1
|
Ignot-Gutiérrez A, Serena-Romero G, Guajardo-Flores D, Alvarado-Olivarez M, Martínez AJ, Cruz-Huerta E. Proteins and Peptides from Food Sources with Effect on Satiety and Their Role as Anti-Obesity Agents: A Narrative Review. Nutrients 2024; 16:3560. [PMID: 39458554 PMCID: PMC11510221 DOI: 10.3390/nu16203560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVE Obesity, clinically defined as a body mass index (BMI) of 30 kg/m2 or higher, is a medical condition characterized by the excessive accumulation of body fat, which can lead to adverse health consequences. As a global public health issue with an escalating prevalence, controlling appetite and satiety is essential for regulating energy balance and managing body weight. Dietary proteins and peptides have gained interest in their potential to prevent and treat obesity by modulating satiety signals. This narrative review analyzes scientific evidence highlighting the role of dietary proteins and peptides in regulating satiety signals and investigates their therapeutic potential in preventing and treating obesity. METHODS A comprehensive literature search was conducted in multiple electronic databases, including PubMed, Scopus, and Web of Science. The search focused on articles examining the impact of dietary proteins and peptides on satiety and obesity, encompassing both preclinical and clinical trials. RESULTS Several studies have demonstrated a correlation between the intake of specific proteins or peptides from plant and animal sources and satiety regulation. These investigations identified mechanisms where amino acids and peptides interact with enteroendocrine cell receptors, activating intracellular signaling cascades that promote the release of anorexigenic gut hormones such as cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY). Both in vitro and in vivo assays have shown that these interactions contribute to appetite regulation and the sensation of satiety. CONCLUSIONS Using proteins and peptides in the diet may be an effective strategy for regulating appetite and controlling body weight. However, more research-including clinical trials-is needed to understand the underlying mechanisms better and optimize the application of these bioactive compounds in preventing and treating obesity.
Collapse
Affiliation(s)
- Anaís Ignot-Gutiérrez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Gloricel Serena-Romero
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico;
| | - Daniel Guajardo-Flores
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico;
| | - Mayvi Alvarado-Olivarez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Armando J. Martínez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Elvia Cruz-Huerta
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa-Enríquez 91193, Veracruz, Mexico
| |
Collapse
|
2
|
Nagao T, Braga JD, Chen S, Thongngam M, Chartkul M, Yanaka N, Kumrungsee T. Synergistic effects of peripheral GABA and GABA-transaminase inhibitory drugs on food intake control and weight loss in high-fat diet-induced obese mice. Front Pharmacol 2024; 15:1487585. [PMID: 39415835 PMCID: PMC11480068 DOI: 10.3389/fphar.2024.1487585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Background Developing anti-obesity interventions targeting appetite or food intake, the primary driver of obesity, remains challenging. Here, we demonstrated that dietary γ-aminobutyric acid (GABA) with GABA-degradation inhibitory drugs could be an anti-obesity intervention possessing strong food intake-suppressive and weight-loss effects. Methods High-fat (HF)-diet-induced obese mice were divided into six groups receiving either the HF diet or the 2% GABA-HF diet with daily administration of PBS or the GABA-degradation inhibitory drugs, vigabatrin and ethanolamine-O-sulfate (EOS). In 24-h fast-induced refeeding, lean mice with a basal diet were used, and food intake was measured from 0.5 to 24 h after refeeding. Results Coadministration of the 2% GABA-HF diet with vigabatrin or EOS significantly decreased food intake (-53%, -35%) and body weight (-22%, -16%) within 11 days in obese mice, along with a marked increase in plasma GABA levels. Mice receiving dietary GABA alone or the drugs alone exhibited no such effects. Hypothalamic GABA levels increased in drug-treated mice, regardless of diet. At 0.5 h after refeeding, food intake was similar in all groups. However, at 0.5 h, plasma GABA levels were markedly increased only in mice receiving coadministration of dietary GABA and the drugs, and their food intake was completely inhibited for over 6 h, while mice in other groups gradually increased their food intake. Conclusion Combining dietary GABA with GABA-degradation inhibitory drugs effectively suppresses food intake and promotes weight loss in obese mice, primarily through increased plasma GABA availability. These findings may advance the development of food intake-controlling strategies for obesity management.
Collapse
Affiliation(s)
- Tomoka Nagao
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Jason D. Braga
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Institute of Food Science and Technology, College of Agriculture, Food, Environment and Natural Resources, Cavite State University, Indang, Philippines
| | - Siyi Chen
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Masubon Thongngam
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Maesaya Chartkul
- Weight Care Clinic, Health Promotion Center, Bangkok Chanthaburi Hospital, Chanthaburi, Thailand
| | - Noriyuki Yanaka
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Thanutchaporn Kumrungsee
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Anjom-Shoae J, Feinle-Bisset C, Horowitz M. Impacts of dietary animal and plant protein on weight and glycemic control in health, obesity and type 2 diabetes: friend or foe? Front Endocrinol (Lausanne) 2024; 15:1412182. [PMID: 39145315 PMCID: PMC11321983 DOI: 10.3389/fendo.2024.1412182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
It is well established that high-protein diets (i.e. ~25-30% of energy intake from protein) provide benefits for achieving weight loss, and subsequent weight maintenance, in individuals with obesity, and improve glycemic control in type 2 diabetes (T2D). These effects may be attributable to the superior satiating property of protein, at least in part, through stimulation of both gastrointestinal (GI) mechanisms by protein, involving GI hormone release and slowing of gastric emptying, as well as post-absorptive mechanisms facilitated by circulating amino acids. In contrast, there is evidence that the beneficial effects of greater protein intake on body weight and glycemia may only be sustained for 6-12 months. While both suboptimal dietary compliance and metabolic adaptation, as well as substantial limitations in the design of longer-term studies are all likely to contribute to this contradiction, the source of dietary protein (i.e. animal vs. plant) has received inappropriately little attention. This issue has been highlighted by outcomes of recent epidemiological studies indicating that long-term consumption of animal-based protein may have adverse effects in relation to the development of obesity and T2D, while plant-based protein showed either protective or neutral effects. This review examines information relating to the effects of dietary protein on appetite, energy intake and postprandial glycemia, and the relevant GI functions, as reported in acute, intermediate- and long-term studies in humans. We also evaluate knowledge relating to the relevance of the dietary protein source, specifically animal or plant, to the prevention, and management, of obesity and T2D.
Collapse
Affiliation(s)
- Javad Anjom-Shoae
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
4
|
Prosser S, Fava M, Rogers LM, Liaset B, Breen L. Postprandial plasma amino acid and appetite responses with ingestion of a novel salmon-derived protein peptide in healthy young adults. Br J Nutr 2024; 131:1860-1872. [PMID: 38418422 DOI: 10.1017/s0007114524000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
This study assessed postprandial plasma aminoacidemia, glycemia, insulinemia and appetite responses to ingestion of a novel salmon-derived protein peptide (Salmon PP) compared with milk protein isolate (Milk PI). In a randomised, participant-blind crossover design, eleven healthy adults (M = 5, F = 6; mean ± sd age: 22 ± 3 years; BMI: 24 ± 3 kg/m2) ingested 0·3 g/kg/body mass of Salmon PP or Milk PI. Arterialised blood samples were collected whilst fasted and over a 240-min postprandial period. Appetite sensations were measured via visual analogue scales. An ad libitum buffet-style test meal was administered after each trial. The incremental AUC (iAUC) plasma essential amino acid (EAA) response was similar between Salmon PP and Milk PI. The iAUC plasma leucine response was significantly greater following Milk PI ingestion (P < 0·001), whereas temporal and iAUC plasma total amino acid (P = 0·001), non-essential amino acid (P = 0·002), glycine (P = 0·0025) and hydroxyproline (P < 0·001) responses were greater following Salmon PP ingestion. Plasma insulin increased similarly above post-absorptive values following Salmon PP and Milk PI ingestion, whilst plasma glucose was largely unaltered. Indices of appetite were similarly altered following Salmon PP and Milk PI ingestion, and total energy and macronutrient intake during the ad libitum meal was similar between Salmon PP and Milk PI. The postprandial plasma EAA, glycine, proline and hydroxyproline response to Salmon PP ingestion suggest this novel protein source could support muscle and possibly connective tissue adaptive remodelling, which warrants further investigation, particularly as the plasma leucine response to Salmon PP ingestion was inferior to Milk PI.
Collapse
Affiliation(s)
- Sophie Prosser
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, BirminghamB15 2TT, UK
| | - Mia Fava
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, BirminghamB15 2TT, UK
| | - Lucy M Rogers
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, BirminghamB15 2TT, UK
| | | | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, BirminghamB15 2TT, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
- NIHR Biomedical Research Centre, Birmingham, UK
| |
Collapse
|
5
|
Stefanaki K, Karagiannakis DS, Peppa M, Vryonidou A, Kalantaridou S, Goulis DG, Psaltopoulou T, Paschou SA. Food Cravings and Obesity in Women with Polycystic Ovary Syndrome: Pathophysiological and Therapeutic Considerations. Nutrients 2024; 16:1049. [PMID: 38613082 PMCID: PMC11013286 DOI: 10.3390/nu16071049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), the most common endocrine disorder in women of reproductive age, constitutes a metabolic disorder frequently associated with obesity and insulin resistance (IR). Furthermore, women with PCOS often suffer from excessive anxiety and depression, elicited by low self-esteem due to obesity, acne, and hirsutism. These mood disorders are commonly associated with food cravings and binge eating. Hypothalamic signaling regulates appetite and satiety, deteriorating excessive food consumption. However, the hypothalamic function is incapable of compensating for surplus food in women with PCOS, leading to the aggravation of obesity and a vicious circle. Hyperandrogenism, IR, the reduced secretion of cholecystokinin postprandially, and leptin resistance defined by leptin receptors' knockout in the hypothalamus have been implicated in the pathogenesis of hypothalamic dysfunction and appetite dysregulation. Diet modifications, exercise, and psychological and medical interventions have been applied to alleviate food disorders, interrupting the vicious circle. Cognitive-behavioral intervention seems to be the mainstay of treatment, while the role of medical agents, such as GLP-1 analogs and naltrexone/bupropion, has emerged.
