisms that are responsible for a pathological condition, such as obesity, and for testing therapeutic strategies. Each cell model has its own characteristics, culture conditions, advantages and disadvantages. The choice of one model rather than another depends on the specific study the researcher is conducting. In recent decades, three-dimensional cultures, such as adipose spheroids, have become very attractive because they more closely resemble the phenotype of freshly isolated cells. The use of such models has developed in parallel with the evolution of translational research, an interdisciplinary branch of the biomedical field, which aims to learn a scientific translational approach to improve human health and longevity. The focus of the present review is on the growing body of data linking the use of new cell models and the spread of translational research. Also, we discuss the possibility, for the future, to employ new three-dimensional adipose tissue cell models to promote the transition from benchside to bedsite and vice versa, allowing translational research to become routine, with the final goal of obtaining clinical benefits in the prevention and treatment of obesity and related disorders.
Collapse
Affiliation(s)
- Tonia Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, Catania, 95123, Italy.
| | | | - Stefano Puleo
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| | - Sergio Castorina
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, Catania, 95123, Italy
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| |
Collapse
|
5
|
Amri EZ. Beige or brite adipocytes of the adipose organ: Link with white and brown adipocytes. ANNALES D'ENDOCRINOLOGIE 2024; 85:253-254. [PMID: 38871507 DOI: 10.1016/j.ando.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
MESH Headings
- Animals
- Humans
- Adipocytes/physiology
- Adipocytes, Beige/physiology
- Adipocytes, Beige/metabolism
- Adipocytes, Beige/cytology
- Adipocytes, Brown/physiology
- Adipocytes, White/physiology
- Adipocytes, White/cytology
- Adipocytes, White/metabolism
- Adipose Tissue/physiology
- Adipose Tissue/metabolism
- Adipose Tissue/cytology
- Adipose Tissue, Brown/physiology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/physiology
- Adipose Tissue, White/cytology
- Obesity/pathology
Collapse
Affiliation(s)
- Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, iBV, Adipocible, Nice, France.
| |
Collapse
|
6
|
Ip JY, Wijaya I, Lee LT, Lim Y, Teoh DEJ, Chan CSC, Cui L, Begley TJ, Dedon PC, Guo H. ROS-induced translational regulation-through spatiotemporal differences in codon recognition-is a key driver of brown adipogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.572954. [PMID: 38463965 PMCID: PMC10925207 DOI: 10.1101/2023.12.22.572954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The role of translational regulation in brown adipogenesis is relatively unknown. Localized translation of mRNAs encoding mitochondrial components enables swift mitochondrial responses, but whether this occurs during brown adipogenesis, which involves massive mitochondrial biogenesis, has not been explored. Here, we used ribosome profiling and RNA-Seq, coupled with cellular fractionation, to obtain spatiotemporal insights into translational regulation. During brown adipogenesis, a translation bias towards G/C-ending codons is triggered first in the mitochondrial vicinity by reactive oxygen species (ROS), which later spreads to the rest of the cell. This translation bias is induced through ROS modulating the activity of the tRNA modification enzyme, ELP3. Intriguingly, functionally relevant mRNAs, including those encoding ROS scavengers, benefit from this bias; in so doing, ROS-induced translation bias both fuels differentiation and concurrently minimizes oxidative damage. These ROS-induced changes could enable sustained mitochondrial biogenesis during brown adipogenesis, and explain in part, the molecular basis for ROS hormesis.
Collapse
|
7
|
Cinti S. Obese Adipocytes Have Altered Redox Homeostasis with Metabolic Consequences. Antioxidants (Basel) 2023; 12:1449. [PMID: 37507987 PMCID: PMC10376822 DOI: 10.3390/antiox12071449] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
White and brown adipose tissues are organized to form a real organ, the adipose organ, in mice and humans. White adipocytes of obese animals and humans are hypertrophic. This condition is accompanied by a series of organelle alterations and stress of the endoplasmic reticulum. This stress is mainly due to reactive oxygen species activity and accumulation, lending to NLRP3 inflammasome activation. This last causes death of adipocytes by pyroptosis and the formation of large cellular debris that must be removed by macrophages. During their chronic scavenging activity, macrophages produce several secretory products that have collateral consequences, including interference with insulin receptor activity, causing insulin resistance. The latter is accompanied by an increased noradrenergic inhibitory innervation of Langerhans islets with de-differentiation of beta cells and type 2 diabetes. The whitening of brown adipocytes could explain the different critical death size of visceral adipocytes and offer an explanation for the worse clinical consequence of visceral fat accumulation. White to brown transdifferentiation has been proven in mice and humans. Considering the energy-dispersing activity of brown adipose tissue, transdifferentiation opens new therapeutic perspectives for obesity and related disorders.
Collapse
Affiliation(s)
- Saverio Cinti
- Scientific Director Centre of Obesity, Marche Polytechnic University, Via Tronto 10a, 60126 Ancona, Italy
| |
Collapse
|
8
|
Everts PA, Panero AJ. Basic Science of Autologous Orthobiologics. Phys Med Rehabil Clin N Am 2023; 34:25-47. [DOI: 10.1016/j.pmr.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Cinti F, Cinti S. The Endocrine Adipose Organ: A System Playing a Central Role in COVID-19. Cells 2022; 11:cells11132109. [PMID: 35805193 PMCID: PMC9265618 DOI: 10.3390/cells11132109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
In the last 30 years the adipose cell has been object of several studies, turning its reputation from an inert cell into the main character involved in the pathophysiology of multiple diseases, including the ongoing COVID-19 pandemic, which has changed the clinical scenario of the last two years. Composed by two types of tissue (white and brown), with opposite roles, the adipose organ is now classified as a real endocrine organ whose dysfunction is involved in different diseases, mainly obesity and type 2 diabetes. In this mini-review we aim to retrace the adipose organ history from physiology to physiopathology, to provide therapeutic perspectives for the prevention and treatment of its two main related diseases (obesity and type 2 diabetes) and to summarize the most recent discoveries linking adipose tissue to COVID-19.
Collapse
Affiliation(s)
- Francesca Cinti
- UOS Centro Malattie Endocrine e Metaboliche, UOC Endocrinologia e Diabetologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy;
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Saverio Cinti
- Center of Obesity, Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy
- Correspondence: or ; Tel.: +39-3396936172
| |
Collapse
|
10
|
Álvarez-Artime A, García-Soler B, Sainz RM, Mayo JC. Emerging Roles for Browning of White Adipose Tissue in Prostate Cancer Malignant Behaviour. Int J Mol Sci 2021; 22:5560. [PMID: 34074045 PMCID: PMC8197327 DOI: 10.3390/ijms22115560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to its well-known role as an energy repository, adipose tissue is one of the largest endocrine organs in the organism due to its ability to synthesize and release different bioactive molecules. Two main types of adipose tissue have been described, namely white adipose tissue (WAT) with a classical energy storage function, and brown adipose tissue (BAT) with thermogenic activity. The prostate, an exocrine gland present in the reproductive system of most mammals, is surrounded by periprostatic adipose tissue (PPAT) that contributes to maintaining glandular homeostasis in conjunction with other cell types of the microenvironment. In pathological conditions such as the development and progression of prostate cancer, adipose tissue plays a key role through paracrine and endocrine signaling. In this context, the role of WAT has been thoroughly studied. However, the influence of BAT on prostate tumor development and progression is unclear and has received much less attention. This review tries to bring an update on the role of different factors released by WAT which may participate in the initiation, progression and metastasis, as well as to compile the available information on BAT to discuss and open a new field of knowledge about the possible protective role of BAT in prostate cancer.
Collapse
Affiliation(s)
- Alejandro Álvarez-Artime
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Belén García-Soler
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
| | - Rosa María Sainz
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Juan Carlos Mayo
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
11
|
Meng W, Liang X, Xiao T, Wang J, Wen J, Luo H, Teng J, Fei Y, Zhang Q, Liu B, Hu F, Bai J, Liu M, Zhou Z, Liu F. Rheb promotes brown fat thermogenesis by Notch-dependent activation of the PKA signaling pathway. J Mol Cell Biol 2020; 11:781-790. [PMID: 31220300 PMCID: PMC6821354 DOI: 10.1093/jmcb/mjz056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/18/2019] [Accepted: 06/06/2019] [Indexed: 11/13/2022] Open
Abstract
Increasing brown and beige fat thermogenesis have an anti-obesity effect and thus great metabolic benefits. However, the molecular mechanisms regulating brown and beige fat thermogenesis remain to be further elucidated. We recently found that fat-specific knockout of Rheb promoted beige fat thermogenesis. In the current study, we show that Rheb has distinct effects on thermogenic gene expression in brown and beige fat. Fat-specific knockout of Rheb decreased protein kinase A (PKA) activity and thermogenic gene expression in brown adipose tissue of high-fat diet-fed mice. On the other hand, overexpression of Rheb activated PKA and increased uncoupling protein 1 expression in brown adipocytes. Mechanistically, Rheb overexpression in brown adipocytes increased Notch expression, leading to disassociation of the regulatory subunit from the catalytic subunit of PKA and subsequent PKA activation. Our study demonstrates that Rheb, by selectively modulating thermogenic gene expression in brown and beige adipose tissues, plays an important role in regulating energy homeostasis.
