1
|
Shao B, Snell-Bergeon JK, de Boer IH, Davidson WS, Bornfeldt KE, Heinecke JW. Elevated levels of serum alpha-2-macroglobulin associate with diabetes status and incident CVD in type 1 diabetes. J Lipid Res 2025; 66:100741. [PMID: 39761918 DOI: 10.1016/j.jlr.2025.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025] Open
Abstract
Atherosclerotic CVD is a major cause of death in individuals with type 1 diabetes mellitus (T1DM). However, conventional risk factors do not fully account for the increased risk. This study aimed to investigate whether serum proteins associate with diabetes status and the occurrence of CVD in T1DM. We used isotope dilution-MS/MS to quantify 28 serum proteins in 228 subjects participating in the prospective Coronary Artery Calcification in Type 1 Diabetes study. We used linear regression to analyze the association between serum protein levels and T1DM status using 47 healthy controls and 134 T1DM patients without CVD and Cox proportional hazards regression to assess their prediction for incident CVD by a case-cohort study using a subcohort of 145 T1DM subjects and a total of 47 CVD events. Of the 28 serum proteins studied, five of them-alpha-2-macroglobulin (A2M), apolipoprotein A-IV, apolipoprotein L1, insulin-like growth factor 2, and phospholipid transfer protein-were significantly associated with T1DM status, with A2M being 1.6-fold higher in T1DM. After adjusting for potential confounders, A2M independently predicted incident CVD, with a mean hazard ratio of 3.3 and 95% CI of 1.8-6.1. In our study, A2M showed the largest increase in serum levels when comparing patients with T1DM to control subjects. A2M also predicted incident CVD, suggesting that it could serve as both a marker and possibly a mediator of atherosclerosis in T1DM. These findings emphasize the importance of specific serum proteins in assessing and managing CVD risk in T1DM.
Collapse
Affiliation(s)
- Baohai Shao
- Department of Medicine, University of Washington, Seattle, WA.
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ian H de Boer
- Department of Medicine, University of Washington, Seattle, WA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | | | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
2
|
Barnhart S, Shimizu-Albergine M, Kedar E, Kothari V, Shao B, Krueger M, Hsu CC, Tang J, Kanter JE, Kramer F, Djukovic D, Pascua V, Loo YM, Colonna L, Van den Bogaerde SJ, An J, Gale M, Reue K, Fisher EA, Gharib SA, Elkon KB, Bornfeldt KE. Type I IFN induces long-chain acyl-CoA synthetase 1 to generate a phosphatidic acid reservoir for lipotoxic saturated fatty acids. J Lipid Res 2025; 66:100730. [PMID: 39675509 PMCID: PMC11786746 DOI: 10.1016/j.jlr.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024] Open
Abstract
Long-chain acyl-CoA synthetase 1 (ACSL1) catalyzes the conversion of long-chain fatty acids to acyl-CoAs. ACSL1 is required for β-oxidation in tissues that rely on fatty acids as fuel, but no consensus exists on why ACSL1 is induced by inflammatory mediators in immune cells. We used a comprehensive and unbiased approach to investigate the role of ACSL1 induction by interferon type I (IFN-I) in myeloid cells in vitro and in a mouse model of IFN-I overproduction. Our results show that IFN-I induces ACSL1 in macrophages via its interferon-α/β receptor, and consequently that expression of ACSL1 is increased in myeloid cells from individuals with systemic lupus erythematosus (SLE), an autoimmune condition characterized by increased IFN production. Taking advantage of a myeloid cell-targeted ACSL1-deficient mouse model and a series of lipidomics, proteomics, metabolomics and functional analyses, we show that IFN-I leverages induction of ACSL1 to increase accumulation of fully saturated phosphatidic acid species in macrophages. Conversely, ACSL1 induction is not needed for IFN-I's ability to induce the prototypical IFN-stimulated protein signature or to suppress proliferation or macrophage metabolism. Loss of ACSL1 in IFN-I stimulated myeloid cells enhances apoptosis and secondary necrosis in vitro, especially in the presence of increased saturated fatty acid load, and in a mouse model of atherosclerosis associated with IFN overproduction, resulting in larger lesion necrotic cores. We propose that ACSL1 induction is a mechanism used by IFN-I to increase phosphatidic acid saturation while protecting the cells from saturated fatty acid-induced cell death.
Collapse
Affiliation(s)
- Shelley Barnhart
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Masami Shimizu-Albergine
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Eyal Kedar
- Division of Rheumatology, University of Washington, Seattle, WA
| | - Vishal Kothari
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Melissa Krueger
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA
| | - Cheng-Chieh Hsu
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Jingjing Tang
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Jenny E Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Farah Kramer
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Danijel Djukovic
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA
| | - Vadim Pascua
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA
| | - Yueh-Ming Loo
- Department of Immunology, University of Washington, Seattle, WA
| | | | | | - Jie An
- Division of Rheumatology, University of Washington, Seattle, WA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA
| | - Keith B Elkon
- Division of Rheumatology, University of Washington, Seattle, WA
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA.
| |
Collapse
|
3
|
Noels H, Jankowski V, Schunk SJ, Vanholder R, Kalim S, Jankowski J. Post-translational modifications in kidney diseases and associated cardiovascular risk. Nat Rev Nephrol 2024; 20:495-512. [PMID: 38664592 DOI: 10.1038/s41581-024-00837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 07/21/2024]
Abstract
Patients with chronic kidney disease (CKD) are at an increased cardiovascular risk compared with the general population, which is driven, at least in part, by mechanisms that are uniquely associated with kidney disease. In CKD, increased levels of oxidative stress and uraemic retention solutes, including urea and advanced glycation end products, enhance non-enzymatic post-translational modification events, such as protein oxidation, glycation, carbamylation and guanidinylation. Alterations in enzymatic post-translational modifications such as glycosylation, ubiquitination, acetylation and methylation are also detected in CKD. Post-translational modifications can alter the structure and function of proteins and lipoprotein particles, thereby affecting cellular processes. In CKD, evidence suggests that post-translationally modified proteins can contribute to inflammation, oxidative stress and fibrosis, and induce vascular damage or prothrombotic effects, which might contribute to CKD progression and/or increase cardiovascular risk in patients with CKD. Consequently, post-translational protein modifications prevalent in CKD might be useful as diagnostic biomarkers and indicators of disease activity that could be used to guide and evaluate therapeutic interventions, in addition to providing potential novel therapeutic targets.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan J Schunk
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University, Homburg/Saar, Germany
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital, Ghent, Belgium
- European Kidney Health Alliance (EKHA), Brussels, Belgium
| | - Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
4
|
López-Valverde L, Vázquez-Mosquera ME, Colón-Mejeras C, Bravo SB, Barbosa-Gouveia S, Álvarez JV, Sánchez-Martínez R, López-Mendoza M, López-Rodríguez M, Villacorta-Argüelles E, Goicoechea-Diezhandino MA, Guerrero-Márquez FJ, Ortolano S, Leao-Teles E, Hermida-Ameijeiras Á, Couce ML. Characterization of the plasma proteomic profile of Fabry disease: Potential sex- and clinical phenotype-specific biomarkers. Transl Res 2024; 269:47-63. [PMID: 38395389 DOI: 10.1016/j.trsl.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Fabry disease (FD) is a X-linked rare lysosomal storage disorder caused by deficient α-galactosidase A (α-GalA) activity. Early diagnosis and the prediction of disease course are complicated by the clinical heterogeneity of FD, as well as by the frequently inconclusive biochemical and genetic test results that do not correlate with clinical course. We sought to identify potential biomarkers of FD to better understand the underlying pathophysiology and clinical phenotypes. We compared the plasma proteomes of 50 FD patients and 50 matched healthy controls using DDA and SWATH-MS. The >30 proteins that were differentially expressed between the 2 groups included proteins implicated in processes such as inflammation, heme and haemoglobin metabolism, oxidative stress, coagulation, complement cascade, glucose and lipid metabolism, and glycocalyx formation. Stratification by sex revealed that certain proteins were differentially expressed in a sex-dependent manner. Apolipoprotein A-IV was upregulated in FD patients with complications, especially those with chronic kidney disease, and apolipoprotein C-III and fetuin-A were identified as possible markers of FD with left ventricular hypertrophy. All these proteins had a greater capacity to identify the presence of complications in FD patients than lyso-GB3, with apolipoprotein A-IV standing out as being more sensitive and effective in differentiating the presence and absence of chronic kidney disease in FD patients than renal markers such as creatinine, glomerular filtration rate and microalbuminuria. Identification of these potential biomarkers can help further our understanding of the pathophysiological processes that underlie the heterogeneous clinical manifestations associated with FD.
Collapse
Affiliation(s)
- Laura López-Valverde
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - María E Vázquez-Mosquera
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Cristóbal Colón-Mejeras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Susana B Bravo
- Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Proteomic Platform, University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Sofía Barbosa-Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - J Víctor Álvarez
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Rosario Sánchez-Martínez
- Internal Medicine Department, Alicante General University Hospital-Alicante Institute of Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante 03010, Spain
| | - Manuel López-Mendoza
- Department of Nephrology, Hospital Universitario Virgen del Rocío, Manuel Siurot s/n, Sevilla 41013, Spain
| | - Mónica López-Rodríguez
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, Colmenar Viejo, Madrid 28034, Spain; Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), Av. de Madrid, Alcalá de Henares 28871, Spain
| | - Eduardo Villacorta-Argüelles
- Department of Cardiology, Complejo Asistencial Universitario de Salamanca, P°. de San Vicente 58, Salamanca 37007, Spain
| | | | - Francisco J Guerrero-Márquez
- Department of Cardiology, Internal Medicine Service, Hospital de la Serranía, San Pedro, Ronda, Málaga 29400, Spain
| | - Saida Ortolano
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute-SERGAS-UVIGO, Clara Campoamor 341, Vigo 36213, Spain
| | - Elisa Leao-Teles
- Centro de Referência de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de São João, Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Álvaro Hermida-Ameijeiras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain.
| | - María L Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain.
| |
Collapse
|
5
|
Costacou T, Miller RG, Bornfeldt KE, Heinecke JW, Orchard TJ, Vaisar T. Sex differences in the associations of HDL particle concentration and cholesterol efflux capacity with incident coronary artery disease in type 1 diabetes: The RETRO HDLc cohort study. J Clin Lipidol 2024; 18:e218-e229. [PMID: 38320926 PMCID: PMC11069450 DOI: 10.1016/j.jacl.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND In type 1 diabetes, women lose their relative protection (compared to men) against coronary artery disease (CAD), while high-density lipoprotein cholesterol (HDL-C) is less strongly associated with lower CAD risk in women. OBJECTIVE We aimed to assess whether sex differences in the HDL particle concentration (HDL-P) and cholesterol efflux capacity (CEC) association with CAD may explain these findings. METHODS HDL-P (calibrated differential ion mobility analysis) and total and ATP binding cassette transporter A1 (ABCA1)-specific CEC were quantified among 279 men and 271 women with type 1 diabetes (baseline mean age 27·8 years; diabetes duration, 19·6 years). Clinical CAD was defined as CAD death, myocardial infarction and/or coronary revascularization. RESULTS Women had higher large HDL-P levels and marginally lower concentrations of small HDL-P and ABCA1-specific CEC than men. No sex differences were observed in extra-small HDL-P, medium HDL-P and total CEC. During a median follow-up of 26 years, 37·6 % of men and 35·8 % of women developed CAD (p = 0·72). In multivariable Cox models stratified by sex (pTotal HDL-P x sex interaction=0·01), HDL-P was negatively associated with CAD incidence in both sexes. However, associations were stronger in men, particularly for extra-small HDL-P (hazard ratio (HR)men=0·11, 95 % confidence interval (CI): 0·04-0·30; HRwomen=0·68, 95 % CI: 0·28-1·66; pinteraction=0·001). CEC did not independently predict CAD in either sex. CONCLUSION Despite few absolute differences in HDL-P concentrations by sex, the HDL-P - CAD association was weaker in women, particularly for extra-small HDL-P, suggesting that HDL-P may be less efficient in providing atheroprotection in women and perhaps explaining the lack of a sex difference in CAD in type 1 diabetes.