Collapse
Affiliation(s)
- Katerina Stefanaki
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.S.); (T.P.); (S.A.P.)
| | - Dimitrios S. Karagiannakis
- Academic Department of Gastroenterology, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Melpomeni Peppa
- Endocrine Unit and Diabetes Center, Second Department of Internal Medicine, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- 3rd Department of Internal Medicine, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and Diabetes Center, Hellenic Red Cross Hospital, 11526 Athens, Greece;
| | - Sophia Kalantaridou
- 3rd Department of Obstetrics and Gynecology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios G. Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Theodora Psaltopoulou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.S.); (T.P.); (S.A.P.)
| | - Stavroula A. Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.S.); (T.P.); (S.A.P.)
| |
Collapse
|
6
|
Patel V, Aggarwal K, Dhawan A, Singh B, Shah P, Sawhney A, Jain R. Protein supplementation: the double-edged sword. Proc AMIA Symp 2023; 37:118-126. [PMID: 38174000 PMCID: PMC10761008 DOI: 10.1080/08998280.2023.2280417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024] Open
Abstract
Protein supplements are widely consumed by athletes as well as young adults and teenagers going to the gym and are an excellent source to increase protein intake, build muscle mass, and enhance recovery. They are available in the form of powders, gummies, protein bars, and ready-to-drink shakes and have been shown to have effects on almost every system in the body. Subjects consuming whey protein-based supplements regularly show significantly lower systolic blood pressure, while subjects who consume soy-based protein supplements have been reported to show a significant decrease in their systolic and diastolic blood pressures. Favorable effects of soy protein consumption have been observed on the serum lipid profile, with significant decreases in serum low-density lipoprotein and triglyceride levels. Lower postprandial glucose levels have been observed in diabetic subjects as well, which can be attributed to the lower glycemic index of these supplements. This can lead to an indirect decrease in diabetes-related complications. While these supplements affect the body positively, caution has to be exercised while consuming them in excess, as they have been shown to cause hyperfiltration and increased urinary calcium excretion which can, in turn, lead to chronic kidney disease development. This article focuses on the effects of protein supplementation on the human body, with emphasis on the cardiovascular, endocrine, and renal systems.
Collapse
Affiliation(s)
- Vishw Patel
- Department of Medicine, Pandit Deendayal Upadhyay Government Medical College, Rajkot, India
| | - Kanishk Aggarwal
- Department of Medicine, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Ashish Dhawan
- Department of Medicine, Gian Sagar Medical College and Hospital, Punjab, India
| | - Bhupinder Singh
- Department of Medicine, Government Medical College, Amritsar, India
| | - Priyanshi Shah
- Department of Medicine, Narendra Modi Medical College, Ahmedabad, India
| | - Aanchal Sawhney
- Department of Internal Medicine, Crozer Chester Medical Center, Upland, Pennsylvania, USA
| | - Rohit Jain
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
7
|
Agostini D, Gervasi M, Ferrini F, Bartolacci A, Stranieri A, Piccoli G, Barbieri E, Sestili P, Patti A, Stocchi V, Donati Zeppa S. An Integrated Approach to Skeletal Muscle Health in Aging. Nutrients 2023; 15:nu15081802. [PMID: 37111021 PMCID: PMC10141535 DOI: 10.3390/nu15081802] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
A decline in muscle mass and function represents one of the most problematic changes associated with aging, and has dramatic effects on autonomy and quality of life. Several factors contribute to the inexorable process of sarcopenia, such as mitochondrial and autophagy dysfunction, and the lack of regeneration capacity of satellite cells. The physiologic decline in muscle mass and in motoneuron functionality associated with aging is exacerbated by the sedentary lifestyle that accompanies elderly people. Regular physical activity is beneficial to most people, but the elderly need well-designed and carefully administered training programs that improve muscle mass and, consequently, both functional ability and quality of life. Aging also causes alteration in the gut microbiota composition associated with sarcopenia, and some advances in research have elucidated that interventions via the gut microbiota-muscle axis have the potential to ameliorate the sarcopenic phenotype. Several mechanisms are involved in vitamin D muscle atrophy protection, as demonstrated by the decreased muscular function related to vitamin D deficiency. Malnutrition, chronic inflammation, vitamin deficiencies, and an imbalance in the muscle-gut axis are just a few of the factors that can lead to sarcopenia. Supplementing the diet with antioxidants, polyunsaturated fatty acids, vitamins, probiotics, prebiotics, proteins, kefir, and short-chain fatty acids could be potential nutritional therapies against sarcopenia. Finally, a personalized integrated strategy to counteract sarcopenia and maintain the health of skeletal muscles is suggested in this review.
Collapse
Affiliation(s)
- Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessandro Stranieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90128 Palermo, Italy
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
8
|
Lesgards JF. Benefits of Whey Proteins on Type 2 Diabetes Mellitus Parameters and Prevention of Cardiovascular Diseases. Nutrients 2023; 15:nu15051294. [PMID: 36904293 PMCID: PMC10005124 DOI: 10.3390/nu15051294] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major cause of morbidity and mortality, and it is a major risk factor for the early onset of cardiovascular diseases (CVDs). More than genetics, food, physical activity, walkability, and air pollution are lifestyle factors, which have the greatest impact on T2DM. Certain diets have been shown to be associated with lower T2DM and cardiovascular risk. Diminishing added sugar and processed fats and increasing antioxidant-rich vegetable and fruit intake has often been highlighted, as in the Mediterranean diet. However, less is known about the interest of proteins in low-fat dairy and whey in particular, which have great potential to improve T2DM and could be used safely as a part of a multi-target strategy. This review discusses all the biochemical and clinical aspects of the benefits of high-quality whey, which is now considered a functional food, for prevention and improvement of T2DM and CVDs by insulin- and non-insulin-dependent mechanisms.
Collapse
Affiliation(s)
- Jean-François Lesgards
- Ingénierie des Peptides Thérapeutiques, Ambrilia-Cellpep, Faculté de Médecine Nord, Aix-Marseille University, Boulevard Pierre Dramard, 13015 Marseille, France
| |
Collapse
|
9
|
Baer DJ, Dalton M, Blundell J, Finlayson G, Hu FB. Nuts, Energy Balance and Body Weight. Nutrients 2023; 15:1162. [PMID: 36904160 PMCID: PMC10004756 DOI: 10.3390/nu15051162] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Over several decades, the health benefits of consuming nuts have been investigated, resulting in a large body of evidence that nuts can reduce the risk of chronic diseases. The consumption of nuts, being a higher-fat plant food, is restricted by some in order to minimize weight gain. In this review, we discuss several factors related to energy intake from nuts, including food matrix and its impact on digestibility, and the role of nuts in regulating appetite. We review the data from randomized controlled trials and observational studies conducted to examine the relationship between nut intake and body weight or body mass index. Consistently, the evidence from RCTs and observational cohorts indicates that higher nut consumption does not cause greater weight gain; rather, nuts may be beneficial for weight control and prevention of long-term weight gain. Multiple mechanisms likely contribute to these findings, including aspects of nut composition which affect nutrient and energy availability as well as satiety signaling.
Collapse
Affiliation(s)
- David J. Baer
- US Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Michelle Dalton
- School of Psychology, Leeds Trinity University, Leeds LS18 5HD, UK
| | - John Blundell
- School of Psychology, Appetite Control and Energy Balance Research Group, University of Leeds, Leeds LS2 9JT, UK
| | - Graham Finlayson
- School of Psychology, Appetite Control and Energy Balance Research Group, University of Leeds, Leeds LS2 9JT, UK
| | - Frank B. Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
| |
Collapse
|
10
|
Giglio BM, Lobo PCB, Pimentel GD. Effects of whey protein supplementation on adiposity, body weight, and glycemic parameters: A synthesis of evidence. Nutr Metab Cardiovasc Dis 2023; 33:258-274. [PMID: 36543706 DOI: 10.1016/j.numecd.2022.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
AIMS The aim of this review was to analyze the evidence of whey protein supplementation on body weight, fat mass, lean mass and glycemic parameters in subjects with overweight or type 2 diabetes mellitus (T2DM) undergoing calorie restriction or with ad libitum intake. DATA SYNTHESIS Overweight and obesity are considered risk factors for the development of chronic noncommunicable diseases such as T2DM. Calorie restriction is a dietary therapy that reduces weight and fat mass, promotes the improvement of glycemic parameters, and decreases muscle mass. The maintenance of muscle mass during weight loss is necessary in view of its implication in preventing chronic diseases and improving functional capacity and quality of life. The effects of increased protein consumption on attenuating muscle loss and reducing body fat during calorie restriction or ad libitum intake in overweight individuals are discussed. Some studies have demonstrated the positive effects of whey protein supplementation on improving satiety and postprandial glycemic control in short term; however, it remains unclear whether long-term whey protein supplementation can positively affect glycemic parameters. CONCLUSIONS Although whey protein is considered to have a high nutritional quality, its effects in the treatment of overweight, obese individuals and those with T2DM undergoing calorie restriction or ad libitum intake are still inconclusive.
Collapse
Affiliation(s)
- Bruna M Giglio
- Faculty of Nutrition, Federal University of Goias, Goiânia, GO, Brazil
| | - Patrícia C B Lobo
- Faculty of Nutrition, Federal University of Goias, Goiânia, GO, Brazil
| | | |
Collapse
|
11
|
Bioactive and Sensory Di- and Tripeptides Generated during Dry-Curing of Pork Meat. Int J Mol Sci 2023; 24:ijms24021574. [PMID: 36675084 PMCID: PMC9866438 DOI: 10.3390/ijms24021574] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Dry-cured pork products, such as dry-cured ham, undergo an extensive proteolysis during manufacturing process which determines the organoleptic properties of the final product. As a result of endogenous pork muscle endo- and exopeptidases, many medium- and short-chain peptides are released from muscle proteins. Many of them have been isolated, identified, and characterized, and some peptides have been reported to exert relevant bioactivity with potential benefit for human health. However, little attention has been given to di- and tripeptides, which are far less known, although they have received increasing attention in recent years due to their high potential relevance in terms of bioactivity and role in taste development. This review gathers the current knowledge about di- and tripeptides, regarding their bioactivity and sensory properties and focusing on their generation during long-term processing such as dry-cured pork meats.