Collapse
Affiliation(s)
- Wen Meng
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiuci Liang
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ting Xiao
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jing Wang
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jie Wen
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hairong Luo
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jianhui Teng
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yanquan Fei
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qinghai Zhang
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bilian Liu
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Fang Hu
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Juli Bai
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Meilian Liu
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Feng Liu
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, China.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
12
|
|
13
|
Efremova A, Senzacqua M, Venema W, Isakov E, Di Vincenzo A, Zingaretti MC, Protasoni M, Thomski M, Giordano A, Cinti S. A large proportion of mediastinal and perirenal visceral fat of Siberian adult people is formed by UCP1 immunoreactive multilocular and paucilocular adipocytes. J Physiol Biochem 2019; 76:185-192. [PMID: 31853729 DOI: 10.1007/s13105-019-00721-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
Many deleterious consequences for health of excessive fat accumulation are due to visceral fat. Browning of visceral fat is mainly cold dependent and has been proposed as a possible tool for future therapies of obesity and related disorders. In this paper, we studied the composition of mediastinal and perirenal visceral fat, collected at necropsy, of human adults that lived in Siberia, one of the coldest regions of the earth. Data showed that a consistent part of the mediastinal and perirenal fat (up to about 40%) had the morphology typical of brown adipocytes and that a relevant percentage of them (up to about 30%) also expressed the functional marker uncoupling protein 1 (UCP1). Patients living mainly outdoor had higher percentage of brown-like adipocytes with more intensely UCP1 immunoreactive cells. The presence of numerous UCP1 immunoreactive paucilocular cells, a transitional stage of transdifferentiating adipocytes, supports the idea that visceral fat can be converted to brown adipose tissue in adult humans in physiological conditions. Tyrosine hydroxylase immunoreactive noradrenergic parenchymal nerve fibers were positively correlated to the number of multilocular adipocytes in mediastinal fat, and a similar trend was also observed in the perirenal fat.
Collapse
Affiliation(s)
- Agrafena Efremova
- Yakut Scientific Center of Complex Medical Problems, Yakutsk, Russia
| | - Martina Senzacqua
- Department Experimental and Clinical Medicine, Center of Obesity, School of Medicine, University of Ancona (Politecnica delle Marche), Via Tronto 10a, 60020, Ancona, Italy
| | - Wiebe Venema
- Department Experimental and Clinical Medicine, Center of Obesity, School of Medicine, University of Ancona (Politecnica delle Marche), Via Tronto 10a, 60020, Ancona, Italy
| | - Evgeny Isakov
- Yakut Scientific Center of Complex Medical Problems, Yakutsk, Russia
| | - Angelica Di Vincenzo
- Department Experimental and Clinical Medicine, Center of Obesity, School of Medicine, University of Ancona (Politecnica delle Marche), Via Tronto 10a, 60020, Ancona, Italy
| | - Maria Cristina Zingaretti
- Department Experimental and Clinical Medicine, Center of Obesity, School of Medicine, University of Ancona (Politecnica delle Marche), Via Tronto 10a, 60020, Ancona, Italy
| | - Marina Protasoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Mikhail Thomski
- Yakut Scientific Center of Complex Medical Problems, Yakutsk, Russia
| | - Antonio Giordano
- Department Experimental and Clinical Medicine, Center of Obesity, School of Medicine, University of Ancona (Politecnica delle Marche), Via Tronto 10a, 60020, Ancona, Italy
| | - Saverio Cinti
- Department Experimental and Clinical Medicine, Center of Obesity, School of Medicine, University of Ancona (Politecnica delle Marche), Via Tronto 10a, 60020, Ancona, Italy.
| |
Collapse
|
14
|
Yang Q, Lopez MJ. The Equine Hoof: Laminitis, Progenitor (Stem) Cells, and Therapy Development. Toxicol Pathol 2019; 49:1294-1307. [PMID: 31741428 DOI: 10.1177/0192623319880469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The equine hoof capsule, composed of modified epidermis and dermis, is vital for protecting the third phalanx from forces of locomotion. There are descriptions of laminitis, defined as inflammation of sensitive hoof tissues but recognized as pathologic changes with or without inflammatory mediators, in the earliest records of domesticated horses. Laminitis can range from mild to serious, and signs can be acute, chronic, or transition from acute, severe inflammation to permanently abnormal tissue. Damage within the intricate dermal and epidermal connections of the primary and secondary lamellae is often associated with lifelong changes in hoof growth, repair, and conformation. Decades of research contribute to contemporary standards of care that include systemic and local therapies as well as mechanical hoof support. Despite this, consistent mechanisms to restore healthy tissue formation following a laminitic insult are lacking. Endogenous and exogenous progenitor cell contributions to healthy tissue formation is established for most tissues. There is comparably little information about equine hoof progenitor cells. Equine hoof anatomy, laminitis, and progenitor cells are covered in this review. The potential of progenitor cells to advance in vitro equine hoof tissue models and translate to clinical therapies may significantly improve prevention and treatment of a devastating condition that has afflicted equine companions throughout history.
Collapse
Affiliation(s)
- Qingqiu Yang
- Department of Veterinary Clinical Sciences, Laboratory for Equine and Comparative Orthopedic Research, Baton Rouge, LA, USA
| | - Mandi J Lopez
- Department of Veterinary Clinical Sciences, Laboratory for Equine and Comparative Orthopedic Research, Baton Rouge, LA, USA
| |
Collapse
|
15
|
Rigotti G, Chirumbolo S. Biological Morphogenetic Surgery: A Minimally Invasive Procedure to Address Different Biological Mechanisms. Aesthet Surg J 2019; 39:745-755. [PMID: 30137183 DOI: 10.1093/asj/sjy198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present a methodology called biological morphogenetic surgery (BMS) that can recover (enlarge or reduce) the shape/volume of anatomic structures/tissues affected by congenital or acquired malformations based on a minimally invasive procedure. This emerges as a new concept in which the main task of surgery is the biological modulation of different remodeling and repair mechanisms. When applied, for example, to a tuberous breast deformity, the "enlarging BMS" expands the retracted tissue surrounding the gland through a cutting tip of a needle being inserted through small incisions percutaneously, accounting for the biological activity of the grafted fat. The obtained spaces might be spontaneously occupied and later filled with autologous grafted fat, which promotes tissue expansion by eliciting adipogenesis and preventing fibrosis. The "reducing BMS" creates an interruption of the contact between the derma and the hypoderma of the abnormally large areola and then promotes adipocytes to induce a fibrotic reaction, leading to areola reduction. Current evidence suggests that BMS might induce a bivalent mesenchymalization of the adipocyte, which promotes either new adipogenesis and angiogenesis of local fat (expanding BMS) or the granulation tissue/fibrotic response (reducing BMS), thus leading to the physiological recovery of the affected structures/tissues to normality. Level of Evidence: 4.
Collapse
Affiliation(s)
- Gino Rigotti
- Unit Head of Reconstructive Breast and Plastic Surgery, Clinica San Francesco, Verona, Italy
| | - Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences-University of Verona, Verona, Italy
| |
Collapse
|
16
|
Chen Y, Zhao M, Zheng T, Adlat S, Jin H, Wang C, Li D, Zaw Myint MZ, Yao Y, Xu L, San M, Wen H, Zhang Y, Lu X, Yang L, Zhang L, Feng X, Zheng Y. Repression of adipose vascular endothelial growth factor reduces obesity through adipose browning. Am J Physiol Endocrinol Metab 2019; 316:E145-E155. [PMID: 30398903 DOI: 10.1152/ajpendo.00196.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obesity is the result of excessive energy accumulation and is associated with many diseases. We previously reported that universal repression of vascular endothelial growth factor (VEGF) leads to brown-like adipocyte development in white adipose tissues, and that these mice are resistant to obesity (Lu X et al. Endocrinology 153: 3123-3132, 2012). Using an adipose-specific VEGF repression mouse model (aP2-rtTR-krabtg/+/VEGFtetO/tetO), we show that adipose-specific VEGF repression can repeat the previous phenotypes, including adipose browning, increased energy consumption, and reduction in body weight. Expression of brown adipose-associated genes is increased, and white adipose-associated genes are downregulated under VEGF repression. Our study demonstrates that adipose-specific VEGF repression can lead to antiobesity activity through adipose browning and has potential clinical value.
