1
|
Wang Y, Fan J, Meng X, Shu Q, Wu Y, Chu GC, Ji R, Ye Y, Wu X, Shi J, Deng H, Liu L, Li YM. Development of nucleus-targeted histone-tail-based photoaffinity probes to profile the epigenetic interactome in native cells. Nat Commun 2025; 16:415. [PMID: 39762271 PMCID: PMC11704063 DOI: 10.1038/s41467-024-55046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Dissection of the physiological interactomes of histone post-translational modifications (hPTMs) is crucial for understanding epigenetic regulatory pathways. Peptide- or protein-based histone photoaffinity tools expanded the ability to probe the epigenetic interactome, but in situ profiling in native cells remains challenging. Here, we develop a nucleus-targeting histone-tail-based photoaffinity probe capable of profiling the hPTM-mediated interactomes in native cells, by integrating cell-permeable and nuclear localization peptide modules into an hPTM peptide equipped with a photoreactive moiety. These types of probes, such as histone H3 lysine 4 trimethylation and histone H3 Lysine 9 crotonylation probes, enable the probing of epigenetic interactomes both in HeLa cell and hard-to-transfect RAW264.7 cells, resulting in the discovery of distinct interactors in different cell lines. The utility of this probe is further exemplified by characterizing interactome of emerging hPTM, such as AF9 was detected as a binder of histone H3 Lysine 9 lactylation, thus expanding the toolbox for profiling of hPTM-mediated PPIs in live cells.
Collapse
Affiliation(s)
- Yu Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Jian Fan
- Department of Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qingyao Shu
- Department of Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yincui Wu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Guo-Chao Chu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Rong Ji
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Yinshan Ye
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Xiangwei Wu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jing Shi
- Department of Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China.
- Beijing Institute of Life Science and Technology, Beijing, 102206, China.
| |
Collapse
|
2
|
Olarewaju O, Held F, Curtis P, Kenny CH, Maier U, Panavas T, du Plessis F. αFAP-specific nanobodies mediate a highly precise retargeting of modified AAV2 capsids thereby enabling specific transduction of tumor tissues. Mol Ther Methods Clin Dev 2024; 32:101378. [PMID: 39703904 PMCID: PMC11655695 DOI: 10.1016/j.omtm.2024.101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024]
Abstract
Due to the refractiveness of tumor tissues to adeno-associated virus (AAV) transduction, AAV vectors are poorly explored for cancer therapy delivery. Here, we aimed to engineer AAVs to target tumors by enabling the specific engagement of fibroblast activation protein (FAP). FAP is a cell surface receptor distinctly upregulated in the reactive tumor stroma, but rarely expressed in healthy tissues. Thus, targeting FAP presents an opportunity to selectively transduce tumor tissues. To achieve this, we modified the capsid surface of AAV2 with an αFAP nanobody to retarget the capsid to engage FAP receptor. Following transduction, we observed a 23- to 80-fold increase in the selective transduction of FAP+ tumor cells in vitro, and greater than 5-fold transduction of FAP+ tumor tissues in vivo. Subsequent optimization of the VP1-nanobody expression cassette further enhanced the transduction efficiency of the modified capsids. Due to the limited αFAP nanobodies repertoires, we broadened the versatility of this high-fidelity platform by screening a naive VHH yeast display library, leading to the identification of several novel αFAP nanobody candidates (KD = 0.1 to >100 nM). Hence, our study offers new opportunity for the application of AAV vectors for highly selective delivery of therapeutics to the tumor stroma.
Collapse
Affiliation(s)
- Olaniyi Olarewaju
- AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany
| | - Franziska Held
- AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany
| | - Pamela Curtis
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Cynthia Hess Kenny
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Udo Maier
- AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany
| | - Tadas Panavas
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Francois du Plessis
- AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany
| |
Collapse
|
3
|
Ewerling A, May-Simera HL. Evolutionary trajectory for nuclear functions of ciliary transport complex proteins. Microbiol Mol Biol Rev 2024; 88:e0000624. [PMID: 38995044 PMCID: PMC11426024 DOI: 10.1128/mmbr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and vice versa. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.
Collapse
Affiliation(s)
- Alexander Ewerling
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
4
|
Zeng J, Zhou Y, Lyu M, Huang X, Xie M, Huang M, Chen BX, Wei T. Cordyceps militaris: A novel mushroom platform for metabolic engineering. Biotechnol Adv 2024; 74:108396. [PMID: 38906495 DOI: 10.1016/j.biotechadv.2024.108396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Cordyceps militaris, widely recognized as a medicinal and edible mushroom in East Asia, contains a variety of bioactive compounds, including cordycepin (COR), pentostatin (PTN) and other high-value compounds. This review explores the potential of developing C. militaris as a cell factory for the production of high-value chemicals and nutrients. This review comprehensively summarizes the fermentation advantages, metabolic networks, expression elements, and genome editing tools specific to C. militaris and discusses the challenges and barriers to further research on C. militaris across various fields, including computational biology, existing DNA elements, and genome editing approaches. This review aims to describe specific and promising opportunities for the in-depth study and development of C. militaris as a new chassis cell. Additionally, to increase the practicability of this review, examples of the construction of cell factories are provided, and promising strategies for synthetic biology development are illustrated.
Collapse
Affiliation(s)
- Jiapeng Zeng
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Yue Zhou
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Mengdi Lyu
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Xinchang Huang
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Muyun Xie
- School of Bioengineering, Zunyi Medical University, Zhuhai, Guangdong 519090, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China.
| | - Bai-Xiong Chen
- School of Bioengineering, Zunyi Medical University, Zhuhai, Guangdong 519090, China.
| | - Tao Wei
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
5
|
Su H, Rong G, Li L, Cheng Y. Subcellular targeting strategies for protein and peptide delivery. Adv Drug Deliv Rev 2024; 212:115387. [PMID: 38964543 DOI: 10.1016/j.addr.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cytosolic delivery of proteins and peptides provides opportunities for effective disease treatment, as they can specifically modulate intracellular processes. However, most of protein-based therapeutics only have extracellular targets and are cell-membrane impermeable due to relatively large size and hydrophilicity. The use of organelle-targeting strategy offers great potential to overcome extracellular and cell membrane barriers, and enables localization of protein and peptide therapeutics in the organelles. Although progresses have been made in the recent years, organelle-targeted protein and peptide delivery is still challenging and under exploration. We reviewed recent advances in subcellular targeted delivery of proteins/peptides with a focus on targeting mechanisms and strategies, and highlight recent examples of active and passive organelle-specific protein and peptide delivery systems. This emerging platform could open a new avenue to develop more effective protein and peptide therapeutics.
Collapse
Affiliation(s)
- Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Guangyu Rong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
6
|
Huhtinen O, Prince S, Lamminmäki U, Salbo R, Kulmala A. Increased stable integration efficiency in CHO cells through enhanced nuclear localization of Bxb1 serine integrase. BMC Biotechnol 2024; 24:44. [PMID: 38926833 PMCID: PMC11210126 DOI: 10.1186/s12896-024-00871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Mammalian display is an appealing technology for therapeutic antibody development. Despite the advantages of mammalian display, such as full-length IgG display with mammalian glycosylation and its inherent ability to select antibodies with good biophysical properties, the restricted library size and large culture volumes remain challenges. Bxb1 serine integrase is commonly used for the stable genomic integration of antibody genes into mammalian cells, but presently lacks the efficiency required for the display of large mammalian display libraries. To increase the Bxb1 integrase-mediated stable integration efficiency, our study investigates factors that potentially affect the nuclear localization of Bxb1 integrase. METHODS In an attempt to enhance Bxb1 serine integrase-mediated integration efficiency, we fused various nuclear localization signals (NLS) to the N- and C-termini of the integrase. Concurrently, we co-expressed multiple proteins associated with nuclear transport to assess their impact on the stable integration efficiency of green fluorescent protein (GFP)-encoding DNA and an antibody display cassette into the genome of Chinese hamster ovary (CHO) cells containing a landing pad for Bxb1 integrase-mediated integration. RESULTS The nucleoplasmin NLS from Xenopus laevis, when fused to the C-terminus of Bxb1 integrase, demonstrated the highest enhancement in stable integration efficiency among the tested NLS fusions, exhibiting over a 6-fold improvement compared to Bxb1 integrase lacking an NLS fusion. Subsequent additions of extra NLS fusions to the Bxb1 integrase revealed an additional 131% enhancement in stable integration efficiency with the inclusion of two copies of C-terminal nucleoplasmin NLS fusions. Further improvement was achieved by co-expressing the Ran GTPase-activating protein (RanGAP). Finally, to validate the applicability of these findings to more complex proteins, the DNA encoding the membrane-bound clinical antibody abrilumab was stably integrated into the genome of CHO cells using Bxb1 integrase with two copies of C-terminal nucleoplasmin NLS fusions and co-expression of RanGAP. This approach demonstrated over 14-fold increase in integration efficiency compared to Bxb1 integrase lacking an NLS fusion. CONCLUSIONS This study demonstrates that optimizing the NLS sequence fusion for Bxb1 integrase significantly enhances the stable genomic integration efficiency. These findings provide a practical approach for constructing larger libraries in mammalian cells through the stable integration of genes into a genomic landing pad.