Collapse
|
12
|
van der Heijden I, Monteyne AJ, Stephens FB, Wall BT. Alternative dietary protein sources to support healthy and active skeletal muscle aging. Nutr Rev 2023; 81:206-230. [PMID: 35960188 DOI: 10.1093/nutrit/nuac049] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To mitigate the age-related decline in skeletal muscle quantity and quality, and the associated negative health outcomes, it has been proposed that dietary protein recommendations for older adults should be increased alongside an active lifestyle and/or structured exercise training. Concomitantly, there are growing environmental concerns associated with the production of animal-based dietary protein sources. The question therefore arises as to where this dietary protein required for meeting the protein demands of the rapidly aging global population should (or could) be obtained. Various non-animal-derived protein sources possess favorable sustainability credentials, though much less is known (compared with animal-derived proteins) about their ability to influence muscle anabolism. It is also likely that the anabolic potential of various alternative protein sources varies markedly, with the majority of options remaining to be investigated. The purpose of this review was to thoroughly assess the current evidence base for the utility of alternative protein sources (plants, fungi, insects, algae, and lab-grown "meat") to support muscle anabolism in (active) older adults. The solid existing data portfolio requires considerable expansion to encompass the strategic evaluation of the various types of dietary protein sources. Such data will ultimately be necessary to support desirable alterations and refinements in nutritional guidelines to support healthy and active aging, while concomitantly securing a sustainable food future.
Collapse
Affiliation(s)
- Ino van der Heijden
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
13
|
Nutrition and Calcitonin Gene Related Peptide (CGRP) in Migraine. Nutrients 2023; 15:nu15020289. [PMID: 36678160 PMCID: PMC9864721 DOI: 10.3390/nu15020289] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023] Open
Abstract
Targeting calcitonin gene-related peptide (CGRP) and its receptor by antibodies and antagonists was a breakthrough in migraine prevention and treatment. However, not all migraine patients respond to CGRP-based therapy and a fraction of those who respond complain of aliments mainly in the gastrointestinal tract. In addition, CGRP and migraine are associated with obesity and metabolic diseases, including diabetes. Therefore, CGRP may play an important role in the functioning of the gut-brain-microflora axis. CGRP secretion may be modulated by dietary compounds associated with the disruption of calcium signaling and upregulation of mitogen-activated kinase phosphatases 1 and 3. CGRP may display anorexigenic properties through induction of anorexigenic neuropeptides, such as cholecystokinin and/or inhibit orexigenic neuropeptides, such as neuropeptide Y and melanin-concentrating hormone CH, resulting in the suppression of food intake, functionally coupled to the activation of the hypothalamic 3',5'-cyclic adenosine monophosphate. The anorexigenic action of CGRP observed in animal studies may reflect its general potential to control appetite/satiety or general food intake. Therefore, dietary nutrients may modulate CGRP, and CGRP may modulate their intake. Therefore, anti-CGRP therapy should consider this mutual dependence to increase the efficacy of the therapy and reduce its unwanted side effects. This narrative review presents information on molecular aspects of the interaction between dietary nutrients and CGRP and their reported and prospective use to improve anti-CGRP therapy in migraine.
Collapse
|
14
|
Chungchunlam SMS, Montoya CA, Stroebinger N, Moughan PJ. Effects of the maize-derived protein zein, and the milk proteins casein, whey, and α-lactalbumin, on subjective measures of satiety and food intake in normal-weight young men. Appetite 2023; 180:106339. [PMID: 36216216 DOI: 10.1016/j.appet.2022.106339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022]
Abstract
Protein is considered to be the most satiating food macronutrient and the satiating effect may be dependent on the source of the protein. The maize-derived protein zein and milk protein casein have been shown previously to lower stomach emptying rate more than dairy whey protein, but the effect of zein on satiety has not been evaluated. The objective was to compare the satiating effects of zein and casein, with whey protein and its protein component α-lactalbumin. The study was a randomised crossover design with thirteen normal-weight men (mean age 27.8 years and mean BMI 24.4 kg/m2) consuming isoenergetic (∼4000 kJ, ∼990 kcal) preload mixed meals enriched with Zein, Casein, whey protein isolate (Whey), α-lactalbumin (ALac), or maltodextrin carbohydrate (Carb). Consumption of an ad libitum standardised test meal of chicken fried rice and water provided 360 min following ingestion of the preload meal was measured, and subjective feelings of appetite (hunger, fullness, desire to eat, and prospective food consumption) were assessed using 100-mm visual analogue scales (VAS). There were no differences among the five preload mixed meals in the amount of chicken fried rice consumed at the ad libitum test meal (mean ± sem: 531.6 ± 35.0 g, p = 0.47) or total (preload + test meal) energy intakes (mean ± sem: 5780.5 ± 146.0 kJ, p = 0.29). The subjective VAS appetite ratings and total area under the curve responses for hunger, fullness, desire to eat, and prospective food consumption, were not different following consumption of all five preload mixed meals (p > 0.05). The findings indicate that the effects of zein and casein on satiety were not different from the satiating effects of whey protein and α-lactalbumin.
Collapse
Affiliation(s)
| | - Carlos A Montoya
- Riddet Institute, Massey University, Palmerston North, 4474, New Zealand; Smart Foods & Bioproducts, AgResearch Limited, Te Ohu Rangahau Kai Facility, Palmerston North, 4474, New Zealand
| | | | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, 4474, New Zealand
| |
Collapse
|
15
|
Comesaña S, Chivite M, Blanco AM, Alborja-Valado M, Calo J, Conde-Sieira M, Soengas JL. Involvement of Mechanistic Target of Rapamycin (mTOR) in Valine Orexigenic Effects in Rainbow Trout. AQUACULTURE NUTRITION 2022; 2022:7509382. [PMID: 36860456 PMCID: PMC9973124 DOI: 10.1155/2022/7509382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/06/2022] [Accepted: 09/14/2022] [Indexed: 06/18/2023]
Abstract
This study was aimed at clarifying the importance of a mechanistic target of rapamycin (mTOR) in the central orexigenic effect of valine in fish. For this, rainbow trout (Oncorhynchus mykiss) were intracerebroventricularly (ICV) injected with valine alone or in the presence of rapamycin as the mTOR inhibitor, and two experiments were performed. In the first experiment, we evaluated feed intake levels. In the second experiment, we evaluated in the hypothalamus and telencephalon the following: (1) the phosphorylation status of mTOR and its downstream effectors ribosomal protein S6 and p70 S6 kinase 1 (S6K1), (2) the abundance and phosphorylation status of transcription factors involved in appetite regulation, and (3) the mRNA levels of key neuropeptides associated with homeostatic regulation of feed intake in fish. Rising central levels of valine clearly resulted in an orexigenic response in rainbow trout. This response occurred in parallel with mTOR activation in both the hypothalamus and telencephalon, as supported by depressant changes in proteins involved in mTOR signalling (S6 and S6K1). Also, these changes disappeared in the presence of rapamycin. However, it is not clear which precise mechanisms link the activation of mTOR and the alteration in feed intake levels since we did not observe changes in mRNA levels of appetite-regulatory neuropeptides as well as in the phosphorylation status and levels of integrative proteins.
Collapse
Affiliation(s)
- Sara Comesaña
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - Mauro Chivite
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - Ayelén M. Blanco
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - María Alborja-Valado
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - Jessica Calo
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - Marta Conde-Sieira
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - José L. Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| |
Collapse
|
16
|
Nouri M, Pourghassem Gargari B, Tajfar P, Tarighat-Esfanjani A. A systematic review of whey protein supplementation effects on human glycemic control: A mechanistic insight. Diabetes Metab Syndr 2022; 16:102540. [PMID: 35772356 DOI: 10.1016/j.dsx.2022.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND/AIMS Some studies showed that dietary factors such as whey protein (WP) are effective on glycemic regulation. Due to the current controversy about WP effects and mechanisms of its action on glycemic control, we conducted this systematic review to shed light on the subject. METHODS Web of Science, Medline (Pubmed), and Scopus online databases were searched from 2012 up to February 2022 using the following keywords: "whey protein" and "glycemic control"/"glycemia"/"glucose"/"insulin". The search included original English articles, human clinical trials with WP supplementation and measurement of glucose or insulin as an outcome, studies on healthy individuals/patients with diabetes mellitus (DM)/impaired fasting glucose (IFG). RESULTS Title/abstract of 1991 studies were reviewed. After excluding studies due to inappropriate full title and duplication, and exercising inclusion criteria, 58 studies were reviewed in detail. Ample evidence showed that WP decreased postprandial glucose incremental area under the curve (iAUC) and increased iAUCs of insulin and incretin hormones. WP affects glycemic control mainly through stimulating insulin and incretins secretion, slowing gastric emptying, and appetite suppression. CONCLUSION Although most of the recent evidence showed beneficial effects of WP supplementation on glycemic response, further long-term clinical trials are required which assess the long-term impact of WP supplementation and its exact mechanisms.
Collapse
Affiliation(s)
- Maryam Nouri
- Student Research Committee, Student Research Center, Tabriz University of Medical Sciences, Tabriz, IR, Iran; Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
| | - Bahram Pourghassem Gargari
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, IR, Iran.
| | - Pedram Tajfar
- Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, IR, Iran.
| |
Collapse
|
17
|
Dai J, Lov J, Martin-Arrowsmith PW, Gritsas A, Churchward-Venne TA. The acute effects of insect vs. beef-derived protein on postprandial plasma aminoacidemia, appetite hormones, appetite sensations, and energy intake in healthy young men. Eur J Clin Nutr 2022; 76:1548-1556. [PMID: 35538144 DOI: 10.1038/s41430-022-01157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES The purpose of this study was to evaluate the acute effects of ingesting beef- and insect-derived protein on postprandial plasma amino acid and appetite hormone concentrations, appetite sensations, and ad libitum energy intake. SUBJECTS/METHODS In a randomized, double-blind, crossover study, 20 young men (23 (SD: 4) y) completed two trials during which arterialized blood samples and VAS questionnaires were collected at baseline, and over 300-min after ingestion of beverages with similar energy and macronutrient content containing 25 g beef- or insect-derived (cricket) protein. Blood samples were analyzed for plasma amino acid and appetite hormone concentrations, while VAS questionnaires were applied to assess appetite sensations. After each trial, an ad libitum meal was immediately provided to assess energy intake. RESULTS Adjusted mean postprandial incremental area under the curve (iAUC) was greater for cricket vs. beef-derived protein for plasma leucine, branched-chain amino acid, and essential amino acid concentrations (all P < 0.0001). Adjusted mean postprandial iAUC for hunger was lower following beef (-3030 (SE: 860)) vs. cricket-derived (-1197 (SE: 525)) protein (Difference: -1833 (95% CI: -3358, -308); P = 0.02), but was not different for other appetite sensations or appetite hormones (all P > 0.05). Adjusted mean ad libitum energy intake was 4072 (SE: 292) and 4408 (SE: 316) kJ following beef- and cricket-derived protein (Difference: -336 (95% CI: -992, 320); P = 0.30). CONCLUSION Acute ingestion of cricket and beef-derived protein leads to differences in postprandial plasma amino acid concentrations, but elicits similar effects on appetite hormones, appetite sensations, and ad libitum energy intake in young men.