Collapse
Affiliation(s)
- Tina Costacou
- Department of Epidemiology (Drs Costacou, Miller, Orchard), School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Rachel G Miller
- Department of Epidemiology (Drs Costacou, Miller, Orchard), School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Karin E Bornfeldt
- Department of Medicine (Drs Bornfeldt, Heinecke, Vaisar), University of Washington, Seattle, WA 98102, United States
| | - Jay W Heinecke
- Department of Medicine (Drs Bornfeldt, Heinecke, Vaisar), University of Washington, Seattle, WA 98102, United States
| | - Trevor J Orchard
- Department of Epidemiology (Drs Costacou, Miller, Orchard), School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Tomas Vaisar
- Department of Medicine (Drs Bornfeldt, Heinecke, Vaisar), University of Washington, Seattle, WA 98102, United States
| |
Collapse
|
6
|
Nieddu G, Formato M, Lepedda AJ. Searching for Atherosclerosis Biomarkers by Proteomics: A Focus on Lesion Pathogenesis and Vulnerability. Int J Mol Sci 2023; 24:15175. [PMID: 37894856 PMCID: PMC10607641 DOI: 10.3390/ijms242015175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Plaque rupture and thrombosis are the most important clinical complications in the pathogenesis of stroke, coronary arteries, and peripheral vascular diseases. The identification of early biomarkers of plaque presence and susceptibility to ulceration could be of primary importance in preventing such life-threatening events. With the improvement of proteomic tools, large-scale technologies have been proven valuable in attempting to unravel pathways of atherosclerotic degeneration and identifying new circulating markers to be utilized either as early diagnostic traits or as targets for new drug therapies. To address these issues, different matrices of human origin, such as vascular cells, arterial tissues, plasma, and urine, have been investigated. Besides, proteomics was also applied to experimental atherosclerosis in order to unveil significant insights into the mechanisms influencing atherogenesis. This narrative review provides an overview of the last twenty years of omics applications to the study of atherogenesis and lesion vulnerability, with particular emphasis on lipoproteomics and vascular tissue proteomics. Major issues of tissue analyses, such as plaque complexity, sampling, availability, choice of proper controls, and lipoproteins purification, will be raised, and future directions will be addressed.
Collapse
Affiliation(s)
| | | | - Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.N.); (M.F.); Antonio Junior Lepedda (A.J.L.)
| |
Collapse
|
7
|
Huang C, Zhang J, Huang J, Li H, Wen K, Bao J, Wu X, Sun R, Abudukeremu A, Wang Y, He Z, Chen Q, Huang X, Wang H, Zhang Y. Proteomic and functional analysis of HDL subclasses in humans and rats: a proof-of-concept study. Lipids Health Dis 2023; 22:86. [PMID: 37386457 DOI: 10.1186/s12944-023-01829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/07/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The previous study investigated whether the functions of small, medium, and large high density lipoprotein (S/M/L-HDL) are correlated with protein changes in mice. Herein, the proteomic and functional analyses of high density lipoprotein (HDL) subclasses were performed in humans and rats. METHODS After purifying S/M/L-HDL subclasses from healthy humans (n = 6) and rats (n = 3) using fast protein liquid chromatography (FPLC) with calcium silica hydrate (CSH) resin, the proteomic analysis by mass spectrometry was conducted, as well as the capacities of cholesterol efflux and antioxidation was measured. RESULTS Of the 120 and 106 HDL proteins identified, 85 and 68 proteins were significantly changed in concentration among the S/M/L-HDL subclasses in humans and rats, respectively. Interestingly, it was found that the relatively abundant proteins in the small HDL (S-HDL) and large HDL (L-HDL) subclasses did not overlap, both in humans and in rats. Next, by searching for the biological functions of the relatively abundant proteins in the HDL subclasses via Gene Ontology, it was displayed that the relatively abundant proteins involved in lipid metabolism and antioxidation were enriched more in the medium HDL (M-HDL) subclass than in the S/L-HDL subclasses in humans, whereas in rats, the relatively abundant proteins associated with lipid metabolism and anti-oxidation were enriched in M/L-HDL and S/M-HDL, respectively. Finally, it was confirmed that M-HDL and L-HDL had the highest cholesterol efflux capacity among the three HDL subclasses in humans and rats, respectively; moreover, M-HDL exhibited higher antioxidative capacity than S-HDL in both humans and rats. CONCLUSIONS The S-HDL and L-HDL subclasses are likely to have different proteomic components during HDL maturation, and results from the proteomics-based comparison of the HDL subclasses may explain the associated differences in function.
Collapse
Affiliation(s)
- Canxia Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Critical Care Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jie Zhang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jingjing Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hongwei Li
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kexin Wen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jinlan Bao
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Comprehensive Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoying Wu
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Runlu Sun
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ayiguli Abudukeremu
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Wang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhijian He
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiaofei Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinyi Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hong Wang
- Centers for Metabolic & Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Yuling Zhang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China.
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
8
|
Ren D, Ebert T, Kreher D, Ernst BLV, de Fallois J, Schmalz G. The Genetic Cross-Talk between Periodontitis and Chronic Kidney Failure Revealed by Transcriptomic Analysis. Genes (Basel) 2023; 14:1374. [PMID: 37510279 PMCID: PMC10379591 DOI: 10.3390/genes14071374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Periodontitis and chronic kidney failure (CKF) are potentially related to each other. This bioinformatics analysis aimed at the identification of potential cross-talk genes and related pathways between periodontitis and CKF. Based on NCBI Gene Expression Omnibus (GEO), datasets GSE10334, GSE16134, and GSE23586 were extracted for periodontitis. A differential expression analysis (p < 0.05, |log2(FC)| > 0.5) was performed to assess deregulated genes (DEGs). CKF-related genes were extracted from DisGeNET and examined regarding their overlap with periodontitis-related DEGs. Cytoscape was used to construct and analyze a protein-protein interaction (PPI) network. Based on Cytoscape plugin MCODE and a LASSO regression analysis, the potential hub cross-talk genes were identified. Finally, a complex PPI of the hub genes was constructed. A total of 489 DEGs for periodontitis were revealed. With the 805 CKF-related genes, an overlap of 47 cross-talk genes was found. The PPI network of the potential cross-talk genes was composed of 1081 nodes and 1191 edges. The analysis with MCODE resulted in 10 potential hub genes, while the LASSO regression resulted in 22. Finally, five hub cross-talk genes, CCL5, FCGR3B, MMP-9, SAA1, and SELL, were identified. Those genes were significantly upregulated in diseased samples compared to controls (p ≤ 0.01). Furthermore, ROC analysis showed a high predictive value of those genes (AUC ≥ 73.44%). Potentially relevant processes and pathways were primarily related to inflammation, metabolism, and cardiovascular issues. In conclusion, five hub cross-talk genes, i.e., CCL5, FCGR3B, MMP-9, SAA1, and SELL, could be involved in the interplay between periodontitis and CKF, whereby primarily inflammation, metabolic, and vascular issues appear to be of relevance.
Collapse
Affiliation(s)
- Dandan Ren
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Thomas Ebert
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, 04013 Leipzig, Germany
| | - Deborah Kreher
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Bero Luke Vincent Ernst
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Jonathan de Fallois
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, 04013 Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Li T, Wang H, Luo R, Shi H, Su M, Wu Y, Li Q, Ma K, Zhang Y, Ma Y. Identification and Functional Assignment of Genes Implicated in Sperm Maturation of Tibetan Sheep. Animals (Basel) 2023; 13:ani13091553. [PMID: 37174590 PMCID: PMC10177108 DOI: 10.3390/ani13091553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
While traveling through the epididymis, immature sheep spermatozoa undergo a sequence of processes that ultimately give them the capacity to swim and fertilize an egg. Different gene expression patterns may be found in the epididymal caput, corpus, and cauda, conferring variant or unique biological roles during epididymis development and sperm maturation. To search for candidate genes associated with ovine sperm maturation and assess their possible modulating mechanisms, we characterized gene expression in each epididymal segment derived from pre- and post-pubertal Tibetan sheep by RNA sequencing. Compared with pre-puberty, 7730 (3724 upregulated and 4006 downregulated), 7516 (3909 upregulated and 3607 downregulated), and 7586 (4115 elevated and 3471 downregulated) genes were found to be differentially expressed in the post-pubertal caput, corpus, and cauda epididymis, respectively, and real-time quantitative PCR verified the validity of the gathered expression patterns. Based on their functional annotations, most differential genes were assigned to the biological processes and pathways associated with cellular proliferation, differentiation, immune response, or metabolic activities. As for the post-pubertal epididymis, 2801, 197, and 186 genes were specifically expressed in the caput, corpus, and cauda, respectively. Functional annotation revealed that they were mainly enriched to various distinct biological processes associated with reproduction (including the caput binding of sperm to the zona pellucida; fertilization in the caput and corpus; and meiosis in the caput and cauda) and development (such as cell differentiation and developmental maturation in the caput; cell proliferation and metabolism in the corpus; and regulation of tube size and cell division/cell cycle in the cauda). Additionally, we focused on the identification of genes implicated in immunity and sperm maturation, and subsequent functional enrichment analysis revealed that immune-related genes mainly participated in the biological processes or pathways associated with the immune barrier (such as JAM3 and ITGA4/6/9) and immunosuppression (such as TGFB2, TGFBR1, TGFBR2, and SMAD3), thus protecting auto-immunogenic spermatozoa. Additionally, sperm maturation was mostly controlled by genes linked with cellular processes, including cell growth, proliferation, division, migration, morphogenesis, and junction. Altogether, these results suggest that most genes were differentially expressed in developmental epididymal regions to contribute to microenvironment development and sperm maturation. These findings help us better understand the epididymal biology, including sperm maturation pathways and functional differences between the epididymal regions in Tibetan sheep and other sheep breeds.