Collapse
Affiliation(s)
- Olli Huhtinen
- Protein & Antibody Engineering, Orion Corporation, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
| | - Stuart Prince
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Urpo Lamminmäki
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Rune Salbo
- Protein & Antibody Engineering, Orion Corporation, Turku, Finland
| | - Antti Kulmala
- Protein & Antibody Engineering, Orion Corporation, Turku, Finland.
| |
Collapse
|
7
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
8
|
Goswami R, Gupta A, Bednova O, Coulombe G, Patel D, Rotello VM, Leyton JV. Nuclear localization signal-tagged systems: relevant nuclear import principles in the context of current therapeutic design. Chem Soc Rev 2024; 53:204-226. [PMID: 38031452 PMCID: PMC10798298 DOI: 10.1039/d1cs00269d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nuclear targeting of therapeutics provides a strategy for enhancing efficacy of molecules active in the nucleus and minimizing off-target effects. 'Active' nuclear-directed transport and efficient translocations across nuclear pore complexes provide the most effective means of maximizing nuclear localization. Nuclear-targeting systems based on nuclear localization signal (NLS) motifs have progressed significantly since the beginning of the current millennium. Here, we offer a roadmap for understanding the basic mechanisms of nuclear import in the context of actionable therapeutic design for developing NLS-therapeutics with improved treatment efficacy.
Collapse
Affiliation(s)
- Ritabrita Goswami
- Department of Chemistry, University of Massachusetts, Massachusetts, USA.
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts, Massachusetts, USA.
| | - Olga Bednova
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec, Canada
| | - Gaël Coulombe
- Service des stages et du développement professionnel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dipika Patel
- Service des stages et du développement professionnel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Massachusetts, USA.
| | - Jeffrey V Leyton
- École des sciences pharmaceutiques, Université d'Ottawa, Ottawa, Ontario, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Lambert-Lanteigne P, Young A, Autexier C. Complex interaction network revealed by mutation of human telomerase 'insertion in fingers' and essential N-terminal domains and the telomere protein TPP1. J Biol Chem 2023; 299:102916. [PMID: 36649908 PMCID: PMC9958494 DOI: 10.1016/j.jbc.2023.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
In the majority of human cancer cells, cellular immortalization depends on the maintenance of telomere length by telomerase. An essential step required for telomerase function is its recruitment to telomeres, which is regulated by the interaction of the telomere protein, TPP1, with the telomerase essential N-terminal (TEN) domain of the human telomerase reverse transcriptase, hTERT. We previously reported that the hTERT 'insertion in fingers domain' (IFD) recruits telomerase to telomeres in a TPP1-dependent manner. Here, we use hTERT truncations and the IFD domain containing mutations in conserved residues or premature aging disease-associated mutations to map the interactions between the IFD and TPP1. We find that the hTERT-IFD domain can interact with TPP1. However, deletion of the IFD motif in hTERT lacking the N-terminus and the C-terminal extension does not abolish interaction with TPP1, suggesting the IFD is not essential for hTERT interaction with TPP1. Several conserved residues in the central IFD-TRAP region that we reported regulate telomerase recruitment to telomeres, and cell immortalization compromise interaction of the hTERT-IFD domain with TPP1 when mutated. Using a similar approach, we find that the IFD domain interacts with the TEN domain but is not essential for intramolecular hTERT interactions with the TEN domain. IFD-TEN interactions are not disrupted by multiple amino acid changes in the IFD or TEN, thus highlighting a complex regulation of IFD-TEN interactions as suggested by recent cryo-EM structures of human telomerase.
Collapse
Affiliation(s)
| | - Adrian Young
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| | - Chantal Autexier
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, Canada; Department of Medicine, McGill University, Montréal, Canada.
| |
Collapse
|
10
|
Kono Y, Adam SA, Sato Y, Reddy KL, Zheng Y, Medalia O, Goldman RD, Kimura H, Shimi T. Nucleoplasmic lamin C rapidly accumulates at sites of nuclear envelope rupture with BAF and cGAS. J Cell Biol 2022; 221:e202201024. [PMID: 36301259 PMCID: PMC9617480 DOI: 10.1083/jcb.202201024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/14/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022] Open
Abstract
In mammalian cell nuclei, the nuclear lamina (NL) underlies the nuclear envelope (NE) to maintain nuclear structure. The nuclear lamins, the major structural components of the NL, are involved in the protection against NE rupture induced by mechanical stress. However, the specific role of the lamins in repair of NE ruptures has not been fully determined. Our analyses using immunofluorescence and live-cell imaging revealed that the nucleoplasmic pool of lamin C rapidly accumulated at sites of NE rupture induced by laser microirradiation in mouse embryonic fibroblasts. The accumulation of lamin C at the rupture sites required both the immunoglobulin-like fold domain that binds to barrier-to-autointegration factor (BAF) and a nuclear localization signal. The accumulation of nuclear BAF and cytoplasmic cyclic GMP-AMP synthase (cGAS) at the rupture sites was in part dependent on lamin A/C. These results suggest that nucleoplasmic lamin C, BAF, and cGAS concertedly accumulate at sites of NE rupture for rapid repair.
Collapse
Affiliation(s)
- Yohei Kono
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Stephen A. Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Karen L. Reddy
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Robert D. Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Shimi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
11
|
Jiang Z, Kuo YH, Zhong M, Zhang J, Zhou XX, Xing L, Wells JA, Wang Y, Arkin MR. Adaptor-Specific Antibody Fragment Inhibitors for the Intracellular Modulation of p97 (VCP) Protein-Protein Interactions. J Am Chem Soc 2022; 144:13218-13225. [PMID: 35819848 PMCID: PMC9335864 DOI: 10.1021/jacs.2c03665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions (PPIs) form complex networks to drive cellular signaling and cellular functions. Precise modulation of a target PPI helps explain the role of the PPI in cellular events and possesses therapeutic potential. For example, valosin-containing protein (VCP/p97) is a hub protein that interacts with more than 30 adaptor proteins involved in various cellular functions. However, the role of each p97 PPI during the relevant cellular event is underexplored. The development of small-molecule PPI modulators remains challenging due to a lack of grooves and pockets in the relatively large PPI interface and the fact that a common binding groove in p97 binds to multiple adaptors. Here, we report an antibody fragment-based modulator for the PPI between p97 and its adaptor protein NSFL1C (p47). We engineered these antibody modulators by phage display against the p97-interacting domain of p47 and minimizing binding to other p97 adaptors. The selected antibody fragment modulators specifically disrupt the intracellular p97/p47 interaction. The potential of this antibody platform to develop PPI inhibitors in therapeutic applications was demonstrated through the inhibition of Golgi reassembly, which requires the p97/p47 interaction. This study presents a unique approach to modulate specific intracellular PPIs using engineered antibody fragments, demonstrating a method to dissect the function of a PPI within a convoluted PPI network.
Collapse
Affiliation(s)
- Ziwen Jiang
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158, United States,Small
Molecule Discovery Center, University of
California, San Francisco, California 94158, United States
| | - Yu-Hsuan Kuo
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158, United States,Small
Molecule Discovery Center, University of
California, San Francisco, California 94158, United States
| | - Mengqi Zhong
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158, United States,Small
Molecule Discovery Center, University of
California, San Francisco, California 94158, United States
| | - Jianchao Zhang
- Department
of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Xin X. Zhou
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158, United States,Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States,Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 United States
| | - Lijuan Xing
- Department
of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158, United States
| | - Yanzhuang Wang
- Department
of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158, United States,Small
Molecule Discovery Center, University of
California, San Francisco, California 94158, United States,
| |
Collapse
|
12
|
Toft CJ, Sorenson AE, Schaeffer PM. Rise of the terminator protein tus: A versatile tool in the biotechnologist's toolbox. Anal Chim Acta 2022; 1213:339946. [DOI: 10.1016/j.aca.2022.339946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
|
13
|
Luk K, Liu P, Zeng J, Wang Y, Maitland SA, Idrizi F, Ponnienselvan K, Iyer S, Zhu LJ, Luban J, Bauer DE, Wolfe SA. Optimization of Nuclear Localization Signal Composition Improves CRISPR-Cas12a Editing Rates in Human Primary Cells. GEN BIOTECHNOLOGY 2022; 1:271-284. [PMID: 38405215 PMCID: PMC10887433 DOI: 10.1089/genbio.2022.0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Type V CRISPR-Cas12a systems are an attractive Cas9-alternative nuclease platform for specific genome editing applications. However, previous studies demonstrate that there is a gap in overall activity between Cas12a and Cas9 in primary cells.1 Here we describe optimization to the NLS composition and architecture of Cas12a to facilitate highly efficient targeted mutagenesis in human transformed cell lines (HEK293T, Jurkat, and K562 cells) and primary cells (NK cells and CD34+ HSPCs), regardless of Cas12a ortholog. Our 3xNLS Cas12a architecture resulted in the most robust editing platform. The improved editing activity of Cas12a in both NK cells and CD34+ HSPCs resulted in pronounced phenotypic changes associated with target gene editing. Lastly, we demonstrated that optimization of the NLS composition and architecture of Cas12a did not increase editing at potential off-target sites in HEK293T or CD34+ HSPCs. Our new Cas12a NLS variant provides an improved nuclease platform for therapeutic genome editing.