Collapse
Affiliation(s)
- Jiaying Dai
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Jamie Lov
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | | | - Ari Gritsas
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada. .,Research Institute of the McGill University Health Centre, Montreal, QC, Canada. .,Division of Geriatric Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
18
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
19
|
Poggiogalle E, Rossignon F, Carayon A, Capel F, Rigaudière JP, De Saint Vincent S, Le-Bacquer O, Salles J, Giraudet C, Patrac V, Lebecque P, Walrand S, Boirie Y, Martin V, Guillet C. Deleterious Effect of High-Fat Diet on Skeletal Muscle Performance Is Prevented by High-Protein Intake in Adult Rats but Not in Old Rats. Front Physiol 2022; 12:749049. [PMID: 35111075 PMCID: PMC8801536 DOI: 10.3389/fphys.2021.749049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/02/2021] [Indexed: 11/15/2022] Open
Abstract
The phenotype of sarcopenic obesity is frequently associated with impaired muscle strength and performance. Ectopic lipid deposition may interfere with muscle anabolic response especially during aging. Evidence is scarce concerning the potential interplay among aging and nutrient imbalance on skeletal muscle functionality. The objective of the present study was to investigate the impact of protein intake in the context of an obesogenic diet on skeletal muscle functional properties and intramuscular lipid infiltration. Two groups of forty-two adult and thirty-seven old male Wistar rats were randomly divided into four groups: isocaloric standard diet (12% protein, 14% lipid, as ST12); isocaloric standard (high-protein) diet (25% protein, 14% lipid, ST25); hypercaloric high-fat (normal-protein) diet (12% protein, 45% lipid, HF12); and hypercaloric high-fat (high-protein) diet (25% protein, 45% lipid, HF25). The nutritional intervention lasted 10 weeks. Total body composition was measured through Echo-MRI. Lipids were extracted from tibialis anterior muscle and analyzed by gas-liquid chromatography. The functional properties of the plantarflexor muscles were evaluated in vivo on an isokinetic dynamometer. Maximal torque was assessed from the torque-frequency relationship in isometric condition and maximal power was evaluated from the torque-velocity relationship in concentric condition. In adult rats high-protein intake combined with high-fat diet determined a lower decrease in relative isometric torque, normalized to either FFM or body weight, compared with adult rats fed a high-fat normal-protein diet. High-fat diet was also detrimental to relative muscle power, as normalized to body weight, that decreased to a larger extent in adult rats fed a high-fat normal-protein diet than their counterparts fed a normal-fat, high-protein diet. The effect of high-fat diet observed in adults, with the enhanced protein intake (25%) conferring some kind of protection against the negative effects of HFD, may be linked to the reduced intramuscular fat in this group, which may have contributed to preserve, at least partly, the contractile properties. A potential role for high-protein diet in preventing ectopic lipid deposition needs to be explored in future research. Detrimental effects of high- fat diet on skeletal muscle performance are mitigated by high- protein intake in adult rats but not in old rats.
Collapse
Affiliation(s)
- Eleonora Poggiogalle
- Medical Pathophysiology, Food Science and Endocrinology Section, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France
- *Correspondence: Eleonora Poggiogalle,
| | - Fanny Rossignon
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France
| | - Aude Carayon
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France
| | - Fréderic Capel
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France
| | - Jean-Paul Rigaudière
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France
| | - Sarah De Saint Vincent
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France
| | - Olivier Le-Bacquer
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France
| | - Jérôme Salles
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France
| | - Christophe Giraudet
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France
| | - Véronique Patrac
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France
| | - Patrice Lebecque
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France
| | - Stéphane Walrand
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France
| | - Yves Boirie
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France
| | - Vincent Martin
- AME2P, Université Clermont Auvergne, Clermont-Ferrand, France
- Institut Universitaire de France, Paris, France
| | - Christelle Guillet
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France
| |
Collapse
|
20
|
OUP accepted manuscript. Nutr Rev 2022; 80:1942-1957. [DOI: 10.1093/nutrit/nuac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Khan MS, Spann RA, Münzberg H, Yu S, Albaugh VL, He Y, Berthoud HR, Morrison CD. Protein Appetite at the Interface between Nutrient Sensing and Physiological Homeostasis. Nutrients 2021; 13:4103. [PMID: 34836357 PMCID: PMC8620426 DOI: 10.3390/nu13114103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Feeding behavior is guided by multiple competing physiological needs, as animals must sense their internal nutritional state and then identify and consume foods that meet nutritional needs. Dietary protein intake is necessary to provide essential amino acids and represents a specific, distinct nutritional need. Consistent with this importance, there is a relatively strong body of literature indicating that protein intake is defended, such that animals sense the restriction of protein and adaptively alter feeding behavior to increase protein intake. Here, we argue that this matching of food consumption with physiological need requires at least two concurrent mechanisms: the first being the detection of internal nutritional need (a protein need state) and the second being the discrimination between foods with differing nutritional compositions. In this review, we outline various mechanisms that could mediate the sensing of need state and the discrimination between protein-rich and protein-poor foods. Finally, we briefly describe how the interaction of these mechanisms might allow an animal to self-select between a complex array of foods to meet nutritional needs and adaptively respond to changes in either the external environment or internal physiological state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christopher D. Morrison
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.S.K.); (R.A.S.); (H.M.); (S.Y.); (V.L.A.); (Y.H.); (H.-R.B.)
| |
Collapse
|
22
|
Minj S, Anand S, Martinez-Monteagudo S. Evaluating the effect of conjugation on the bioactivities of whey protein hydrolysates. J Food Sci 2021; 86:5107-5119. [PMID: 34766355 DOI: 10.1111/1750-3841.15958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022]
Abstract
In this study, the ability of a whey protein hydrolysate to exhibit the antimicrobial, antioxidant, and antihypertensive behavior after combining with a reducing carbohydrate was studied. Whey protein hydrolysates with varying degrees of hydrolysis (WPH10, WPH15, and WPH20) were determined for their antimicrobial, antioxidant, and antihypertensive activities. Of these, hydrolysate (WPH10) exhibited the highest antimicrobial activity (with 10-11.2 mm zone of inhibition) against tested microorganisms: Listeria innocua, Staphylococcus aureus, and Bacillus coagulans. Also, the WPH10 exhibited the highest antioxidant (866.56 TEAC µmol/L) and antihypertensive (67.52%) attributes. Hence, based on the highest bioactivity, hydrolysate WPH10 was selected for conjugation with maltodextrin, and the effect of conjugation on the bioactivities was evaluated. The conjugated WPH10 solution demonstrated higher antimicrobial (17.16 mm) and antioxidant activity (1044.37 TEAC µmol/L), whereas a slight decrease in the antihypertensive activity (65.4%) was observed, as compared to WPH10 alone. The conjugated solution was further spray dried and alternatively, freeze-dried. The dried WPH10 conjugate exhibited even higher antimicrobial (18.5 mm) and antioxidant activity (1268.89 TEAC µmol/L) while retaining the antihypertensive activity (65.6%). Overall, the results indicate the ability of the WPH10-maltodextrin to retain the bioactive behavior after combining with a reduced carbohydrate. PRACTICAL APPLICATION: Whey protein hydrolysates upon conjugation with carbohydrates retain the bioactive properties of whey protein, which provides opportunities for application as an ingredient to develop novel health formulations.
Collapse
Affiliation(s)
- Shayanti Minj
- Midwest Dairy Foods Research Center, South Dakota State University, Brookings, South Dakota, USA.,Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Midwest Dairy Foods Research Center, South Dakota State University, Brookings, South Dakota, USA.,Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota, USA
| | - Sergio Martinez-Monteagudo
- Midwest Dairy Foods Research Center, South Dakota State University, Brookings, South Dakota, USA.,Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
23
|
Impact of Nutritional Intervention on Taste Perception-A Scoping Review. Foods 2021; 10:foods10112747. [PMID: 34829027 PMCID: PMC8625746 DOI: 10.3390/foods10112747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/03/2022] Open
Abstract
The aim of the present scoping review was to evaluate the impact of experimental meal loads or observational diet changes/habits on taste tests in both healthy subjects and patients. A systematic search performed in PubMed, Scopus, and Institute for Scientific Information (ISI) Web of Science electronic databases retrieved, respectively 2981, 6258, and 7555 articles from January 2000 to December 2020. A total of 17 articles were included for full-text review. Literature results were stratified according to the observational/interventional approach, the involvement of healthy subjects or patients, the taste test, and the meal/dietary changes. The present scoping review reinforced the notions postulating that certain taste tests (for example focusing on fatty acid, salt, or sugar) might be specifically influenced by the nutritional intervention and that other ones might be susceptible to a wide span of changes beyond the extent of tastant included in the specific food changes. This could also depend on the inhomogeneity of literature trend: The short duration of the intervention or the random type of meal load, unsuitability of the taste test chosen, and the presence of underlying disorders. Future studies for a better comprehension of taste tests reliability in relation to specific food changes are thus to be fostered.