Collapse
Affiliation(s)
- Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Ruirui Luo
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Huibin Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Manchun Su
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Keyan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
10
|
Palacios E, Lobos-González L, Guerrero S, Kogan MJ, Shao B, Heinecke JW, Quest AFG, Leyton L, Valenzuela-Valderrama M. Helicobacter pylori outer membrane vesicles induce astrocyte reactivity through nuclear factor-κappa B activation and cause neuronal damage in vivo in a murine model. J Neuroinflammation 2023; 20:66. [PMID: 36895046 PMCID: PMC9996972 DOI: 10.1186/s12974-023-02728-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Helicobacter pylori (Hp) infects the stomach of 50% of the world's population. Importantly, chronic infection by this bacterium correlates with the appearance of several extra-gastric pathologies, including neurodegenerative diseases. In such conditions, brain astrocytes become reactive and neurotoxic. However, it is still unclear whether this highly prevalent bacterium or the nanosized outer membrane vesicles (OMVs) they produce, can reach the brain, thus affecting neurons/astrocytes. Here, we evaluated the effects of Hp OMVs on astrocytes and neurons in vivo and in vitro. METHODS Purified OMVs were characterized by mass spectrometry (MS/MS). Labeled OMVs were administered orally or injected into the mouse tail vein to study OMV-brain distribution. By immunofluorescence of tissue samples, we evaluated: GFAP (astrocytes), βIII tubulin (neurons), and urease (OMVs). The in vitro effect of OMVs in astrocytes was assessed by monitoring NF-κB activation, expression of reactivity markers, cytokines in astrocyte-conditioned medium (ACM), and neuronal cell viability. RESULTS Urease and GroEL were prominent proteins in OMVs. Urease (OMVs) was present in the mouse brain and its detection coincided with astrocyte reactivity and neuronal damage. In vitro, OMVs induced astrocyte reactivity by increasing the intermediate filament proteins GFAP and vimentin, the plasma membrane αVβ3 integrin, and the hemichannel connexin 43. OMVs also produced neurotoxic factors and promoted the release of IFNγ in a manner dependent on the activation of the transcription factor NF-κB. Surface antigens on reactive astrocytes, as well as secreted factors in response to OMVs, were shown to inhibit neurite outgrowth and damage neurons. CONCLUSIONS OMVs administered orally or injected into the mouse bloodstream reach the brain, altering astrocyte function and promoting neuronal damage in vivo. The effects of OMVs on astrocytes were confirmed in vitro and shown to be NF-κB-dependent. These findings suggest that Hp could trigger systemic effects by releasing nanosized vesicles that cross epithelial barriers and access the CNS, thus altering brain cells.
Collapse
Affiliation(s)
- Esteban Palacios
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Ciencias de La Salud, Universidad Central de Chile, 8330546, Santiago, Chile.,Laboratory of Cellular Communication, Center for Studies On Exercise Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.,Centro de Medicina Regenerativa, Facultad de Medicina, Universidad del Desarrollo-Clínica Alemana, 7590943, Santiago, Chile
| | - Simón Guerrero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.,Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.,Facultad de Medicina, Universidad de Atacama, 153601, Copiapó, Chile
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.,Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile
| | - Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98195-8055, USA
| | - Jay W Heinecke
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98195-8055, USA
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Center for Studies On Exercise Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile
| | - Lisette Leyton
- Laboratory of Cellular Communication, Center for Studies On Exercise Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.
| | - Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Ciencias de La Salud, Universidad Central de Chile, 8330546, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.
| |
Collapse
|
11
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
12
|
González MF, Burgos-Ravanal R, Shao B, Heinecke J, Valenzuela-Valderrama M, Corvalán AH, Quest AFG. Extracellular vesicles from gastric epithelial GES-1 cells infected with Helicobacter pylori promote changes in recipient cells associated with malignancy. Front Oncol 2022; 12:962920. [PMID: 36313672 PMCID: PMC9596800 DOI: 10.3389/fonc.2022.962920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/19/2022] [Indexed: 10/29/2023] Open
Abstract
Chronic Helicobacter pylori (H. pylori) infection is considered the main risk factor for the development of gastric cancer. Pathophysiological changes in the gastric mucosa initiated by this bacterium can persist even after pharmacological eradication and are likely attributable also to changes induced in non-infected cells as a consequence of intercellular communication via extracellular vesicles (EVs). To better understand what such changes might entail, we isolated EVs from immortalized normal gastric GES-1 cells infected (EVHp+) or not with H. pylori (EVHp-) by ultracentrifugation and characterized them. Infection of GES-1 cells with H. pylori significantly increased the release of EVs and slightly decreased the EV mean size. Incubation with EVHp+ for 24 h decreased the viability of GES-1 cells, but increased the levels of IL-23 in GES-1 cells, as well as the migration of GES-1 and gastric cancer AGS cells. Furthermore, incubation of GES-1 and AGS cells with EVHp+, but not with EVHp-, promoted cell invasion and trans-endothelial migration in vitro. Moreover, stimulation of endothelial EA.hy926 cells for 16 h with EVHp+ promoted the formation of linked networks. Finally, analysis by mass spectrometry identified proteins uniquely present and others enriched in EVHp+ compared to EVHp-, several of which are known targets of hypoxia induced factor-1α (HIF-1α) that may promote the acquisition of traits important for the genesis/progression of gastric pre-neoplastic changes associated with H. pylori infection. In conclusion, the harmful effects of H. pylori infection associated with the development of gastric malignancies may spread via EVs to non-infected areas in the early and later stages of gastric carcinogenesis.
Collapse
Affiliation(s)
- María Fernanda González
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, Chile
| | - Renato Burgos-Ravanal
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, Chile
| | - Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, United States
| | - Jay Heinecke
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, United States
| | - Manuel Valenzuela-Valderrama
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, Chile
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Universidad Central de Chile, Santiago, Chile
| | - Alejandro H. Corvalán
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, Chile
- Departamento de Hematología-Oncología, Facultad de Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrew F. G. Quest
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, Chile
| |
Collapse
|
13
|
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182. [PMID: 35680856 PMCID: PMC9184651 DOI: 10.1038/s41392-022-01036-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic renal dysfunction syndrome that is characterized by nephron loss, inflammation, myofibroblasts activation, and extracellular matrix (ECM) deposition. Lipotoxicity and oxidative stress are the driving force for the loss of nephron including tubules, glomerulus, and endothelium. NLRP3 inflammasome signaling, MAPK signaling, PI3K/Akt signaling, and RAAS signaling involves in lipotoxicity. The upregulated Nox expression and the decreased Nrf2 expression result in oxidative stress directly. The injured renal resident cells release proinflammatory cytokines and chemokines to recruit immune cells such as macrophages from bone marrow. NF-κB signaling, NLRP3 inflammasome signaling, JAK-STAT signaling, Toll-like receptor signaling, and cGAS-STING signaling are major signaling pathways that mediate inflammation in inflammatory cells including immune cells and injured renal resident cells. The inflammatory cells produce and secret a great number of profibrotic cytokines such as TGF-β1, Wnt ligands, and angiotensin II. TGF-β signaling, Wnt signaling, RAAS signaling, and Notch signaling evoke the activation of myofibroblasts and promote the generation of ECM. The potential therapies targeted to these signaling pathways are also introduced here. In this review, we update the key signaling pathways of lipotoxicity, oxidative stress, inflammation, and myofibroblasts activation in kidneys with chronic injury, and the targeted drugs based on the latest studies. Unifying these pathways and the targeted therapies will be instrumental to advance further basic and clinical investigation in CKD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Shao B, Snell-Bergeon JK, Pyle LL, Thomas KE, de Boer IH, Kothari V, Segrest J, Davidson WS, Bornfeldt KE, Heinecke JW. Pulmonary surfactant protein B carried by HDL predicts incident CVD in patients with type 1 diabetes. J Lipid Res 2022; 63:100196. [PMID: 35300983 PMCID: PMC9010748 DOI: 10.1016/j.jlr.2022.100196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/22/2022] Open
Abstract
Atherosclerotic CVD is the major cause of death in patients with type 1 diabetes mellitus (T1DM). Alterations in the HDL proteome have been shown to associate with prevalent CVD in T1DM. We therefore sought to determine which proteins carried by HDL might predict incident CVD in patients with T1DM. Using targeted MS/MS, we quantified 50 proteins in HDL from 181 T1DM subjects enrolled in the prospective Coronary Artery Calcification in Type 1 Diabetes study. We used Cox proportional regression analysis and a case-cohort design to test associations of HDL proteins with incident CVD (myocardial infarction, coronary artery bypass grafting, angioplasty, or death from coronary heart disease). We found that only one HDL protein-SFTPB (pulmonary surfactant protein B)-predicted incident CVD in all the models tested. In a fully adjusted model that controlled for lipids and other risk factors, the hazard ratio was 2.17 per SD increase of SFTPB (95% confidence interval, 1.12-4.21, P = 0.022). In addition, plasma fractionation demonstrated that SFTPB is nearly entirely bound to HDL. Although previous studies have shown that high plasma levels of SFTPB associate with prevalent atherosclerosis only in smokers, we found that SFTPB predicted incident CVD in T1DM independently of smoking status and a wide range of confounding factors, including HDL-C, LDL-C, and triglyceride levels. Because SFTPB is almost entirely bound to plasma HDL, our observations support the proposal that SFTPB carried by HDL is a marker-and perhaps mediator-of CVD risk in patients with T1DM.
Collapse
Affiliation(s)
- Baohai Shao
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | - Laura L Pyle
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katie E Thomas
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ian H de Boer
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Vishal Kothari
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jere Segrest
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - William S Davidson
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Davidson WS, Shah AS, Sexmith H, Gordon SM. The HDL Proteome Watch: Compilation of studies leads to new insights on HDL function. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159072. [PMID: 34800735 PMCID: PMC8715479 DOI: 10.1016/j.bbalip.2021.159072] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW High density lipoproteins (HDL) are a heterogeneous family of particles that contain distinct complements of proteins that define their function. Thus, it is important to accurately and sensitively identify proteins associated with HDL. Here we highlight the HDL Proteome Watch Database which tracks proteomics studies from different laboratories across the world. RECENT FINDINGS In 45 published reports, almost 1000 individual proteins have been detected in preparations of HDL. Of these, 251 have been identified in at least three different laboratories. The known functions of these consensus HDL proteins go well beyond traditionally recognized roles in lipid transport with many proteins pointing to HDL functions in innate immunity, inflammation, cell adhesion, hemostasis and protease regulation, and even vitamin and metal binding. SUMMARY The HDL proteome derived across multiple studies using various methodologies provides confidence in protein identifications that can offer interesting new insights into HDL function. We also point out significant issues that will require additional study going forward.
