1
|
D'Agosta P, Achilli S, Tumino F, Orbelli Biroli A, Di Santo G, Petaccia L, Onida G, Li Bassi A, Lobo-Checa J, Casari CS. Unraveling the Band Structure and Orbital Character of a π-Conjugated 2D Graphdiyne-Based Organometallic Network. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406533. [PMID: 39544162 DOI: 10.1002/smll.202406533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Graphdiyne-based carbon systems generate intriguing layered sp-sp2 organometallic lattices, characterized by flexible acetylenic groups connecting planar carbon units through metal centers. At their thinnest limit, they can result in 2D organometallic networks exhibiting unique quantum properties and even confining the surface states of the substrate, which is of great importance for fundamental studies. In this work, the on-surface synthesis of a highly crystalline 2D organometallic network grown on Ag(111) is presented. The electronic structure of this mixed honeycomb-kagome arrangement - investigated by angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy - reveals a strong electronic conjugation within the network, leading to the formation of two intense electronic band-manifolds. In comparison to theoretical density functional theory calculations, it is observed that these bands exhibit a well-defined orbital character that can be associated with distinct regions of the sp-sp2 monomers. Moreover, it is found that the halogen by-products resulting from the network formation locally affect the pore-confined states, causing a significant energy shift. This work contributes to the understanding of the growth and electronic structure of graphdiyne-like 2D networks, providing insights into the development of novel carbon materials beyond graphene with tailored properties.
Collapse
Affiliation(s)
- Paolo D'Agosta
- Department of Energy, Politecnico di Milano, via G. Ponzio 34/3, Milano, I-20133, Italy
| | - Simona Achilli
- Department of Physics "Aldo Pontremoli", Università degli Studi di Milano, Via G. Celoria 16, Milano, I-20133, Italy
- INFN, Sezione di Milano, Milano, I-20133, Italy
| | - Francesco Tumino
- Department of Energy, Politecnico di Milano, via G. Ponzio 34/3, Milano, I-20133, Italy
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON, K7L3N6, Canada
| | | | - Giovanni Di Santo
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, Trieste, I-34149, Italy
| | - Luca Petaccia
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, Trieste, I-34149, Italy
| | - Giovanni Onida
- Department of Physics "Aldo Pontremoli", Università degli Studi di Milano, Via G. Celoria 16, Milano, I-20133, Italy
- INFN, Sezione di Milano, Milano, I-20133, Italy
| | - Andrea Li Bassi
- Department of Energy, Politecnico di Milano, via G. Ponzio 34/3, Milano, I-20133, Italy
| | - Jorge Lobo-Checa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, E-50009, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, E-50009, Spain
| | - Carlo S Casari
- Department of Energy, Politecnico di Milano, via G. Ponzio 34/3, Milano, I-20133, Italy
| |
Collapse
|
2
|
Boto RA, Cebreiro-Gallardo A, Menchón RE, Casanova D. Electron-Spin Relaxation in Boron-Doped Graphene Nanoribbons. J Chem Theory Comput 2024. [PMID: 39547821 DOI: 10.1021/acs.jctc.4c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Boron-doped graphene nanoribbons are promising platforms for developing organic materials with magnetic properties. Boron dopants can be used to create localized magnetic states in nanoribbons with tunable interactions. Controlling the coherence times of these magnetic states is the very first step in designing materials for quantum computation or information storage. In this work, we address the connection between the relaxation time and the position of the dopants for a series of boron-doped graphene nanofragments. We combine Redfield theory and ab initio calculations of magnetic properties to unveil the mechanism that governs spin relaxation in solution. We demonstrate that relaxation times can be in the order of 1 ms for the selected graphene nanofragments. A detailed analysis of the relaxation mechanism reveals that the spin decoherence is fundamentally driven by fluctuations of the spin-orbit coupling, and the hyperfine interaction facilitated by the thermal motion of the graphene nanofragments. The close connection between relaxation time, hyperfine interaction and the spin-orbit coupling offers the perspective of designing attractive materials with long-lived spin states.
Collapse
Affiliation(s)
- Roberto A Boto
- Donostia International Physics Center DIPC, Paseo Manuel Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Antonio Cebreiro-Gallardo
- Donostia International Physics Center DIPC, Paseo Manuel Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), PK 1072, 20080 Donostia, Euskadi, Spain
| | - Rodrigo E Menchón
- Donostia International Physics Center DIPC, Paseo Manuel Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura (FCEIA), Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina
- Instituto de Física Rosario (IFIR), Rosario 2000, Argentina
| | - David Casanova
- Donostia International Physics Center DIPC, Paseo Manuel Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
3
|
Li DY, Huang ZY, Kang LX, Wang BX, Fu JH, Wang Y, Xing GY, Zhao Y, Zhang XY, Liu PN. Room-temperature selective cyclodehydrogenation on Au(111) via radical addition of open-shell resonance structures. Nat Commun 2024; 15:9545. [PMID: 39500872 PMCID: PMC11538238 DOI: 10.1038/s41467-024-53927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Cyclodehydrogenation is an important ring-formation reaction that can directly produce planar-conjugated carbon-based nanomaterials from nonplanar molecules. However, inherently high C-H bond energy necessitates a high temperature during dehydrogenation, and the ubiquity of C - H bonds in molecules and small differences in their bond energies hinder the selectivity of dehydrogenation. Here, we report a room-temperature cyclodehydrogenation reaction on Au(111) via radical addition of open-shell resonance structures and demonstrate that radical addition significantly decreases cyclodehydrogenation temperature and further improves the chemoselectivity of dehydrogenation. Using scanning tunneling microscopy and non-contact atomic force microscopy, we visualize the cascade reaction process involved in cyclodehydrogenation and determine atomic structures and molecular orbitals of the planar acetylene-linked oxa-nanographene products. The nonplanar intermediates observed during progression annealing, combined with density functional theory calculations, suggest that room-temperature cyclodehydrogenation involves the formation of transient radicals, intramolecular radical addition, and hydrogen elimination; and that the high chemoselectivity of cyclodehydrogenation arises from the reversibility and different thermodynamics of radical addition step.
Collapse
Affiliation(s)
- Deng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, P. R. China.
| | - Zheng-Yang Huang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Li-Xia Kang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Bing-Xin Wang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Jian-Hui Fu
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Ying Wang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Guang-Yan Xing
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Yan Zhao
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Xin-Yu Zhang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Pei-Nian Liu
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, P. R. China.
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China.
| |
Collapse
|
4
|
Jiménez-Martín A, Sosnová Z, Soler D, Mallada B, González-Herrero H, Edalatmanesh S, Martín N, Écija D, Jelínek P, de la Torre B. Atomically Precise Control of Topological State Hybridization in Conjugated Polymers. ACS NANO 2024; 18:29902-29912. [PMID: 39404161 PMCID: PMC11526428 DOI: 10.1021/acsnano.4c10357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Realization of topological quantum states in carbon nanostructures has recently emerged as a promising platform for hosting highly coherent and controllable quantum dot spin qubits. However, their adjustable manipulation remains elusive. Here, we report the atomically accurate control of the hybridization level of topologically protected quantum edge states emerging from topological interfaces in bottom-up-fabricated π-conjugated polymers. Our investigation employed a combination of low-temperature scanning tunneling microscopy and spectroscopy, along with high-resolution atomic force microscopy, to effectively modify the hybridization level of neighboring edge states by the selective dehydrogenation reaction of molecular units in a pentacene-based polymer and demonstrate their reversible character. Density functional theory, tight binding, and complete active space calculations for the Hubbard model were employed to support our findings, revealing that the extent of orbital overlap between the topological edge states can be finely tuned based on the geometry and electronic bandgap of the interconnecting region. These results demonstrate the utility of topological edge states as components for designing complex quantum arrangements for advanced electronic devices.
Collapse
Affiliation(s)
- Alejandro Jiménez-Martín
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
- Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University, 11519 Prague, Czech
Republic
| | - Zdenka Sosnová
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Diego Soler
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Benjamin Mallada
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Héctor González-Herrero
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Departamento
de Física de la Materia Condensada, Universidad Autónoma, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma, E-28049 Madrid, Spain
| | - Shayan Edalatmanesh
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Nazario Martín
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- IMDEA
Nanoscience, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - David Écija
- IMDEA
Nanoscience, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - Pavel Jelínek
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Bruno de la Torre
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Nanomaterials
and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain
| |
Collapse
|
5
|
Wang H, Wang Y, Zheng C, Wang P, Hu Z, Gao HY. Lying or Standing of Thiophene on a Surface Determines the Reaction Difference. J Phys Chem Lett 2024; 15:10535-10543. [PMID: 39401088 DOI: 10.1021/acs.jpclett.4c02125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Adsorption configurations of molecules on a surface play an important role in the on-surface reaction. In the on-surface synthesis reaction, most of the molecules prefer the lying adsorption configuration to maximize the interaction between the molecule and substrate. In this work, we report an on-surface study of 2,3,4,5-tetrabromothiophene by scanning tunneling microscopy, density functional theory, and X-ray photoelectron spectroscopy. Due to different interactions between thiophene and metal surfaces, lying or standing configurations of 2,3,4,5-tetrabromothiophene can be selected by the choice of metal substrates. Moreover, a catalytic role of the metal substrate in the molecular reaction with lying and standing adsorption configurations is demonstrated at the molecular level. This work broadens the understanding of thiophene's configurations in surface reactions and the product diversity driven by adsorption configurations. It also offers a guiding framework for synthesizing multifunctional materials by thiophene derivatives.
Collapse
Affiliation(s)
- Hongchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People's Republic of China
- Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Tianjin University, Tianjin 300350, People's Republic of China
| | - Youjie Wang
- School of Physics, Nankai University, Tianjin 300071, People's Republic of China
| | - Caiyan Zheng
- School of Physics, Nankai University, Tianjin 300071, People's Republic of China
| | - Peichao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People's Republic of China
- Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Tianjin University, Tianjin 300350, People's Republic of China
| | - Zhenpeng Hu
- School of Physics, Nankai University, Tianjin 300071, People's Republic of China
| | - Hong-Ying Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People's Republic of China
- Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|
6
|
Han D, Ding H, Xiong J, Qin T, Cheng X, Hu J, Xu Q, Zhu J. Unraveling the Origin of Elemental Chemical Shift and the Role of Atomic Hydrogen in a Surface Ullmann Coupling System. ACS NANO 2024; 18:28946-28955. [PMID: 39385340 DOI: 10.1021/acsnano.4c09375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The Ullmann coupling of aryl halides is a powerful method in the on-surface synthesis of functional materials. Understanding its basic aspects and influencing factors can aid in the use of this tool for the fabrication of intriguing structures. In this study, we unveil (1) the origin of the shift in the elemental binding energy (BE) and (2) the functions of atomic hydrogen (AH) in a typical Ullmann coupling system using combined spectroscopy and microscopy techniques. During debromination of the aryl halide precursor, the work function (WF) alteration is correlated with the surface Br amount. The WF change instead of C-Ag formation is proposed to play a dominant role in the shift of the molecular C 1s BE. AH dosing onto organometallic chains leads to chain decomposition and surface Br removal. In contrast, AH dosing onto covalent poly(para-phenylene) (PPP) chains results in superhydrogenation in addition to Br removal. The C 1s BE shift is attributed to both WF change and superhydrogenation effects. Thermal annealing restores the PPP chains by eliminating superhydrogenation, which causes the C 1s BE to shift to a high BE. This study provides deep insights into the mechanisms of Ullmann coupling on surfaces, highlighting the significant role of WF alterations and AH treatments in these processes.