Collapse
Affiliation(s)
- Kevin Luk
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute of Harvard and MIT, Harvard Medical School, Boston, MA, USA
| | - Yetao Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Beijing, Beijing, CN
| | - Stacy A. Maitland
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Feston Idrizi
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Karthikeyan Ponnienselvan
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sukanya Iyer
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Daniel E. Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute of Harvard and MIT, Harvard Medical School, Boston, MA, USA
| | - Scot A. Wolfe
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
14
|
Guidotti N, Eördögh Á, Mivelaz M, Rivera-Fuentes P, Fierz B. Multivalent Peptide Ligands To Probe the Chromocenter Microenvironment in Living Cells. ACS Chem Biol 2022; 18:1066-1075. [PMID: 35447032 DOI: 10.1021/acschembio.2c00203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin is spatially organized into functional states that are defined by both the presence of specific histone post-translational modifications (PTMs) and a defined set of chromatin-associated "reader" proteins. Different models for the underlying mechanism of such compartmentalization have been proposed, including liquid-liquid phase separation (LLPS) of chromatin-associated proteins to drive spatial organization. Heterochromatin, characterized by lysine 9 methylation on histone H3 (H3K9me3) and the presence of heterochromatin protein 1 (HP1) as a multivalent reader, represents a prime example of a spatially defined chromatin state. Heterochromatin foci exhibit features of protein condensates driven by LLPS; however, the exact nature of the physicochemical environment within heterochromatin in different cell types is not completely understood. Here we present tools to interrogate the environment of chromatin subcompartments in the form of modular, cell-permeable, multivalent, and fluorescent peptide probes. These probes can be tuned to target specific chromatin states by providing binding sites to reader proteins and can thereby integrate into the PTM-reader interaction network. Here we generate probes specific to HP1, directing them to heterochromatin at chromocenters in mouse fibroblasts. Moreover, we use a polarity-sensing photoactivatable probe that photoconverts to a fluorescent state in phase-separated protein droplets and thereby reports on the local microenvironment. Equipped with this dye, our probes indeed turn fluorescent in murine chromocenters. Image analysis and single-molecule tracking experiments reveal that the compartments are less dense and more dynamic than HP1 condensates obtained in vitro. Our results thus demonstrate that the local organization of heterochromatin in chromocenters is internally more complex than an HP1 condensate.
Collapse
Affiliation(s)
- Nora Guidotti
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015 Lausanne, Switzerland
| | - Ádám Eördögh
- EPFL, SB ISIC LOCBP, Station 6, CH-1015 Lausanne, Switzerland
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Maxime Mivelaz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015 Lausanne, Switzerland
| | | | - Beat Fierz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Engineering eukaryote-like regulatory circuits to expand artificial control mechanisms for metabolic engineering in Saccharomyces cerevisiae. Commun Biol 2022; 5:135. [PMID: 35173283 PMCID: PMC8850539 DOI: 10.1038/s42003-022-03070-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
Temporal control of heterologous pathway expression is critical to achieve optimal efficiency in microbial metabolic engineering. The broadly-used GAL promoter system for engineered yeast (Saccharomyces cerevisiae) suffers from several drawbacks; specifically, unintended induction during laboratory development, and unintended repression in industrial production applications, which decreases overall production capacity. Eukaryotic synthetic circuits have not been well examined to address these problems. Here, we explore a modularised engineering method to deploy new genetic circuits applicable for expanding the control of GAL promoter-driven heterologous pathways in S. cerevisiae. Trans- and cis- modules, including eukaryotic trans-activating-and-repressing mechanisms, were characterised to provide new and better tools for circuit design. A eukaryote-like tetracycline-mediated circuit that delivers stringent repression was engineered to minimise metabolic burden during strain development and maintenance. This was combined with a novel 37 °C induction circuit to relief glucose-mediated repression on the GAL promoter during the bioprocess. This delivered a 44% increase in production of the terpenoid nerolidol, to 2.54 g L-1 in flask cultivation. These negative/positive transcriptional regulatory circuits expand global strategies of metabolic control to facilitate laboratory maintenance and for industry applications.
Collapse
|
16
|
Ray M, Brancolini G, Luther DC, Jiang Z, Cao-Milán R, Cuadros AM, Burden A, Clark V, Rana S, Mout R, Landis RF, Corni S, Rotello VM. High affinity protein surface binding through co-engineering of nanoparticles and proteins. NANOSCALE 2022; 14:2411-2418. [PMID: 35089292 PMCID: PMC8941649 DOI: 10.1039/d1nr07497k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Control over supramolecular recognition between proteins and nanoparticles (NPs) is of fundamental importance in therapeutic applications and sensor development. Most NP-protein binding approaches use 'tags' such as biotin or His-tags to provide high affinity; protein surface recognition provides a versatile alternative strategy. Generating high affinity NP-protein interactions is challenging however, due to dielectric screening at physiological ionic strengths. We report here the co-engineering of nanoparticles and protein to provide high affinity binding. In this strategy, 'supercharged' proteins provide enhanced interfacial electrostatic interactions with complementarily charged nanoparticles, generating high affinity complexes. Significantly, the co-engineered protein-nanoparticle assemblies feature high binding affinity even at physiologically relevant ionic strength conditions. Computational studies identify both hydrophobic and electrostatic interactions as drivers for these high affinity NP-protein complexes.
Collapse
Affiliation(s)
- Moumita Ray
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | - Giorgia Brancolini
- Center S3, CNR Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy
| | - David C Luther
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | - Ziwen Jiang
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | - Roberto Cao-Milán
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | - Alejandro M Cuadros
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | - Andrew Burden
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | - Vincent Clark
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | - Subinoy Rana
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | - Rubul Mout
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | - Ryan F Landis
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | - Stefano Corni
- Center S3, CNR Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy
- Department of Chemical Science, University of Padova, Via Francesco Marzolo 1, 35131 Padova, Italy
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA.
| |
Collapse
|
17
|
Peptide-Functionalized Dendrimer Nanocarriers for Targeted Microdystrophin Gene Delivery. Pharmaceutics 2021; 13:pharmaceutics13122159. [PMID: 34959441 PMCID: PMC8708248 DOI: 10.3390/pharmaceutics13122159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is a good alternative for determined congenital disorders; however, there are numerous limitations for gene delivery in vivo including targeted cellular uptake, intracellular trafficking, and transport through the nuclear membrane. Here, a modified G5 polyamidoamine (G5 PAMAM) dendrimer-DNA complex was developed, which will allow cell-specific targeting to skeletal muscle cells and transport the DNA through the intracellular machinery and the nuclear membrane. The G5 PAMAM nanocarrier was modified with a skeletal muscle-targeting peptide (SMTP), a DLC8-binding peptide (DBP) for intracellular transport, and a nuclear localization signaling peptide (NLS) for nuclear uptake, and polyplexed with plasmid DNA containing the GFP-tagged microdystrophin (µDys) gene. The delivery of µDys has been considered as a therapeutic modality for patients suffering from a debilitating Duchenne muscular dystrophy (DMD) disorder. The nanocarrier-peptide-DNA polyplexes were prepared with different charge ratios and characterized for stability, size, surface charge, and cytotoxicity. Using the optimized nanocarrier polyplexes, the transfection efficiency in vitro was determined by demonstrating the expression of the GFP and the µDys protein using fluorescence and Western blotting studies, respectively. Protein expression in vivo was determined by injecting an optimal nanocarrier polyplex formulation to Duchenne model mice, mdx4Cv. Ultimately, these nanocarrier polyplexes will allow targeted delivery of the microdystrophin gene to skeletal muscle cells and result in improved muscle function in Duchenne muscular dystrophy patients.
Collapse
|
18
|
Hirai Y, Hirose H, Imanishi M, Asai T, Futaki S. Cytosolic protein delivery using pH-responsive, charge-reversible lipid nanoparticles. Sci Rep 2021; 11:19896. [PMID: 34615928 PMCID: PMC8494842 DOI: 10.1038/s41598-021-99180-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/01/2021] [Indexed: 01/15/2023] Open
Abstract
Although proteins have attractive features as biopharmaceuticals, the difficulty in delivering them into the cell interior limits their applicability. Lipid nanoparticles (LNPs) are a promising class of delivery vehicles. When designing a protein delivery system based on LNPs, the major challenges include: (i) formulation of LNPs with defined particle sizes and dispersity, (ii) efficient encapsulation of cargo proteins into LNPs, and (iii) effective cellular uptake and endosomal release into the cytosol. Dioleoylglycerophosphate-diethylenediamine (DOP-DEDA) is a pH-responsive, charge-reversible lipid. The aim of this study was to evaluate the applicability of DOP-DEDA-based LNPs for intracellular protein delivery. Considering the importance of electrostatic interactions in protein encapsulation into LNPs, a negatively charged green fluorescent protein (GFP) analog was successfully encapsulated into DOP-DEDA-based LNPs to yield diameters and polydispersity index of < 200 nm and < 0.2, respectively. Moreover, ~ 80% of the cargo proteins was encapsulated into the LNPs. Cytosolic distribution of fluorescent signals of the protein was observed for up to ~ 90% cells treated with the LNPs, indicating the facilitated endocytic uptake and endosomal escape of the cargo attained using the LNP system.