Collapse
Affiliation(s)
- W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, United States of America.
| | - Amy S Shah
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, United States of America.
| | - Hannah Sexmith
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, United States of America.
| | - Scott M Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| |
Collapse
|
16
|
Altered HDL Proteome Predicts Incident CVD in Chronic Kidney Disease Patients. J Lipid Res 2021; 62:100135. [PMID: 34634315 PMCID: PMC8566900 DOI: 10.1016/j.jlr.2021.100135] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are at high risk for CVD. However, traditional lipid risk factors, including low HDL levels, cannot completely explain the increased risk. Altered HDL proteome is linked with both CVD and CKD, but the role of HDL proteins in incident CVD events in patients with CKD is unknown. In this prospective case-control study, we used targeted proteomics to quantify 31 HDL proteins in 92 subjects (46 incident new CVD and 46 one-to-one matched controls) at various stages of CKD. We tested associations of HDL proteins with incident CVD using matched logistic regression analysis. In the model fully adjusted for clinical confounders, lipid levels, C-reactive protein, and proteinuria, no significant associations were found for HDL-C, but we observed inverse associations between levels of HDL proteins paraoxonase/arylesterase 1 (PON1), paraoxonase/arylesterase 3 (PON3), and LCAT and incident CVD. Odds ratios (per 1 SD) were 0.38 (0.18–0.97, P = 0.042), 0.42 (0.20–0.92, P = 0.031), and 0.30 (0.11–0.83, P = 0.020) for PON1, PON3, and LCAT, respectively. Apolipoprotein A-IV remained associated with incident CVD in CKD patients in models adjusted for clinical confounders and lipid levels but lost significance with the addition of C-reactive protein and proteinuria to the model. In conclusion, levels of four HDL proteins, PON1, PON3, LCAT, and apolipoprotein A-IV, were found to be inversely associated with incident CVD events in CKD patients. Our observations indicate that HDLs' protein cargo, but not HDL-C levels, can serve as a marker—and perhaps mediator—for elevated CVD risk in CKD patients.
Collapse
|
17
|
Finamore F, Nieddu G, Rocchiccioli S, Spirito R, Guarino A, Formato M, Lepedda AJ. Apolipoprotein Signature of HDL and LDL from Atherosclerotic Patients in Relation with Carotid Plaque Typology: A Preliminary Report. Biomedicines 2021; 9:biomedicines9091156. [PMID: 34572342 PMCID: PMC8465382 DOI: 10.3390/biomedicines9091156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
In the past years, it has become increasingly clear that the protein cargo of the different lipoprotein classes is largely responsible for carrying out their various functions, also in relation to pathological conditions, including atherosclerosis. Accordingly, detailed information about their apolipoprotein composition and structure may contribute to the revelation of their role in atherogenesis and the understanding of the mechanisms that lead to atherosclerotic degeneration and toward vulnerable plaque formation. With this aim, shotgun proteomics was applied to identify the apolipoprotein signatures of both high-density and low-density lipoproteins (HDL and LDL) plasma fractions purified from healthy volunteers and atherosclerotic patients with different plaque typologies who underwent carotid endarterectomy. By this approach, two proteins with potential implications in inflammatory, immune, and hemostatic pathways, namely, integrin beta-2 (P05107) and secretoglobin family 3A member 2 (Q96PL1), have been confirmed to belong to the HDL proteome. Similarly, the list of LDL-associated proteins has been enriched with 21 proteins involved in complement and coagulation cascades and the acute-phase response, which potentially double the protein species of LDL cargo. Moreover, differential expression analysis has shown protein signatures specific for patients with “hard” or “soft” plaques.
Collapse
Affiliation(s)
- Francesco Finamore
- Institute of Clinical Physiology, National Research Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.F.); (S.R.)
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (G.N.); (M.F.)
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.F.); (S.R.)
| | - Rita Spirito
- Centro Cardiologico Monzino, IRCCS, via Parea 4, 20138 Milano, Italy; (R.S.); (A.G.)
| | - Anna Guarino
- Centro Cardiologico Monzino, IRCCS, via Parea 4, 20138 Milano, Italy; (R.S.); (A.G.)
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (G.N.); (M.F.)
| | - Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (G.N.); (M.F.)
- Correspondence:
| |
Collapse
|
18
|
Demichev V, Tober-Lau P, Lemke O, Nazarenko T, Thibeault C, Whitwell H, Röhl A, Freiwald A, Szyrwiel L, Ludwig D, Correia-Melo C, Aulakh SK, Helbig ET, Stubbemann P, Lippert LJ, Grüning NM, Blyuss O, Vernardis S, White M, Messner CB, Joannidis M, Sonnweber T, Klein SJ, Pizzini A, Wohlfarter Y, Sahanic S, Hilbe R, Schaefer B, Wagner S, Mittermaier M, Machleidt F, Garcia C, Ruwwe-Glösenkamp C, Lingscheid T, Bosquillon de Jarcy L, Stegemann MS, Pfeiffer M, Jürgens L, Denker S, Zickler D, Enghard P, Zelezniak A, Campbell A, Hayward C, Porteous DJ, Marioni RE, Uhrig A, Müller-Redetzky H, Zoller H, Löffler-Ragg J, Keller MA, Tancevski I, Timms JF, Zaikin A, Hippenstiel S, Ramharter M, Witzenrath M, Suttorp N, Lilley K, Mülleder M, Sander LE, Ralser M, Kurth F. A time-resolved proteomic and prognostic map of COVID-19. Cell Syst 2021; 12:780-794.e7. [PMID: 34139154 PMCID: PMC8201874 DOI: 10.1016/j.cels.2021.05.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/24/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease.
Collapse
Affiliation(s)
- Vadim Demichev
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany; The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW11AT, UK; The University of Cambridge, Department of Biochemistry and Cambridge Centre for Proteomics, Cambridge CB21GA, UK
| | - Pinkus Tober-Lau
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany
| | - Oliver Lemke
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Tatiana Nazarenko
- University College London, Department of Mathematics, London WC1E 6BT, UK; University College London, Department of Women's Cancer, EGA Institute for Women'S Health, London WC1E 6BT, UK
| | - Charlotte Thibeault
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany
| | - Harry Whitwell
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW72AZ, UK; Lobachevsky University, Department of Applied Mathematics, Nizhny Novgorod 603105, Russia; Imperial College London, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, London SW7 2AZ, UK
| | - Annika Röhl
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Anja Freiwald
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Lukasz Szyrwiel
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW11AT, UK
| | - Daniela Ludwig
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Clara Correia-Melo
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW11AT, UK
| | - Simran Kaur Aulakh
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW11AT, UK
| | - Elisa T Helbig
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany
| | - Paula Stubbemann
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany
| | - Lena J Lippert
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany
| | - Nana-Maria Grüning
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Oleg Blyuss
- Lobachevsky University, Department of Applied Mathematics, Nizhny Novgorod 603105, Russia; University of Hertfordshire, School of Physics, Astronomy and Mathematics, Hatfield AL10 9AB, UK; Sechenov First Moscow State Medical University, Department of Paediatrics and Paediatric Infectious Diseases, Moscow 119435, Russia
| | - Spyros Vernardis
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW11AT, UK
| | - Matthew White
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW11AT, UK
| | - Christoph B Messner
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany; The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW11AT, UK
| | - Michael Joannidis
- Medical University Innsbruck, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, 6020 Innsbruck, Austria
| | - Thomas Sonnweber
- Medical University of Innsbruck, Department of Internal Medicine II, 6020 Innsbruck, Austria
| | - Sebastian J Klein
- Medical University Innsbruck, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, 6020 Innsbruck, Austria
| | - Alex Pizzini
- Medical University of Innsbruck, Department of Internal Medicine II, 6020 Innsbruck, Austria
| | - Yvonne Wohlfarter
- Medical University of Innsbruck, Institute of Human Genetics, 6020 Innsbruck, Austria
| | - Sabina Sahanic
- Medical University of Innsbruck, Department of Internal Medicine II, 6020 Innsbruck, Austria
| | - Richard Hilbe
- Medical University of Innsbruck, Department of Internal Medicine II, 6020 Innsbruck, Austria
| | - Benedikt Schaefer
- Medical University of Innsbruck, Christian Doppler Laboratory for Iron and Phosphate Biology, Department of Internal Medicine I, 6020 Innsbruck, Austria
| | - Sonja Wagner
- Medical University of Innsbruck, Christian Doppler Laboratory for Iron and Phosphate Biology, Department of Internal Medicine I, 6020 Innsbruck, Austria
| | - Mirja Mittermaier
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany; Berlin Institute of Health, 10178 Berlin, Germany
| | - Felix Machleidt
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany
| | - Carmen Garcia
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany
| | - Christoph Ruwwe-Glösenkamp
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany
| | - Tilman Lingscheid
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany
| | - Laure Bosquillon de Jarcy
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany
| | - Miriam S Stegemann
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany
| | - Moritz Pfeiffer
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany
| | - Linda Jürgens
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany
| | - Sophy Denker
- Charité Universitätsmedizin Berlin, Medical Department of Hematology, Oncology & Tumor Immunology, Virchow Campus & Molekulares Krebsforschungszentrum, 13353 Berlin, Germany; Berlin Institute of Health, 10178 Berlin, Germany
| | - Daniel Zickler
- Charité Universitätsmedizin Berlin, Department of Nephrology and Internal Intensive Care Medicine, 10117 Berlin, Germany
| | - Philipp Enghard
- Charité Universitätsmedizin Berlin, Department of Nephrology and Internal Intensive Care Medicine, 10117 Berlin, Germany
| | - Aleksej Zelezniak
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW11AT, UK; Chalmers Tekniska Högskola, Department of Biology and Biological Engineering, SE-412 96 Gothenburg, Sweden
| | - Archie Campbell
- University of Edinburgh, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK; University of Edinburgh, Usher Institute, Edinburgh EH16 4UX, UK
| | - Caroline Hayward
- University of Edinburgh, MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK
| | - David J Porteous
- University of Edinburgh, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK; University of Edinburgh, Usher Institute, Edinburgh EH16 4UX, UK
| | - Riccardo E Marioni
- University of Edinburgh, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK
| | - Alexander Uhrig
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany
| | - Holger Müller-Redetzky
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany
| | - Heinz Zoller
- Medical University of Innsbruck, Christian Doppler Laboratory for Iron and Phosphate Biology, Department of Internal Medicine I, 6020 Innsbruck, Austria
| | - Judith Löffler-Ragg
- Medical University of Innsbruck, Department of Internal Medicine II, 6020 Innsbruck, Austria
| | - Markus A Keller
- Medical University of Innsbruck, Institute of Human Genetics, 6020 Innsbruck, Austria
| | - Ivan Tancevski
- Medical University of Innsbruck, Department of Internal Medicine II, 6020 Innsbruck, Austria
| | - John F Timms
- University College London, Department of Women's Cancer, EGA Institute for Women'S Health, London WC1E 6BT, UK
| | - Alexey Zaikin
- University College London, Department of Mathematics, London WC1E 6BT, UK; University College London, Department of Women's Cancer, EGA Institute for Women'S Health, London WC1E 6BT, UK; Lobachevsky University, Laboratory of Systems Medicine of Healthy Ageing, Nizhny Novgorod 603105, Russia
| | - Stefan Hippenstiel
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany; German Centre for Lung Research, 35392 Gießen, Germany
| | - Michael Ramharter
- Bernhard Nocht Institute for Tropical Medicine, Department of Tropical Medicine, and University Medical Center Hamburg-Eppendorf, Department of Medicine, 20359 Hamburg, Germany
| | - Martin Witzenrath
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany; German Centre for Lung Research, 35392 Gießen, Germany
| | - Norbert Suttorp
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany; German Centre for Lung Research, 35392 Gießen, Germany
| | - Kathryn Lilley
- The University of Cambridge, Department of Biochemistry and Cambridge Centre for Proteomics, Cambridge CB21GA, UK
| | - Michael Mülleder
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, 10117 Berlin, Germany
| | - Leif Erik Sander
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany; German Centre for Lung Research, 35392 Gießen, Germany
| | - Markus Ralser
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany; The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW11AT, UK.