Collapse
Affiliation(s)
- Yang Chen
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Mingyue Zhao
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Tingting Zheng
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Salah Adlat
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Honghong Jin
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Chenhao Wang
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Dan Li
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - May Zun Zaw Myint
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Yapeng Yao
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Liu Xu
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Mingjun San
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Huaizhen Wen
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Yuntao Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Xiaodan Lu
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Ling Yang
- Shanxi Medical University , Taiyuan , China
| | - Luqing Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University , Changchun , China
| | - Xuechao Feng
- Transgenic Research Center, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University , Changchun , China
| | - Yaowu Zheng
- Transgenic Research Center, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University , Changchun , China
| |
Collapse
|
17
|
Sepa-Kishi DM, Jani S, Da Eira D, Ceddia RB. Cold acclimation enhances UCP1 content, lipolysis, and triacylglycerol resynthesis, but not mitochondrial uncoupling and fat oxidation, in rat white adipocytes. Am J Physiol Cell Physiol 2019; 316:C365-C376. [PMID: 30624981 DOI: 10.1152/ajpcell.00122.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The objective of this study was to investigate whether cold-induced browning of the subcutaneous (Sc) inguinal (Ing) white adipose tissue (WAT) increases the capacity of this tissue to oxidize fatty acids through uncoupling protein 1 (UCP1)-mediated thermogenesis. To accomplish that, rats were acclimated to cold (4°C for 7 days). Subsequently, interscapular and aortic brown adipose tissues (iBAT and aBAT, respectively), epididymal (Epid), and Sc Ing WAT were used for adipocyte isolation. In BAT adipocytes, cold acclimation increased UCP1 content and palmitate oxidation either in the absence or presence of oligomycin, whereas in Sc Ing adipocytes glucose and palmitate oxidation were not affected, although multilocular adipocytes were formed and UCP1 content increased upon cold acclimation in the WAT. Furthermore, isoproterenol-stimulated cold Sc Ing adipocytes exhibited significantly lower rates of palmitate oxidation than control cells when exposed to oligomycin. These findings provide evidence that, despite increasing UCP1 levels, cold acclimation essentially reduced mitochondrial uncoupling-mediated fat oxidation in Sc Ing adipocytes. Conversely, glycerol kinase and phosphoenolpyruvate carboxykinase levels, isoproterenol-induced lipolysis, as well as glycerol and palmitate incorporation into lipids significantly increased in these cells. Therefore, instead of UCP1-mediated mitochondrial uncoupling, cold acclimation increased the capacity of Sc Ing adipocytes to export fatty acids and enhanced key components of the triacylglycerol resynthesis pathway in the Sc Ing WAT.
Collapse
Affiliation(s)
- Diane M Sepa-Kishi
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University , Toronto, Ontario , Canada
| | - Shailee Jani
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University , Toronto, Ontario , Canada
| | - Daniel Da Eira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University , Toronto, Ontario , Canada
| | - Rolando B Ceddia
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University , Toronto, Ontario , Canada
| |
Collapse
|
18
|
Gao W, Gao Z, Pu S, Dong Y, Xu X, Yang X, Zhang Y, Fang K, Li J, Yu W, Sun N, Hu L, Xu Q, Cheng Z, Gao Y. The Underlying Regulated Mechanisms of Adipose Differentiation and Apoptosis of Breast Cells after Weaning. Curr Protein Pept Sci 2019; 20:696-704. [PMID: 30678617 DOI: 10.2174/1389203720666190124161652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/14/2019] [Indexed: 11/22/2022]
Abstract
Numerous experimental studies have demonstrated that a series of remodeling processes occurred in the adipose tissue during the weaning, such as differentiation. Fibroblasts in the breast at weaning stage could re-differentiate into mature adipocytes. Many transcriptional factors were involved in these processes, especially the PPARγ, C/EBP, and SREBP1. There is cell apoptosis participating in the breast tissue degeneration and secretory epithelial cells loss during weaning. In addition, hormones, especially the estrogen and pituitary hormone, play a vital role in the whole reproductive processes. In this review, we mainly focus on the underlying regulated mechanisms of differentiation of adipose tissue and apoptosis of breast cell to provide a specific insight into the physiological changes during weaning.
Collapse
Affiliation(s)
- Weihang Gao
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhao Gao
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Administration of Sports of Guangdong Province, Guangzhou, Guangdong, 510105, China
| | - Shuqi Pu
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yanbin Dong
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaowen Xu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510405, China
| | - Xingping Yang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yuan Zhang
- Administration of Sports of Guangdong Province, Guangzhou, Guangdong, 510105, China
| | - Kui Fang
- Administration of Sports of Guangdong Province, Guangzhou, Guangdong, 510105, China
| | - Jie Li
- Administration of Sports of Guangdong Province, Guangzhou, Guangdong, 510105, China
| | - Weijian Yu
- Administration of Sports of Guangdong Province, Guangzhou, Guangdong, 510105, China
| | - Nannan Sun
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510405, China
| | - Ling Hu
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qin Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhibin Cheng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunan, 650201, China
| | - Yong Gao
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
19
|
van Marken Lichtenbelt WD, Pallubinsky H, Te Kulve M. Modulation of thermogenesis and metabolic health: a built environment perspective. Obes Rev 2018; 19 Suppl 1:94-101. [PMID: 30511507 DOI: 10.1111/obr.12789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 01/21/2023]
Abstract
Lifestyle interventions, obviating the increasing prevalence of the metabolic syndrome, generally focus on nutrition and physical activity. Environmental factors are hardly covered. Because we spend on average more that 90% of our time indoors, it is, however, relevant to address these factors. In the built environment, the attention has been limited to the (assessment and optimization of) building performance and occupant thermal comfort for a long time. Only recently well-being and health of building occupants are also considered to some extent, but actual metabolic health aspects are not generally covered. In this review, we draw attention to the potential of the commonly neglected lifestyle factor 'indoor environment'. More specifically, we review current knowledge and the developments of new insights into the effects of ambient temperature, light and the interaction of the two on metabolic health. The literature shows that the effects of indoor environmental factors are important additional factors for a healthy lifestyle and have an impact on metabolic health.
Collapse
Affiliation(s)
- W D van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Pallubinsky
- Department of Nutrition and Movement Sciences, NUTRIM Maastricht University Medical Center, Maastricht, The Netherlands
| | - M Te Kulve
- Department of Nutrition and Movement Sciences, NUTRIM Maastricht University Medical Center, Maastricht, The Netherlands.,BBA Binnenmilieu, The Hague, The Netherlands
| |
Collapse
|
20
|
Paulo E, Wu D, Hecker P, Zhang Y, Wang B. Adipocyte HDAC4 activation leads to beige adipocyte expansion and reduced adiposity. J Endocrinol 2018; 239:153-165. [PMID: 30121575 PMCID: PMC6379159 DOI: 10.1530/joe-18-0173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022]
Abstract
Numerous studies have suggested that beige adipocyte abundance is correlated with improved metabolic performance, but direct evidence showing that beige adipocyte expansion protects animals from the development of obesity is missing. Previously, we have described that the liver kinase b1 (LKB1) regulates beige adipocyte renaissance in subcutaneous inguinal white adipose tissue (iWAT) through a class IIa histone deacetylase 4 (HDAC4)-dependent mechanism. This study investigates the physiological impact of persistent beige adipocyte renaissance in energy homeostasis in mice. Here we present that the transgenic mice H4-TG, overexpressing constitutively active HDAC4 in adipocytes, showed beige adipocyte expansion in iWAT at room temperature. H4-TG mice exhibited increased energy expenditure due to beige adipocyte expansion. They also exhibited reduced adiposity under both normal chow and high-fat diet (HFD) feeding conditions. Specific ablation of beige adipocytes reversed the protection against HFD-induced obesity in H4-TG mice. Taken together, our results directly demonstrate that beige adipocyte expansion regulates adiposity in mice and targeting beige adipocyte renaissance may present a novel strategy to tackle obesity in humans.
Collapse
Affiliation(s)
| | | | | | | | - Biao Wang
- Corresponding Author, Biao Wang Ph.D., 555 Mission Bay Blvd South, Room 252Y, San Francisco, CA 94158, Phone: 415-502-2023,
| |
Collapse
|
21
|
Sepa-Kishi DM, Ceddia RB. Circulating fibroblast growth factor 21 is reduced, whereas its production is increased in a fat depot-specific manner in cold-acclimated rats. Adipocyte 2018; 7:238-247. [PMID: 30059270 PMCID: PMC6768246 DOI: 10.1080/21623945.2018.1504591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/11/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
This study investigated the effects of cold acclimation on circulating fibroblast growth factor 21 (FGF21) levels, as well as its production and signaling in classical brown and white adipose tissues. Male Wistar rats were cold (4°C) acclimatized for 7 days. Subsequently, liver, interscapular and aortic BAT (iBAT and aBAT), and the Sc Ing and epididymal (Epid) white adipose tissues were extracted. Cold acclimation significantly reduced circulating FGF21 and its liver expression. Conversely, FGF21 content increased in iBAT, aBAT and Sc Ing fat depots, along with the expressions of the Fgf21 receptor and the receptor co-factor β-klotho. Cold acclimation increased FGF21 secretion from Sc Ing and Epid adipocytes, although only iBAT and Sc Ing fat depots enhanced ERK1/2 phosphorylation. These findings provide evidence that FGF21 acts in an autocrine/paracrine manner in iBAT and Sc Ing fat depots under cold-acclimating conditions and may contribute to driving depot-specific thermogenic adaptive responses.