Collapse
|
24
|
Berthoud HR, Morrison CD, Ackroff K, Sclafani A. Learning of food preferences: mechanisms and implications for obesity & metabolic diseases. Int J Obes (Lond) 2021; 45:2156-2168. [PMID: 34230576 PMCID: PMC8455326 DOI: 10.1038/s41366-021-00894-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Omnivores, including rodents and humans, compose their diets from a wide variety of potential foods. Beyond the guidance of a few basic orosensory biases such as attraction to sweet and avoidance of bitter, they have limited innate dietary knowledge and must learn to prefer foods based on their flavors and postoral effects. This review focuses on postoral nutrient sensing and signaling as an essential part of the reward system that shapes preferences for the associated flavors of foods. We discuss the extensive array of sensors in the gastrointestinal system and the vagal pathways conveying information about ingested nutrients to the brain. Earlier studies of vagal contributions were limited by nonselective methods that could not easily distinguish the contributions of subsets of vagal afferents. Recent advances in technique have generated substantial new details on sugar- and fat-responsive signaling pathways. We explain methods for conditioning flavor preferences and their use in evaluating gut-brain communication. The SGLT1 intestinal sugar sensor is important in sugar conditioning; the critical sensors for fat are less certain, though GPR40 and 120 fatty acid sensors have been implicated. Ongoing work points to particular vagal pathways to brain reward areas. An implication for obesity treatment is that bariatric surgery may alter vagal function.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Christopher D Morrison
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Karen Ackroff
- Psychology Department, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - Anthony Sclafani
- Psychology Department, Brooklyn College of the City University of New York, Brooklyn, NY, USA.
| |
Collapse
|
25
|
Osman A, Zuffa S, Walton G, Fagbodun E, Zanos P, Georgiou P, Kitchen I, Swann J, Bailey A. Post-weaning A1/A2 β-casein milk intake modulates depressive-like behavior, brain μ-opioid receptors, and the metabolome of rats. iScience 2021; 24:103048. [PMID: 34585111 PMCID: PMC8450247 DOI: 10.1016/j.isci.2021.103048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
The postnatal period is critical for brain and behavioral development and is sensitive to environmental stimuli, such as nutrition. Prevention of weaning from maternal milk was previously shown to cause depressive-like behavior in rats. Additionally, loss of dietary casein was found to act as a developmental trigger for a population of brain opioid receptors. Here, we explore the effect of exposure to milk containing A1 and A2 β-casein beyond weaning. A1 but not A2 β-casein milk significantly increased stress-induced immobility in rats, concomitant with an increased abundance of Clostridium histolyticum bacterial group in the caecum and colon of A1 β-casein fed animals, brain region-specific alterations of μ-opioid and oxytocin receptors, and modifications in urinary biochemical profiles. Moreover, urinary gut microbial metabolites strongly correlated with altered brain metabolites. These findings suggest that consumption of milk containing A1 β-casein beyond weaning age may affect mood via a possible gut-brain axis mechanism. Postnatal brain development is sensitive to nutritional exposures Consumption of A1 but not A2 β-casein milk post-weaning affects mood in rats Gut microbial, biochemical, and neurochemical changes accompany mood alterations Urinary gut microbial metabolites correlate with brain metabolites
Collapse
Affiliation(s)
- Aya Osman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simone Zuffa
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Gemma Walton
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Elizabeth Fagbodun
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| | - Panos Zanos
- Department of Psychology, University of Cyprus, 1 University Avenue, 2109 Nicosia, Cyprus
| | - Polymnia Georgiou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ian Kitchen
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Jonathan Swann
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.,School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| |
Collapse
|
26
|
Chleilat F, Schick A, Deleemans JM, Ma K, Alukic E, Wong J, Noye Tuplin EW, Nettleton JE, Reimer RA. Paternal high protein diet modulates body composition, insulin sensitivity, epigenetics, and gut microbiota intergenerationally in rats. FASEB J 2021; 35:e21847. [PMID: 34405464 DOI: 10.1096/fj.202100198rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022]
Abstract
Mounting evidence demonstrates that paternal diet programs offspring metabolism. However, the contribution of a pre-conception paternal high protein (HP) diet to offspring metabolism, gut microbiota, and epigenetic changes remains unclear. Here we show that paternal HP intake in Sprague Dawley rats programs protective metabolic outcomes in offspring. Compared to paternal high fat/sucrose (HF/S), HP diet improved body composition and insulin sensitivity and improved circulating satiety hormones and cecal short-chain fatty acids compared to HF/S and control diet (P < .05). Further, using 16S rRNA gene sequencing to assess gut microbial composition, we observed increased alpha diversity, distinct bacterial clustering, and increased abundance of Bifidobacterium, Akkermansia, Bacteroides, and Marvinbryantia in HP fathers and/or male and female adult offspring. At the epigenetic level, DNMT1and 3b expression was altered intergenerationally. Our study identifies paternal HP diet as a modulator of gut microbial composition, epigenetic markers, and metabolic function intergenerationally.
Collapse
Affiliation(s)
- Faye Chleilat
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Alana Schick
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Julie M Deleemans
- Division of Medical Science and Psychosocial Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kyle Ma
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Erna Alukic
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Jolene Wong
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | | | - Jodi E Nettleton
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Comparative Assessment of the Acute Effects of Whey, Rice and Potato Protein Isolate Intake on Markers of Glycaemic Regulation and Appetite in Healthy Males Using a Randomised Study Design. Nutrients 2021; 13:nu13072157. [PMID: 34201703 PMCID: PMC8308460 DOI: 10.3390/nu13072157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 01/16/2023] Open
Abstract
Global protein consumption has been increasing for decades due to changes in demographics and consumer shifts towards higher protein intake to gain health benefits in performance nutrition and appetite regulation. Plant-derived proteins may provide a more environmentally sustainable alternative to animal-derived proteins. This study, therefore, aimed to investigate, for the first time, the acute effects on glycaemic indices, gut hormones, and subjective appetite ratings of two high-quality, plant-derived protein isolates (potato and rice), in comparison to a whey protein isolate in a single-blind, triple-crossover design study with nine male participants (30.8 ± 9.3 yrs). Following a 12 h overnight fast, participants consumed an equal volume of the three isocaloric protein shakes on different days, with at least a one-week washout period. Glycaemic indices and gut hormones were measured at baseline, then at 30, 60, 120, 180 min at each visit. Subjective palatability and appetite ratings were measured using visual analogue scales (VAS) over the 3 h, at each visit. This data showed significant differences in insulin secretion with an increase in whey (+141.8 ± 35.1 pmol/L; p = 0.011) and rice (−64.4 ± 20.9 pmol/L; p = 0.046) at 30 min compared to potato protein. A significantly larger total incremental area under the curve (iAUC) was observed with whey versus potato and rice with p < 0.001 and p = 0.010, respectively. There was no significant difference observed in average appetite perception between the different proteins. In conclusion, this study suggests that both plant-derived proteins had a lower insulinaemic response and improved glucose maintenance compared to whey protein.
Collapse
|
28
|
Adjustment of Whey:Casein Ratio from 20:80 to 60:40 in Milk Formulation Affects Food Intake and Brainstem and Hypothalamic Neuronal Activation and Gene Expression in Laboratory Mice. Foods 2021; 10:foods10030658. [PMID: 33808819 PMCID: PMC8003661 DOI: 10.3390/foods10030658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Adjustment of protein content in milk formulations modifies protein and energy levels, ensures amino acid intake and affects satiety. The shift from the natural whey:casein ratio of ~20:80 in animal milk is oftentimes done to reflect the 60:40 ratio of human milk. Studies show that 20:80 versus 60:40 whey:casein milks differently affect glucose metabolism and hormone release; these data parallel animal model findings. It is unknown whether the adjustment from the 20:80 to 60:40 ratio affects appetite and brain processes related to food intake. In this set of studies, we focused on the impact of the 20:80 vs. 60:40 whey:casein content in milk on food intake and feeding-related brain processes in the adult organism. By utilising laboratory mice, we found that the 20:80 whey:casein milk formulation was consumed less avidly and was less preferred than the 60:40 formulation in short-term choice and no-choice feeding paradigms. The relative PCR analyses in the hypothalamus and brain stem revealed that the 20:80 whey:casein milk intake upregulated genes involved in early termination of feeding and in an interplay between reward and satiety, such as melanocortin 3 receptor (MC3R), oxytocin (OXT), proopiomelanocortin (POMC) and glucagon-like peptide-1 receptor (GLP1R). The 20:80 versus 60:40 whey:casein formulation intake differently affected brain neuronal activation (assessed through c-Fos, an immediate-early gene product) in the nucleus of the solitary tract, area postrema, ventromedial hypothalamic nucleus and supraoptic nucleus. We conclude that the shift from the 20:80 to 60:40 whey:casein ratio in milk affects short-term feeding and relevant brain processes.
Collapse
|
29
|
Soengas JL. Integration of Nutrient Sensing in Fish Hypothalamus. Front Neurosci 2021; 15:653928. [PMID: 33716662 PMCID: PMC7953060 DOI: 10.3389/fnins.2021.653928] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
The knowledge regarding hypothalamic integration of metabolic and endocrine signaling resulting in regulation of food intake is scarce in fish. Available studies pointed to a network in which the activation of the nutrient-sensing (glucose, fatty acid, and amino acid) systems would result in AMP-activated protein kinase (AMPK) inhibition and activation of protein kinase B (Akt) and mechanistic target of rapamycin (mTOR). Changes in these signaling pathways would control phosphorylation of transcription factors cAMP response-element binding protein (CREB), forkhead box01 (FoxO1), and brain homeobox transcription factor (BSX) leading to food intake inhibition through changes in the expression of neuropeptide Y (NPY), agouti-related peptide (AgRP), pro-opio melanocortin (POMC), and cocaine and amphetamine-related transcript (CART). The present mini-review summarizes information on the topic and identifies gaps for future research.