Collapse
Affiliation(s)
- Dong Han
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Juanjuan Xiong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Tianchen Qin
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Xingwang Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
7
|
Lerena L, Zuzak R, Godlewski S, Echavarren AM. The Journey for the Synthesis of Large Acenes. Chemistry 2024; 30:e202402122. [PMID: 39077888 DOI: 10.1002/chem.202402122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
Acenes, the group of polycyclic aromatic hydrocarbons (PAHs) with linearly fused benzene rings, possess distinctive electronic properties with potential applicability in material science. Hexacene was the largest acene obtained and characterized in the last century, followed by heptacene in 2006. Since then, a race for obtaining the largest acene resulted in the development of several members of this family as well as diverse innovative synthetic strategies, from solid-state chemistry to the promising on-surface chemistry. This last technique allows the obtention of large acenes, up to tridecacene, the largest acene so far. This review presents the different methodologies employed for the synthesis of acenes, highlighting the newest studies, to provide a much more thorough understanding of the essence of the electronic structure of this captivating group of organic compounds.
Collapse
Affiliation(s)
- Laura Lerena
- Institute of Chemical Research of Catalonia (ICIQ), CERCA, Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Rafal Zuzak
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, PL 30-348, Krakow, Poland
| | - Szymon Godlewski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, PL 30-348, Krakow, Poland
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), CERCA, Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
8
|
Ukah N, Wegner HA. On-surface synthesis - Ullmann coupling reactions on N-heterocyclic carbene functionalized gold nanoparticles. NANOSCALE 2024; 16:18524-18533. [PMID: 39269035 DOI: 10.1039/d4nr03065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Organic on-surface syntheses promise to be a useful method for direct integration of organic molecules onto 2-dimensional (2D) flat surfaces. In the past years, there has been an increasing understanding of the mechanistic details of reactions on surfaces, however, mostly under ultra-high vacuum on very defined surfaces. Herein, we expand the scope to gold nanoparticles (AuNps) in solution via an Ullmann reaction of aryl halides connected via N-heterocyclic carbenes (NHCs) to AuNps. Through design and syntheses of various organic precursors, we address the influence of the contact angle, reactivity of the halogen and the proximity of the entire coupling partner on on-surface reactivities, thus, establishing general parameters governing organic on-surface syntheses on AuNps in solution, in comparison with the reactivity on defined surfaces under ultra-high vacuum. The retention of such halogenated Nps even at higher reaction temperatures holds great promise in the fields of materials engineering, nanotechnology and molecular self-assembly, while expanding the toolbox of organic chemistry synthesis in accessing various covalent architectures.
Collapse
Affiliation(s)
- Nathaniel Ukah
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
- Center for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
- Center for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| |
Collapse
|
9
|
Yu H, Heine T. Prediction of metal-free Stoner and Mott-Hubbard magnetism in triangulene-based two-dimensional polymers. SCIENCE ADVANCES 2024; 10:eadq7954. [PMID: 39356753 DOI: 10.1126/sciadv.adq7954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Ferromagnetism and antiferromagnetism require robust long-range magnetic ordering, which typically involves strongly interacting spins localized at transition metal atoms. However, in metal-free systems, the spin orbitals are largely delocalized, and weak coupling between the spins in the lattice hampers long-range ordering. Metal-free magnetism is of fundamental interest to physical sciences, unlocking unprecedented dimensions for strongly correlated materials and biocompatible magnets. Here, we present a strategy to achieve strong coupling between spin centers of planar radical monomers in π-conjugated two-dimensional (2D) polymers and rationally control the orderings. If the π-states in these triangulene-based 2D polymers are half-occupied, then we predict that they are antiferromagnetic Mott-Hubbard insulators. Incorporating a boron or nitrogen heteroatom per monomer results in Stoner ferromagnetism and half-metallicity, with the Fermi level located at spin-polarized Dirac points. An unprecedented antiferromagnetic half-semiconductor is observed in a binary boron-nitrogen-centered 2D polymer. Our findings pioneer Stoner and Mott-Hubbard magnetism emerging in the electronic π-system of crystalline-conjugated 2D polymers.
Collapse
Affiliation(s)
- Hongde Yu
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Centrum for Advanced Systems Understanding, CASUS, Untermarkt 20, 02826 Görlitz, Germany
- Department of Chemistry, Yonsei University and IBS Center for Nanomedicine, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
10
|
Chen L, Rosen J, Björk J. A Density Functional Benchmark for Dehydrogenation and Dehalogenation Reactions on Coinage Metal Surfaces. Chemphyschem 2024:e202400865. [PMID: 39353856 DOI: 10.1002/cphc.202400865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
The on-surface synthesis of low-dimensional organic nanostructures has been extensively investigated through both experimental and theoretical methods, particularly by density functional theory (DFT). However, the complex mixture of interactions often poses challenges within the DFT framework, and there is a knowledge-gap regarding how the choice of DFT approach affects the computed results. Here, five different approaches including vdW interactions, i. e., PBE+D3, PBE+vdWsurf, rev-vdWDF2, r2SCAN+rVV10 and BEEF-vdW, are employed to describe three prototypical on-surface reactions; dehydrogenation of benzene, debromination of bromobenzene, and deiodination of iodobenzene on the (111) facets of the coinage metals. Overall, rev-vdW-DF2 outperforms the other methods in describing benzene adsorption, whereas BEEF-vdW falls short. For dehydrogenation and debromination on Cu(111), all functionals except BEEF-vdW give reasonable activation energies compared to experiments. A similar trend is observed for Ag(111) and Au(111), with BEEF-vdW yielding significantly higher activation and reaction energies. For dehalogenation, all the five vdW approaches correctly capture the reactivity trend - Cu(111)>Ag(111)>Au(111) - and the expected hierarchy between bromobenzene desorption and carbon-bromine activation. Only BEEF-vdW fails to predict the faster kinetics of deiodination than the iodobenzene desorption. Our work forms a basis for evaluating density functionals in describing chemical reactions on surfaces.
Collapse
Affiliation(s)
- Lin Chen
- Materials Design Division, Department of Physics, Chemistry and Biology, IFM, Linköping University, 58183, Linköping, Sweden
| | - Johanna Rosen
- Materials Design Division, Department of Physics, Chemistry and Biology, IFM, Linköping University, 58183, Linköping, Sweden
| | - Jonas Björk
- Materials Design Division, Department of Physics, Chemistry and Biology, IFM, Linköping University, 58183, Linköping, Sweden
| |
Collapse
|
11
|
Custance O, Ventura-Macias E, Stetsovych O, Romero-Muñiz C, Shimizu TK, Pou P, Abe M, Hayashi H, Ohkubo T, Kawai S, Perez R. Structure and Defect Identification at Self-Assembled Islands of CO 2 Using Scanning Probe Microscopy. ACS NANO 2024; 18:26759-26769. [PMID: 39285838 DOI: 10.1021/acsnano.4c07034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Understanding how carbon dioxide (CO2) behaves and interacts with surfaces is paramount for the development of sensors and materials to attempt CO2 mitigation and catalysis. Here, we combine simultaneous atomic force microscopy (AFM) and scanning tunneling microscopy (STM) using CO-functionalized probes with density functional theory (DFT)-based simulations to gain fundamental insight into the behavior of physisorbed CO2 molecules on a gold(111) surface that also contains one-dimensional metal-organic chains formed by 1,4-phenylene diisocyanide (PDI) bridged by gold (Au) adatoms. We resolve the structure of self-assembled CO2 islands, both confined between the PDI-Au chains as well as free-standing on the surface and reveal a chiral arrangement of CO2 molecules in a windmill-like structure that encloses a standing-up CO2 molecule and other foreign species existing at the surface. We identify these species by the comparison of height-dependent AFM and STM imaging with DFT-calculated images and clarify the origin of the kagome tiling exhibited by this surface system. Our results show the complementarity of AFM and STM using functionalized probes and their potential, when combined with DFT, to explore greenhouse gas molecules at surface-supported model systems.
Collapse
Affiliation(s)
- Oscar Custance
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Emiliano Ventura-Macias
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Oleksandr Stetsovych
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague 6, Prague 16200, Czech Republic
| | - Carlos Romero-Muñiz
- Departamento de Física de la Materia Condensada, Universidad de Sevilla, P.O. Box 1065, Seville 41080, Spain
| | - Tomoko K Shimizu
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Pablo Pou
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Condensed Matter Physics Center(IFIMAC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Masayuki Abe
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hironobu Hayashi
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Tadakatsu Ohkubo
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Shigeki Kawai
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Ruben Perez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Condensed Matter Physics Center(IFIMAC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
12
|
Sarkar S, Álvarez B, Ho Au-Yeung K, Cobas A, Robles R, Lorente N, Peña D, Pérez D, Moresco F. On-Surface Stepwise Double Dehydrogenation for the Formation of a para-Quinodimethane-Containing Undecacene Isomer. Chemistry 2024; 30:e202402297. [PMID: 39032069 DOI: 10.1002/chem.202402297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/22/2024]
Abstract
The on-surface synthesis of an isomer of undecacene, bearing two four-membered rings and two para-quinodimethane moieties, starting from a tetramethyl-substituted diepoxy precursor, is presented. The transformation implies a thermal double deoxygenation followed by a stepwise double dehydrogenation reaction on the Au(111) surface, locally induced by inelastic tunneling electrons. This results in the transformation of para-dimethylbenzene moieties into non-aromatic para-quinodimethanes. The structures and electronic properties of the intermediate and final products are investigated at the single molecule level with high spatial resolution, using both scanning tunneling microscopy/spectroscopy and non-contact atomic force microscopy. The experimental results are supported by density functional theory calculations.
Collapse
Affiliation(s)
- Suchetana Sarkar
- Center for Advancing Electronics Dresden, TU Dresden, 01062, Dresden, Germany
| | - Berta Álvarez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Kwan Ho Au-Yeung
- Center for Advancing Electronics Dresden, TU Dresden, 01062, Dresden, Germany
- Current address: Physikalisches Institut, Karlsruher Institut für Technologie, 76131, Karlsruhe, Germany
| | - Agustín Cobas
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018, Donostia-San Sebastián, Spain
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Donostia International Physics Center, 20018, Donostia-San Sebastián, Spain
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Dolores Pérez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Francesca Moresco
- Center for Advancing Electronics Dresden, TU Dresden, 01062, Dresden, Germany
| |
Collapse
|
13
|
Moreno C, Diaz de Cerio X, Tenorio M, Gao F, Vilas-Varela M, Sarasola A, Peña D, Garcia-Lekue A, Mugarza A. On-surface synthesis of porous graphene nanoribbons mediated by phenyl migration. Commun Chem 2024; 7:219. [PMID: 39343837 PMCID: PMC11439924 DOI: 10.1038/s42004-024-01284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Advancements in the on-surface synthesis of atomically precise graphene nanostructures are propelled by the introduction of innovative precursor designs and reaction types. Until now, the latter has been confined to cross-coupling and cyclization reactions that involve the cleavage of specific atoms or groups. In this article, we elucidate how the migration of phenyl substituents attached to graphene nanoribbons can be harnessed to generate arrays of [18]-annulene pores at the edges of the nanostructures. This sequential pathway is revealed through a comprehensive study employing bond-resolved scanning tunneling microscopy and ab-initio computational techniques. The yield of pore formation is maximized by anchoring the graphene nanoribbons at steps of vicinal surfaces, underscoring the potential of these substrates to guide reaction paths. Our study introduces a new reaction to the on-surface synthesis toolbox along with a sequential route, altogether enabling the extension of this strategy towards the formation of other porous nanostructures.