Collapse
Affiliation(s)
- Yusuke Hirai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
19
|
Pisano TJ, Dhanerawala ZM, Kislin M, Bakshinskaya D, Engel EA, Hansen EJ, Hoag AT, Lee J, de Oude NL, Venkataraju KU, Verpeut JL, Hoebeek FE, Richardson BD, Boele HJ, Wang SSH. Homologous organization of cerebellar pathways to sensory, motor, and associative forebrain. Cell Rep 2021; 36:109721. [PMID: 34551311 PMCID: PMC8506234 DOI: 10.1016/j.celrep.2021.109721] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/06/2021] [Accepted: 08/25/2021] [Indexed: 12/31/2022] Open
Abstract
Cerebellar outputs take polysynaptic routes to reach the rest of the brain, impeding conventional tracing. Here, we quantify pathways between the cerebellum and forebrain by using transsynaptic tracing viruses and a whole-brain analysis pipeline. With retrograde tracing, we find that most descending paths originate from the somatomotor cortex. Anterograde tracing of ascending paths encompasses most thalamic nuclei, especially ventral posteromedial, lateral posterior, mediodorsal, and reticular nuclei. In the neocortex, sensorimotor regions contain the most labeled neurons, but we find higher densities in associative areas, including orbital, anterior cingulate, prelimbic, and infralimbic cortex. Patterns of ascending expression correlate with c-Fos expression after optogenetic inhibition of Purkinje cells. Our results reveal homologous networks linking single areas of the cerebellar cortex to diverse forebrain targets. We conclude that shared areas of the cerebellum are positioned to provide sensory-motor information to regions implicated in both movement and nonmotor function.
Collapse
Affiliation(s)
- Thomas J Pisano
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ 08544, USA
| | - Zahra M Dhanerawala
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ 08544, USA
| | - Mikhail Kislin
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ 08544, USA
| | - Dariya Bakshinskaya
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ 08544, USA
| | - Esteban A Engel
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ 08544, USA
| | - Ethan J Hansen
- WWAMI Medical Education, University of Idaho, Moscow, ID 83844, USA
| | - Austin T Hoag
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ 08544, USA
| | - Junuk Lee
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ 08544, USA
| | - Nina L de Oude
- Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, the Netherlands
| | | | - Jessica L Verpeut
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ 08544, USA
| | - Freek E Hoebeek
- Department for Developmental Origins of Disease, Brain Center and Wilhelmina Childrens Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ben D Richardson
- WWAMI Medical Education, University of Idaho, Moscow, ID 83844, USA; Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Henk-Jan Boele
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ 08544, USA; Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, the Netherlands.
| | - Samuel S-H Wang
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
20
|
Luther DC, Jeon T, Goswami R, Nagaraj H, Kim D, Lee YW, Rotello VM. Protein Delivery: If Your GFP (or Other Small Protein) Is in the Cytosol, It Will Also Be in the Nucleus. Bioconjug Chem 2021; 32:891-896. [PMID: 33872490 PMCID: PMC8508718 DOI: 10.1021/acs.bioconjchem.1c00103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intracellular protein delivery is a transformative tool for biologics research and medicine. Delivery into the cytosol allows proteins to diffuse throughout the cell and access subcellular organelles. Inefficient delivery caused by endosomal entrapment is often misidentified as cytosolic delivery. This inaccuracy muddles what should be a key checkpoint in assessing delivery efficiency. Green fluorescent protein (GFP) is a robust cargo small enough to passively diffuse from the cytosol into the nucleus. Fluorescence of GFP in the nucleus is a direct readout for cytosolic access and effective delivery. Here, we highlight recent examples from the literature for the accurate assessment of cytosolic protein delivery using GFP fluorescence in the cytosol and nucleus.
Collapse
Affiliation(s)
- David C. Luther
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
- These authors contributed equally
| | - Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
- These authors contributed equally
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Dongkap Kim
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
21
|
Abstract
Calcium phosphate nanoparticles have a high biocompatibility and biodegradability due to their chemical similarity to human hard tissue, for example, bone and teeth. They can be used as efficient carriers for different kinds of biomolecules such as nucleic acids, proteins, peptides, antibodies, or drugs, which alone are not able to enter cells where their biological effect is required. They can be loaded with cargo molecules by incorporating them, unlike solid nanoparticles, and also by surface functionalization. This offers protection, for example, against nucleases, and the possibility for cell targeting. If such nanoparticles are functionalized with fluorescing dyes, they can be applied for imaging in vitro and in vivo. Synthesis, functionalization and cell uptake mechanisms of calcium phosphate nanoparticles are discussed together with applications in transfection, gene silencing, imaging, immunization, and bone substitution. Biodistribution data of calcium phosphate nanoparticles in vivo are reviewed.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| | - Matthias Epple
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| |
Collapse
|
22
|
Liu P, Liang SQ, Zheng C, Mintzer E, Zhao YG, Ponnienselvan K, Mir A, Sontheimer EJ, Gao G, Flotte TR, Wolfe SA, Xue W. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat Commun 2021; 12:2121. [PMID: 33837189 PMCID: PMC8035190 DOI: 10.1038/s41467-021-22295-w] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
Prime editors (PEs) mediate genome modification without utilizing double-stranded DNA breaks or exogenous donor DNA as a template. PEs facilitate nucleotide substitutions or local insertions or deletions within the genome based on the template sequence encoded within the prime editing guide RNA (pegRNA). However, the efficacy of prime editing in adult mice has not been established. Here we report an NLS-optimized SpCas9-based prime editor that improves genome editing efficiency in both fluorescent reporter cells and at endogenous loci in cultured cell lines. Using this genome modification system, we could also seed tumor formation through somatic cell editing in the adult mouse. Finally, we successfully utilize dual adeno-associated virus (AAVs) for the delivery of a split-intein prime editor and demonstrate that this system enables the correction of a pathogenic mutation in the mouse liver. Our findings further establish the broad potential of this genome editing technology for the directed installation of sequence modifications in vivo, with important implications for disease modeling and correction.
Collapse
Affiliation(s)
- Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shun-Qing Liang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Chunwei Zheng
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Esther Mintzer
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yan G Zhao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Karthikeyan Ponnienselvan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Aamir Mir
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Departments of Pediatrics and Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
23
|
de la Fuente IF, Sawant SS, Tolentino MQ, Corrigan PM, Rouge JL. Viral Mimicry as a Design Template for Nucleic Acid Nanocarriers. Front Chem 2021; 9:613209. [PMID: 33777893 PMCID: PMC7987652 DOI: 10.3389/fchem.2021.613209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic nucleic acids hold immense potential in combating undruggable, gene-based diseases owing to their high programmability and relative ease of synthesis. While the delivery of this class of therapeutics has successfully entered the clinical setting, extrahepatic targeting, endosomal escape efficiency, and subcellular localization. On the other hand, viruses serve as natural carriers of nucleic acids and have acquired a plethora of structures and mechanisms that confer remarkable transfection efficiency. Thus, understanding the structure and mechanism of viruses can guide the design of synthetic nucleic acid vectors. This review revisits relevant structural and mechanistic features of viruses as design considerations for efficient nucleic acid delivery systems. This article explores how viral ligand display and a metastable structure are central to the molecular mechanisms of attachment, entry, and viral genome release. For comparison, accounted for are details on the design and intracellular fate of existing nucleic acid carriers and nanostructures that share similar and essential features to viruses. The review, thus, highlights unifying themes of viruses and nucleic acid delivery systems such as genome protection, target specificity, and controlled release. Sophisticated viral mechanisms that are yet to be exploited in oligonucleotide delivery are also identified as they could further the development of next-generation nonviral nucleic acid vectors.
Collapse
Affiliation(s)
| | | | | | | | - Jessica L. Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
24
|
Anson F, Kanjilal P, Thayumanavan S, Hardy JA. Tracking exogenous intracellular casp-3 using split GFP. Protein Sci 2021; 30:366-380. [PMID: 33165988 PMCID: PMC7784757 DOI: 10.1002/pro.3992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/28/2020] [Accepted: 11/03/2020] [Indexed: 11/08/2022]
Abstract
Cytosolic protein delivery promises diverse applications from therapeutics, to genetic modification and precision research tools. To achieve effective cellular and subcellular delivery, approaches that allow protein visualization and accurate localization with greater sensitivity are essential. Fluorescently tagging proteins allows detection, tracking and visualization in cellulo. However, undesired consequences from fluorophores or fluorescent protein tags, such as nonspecific interactions and high background or perturbation to native protein's size and structure, are frequently observed, or more troublingly, overlooked. Distinguishing cytosolically released molecules from those that are endosomally entrapped upon cellular uptake is particularly challenging and is often complicated by the inherent pH-sensitive and hydrophobic properties of the fluorophore. Monitoring localization is more complex in delivery of proteins with inherent protein-modifying activities like proteases, transacetylases, kinases, etc. Proteases are among the toughest cargos due to their inherent propensity for self-proteolysis. To implement a reliable, but functionally silent, tagging technology in a protease, we have developed a caspase-3 variant tagged with the 11th strand of GFP that retains both enzymatic activity and structural characteristics of wild-type caspase-3. Only in the presence of cytosolic GFP strands 1-10 will the tagged caspase-3 generate fluorescence to signal a non-endosomal location. This methodology facilitates easy screening of cytosolic vs. endosomally-entrapped proteins due to low probabilities for false positive results, and further, allows tracking of the resultant cargo's translocation. The development of this tagged casp-3 cytosolic reporter lays the foundation to probe caspase therapeutic properties, charge-property relationships governing successful escape, and the precise number of caspases required for apoptotic cell death.