| | - Florian Kurth
- Charité Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, 10117 Berlin, Germany; Bernhard Nocht Institute for Tropical Medicine, Department of Tropical Medicine, and University Medical Center Hamburg-Eppendorf, Department of Medicine, 20359 Hamburg, Germany
| |
Collapse
|
19
|
Noels H, Lehrke M, Vanholder R, Jankowski J. Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations. Nat Rev Nephrol 2021; 17:528-542. [PMID: 33972752 DOI: 10.1038/s41581-021-00423-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) induces modifications in lipid and lipoprotein metabolism and homeostasis. These modifications can promote, modulate and/or accelerate CKD and secondary cardiovascular disease (CVD). Lipid and lipoprotein abnormalities - involving triglyceride-rich lipoproteins, LDL and/or HDL - not only involve changes in concentration but also changes in molecular structure, including protein composition, incorporation of small molecules and post-translational modifications. These alterations modify the function of lipoproteins and can trigger pro-inflammatory and pro-atherogenic processes, as well as oxidative stress. Serum fatty acid levels are also often altered in patients with CKD and lead to changes in fatty acid metabolism - a key process in intracellular energy production - that induce mitochondrial dysfunction and cellular damage. These fatty acid changes might not only have a negative impact on the heart, but also contribute to the progression of kidney damage. The presence of these lipoprotein alterations within a biological environment characterized by increased inflammation and oxidative stress, as well as the competing risk of non-atherosclerotic cardiovascular death as kidney function declines, has important therapeutic implications. Additional research is needed to clarify the pathophysiological link between lipid and lipoprotein modifications, and kidney dysfunction, as well as the genesis and/or progression of CVD in patients with kidney disease.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, University Hospital, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Michael Lehrke
- Department of Internal Medicine I, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Pediatrics, University Hospital, Ghent, Belgium
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, University Hospital, Aachen, Germany.
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
20
|
Kon V, Yang HC, Smith LE, Vickers KC, Linton MF. High-Density Lipoproteins in Kidney Disease. Int J Mol Sci 2021; 22:ijms22158201. [PMID: 34360965 PMCID: PMC8348850 DOI: 10.3390/ijms22158201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Decades of epidemiological studies have established the strong inverse relationship between high-density lipoprotein (HDL)-cholesterol concentration and cardiovascular disease. Recent evidence suggests that HDL particle functions, including anti-inflammatory and antioxidant functions, and cholesterol efflux capacity may be more strongly associated with cardiovascular disease protection than HDL cholesterol concentration. These HDL functions are also relevant in non-cardiovascular diseases, including acute and chronic kidney disease. This review examines our current understanding of the kidneys’ role in HDL metabolism and homeostasis, and the effect of kidney disease on HDL composition and functionality. Additionally, the roles of HDL particles, proteins, and small RNA cargo on kidney cell function and on the development and progression of both acute and chronic kidney disease are examined. The effect of HDL protein modification by reactive dicarbonyls, including malondialdehyde and isolevuglandin, which form adducts with apolipoprotein A-I and impair proper HDL function in kidney disease, is also explored. Finally, the potential to develop targeted therapies that increase HDL concentration or functionality to improve acute or chronic kidney disease outcomes is discussed.
Collapse
Affiliation(s)
- Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (V.K.); (H.-C.Y.)
| | - Hai-Chun Yang
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (V.K.); (H.-C.Y.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Loren E. Smith
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Kasey C. Vickers
- Atherosclerosis Research Unit, Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - MacRae F. Linton
- Atherosclerosis Research Unit, Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
21
|
Tracz J, Luczak M. Applying Proteomics and Integrative "Omics" Strategies to Decipher the Chronic Kidney Disease-Related Atherosclerosis. Int J Mol Sci 2021; 22:7492. [PMID: 34299112 PMCID: PMC8305100 DOI: 10.3390/ijms22147492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with chronic kidney disease (CKD) are at increased risk of atherosclerosis and premature mortality, mainly due to cardiovascular events. However, well-known risk factors, which promote "classical" atherosclerosis are alone insufficient to explain the high prevalence of atherosclerosis-related to CKD (CKD-A). The complexity of the molecular mechanisms underlying the acceleration of CKD-A is still to be defied. To obtain a holistic picture of these changes, comprehensive proteomic approaches have been developed including global protein profiling followed by functional bioinformatics analyses of dysregulated pathways. Furthermore, proteomics surveys in combination with other "omics" techniques, i.e., transcriptomics and metabolomics as well as physiological assays provide a solid ground for interpretation of observed phenomena in the context of disease pathology. This review discusses the comprehensive application of various "omics" approaches, with emphasis on proteomics, to tackle the molecular mechanisms underlying CKD-A progression. We summarize here the recent findings derived from global proteomic approaches and underline the potential of utilizing integrative systems biology, to gain a deeper insight into the pathogenesis of CKD-A and other disorders.
Collapse
Affiliation(s)
| | - Magdalena Luczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland;
| |
Collapse
|
22
|
Coimbra S, Reis F, Valente MJ, Rocha S, Catarino C, Rocha-Pereira P, Sameiro-Faria M, Bronze-da-Rocha E, Belo L, Santos-Silva A. Subpopulations of High-Density Lipoprotein: Friends or Foes in Cardiovascular Disease Risk in Chronic Kidney Disease? Biomedicines 2021; 9:554. [PMID: 34065648 PMCID: PMC8157071 DOI: 10.3390/biomedicines9050554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
Dyslipidemia is a major traditional risk factor for cardiovascular disease (CVD) in chronic kidney disease (CKD) patients, although the altered lipid profile does not explain the number and severity of CVD events. High-density lipoprotein (HDL) is a heterogeneous (size, composition, and functionality) population of particles with different atherogenic or atheroprotective properties. HDL-cholesterol concentrations per se may not entirely reflect a beneficial or a risk profile for CVD. Large HDL in CKD patients may have a unique proteome and lipid composition, impairing their cholesterol efflux capacity. This lack of HDL functionality may contribute to the paradoxical coexistence of increased large HDL and enhanced risk for CVD events. Moreover, CKD is associated with inflammation, oxidative stress, diabetes, and/or hypertension that are able to interfere with the anti-inflammatory, antioxidative, and antithrombotic properties of HDL subpopulations. How these changes interfere with HDL functions in CKD is still poorly understood. Further studies are warranted to fully clarify if different HDL subpopulations present different functionalities and/or atheroprotective effects. To achieve this goal, the standardization of techniques would be valuable.
Collapse
Affiliation(s)
- Susana Coimbra
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), 4585-116 Gandra-Paredes, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Maria João Valente
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
| | - Susana Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Cristina Catarino
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
| | - Petronila Rocha-Pereira
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Maria Sameiro-Faria
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
- Hemodialysis Clinic Hospital Agostinho Ribeiro, 4610-106 Felgueiras, Portugal
| | - Elsa Bronze-da-Rocha
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
| | - Luís Belo
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
| | - Alice Santos-Silva
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
| |
Collapse
|
23
|
High-Density Lipoproteins and the Kidney. Cells 2021; 10:cells10040764. [PMID: 33807271 PMCID: PMC8065870 DOI: 10.3390/cells10040764] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Dyslipidemia is a typical trait of patients with chronic kidney disease (CKD) and it is typically characterized by reduced high-density lipoprotein (HDL)-cholesterol(c) levels. The low HDL-c concentration is the only lipid alteration associated with the progression of renal disease in mild-to-moderate CKD patients. Plasma HDL levels are not only reduced but also characterized by alterations in composition and structure, which are responsible for the loss of atheroprotective functions, like the ability to promote cholesterol efflux from peripheral cells and antioxidant and anti-inflammatory proprieties. The interconnection between HDL and renal function is confirmed by the fact that genetic HDL defects can lead to kidney disease; in fact, mutations in apoA-I, apoE, apoL, and lecithin–cholesterol acyltransferase (LCAT) are associated with the development of renal damage. Genetic LCAT deficiency is the most emblematic case and represents a unique tool to evaluate the impact of alterations in the HDL system on the progression of renal disease. Lipid abnormalities detected in LCAT-deficient carriers mirror the ones observed in CKD patients, which indeed present an acquired LCAT deficiency. In this context, circulating LCAT levels predict CKD progression in individuals at early stages of renal dysfunction and in the general population. This review summarizes the main alterations of HDL in CKD, focusing on the latest update of acquired and genetic LCAT defects associated with the progression of renal disease.
Collapse
|
24
|
Cohen G. Effect of High-Density Lipoprotein from Healthy Subjects and Chronic Kidney Disease Patients on the CD14 Expression on Polymorphonuclear Leukocytes. Int J Mol Sci 2021; 22:ijms22062830. [PMID: 33799511 PMCID: PMC7998954 DOI: 10.3390/ijms22062830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
In uremic patients, high-density lipoprotein (HDL) loses its anti-inflammatory features and can even become pro-inflammatory due to an altered protein composition. In chronic kidney disease (CKD), impaired functions of polymorphonuclear leukocytes (PMNLs) contribute to inflammation and an increased risk of cardiovascular disease. This study investigated the effect of HDL from CKD and hemodialysis (HD) patients on the CD14 expression on PMNLs. HDL was isolated using a one-step density gradient centrifugation. Isolation of PMNLs was carried out by discontinuous Ficoll-Hypaque density gradient centrifugation. CD14 surface expression was quantified by flow cytometry. The activity of the small GTPase Rac1 was determined by means of an activation pull-down assay. HDL increased the CD14 surface expression on PMNLs. This effect was more pronounced for HDL isolated from uremic patients. The acute phase protein serum amyloid A (SAA) caused higher CD14 expression, while SAA as part of an HDL particle did not. Lipid raft disruption with methyl-β-cyclodextrin led to a reduced CD14 expression in the absence and presence of HDL. HDL from healthy subjects but not from HD patients decreased the activity of Rac1. Considering the known anti-inflammatory effects of HDL, the finding that even HDL from healthy subjects increased the CD14 expression was unexpected. The pathophysiological relevance of this result needs further investigation.