Collapse
Affiliation(s)
- César Moreno
- Departamento de Ciencias de la Tierra y Fisica de la Materia Condensada, Universidad de Cantabria, Santander, Spain.
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Bellaterra, 08193, Barcelona, Spain.
| | | | - Maria Tenorio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Bellaterra, 08193, Barcelona, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), 28049, Madrid, Spain
| | - Fei Gao
- Donostia International Physics Center, San Sebastian, Spain
| | - Manuel Vilas-Varela
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ane Sarasola
- Donostia International Physics Center, San Sebastian, Spain
- Departamento de Física Aplicada, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia, Spain
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Aran Garcia-Lekue
- Donostia International Physics Center, San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Aitor Mugarza
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Bellaterra, 08193, Barcelona, Spain.
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain.
| |
Collapse
|
14
|
Li H, Wang Y, Yang B, Zhang H, Xie M, Chi L. Theoretical Investigation on the Initial Reaction Mechanism of Hexaethynylbenzene on Au(111) Surface. J Phys Chem A 2024; 128:7536-7545. [PMID: 39194318 DOI: 10.1021/acs.jpca.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Graphyne has attracted considerable interest and attention since its successful synthesis, due to its enormous potential for applications in the fields of electronics, energy, catalysis, information technology, etc. Although various methods for synthesizing graphyne have been explored, single-layer graphynes have not been successfully developed. Hexaethynylbenzene (HEB) is considered an ideal precursor molecule because it can undergo Glaser coupling reactions between molecules to synthesize single layer graphdiyne on single crystal metal surfaces via on-surface reactions. Unfortunately, this method fails to achieve the expected results, and the underlying mechanism is not clear. In this work, we employed a combination of ab initio molecular dynamics (AIMD) and quantum mechanics (QM) methods to investigate the initial reaction mechanism of HEB molecules on a Au(111) surface. We revealed that HEB molecules undergo both intermolecular coupling and intramolecular cyclization on the Au(111) surface. The favorable pathways of these two types of reactions were then distinguished, confirming that the distance between the terminal carbon atoms of the ethynyl groups plays an important role in C-C coupling. The insights revealed from this work could facilitate the rational design of precursor molecules and deepen the understanding of the reaction processes.
Collapse
Affiliation(s)
- Hailong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yuying Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Biao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Miao Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| |
Collapse
|
15
|
Martin-Jimenez D, Zhong Q, Schirmeisen A, Ebeling D. Imaging the adsorption sites of organic molecules on metallic surfaces by an adaptive tunnelling current feedback. NANOTECHNOLOGY 2024; 35:475703. [PMID: 39173655 DOI: 10.1088/1361-6528/ad726a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Atomic force microscopy (AFM) allows submolecular resolution imaging of organic molecules deposited on a surface by using CO-functionalized qPlus sensors under ultrahigh vacuum and low temperature conditions. However, the experimental determination of the adsorption sites of these organic molecules requires the precise identification of the atomic structure of the surface on which they are adsorbed. Here, we develop an automation method for AFM imaging that provides in a single image both, submolecular resolution on organic molecules and atomic resolution on the surrounding metallic surface. The method is based on an adaptive tunnelling current feedback system that is regulated according to the response of the AFM observables, which guarantees that both the molecules and the surface atoms are imaged under optimum conditions. Therewith, the approach is suitable for imaging adsorption sites of several adjacent and highly mobile molecules such as 2-iodotriphenylene on Ag(111) in a single scan. The proposed method with the adaptive feedback system facilitates statistical analysis of molecular adsorption geometries and could in the future contribute to autonomous AFM imaging as it adapts the feedback parameters depending on the sample properties.
Collapse
Affiliation(s)
- Daniel Martin-Jimenez
- Instituto de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Bellaterra, 08193 Barcelona, Spain
- Institute of Applied Physics (IAP), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Qigang Zhong
- Institute of Applied Physics (IAP), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - André Schirmeisen
- Institute of Applied Physics (IAP), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Daniel Ebeling
- Institute of Applied Physics (IAP), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| |
Collapse
|
16
|
Ariga K. Liquid-Liquid Interfacial Nanoarchitectonics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305636. [PMID: 37641176 DOI: 10.1002/smll.202305636] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Science in the small world has become a crucial key that has the potential to revolutionize materials technology. This trend is embodied in the postnanotechnology concept of nanoarchitectonics. The goal of nanoarchitectonics is to create bio-like functional structures, in which self-organized and hierarchical structures are working efficiently. Liquid-liquid interface like environments such as cell membrane surface are indispensable for the expression of biological functions through the accumulation and organization of functional materials. From this viewpoint, it is necessary to reconsider the liquid-liquid interface as a medium where nanoarchitectonics can play an active role. In this review, liquid-liquid interfacial nanoarchitectonics is classified by component materials such as organic, inorganic, carbon, and bio, and recent research examples are discussed. Examples discussed in this paper include molecular aggregates, supramolecular polymers, conductive polymers film, crystal-like capsules, block copolymer assemblies, covalent organic framework (COF) films, complex crystals, inorganic nanosheets, colloidosomes, fullerene assemblies, all-carbon π-conjugated graphite nanosheets, carbon nanoskins and fullerphene thin films at liquid-liquid interfaces. Furthermore, at the liquid-liquid interface using perfluorocarbons and aqueous phases, cell differentiation controls are discussed with the self-assembled structure of biomaterials. The significance of liquid-liquid interfacial nanoarchitectonics in the future development of materials will then be discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha Kashiwa, Tokyo, 277-8561, Japan
| |
Collapse
|
17
|
Pérez-Elvira E, Barragán A, Gallardo A, Santos J, Martín-Fuentes C, Lauwaet K, Gallego JM, Miranda R, Sakurai H, Urgel JI, Björk J, Martín N, Écija D. Coronene-Based 2D Networks by On-Surface Skeletal Rearrangement of Sumanene Precursors. Angew Chem Int Ed Engl 2024:e202414583. [PMID: 39193816 DOI: 10.1002/anie.202414583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
The design of novel low-dimensional carbon materials is at the forefront of modern chemistry. Recently, on-surface covalent synthesis has emerged as a powerful strategy to synthesize previously precluded compounds and polymers. Here, we report a scanning probe microscopy study, complemented by theoretical calculations, on the sequential skeletal rearrangement of sumanene-based precursors into a coronene-based organometallic network by stepwise intra- and inter-molecular reactions on Au(111). Interestingly, upon higher annealing, the formed organometallic networks evolve into two-dimensional coronene-based covalently linked patches through intermolecular homocoupling reactions. A new reaction mechanism is proposed based on the role of C-Au-C motifs to promote two stepwise carbon-carbon couplings to form cyclobutadiene bridges. Our results pave avenues for the conversion of molecular precursors on surfaces, affording the design of unexplored two-dimensional organometallic and covalent materials.
Collapse
Affiliation(s)
- Elena Pérez-Elvira
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Ana Barragán
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Aurelio Gallardo
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - José Santos
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense
| | | | - Koen Lauwaet
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - José M Gallego
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Rodolfo Miranda
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - José I Urgel
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
- Unidad de Nanomateriales Avanzados, IMDEA Nanoscience, Unidad asociada al CSIC por el ICMM, 28049, Madrid, Spain
| | - Jonas Björk
- Materials Design Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
| | - Nazario Martín
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense
| | - David Écija
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
- Unidad de Nanomateriales Avanzados, IMDEA Nanoscience, Unidad asociada al CSIC por el ICMM, 28049, Madrid, Spain
| |
Collapse
|
18
|
Deyerling J, Berionni Berna B, Biloborodov D, Haag F, Tömekce S, Cuxart MG, Li C, Auwärter W, Bonifazi D. Solution Versus On-Surface Synthesis of Peripherally Oxygen-Annulated Porphyrins through C-O Bond Formation. Angew Chem Int Ed Engl 2024:e202412978. [PMID: 39196673 DOI: 10.1002/anie.202412978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 08/30/2024]
Abstract
This study investigates the synthesis of tetra- and octa-O-fused porphyrinoids employing an oxidative O-annulation approach through C-H activation. Despite encountering challenges such as overoxidation and instability in conventional solution protocols, successful synthesis was achieved on Au(111) surfaces under ultra-high vacuum (UHV) conditions. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and non-contact atomic force microscopy elucidated the preferential formation of pyran moieties via C-O bond formation and subsequent self-assembly driven by C-H⋅⋅⋅O interactions. Furthermore, the O-annulation process was found to reduce the HOMO-LUMO gap by lifting the HOMO energy level, with the effect rising upon increasing the number of embedded O-atoms.
Collapse
Affiliation(s)
- Joel Deyerling
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Beatrice Berionni Berna
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Dmytro Biloborodov
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Felix Haag
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Sena Tömekce
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Marc G Cuxart
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Conghui Li
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Willi Auwärter
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Davide Bonifazi
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
19
|
Lu Y, Li L, Wang S, Pu X, Zhu YL, Yang Y, Luan J, Zhang S, Wang G. Charge Transfer Mechanisms of Adaptive Multicomponent Solutions at Solid-Liquid Interfaces for Real-Time Coolant State Monitoring. NANO LETTERS 2024; 24:10372-10379. [PMID: 39105796 DOI: 10.1021/acs.nanolett.4c03174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Charge-transfer mechanisms in adaptive multicomponent solutions at liquid-solid interfaces with triboelectric probes are crucial for understanding chemistry dynamics. However, liquid-solid charge transfer becomes unpredictable, due to the components or interactions in solutions, restricting its potential application for precise monitoring of liquid environments. This study utilizes triboelectric probes to investigate the charge transfer of chemicals, applying this approach to real-time coolant state monitoring. Analysis of electrical signal dynamics induced by ethylene glycol and its oxidation byproduct, oxalic acid, in ethylene glycol solutions reveals that hydrogen bond and ion adsorption diminishes the efficiency of electron transfer at the liquid-solid interface. These findings promote the engineering of the triboelectric probe that enhances coolant quality with remarkable sensitivity (detection limit: 0.0001%) and a broad freezing point operational range (0 to -49 °C). This work advances the precise control of the charge dynamics and demonstrates the potential of triboelectric probes for interdisciplinary applications.