Collapse
Affiliation(s)
- Diane M. Sepa-Kishi
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Rolando B. Ceddia
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
23
|
Chechi K, van Marken Lichtenbelt W, Richard D. Brown and beige adipose tissues: phenotype and metabolic potential in mice and men. J Appl Physiol (1985) 2018; 124:482-496. [PMID: 28302705 PMCID: PMC5867364 DOI: 10.1152/japplphysiol.00021.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 01/06/2023] Open
Abstract
With the recent rediscovery of brown fat in adult humans, our outlook on adipose tissue biology has undergone a paradigm shift. While we attempt to identify, recruit, and activate classic brown fat stores in humans, identification of beige fat has also raised the possibility of browning our white fat stores. Whether such transformation of human white fat depots can be achieved to enhance the whole body oxidative potential remains to be seen. Evidence to date, however, largely points toward a major oxidative role only for classic brown fat depots, at least in rodents. White fat stores seem to provide the main fuel for sustaining thermogenesis via lipolysis. Interestingly, molecular markers consistent with both classic brown and beige fat identity can be observed in human supraclavicular depot, thereby complicating the discussion on beige fat in humans. Here, we review the recent advances made in our understanding of brown and beige fat in humans and mice. We further provide an overview of their plausible physiological relevance to whole body energy metabolism.
Collapse
Affiliation(s)
- Kanta Chechi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Ville de Québec, Quebec , Canada
| | - Wouter van Marken Lichtenbelt
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Ville de Québec, Quebec , Canada
| |
Collapse
|
24
|
Cold-sensing TRPM8 channel participates in circadian control of the brown adipose tissue. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2415-2427. [PMID: 28943398 DOI: 10.1016/j.bbamcr.2017.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/11/2023]
Abstract
Transient receptor potential (TRP) channels are known to regulate energy metabolism, and TRPM8 has become an interesting player in this context. Here we demonstrate the role of the cold sensor TRPM8 in the regulation of clock gene and clock controlled genes in brown adipose tissue (BAT). We investigated TrpM8 temporal profile in the eyes, suprachiasmatic nucleus and BAT; only BAT showed temporal variation of TrpM8 transcripts. Eyes from mice lacking TRPM8 lost the temporal profile of Per1 in LD cycle. This alteration in the ocular circadian physiology may explain the delay in the onset of locomotor activity in response to light pulse, as compared to wild type animals (WT). Brown adipocytes from TrpM8 KO mice exhibited a larger multilocularity in comparison to WT or TrpV1 KO mice. In addition, Ucp1 and UCP1 expression was significantly reduced in TrpM8 KO mice in comparison to WT mice. Regarding circadian components, the expression of Per1, Per2, Bmal1, Pparα, and Pparβ oscillated in WT mice kept in LD, whereas in the absence of TRPM8 the expression of clock genes was reduced in amplitude and lack temporal oscillation. Thus, our results reveal new roles for TRPM8 channel: it participates in the regulation of clock and clock-controlled genes in the eyes and BAT, and in BAT thermogenesis. Since disruption of the clock machinery has been associated with many metabolic disorders, the pharmacological modulation of TRPM8 channel may become a promising therapeutic target to counterbalance weight gain, through increased thermogenesis, energy expenditure, and clock gene activation.
Collapse
|
25
|
Camastra S, Vitali A, Anselmino M, Gastaldelli A, Bellini R, Berta R, Severi I, Baldi S, Astiarraga B, Barbatelli G, Cinti S, Ferrannini E. Muscle and adipose tissue morphology, insulin sensitivity and beta-cell function in diabetic and nondiabetic obese patients: effects of bariatric surgery. Sci Rep 2017; 7:9007. [PMID: 28827671 PMCID: PMC5566429 DOI: 10.1038/s41598-017-08444-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022] Open
Abstract
Obesity is characterized by insulin-resistance (IR), enhanced lipolysis, and ectopic, inflamed fat. We related the histology of subcutaneous (SAT), visceral fat (VAT), and skeletal muscle to the metabolic abnormalities, and tested their mutual changes after bariatric surgery in type 2 diabetic (T2D) and weight-matched non-diabetic (ND) patients. We measured IR (insulin clamp), lipolysis (2H5-glycerol infusion), ß-cell glucose-sensitivity (ß-GS, mathematical modeling), and VAT, SAT, and rectus abdominis histology (light and electron microscopy). Presurgery, SAT and VAT showed signs of fibrosis/necrosis, small mitochondria, free interstitial lipids, thickened capillary basement membrane. Compared to ND, T2D had impaired ß-GS, intracapillary neutrophils and higher intramyocellular fat, adipocyte area in VAT, crown-like structures (CLS) in VAT and SAT with rare structures (cyst-like) ~10-fold larger than CLS. Fat expansion was associated with enhanced lipolysis and IR. VAT histology and intramyocellular fat were related to impaired ß-GS. Postsurgery, IR and lipolysis improved in all, ß-GS improved in T2D. Muscle fat infiltration was reduced, adipocytes were smaller and richer in mitochondria, and CLS density in SAT was reduced. In conclusion, IR improves proportionally to weight loss but remains subnormal, whilst SAT and muscle changes disappear. In T2D postsurgery, some VAT pathology persists and beta-cell dysfunction improves but is not normalized.
Collapse
Affiliation(s)
- Stefania Camastra
- Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Alessandra Vitali
- Department of Experimental and Clinical Medicine-Center of Obesity, University of Ancona, Ancona, Italy
| | | | | | | | - Rossana Berta
- Bariatric Surgery Unit, Santa Chiara Hospital, Pisa, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine-Center of Obesity, University of Ancona, Ancona, Italy
| | - Simona Baldi
- Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Brenno Astiarraga
- Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Barbatelli
- Department of Experimental and Clinical Medicine-Center of Obesity, University of Ancona, Ancona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine-Center of Obesity, University of Ancona, Ancona, Italy
| | | |
Collapse
|
26
|
Meng W, Liang X, Chen H, Luo H, Bai J, Li G, Zhang Q, Xiao T, He S, Zhang Y, Xu Z, Xiao B, Liu M, Hu F, Liu F. Rheb Inhibits Beiging of White Adipose Tissue via PDE4D5-Dependent Downregulation of the cAMP-PKA Signaling Pathway. Diabetes 2017; 66:1198-1213. [PMID: 28242620 PMCID: PMC5860267 DOI: 10.2337/db16-0886] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022]
Abstract
Beiging of white adipose tissue has potential antiobesity and antidiabetes effects, yet the underlying signaling mechanisms remain to be fully elucidated. Here we show that adipose-specific knockout of Rheb, an upstream activator of mechanistic target of rapamycin complex 1 (mTORC1), protects mice from high-fat diet-induced obesity and insulin resistance. On the one hand, Rheb deficiency in adipose tissue reduced mTORC1 signaling, increased lipolysis, and promoted beiging and energy expenditure. On the other hand, overexpression of Rheb in primary adipocytes significantly inhibited CREB phosphorylation and uncoupling protein 1 (UCP1) expression. Mechanistically, fat-specific knockout of Rheb increased cAMP levels, cAMP-dependent protein kinase (PKA) activity, and UCP1 expression in subcutaneous white adipose tissue. Interestingly, treating primary adipocytes with rapamycin only partially alleviated the suppressing effect of Rheb on UCP1 expression, suggesting the presence of a novel mechanism underlying the inhibitory effect of Rheb on thermogenic gene expression. Consistent with this notion, overexpression of Rheb stabilizes the expression of cAMP-specific phosphodiesterase 4D5 (PDE4D5) in adipocytes, whereas knockout of Rheb greatly reduced cellular levels of PDE4D5 concurrently with increased cAMP levels, PKA activation, and UCP1 expression. Taken together, our findings reveal Rheb as an important negative regulator of beige fat development and thermogenesis. In addition, Rheb is able to suppress the beiging effect through an mTORC1-independent mechanism.