Collapse
Affiliation(s)
- Francesca Anson
- Department of ChemistryUniversity of MassachusettsAmherstMassachusettsUSA
| | - Pintu Kanjilal
- Department of ChemistryUniversity of MassachusettsAmherstMassachusettsUSA
| | - S. Thayumanavan
- Department of ChemistryUniversity of MassachusettsAmherstMassachusettsUSA
- The Center for Bioactive Delivery at the Institute for Applied Life SciencesUniversity of MassachusettsAmherstMassachusettsUSA
| | - Jeanne A. Hardy
- Department of ChemistryUniversity of MassachusettsAmherstMassachusettsUSA
- The Center for Bioactive Delivery at the Institute for Applied Life SciencesUniversity of MassachusettsAmherstMassachusettsUSA
| |
Collapse
|
25
|
Ozaki M, Yoshida S, Tsuruoka T, Usui K. Intracellular mineralization of gold nanoparticles using gold ion-binding peptides with cell-penetrating ability. Chem Commun (Camb) 2021; 57:725-728. [PMID: 33411858 DOI: 10.1039/d0cc06117d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We developed a system to directly produce gold nanoparticles in cells by intracellular mineralization in lower concentration than conventional methods using a peptide consisting of a cell-penetrating sequence and a gold ion-binding sequence. Furthermore, we could control the uniquely shaped gold nanostructures that were produced by changing peptide structures.
Collapse
Affiliation(s)
- Makoto Ozaki
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 6500047, Kobe, Japan.
| | - Shuhei Yoshida
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 6500047, Kobe, Japan.
| | - Takaaki Tsuruoka
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 6500047, Kobe, Japan.
| | - Kenji Usui
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 6500047, Kobe, Japan.
| |
Collapse
|
26
|
Wagner TR, Rothbauer U. Nanobodies Right in the Middle: Intrabodies as Toolbox to Visualize and Modulate Antigens in the Living Cell. Biomolecules 2020; 10:biom10121701. [PMID: 33371447 PMCID: PMC7767433 DOI: 10.3390/biom10121701] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/01/2023] Open
Abstract
In biomedical research, there is an ongoing demand for new technologies to elucidate disease mechanisms and develop novel therapeutics. This requires comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, post-translational modifications and dynamic interactions of cellular components. Traceable intracellular binding molecules provide new opportunities for real-time cellular diagnostics. Most prominently, intrabodies derived from antibody fragments of heavy-chain only antibodies of camelids (nanobodies) have emerged as highly versatile and attractive probes to study and manipulate antigens within the context of living cells. In this review, we provide an overview on the selection, delivery and usage of intrabodies to visualize and monitor cellular antigens in living cells and organisms. Additionally, we summarize recent advances in the development of intrabodies as cellular biosensors and their application to manipulate disease-related cellular processes. Finally, we highlight switchable intrabodies, which open entirely new possibilities for real-time cell-based diagnostics including live-cell imaging, target validation and generation of precisely controllable binding reagents for future therapeutic applications.
Collapse
Affiliation(s)
- Teresa R. Wagner
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
- Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
- Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany
- Correspondence: ; Tel.: +49-7121-5153-0415; Fax: +49-7121-5153-0816
| |
Collapse
|
27
|
Efficient photoactivatable Dre recombinase for cell type-specific spatiotemporal control of genome engineering in the mouse. Proc Natl Acad Sci U S A 2020; 117:33426-33435. [PMID: 33318209 DOI: 10.1073/pnas.2003991117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Precise genetic engineering in specific cell types within an intact organism is intriguing yet challenging, especially in a spatiotemporal manner without the interference caused by chemical inducers. Here we engineered a photoactivatable Dre recombinase based on the identification of an optimal split site and demonstrated that it efficiently regulated transgene expression in mouse tissues spatiotemporally upon blue light illumination. Moreover, through a double-floxed inverted open reading frame strategy, we developed a Cre-activated light-inducible Dre (CALID) system. Taking advantage of well-defined cell-type-specific promoters or a well-established Cre transgenic mouse strain, we demonstrated that the CALID system was able to activate endogenous reporter expression for either bulk or sparse labeling of CaMKIIα-positive excitatory neurons and parvalbumin interneurons in the brain. This flexible and tunable system could be a powerful tool for the dissection and modulation of developmental and genetic complexity in a wide range of biological systems.
Collapse
|
28
|
Zhang N, Bewick B, Xia G, Furling D, Ashizawa T. A CRISPR-Cas13a Based Strategy That Tracks and Degrades Toxic RNA in Myotonic Dystrophy Type 1. Front Genet 2020; 11:594576. [PMID: 33362853 PMCID: PMC7758406 DOI: 10.3389/fgene.2020.594576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Cas13a, an effector of type VI CRISPR-Cas systems, is an RNA guided RNase with multiplexing and therapeutic potential. This study employs the Leptotrichia shahii (Lsh) Cas13a and a repeat-based CRISPR RNA (crRNA) to track and eliminate toxic RNA aggregates in myotonic dystrophy type 1 (DM1) – a neuromuscular disease caused by CTG expansion in the DMPK gene. We demonstrate that LshCas13a cleaves CUG repeat RNA in biochemical assays and reduces toxic RNA load in patient-derived myoblasts. As a result, LshCas13a reverses the characteristic adult-to-embryonic missplicing events in several key genes that contribute to DM1 phenotype. The deactivated LshCas13a can further be repurposed to track RNA-rich organelles within cells. Our data highlights the reprogrammability of LshCas13a and the possible use of Cas13a to target expanded repeat sequences in microsatellite expansion diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Brittani Bewick
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Guangbin Xia
- Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Denis Furling
- Institut National de la Sante et de la Recherche Medicale (INSERM), Centre de Recherche en Myologie (CRM), Association Institut de Myologie, Sorbonne Université, Paris, France
| | - Tetsuo Ashizawa
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
29
|
Goswami R, Jeon T, Nagaraj H, Zhai S, Rotello VM. Accessing Intracellular Targets through Nanocarrier-Mediated Cytosolic Protein Delivery. Trends Pharmacol Sci 2020; 41:743-754. [PMID: 32891429 PMCID: PMC7502523 DOI: 10.1016/j.tips.2020.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
Abstract
Protein-based therapeutics have unique therapeutic potential due to their specificity, potency, and low toxicity. The vast majority of intracellular applications of proteins require access to the cytosol. Direct entry to the cytosol is challenging due to the impermeability of the cell membrane to proteins. As a result, multiple strategies have focused on endocytic uptake of proteins. Endosomally entrapped cargo, however, can have very low escape efficiency, with protein degradation occurring in acidic endolysosomal compartments. In this review, we briefly discuss endosomal escape strategies and review the strategy of cell membrane fusion, a recent strategy for direct delivery of proteins into the cell cytoplasm.
Collapse
Affiliation(s)
- Ritabrita Goswami
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Shumei Zhai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
30
|
Konno Y, Kimura I, Uriu K, Fukushi M, Irie T, Koyanagi Y, Sauter D, Gifford RJ, Nakagawa S, Sato K. SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant. Cell Rep 2020; 32:108185. [PMID: 32941788 PMCID: PMC7473339 DOI: 10.1016/j.celrep.2020.108185] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/22/2020] [Accepted: 09/01/2020] [Indexed: 01/25/2023] Open
Abstract
One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays reveal that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of approximately 17,000 SARS-CoV-2 sequences identify a natural variant in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients but also describe the emergence of natural SARS-CoV-2 quasispecies with an extended ORF3b gene that may potentially affect COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Yoriyuki Konno
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan
| | - Izumi Kimura
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan; Graduate School of Medicine, the University of Tokyo, Tokyo 1130033, Japan
| | - Masaya Fukushi
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7398511, Japan
| | - Takashi Irie
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7398511, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | | | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan.
| |
Collapse
|
31
|
Jamal-Livani N, Mohammadian E, Sheikh Arabi M, Safdari Y. Protein-based drug carrier specific for HER2-positive breast cancer cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Day AH, Übler MH, Best HL, Lloyd-Evans E, Mart RJ, Fallis IA, Allemann RK, Al-Wattar EAH, Keymer NI, Buurma NJ, Pope SJA. Targeted cell imaging properties of a deep red luminescent iridium(iii) complex conjugated with a c-Myc signal peptide. Chem Sci 2020; 11:1599-1606. [PMID: 32206278 PMCID: PMC7069228 DOI: 10.1039/c9sc05568a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/14/2019] [Indexed: 12/05/2022] Open
Abstract
A nuclear localisation sequence (NLS) peptide, PAAKRVKLD, derived from the human c-Myc regulator gene, has been functionalised with a long wavelength (λ ex = 550 nm; λ em = 677 nm) cyclometalated organometallic iridium(iii) complex to give the conjugate Ir-CMYC. Confocal fluorescence microscopy studies on human fibroblast cells imaged after 18-24 h incubation show that Ir-CMYC concentrations of 80-100 μM promote good cell uptake and nuclear localisation, which was confirmed though co-localisation studies using Hoechst 33342. In comparison, a structurally related, photophysically analogous iridium(iii) complex lacking the peptide sequence, Ir-PYR, showed very different biological behaviour, with no evidence of nuclear, lysosomal or autophagic vesicle localisation and significantly increased toxicity to the cells at concentrations >10 μM that induced mitochondrial dysfunction. Supporting UV-visible and circular dichroism spectroscopic studies show that Ir-PYR and Ir-CMYC display similarly low affinities for DNA (ca. 103 M-1), consistent with electrostatic binding. Therefore the translocation and nuclear uptake properties of Ir-CMYC are attributed to the presence of the PAAKRVKLD nuclear localisation sequence in this complex.