Collapse
Affiliation(s)
- Gerald Cohen
- Department of Nephrology and Dialysis, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
25
|
Buckner T, Shao B, Eckel RH, Heinecke JW, Bornfeldt KE, Snell-Bergeon J. Association of apolipoprotein C3 with insulin resistance and coronary artery calcium in patients with type 1 diabetes. J Clin Lipidol 2021; 15:235-242. [PMID: 33257283 PMCID: PMC7887020 DOI: 10.1016/j.jacl.2020.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Apolipoprotein C3 (APOC3) is a risk factor for incident coronary artery disease in people with type 1 diabetes (T1D). The pathways that link elevated APOC3 levels to an increased risk of incident cardiovascular disease in people with T1D are not understood. OBJECTIVE To explore potential mechanisms, we investigated the association of APOC3 with insulin resistance and coronary artery calcium (CAC). METHODS In a random subcohort of participants with T1D from Coronary Artery Calcification in Type 1 Diabetes (n = 134), serum APOC3, high-density lipoprotein (HDL)-associated APOC3, and retinol binding protein 4 (RBP4; a potential marker of insulin resistance) were measured by targeted mass spectrometry. We used linear regression to evaluate associations of serum APOC3 and HDL-APOC3 with APOB, non-HDL cholesterol, serum- and HDL-associated RBP4, and estimated insulin sensitivity and logistic regression to evaluate association with presence of CAC, adjusted for age, sex, and diabetes duration. RESULTS Serum APOC3 correlated positively with APOB and non-HDL cholesterol and was associated with increased odds of CAC (odds ratio: 1.68, P = .024). Estimated insulin sensitivity was not associated with serum- or HDL-RBP4 but was negatively associated with serum APOC3 in men (ß estimate: -0.318, P = .0040) and decreased odds of CAC (odds ratio: 0.434, P = .0023). CONCLUSIONS Serum APOC3 associates with increased insulin resistance and CAC in T1D.
Collapse
Affiliation(s)
- Teresa Buckner
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Baohai Shao
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, USA
| | - Robert H Eckel
- Division of Endocrinology, Metabolism and Diabetes, and Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jay W Heinecke
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, USA
| | - Karin E Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, USA
| | - Janet Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
26
|
Current Understanding of the Relationship of HDL Composition, Structure and Function to Their Cardioprotective Properties in Chronic Kidney Disease. Biomolecules 2020; 10:biom10091348. [PMID: 32967334 PMCID: PMC7564231 DOI: 10.3390/biom10091348] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
In the general population, the ability of high-density lipoproteins (HDLs) to promote cholesterol efflux is a predictor of cardiovascular events, independently of HDL cholesterol levels. Although patients with chronic kidney disease (CKD) have a high burden of cardiovascular morbidity and mortality, neither serum levels of HDL cholesterol, nor cholesterol efflux capacity associate with cardiovascular events. Important for the following discussion on the role of HDL in CKD is the notion that traditional atherosclerotic cardiovascular risk factors only partially account for this increased incidence of cardiovascular disease in CKD. As a potential explanation, across the spectrum of cardiovascular disease, the relative contribution of atherosclerotic cardiovascular disease becomes less important with advanced CKD. Impaired renal function directly affects the metabolism, composition and functionality of HDL particles. HDLs themselves are a heterogeneous population of particles with distinct sizes and protein composition, all of them affecting the functionality of HDL. Therefore, a more specific approach investigating the functional and compositional features of HDL subclasses might be a valuable strategy to decipher the potential link between HDL, cardiovascular disease and CKD. This review summarizes the current understanding of the relationship of HDL composition, metabolism and function to their cardio-protective properties in CKD, with a focus on CKD-induced changes in the HDL proteome and reverse cholesterol transport capacity. We also will highlight the gaps in the current knowledge regarding important aspects of HDL biology.
Collapse
|
27
|
Santana MFM, Lira ALA, Pinto RS, Minanni CA, Silva ARM, Sawada MIBAC, Nakandakare ER, Correa-Giannella MLC, Queiroz MS, Ronsein GE, Passarelli M. Enrichment of apolipoprotein A-IV and apolipoprotein D in the HDL proteome is associated with HDL functions in diabetic kidney disease without dialysis. Lipids Health Dis 2020; 19:205. [PMID: 32921312 PMCID: PMC7488728 DOI: 10.1186/s12944-020-01381-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
Background and aims Diabetic kidney disease (DKD) is associated with lipid derangements that worsen kidney function and enhance cardiovascular (CVD) risk. The management of dyslipidemia, hypertension and other traditional risk factors does not completely prevent CVD complications, bringing up the participation of nontraditional risk factors such as advanced glycation end products (AGEs), carbamoylation and changes in the HDL proteome and functionality. The HDL composition, proteome, chemical modification and functionality were analyzed in nondialysis subjects with DKD categorized according to the estimated glomerular filtration rate (eGFR) and urinary albumin excretion rate (AER). Methods Individuals with DKD were divided into eGFR> 60 mL/min/1.73 m2 plus AER stages A1 and A2 (n = 10) and eGFR< 60 plus A3 (n = 25) and matched by age with control subjects (eGFR> 60; n = 8). Results Targeted proteomic analyses quantified 28 proteins associated with HDL in all groups, although only 2 were more highly expressed in the eGFR< 60 + A3 group than in the controls: apolipoprotein D (apoD) and apoA-IV. HDL from the eGFR< 60 + A3 group presented higher levels of total AGEs (20%), pentosidine (6.3%) and carbamoylation (4.2 x) and a reduced ability to remove 14C-cholesterol from macrophages (33%) in comparison to HDL from controls. The antioxidant role of HDL (lag time for LDL oxidation) was similar among groups, but HDL from the eGFR< 60 + A3 group presented a greater ability to inhibit the secretion of IL-6 and TNF-alpha (95%) in LPS-elicited macrophages in comparison to the control group. Conclusion The increase in apoD and apoA-IV could contribute to counteracting the HDL chemical modification by AGEs and carbamoylation, which contributes to HDL loss of function in well-established DKD.
Collapse
Affiliation(s)
- Monique F M Santana
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo 455, room 3305; CEP, São Paulo, 01246-000, Brazil
| | - Aécio L A Lira
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo 455, room 3305; CEP, São Paulo, 01246-000, Brazil
| | - Raphael S Pinto
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo 455, room 3305; CEP, São Paulo, 01246-000, Brazil.,Centro Universitário CESMAC, Maceio, Alagoas, Brazil
| | - Carlos A Minanni
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo 455, room 3305; CEP, São Paulo, 01246-000, Brazil.,Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein (HIAE), São Paulo, Brazil
| | - Amanda R M Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Maria I B A C Sawada
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil
| | - Edna R Nakandakare
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo 455, room 3305; CEP, São Paulo, 01246-000, Brazil
| | - Maria L C Correa-Giannella
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil.,Laboratório de Carboidratos e Radioimunoensaio (LIM 18), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marcia S Queiroz
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil
| | - Graziella E Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa Passarelli
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo 455, room 3305; CEP, São Paulo, 01246-000, Brazil. .,Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil.
| |
Collapse
|
28
|
The Role and Function of HDL in Patients with Chronic Kidney Disease and the Risk of Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21020601. [PMID: 31963445 PMCID: PMC7014265 DOI: 10.3390/ijms21020601] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a worldwide health problem with steadily increasing occurrence. Significantly elevated cardiovascular morbidity and mortality have been observed in CKD. Cardiovascular diseases are the most important and frequent cause of death of CKD patients globally. The presence of CKD is related to disturbances in lipoprotein metabolism whose consequences are dyslipidemia and the accumulation of atherogenic particles. CKD not only fuels the reduction of high-density lipoprotein (HDL) cholesterol concentration, but also it modifies the composition of this lipoprotein. The key role of HDL is the participation in reverse cholesterol transport from peripheral tissues to the liver. Moreover, HDL prevents the oxidation of low-density lipoprotein (LDL) cholesterol by reactive oxygen species (ROS) and protects against the adverse effects of oxidized LDL (ox-LDL) on the endothelium. Numerous studies have demonstrated the ability of HDL to promote the production of nitric oxide (NO) by endothelial cells (ECs) and to exert antiapoptotic and anti-inflammatory effects. Increasing evidence suggests that in patients with chronic inflammatory disorders, HDLs may lose important antiatherosclerotic properties and become dysfunctional. So far, no therapeutic strategy to raise HDL, or alter the ratio of HDL subfractions, has been successful in slowing the progression of CKD or reducing cardiovascular disease in patients either with or without CKD.
Collapse
|
29
|
Affiliation(s)
| | - Subramaniam Pennathur
- Departments of Internal Medicine-Nephrology and .,Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
30
|
Florens N, Calzada C, Delolme F, Page A, Guebre Egziabher F, Juillard L, Soulage CO. Proteomic Characterization of High-Density Lipoprotein Particles from Non-Diabetic Hemodialysis Patients. Toxins (Basel) 2019; 11:toxins11110671. [PMID: 31731787 PMCID: PMC6891510 DOI: 10.3390/toxins11110671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease is associated with an increased cardiovascular risk, and altered biological properties of high-density lipoproteins (HDL) may play a role in these events. This study aimed to describe the HDL proteome from non-diabetic hemodialysis patients and identify potential pathways affected by the dysregulated expression of HDL proteins. HDL were sampled from nine non-diabetic hemodialysis (HD) and eight control patients. Samples were analyzed using a nano-RSLC coupled with a Q-Orbitrap. Data were processed by database searching using SequestHT against a human Swissprot database and quantified with a label-free quantification approach. Proteins that were in at least five of the eight control and six of the nine HD patients were analyzed. Analysis was based on pairwise ratios and the ANOVA hypothesis test. Among 522 potential proteins, 326 proteins were identified to be in the HDL proteome from HD and control patients, among which 10 were significantly upregulated and nine downregulated in HD patients compared to the control patients (p < 0.05). Up and downregulated proteins were involved in lipid metabolism, hemostasis, wound healing, oxidative stress, and apoptosis pathways. This difference in composition could partly explain HDL dysfunction in the chronic kidney disease (CKD) population and participate in the higher cardiovascular risk observed in this population.
Collapse
Affiliation(s)
- Nans Florens
- Univ. Lyon, CarMeN, INSERM U1060, INSA de Lyon, Université Claude Bernard Lyon 1, INRA U1397, F-69621 Villeurbanne, France; (C.C.); (F.G.E.); (L.J.)