Collapse
Affiliation(s)
- José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
30
|
Hajishafiee M, Elovaris RA, Jones KL, Heilbronn LK, Horowitz M, Poppitt SD, Feinle-Bisset C. Effects of intragastric administration of L-tryptophan on the glycaemic response to a nutrient drink in men with type 2 diabetes - impacts on gastric emptying, glucoregulatory hormones and glucose absorption. Nutr Diabetes 2021; 11:3. [PMID: 33414406 PMCID: PMC7791097 DOI: 10.1038/s41387-020-00146-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The rate of gastric emptying and glucoregulatory hormones are key determinants of postprandial glycaemia. Intragastric administration of L-tryptophan slows gastric emptying and reduces the glycaemic response to a nutrient drink in lean individuals and those with obesity. We investigated whether tryptophan decreases postprandial glycaemia and slows gastric emptying in type 2 diabetes (T2D). METHODS Twelve men with T2D (age: 63 ± 2 years, HbA1c: 49.7 ± 2.5 mmol/mol, BMI: 30 ± 1 kg/m2) received, on three separate occasions, 3 g ('Trp-3') or 1.5 g ('Trp-1.5') tryptophan, or control (0.9% saline), intragastrically, in randomised, double-blind fashion, 30 min before a mixed-nutrient drink (500 kcal, 74 g carbohydrates), containing 3 g 3-O-methyl-D-glucose (3-OMG) to assess glucose absorption. Venous blood samples were obtained at baseline, after tryptophan, and for 2 h post-drink for measurements of plasma glucose, C-peptide, glucagon and 3-OMG. Gastric emptying of the drink was quantified using two-dimensional ultrasound. RESULTS Tryptophan alone stimulated C-peptide (P = 0.002) and glucagon (P = 0.04), but did not affect fasting glucose. In response to the drink, Trp-3 lowered plasma glucose from t = 15-30 min and from t = 30-45 min compared with control and Trp-1.5, respectively (both P < 0.05), with no differences in peak glucose between treatments. Gastric emptying tended to be slower after Trp-3, but not Trp-1.5, than control (P = 0.06). Plasma C-peptide, glucagon and 3-OMG increased on all days, with no major differences between treatments. CONCLUSIONS In people with T2D, intragastric administration of 3 g tryptophan modestly slows gastric emptying, associated with a delayed rise, but not an overall lowering of, postprandial glucose.
Collapse
Affiliation(s)
- Maryam Hajishafiee
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Rachel A Elovaris
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Leonie K Heilbronn
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
31
|
Enriquez-Hesles E, Smith DL, Maqani N, Wierman MB, Sutcliffe MD, Fine RD, Kalita A, Santos SM, Muehlbauer MJ, Bain JR, Janes KA, Hartman JL, Hirschey MD, Smith JS. A cell-nonautonomous mechanism of yeast chronological aging regulated by caloric restriction and one-carbon metabolism. J Biol Chem 2021; 296:100125. [PMID: 33243834 PMCID: PMC7949035 DOI: 10.1074/jbc.ra120.015402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/26/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
Caloric restriction (CR) improves health span and life span of organisms ranging from yeast to mammals. Understanding the mechanisms involved will uncover future interventions for aging-associated diseases. In budding yeast, Saccharomyces cerevisiae, CR is commonly defined by reduced glucose in the growth medium, which extends both replicative and chronological life span (CLS). We found that conditioned media collected from stationary-phase CR cultures extended CLS when supplemented into nonrestricted (NR) cultures, suggesting a potential cell-nonautonomous mechanism of CR-induced life span regulation. Chromatography and untargeted metabolomics of the conditioned media, as well as transcriptional responses associated with the longevity effect, pointed to specific amino acids enriched in the CR conditioned media (CRCM) as functional molecules, with L-serine being a particularly strong candidate. Indeed, supplementing L-serine into NR cultures extended CLS through a mechanism dependent on the one-carbon metabolism pathway, thus implicating this conserved and central metabolic hub in life span regulation.
Collapse
Affiliation(s)
- Elisa Enriquez-Hesles
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Daniel L Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Nutrition Science, Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nazif Maqani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Matthew D Sutcliffe
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ryan D Fine
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Agata Kalita
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sean M Santos
- Department of Genetics, Nutrition and Obesity Research Center, Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J Muehlbauer
- Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - James R Bain
- Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Kevin A Janes
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - John L Hartman
- Department of Genetics, Nutrition and Obesity Research Center, Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew D Hirschey
- Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Jeffrey S Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
32
|
Abstract
High-protein meals and foods are promoted for their beneficial effects on satiety, weight loss and glucose homeostasis. However, the mechanisms involved and the long-term benefits of such diets are still debated. We here review how the characterisation of intestinal gluconeogenesis (IGN) sheds new light on the mechanisms by which protein diets exert their beneficial effects on health. The small intestine is the third organ (in addition to the liver and kidney) contributing to endogenous glucose production via gluconeogenesis. The particularity of glucose produced by the intestine is that it is detected in the portal vein and initiates a nervous signal to the hypothalamic nuclei regulating energy homeostasis. In this context, we demonstrated that protein diets initiate their satiety effects indirectly via IGN and portal glucose sensing. This induction results in the activation of brain areas involved in the regulation of food intake. The μ-opioid-antagonistic properties of protein digests, exerted in the portal vein, are a key link between IGN induction and protein-enriched diet in the control of satiety. From our results, IGN can be proposed as a mandatory link between nutrient sensing and the regulation of whole-body homeostasis. The use of specific mouse models targeting IGN should allow us to identify several metabolic functions that could be controlled by protein diets. This will lead to the characterisation of the mechanisms by which protein diets improve whole-body homeostasis. These data could be the basis of novel nutritional strategies targeting the serious metabolic consequences of both obesity and diabetes.
Collapse
|
33
|
Protein metabolism and related body function: mechanistic approaches and health consequences. Proc Nutr Soc 2020; 80:243-251. [PMID: 33050961 DOI: 10.1017/s0029665120007880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The development and maintenance of body composition and functions require an adequate protein intake with a continuous supply of amino acids (AA) to tissues. Body pool and AA cellular concentrations are tightly controlled and maintained through AA supply (dietary intake, recycled from proteolysis and de novo synthesis), AA disposal (protein synthesis and other AA-derived molecules) and AA losses (deamination and oxidation). Different molecular regulatory pathways are involved in the control of AA sufficiency including the mechanistic target of rapamycin complex 1, the general control non-derepressible 2/activating transcription factor 4 system or the fibroblast growth factor 21. There is a tight control of protein intake, and human subjects and animals appear capable of detecting and adapting food and protein intake and metabolism in face of foods or diets with different protein contents. A severely protein deficient diet induces lean body mass losses and ingestion of sufficient dietary energy and protein is a prerequisite for body protein synthesis and maintenance of muscle, bone and other lean tissues and functions. Maintaining adequate protein intake with age may help preserve muscle mass and strength but there is an ongoing debate as to the optimal protein intake in older adults. The protein synthesis response to protein intake can also be enhanced by prior completion of resistance exercise but this effect could be somewhat reduced in older compared to young individuals and gain in muscle mass and function due to exercise require regular training over an extended period.
Collapse
|
34
|
Evaluation of an Amino Acid Mix on the Secretion of Gastrointestinal Peptides, Glucometabolic Homeostasis, and Appetite in Obese Adolescents Administered with a Fixed-Dose or ad Libitum Meal. J Clin Med 2020; 9:jcm9093054. [PMID: 32971830 PMCID: PMC7564111 DOI: 10.3390/jcm9093054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
Proteins have been demonstrated to reduce food intake in animals and humans via peripheral and central mechanisms. Supplementation of a dietetic regimen with single or mixed amino acids might represent an approach to improve the effectiveness of any body weight reduction program in obese subjects. The aim of the present study was to evaluate the effects of an amino acid mix (L-arginine + L-leucine + L-glutamine + L-tryptophan) on the secretion of some gastrointestinal peptides (i.e., ghrelin and glucagon-like peptide type 1, GLP-1), glucometabolic homeostasis (i.e., glucose, insulin, and glucagon), and appetite (hunger/satiety scored by visual analogue scale, VAS) in obese adolescents (n = 14; 10 females and 4 males; age: 16.6 ± 1.0 years; body mass index (BMI): 36.4 ± 4.6 kg/m²; fat-free mass (FFM): 54.9 ± 4.7%; fat mass (FM): 45.1 ± 4.4%) administered with a fixed-dose (lunch) or ad libitum (dinner) meal. Isocaloric maltodextrins were used as control treatment. During the lunch test, a significant increase in circulating levels of GLP-1, but not of ghrelin, was observed in the amino acid-treated group, which was congruent with significant changes in appetite, i.e., increase in satiety and decrease in hunger. A significant hyperglycemia was found in the maltodextrin-treated group during the prelunch period, without any significant changes in insulin and glucagon between the two groups. During the dinner test, there were no significant differences in appetite (hunger/satiety) and intake of calories. In conclusion, L-arginine, L-leucine, L-glutamine, and L-tryptophan, when administered to obese adolescents with a fixed-dose meal, are capable of evoking an anorexigenic response, which is, at least in part, mediated by an increase in GLP-1 released in circulation by L cells, which are capable of chemosensing specific amino acids present in the intestinal lumen. Further additional studies are requested to understand whether higher doses are necessary to inhibit ad libitum feeding.
Collapse
|
35
|
Comesaña S, Conde-Sieira M, Velasco C, Soengas JL, Morais S. Oral and pre-absorptive sensing of amino acids relates to hypothalamic control of food intake in rainbow trout. J Exp Biol 2020; 223:jeb221721. [PMID: 32680900 DOI: 10.1242/jeb.221721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
Abstract
To assess the putative role of taste and pre-absorptive sensing of amino acids in food intake control in fish, we carried out an oral administration with l-leucine, l-valine, l-proline or l-glutamic acid in rainbow trout (Oncorhynchus mykiss). Treatment with proline significantly reduced voluntary food intake at 2 h and 3 h after oral administration, while glutamic acid showed a less pronounced satiating effect at 3 h. The mRNA expression of taste receptor subunits tas1r1, tas1r2a, tas1r2b and tas1r3 was measured in the epithelium overlying the bony basihyal of the fish (analogous to the tetrapod tongue) at 10, 20 or 30 min following treatment. No significant changes were observed, except for a tas1r down-regulation by valine at 30 min. Of the downstream taste signalling genes that were analysed in parallel, plcb2 and possibly trpm5 (non-significant trend) were down-regulated 20 min after proline and glutamic acid treatment. The signal originated in the oropharyngeal and/or gastric cavity presumably relays to the brain as changes in genes involved in the regulation of food intake occurred in hypothalamus 10-30 min after oral treatment with amino acids. In particular, proline induced changes consistent with an increased anorexigenic potential in the hypothalamus. We have therefore demonstrated, for the first time in fish, that the peripheral (pre-absorptive) detection of an amino acid (l-proline), presumably by taste-related mechanisms, elicits a satiety signal that in hypothalamus is translated into changes in cellular signalling and neuropeptides regulating food intake, ultimately resulting in decreased food intake.