Collapse
Affiliation(s)
- Adam H Day
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Martin H Übler
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Hannah L Best
- School of Biosciences , Cardiff University , Sir Martin Evans Building , Cardiff , UK
| | - Emyr Lloyd-Evans
- School of Biosciences , Cardiff University , Sir Martin Evans Building , Cardiff , UK
| | - Robert J Mart
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Ian A Fallis
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Rudolf K Allemann
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Eman A H Al-Wattar
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Nathaniel I Keymer
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Niklaas J Buurma
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Simon J A Pope
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| |
Collapse
|
33
|
A New Mouse Line Reporting the Translation of Brain-Derived Neurotrophic Factor Using Green Fluorescent Protein. eNeuro 2020; 7:ENEURO.0462-19.2019. [PMID: 31882533 PMCID: PMC6957309 DOI: 10.1523/eneuro.0462-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 11/21/2022] Open
Abstract
While BDNF is receiving considerable attention for its role in synaptic plasticity and in nervous system dysfunction, identifying brain circuits involving BDNF-expressing neurons has been challenging. BDNF levels are very low in most brain areas, except for the large mossy fiber terminals in the hippocampus where BDNF accumulates at readily detectable levels. This report describes the generation of a mouse line allowing the detection of single brain cells synthesizing BDNF. A bicistronic construct encoding BDNF tagged with a P2A sequence preceding GFP allows the translation of BDNF and GFP as separate proteins. Following its validation with transfected cells, this construct was used to replace the endogenous Bdnf gene. Viable and fertile homozygote animals were generated, with the GFP signal marking neuronal cell bodies translating the Bdnf mRNA. Importantly, the distribution of immunoreactive BDNF remained unchanged, as exemplified by its accumulation in mossy fiber terminals in the transgenic animals. GFP-labeled neurons could be readily visualized in distinct layers in the cerebral cortex where BDNF has been difficult to detect with currently available reagents. In the hippocampal formation, quantification of the GFP signal revealed that <10% of the neurons do not translate the Bdnf mRNA at detectable levels, with the highest proportion of strongly labeled neurons found in CA3.
Collapse
|
34
|
Cellular Cleavage and Polyadenylation Specificity Factor 6 (CPSF6) Mediates Nuclear Import of Human Bocavirus 1 NP1 Protein and Modulates Viral Capsid Protein Expression. J Virol 2020; 94:JVI.01444-19. [PMID: 31666379 DOI: 10.1128/jvi.01444-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
Human bocavirus 1 (HBoV1), which belongs to the genus Bocaparvovirus of the Parvoviridae family, causes acute respiratory tract infections in young children. In vitro, HBoV1 infects polarized primary human airway epithelium (HAE) cultured at an air-liquid interface (HAE-ALI). HBoV1 encodes a small nonstructural protein, nuclear protein 1 (NP1), that plays an essential role in the maturation of capsid protein (VP)-encoding mRNAs and viral DNA replication. In this study, we determined the broad interactome of NP1 using the proximity-dependent biotin identification (BioID) assay combined with mass spectrometry (MS). We confirmed that two host mRNA processing factors, DEAH-box helicase 15 (DHX15) and cleavage and polyadenylation specificity factor 6 (CPSF6; also known as CFIm68), a subunit of the cleavage factor Im complex (CFIm), interact with HBoV1 NP1 independently of any DNA or mRNAs. Knockdown of CPSF6 significantly decreased the expression of capsid protein but not that of DHX15. We further demonstrated that NP1 directly interacts with CPSF6 in vitro and colocalizes within the virus replication centers. Importantly, we revealed a novel role of CPSF6 in the nuclear import of NP1, in addition to the critical role of CPSF6 in NP1-facilitated maturation of VP-encoding mRNAs. Thus, our study suggests that CPSF6 interacts with NP1 to escort NP1 imported into the nucleus for its function in the modulation of viral mRNA processing and viral DNA replication.IMPORTANCE Human bocavirus 1 (HBoV1) is one of the significant pathogens causing acute respiratory tract infections in young children worldwide. HBoV1 encodes a small nonstructural protein (NP1) that plays an important role in the maturation of viral mRNAs encoding capsid proteins as well as in viral DNA replication. Here, we identified a critical host factor, CPSF6, that directly interacts with NP1, mediates the nuclear import of NP1, and plays a role in the maturation of capsid protein-encoding mRNAs in the nucleus. The identification of the direct interaction between viral NP1 and host CPSF6 provides new insights into the mechanism by which a viral small nonstructural protein facilitates the multiple regulation of viral gene expression and replication and reveals a novel target for potent antiviral drug development.
Collapse
|
35
|
Qin X, Yu C, Wei J, Li L, Zhang C, Wu Q, Liu J, Yao SQ, Huang W. Rational Design of Nanocarriers for Intracellular Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902791. [PMID: 31496027 DOI: 10.1002/adma.201902791] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Protein/antibody therapeutics have exhibited the advantages of high specificity and activity even at an extremely low concentration compared to small molecule drugs. However, they are accompanied by unfavorable physicochemical properties such as fragile tertiary structure, large molecular size, and poor penetration of the membrane, and thus the clinical use of protein drugs is hindered by inefficient delivery of proteins into the host cells. To overcome the challenges associated with protein therapeutics and enhance their biopharmaceutical applications, various protein-loaded nanocarriers with desired functions, such as lipid nanocapsules, polymeric nanoparticles, inorganic nanoparticles, and peptides, are developed. In this review, the different strategies for intracellular delivery of proteins are comprehensively summarized. Their designed routes, mechanisms of action, and potential therapeutics in live cells or in vivo are discussed in detail. Furthermore, the perspective on the new generation of delivery systems toward the emerging area of protein-based therapeutics is presented as well.
Collapse
Affiliation(s)
- Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
36
|
Simpson JD, Smith SA, Thurecht KJ, Such G. Engineered Polymeric Materials for Biological Applications: Overcoming Challenges of the Bio-Nano Interface. Polymers (Basel) 2019; 11:E1441. [PMID: 31480780 PMCID: PMC6780590 DOI: 10.3390/polym11091441] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Nanomedicine has generated significant interest as an alternative to conventional cancertherapy due to the ability for nanoparticles to tune cargo release. However, while nanoparticletechnology has promised significant benefit, there are still limited examples of nanoparticles inclinical practice. The low translational success of nanoparticle research is due to the series ofbiological roadblocks that nanoparticles must migrate to be effective, including blood and plasmainteractions, clearance, extravasation, and tumor penetration, through to cellular targeting,internalization, and endosomal escape. It is important to consider these roadblocks holistically inorder to design more effective delivery systems. This perspective will discuss how nanoparticlescan be designed to migrate each of these biological challenges and thus improve nanoparticledelivery systems in the future. In this review, we have limited the literature discussed to studiesinvestigating the impact of polymer nanoparticle structure or composition on therapeutic deliveryand associated advancements. The focus of this review is to highlight the impact of nanoparticlecharacteristics on the interaction with different biological barriers. More specific studies/reviewshave been referenced where possible.