- Hospices Civils de Lyon, Service de Néphrologie-Hypertension-Hémodialyse, Hôpital E. Herriot, F-69003 Lyon, France
- Correspondence: (N.F.); (C.O.S.)
| | - Catherine Calzada
- Univ. Lyon, CarMeN, INSERM U1060, INSA de Lyon, Université Claude Bernard Lyon 1, INRA U1397, F-69621 Villeurbanne, France; (C.C.); (F.G.E.); (L.J.)
| | - Frédéric Delolme
- Protein Science Facility, SFR BioSciences CNRS UMS3444, Inserm US8, Université Claude Bernard Lyon 1, ENS de Lyon, F-69007 Lyon, France; (F.D.); (A.P.)
| | - Adeline Page
- Protein Science Facility, SFR BioSciences CNRS UMS3444, Inserm US8, Université Claude Bernard Lyon 1, ENS de Lyon, F-69007 Lyon, France; (F.D.); (A.P.)
| | - Fitsum Guebre Egziabher
- Univ. Lyon, CarMeN, INSERM U1060, INSA de Lyon, Université Claude Bernard Lyon 1, INRA U1397, F-69621 Villeurbanne, France; (C.C.); (F.G.E.); (L.J.)
- Hospices Civils de Lyon, Service de Néphrologie-Hypertension-Hémodialyse, Hôpital E. Herriot, F-69003 Lyon, France
| | - Laurent Juillard
- Univ. Lyon, CarMeN, INSERM U1060, INSA de Lyon, Université Claude Bernard Lyon 1, INRA U1397, F-69621 Villeurbanne, France; (C.C.); (F.G.E.); (L.J.)
- Hospices Civils de Lyon, Service de Néphrologie-Hypertension-Hémodialyse, Hôpital E. Herriot, F-69003 Lyon, France
| | - Christophe O. Soulage
- Univ. Lyon, CarMeN, INSERM U1060, INSA de Lyon, Université Claude Bernard Lyon 1, INRA U1397, F-69621 Villeurbanne, France; (C.C.); (F.G.E.); (L.J.)
- Correspondence: (N.F.); (C.O.S.)
| |
Collapse
|
31
|
Abstract
Introduction: High-density lipoprotein (HDL) particles are heterogeneous and their proteome is complex and distinct from HDL cholesterol. However, it is largely unknown whether HDL proteins are associated with cardiovascular protection. Areas covered: HDL isolation techniques and proteomic analyses are reviewed. A list of HDL proteins reported in 37 different studies was compiled and the effects of different isolation techniques on proteins attributed to HDL are discussed. Mass spectrometric techniques used for HDL analysis and the need for precise and robust methods for quantification of HDL proteins are discussed. Expert opinion: Proteins associated with HDL have the potential to be used as biomarkers and/or help to understand HDL functionality. To achieve this, large cohorts must be studied using precise quantification methods. Key factors in HDL proteome quantification are the isolation methodology and the mass spectrometry technique employed. Isolation methodology affects what proteins are identified in HDL and the specificity of association with HDL particles needs to be addressed. Shotgun proteomics yields imprecise quantification, but the majority of HDL studies relied on this approach. Few recent studies used targeted tandem mass spectrometry to quantify HDL proteins, and it is imperative that future studies focus on the application of these precise techniques.
Collapse
Affiliation(s)
- Graziella Eliza Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo , São Paulo , Brazil
| | - Tomáš Vaisar
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington , Seattle , WA , USA
| |
Collapse
|
32
|
Henson D, Tahhan AS, Nardo D, Quyyumi AA, Venditto VJ. Association Between ApoA-I (Apolipoprotein A-I) Immune Complexes and Adverse Cardiovascular Events-Brief Report. Arterioscler Thromb Vasc Biol 2019; 39:1884-1892. [PMID: 31315438 DOI: 10.1161/atvbaha.119.312964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The immune response is linked to the progression of atherosclerotic cardiovascular disease (CVD). Free autoantibodies targeting ApoA-I (apolipoprotein A-I) have been identified as a component of the inflammatory milieu in patients and have a moderate association with CVD progression. Based on the presence of these antibodies and the high concentration of circulating ApoA-I, we hypothesized that antibodies bound to ApoA-I as an immune complex would be predictive of incident adverse CVD outcomes. Approach and Results: The presence of ApoA-I/IgG immune complexes (ICs) in plasma was confirmed by ELISA in 3 subject cohorts. Characterization of the protein components of ApoAI/IgG ICs indicate that ICs are not correlated with total ApoA-I concentration and are enriched in the anti-inflammatory subclass, IgG4, relative to total plasma IgG (>30% versus 6%). In 359 patients with coronary artery disease (CAD), there were 71 incident adverse CVD events (death, myocardial infarction, and stroke) during a median 4.1-year follow-up. In Cox proportional hazard regression analysis, low levels of ApoA-I/IgG ICs were independent predictors of adverse cardiovascular outcomes after adjustment for age, sex, diabetes mellitus, estimated glomerular filtration rate, presence of obstructive CAD, heart failure, total cholesterol, and HDL (high-density lipoprotein) cholesterol (adjusted hazard ratio of 1.90 [95% CI, 1.03-3.49; P=0.038] between the lowest and the highest tertiles). CONCLUSIONS Low levels of ApoA-I/IgG ICs are associated with an increased risk of adverse events in patients with CAD, raising their potential to be used as a biomarker to predict CVD progression.
Collapse
Affiliation(s)
- David Henson
- From the Department of Pharmaceutical Sciences, University of Kentucky, Lexington (D.H., D.N., V.J.V.)
| | - Ayman Samman Tahhan
- Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA (A.S.T., A.A.Q.)
| | - David Nardo
- From the Department of Pharmaceutical Sciences, University of Kentucky, Lexington (D.H., D.N., V.J.V.)
| | - Arshed Ali Quyyumi
- Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA (A.S.T., A.A.Q.)
| | - Vincent J Venditto
- From the Department of Pharmaceutical Sciences, University of Kentucky, Lexington (D.H., D.N., V.J.V.)
| |
Collapse
|
33
|
Kanter JE, Shao B, Kramer F, Barnhart S, Shimizu-Albergine M, Vaisar T, Graham MJ, Crooke RM, Manuel CR, Haeusler RA, Mar D, Bomsztyk K, Hokanson JE, Kinney GL, Snell-Bergeon JK, Heinecke JW, Bornfeldt KE. Increased apolipoprotein C3 drives cardiovascular risk in type 1 diabetes. J Clin Invest 2019; 129:4165-4179. [PMID: 31295146 DOI: 10.1172/jci127308] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) increases the risk of atherosclerotic cardiovascular disease (CVD) in humans by poorly understood mechanisms. Using mouse models of T1DM-accelerated atherosclerosis, we found that relative insulin deficiency rather than hyperglycemia elevated levels of apolipoprotein C3 (APOC3), an apolipoprotein that prevents clearance of triglyceride-rich lipoproteins (TRLs) and their remnants. We then showed that serum APOC3 levels predict incident CVD events in subjects with T1DM in the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study. To explore underlying mechanisms, we investigated the impact of Apoc3 antisense oligonucleotides (ASOs) on lipoprotein metabolism and atherosclerosis in a mouse model of T1DM. Apoc3 ASO treatment abolished the increased hepatic Apoc3 expression in diabetic mice - resulting in lower levels of TRLs - without improving glycemic control. APOC3 suppression also prevented arterial accumulation of APOC3-containing lipoprotein particles, macrophage foam cell formation, and the accelerated atherosclerosis in diabetic mice. Our observations demonstrate that relative insulin deficiency increases APOC3 and that this results in elevated levels of TRLs and accelerated atherosclerosis in a mouse model of T1DM. Because serum levels of APOC3 predicted incident CVD events in the CACTI study, inhibiting APOC3 might reduce CVD risk in T1DM patients.
Collapse
Affiliation(s)
- Jenny E Kanter
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Baohai Shao
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Farah Kramer
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Shelley Barnhart
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Masami Shimizu-Albergine
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Tomas Vaisar
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | | | | | - Clarence R Manuel
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Rebecca A Haeusler
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Daniel Mar
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
| | - Karol Bomsztyk
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, USA
| | - Gregory L Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, USA
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Jay W Heinecke
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Karin E Bornfeldt
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA.,Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
34
|
Shao B, Zelnick LR, Wimberger J, Himmelfarb J, Brunzell J, Davidson WS, Snell-Bergeon JK, Bornfeldt KE, de Boer IH, Heinecke JW. Albuminuria, the High-Density Lipoprotein Proteome, and Coronary Artery Calcification in Type 1 Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2019; 39:1483-1491. [PMID: 31092010 DOI: 10.1161/atvbaha.119.312556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Albuminuria is an important risk factor for cardiovascular disease in diabetes mellitus. We determined whether albuminuria associates with alterations in the proteome of HDL (high-density lipoprotein) of subjects with type 1 diabetes mellitus and whether those alterations associated with coronary artery calcification. Approach and Results- In a cross-sectional study of 191 subjects enrolled in the DCCT (Diabetes Control and Complications Trial)/EDIC study (Epidemiology of Diabetes Interventions and Complications), we used isotope dilution tandem mass spectrometry to quantify 46 proteins in HDL. Stringent statistical analysis demonstrated that 8 proteins associated with albuminuria. Two of those proteins, AMBP (α1-microglobulin/bikunin precursor) and PTGDS (prostaglandin-H2 D-isomerase), strongly and positively associated with the albumin excretion rate ( P<10-6). Furthermore, PON (paraoxonase) 1 and PON3 levels in HDL strongly and negatively associated with the presence of coronary artery calcium, with odds ratios per 1-SD difference of 0.63 (95% CI, 0.43-0.92; P=0.018) for PON1 and 0.59 (95% CI, 0.40-0.87; P=0.0079) for PON3. Only 1 protein, PON1, associated with both albumin excretion rate and coronary artery calcification. Conclusions- Our observations indicate that the HDL proteome is remodeled in type 1 diabetes mellitus subjects with albuminuria. Moreover, low concentrations of the antiatherosclerotic protein PON1 in HDL associated with both albuminuria and coronary artery calcification, raising the possibility that alterations in HDL protein cargo mediate, in part, the known association of albuminuria with cardiovascular risk in type 1 diabetes mellitus. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Baohai Shao
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| | - Leila R Zelnick
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| | - Jake Wimberger
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| | - Jonathan Himmelfarb
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| | - John Brunzell
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, OH (W.S.D.)