Collapse
Affiliation(s)
- Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Sofia Morais
- Lucta S.A., Innovation Division, UAB Research Park, 08193 Bellaterra, Spain
| |
Collapse
|
36
|
Impact of Protein Intake in Older Adults with Sarcopenia and Obesity: A Gut Microbiota Perspective. Nutrients 2020; 12:nu12082285. [PMID: 32751533 PMCID: PMC7468805 DOI: 10.3390/nu12082285] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The continuous population increase of older adults with metabolic diseases may contribute to increased prevalence of sarcopenia and obesity and requires advocacy of optimal nutrition treatments to combat their deleterious outcomes. Sarcopenic obesity, characterized by age-induced skeletal-muscle atrophy and increased adiposity, may accelerate functional decline and increase the risk of disability and mortality. In this review, we explore the influence of dietary protein on the gut microbiome and its impact on sarcopenia and obesity. Given the associations between red meat proteins and altered gut microbiota, a combination of plant and animal-based proteins are deemed favorable for gut microbiota eubiosis and muscle-protein synthesis. Additionally, high-protein diets with elevated essential amino-acid concentrations, alongside increased dietary fiber intake, may promote gut microbiota eubiosis, given the metabolic effects derived from short-chain fatty-acid and branched-chain fatty-acid production. In conclusion, a greater abundance of specific gut bacteria associated with increased satiation, protein synthesis, and overall metabolic health may be driven by protein and fiber consumption. This could counteract the development of sarcopenia and obesity and, therefore, represent a novel approach for dietary recommendations based on the gut microbiota profile. However, more human trials utilizing advanced metabolomic techniques to investigate the microbiome and its relationship with macronutrient intake, especially protein, are warranted.
Collapse
|
37
|
Challenging energy balance - during sensitivity to food reward and modulatory factors implying a risk for overweight - during body weight management including dietary restraint and medium-high protein diets. Physiol Behav 2020; 221:112879. [PMID: 32199999 DOI: 10.1016/j.physbeh.2020.112879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 02/03/2023]
Abstract
Energy balance is a key concept in the etiology and prevalence of obesity and its co-morbidities, as well as in the development of possible treatments. If energy intake exceeds energy expenditure, a positive energy balance develops and the risk for overweight, obesity, and its co-morbidities increases. Energy balance is determined by energy homeostasis, and challenged by sensitivity to food reward, and to modulatory factors such as circadian misalignment, high altitude, environmental temperature, and physical activity. Food reward and circadian misalignment increase the risk for overweight and obesity, while high altitude, changes in environmental temperature, or physical activity modulate energy balance in different directions. Modulations by hypobaric hypoxia, lowering environmental temperature, or increasing physical activity have been hypothesized to contribute to body weight loss and management, yet no clear evidence has been shown. Dietary approach as part of a lifestyle approach for body weight management should imply reduction of energy intake including control of food reward, thereby sustaining satiety and fat free body mass, sustaining energy expenditure. Green tea catechins and capsaicin in red pepper in part meet these requirements by sustaining energy expenditure and increasing fat oxidation, while capsaicin also suppresses hunger and food intake. Protein intake of at least 0,8 g/kg body weight meets these requirements in that it, during decreased energy intake, increases food intake control including control of food reward, and counteracts adaptive thermogenesis. Prevention of overweight and obesity is underscored by dietary restraint, implying control of sensitivity to challenges to energy balance such as food reward and circadian misalignment. Treatment of overweight and obesity may be possible using a medium-high protein diet (0,8-1,2 g/kg), together with increased dietary restraint, while controlling challenges to energy balance.
Collapse
|
38
|
Santos-Hernández M, Amigo L, Recio I. Induction of CCK and GLP-1 release in enteroendocrine cells by egg white peptides generated during gastrointestinal digestion. Food Chem 2020; 329:127188. [PMID: 32516710 DOI: 10.1016/j.foodchem.2020.127188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/27/2022]
Abstract
The effect of dietary protein on the induction of intestinal hormones is recognised. However, little is known about the nature of the digestion products involved in this intestinal signalling. Our aim was to characterise egg white protein digestion products and study their ability to induce CCK and GLP-1 release in enteroendocrine STC-1 cells. Intestinal digests triggered GLP-1 release at a higher rate than gastric digests. Peptides, but not free amino acids, showed a potent GLP-1 secretagogue effect, while proteins only had a modest effect. CCK was released in response to peptides and free amino acids but not proteins. Two hydrophobic negatively charged peptides triggered CCK release, while the highest GLP-1 response was found with a hydrophobic positively charged peptide, pointing to the involvement of different receptors or active sites. Identifying peptide sequences and receptors involved in hormonal secretion could open up new ways to control food intake and glucose metabolism.
Collapse
Affiliation(s)
- Marta Santos-Hernández
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Lourdes Amigo
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Isidra Recio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain.
| |
Collapse
|
39
|
Somogyi E, Sigalet D, Adrian TE, Nyakas C, Hoornenborg CW, van Beek AP, Koopmans HS, van Dijk G. Ileal Transposition in Rats Reduces Energy Intake, Body Weight, and Body Fat Most Efficaciously When Ingesting a High-Protein Diet. Obes Surg 2020; 30:2729-2742. [PMID: 32342267 PMCID: PMC7260147 DOI: 10.1007/s11695-020-04565-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose Ileal transposition (IT) allows exploration of hindgut effects of bariatric procedures in inducing weight loss and reducing adiposity. Here we investigated the role of dietary macronutrient content on IT effects in rats. Methods Male Lewis rats consuming one of three isocaloric liquid diets enriched with fat (HF), carbohydrates (HC), or protein (HP) underwent IT or sham surgery. Body weight, energy intake, energy efficiency, body composition, and (meal-induced) changes in plasma GIP, GLP-1, PYY, neurotensin, and insulin levels were measured. Results Following IT, HC intake remained highest leading to smallest weight loss among dietary groups. IT in HF rats caused high initial weight loss and profound hypophagia, but the rats caught up later, and finally had the highest body fat content among IT rats. HP diet most efficaciously supported IT-induced reduction in body weight and adiposity, but (as opposed to other diet groups) lean mass was also reduced. Energy efficiency decreased immediately after IT irrespective of diet, but normalized later. Energy intake alone explained variation in post-operative weight change by 80%. GLP-1, neurotensin, and PYY were upregulated by IT, particularly during (0–60 min) and following 17-h post-ingestive intake, with marginal diet effects. Thirty-day post-operative cumulative energy intake was negatively correlated to 17-h post-ingestive PYY levels, explaining 47% of its variation. Conclusion Reduction in energy intake underlies IT-induced weight loss, with highest efficacy of the HP diet. PYY, GLP-1, and neurotensin levels are upregulated by IT, of which PYY may be most specifically related to reduced intake and weight loss after IT.
Collapse
Affiliation(s)
- Edit Somogyi
- School of PhD Studies, University of Physical Education, Budapest, Hungary.,Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.,Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Sigalet
- Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Thomas E Adrian
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Csaba Nyakas
- School of PhD Studies, University of Physical Education, Budapest, Hungary.,Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.,Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Christiaan W Hoornenborg
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.,Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - André P van Beek
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Henry S Koopmans
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Gertjan van Dijk
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
40
|
Tomé D, Chaumontet C, Even PC, Darcel N, Thornton SN, Azzout-Marniche D. Protein Status Modulates an Appetite for Protein To Maintain a Balanced Nutritional State-A Perspective View. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1830-1836. [PMID: 31729225 DOI: 10.1021/acs.jafc.9b05990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Protein sufficiency is tightly controlled through different sensing and signaling processes that modulate and adapt protein and energy metabolism and feeding behavior to reach and maintain a well-balanced protein status. High-protein diets, often discussed in the context of body weight management, usually activate anorexigenic pathways, leading to higher satiety, decreased food and energy intake, and decreased body weight and adiposity. Diets marginally low in protein (3-8% energy) or marginally deficient in some indispensable amino acid more often activate orexigenic pathways, with higher appetite and a specific appetite for protein, a response that leads to an increase in protein intake to partially compensate for the deficit in protein and amino acid. Diets severely deficient in protein (2-3% energy as protein) usually depress food intake and induce lower weight and lower fat mass and lean tissues that characterize a status of protein deficiency. The control of protein sufficiency involves various peripheral and central signals, including modulation of both metabolic pathways at the periphery as well as central pathways of the control of food and protein intake, including a reward-driven specific sensitivity to the protein content of foods.