Collapse
Affiliation(s)
- Wen Meng
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiuci Liang
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongzhi Chen
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hairong Luo
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juli Bai
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinghai Zhang
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ting Xiao
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sijia He
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Yacheng Zhang
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhipeng Xu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiao
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meilian Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Fang Hu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
27
|
Cinti S. UCP1 protein: The molecular hub of adipose organ plasticity. Biochimie 2017; 134:71-76. [PMID: 27622583 DOI: 10.1016/j.biochi.2016.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/08/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Saverio Cinti
- Dpt. Experimental and Clinical Medicine, University of Ancona (Politecnica delle Marche), Via Tronto 10a, 60020, Ancona, Italy.
| |
Collapse
|
28
|
Abstract
The ability to maintain and expand the pool of adipocytes in adults is integral to the regulation of energy balance, tissue/stem cell homeostasis, and disease pathogenesis. For decades, our knowledge of adipocyte precursors has relied on cellular models. The identity of native adipocyte precursors has remained unclear. Recent studies have identified distinct adipocyte precursor populations that are physiologically regulated and contribute to the development, maintenance, and expansion of adipocyte pools in mice. With new tools available, the properties of adipocyte precursors can now be defined, and the regulation and function of adipose plasticity in development and physiology can be explored.
Collapse
Affiliation(s)
- Chelsea Hepler
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
29
|
Zhang G, Sun Q, Liu C. Influencing Factors of Thermogenic Adipose Tissue Activity. Front Physiol 2016; 7:29. [PMID: 26903879 PMCID: PMC4742553 DOI: 10.3389/fphys.2016.00029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/18/2016] [Indexed: 12/18/2022] Open
Abstract
Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called "brite" or "beige" adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Guoqing Zhang
- Department of Occupational and Environmental Health, Dalian Medical UniversityDalian, China; Basic Medical College, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Qinghua Sun
- Basic Medical College, Zhejiang Chinese Medical UniversityHangzhou, China; Division of Environmental Health Sciences, College of Public Health, Ohio State UniversityColumbus, OH, USA
| | - Cuiqing Liu
- Basic Medical College, Zhejiang Chinese Medical University Hangzhou, China
| |
Collapse
|
30
|
Ultra-structural morphology of long-term cultivated white adipose tissue-derived stem cells. Cell Tissue Bank 2015; 16:639-47. [PMID: 26093679 DOI: 10.1007/s10561-015-9513-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022]
Abstract
White adipose tissue was long perceived as a passive lipid storage depot but it is now considered as an active and important endocrine organ. It also harbours not only adipocytes and vascular cells but also a wide array of immunologically active cells, including macrophages and lymphocytes, which may induce obesity-related inflammation. Recently, adipose tissue has been reported as a source of adult mesenchymal stem cells with wide use in regenerative medicine and tissue engineering. Their relatively non-complicated procurement and collection (often performed as liposuction during aesthetic surgery) and grand plasticity support this idea even more. We focused our research on exploring the issues of isolation and long-term cultivation of mesenchymal stem cells obtained from adipose tissue. Ultra-structural morphology of the cells cultivated in vitro has been studied and analysed in several cultivation time periods and following serial passages--up to 30 passages. In the first passages they had ultra-structural characteristics of cells with high proteosynthetic activity. Within the cytoplasm, big number of small lipid droplets and between them, sparsely placed, small and inconspicuous, electron-dense, lamellar bodies, which resembled myelin figures were observed. The cells from the later passages contained high number of lamellar electron-dense structures, which filled out almost the entire cytoplasm. In between, mitochondria were often found. These bodies were sometimes small and resembled myelin figures, but several of them reached huge dimensions (more than 1 µm) and their lamellar structure was not distinguishable. We did not have an answer to the question about their function, but they probably represented the evidence of active metabolism of lipids present in the cytoplasm of these cells or represented residual bodies, which arise after the breakdown of cellular organelles, notably mitochondria during long-term cultivation.
Collapse
|
31
|
Fenzl A, Kiefer FW. Brown adipose tissue and thermogenesis. Horm Mol Biol Clin Investig 2015; 19:25-37. [PMID: 25390014 DOI: 10.1515/hmbci-2014-0022] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 12/20/2022]
Abstract
The growing understanding of adipose tissue as an important endocrine organ with multiple metabolic functions has directed the attention to the (patho)physiology of distinct fat depots. Brown adipose tissue (BAT), in contrast to bona fide white fat, can dissipate significant amounts of chemical energy through uncoupled respiration and heat production (thermogenesis). This process is mediated by the major thermogenic factor uncoupling protein-1 and can be activated by certain stimuli, such as cold exposure, adrenergic compounds or genetic alterations. White adipose tissue (WAT) depots, however, also possess the capacity to acquire brown fat characteristics in response to thermogenic stimuli. The induction of a BAT-like cellular and molecular program in WAT has recently been termed "browning" or "beiging". Promotion of BAT activity or the browning of WAT is associated with in vivo cold tolerance, increased energy expenditure, and protection against obesity and type 2 diabetes. These preclinical observations have gained additional significance with the recent discovery that active BAT is present in adult humans and can be detected by 18fluor-deoxy-glucose positron emission tomography coupled with computed tomography. As in rodents, human BAT can be activated by cold exposure and is associated with increased energy turnover and lower body fat mass. Despite the tremendous progress in brown fat research in recent years, pharmacological concepts to harness BAT function therapeutically are currently still lacking.
Collapse
|
32
|
Rockstroh D, Landgraf K, Wagner IV, Gesing J, Tauscher R, Lakowa N, Kiess W, Bühligen U, Wojan M, Till H, Blüher M, Körner A. Direct evidence of brown adipocytes in different fat depots in children. PLoS One 2015; 10:e0117841. [PMID: 25706927 PMCID: PMC4338084 DOI: 10.1371/journal.pone.0117841] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/02/2015] [Indexed: 12/31/2022] Open
Abstract
Recent studies suggested the persistence of brown adipocytes in adult humans, as opposed to being exclusively present in infancy. In this study, we investigated the presence of brown-like adipocytes in adipose tissue (AT) samples of children and adolescents aged 0 to 18 years and evaluated the association with age, location, and obesity. For this, we analysed AT samples from 131 children and 23 adults by histological, immunohistochemical and expression analyses. We detected brown-like and UCP1 positive adipocytes in 10.3% of 87 lean children (aged 0.3 to 10.7 years) and in one overweight infant, whereas we did not find brown adipocytes in obese children or adults. In our samples, the brown-like adipocytes were interspersed within white AT of perirenal, visceral and also subcutaneous depots. Samples with brown-like adipocytes showed an increased expression of UCP1 (>200fold), PRDM16 (2.8fold), PGC1α and CIDEA while other brown/beige selective markers, such as PAT2, P2RX5, ZIC1, LHX8, TMEM26, HOXC9 and TBX1 were not significantly different between UCP1 positive and negative samples. We identified a positive correlation between UCP1 and PRDM16 within UCP1 positive samples, but not with any other brown/beige marker. In addition, we observed significantly increased PRDM16 and PAT2 expression in subcutaneous and visceral AT samples with high UCP1 expression in adults. Our data indicate that brown-like adipocytes are present well beyond infancy in subcutaneous depots of non-obese children. The presence was not restricted to typical perirenal locations, but they were also interspersed within WAT of visceral and subcutaneous depots.
Collapse
MESH Headings
- Adipocytes/cytology
- Adipocytes/metabolism
- Adipocytes, Brown/cytology
- Adipocytes, Brown/metabolism
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/cytology
- Adipose Tissue, White/metabolism
- Adolescent
- Adult
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Body Mass Index
- Child
- Child, Preschool
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Humans
- Immunohistochemistry
- Infant
- Infant, Newborn
- Intra-Abdominal Fat/cytology
- Intra-Abdominal Fat/metabolism
- Ion Channels/genetics
- Ion Channels/metabolism
- Male
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Obesity
- Overweight
- Reverse Transcriptase Polymerase Chain Reaction
- Subcutaneous Fat/cytology
- Subcutaneous Fat/metabolism
- Symporters/genetics
- Symporters/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Uncoupling Protein 1
Collapse
Affiliation(s)
- Denise Rockstroh
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women’s and Child Health, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB), University of Leipzig, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women’s and Child Health, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB), University of Leipzig, Leipzig, Germany
| | - Isabel Viola Wagner
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women’s and Child Health, University of Leipzig, Leipzig, Germany
| | - Julia Gesing
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women’s and Child Health, University of Leipzig, Leipzig, Germany
| | - Roy Tauscher
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women’s and Child Health, University of Leipzig, Leipzig, Germany
| | - Nicole Lakowa
- Integrated Research and Treatment Center (IFB), University of Leipzig, Leipzig, Germany
- Department of Medicine, Division of Endocrinology, University of Leipzig, Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women’s and Child Health, University of Leipzig, Leipzig, Germany
| | - Ulf Bühligen
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Magdalena Wojan
- Department of Orthopaedic Surgery, University of Leipzig, Leipzig, Germany
| | - Holger Till
- Integrated Research and Treatment Center (IFB), University of Leipzig, Leipzig, Germany
- Department of Pediatric and Adolescent Surgery, Medical University Graz, Graz, Austria
| | - Matthias Blüher
- Integrated Research and Treatment Center (IFB), University of Leipzig, Leipzig, Germany
- Department of Medicine, Division of Endocrinology, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women’s and Child Health, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB), University of Leipzig, Leipzig, Germany
- * E-mail: (AK)
| |
Collapse
|
33
|
Zhang Z, Zhang H, Li B, Meng X, Wang J, Zhang Y, Yao S, Ma Q, Jin L, Yang J, Wang W, Ning G. Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun 2014; 5:5493. [DOI: 10.1038/ncomms6493] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/06/2014] [Indexed: 01/08/2023] Open
|
34
|
Abstract
Hypoxia develops in white adipose tissue in obese mice, resulting in changes in adipocyte function that may underpin the dysregulation that leads to obesity-associated disorders. Whether hypoxia occurs in adipose tissue in human obesity is unclear, with recent studies contradicting earlier reports that this was the case. Adipocytes, both murine and human, exhibit extensive functional changes in culture in response to hypoxia, which alters the expression of up to 1,300 genes. These include genes encoding key adipokines such as leptin, interleukin (IL)-6, vascular endothelial growth factor (VEGF), and matrix metalloproteinase-2 (MMP-2), which are upregulated, and adiponectin, which is downregulated. Hypoxia also inhibits the expression of genes linked to oxidative metabolism while stimulating the expression of genes associated with glycolysis. Glucose uptake and lactate release by adipocytes are both stimulated by hypoxia, and insulin sensitivity falls. Preadipocytes and macrophages in adipose tissue also respond to hypoxia. The hypoxia-signaling pathway may provide a new target for the treatment of obesity-associated disorders.