Collapse
Affiliation(s)
- Yanxu Lu
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Leibo Li
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Shengdao Wang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Xin Pu
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - You-Liang Zhu
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Yanchao Yang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Jiashuang Luan
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Shuling Zhang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Guibin Wang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
20
|
Besteiro-Sáez J, Mateo LM, Salaverría S, Wang T, Angulo-Portugal P, Calupitan JP, Rodríguez-Fernández J, García-Fuente A, Ferrer J, Pérez D, Corso M, de Oteyza DG, Peña D. [19]Starphene: Combined In-Solution and On-Surface Synthesis Towards the Largest Starphene. Angew Chem Int Ed Engl 2024:e202411861. [PMID: 39110601 DOI: 10.1002/anie.202411861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 11/10/2024]
Abstract
Starphenes are structurally appealing three-fold symmetric polycyclic aromatic compounds with potential interesting applications in molecular electronics and nanotechnology. This family of star-shaped polyarenes can be regarded as three acenes that are connected through a single benzene ring. In fact, just like acenes, unsubstituted large starphenes are poorly soluble and highly reactive molecules under ambient conditions making their synthesis difficult to achieve. Herein, we report two different synthetic strategies to obtain a starphene formed by 19 cata-fused benzene rings distributed within three hexacene branches. This molecule, which is the largest starphene that has been obtained to date, was prepared by combining solution-phase and on-surface synthesis. [19]Starphene was characterized by high-resolution scanning tunneling microscopy (STM) and spectroscopy (STS) showing a remarkable small HOMO-LUMO transport gap (0.9 eV).
Collapse
Affiliation(s)
- Javier Besteiro-Sáez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Luis M Mateo
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Sergio Salaverría
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940, El Entrego, Spain
| | - Tao Wang
- Donostia International Physics Center, 20018, San Sebastián, Spain
| | - Paula Angulo-Portugal
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Donostia, 20018 San Sebastián, Spain
| | - Jan Patrick Calupitan
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Donostia, 20018 San Sebastián, Spain
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, F-75005, Paris, France
| | | | | | - Jaime Ferrer
- Physics Department, University of Oviedo, 33007, Oviedo, Spain
| | - Dolores Pérez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martina Corso
- Donostia International Physics Center, 20018, San Sebastián, Spain
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Donostia, 20018 San Sebastián, Spain
| | - Dimas G de Oteyza
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940, El Entrego, Spain
- Donostia International Physics Center, 20018, San Sebastián, Spain
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Oportunius, Galician Innovation Agency (GAIN), 15702, Santiago de Compostela, Spain
| |
Collapse
|
21
|
Chahib O, Yin Y, Liu JC, Li C, Glatzel T, Ding F, Yuan Q, Meyer E, Pawlak R. Probing charge redistribution at the interface of self-assembled cyclo-P 5 pentamers on Ag(111). Nat Commun 2024; 15:6542. [PMID: 39095352 PMCID: PMC11297031 DOI: 10.1038/s41467-024-50862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Phosphorus pentamers (cyclo-P5) are unstable in nature but can be synthesized at the Ag(111) surface. Unlike monolayer black phosphorous, little is known about their electronic properties when in contact with metal electrodes, although this is crucial for future applications. Here, we characterize the atomic structure of cyclo-P5 assembled on Ag(111) using atomic force microscopy with functionalized tips and density functional theory. Combining force and tunneling spectroscopy, we find that a strong charge transfer induces an inward dipole moment at the cyclo-P5/Ag interface as well as the formation of an interface state. We probe the image potential states by field-effect resonant tunneling and quantify the increase of the local change of work function of 0.46 eV at the cyclo-P5 assembly. Our experimental approach suggest that the cyclo-P5/Ag interface has the characteristic ingredients of a p-type semiconductor-metal Schottky junction with potential applications in field-effect transistors, diodes, or solar cells.
Collapse
Affiliation(s)
- Outhmane Chahib
- Department of Physics, University of Basel, Basel, Switzerland
| | - Yuling Yin
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Shenzhen, People's Republic of China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, People's Republic of China
| | - Jung-Ching Liu
- Department of Physics, University of Basel, Basel, Switzerland
| | - Chao Li
- Department of Physics, University of Basel, Basel, Switzerland
| | - Thilo Glatzel
- Department of Physics, University of Basel, Basel, Switzerland
| | - Feng Ding
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Shenzhen, People's Republic of China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, People's Republic of China
| | - Qinghong Yuan
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, People's Republic of China
| | - Ernst Meyer
- Department of Physics, University of Basel, Basel, Switzerland.
| | - Rémy Pawlak
- Department of Physics, University of Basel, Basel, Switzerland.
| |
Collapse
|
22
|
Piquero-Zulaica I, Hu W, Seitsonen AP, Haag F, Küchle J, Allegretti F, Lyu Y, Chen L, Wu K, El-Fattah ZMA, Aktürk E, Klyatskaya S, Ruben M, Muntwiler M, Barth JV, Zhang YQ. Unconventional Band Structure via Combined Molecular Orbital and Lattice Symmetries in a Surface-Confined Metallated Graphdiyne Sheet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405178. [PMID: 38762788 DOI: 10.1002/adma.202405178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Indexed: 05/20/2024]
Abstract
Graphyne (GY) and graphdiyne (GDY)-based monolayers represent the next generation 2D carbon-rich materials with tunable structures and properties surpassing those of graphene. However, the detection of band formation in atomically thin GY/GDY analogues has been challenging, as both long-range order and atomic precision have to be fulfilled in the system. The present work reports direct evidence of band formation in on-surface synthesized metallated Ag-GDY sheets with mesoscopic (≈1 µm) regularity. Employing scanning tunneling and angle-resolved photoemission spectroscopies, energy-dependent transitions of real-space electronic states above the Fermi level and formation of the valence band are respectively observed. Furthermore, density functional theory (DFT) calculations corroborate the observations and reveal that doubly degenerate frontier molecular orbitals on a honeycomb lattice give rise to flat, Dirac and Kagome bands close to the Fermi level. DFT modeling also indicates an intrinsic band gap for the pristine sheet material, which is retained for a bilayer with h-BN, whereas adsorption-induced in-gap electronic states evolve at the synthesis platform with Ag-GDY decorating the (111) facet of silver. These results illustrate the tremendous potential for engineering novel band structures via molecular orbital and lattice symmetries in atomically precise 2D carbon materials.
Collapse
Affiliation(s)
| | - Wenqi Hu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ari Paavo Seitsonen
- Département de Chemie, École Normale Supérieure, 24 rue Lhomond, Paris, F-75005, France
| | - Felix Haag
- Physics Department E20, Technical University of Munich, D-85748, Garching, Germany
| | - Johannes Küchle
- Physics Department E20, Technical University of Munich, D-85748, Garching, Germany
| | - Francesco Allegretti
- Physics Department E20, Technical University of Munich, D-85748, Garching, Germany
| | - Yuanhao Lyu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zakaria M Abd El-Fattah
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, E-11884, Egypt
- Physics Department, Faculty of Science, Galala University, New Galala City, Suez, 43511, Egypt
| | - Ethem Aktürk
- Department of Physics, Adnan Menderes University, Aydin, 09100, Turkey
| | - Svetlana Klyatskaya
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mario Ruben
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
- IPCMS-CNRS, Université de Strasbourg, 23 rue de Loess, Strasbourg, 67034, France
| | - Matthias Muntwiler
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Johannes V Barth
- Physics Department E20, Technical University of Munich, D-85748, Garching, Germany
| | - Yi-Qi Zhang
- Physics Department E20, Technical University of Munich, D-85748, Garching, Germany
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
23
|
Urgel JI, Sánchez-Grande A, Vicent DJ, Jelínek P, Martín N, Écija D. On-Surface Covalent Synthesis of Carbon Nanomaterials by Harnessing Carbon gem-Polyhalides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402467. [PMID: 38864470 DOI: 10.1002/adma.202402467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/19/2024] [Indexed: 06/13/2024]
Abstract
The design of innovative carbon-based nanostructures stands at the forefront of both chemistry and materials science. In this context, π-conjugated compounds are of great interest due to their impact in a variety of fields, including optoelectronics, spintronics, energy storage, sensing and catalysis. Despite extensive research efforts, substantial knowledge gaps persist in the synthesis and characterization of new π-conjugated compounds with potential implications for science and technology. On-surface synthesis has emerged as a powerful discipline to overcome limitations associated with conventional solution chemistry methods, offering advanced tools to characterize the resulting nanomaterials. This review specifically highlights recent achievements in the utilization of molecular precursors incorporating carbon geminal (gem)-polyhalides as functional groups to guide the formation of π-conjugated 0D species, as well as 1D, quasi-1D π-conjugated polymers, and 2D nanoarchitectures. By delving into reaction pathways, novel structural designs, and the electronic, magnetic, and topological features of the resulting products, the review provides fundamental insights for a new generation of π-conjugated materials.
Collapse
Affiliation(s)
- José I Urgel
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, 28049, Spain
| | - Ana Sánchez-Grande
- Institute of Physics of the Czech Academy of Science, Praha, 16200, Czech Republic
| | - Diego J Vicent
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, Praha, 16200, Czech Republic
| | - Nazario Martín
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, 28049, Spain
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - David Écija
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
24
|
Sakaguchi H, Kojima T, Cheng Y, Nobusue S, Fukami K. Electrochemical on-surface synthesis of a strong electron-donating graphene nanoribbon catalyst. Nat Commun 2024; 15:5972. [PMID: 39075056 PMCID: PMC11286955 DOI: 10.1038/s41467-024-50086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
On-surface synthesis of edge-functionalized graphene nanoribbons (GNRs) has attracted much attention. However, producing such GNRs on a large scale through on-surface synthesis under ultra-high vacuum on thermally activated metal surfaces has been challenging. This is mainly due to the decomposition of functional groups at temperatures of 300 to 500 °C and limited monolayer GNR growth based on the metal catalysis. To overcome these obstacles, we developed an on-surface electrochemical technique that utilizes redox reactions of asymmetric precursors at an electric double layer where a strong electric field is confined to the liquid-solid interface. We successfully demonstrate layer-by-layer growth of strong electron-donating GNRs on electrodes at temperatures <80 °C without decomposing functional groups. We show that high-voltage facilitates previously unknown heterochiral di-cationic polymerization. Electrochemically produced GNRs exhibiting one of the strongest electron-donating properties known, enable extraordinary silicon-etching catalytic activity, exceeding those of noble metals, with superior photoconductive properties. Our technique advances the possibility of producing various edge-functional GNRs.