Collapse
Affiliation(s)
- Daniel Tomé
- Physiologie de la Nutrition et du Comportement Alimentaire (PNCA), Institut National de la Recherche Agronomique (INRA), AgroParisTech , Université Paris-Saclay , 75005 Paris , France
| | - Catherine Chaumontet
- Physiologie de la Nutrition et du Comportement Alimentaire (PNCA), Institut National de la Recherche Agronomique (INRA), AgroParisTech , Université Paris-Saclay , 75005 Paris , France
| | - Patrick C Even
- Physiologie de la Nutrition et du Comportement Alimentaire (PNCA), Institut National de la Recherche Agronomique (INRA), AgroParisTech , Université Paris-Saclay , 75005 Paris , France
| | - Nicolas Darcel
- Physiologie de la Nutrition et du Comportement Alimentaire (PNCA), Institut National de la Recherche Agronomique (INRA), AgroParisTech , Université Paris-Saclay , 75005 Paris , France
| | - Simon N Thornton
- U1116, Institut National de la Santé et de la Recherche Médicale (INSERM) , Université de Lorraine , 54505 Vandœuvre-lès-Nancy CEDEX, France
| | - Dalila Azzout-Marniche
- Physiologie de la Nutrition et du Comportement Alimentaire (PNCA), Institut National de la Recherche Agronomique (INRA), AgroParisTech , Université Paris-Saclay , 75005 Paris , France
| |
Collapse
|
41
|
Tian M, Heng J, Song H, Zhang Y, Chen F, Guan W, Zhang S. Branched chain amino acids stimulate gut satiety hormone cholecystokinin secretion through activation of the umami taste receptor T1R1/T1R3 using an in vitro porcine jejunum model. Food Funct 2019; 10:3356-3367. [PMID: 31098606 DOI: 10.1039/c9fo00228f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Branched chain amino acids (BCAAs) are essential amino acids involved in regulation of feed intake. The function of BCAAs on the central nervous system has been extensively studied, but effects of BCAAs on secretion of gut satiety hormones and their underlying mechanisms are largely unknown. In this study, we evaluated the distribution of gut hormones and amino acid receptors in the porcine GI tract and found cholecystokinin (CCK) and taste dimeric receptor type 1 member 1/3 (T1R1/T1R3) were predominantly expressed in the jejunum and functionally interrelated. We further evaluated the effects of l-leucine, l-isoleucine, l-valine, and BCAAs on CCK and T1R1/T1R3 expression in porcine jejunum tissue. Our data demonstrated that stimulation of porcine jejunum tissue with 10 mM l-leucine, l-isoleucine or BCAAs mix (l-leucine : l-isoleucine : l-valine = 1 : 0.51 : 0.63) for 2 hours significantly increased mRNA expression and protein abundance of T1R1/T1R3 and secretion of CCK (P < 0.05). However, the l-valine treatment only increased the mRNA and protein abundance of T1R1 and T1R3 (P < 0.05), but not CCK secretion (P > 0.10). l-Leucine-, l-isoleucine- or BCAAs mix-induced CCK secretion was significantly decreased after tissues were pretreated with lactisole, a T1R1/T1R3 inhibitor (P < 0.05). Furthermore, the increased mRNA and protein abundance of T1R1/T1R3 were also largely attenuated by blocking T1R1/T1R3 with lactisole (P < 0.05). l-Leucine, l-isoleucine and BCAAs mix appeared to induce the gut satiety hormone CCK secretion through jejunal T1R1/T1R3. These results indicate over-supplementation with BCAAs in the diet might decrease food intake in swine and humans through gastrointestinal feedback.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Simon MJ, Zafra MA, Puerto A. Differential rewarding effects of electrical stimulation of the lateral hypothalamus and parabrachial complex: Functional characterization and the relevance of opioid systems and dopamine. J Psychopharmacol 2019; 33:1475-1490. [PMID: 31282233 DOI: 10.1177/0269881119855982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since the discovery of rewarding intracranial self-stimulation by Olds and Milner, extensive data have been published on the biological basis of reward. Although participation of the mesolimbic dopaminergic system is well documented, its precise role has not been fully elucidated, and some authors have proposed the involvement of other neural systems in processing specific aspects of reinforced behaviour. AIMS AND METHODS We reviewed published data, including our own findings, on the rewarding effects induced by electrical stimulation of the lateral hypothalamus (LH) and of the external lateral parabrachial area (LPBe) - a brainstem region involved in processing the rewarding properties of natural and artificial substances - and compared its functional characteristics as observed in operant and non-operant behavioural procedures. RESULTS Brain circuits involved in the induction of preferences for stimuli associated with electrical stimulation of the LBPe appear to functionally and neurochemically differ from those activated by electrical stimulation of the LH. INTERPRETATION We discuss the possible involvement of the LPBe in processing emotional-affective aspects of the brain reward system.
Collapse
Affiliation(s)
- Maria J Simon
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Maria A Zafra
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Amadeo Puerto
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
43
|
OKOUCHI R, SAKANOI Y, TSUDUKI T. The Effect of Carbohydrate-Restricted Diets on the Skin Aging of Mice. J Nutr Sci Vitaminol (Tokyo) 2019; 65:S67-S71. [DOI: 10.3177/jnsv.65.s67] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ran OKOUCHI
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| | - Yuto SAKANOI
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| | - Tsuyoshi TSUDUKI
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| |
Collapse
|
44
|
Hollingworth S, Dalton M, Blundell JE, Finlayson G. Evaluation of the Influence of Raw Almonds on Appetite Control: Satiation, Satiety, Hedonics and Consumer Perceptions. Nutrients 2019; 11:E2030. [PMID: 31480245 PMCID: PMC6769453 DOI: 10.3390/nu11092030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022] Open
Abstract
Snack foods can be substantial contributors to daily energy intake, with different types of snacks exerting potentially different effects on satiety per calorie consumed. The present research compared the effect of consuming almonds as a mid-morning snack compared to an energy and weight-matched comparator snack (savoury crackers) or the equivalent weight of water (zero energy control). In a crossover design, 42 female participants (age: 26.0 ± 7.9, BMI: 22.0 ± 2.0) consumed a fixed breakfast then a mid-morning snack. Appetite, 24-h energy intake, food hedonics, and consumer perceptions of the snack foods were assessed under laboratory conditions. AUC analyses revealed a lower overall hunger drive after consuming almonds compared to crackers or water. There was no difference in 24-h energy intake in the almond compared to the cracker or the zero-energy control condition, however participants consumed more energy in the cracker condition compared to the zero-energy control condition. In addition, almonds suppressed hedonic preference (implicit wanting) for consuming high-fat foods and demonstrated a higher satiety quotient (SQ) than crackers. Almonds were perceived to have a more favourable consumer profile aligned with successful weight management. In conclusion, these findings demonstrate that in the context of a 24-h period of objectively measured energy intake, raw almonds are effective for controlling appetite compared to an energy matched alternative snack. This trial was registered at clinicaltrials.gov [NCT02480582].
Collapse
Affiliation(s)
- Sophie Hollingworth
- Appetite Control and Energy Balance Research, School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| | - Michelle Dalton
- School of Social and Health Sciences, Leeds Trinity University, LS18 5HD, Leeds LS18 5HD, UK.
| | - John E Blundell
- Appetite Control and Energy Balance Research, School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| | - Graham Finlayson
- Appetite Control and Energy Balance Research, School of Psychology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
45
|
Tomé D, Chaumontet C, Even PC, Darcel N, Azzout-Marniche D. Protein status modulates the rewarding value of foods and meals to maintain an adequate protein intake. Physiol Behav 2019; 206:7-12. [DOI: 10.1016/j.physbeh.2019.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
|
46
|
Tsuduki T. Health Benefit of the Japanese Diet ~Exploring the Significance of Staple Food~. J JPN SOC FOOD SCI 2019. [DOI: 10.3136/nskkk.66.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University
| |
Collapse
|
47
|
Drareni K, Dougkas A, Giboreau A, Laville M, Souquet PJ, Bensafi M. Relationship between food behavior and taste and smell alterations in cancer patients undergoing chemotherapy: A structured review. Semin Oncol 2019; 46:160-172. [DOI: 10.1053/j.seminoncol.2019.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
|
48
|
Virgilio N, De Donno R, Bandini E, Napolitano A, Fogliano V, Vitaglione P. Milk protein enriched beverage reduces post-exercise energy intakes in women with higher levels of cognitive dietary restraint. Food Res Int 2019; 118:58-64. [PMID: 30898353 DOI: 10.1016/j.foodres.2017.11.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 11/11/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The aim of this study was to assess the satiating efficacy of milk proteins compared to carbohydrates in twenty women during post-exercise period. METHODS A milk protein-enriched beverage (MPB), and an isocaloric carbohydrate-enriched beverage (CB) containing respectively 9.3g and 0.3g of milk proteins per 100mL beverage, were developed and tested in a satiety study with 20 free-living healthy and normal weight women. The participants drank 250mL of the two beverages after an aerobic exercise session, filled daily food diaries and rated their appetite on visual analogue scale (VAS), in two days over three consecutive weeks. A psychometric evaluation of eating behaviour was obtained by three-factor eating questionnaire (TFEQ). RESULTS No differences in appetite feelings and energy intakes between MPB and CB were found in the study population. However, 9 participants were significantly less hungry (-9% vs+15%, p 0.03) and ate later (208min vs 127min, p 0.03) and less (-10% vs+8% daily energy intake, p 0.01) when they had MPB than CB. These women had a slightly higher BMI and were more restrained than the others. CONCLUSIONS Data showed that MPB compared to CB could modify daily eating habits by enhancing satiety in women with a stronger cognitive control of eating behaviour.
Collapse
Affiliation(s)
- Nicolina Virgilio
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Roberta De Donno
- Research & Development, Parmalat Italia S.p.A, Collecchio, Italy
| | - Enrica Bandini
- Research & Development, Parmalat Italia S.p.A, Collecchio, Italy
| | - Aurora Napolitano
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Vincenzo Fogliano
- Food Quality & Design Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy.
| |
Collapse
|
49
|
Li H, Liu Y, Liu C, Luo L, Yao Y, Li F, Yin L, Xu L, Tong Q, Huang C, Fan S. Notoginsenoside Fe suppresses diet induced obesity and activates paraventricular hypothalamic neurons. RSC Adv 2019; 9:1290-1298. [PMID: 35518019 PMCID: PMC9059641 DOI: 10.1039/c8ra07842d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/24/2018] [Indexed: 01/13/2023] Open
Abstract
Obesity has become a major public health challenge worldwide. Energy imbalance between calorie acquisition and consumption is the fundamental cause of obesity. Notoginsenoside Fe is a naturally occurring compound in Panax notoginseng, a herb used in the treatment of cardiovascular diseases in traditional Chinese medicine. Here, we evaluated the effect of notoginsenoside Fe on obesity development induced by high-fat diet in C57BL/6 mice. Our results demonstrated that notoginsenoside Fe decreased food intake and body weight, as well as protected liver structure integrity and normal function. Metabolic cage analysis showed that notoginsenoside Fe also promoted resting metabolic rate. In addition, intracerebroventricular (i.c.v) injection of notoginsenoside Fe induced C-Fos expression in the paraventricular nucleus (PVH) but not the arcuate nucleus (ARC) of the hypothalamus. These results suggest that Fe may reduce body weight through the activation of energy-sensing neurons in the hypothalamus. Notoginsenoside Fe, a naturally occurring compound in Panax notoginseng, significantly reduces body weight, promotes metabolic rate, and suppresses food intake through activating C-Fos expression in PVH in high-fat diet induced obese mice.![]()
Collapse
|
50
|
Lushchak O, Strilbytska OM, Yurkevych I, Vaiserman AM, Storey KB. Implications of amino acid sensing and dietary protein to the aging process. Exp Gerontol 2019; 115:69-78. [DOI: 10.1016/j.exger.2018.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/05/2018] [Accepted: 11/26/2018] [Indexed: 01/16/2023]
|