Collapse
Affiliation(s)
- Paul Trayhurn
- Obesity Biology Research Unit, Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool L69 3GA United Kingdom, and Clore Laboratory, University of Buckingham, Buckingham MK18 1EG, United Kingdom;
| |
Collapse
|
35
|
Giordano A, Smorlesi A, Frontini A, Barbatelli G, Cinti S. White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol 2014; 170:R159-71. [PMID: 24468979 DOI: 10.1530/eje-13-0945] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In mammals, adipocytes are lipid-laden cells making up the parenchyma of the multi-depot adipose organ. White adipocytes store lipids for release as free fatty acids during fasting periods; brown adipocytes burn glucose and lipids to maintain thermal homeostasis. A third type of adipocyte, the pink adipocyte, has recently been characterised in mouse subcutaneous fat depots during pregnancy and lactation. Pink adipocytes are mammary gland alveolar epithelial cells whose role is to produce and secrete milk. Emerging evidence suggests that they derive from the transdifferentiation of subcutaneous white adipocytes. The functional response of the adipose organ to a range of metabolic and environmental challenges highlights its extraordinary plasticity. Cold exposure induces an increase in the 'brown' component of the organ to meet the increased thermal demand; in states of positive energy balance, the 'white' component expands to store excess nutrients; finally, the 'pink' component develops in subcutaneous depots during pregnancy to ensure litter feeding. At the cell level, plasticity is provided not only by stem cell proliferation and differentiation but also, distinctively, by direct transdifferentiation of fully differentiated adipocytes by the stimuli that induce genetic expression reprogramming and through it a change in phenotype and, consequently function. A greater understanding of adipocyte transdifferentiation mechanisms would have the potential to shed light on their biology as well as inspire novel therapeutic strategies against metabolic syndrome (browning) and breast cancer (pinking).
Collapse
MESH Headings
- Adipocytes, Brown/cytology
- Adipocytes, Brown/metabolism
- Adipocytes, Brown/pathology
- Adipocytes, White/cytology
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adipogenesis
- Animals
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Transdifferentiation
- Female
- Humans
- Lactation
- Lipid Metabolism
- Male
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/cytology
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Metabolic Syndrome/metabolism
- Metabolic Syndrome/pathology
- Obesity/metabolism
- Obesity/pathology
- Organ Specificity
- Pigmentation
- Pregnancy
- Sex Characteristics
- Subcutaneous Fat, Abdominal/cytology
- Subcutaneous Fat, Abdominal/metabolism
- Subcutaneous Fat, Abdominal/pathology
Collapse
Affiliation(s)
- Antonio Giordano
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy and
| | | | | | | | | |
Collapse
|
36
|
Haase J, Weyer U, Immig K, Klöting N, Blüher M, Eilers J, Bechmann I, Gericke M. Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia 2014; 57:562-71. [PMID: 24343232 DOI: 10.1007/s00125-013-3139-y] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Obesity is frequently associated with low-grade inflammation of adipose tissue (AT), and the increase in adipose tissue macrophages (ATMs) is linked to an increased risk of type 2 diabetes. Macrophages have been regarded as post-mitotic, but recent observations have challenged this view. In this study, we tested the hypothesis that macrophages proliferate within AT in diet-induced obesity in mice and humans. METHODS We studied the expression of proliferation markers by immunofluorescence, PCR and flow cytometry in three different models of mouse obesity as well as in humans (n = 239). The cell fate of dividing macrophages was assessed by live imaging of AT explants. RESULTS We show that ATMs undergo mitosis within AT, predominantly within crown-like structures (CLS). We found a time-dependent increase in ATM proliferation when mice were fed a high-fat diet. Upregulation of CD206 and CD301 in proliferating ATMs indicated preferential M2 polarisation. Live imaging within AT explants from mice revealed that macrophages emigrate out of the CLS to become resident in the interstitium. In humans, we confirmed the increased expression of proliferation markers of CD68(+) macrophages in CLS and demonstrated a higher mRNA expression of the proliferation marker Ki67 in AT from obese patients. CONCLUSIONS/INTERPRETATION Local proliferation contributes to the increase in M2 macrophages in AT. Our data confirm CLS as the primary site of proliferation and a new source of ATMs and support a model of different recruitment mechanisms for classically activated (M1) and alternatively activated (M2) macrophages in obesity.
Collapse
Affiliation(s)
- Julia Haase
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103, Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Guillen C, Bartolome A, Vila-Bedmar R, García-Aguilar A, Gomez-Hernandez A, Benito M. Concerted expression of the thermogenic and bioenergetic mitochondrial protein machinery in brown adipose tissue. J Cell Biochem 2014; 114:2306-13. [PMID: 23606415 DOI: 10.1002/jcb.24577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 04/12/2013] [Indexed: 11/08/2022]
Abstract
Brown adipose tissue (BAT) is specialized in non-shivering thermogenesis through the expression of the mitochondrial uncoupling protein-1 (UCP1). In this paper, we describe the relationship between UCP1 and proteins involved in ATP synthesis. By the use of BATIRKO mice, which have enhanced UCP1 expression in BAT, an increase in ATP synthase as well as in ubiquinol cytochrome c reductase levels was observed. Alterations in mitochondrial mass or variations in ATP levels were not observed in BAT of these mice. In addition, using a protocol of brown adipocyte differentiation, the concerted expression of UCP1 with ATP synthase was found. These two scenarios revealed that increases in the uncoupling machinery of brown adypocites must be concomitantly followed by an enhancement of proteins involved in ATP synthesis. These concerted changes reflect the need to maintain ATP production in an essentially uncoupling cell type.
Collapse
Affiliation(s)
- Carlos Guillen
- Faculty of Pharmacy, Department of Biochemistry and Molecular Biology II, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Chechi K, Nedergaard J, Richard D. Brown adipose tissue as an anti-obesity tissue in humans. Obes Rev 2014; 15:92-106. [PMID: 24165204 DOI: 10.1111/obr.12116] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 12/27/2022]
Abstract
During the 11th Stock Conference held in Montreal, Quebec, Canada, world-leading experts came together to present and discuss recent developments made in the field of brown adipose tissue biology. Owing to the vast capacity of brown adipose tissue for burning food energy in the process of thermogenesis, and due to demonstrations of its presence in adult humans, there is tremendous interest in targeting brown adipose tissue as an anti-obesity tissue in humans. However, the future of such therapeutic approaches relies on our understanding of the origin, development, recruitment, activation and regulation of brown adipose tissue in humans. As reviewed here, the 11th Stock Conference was organized around these themes to discuss the recent progress made in each aspect, to identify gaps in our current understanding and to further provide a common groundwork that could support collaborative efforts aimed at a future therapy for obesity, based on brown adipose tissue thermogenesis.
Collapse
Affiliation(s)
- K Chechi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | | | | |
Collapse
|
39
|
Seelaender MC, Batista ML. Adipose tissue inflammation and cancer cachexia: the role of steroid hormones. Horm Mol Biol Clin Investig 2014; 17:5-12. [DOI: 10.1515/hmbci-2013-0040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/25/2013] [Indexed: 11/15/2022]
Abstract
AbstractAdipose tissue inflammation plays a role in the etiology of many chronic diseases, and has been the focus of much attention in the context of obesity and metabolic syndrome. Similarly, during cancer cachexia, a syndrome that markedly increases cancer-associated morbidity and mortality, local adipose inflammation is reported in animal models and in patients, potentially contributing to the chronic systemic inflammation that constitutes the hallmark of this condition. We discuss, on the basis of information generated by obesity-related studies, the possible relation between adipose tissue inflammation and compromised steroid hormone secretion and action in cachexia.