Collapse
Affiliation(s)
- Joshua D Simpson
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, the University of Queensland, St Lucia QLD 4072, Australia;
| | - Samuel A Smith
- School of Chemistry, University of Melbourne, Parkville VIC 3010, Australia;
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, the University of Queensland, St Lucia QLD 4072, Australia;
| | - Georgina Such
- School of Chemistry, University of Melbourne, Parkville VIC 3010, Australia;
| |
Collapse
|
37
|
Jativa SD, Thapar N, Broyles D, Dikici E, Daftarian P, Jiménez JJ, Daunert S, Deo SK. Enhanced Delivery of Plasmid DNA to Skeletal Muscle Cells using a DLC8-Binding Peptide and ASSLNIA-Modified PAMAM Dendrimer. Mol Pharm 2019; 16:2376-2384. [PMID: 30951315 DOI: 10.1021/acs.molpharmaceut.8b01313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal muscle is ideally suited and highly desirable as a target for therapeutic gene delivery because of its abundance, high vascularization, and high levels of protein expression. However, efficient gene delivery to skeletal muscle remains a current challenge. Besides the major obstacle of cell-specific targeting, efficient intracellular trafficking, or the cytosolic transport of DNA to the nucleus, must be demonstrated. To overcome the challenge of cell-specific targeting, herein we develop a generation 5-polyamidoamine dendrimer (G5-PAMAM) functionalized with a skeletal muscle-targeted peptide, ASSLNIA (G5-SMTP). Specifically, to demonstrate the feasibility of our approach, we prepared a complex of our G5-SMTP dendrimer with a plasmid encoding firefly luciferase and investigated its delivery to skeletal muscle cells. Luciferase assays indicated a threefold increase in transfection efficiency of C2C12 murine skeletal muscle cells using G5-SMTP when compared with nontargeting nanocarriers using unmodified G5. To further improve the transfection yield, we employed a cationic dynein light chain 8 protein (DLC8)-binding peptide (DBP) containing an internal sequence known to bind to the DLC8 of the dynein motor protein complex. Complexation of DBP with our targeting nanocarrier, that is, G5-SMTP, and our luciferase plasmid cargo resulted in a functional nanocarrier that showed an additional sixfold increase in transfection efficiency compared with G5-SMTP transfection alone. To our knowledge, this is the first successful use of two different functional nanocarrier components that enable targeted skeletal muscle cell recognition and increased efficiency of intracellular trafficking to synergistically enhance gene delivery to skeletal muscle cells. This strategy of targeting and trafficking can also be universally applied to any cell/tissue type for which a recognition domain exists.
Collapse
Affiliation(s)
- Samuel D Jativa
- University of Miami Clinical and Translational Science Institute , Miami 33136 , United States
| | | | - David Broyles
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami , Miami 33136 , United States
| | - Emre Dikici
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami , Miami 33136 , United States
| | - Pirouz Daftarian
- JSR Micro, Life Sciences , 1280 North Matilda Avenue , Sunnyvale , California 94089 , United States
| | | | - Sylvia Daunert
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami , Miami 33136 , United States.,University of Miami Clinical and Translational Science Institute , Miami 33136 , United States
| | - Sapna K Deo
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami , Miami 33136 , United States.,University of Miami Clinical and Translational Science Institute , Miami 33136 , United States
| |
Collapse
|
38
|
Schneider AFL, Wallabregue ALD, Franz L, Hackenberger CPR. Targeted Subcellular Protein Delivery Using Cleavable Cyclic Cell-Penetrating Peptides. Bioconjug Chem 2019; 30:400-404. [PMID: 30616339 DOI: 10.1021/acs.bioconjchem.8b00855] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The delivery of entire functional proteins into living cells is a long-sought goal in science. Cyclic cell-penetrating peptides (cCPPs) have proven themselves to be potent delivery vehicles to carry proteins upon conjugation into the cytosol of living cells with immediate bioavailability via a non-endosomal uptake pathway. With this strategy, we pursue the cytosolic delivery of mCherry, a medium-sized fluorescent protein. Afterward, we achieve subcellular delivery of mCherry to different intracellular loci by genetic fusion of targeting peptides to the protein sequence. We show efficient transport into a membrane-bound compartment, the nucleus, as well as targeting of the actin cytoskeleton, marking one of the first ways to label actin fluorescently in genetically unmodified living cells. Furthermore, we demonstrate that only by conjugation of cCPPs via a disulfide bond, is flawless localization to the target area achieved. This finding underlines the importance of using a cCPP-based delivery vehicle that is cleaved inside cells, for the precise intracellular localization of a protein of interest.
Collapse
Affiliation(s)
- Anselm F L Schneider
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustrasse 3 , 14189 Berlin , Germany
| | - Antoine L D Wallabregue
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany
| | - Luise Franz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustrasse 3 , 14189 Berlin , Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany
- Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Strasse 2 , 12489 Berlin , Germany
| |
Collapse
|
39
|
Du S, Liew SS, Li L, Yao SQ. Bypassing Endocytosis: Direct Cytosolic Delivery of Proteins. J Am Chem Soc 2018; 140:15986-15996. [DOI: 10.1021/jacs.8b06584] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shubo Du
- Department of Chemistry, National University of Singapore, 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore
| | - Si Si Liew
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, P.R. China
| | - Shao Q. Yao
- Department of Chemistry, National University of Singapore, 117543, Singapore
| |
Collapse
|
40
|
Chen BX, Wei T, Ye ZW, Yun F, Kang LZ, Tang HB, Guo LQ, Lin JF. Efficient CRISPR-Cas9 Gene Disruption System in Edible-Medicinal Mushroom Cordyceps militaris. Front Microbiol 2018; 9:1157. [PMID: 29946301 PMCID: PMC6005869 DOI: 10.3389/fmicb.2018.01157] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Cordyceps militaris is a well-known edible medicinal mushroom in East Asia that contains abundant and diverse bioactive compounds. Since traditional genome editing systems in C. militaris were inefficient and complicated, here, we show that the codon-optimized cas9, which was used with the newly reported promoter Pcmlsm3 and terminator Tcmura3, was expressed. Furthermore, with the help of the negative selection marker ura3, a CRISPR-Cas9 system that included the Cas9 DNA endonuclease, RNA presynthesized in vitro and a single-strand DNA template efficiently generated site-specific deletion and insertion. This is the first report of a CRISPR-Cas9 system in C. militaris, and it could accelerate the genome reconstruction of C. militaris to meet the need for rapid development in the fungi industry.
Collapse
Affiliation(s)
- Bai-Xiong Chen
- Department of Bioengineering, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- Department of Bioengineering, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhi-Wei Ye
- Department of Bioengineering, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Fan Yun
- Guangzhou Alchemy Biotechnology Co., Ltd., Guangzhou, China
| | - Lin-Zhi Kang
- Guangzhou Alchemy Biotechnology Co., Ltd., Guangzhou, China
| | - Hong-Biao Tang
- Department of Bioengineering, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Li-Qiong Guo
- Department of Bioengineering, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Jun-Fang Lin
- Department of Bioengineering, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
41
|
Scaletti F, Hardie J, Lee YW, Luther DC, Ray M, Rotello VM. Protein delivery into cells using inorganic nanoparticle-protein supramolecular assemblies. Chem Soc Rev 2018. [PMID: 29537040 DOI: 10.1039/c8cs00008e] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The delivery of proteins into cells is a potential game changer for a wide array of therapeutic purposes, including cancer therapy, immunomodulation and treatment of inherited diseases. In this review, we present recently developed nanoassemblies for protein delivery that utilize strategies that range from direct assembly, encapsulation and composite formation. We will discuss factors that affect the efficacy of nanoassemblies for delivery from the perspective of both nanoparticles and proteins. Challenges in the field, particularly achieving effective cytosolar protein delivery through endosomal escape or evasion are discussed.
Collapse
Affiliation(s)
- Federica Scaletti
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Enhanced differentiation of human pluripotent stem cells into cardiomyocytes by bacteria-mediated transcription factors delivery. PLoS One 2018; 13:e0194895. [PMID: 29579079 PMCID: PMC5868831 DOI: 10.1371/journal.pone.0194895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/12/2018] [Indexed: 12/16/2022] Open
Abstract
Virus-mediated expression of defined transcription factor (TF) genes can effectively induce cellular reprogramming. However, sustained expression of the TFs often hinders pluripotent stem cell (PSC) differentiation into specific cell types, as each TF exerts its effect on PSCs for a defined period of time during differentiation. Here, we applied a bacterial type III secretion system (T3SS)-based protein delivery tool to directly translocate TFs in the form of protein into human PSCs. This transient protein delivery technique showed high delivery efficiency for hPSCs, and it avoids potential genetic alterations caused by the introduction of transgenes. In an established cardiomyocyte de novo differentiation procedure, five transcriptional factors, namely GATA4, MEF2C, TBX5, ESRRG and MESP1 (abbreviated as GMTEM), were translocated at various time points. By detecting the expression of cardiac marker genes (Nkx2.5 and cTnT), we found that GMTEM proteins delivered on mesoderm stage of the cardiomyocytes lineage differentiation significantly enhanced both the human ESC and iPSC differentiation into cardiomyocytes, while earlier or later delivery diminished the enhancing effect. Furthermore, all of the five factors were required to enhance the cardiac differentiation. This work provides a virus-free strategy of transient transcription factors delivery for directing human stem cell fate without jeopardizing genome integrity, thus safe for biomedical applications.
Collapse
|
43
|
Chiper M, Niederreither K, Zuber G. Transduction Methods for Cytosolic Delivery of Proteins and Bioconjugates into Living Cells. Adv Healthc Mater 2018; 7:e1701040. [PMID: 29205903 DOI: 10.1002/adhm.201701040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Indexed: 01/05/2023]
Abstract
The human organism and its constituting cells rely on interplay between multiple proteins exerting specific functions. Progress in molecular biotechnologies has facilitated the production of recombinant proteins. When administrated to patients, recombinant proteins can provide important healthcare benefits. To date, most therapeutic proteins must act from the extracellular environment, with their targets being secreted modulators or extracellular receptors. This is because proteins cannot passively diffuse across the plasma membrane into the cytosol. To expand the scope of action of proteins for cytosolic targets (representing more than 40% of the genome) effective methods assisting protein cytosolic entry are being developed. To date, direct protein delivery is extremely tedious and inefficient in cultured cells, even more so in animal models of pathology. Novel techniques are changing this limitation, as recently developed in vitro methods can robustly convey large amount of proteins into cell cultures. Moreover, advances in protein formulation or protein conjugates are slowly, but surely demonstrating efficiency for targeted cytosolic entry of functional protein in vivo in tumor xenograft models. In this review, various methods and recently developed techniques for protein transport into cells are summarized. They are put into perspective to address the challenges encountered during delivery.