Collapse
Affiliation(s)
- Hiroshi Sakaguchi
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan.
| | - Takahiro Kojima
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | - Yingbo Cheng
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | - Shunpei Nobusue
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | - Kazuhiro Fukami
- Department of Materials Science and Engineering, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
25
|
Li Z, Wang Y, Zhang L, Chen Z, Barth JV, Li J, Lin T. On-Surface Synthesis of Five-Membered Copper Metallacycles Using Terminal Alkynes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15214-15219. [PMID: 38981093 DOI: 10.1021/acs.langmuir.4c01653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We present our studies on the adsorption, deprotonation, and reactions of 4,4″-diethynyl-1,1':4',1″-terphenyl on Cu(111) under ultrahigh-vacuum conditions using scanning tunneling microscopy combined with density functional theory calculations. Sequential annealing treatments induce deprotonation of pristine molecules followed by chemical reactions, resulting in branched nanostructures. Within the nanostructures, a previously unreported, double-spot linkage is observed. Our density functional theory calculations unravel that this linkage corresponds to a five-membered copper metallacycle.
Collapse
Affiliation(s)
- Zhanbo Li
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Yule Wang
- Beijing Institute of Technology (Zhuhai), Beijing Institute of Technology, Zhuhai 519088, China
| | - Liding Zhang
- Physik-Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Johannes V Barth
- Physik-Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Juan Li
- Beijing Institute of Technology (Zhuhai), Beijing Institute of Technology, Zhuhai 519088, China
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Tao Lin
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
26
|
Zhao W, Haag F, Piquero-Zulaica I, Abd El-Fattah ZM, Pendem P, Vezzoni Vicente P, Zhang YQ, Cao N, Seitsonen AP, Allegretti F, Yang B, Barth JV. Transmetalation in Surface-Confined Single-Layer Organometallic Networks with Alkynyl-Metal-Alkynyl Linkages. ACS NANO 2024; 18:20157-20166. [PMID: 39042431 PMCID: PMC11308921 DOI: 10.1021/acsnano.4c02263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Transmetalation represents an appealing strategy toward fabricating and tuning functional metal-organic polymers and frameworks for diverse applications. In particular, building two-dimensional metal-organic and organometallic networks affords versatile nanoarchitectures of potential interest for nanodevices and quantum technology. The controlled replacement of embedded metal centers holds promise for exploring versatile material varieties by serial modification and different functionalization. Herein, we introduce a protocol for the modification of a single-layer carbon-metal-based organometallic network via transmetalation. By integrating external Cu atoms into the alkynyl-Ag organometallic network constructed with 1,3,5-triethynylbenzene precursors, we successfully realized in situ its highly regular alkynyl-Cu counterpart on the Ag(111) surface. While maintaining a similar lattice periodicity and pore morphology to the original alkynyl-Ag sheet, the Cu-based network exhibits increased thermal stability, guaranteeing improved robustness for practical implementation.
Collapse
Affiliation(s)
- Wenchao Zhao
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Felix Haag
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Ignacio Piquero-Zulaica
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Zakaria M. Abd El-Fattah
- Physics
Department, Faculty of Science, Al-Azhar
University, Nasr City, Cairo 11884, Egypt
- Physics
Department, Faculty of Science, Galala University, New Galala City, Suez 43511, Egypt
| | - Prashanth Pendem
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Pablo Vezzoni Vicente
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Yi-Qi Zhang
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
- Institute
of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Nan Cao
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Ari Paavo Seitsonen
- Département
de Chemie, École Normale Supérieure, 24 rue Lhomond, Paris F-75005, France
| | - Francesco Allegretti
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Biao Yang
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials and
Devices, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, China
| | - Johannes V. Barth
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| |
Collapse
|
27
|
Frezza F, Sánchez-Grande A, Canola S, Lamancová A, Mutombo P, Chen Q, Wäckerlin C, Ernst KH, Muntwiler M, Zema N, Di Giovannantonio M, Nachtigallová D, Jelínek P. Controlling On-Surface Photoactivity: The Impact of π-Conjugation in Anhydride-Functionalized Molecules on a Semiconductor Surface. Angew Chem Int Ed Engl 2024; 63:e202405983. [PMID: 38699982 DOI: 10.1002/anie.202405983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
On-surface synthesis has become a prominent method for growing low-dimensional carbon-based nanomaterials on metal surfaces. However, the necessity of decoupling organic nanostructures from metal substrates to exploit their properties requires either transfer methods or new strategies to perform reactions directly on inert surfaces. The use of on-surface light-induced reactions directly on semiconductor/insulating surfaces represents an alternative approach to address these challenges. Here, exploring the photochemical activity of different organic molecules on a SnSe semiconductor surface under ultra-high vacuum, we present a novel on-surface light-induced reaction. The selective photodissociation of the anhydride group is observed, releasing CO and CO2. Moreover, we rationalize the relationship between the photochemical activity and the π-conjugation of the molecular core. The different experimental behaviour of two model anhydrides was elucidated by theoretical calculations, showing how the molecular structure influences the distribution of the excited states. Our findings open new pathways for on-surface synthesis directly on technologically relevant substrates.
Collapse
Affiliation(s)
- Federico Frezza
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200, Prague 6, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7, 11519, Prague 1, Czech Republic
| | - Ana Sánchez-Grande
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200, Prague 6, Czech Republic
| | - Sofia Canola
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200, Prague 6, Czech Republic
| | - Anna Lamancová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 160 00, Prague, Czech Republic
| | - Pingo Mutombo
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200, Prague 6, Czech Republic
| | - Qifan Chen
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200, Prague 6, Czech Republic
| | - Christian Wäckerlin
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Paul Scherrer Institute (PSI), 5232, Villigen PSI, Switzerland
| | - Karl-Heinz Ernst
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200, Prague 6, Czech Republic
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | | | - Nicola Zema
- CNR - Istituto di Struttura della Materia (CNR-ISM), via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Marco Di Giovannantonio
- CNR - Istituto di Struttura della Materia (CNR-ISM), via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 160 00, Prague, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Pavel Jelínek
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200, Prague 6, Czech Republic
| |
Collapse
|
28
|
Wang Z, Yin R, Tang Z, Du H, Liang Y, Wang X, Deng QS, Tan YZ, Zhang Y, Ma C, Tan S, Wang B. Topologically Localized Vibronic Excitations in Second-Layer Graphene Nanoribbons. PHYSICAL REVIEW LETTERS 2024; 133:036401. [PMID: 39094172 DOI: 10.1103/physrevlett.133.036401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/06/2024] [Indexed: 08/04/2024]
Abstract
It is of fundamental importance to characterize the intrinsic properties, like the topological end states, in the on-surface synthesized graphene nanoribbons (GNRs), but the strong electronic interaction with the metal substrate usually smears out their characteristic features. Here, we report our approach to investigate the vibronic excitations of the topological end states in self-decoupled second-layer GNRs, which are grown using an on-surface squeezing-induced spillover strategy. The vibronic progressions show highly spatially localized distributions at the second-layer GNR ends, which can be ascribed to the decoupling-extended lifetime of charging through resonant electron tunneling at the topological end states. In combination with theoretical calculations, we assign the vibronic progressions to specific vibrational modes that mediate the vibronic excitations. The spatial distribution of each resolved excitation shows evident characteristics beyond the conventional Franck-Condon picture. Our work by direct growth of second-layer GNRs provides an effective way to explore the interplay between the intrinsic electronic, vibrational, and topological properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing-Song Deng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Yuan-Zhi Tan
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | | | | | | | | |
Collapse
|
29
|
Ibenskas A, Šimėnas M, Tornau EE. Theoretical insights into the interplay between metal-organic and covalent bonding in single-layer molecular networks formed by halogen dissociation. Phys Chem Chem Phys 2024; 26:19349-19358. [PMID: 38967003 DOI: 10.1039/d4cp01952k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Synthesis via dehalogenative coupling due to thermal annealing is one of the most common routes of growing metal-organic and covalent polymer networks on catalytic metal surfaces. We present a computational approach taking into account both metal-coordinated and covalent C-C bonding interactions, which drive the self-assembly of tetrabrominated polyarene molecules into single-layer ordered and disordered nanostructures. The proposed coarse-grained lattice model is simulated using the Monte Carlo method. We investigate the annealing effect in ensembles of nearly and fully dehalogenated molecules, accordingly decreasing the concentration of dissociated (chemisorbed) halogen atoms, to account for the desorption process. The results suggest that dissociated halogens may be at least partially responsible for fragmentation of metal-organic networks on the Cu and Au surfaces. The simulations also show that fragmented covalent networks are mostly disordered or characterized by short-range glass-like order, but larger domains of these phases can be obtained after removing the split off Br atoms. We additionally examine the potential formation of fragments with a hybrid structure consisting of oligomer chains linked side-to-side by metal adatoms.
Collapse
Affiliation(s)
- Andrius Ibenskas
- Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania.
| | - Mantas Šimėnas
- Faculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
| | - Evaldas E Tornau
- Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania.
| |
Collapse
|
30
|
Gao HY. Recent advances in organic molecule reactions on metal surfaces. Phys Chem Chem Phys 2024; 26:19052-19068. [PMID: 38860468 DOI: 10.1039/d3cp06148e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Chemical reactions of organic molecules on metal surfaces have been intensively investigated in the past decades, where metals play the role of catalysts in many cases. In this review, first, we summarize recent works on spatial molecules, small H2O, O2, CO, CO2 molecules, and the molecules carrying silicon groups as the new trends of molecular candidates for on-surface chemistry applications. Then, we introduce spectroscopy and DFT study advances in on-surface reactions. Especially, in situ spectroscopy technologies, such as electron spectroscopy, force spectroscopy, X-ray photoemission spectroscopy, STM-induced luminescence, tip-enhanced Raman spectroscopy, temperature-programmed desorption spectroscopy, and infrared reflection adsorption spectroscopy, are important to confirm the occurrence of organic reactions and analyze the products. To understand the underlying mechanism, the DFT study provides detailed information about reaction pathways, conformational evolution, and organometallic intermediates. Usually, STM/nc-AFM topological images, in situ spectroscopy data, and DFT studies are combined to describe the mechanism behind on-surface organic reactions.
Collapse
Affiliation(s)
- Hong-Ying Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300350, China
- Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Tianjin 300350, China
| |
Collapse
|
31
|
Qin T, Wang T, Zhu J. Recent progress in on-surface synthesis of nanoporous graphene materials. Commun Chem 2024; 7:154. [PMID: 38977754 PMCID: PMC11231364 DOI: 10.1038/s42004-024-01222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Nanoporous graphene (NPG) materials are generated by removing internal degree-3 vertices from graphene and introducing nanopores with specific topological structures, which have been widely explored and exploited for applications in electronic devices, membranes, and energy storage. The inherent properties of NPGs, such as the band structures, field effect mobilities and topological properties, are crucially determined by the geometric structure of nanopores. On-surface synthesis is an emerging strategy to fabricate low-dimensional carbon nanostructures with atomic precision. In this review, we introduce the progress of on-surface synthesis of atomically precise NPGs, and classify NPGs from the aspects of element types, topological structures, pore shapes, and synthesis strategies. We aim to provide a comprehensive overview of the recent advancements, promoting interdisciplinary collaboration to further advance the synthesis and applications of NPGs.