Collapse
|
40
|
Jiménez-Aranda A, Fernández-Vázquez G, Campos D, Tassi M, Velasco-Perez L, Tan DX, Reiter RJ, Agil A. Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. J Pineal Res 2013; 55:416-23. [PMID: 24007241 DOI: 10.1111/jpi.12089] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 01/24/2023]
Abstract
Melatonin limits obesity in rodents without affecting food intake and activity, suggesting a thermogenic effect. Identification of brown fat (beige/brite) in white adipose tissue (WAT) prompted us to investigate whether melatonin is a brown-fat inducer. We used Zücker diabetic fatty (ZDF) rats, a model of obesity-related type 2 diabetes and a strain in which melatonin reduces obesity and improves their metabolic profiles. At 5 wk of age, ZDF rats and lean littermates (ZL) were subdivided into two groups, each composed of four rats: control and those treated with oral melatonin in the drinking water (10 mg/kg/day) for 6 wk. Melatonin induced browning of inguinal WAT in both ZDF and ZL rats. Hematoxylin-eosin staining showed patches of brown-like adipocytes in inguinal WAT in ZDF rats and also increased the amounts in ZL animals. Inguinal skin temperature was similar in untreated lean and obese rats. Melatonin increased inguinal temperature by 1.36 ± 0.02°C in ZL and by 0.55 ± 0.04°C in ZDF rats and sensitized the thermogenic effect of acute cold exposure in both groups. Melatonin increased the amounts of thermogenic proteins, uncoupling protein 1 (UCP1) (by ~2-fold, P < 0.01) and PGC-1α (by 25%, P < 0.05) in extracts from beige inguinal areas in ZL rats. Melatonin also induced measurable amounts of UCP1 and stimulated by ~2-fold the levels of PGC-1α in ZDF animals. Locomotor activity and circulating irisin levels were not affected by melatonin. These results demonstrate that chronic oral melatonin drives WAT into a brown-fat-like function in ZDF rats. This may contribute to melatonin's control of body weight and its metabolic benefits.
Collapse
Affiliation(s)
- Aroa Jiménez-Aranda
- Department of Pharmacology and Neurosciences Institute (CIBM), School of Medicine, University of Granada, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Suárez J, Rivera P, Arrabal S, Crespillo A, Serrano A, Baixeras E, Pavón FJ, Cifuentes M, Nogueiras R, Ballesteros J, Dieguez C, Rodríguez de Fonseca F. Oleoylethanolamide enhances β-adrenergic-mediated thermogenesis and white-to-brown adipocyte phenotype in epididymal white adipose tissue in rat. Dis Model Mech 2013; 7:129-41. [PMID: 24159189 PMCID: PMC3882055 DOI: 10.1242/dmm.013110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
β-adrenergic receptor activation promotes brown adipose tissue (BAT) β-oxidation and thermogenesis by burning fatty acids during uncoupling respiration. Oleoylethanolamide (OEA) can inhibit feeding and stimulate lipolysis by activating peroxisome proliferator-activating receptor-α (PPARα) in white adipose tissue (WAT). Here we explore whether PPARα activation potentiates the effect of β3-adrenergic stimulation on energy balance mediated by the respective agonists OEA and CL316243. The effect of this pharmacological association on feeding, thermogenesis, β-oxidation, and lipid and cholesterol metabolism in epididymal (e)WAT was monitored. CL316243 (1 mg/kg) and OEA (5 mg/kg) co-administration over 6 days enhanced the reduction of both food intake and body weight gain, increased the energy expenditure and reduced the respiratory quotient (VCO2/VO2). This negative energy balance agreed with decreased fat mass and increased BAT weight and temperature, as well as with lowered plasma levels of triglycerides, cholesterol, nonessential fatty acids (NEFAs), and the adipokines leptin and TNF-α. Regarding eWAT, CL316243 and OEA treatment elevated levels of the thermogenic factors PPARα and UCP1, reduced p38-MAPK phosphorylation, and promoted brown-like features in the white adipocytes: the mitochondrial (Cox4i1, Cox4i2) and BAT (Fgf21, Prdm16) genes were overexpressed in eWAT. The enhancement of the fatty-acid β-oxidation factors Cpt1b and Acox1 in eWAT was accompanied by an upregulation of de novo lipogenesis and reduced expression of the unsaturated-fatty-acid-synthesis enzyme gene, Scd1. We propose that the combination of β-adrenergic and PPARα receptor agonists promotes therapeutic adipocyte remodelling in eWAT, and therefore has a potential clinical utility in the treatment of obesity.
Collapse
Affiliation(s)
- Juan Suárez
- Laboratorio de Medicina Regenerativa, Hospital Carlos Haya-IBIMA (Pabellón de Gobierno), Avenida, Carlos Haya 82, 29010 Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Reza AMMT, Shiwani S, Singh NK, Lohakare JD, Lee SJ, Jeong DK, Han JY, Rengaraj D, Lee BW. Keratinocyte growth factor and thiazolidinediones and linolenic acid differentiate characterized mammary fat pad adipose stem cells isolated from prepubertal Korean black goat to epithelial and adipogenic lineage. In Vitro Cell Dev Biol Anim 2013; 50:194-206. [PMID: 24101555 DOI: 10.1007/s11626-013-9690-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 09/10/2013] [Indexed: 12/25/2022]
Abstract
The study was conducted to know and investigate the mechanism involved during mesenchymal to epithelial transition to unravel questions related to mammary gland development in prepubertal Korean black goat. We, therefore, biopsied mammary fat pad and isolated adipose cells and characterized with stemness factors (CD34, CD13, CD44, CD106, and vimentin) immunologically and through their genetic expression. Furthermore, characterized cells were differentiated to adipogenic (thiazolidinediones and α-linolenic acid) and epithelial (keratinocyte growth factor) lineages. Thiazolidinediones/or in combination with α-linolenic acid demonstrated significant upregulation of adipo-Q, PPAR-γ, CEBP-α, LPL, and resistin. Adipose stem cells in induction mixture (5 μg/ml insulin, 1 μg/ml hydrocortisone, and 10 ng/ml epidermal growth factor) and subsequent treatment with 10 ng/ml keratinocyte growth factor revealed their trans-differentiating ability to epithelial lineage. From 2 d onwards, the cells under keratinocyte growth factor influenced cells to assume rectangular (2-4 d) to cuboidal (8-10 d) shapes. Ayoub-Shklar stain developed brownish-red pigment in the transformed cells. Though, expressions of K8 and K18 were noted to be highly significant (p < 0.01) but expressions of epithelial membrane antigens and epithelial specific antigens were also significant (p < 0.05) compared to 0 d. Conclusively, epithelial transformations of mammary adipose stem cells would add up knowledge to develop therapeutic regimen to deal with mammary tissue injury and diseases.
Collapse
Affiliation(s)
- A M M T Reza
- Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Obesity represents a major risk factor for the development of several of our most common medical conditions, including Type 2 diabetes, dyslipidaemia, non-alcoholic fatty liver, cardiovascular disease and even some cancers. Although increased fat mass is the main feature of obesity, not all fat depots are created equal. Adipocytes found in white adipose tissue contain a single large lipid droplet and play well-known roles in energy storage. By contrast, brown adipose tissue is specialized for thermogenic energy expenditure. Owing to its significant capacity to dissipate energy and regulate triacylglycerol (triglyceride) and glucose metabolism, and its demonstrated presence in adult humans, brown fat could be a potential target for the treatment of obesity and metabolic syndrome. Undoubtedly, fundamental knowledge about the formation of brown fat and regulation of its activity is imperatively needed to make such therapeutics possible. In the present review, we integrate the recent advancements on the regulation of brown fat formation and activity by developmental and hormonal signals in relation to its metabolic function.
Collapse
|
44
|
van der Lans AAJJ, Hoeks J, Brans B, Vijgen GHEJ, Visser MGW, Vosselman MJ, Hansen J, Jörgensen JA, Wu J, Mottaghy FM, Schrauwen P, van Marken Lichtenbelt WD. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 2013; 123:3395-403. [PMID: 23867626 DOI: 10.1172/jci68993] [Citation(s) in RCA: 595] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/15/2013] [Indexed: 11/17/2022] Open
Abstract
In recent years, it has been shown that humans have active brown adipose tissue (BAT) depots, raising the question of whether activation and recruitment of BAT can be a target to counterbalance the current obesity pandemic. Here, we show that a 10-day cold acclimation protocol in humans increases BAT activity in parallel with an increase in nonshivering thermogenesis (NST). No sex differences in BAT presence and activity were found either before or after cold acclimation. Respiration measurements in permeabilized fibers and isolated mitochondria revealed no significant contribution of skeletal muscle mitochondrial uncoupling to the increased NST. Based on cell-specific markers and on uncoupling protein-1 (characteristic of both BAT and beige/brite cells), this study did not show "browning" of abdominal subcutaneous white adipose tissue upon cold acclimation. The observed physiological acclimation is in line with the subjective changes in temperature sensation; upon cold acclimation, the subjects judged the environment warmer, felt more comfortable in the cold, and reported less shivering. The combined results suggest that a variable indoor environment with frequent cold exposures might be an acceptable and economic manner to increase energy expenditure and may contribute to counteracting the current obesity epidemic.