Collapse
Affiliation(s)
- Manuela Chiper
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
- Faculté de Pharmacie—Université de Strasbourg 74 Route du Rhin F‐67400 Illkirch France
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department Institute of Genetics and Molecular and Cellular Biology (IGBMC) F‐67412 Illkirch France
- Faculté de Chirurgie Dentaire Université de Strasbourg CNRS UMR 7104, INSERM U 964 F‐67000 Strasbourg France
| | - Guy Zuber
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
| |
Collapse
|
44
|
Ray M, Lee YW, Hardie J, Mout R, Yeşilbag Tonga G, Farkas ME, Rotello VM. CRISPRed Macrophages for Cell-Based Cancer Immunotherapy. Bioconjug Chem 2018; 29:445-450. [PMID: 29298051 DOI: 10.1021/acs.bioconjchem.7b00768] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present here an integrated nanotechnology/biology strategy for cancer immunotherapy that uses arginine nanoparticles (ArgNPs) to deliver CRISPR-Cas9 gene editing machinery into cells to generate SIRP-α knockout macrophages. The NP system efficiently codelivers single guide RNA (sgRNA) and Cas9 protein required for editing to knock out the "don't eat me signal" in macrophages that prevents phagocytosis of cancer cells. Turning off this signal increased the innate phagocytic capabilities of the macrophages by 4-fold. This improved attack and elimination of cancer cells makes this strategy promising for the creation of "weaponized" macrophages for cancer immunotherapy.
Collapse
Affiliation(s)
- Moumita Ray
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Joseph Hardie
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Rubul Mout
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Gulen Yeşilbag Tonga
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Michelle E Farkas
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
45
|
Chen M, Wan L, Zhang J, Zhang J, Mendez L, Clohessy JG, Berry K, Victor J, Yin Q, Zhu Y, Wei W, Pandolfi PP. Deregulated PP1α phosphatase activity towards MAPK activation is antagonized by a tumor suppressive failsafe mechanism. Nat Commun 2018; 9:159. [PMID: 29335436 PMCID: PMC5768788 DOI: 10.1038/s41467-017-02272-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 11/17/2017] [Indexed: 12/22/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is frequently aberrantly activated in advanced cancers, including metastatic prostate cancer (CaP). However, activating mutations or gene rearrangements among MAPK signaling components, such as Ras and Raf, are not always observed in cancers with hyperactivated MAPK. The mechanisms underlying MAPK activation in these cancers remain largely elusive. Here we discover that genomic amplification of the PPP1CA gene is highly enriched in metastatic human CaP. We further identify an S6K/PP1α/B-Raf signaling pathway leading to activation of MAPK signaling that is antagonized by the PML tumor suppressor. Mechanistically, we find that PP1α acts as a B-Raf activating phosphatase and that PML suppresses MAPK activation by sequestering PP1α into PML nuclear bodies, hence repressing S6K-dependent PP1α phosphorylation, 14-3-3 binding and cytoplasmic accumulation. Our findings therefore reveal a PP1α/PML molecular network that is genetically altered in human cancer towards aberrant MAPK activation, with important therapeutic implications.
Collapse
Affiliation(s)
- Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jiangwen Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, 999077, China
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Lourdes Mendez
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - John G Clohessy
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Kelsey Berry
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Joshua Victor
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Yuan Zhu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
46
|
Abstract
Cloaking its carboxyl groups with a hydrophobic moiety is shown to enable a protein to enter the cytosol of a mammalian cell. Diazo compounds derived from (p-methylphenyl)glycine were screened for the ability to esterify the green fluorescent protein (GFP) in an aqueous environment. Esterification of GFP with 2-diazo-2-(p-methylphenyl)-N,N-dimethylacetamide was efficient. The esterified protein entered the cytosol by traversing the plasma membrane directly, like a small-molecule prodrug. As with prodrugs, the nascent esters are substrates for endogenous esterases, which regenerate native protein. Thus, esterification could provide a general means to deliver native proteins to the cytosol.
Collapse
Affiliation(s)
- Kalie A. Mix
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jo E. Lomax
- Program in Cellular and Molecular Biology, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
47
|
Zhang L, Huang ST, Feng YL, Wan T, Gu HF, Xu J, Yuan LJ, Zhou Y, Yu XJ, Huang L, Luo RZ, Jia WH, Zheng M. The Bidirectional Regulation between MYL5 and HIF-1α Promotes Cervical Carcinoma Metastasis. Theranostics 2017; 7:3768-3780. [PMID: 29109775 PMCID: PMC5667347 DOI: 10.7150/thno.20796] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/04/2017] [Indexed: 12/14/2022] Open
Abstract
Myosin light chains (MLC) serve important regulatory functions in a wide range of cellular and physiological processes. Recent research found that MLC are also chromatin-associated nuclear proteins which regulate gene transcription. In this study, the MLC member myosin regulatory light chain 5 (MYL5) expression was upregulated in late stage cervical cancer patients, positively correlated with pelvic lymph node metastasis, and identified as a poor survival indicator. MYL5 overexpression promoted metastasis in cervical cancer in vitro and in vivo models, whereas MYL5 silencing had the converse effect. We demonstrated a bidirectional regulation between MYL5 and hypoxia inducible factor-1α (HIF-1α). HIF-1α activates MYL5 via binding to the hypoxia response element (HRE) in the promoter of MYL5, and MYL5 could sustain HIF-1α expression by tethering to recognition sequence AGCTCC in the HIF-1α promoter region. Clinical data confirmed a positive correlation between MYL5 and HIF-1α. In summary, our data show that MYL5 may act as a prognosis predictive factor in cervical carcinoma, and strategies that inhibit the interaction of MYL5 and HIF-1α may benefit the cervical carcinoma patients with metastasis.
Collapse
|
48
|
Hassan S, Prakash G, Ozturk A, Saghazadeh S, Sohail MF, Seo J, Dockmeci M, Zhang YS, Khademhosseini A. Evolution and Clinical Translation of Drug Delivery Nanomaterials. NANO TODAY 2017; 15:91-106. [PMID: 29225665 PMCID: PMC5720147 DOI: 10.1016/j.nantod.2017.06.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
With the advent of technology, the role of nanomaterials in medicine has grown exponentially in the last few decades. The main advantage of such materials has been exploited in drug delivery applications, due to their effective targeting that in turn reduces systemic toxicity compared to the conventional routes of drug administration. Even though these materials offer broad flexibility based on targeting tissue, disease, and drug payload, the demand for more effective yet highly biocompatible nanomaterial-based drugs is increasing. While therapeutically improved and safe materials have been introduced in nanomedicine platforms, issues related to their degradation rates and bio-distribution still exist, thus making their successful translation for human use very challenging. Researchers are constantly improving upon novel nanomaterials that are safer and more effective not only as therapeutic agents but as diagnostic tools as well, making the research in the field of nanomedicine ever more fascinating. In this review stress has been made on the evolution of nanomaterials that have been approved for clinical applications by the United States Food and Drug Administration Agency (FDA).
Collapse
Affiliation(s)
- Shabir Hassan
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gyan Prakash
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aycabal Ozturk
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Saghi Saghazadeh
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohammad Farhan Sohail
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jungmok Seo
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mehmet Dockmeci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
49
|
Zhang P, Steinborn B, Lächelt U, Zahler S, Wagner E. Lipo-Oligomer Nanoformulations for Targeted Intracellular Protein Delivery. Biomacromolecules 2017. [DOI: 10.1021/acs.biomac.7b00666] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Zhang
- Pharmaceutical Biotechnology,
Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Benjamin Steinborn
- Pharmaceutical Biotechnology,
Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology,
Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Stefan Zahler
- Pharmaceutical Biotechnology,
Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology,
Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany
| |
Collapse
|
50
|
Mout R, Ray M, Tay T, Sasaki K, Tonga GY, Rotello VM. General Strategy for Direct Cytosolic Protein Delivery via Protein-Nanoparticle Co-engineering. ACS NANO 2017; 11:6416-6421. [PMID: 28614657 PMCID: PMC5766003 DOI: 10.1021/acsnano.7b02884] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Endosomal entrapment is a key hurdle for most intracellular protein-based therapeutic strategies. We report a general strategy for efficient delivery of proteins to the cytosol through co-engineering of proteins and nanoparticle vehicles. The proteins feature an oligo(glutamate) sequence (E-tag) that binds arginine-functionalized gold nanoparticles, generating hierarchical spherical nanoassemblies. These assemblies fuse with cell membranes, releasing the E-tagged protein directly into the cytosol. Five different proteins with diverse charges, sizes, and functions were effectively delivered into cells, demonstrating the generality of our method. Significantly, the engineered proteins retained activity after cytosolic delivery, as demonstrated through the delivery of active Cre recombinase, and granzyme A to kill cancer cells.
Collapse
|