Collapse
Affiliation(s)
- Tianchen Qin
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Tao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
| | - Junfa Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.
| |
Collapse
|
32
|
Kinikar A, Englmann TG, Di Giovannantonio M, Bassi N, Xiang F, Stolz S, Widmer R, Borin Barin G, Turco E, Eimre K, Merino Díez N, Ortega-Guerrero A, Feng X, Gröning O, Pignedoli CA, Fasel R, Ruffieux P. Electronic Decoupling and Hole-Doping of Graphene Nanoribbons on Metal Substrates by Chloride Intercalation. ACS NANO 2024; 18:16622-16631. [PMID: 38904174 DOI: 10.1021/acsnano.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Atomically precise graphene nanoribbons (GNRs) have a wide range of electronic properties that depend sensitively on their chemical structure. Several types of GNRs have been synthesized on metal surfaces through selective surface-catalyzed reactions. The resulting GNRs are adsorbed on the metal surface, which may lead to hybridization between the GNR orbitals and those of the substrate. This makes investigation of the intrinsic electronic properties of GNRs more difficult and also rules out capacitive gating. Here, we demonstrate the formation of a dielectric gold chloride adlayer that can intercalate underneath GNRs on the Au(111) surface. The intercalated gold chloride adlayer electronically decouples the GNRs from the metal and leads to a substantial hole-doping of the GNRs. Our results introduce an easily accessible tool in the in situ characterization of GNRs grown on Au(111) that allows for exploration of their electronic properties in a heavily hole-doped regime.
Collapse
Affiliation(s)
- Amogh Kinikar
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Thorsten G Englmann
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TU Dresden, Dresden 01062, Germany
| | - Marco Di Giovannantonio
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Nicolò Bassi
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Feifei Xiang
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Samuel Stolz
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Laboratory of Nanostructures at Surfaces, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Roland Widmer
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Gabriela Borin Barin
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Elia Turco
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Kristjan Eimre
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Néstor Merino Díez
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Andres Ortega-Guerrero
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Xinliang Feng
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TU Dresden, Dresden 01062, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
| | - Oliver Gröning
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Carlo A Pignedoli
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Roman Fasel
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern 3012, Switzerland
| | - Pascal Ruffieux
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
33
|
Kojima T, Xie C, Sakaguchi H. On-Surface Fabrication toward Polar 2D Macromolecular Crystals. Chempluschem 2024; 89:e202300775. [PMID: 38439510 DOI: 10.1002/cplu.202300775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Polar 2D macromolecular structures have attracted significant attention because of their ferroelectricity and ferro-magnetism. However, it is challenging to synthesize them experimentally because dipoles or spins of these macromolecules tend to cancel each other. So far, there has been no successful strategy for assembling macromolecules in a unidirectional manner, achieving stereoregular polymerization on metal surfaces, and creating polar 2D polymer crystals. Recent progress in molecular assembly, on-surface polymer synthesis, and direct control of molecules using electric field applications provides an opportunity to develop such strategies. In this regard, we first review past studies on chiral and achiral molecular assembly, on-surface polymer synthesis, and orientation control of polar molecules. Then, we discuss our newly developed approach called "vectorial on-surface synthesis", which is based on "dynamic chirality" of compass precursors, stereoselective polymerization, and favorable interchain interactions originating from CH-π interactions. Finally, we conclude with a prospective outlook.
Collapse
Affiliation(s)
- Takahiro Kojima
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| | - Cong Xie
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| | - Hiroshi Sakaguchi
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
34
|
Friedrich N, Li J, Pozo I, Peña D, Pascual JI. Tuneable Current Rectification Through a Designer Graphene Nanoribbon. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401955. [PMID: 38613435 DOI: 10.1002/adma.202401955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/31/2024] [Indexed: 04/15/2024]
Abstract
Unimolecular current rectifiers are fundamental building blocks in organic electronics. Rectifying behavior has been identified in numerous organic systems due to electron-hole asymmetries of orbital levels interfaced by a metal electrode. As a consequence, the rectifying ratio (RR) determining the diode efficiency remains fixed for a chosen molecule-metal interface. Here, a mechanically tunable molecular diode exhibiting an exceptionally large rectification ratio (>105) and reversible direction is presented. The molecular system comprises a seven-armchair graphene nanoribbon (GNR) doped with a single unit of substitutional diboron within its structure, synthesized with atomic precision on a gold substrate by on-surface synthesis. The diboron unit creates half-populated in-gap bound states and splits the GNR frontier bands into two segments, localizing the bound state in a double barrier configuration. By suspending these GNRs freely between the tip of a low-temperature scanning tunneling microscope and the substrate, unipolar hole transport is demonstrated through the boron in-gap state's resonance. Strong current rectification is observed, associated with the varying widths of the two barriers, which can be tuned by altering the distance between tip and substrate. This study introduces an innovative approach for the precise manipulation of molecular electronic functionalities, opening new avenues for advanced applications in organic electronics.
Collapse
Affiliation(s)
| | - Jingcheng Li
- CIC nanoGUNE-BRTA, Donostia-San Sebastián, 20018, Spain
- School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Iago Pozo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - José Ignacio Pascual
- CIC nanoGUNE-BRTA, Donostia-San Sebastián, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| |
Collapse
|
35
|
Mishra S, Vilas-Varela M, Fatayer S, Albrecht F, Peña D, Gross L. Observation of SOMO-HOMO Inversion in a Neutral Polycyclic Conjugated Hydrocarbon. ACS NANO 2024; 18:15898-15904. [PMID: 38833667 PMCID: PMC11191738 DOI: 10.1021/acsnano.4c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
We report the generation of a nonbenzenoid polycyclic conjugated hydrocarbon, which consists of a biphenyl moiety substituted by indenyl units at the 4,4' positions, on ultrathin sodium chloride films by tip-induced chemistry. Single-molecule characterization by scanning tunneling and atomic force microscopy reveals an open-shell biradical ground state with a peculiar electronic configuration wherein the singly occupied molecular orbitals (SOMOs) are lower in energy than the highest occupied molecular orbital (HOMO).
Collapse
Affiliation(s)
| | - Manuel Vilas-Varela
- Center
for Research in Biological Chemistry and Molecular Materials (CiQUS)
and Department of Organic Chemistry, University
of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Shadi Fatayer
- Applied
Physics Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom
of Saudi Arabia
| | | | - Diego Peña
- Center
for Research in Biological Chemistry and Molecular Materials (CiQUS)
and Department of Organic Chemistry, University
of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Oportunius, Galician
Innovation Agency (GAIN), Santiago
de Compostela 15702, Spain
| | - Leo Gross
- IBM
Research Europe − Zurich, Rüschlikon 8803, Switzerland
| |
Collapse
|
36
|
Shu Y, Luo Y, Wei H, Peng L, Liang J, Zhai B, Ding L, Fang Y. Fabrication of Large-Area Multi-Stimulus Responsive Thin Films via Interfacially Confined Irreversible Katritzky Reaction. Angew Chem Int Ed Engl 2024; 63:e202402453. [PMID: 38622832 DOI: 10.1002/anie.202402453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Fabrication of large-area thin films through irreversible reactions remains a formidable task. This study reports a breakthrough strategy for in situ synthesis of large-area, free-standing, robust and multi-stimulus responsive thin films through a catalyst-free and irreversible Katritzky reaction at a liquid-liquid interface. The as resulted films are featured with adjustable thickness of 1-3 μm and an area up to 50 cm2. The thin films exhibit fast photo-mechanical motions (a response time of ca 0.1 s), vapor-mechanical motions, as well as photo-chromic and solvato-chromic behaviors. It was revealed that the reason behind the observable motions is proton transfer from the imine groups to the carbonyl structures within the film induced by photo- and/or dimethyl sulfoxide-stimulus. In addition, the films can harvest anionic radicals and the radicals as captured can be efficiently degraded under UV light illumination. This study provides a new strategy for fabricating smart thin films via interfacially confined irreversible Katritzky reaction.
Collapse
Affiliation(s)
- Yuanhong Shu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Hexi Wei
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Lingya Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Jingjing Liang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Binbin Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
37
|
Gu K, Lin S. Advances in the Dynamics of Adsorbate Diffusion on Metal Surfaces: Focus on Hydrogen and Oxygen. Chemphyschem 2024; 25:e202400083. [PMID: 38511509 DOI: 10.1002/cphc.202400083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
Adsorbates on metal surfaces are typically formed from the dissociative chemisorption of molecules occurring at gas-solid interfaces. These adsorbed species exhibit unique diffusion behaviors on metal surfaces, which are influenced by their translational energy. They play crucial roles in various fields, including heterogeneous catalysis and corrosion. This review examines recent theoretical advancements in understanding the diffusion dynamics of adsorbates on metal surfaces, with a specific emphasis on hydrogen and oxygen atoms. The diffusion processes of adsorbates on metal surfaces involve two energy transfer mechanisms: surface phonons and electron-hole pair excitations. This review also surveys new theoretical methods, including the characterization of the electron-hole pair excitation within electronic friction models, the acceleration of quantum chemistry calculations through machine learning, and the treatment of atomic nuclear motion from both quantum mechanical and classical perspectives. Furthermore, this review offers valuable insights into how energy transfer, nuclear quantum effects, supercell sizes, and the topography of potential energy surfaces impact the diffusion behavior of hydrogen and oxygen species on metal surfaces. Lastly, some preliminary research proposals are presented.
Collapse
Affiliation(s)
- Kaixuan Gu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| |
Collapse
|
38
|
Daugherty M, Jacobse PH, Jiang J, Jornet-Somoza J, Dorit R, Wang Z, Lu J, McCurdy R, Tang W, Rubio A, Louie SG, Crommie MF, Fischer FR. Regioselective On-Surface Synthesis of [3]Triangulene Graphene Nanoribbons. J Am Chem Soc 2024; 146:15879-15886. [PMID: 38813680 PMCID: PMC11177251 DOI: 10.1021/jacs.4c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
The integration of low-energy states into bottom-up engineered graphene nanoribbons (GNRs) is a robust strategy for realizing materials with tailored electronic band structure for nanoelectronics. Low-energy zero-modes (ZMs) can be introduced into nanographenes (NGs) by creating an imbalance between the two sublattices of graphene. This phenomenon is exemplified by the family of [n]triangulenes (n ∈ N ). Here, we demonstrate the synthesis of [3]triangulene-GNRs, a regioregular one-dimensional (1D) chain of [3]triangulenes linked by five-membered rings. Hybridization between ZMs on adjacent [3]triangulenes leads to the emergence of a narrow band gap, Eg,exp ∼ 0.7 eV, and topological end states that are experimentally verified using scanning tunneling spectroscopy. Tight-binding and first-principles density functional theory calculations within the local density approximation corroborate our experimental observations. Our synthetic design takes advantage of a selective on-surface head-to-tail coupling of monomer building blocks enabling the regioselective synthesis of [3]triangulene-GNRs. Detailed ab initio theory provides insights into the mechanism of on-surface radical polymerization, revealing the pivotal role of Au-C bond formation/breakage in driving selectivity.