Collapse
Affiliation(s)
- Anouk A J J van der Lans
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The main parenchymal cells of the adipose organ are adipocytes. White adipocytes store energy, whereas brown adipocytes dissipate energy for thermogenesis. These two cell types with opposing functions can both originate from endothelial cells, and co-exist in the multiple fat depots of the adipose organ - a feature that I propose is crucial for this organ's plasticity. This poster review provides an overview of the adipose organ, describing its anatomy, cytology, physiological function and histopathology in obesity. It also highlights the remarkable plasticity of the adipose organ, explaining theories of adipocyte transdifferentiation during chronic cold exposure, physical exercise or lactation, as well as in obesity. White-to-brown adipocyte transdifferentiation is of particular medical relevance, because animal data indicate that higher amounts of brown adipose tissue are positively associated with resistance to obesity and its co-morbidities, and that 'browning' of the adipose organ curbs these disorders.
Collapse
Affiliation(s)
- Saverio Cinti
- Department of Experimental and Clinical Medicine, Azienda Ospedali Riuniti-University of Ancona (Politecnica delle Marche), 60020 Ancona, Italy.
| |
Collapse
|
46
|
Birerdinc A, Jarrar M, Stotish T, Randhawa M, Baranova A. Manipulating molecular switches in brown adipocytes and their precursors: a therapeutic potential. Prog Lipid Res 2012; 52:51-61. [PMID: 22960032 DOI: 10.1016/j.plipres.2012.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 03/28/2012] [Accepted: 08/11/2012] [Indexed: 01/07/2023]
Abstract
Brown adipocytes constitute a metabolically active tissue responsible for non-shivering thermogenesis and the depletion of excess calories. Differentiation of brown fat adipocytes de novo or stimulation of pre-existing brown adipocytes within white adipose depots could provide a novel method for reducing the obesity and alleviating the consequences of type II diabetes worldwide. In this review, we addressed several molecular mechanisms involved in the control of brown fat activity, namely, the β₃-adrenergic stimulation of thermogenesis during exposure to cold or by catecholamines; the augmentation of thyroid function; the modulation of peroxisome proliferator-activated receptor gamma (PPARγ), transcription factors of the C/EBP family, and the PPARγ co-activator PRDM16; the COX-2-driven expression of UCP1; the stimulation of the vanilloid subfamily receptor TRPV1 by capsaicin and monoacylglycerols; the effects of BMP7 or its analogs; the cannabinoid receptor antagonists and melanogenesis modulating agents. Manipulating one or more of these pathways may provide a solution to the problem of harnessing brown fat's thermogenic potential. However, a better understanding of their interplay and other homeostatic mechanisms is required for the development of novel therapies for millions of obese and/or diabetic individuals.
Collapse
Affiliation(s)
- Aybike Birerdinc
- Center for the Study of Chronic Metabolic Diseases, School of Systems Biology, College of Science, George Mason University, Fairfax, VA, USA
| | | | | | | | | |
Collapse
|
47
|
Billon N, Dani C. Developmental origins of the adipocyte lineage: new insights from genetics and genomics studies. Stem Cell Rev Rep 2012; 8:55-66. [PMID: 21365256 DOI: 10.1007/s12015-011-9242-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The current epidemic of obesity and overweight has caused a surge of interest in the study of adipose tissue formation. Much progress has been made in defining the transcriptional networks controlling the terminal differentiation of adipocyte progenitors into mature adipocytes. However, the early steps of adipocyte development and the embryonic origin of this lineage have been largely disregarded until recently. In mammals, two functionally different types of adipose tissues coexist, which are both involved in energy balance but assume opposite functions. White adipose tissue (WAT) stores energy, while brown adipose tissue (BAT) is specialized in energy expenditure. WAT and BAT can be found as several depots located in various sites of the body. Individual fat depots exhibit different timing of appearance during development, as well as distinct functional properties, suggesting possible differences in their developmental origin. This hypothesis has recently been revisited through large-scale genomics studies and in vivo lineage tracing approaches, which are reviewed in this report. These studies have provided novel fundamental insights into adipocyte biology, pointing out distinct developmental origins for WAT and BAT, as well as for individual WAT depots. They suggest that the adipose tissue is composed of distinct mini-organs, exhibiting developmental and functional differences, as well as variable contribution to obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Nathalie Billon
- Institut Biologie du Développement et Cancer, CNRS UMR 6543, Faculté de Médecine Pasteur, Université de Nice Sophia-Antipolis, 28 avenue de Valombrose, 06108, Nice Cedex 2, France.
| | | |
Collapse
|
48
|
Beijer E, Schoenmakers J, Vijgen G, Kessels F, Dingemans AM, Schrauwen P, Wouters M, van Marken Lichtenbelt W, Teule J, Brans B. A role of active brown adipose tissue in cancer cachexia? Oncol Rev 2012; 6:e11. [PMID: 25992201 PMCID: PMC4419634 DOI: 10.4081/oncol.2012.e11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 01/04/2023] Open
Abstract
Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT). Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and so-called brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using 18F-fluoro- deoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity.
Collapse
Affiliation(s)
| | | | - Guy Vijgen
- Medicine and Surgery, ; Department of Human Biology, ; NUTRIM School for Nutrition, Toxicology and Metabolism
| | - Fons Kessels
- Department of Clinical Epidemiology and Medical Technology Assessment (MTA), ; CAPHRI School for Public Health and Primary Care, Maastricht University and Maastricht University Medical Centre, The Netherlands
| | | | - Patrick Schrauwen
- Department of Human Biology, ; NUTRIM School for Nutrition, Toxicology and Metabolism
| | - Miel Wouters
- Respiratory ; NUTRIM School for Nutrition, Toxicology and Metabolism
| | | | | | - Boudewijn Brans
- Departments of Nuclear Medicine, ; GROW School for Oncology and Developmental Biology
| |
Collapse
|
49
|
Marzolla V, Armani A, Zennaro MC, Cinti F, Mammi C, Fabbri A, Rosano GMC, Caprio M. The role of the mineralocorticoid receptor in adipocyte biology and fat metabolism. Mol Cell Endocrinol 2012; 350:281-8. [PMID: 21945603 DOI: 10.1016/j.mce.2011.09.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 11/22/2022]
Abstract
Aldosterone controls blood pressure by binding to the mineralocorticoid receptor (MR), a ligand-activated transcription factor which regulates critical genes controlling salt and water homeostasis in the kidney. In recent years, inappropriate MR activation has been shown to trigger deleterious responses in various tissues, including vessels, heart and brain, hence promoting vascular inflammation, cardiovascular remodeling, endothelial dysfunction, and oxidative stress. Moreover, epidemiological studies have shown a clear association between aldosterone levels and the incidence of metabolic syndrome. In particular, recent work has revealed functional MRs in adipose tissue, where they mediate the effects of aldosterone and glucocorticoids, displaying important and specific functions involving adipose differentiation, expansion and proinflammatory capacity. This recent evidence finally moved MR out of the shadow of the glucocorticoid receptor (GR), which had previously been considered the only player mediating corticosteroid action in adipose tissue. This has opened a new era of research focusing on the complexity and selectivity of MR function in adipocyte biology. The aim of this review is to summarize the latest concepts on the role of MR in white and brown adipocytes, and to discuss the potential benefits of tissue-selective MR blockade in the treatment of obesity and metabolic syndrome.
Collapse
|
50
|
Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, Spiegelman BM. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 2012; 26:271-81. [PMID: 22302939 DOI: 10.1101/gad.177857.111] [Citation(s) in RCA: 1204] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Certain white adipose tissue (WAT) depots are readily able to convert to a "brown-like" state with prolonged cold exposure or exposure to β-adrenergic compounds. This process is characterized by the appearance of pockets of uncoupling protein 1 (UCP1)-positive, multilocular adipocytes and serves to increase the thermogenic capacity of the organism. We show here that fibroblast growth factor 21 (FGF21) plays a physiologic role in this thermogenic recruitment of WATs. In fact, mice deficient in FGF21 display an impaired ability to adapt to chronic cold exposure, with diminished browning of WAT. Adipose-derived FGF21 acts in an autocrine/paracrine manner to increase expression of UCP1 and other thermogenic genes in fat tissues. FGF21 regulates this process, at least in part, by enhancing adipose tissue PGC-1α protein levels independently of mRNA expression. We conclude that FGF21 acts to activate and expand the thermogenic machinery in vivo to provide a robust defense against hypothermia.
Collapse
Affiliation(s)
- Ffolliott M Fisher
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|