Collapse
Affiliation(s)
- Michael
C. Daugherty
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peter H. Jacobse
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Jingwei Jiang
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Joaquim Jornet-Somoza
- Nano-Bio
Spectroscopy Group and ETSF, Universidad
del País Vasco UPV/EHU, Donostia E20018, Spain
- Max
Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany
| | - Reis Dorit
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ziyi Wang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California Berkeley
and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jiaming Lu
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Ryan McCurdy
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Weichen Tang
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Angel Rubio
- Nano-Bio
Spectroscopy Group and ETSF, Universidad
del País Vasco UPV/EHU, Donostia E20018, Spain
- Max
Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany
- Center for
Computational Quantum Physics (CCQ), The
Flatiron Institute, New York, New York 10010, United States
| | - Steven G. Louie
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Michael F. Crommie
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California Berkeley
and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Felix R. Fischer
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California Berkeley
and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bakar
Institute of Digital Materials for the Planet, Division of Computing,
Data Science, and Society, University of
California, Berkeley, California 94720, United States
| |
Collapse
|
39
|
Yi Z, Zhang Z, Guo Y, Gao Y, Hou R, Zhang C, Kim Y, Xu W. Revealing the Influence of Molecular Chemisorption Direction on the Reaction Selectivity of Dehalogenative Coupling on Au(111): Polymerization versus Cyclization. ACS NANO 2024; 18:14640-14649. [PMID: 38761149 DOI: 10.1021/acsnano.4c02766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
The control of reaction selectivity is of great interest in chemistry and depends crucially on the revelation of key influencing factors. Based on well-defined molecule-substrate model systems, various influencing factors have been elucidated, focusing primarily on the molecular precursors and the underlying substrates themselves, while interfacial properties have recently been shown to be essential as well. However, the influence of molecular chemisorption direction on reaction selectivity, as a subtle interplay between molecules and underlying substrates, remains elusive. In this work, by a combination of scanning tunneling microscopy imaging and density functional theory calculations, we report the influence of molecular chemisorption direction on the reaction selectivity of two types of dehalogenative coupling on Au(111), i.e., polymerization and cyclization, at the atomic level. The diffusion step of a reactive dehalogenated intermediate in two different chemisorption directions was theoretically revealed to be the key to determining the corresponding reaction selectivity. Our results highlight the important role of molecular chemisorption directions in regulating the on-surface dehalogenative coupling reaction pathways and products, which provides fundamental insights into the control of reaction selectivity by exploiting some subtle interfacial parameters in on-surface reactions for the fabrication of target low-dimensional carbon nanostructures.
Collapse
Affiliation(s)
- Zewei Yi
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Zhaoyu Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Yuan Guo
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Yuhong Gao
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Rujia Hou
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Wei Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| |
Collapse
|
40
|
Lackinger M. Possibilities and Limitations of Kinetic Studies in On-Surface Synthesis by Real Time X-ray Photoelectron Spectroscopy. Chemphyschem 2024; 25:e202400156. [PMID: 38528329 DOI: 10.1002/cphc.202400156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Indexed: 03/27/2024]
Abstract
The kinetics of coupling reactions on surfaces can be quantitatively studied in real time by X-ray Photoelectron Spectroscopy (XPS). From fitting experimental data, kinetic reaction parameters such as the rate constant's pre-exponential and activation energy can be deduced and compared to quantum chemical simulations. To elucidate the possibilities and limitations of this approach, we propose studies in which experimental data are first simulated and subsequently fitted. Knowing the exact kinetic parameters used in the simulation allows one to evaluate the accuracy of the fit result. Here, several experimental influences, such as the data point density and the addition of noise, are explored for a model reaction with first-order kinetics. The proposed procedure sheds light on the accuracy with which kinetic parameters can be derived and may also help in the design of future experiments.
Collapse
Affiliation(s)
- Markus Lackinger
- Deutsches Museum, Museumsinsel 1, 80538, München, Germany
- Physics Department, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
41
|
Rosławska A, Kaiser K, Romeo M, Devaux E, Scheurer F, Berciaud S, Neuman T, Schull G. Submolecular-scale control of phototautomerization. NATURE NANOTECHNOLOGY 2024; 19:738-743. [PMID: 38413791 DOI: 10.1038/s41565-024-01622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Optically activated reactions initiate biological processes such as photosynthesis or vision, but can also control polymerization, catalysis or energy conversion. Methods relying on the manipulation of light at macroscopic and mesoscopic scales are used to control on-surface photochemistry, but do not offer atomic-scale control. Here we take advantage of the confinement of the electromagnetic field at the apex of a scanning tunnelling microscope tip to drive the phototautomerization of a free-base phthalocyanine with submolecular precision. We can control the reaction rate and the relative tautomer population through a change in the laser excitation wavelength or through the tip position. Atomically resolved tip-enhanced photoluminescence spectroscopy and hyperspectral mapping unravel an excited-state mediated process, which is quantitatively supported by a comprehensive theoretical model combining ab initio calculations with a parametric open-quantum-system approach. Our experimental strategy may allow insights in other photochemical reactions and proof useful to control complex on-surface reactions.
Collapse
Affiliation(s)
- Anna Rosławska
- Université de Strasbourg, CNRS, IPCMS, Strasbourg, France.
- Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany.
| | - Katharina Kaiser
- Université de Strasbourg, CNRS, IPCMS, Strasbourg, France
- 4th Physical Institute - Solids and Nanostructures, Georg-August-Universität Göttingen, Göttingen, Germany
| | | | - Eloïse Devaux
- Université de Strasbourg, CNRS, ISIS, Strasbourg, France
| | | | | | - Tomáš Neuman
- Institut des Sciences Moléculaires d'Orsay (ISMO), UMR 8214, CNRS, Université Paris-Saclay, Orsay, France.
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
42
|
Badami-Behjat A, Galeotti G, Gutzler R, Pastoetter DL, Heckl WM, Feng X, Lackinger M. Iodine passivation facilitates on-surface synthesis of robust regular conjugated two-dimensional organogold networks on Au(111). NANOSCALE HORIZONS 2024; 9:1042-1051. [PMID: 38639757 DOI: 10.1039/d3nh00496a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional conjugated organogold networks with anthra-tetrathiophene repeat units are synthesized by thermally activated debrominative coupling of 2,5,9,12-tetrabromoanthra[1,2-b:4,3-b':5,6-b'':8,7-b''']tetrathiophene (TBATT) precursor molecules on Au(111) surfaces under ultra-high vacuum (UHV) conditions. Performing the reaction on iodine-passivated Au(111) surfaces promotes formation of highly regular structures, as revealed by scanning tunneling microscopy (STM). In contrast, coupling on bare Au(111) surfaces results in less regular networks due to the simultaneous expression of competing intermolecular binding motifs in the absence of error correction. The carbon-Au-carbon bonds confer remarkable robustness to the organogold networks, as evidenced by their high thermal stability. In addition, as suggested by density functional theory (DFT) calculations and underscored by scanning tunneling spectroscopy (STS), the organogold networks exhibit a small electronic band gap in the order of 1.0 eV due to their high π-conjugation.
Collapse
Affiliation(s)
- Arash Badami-Behjat
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany.
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Gianluca Galeotti
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany.
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Rico Gutzler
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany.
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Dominik L Pastoetter
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Wolfgang M Heckl
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany.
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Markus Lackinger
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany.
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
43
|
Nony L, Clair S, Uehli D, Herrero A, Themlin JM, Campos A, Para F, Pioda A, Loppacher C. Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:580-602. [PMID: 38887532 PMCID: PMC11181211 DOI: 10.3762/bjnano.15.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Non-contact atomic force microscopy (nc-AFM) offers a unique experimental framework for topographical imaging of surfaces with atomic and/or sub-molecular resolution. The technique also permits to perform frequency shift spectroscopy to quantitatively evaluate the tip-sample interaction forces and potentials above individual atoms or molecules. The stiffness of the probe, k, is then required to perform the frequency shift-to-force conversion. However, this quantity is generally known with little precision. An accurate stiffness calibration is therefore mandatory if accurate force measurements are targeted. In nc-AFM, the probe may either be a silicon cantilever, a quartz tuning fork (QTF), or a length extensional resonator (LER). When used in ultrahigh vacuum (UHV) and at low temperature, the technique mostly employs QTFs, based on the so-called qPlus design, which actually covers different types of sensors in terms of size and design of the electrodes. They all have in common a QTF featuring a metallic tip glued at the free end of one of its prongs. In this study, we report the stiffness calibration of a particular type of qPlus sensor in UHV and at 9.8 K by means of thermal noise measurements. The stiffness calibration of such high-k sensors, featuring high quality factors (Q) as well, requires to master both the acquisition parameters and the data post-processing. Our approach relies both on numerical simulations and experimental results. A thorough analysis of the thermal noise power spectral density of the qPlus fluctuations leads to an estimated stiffness of the first flexural eigenmode of ≃2000 N/m, with a maximum uncertainty of 10%, whereas the static stiffness of the sensor without tip is expected to be ≃3300 N/m. The former value must not be considered as being representative of a generic value for any qPlus, as our study stresses the influence of the tip on the estimated stiffness and points towards the need for the individual calibration of these probes. Although the framework focuses on a particular kind of sensor, it may be adapted to any high-k, high-Q nc-AFM probe used under similar conditions, such as silicon cantilevers and LERs.
Collapse
Affiliation(s)
- Laurent Nony
- Aix Marseille University, CNRS, IM2NP, UMR 7334, 13397 Marseille, France
| | - Sylvain Clair
- Aix Marseille University, CNRS, IM2NP, UMR 7334, 13397 Marseille, France
| | - Daniel Uehli
- SPECS Zürich GmbH, Technoparkstrasse 1, 8005 Zürich, Switzerland
| | - Aitziber Herrero
- SPECS Zürich GmbH, Technoparkstrasse 1, 8005 Zürich, Switzerland
| | - Jean-Marc Themlin
- Aix Marseille University, CNRS, IM2NP, UMR 7334, 13397 Marseille, France
| | - Andrea Campos
- Aix Marseille University, CNRS, Centrale Marseille, FSCM (FR1739), CP2M, 13397 Marseille, France
| | - Franck Para
- Aix Marseille University, CNRS, IM2NP, UMR 7334, 13397 Marseille, France
| | - Alessandro Pioda
- SPECS Zürich GmbH, Technoparkstrasse 1, 8005 Zürich, Switzerland
| | | |
Collapse
|
44
|
Wang L, Wang X, Zhao ZL, Wan LJ, Wang D. Stranski-Krastanov Growth of Two-Dimensional Covalent Organic Framework Films. J Am Chem Soc 2024; 146:14079-14085. [PMID: 38720291 DOI: 10.1021/jacs.4c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Insights into the formation mechanisms of two-dimensional covalent organic frameworks (2D COFs) at both the in-plane and interlayer levels are essential for improving material quality and synthetic methodology. Here, we report the controllable preparation of 2D COF films via on-surface synthesis and investigate the growth mechanism using atomic force microscopy. Monolayer, bilayer, and layer-plus-island multilayer COF films were successfully constructed on hexagonal boron nitride in a controlled manner. The porphyrin-based COF films grow in the Stranski-Krastanov mode, i.e., a uniform bilayer COF film can be formed through layer-by-layer growth in the initial stage followed by island growth starting from the third layer. Furthermore, fluorescence quenching caused by π-π stacking interactions between 2D COF neighboring layers was revealed. These results provide new perspectives on the synthesis of high-quality 2D COF films with controllable thickness and morphology, paving the way for a diverse range of applications.
Collapse
Affiliation(s)
- Lu Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen-Lian Zhao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Ariga K, Song J, Kawakami K. Molecular machines working at interfaces: physics, chemistry, evolution and nanoarchitectonics. Phys Chem Chem Phys 2024; 26:13532-13560. [PMID: 38654597 DOI: 10.1039/d4cp00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
As a post-nanotechnology concept, nanoarchitectonics combines nanotechnology with advanced materials science. Molecular machines made by assembling molecular units and their organizational bodies are also products of nanoarchitectonics. They can be regarded as the smallest functional materials. Originally, studies on molecular machines analyzed the average properties of objects dispersed in solution by spectroscopic methods. Researchers' playgrounds partially shifted to solid interfaces, because high-resolution observation of molecular machines is usually done on solid interfaces under high vacuum and cryogenic conditions. Additionally, to ensure the practical applicability of molecular machines, operation under ambient conditions is necessary. The latter conditions are met in dynamic interfacial environments such as the surface of water at room temperature. According to these backgrounds, this review summarizes the trends of molecular machines that continue to evolve under the concept of nanoarchitectonics in interfacial environments. Some recent examples of molecular machines in solution are briefly introduced first, which is followed by an overview of studies of molecular machines and similar supramolecular structures in various interfacial environments. The interfacial environments are classified into (i) solid interfaces, (ii) liquid interfaces, and (iii) various material and biological interfaces. Molecular machines are expanding their activities from the static environment of a solid interface to the more dynamic environment of a liquid interface. Molecular machines change their field of activity while maintaining their basic functions and induce the accumulation of individual molecular machines into macroscopic physical properties molecular machines through macroscopic mechanical motions can be employed to control molecular machines. Moreover, research on molecular machines is not limited to solid and liquid interfaces; interfaces with living organisms are also crucial.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8561, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
46
|
Schunke C, Schweer P, Engelage E, Austin D, Switzer ED, Rahman TS, Morgenstern K. Increased Selectivity in Photolytic Activation of Nanoassemblies Compared to Thermal Activation in On-Surface Ullmann Coupling. ACS NANO 2024; 18:11665-11674. [PMID: 38661485 DOI: 10.1021/acsnano.3c11509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
On-surface synthesis is a powerful method that has emerged recently to fabricate a large variety of atomically precise nanomaterials on surfaces based on polymerization. It is very successful for thermally activated reactions within the framework of heterogeneous catalysis. As a result, it often lacks selectivity. We propose to use selective activation of specific bonds as a crucial ingredient to synthesize desired molecules with high selectivity. In this approach, thermally nonaccessible products are expected to arise in photolytically activated on-surface reactions with high selectivity. We demonstrate for assembled 2,2'-dibromo biphenyl clusters on Cu(111) that the thermal and photolytic activations yield distinctly different products, combining submolecular resolution of individual product molecules in real-space imaging by scanning tunneling microscopy with chemical identification in X-ray photoelectron spectroscopy and supported by ab initio calculations. The photolytically activated Ullmann coupling of 2,2'-dibromo biphenyl is highly selective, with only one identified product. It starkly contrasts the thermal reaction, which yields various products because alternate pathways are activated at the reaction temperature. Our study extends on-surface synthesis to a directed formation of thermally inaccessible products by direct bond activation. It promises tailored reactions of nanomaterials within the framework of on-surface synthesis based on the photolytic activation of specific bonds.
Collapse
Affiliation(s)
- Christina Schunke
- Lehrstuhl für Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum D-44801, Germany
| | - Paul Schweer
- Lehrstuhl für Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum D-44801, Germany
| | - Elric Engelage
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum D-44801, Germany
| | - Dave Austin
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Eric D Switzer
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Talat S Rahman
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Karina Morgenstern
- Lehrstuhl für Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum D-44801, Germany
| |
Collapse
|
47
|
Kinikar A, Wang XY, Di Giovannantonio M, Urgel JI, Liu P, Eimre K, Pignedoli CA, Stolz S, Bommert M, Mishra S, Sun Q, Widmer R, Qiu Z, Narita A, Müllen K, Ruffieux P, Fasel R. Sterically Selective [3 + 3] Cycloaromatization in the On-Surface Synthesis of Nanographenes. ACS NANOSCIENCE AU 2024; 4:128-135. [PMID: 38644965 PMCID: PMC11027121 DOI: 10.1021/acsnanoscienceau.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 04/23/2024]
Abstract
Surface-catalyzed reactions have been used to synthesize carbon nanomaterials with atomically predefined structures. The recent discovery of a gold surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituted arenes has enabled the on-surface synthesis of arylene-phenylene copolymers, where the surface activates the isopropyl substituents to form phenylene rings by intermolecular coupling. However, the resulting polymers suffered from undesired cross-linking when more than two molecules reacted at a single site. Here we show that such cross-links can be prevented through steric protection by attaching the isopropyl groups to larger arene cores. Upon thermal activation of isopropyl-substituted 8,9-dioxa-8a-borabenzo[fg]tetracene on Au(111), cycloaromatization is observed to occur exclusively between the two molecules. The cycloaromatization intermediate formed by the covalent linking of two molecules is prevented from reacting with further molecules by the wide benzotetracene core, resulting in highly selective one-to-one coupling. Our findings extend the versatility of the [3 + 3] cycloaromatization of isopropyl substituents and point toward steric protection as a powerful concept for suppressing competing reaction pathways in on-surface synthesis.
Collapse
Affiliation(s)
- Amogh Kinikar
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Xiao-Ye Wang
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
- State
Key
Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Marco Di Giovannantonio
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - José I. Urgel
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Pengcai Liu
- State
Key
Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kristjan Eimre
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Carlo A. Pignedoli
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Samuel Stolz
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Condensed Matter Physics, Station 3, EPFL, 1015 Lausanne, Switzerland
| | - Max Bommert
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Shantanu Mishra
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Qiang Sun
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roland Widmer
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Zijie Qiu
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | - Klaus Müllen
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
- Department
of Chemistry, Johannes Gutenberg-Universität
Mainz, 55128 Mainz, Germany
| | - Pascal Ruffieux
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roman Fasel
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
48
|
Cai L, Gao T, Wee ATS. Topology selectivity of a conformationally flexible precursor through selenium doping. Nat Commun 2024; 15:3235. [PMID: 38622157 PMCID: PMC11018763 DOI: 10.1038/s41467-024-47614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Conformational arrangements within nanostructures play a crucial role in shaping the overall configuration and determining the properties, for example in covalent/metal organic frameworks. In on-surface synthesis, conformational diversity often leads to uncontrollable or disordered structures. Therefore, the exploration of controlling and directing the conformational arrangements is significant in achieving desired nanoarchitectures. Herein, a conformationally flexible precursor 2,4,6-tris(3-bromophenyl)-1,3,5-triazine is employed, and a random phase consisting of C3h and Cs conformers is firstly obtained after deposition of the precursor on Cu(111) at room temperature to 365 K. At low coverage (0.01 ML) selenium doping, we achieve the selectivity of the C3h conformer and improve the nanopore structural homogeneity. The ordered two-dimensional metal organic nanostructure can be fulfilled by selenium doping from room temperature to 365 K. The formation of the conformationally flexible precursor on Cu(111) is explored through the combination of high-resolution scanning tunneling microscopy and non-contact atomic force microscopy. The regulation of energy diagrams in the absence or presence of the Se atom is revealed by density functional theory calculations. These results can enrich the on-surface synthesis toolbox of conformationally flexible precursors, for the design of complex nanoarchitectures, and for future development of engineered nanomaterials.
Collapse
Affiliation(s)
- Liangliang Cai
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Tianhao Gao
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore.
| |
Collapse
|
49
|
Nacci C, Civita D, Schied M, Magnano E, Nappini S, Píš I, Grill L. Light-Induced Increase of the Local Molecular Coverage on a Surface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:5919-5926. [PMID: 38629116 PMCID: PMC11017312 DOI: 10.1021/acs.jpcc.4c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Light is a versatile tool to remotely activate molecules adsorbed on a surface, for example, to trigger their polymerization. Here, we explore the spatial distribution of light-induced chemical reactions on a Au(111) surface. Specifically, the covalent on-surface polymerization of an anthracene derivative in the submonolayer coverage range is studied. Using scanning tunneling microscopy and X-ray photoemission spectroscopy, we observe a substantial increase of the local molecular coverage with the sample illumination time at the center of the laser spot. We find that the interplay between thermally induced diffusion and the reduced mobility of reaction products steers the accumulation of material. Moreover, the debromination of the adsorbed species never progresses to completion within the experiment time, despite a long irradiation of many hours.
Collapse
Affiliation(s)
- Christophe Nacci
- Department
of Physical Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Donato Civita
- Department
of Physical Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Monika Schied
- Department
of Physical Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Elena Magnano
- CNR—Istituto
Officina dei Materiali (IOM), Basovizza, 34149 Trieste, Italy
- Department
of Physics, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Silvia Nappini
- CNR—Istituto
Officina dei Materiali (IOM), Basovizza, 34149 Trieste, Italy
| | - Igor Píš
- CNR—Istituto
Officina dei Materiali (IOM), Basovizza, 34149 Trieste, Italy
| | - Leonhard Grill
- Department
of Physical Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| |
Collapse
|
50
|
Manikandan M, Nicolini P, Hapala P. Computational Design of Photosensitive Polymer Templates To Drive Molecular Nanofabrication. ACS NANO 2024; 18:9969-9979. [PMID: 38545921 PMCID: PMC11008366 DOI: 10.1021/acsnano.3c10575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Molecular electronics promises the ultimate level of miniaturization of computers and other machines as organic molecules are the smallest known physical objects with nontrivial structure and function. But despite the plethora of molecular switches, memories, and motors developed during the almost 50-years long history of molecular electronics, mass production of molecular computers is still an elusive goal. This is mostly due to the lack of scalable nanofabrication methods capable of rapidly producing complex structures (similar to silicon chips or living cells) with atomic precision and a small number of defects. Living nature solves this problem by using linear polymer templates encoding large volumes of structural information into sequence of hydrogen bonded end groups which can be efficiently replicated and which can drive assembly of other molecular components into complex supramolecular structures. In this paper, we propose a nanofabrication method based on a class of photosensitive polymers inspired by these natural principles, which can operate in concert with UV photolithography used for fabrication of current microelectronic processors. We believe that such a method will enable a smooth transition from silicon toward molecular nanoelectronics and photonics. To demonstrate its feasibility, we performed a computational screening of candidate molecules that can selectively bind and therefore allow the deterministic assembly of molecular components. In the process, we unearthed trends and design principles applicable beyond the immediate scope of our proposed nanofabrication method, e.g., to biologically relevant DNA analogues and molecular recognition within hydrogen-bonded systems.
Collapse
Affiliation(s)
- Mithun Manikandan
- Institute of Physics (FZU), Czech
Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Paolo Nicolini
- Institute of Physics (FZU), Czech
Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Prokop Hapala
- Institute of Physics (FZU), Czech
Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| |
Collapse
|