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora (J.K.S.-B.)
| | - Karin E Bornfeldt
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| | - Ian H de Boer
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| | - Jay W Heinecke
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| |
Collapse
|
35
|
High-Density Lipoprotein from Chronic Kidney Disease Patients Modulates Polymorphonuclear Leukocytes. Toxins (Basel) 2019; 11:toxins11020073. [PMID: 30717079 PMCID: PMC6409858 DOI: 10.3390/toxins11020073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/24/2022] Open
Abstract
The anti-inflammatory properties of high-density lipoproteins (HDL) are lost in uremia. These HDL may show pro-inflammatory features partially as a result of changed protein composition. Alterations of polymorphonuclear leukocytes (PMNLs) in chronic kidney disease (CKD) may contribute to chronic inflammation and high vascular risk. We investigated if HDL from uremic patients is related to systemic inflammation by interfering with PMNL function. PMNL apoptosis was investigated by assessing morphological features and DNA content. CD11b surface expression was quantified by flow cytometry. Oxidative burst was measured via cytochrome c reduction assay. Chemotaxis was assessed by using an under-agarose migration assay. We found that HDL from CKD and hemodialysis (HD) patients significantly attenuated PMNL apoptosis, whereas HDL isolated from healthy subjects had no effect on PMNL apoptosis. The use of signal transduction inhibitors indicated that uremic HDL exerts anti-apoptotic effects by activating pathways involving phosphoinositide 3-kinase and extracellular-signal regulated kinase. Healthy HDL attenuated the surface expression of CD11b, whereas HDL from CKD and HD patients had no effect. All tested isolates increased the stimulation of oxidative burst, but did not affect PMNL chemotactic movement. In conclusion, HDL may contribute to the systemic inflammation in uremic patients by modulating PMNL functions.
Collapse
|
36
|
Lee SE, Schulze K, Stewart CP, Cole RN, Wu LSF, Eroglu A, Yager JD, Groopman J, Christian P, West KP. Plasma proteome correlates of lipid and lipoprotein: biomarkers of metabolic diversity and inflammation in children of rural Nepal. J Lipid Res 2018; 60:149-160. [PMID: 30473544 PMCID: PMC6314253 DOI: 10.1194/jlr.p088542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Proteins involved in lipoprotein metabolism can modulate cardiovascular health. While often measured to assess adult metabolic diseases, little is known about the proteomes of lipoproteins and their relation to metabolic dysregulation and underlying inflammation in undernourished child populations. The objective of this population study was to globally characterize plasma proteins systemically associated with HDL, LDL, and triglycerides in 500 Nepalese children. Abnormal lipid profiles characterized by elevated plasma triglycerides and low HDL-cholesterol (HDL-C) concentrations were common, especially in children with subclinical inflammation. Among 982 proteins analyzed, the relative abundance of 11, 12, and 52 plasma proteins was correlated with LDL-cholesterol (r = −0.43∼0.70), triglycerides (r = −0.39∼0.53), and HDL-C (r = −0.49∼0.79) concentrations, respectively. These proteins included apolipoproteins and numerous unexpected intracellular and extracellular matrix binding proteins, likely originating in hepatic and peripheral tissues. Relative abundance of two-thirds of the HDL proteome varied with inflammation, with acute phase reactants higher by 4∼40%, and proteins involved in HDL biosynthesis, cholesterol efflux, vitamin transport, angiogenesis, and tissue repair lower by 3∼20%. Untargeted plasma proteomics detects comprehensive sets of both known and novel lipoprotein-associated proteins likely reflecting systemic regulation of lipoprotein metabolism and vascular homeostasis. Inflammation-altered distributions of the HDL proteome may be predisposing undernourished populations to early chronic disease.
Collapse
Affiliation(s)
- Sun Eun Lee
- Center for Human Nutrition Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Kerry Schulze
- Center for Human Nutrition Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Christine P Stewart
- Program in International and Community Nutrition, Department of Nutrition, University of California, Davis, CA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Johns Hopkins School of Medicine, Baltimore, MD
| | - Lee S-F Wu
- Center for Human Nutrition Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Abdulkerim Eroglu
- Center for Human Nutrition Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - James D Yager
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - John Groopman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Parul Christian
- Center for Human Nutrition Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Keith P West
- Center for Human Nutrition Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
37
|
Li D, Huang F, Zhao Y, Villata PW, Griffin TJ, Zhang L, Li L, Yu F. Plasma lipoproteome in Alzheimer's disease: a proof-of-concept study. Clin Proteomics 2018; 15:31. [PMID: 30250409 PMCID: PMC6147047 DOI: 10.1186/s12014-018-9207-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022] Open
Abstract
Background Although total plasma lipoproteome consists of proteins that have shown promises as biomarkers that can identify Alzheimer's disease (AD), effect sizes are modest. The objective of this study is to provide initial proof-of-concept that the plasma lipoproteome more likely differ between AD cases and controls when measured in individual plasma lipoprotein fractions than when measured as total in immunodepleted plasma. Methods We first developed a targeted proteomics method based on selected reaction monitoring (SRM) and liquid chromatography and tandem mass spectrometry for measurement of 120 tryptic peptides from 79 proteins that are commonly present in plasma lipoproteins. Then in a proof-of concept case-control study of 5 AD cases and 5 sex- and age-matched controls, we applied the targeted proteomic method and performed relatively quantification of 120 tryptic peptides in plasma lipoprotein fractions (fractionated by sequential gradient ultracentrifugation) and in immunodepleted plasma (of albumin and IgG). Unadjusted p values from two-sample t-tests and overall fold change was used to evaluate a peptide relative difference between AD cases and controls, with lower p values (< 0.05) or greater fold differences (> 1.05 or < 0.95) suggestive of greater peptide/protein differences. Results Within-day and between-days technical precisions (mean %CV [SD] of all SRM transitions) of the targeted proteomic method were 3.95% (2.65) and 9.31% (5.59), respectively. Between-days technical precisions (mean % CV [SD]) of the entire plasma lipoproteomic workflow including plasma lipoprotein fractionation was 27.90% (14.61). Ten tryptic peptides that belonged to 5 proteins in plasma lipoproteins had unadjusted p values < 0.05, compared to no peptides in immunodepleted plasma. Furthermore, 27, 32, 17, and 20 tryptic peptides in VLDL, IDL, LDL and HDL, demonstrated overall peptide fold differences > 1.05 or < 0.95, compared to only 6 tryptic peptides in immunodepleted plasma. The overall comparisons, therefore, suggested greater peptide/protein differences in plasma lipoproteome when measured in individual plasma lipoproteins than as total in immunodepleted plasma. Specifically, protein complement C3's peptide IHWESASLLR, had unadjusted p values of 0.00007, 0.00012, and 0.0006 and overall 1.25, 1.17, 1.14-fold changes in VLDL, IDL, and LDL, respectively. After positive False Discovery Rate (pFDR) adjustment, the complement C3 peptide IHWESASLLR in VLDL remained statistically different (adjusted p value < 0.05). Discussion The findings may warrant future studies to investigate plasma lipoproteome when measured in individual plasma lipoprotein fractions for AD diagnosis.
Collapse
Affiliation(s)
- Danni Li
- 1Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, MMC 609, Minneapolis, MN 55455 USA
| | - Fangying Huang
- 1Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, MMC 609, Minneapolis, MN 55455 USA
| | - Yingchun Zhao
- 2Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Peter W Villata
- 2Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Timothy J Griffin
- 3Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - Lin Zhang
- 4Department of Biostatistics, University of Minnesota, Minneapolis, MN 55455 USA
| | - Ling Li
- 5Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Fang Yu
- 6School of Nursing, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
38
|
Wang K, Zelnick LR, Hoofnagle AN, Vaisar T, Henderson CM, Imrey PB, Robinson-Cohen C, de Boer IH, Shiu YT, Himmelfarb J, Beck GJ. Alteration of HDL Protein Composition with Hemodialysis Initiation. Clin J Am Soc Nephrol 2018; 13:1225-1233. [PMID: 30045914 PMCID: PMC6086713 DOI: 10.2215/cjn.11321017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES HDL particles obtained from patients on chronic hemodialysis exhibit lower cholesterol efflux capacity and are enriched in inflammatory proteins compared with those in healthy individuals. Observed alterations in HDL proteins could be due to effects of CKD, but also may be influenced by the hemodialysis procedure, which stimulates proinflammatory and prothrombotic pathways. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We compared HDL-associated proteins in 143 participants who initiated hemodialysis within the previous year with those of 110 participants with advanced CKD from the Hemodialysis Fistula Maturation Study. We quantified concentrations of 38 HDL-associated proteins relative to total HDL protein using targeted mass spectrometry assays that included a stable isotope-labeled internal standard. We used linear regression to compare the relative abundances of HDL-associated proteins after adjustment and required a false discovery rate q value ≤10% to control for multiple testing. We further assessed the association between hemodialysis initiation and cholesterol efflux capacity in a subset of 80 participants. RESULTS After adjustment for demographics, comorbidities, and other clinical characteristics, eight HDL-associated proteins met the prespecified false discovery threshold for association. Recent hemodialysis initiation was associated with higher HDL-associated concentrations of serum amyloid A1, A2, and A4; hemoglobin-β; haptoglobin-related protein; cholesterylester transfer protein; phospholipid transfer protein; and apo E. The trend for participants recently initiating hemodialysis for lower cholesterol efflux capacity compared with individuals with advanced CKD did not reach statistical significance. CONCLUSIONS Compared with advanced CKD, hemodialysis initiation within the previous year is associated with higher concentrations of eight HDL proteins related to inflammation and lipid metabolism. Identified associations differ from those recently observed for nondialysis-requiring CKD. Hemodialysis initiation may further impair cholesterol efflux capacity. Further work is needed to clarify the clinical significance of the identified proteins with respect to cardiovascular risk. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2018_07_25_CJASNPodcast_18_8_W.mp3.
Collapse
Affiliation(s)
- Ke Wang
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Leila R. Zelnick
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Andrew N. Hoofnagle
- Departments of Medicine and
- Laboratory Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | | | | | - Peter B. Imrey
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | | | - Ian H. de Boer
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jonathan Himmelfarb
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Gerald J. Beck
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - KestenbaumBryan12on behalf of the HFM Study
- Departments of Medicine and
- Laboratory Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
- Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
39
|
Shao B, Heinecke JW. Quantifying HDL proteins by mass spectrometry: how many proteins are there and what are their functions? Expert Rev Proteomics 2017; 15:31-40. [PMID: 29113513 DOI: 10.1080/14789450.2018.1402680] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Many lines of evidence indicate that low levels of HDL cholesterol increase the risk of cardiovascular disease (CVD). However, recent clinical studies of statin-treated subjects with established atherosclerosis cast doubt on the hypothesis that elevating HDL cholesterol levels reduces CVD risk. Areas covered: It is critical to identify new HDL metrics that capture HDL's proposed cardioprotective effects. One promising approach is quantitative MS/MS-based HDL proteomics. This article focuses on recent studies of the feasibility and challenges of using this strategy in translational studies. It also discusses how lipid-lowering therapy and renal disease alter HDL's functions and proteome, and how HDL might serve as a platform for binding proteins with specific functional properties. Expert commentary: It is clear that HDL has a diverse protein cargo and that its functions extend well beyond its classic role in lipid transport and reverse cholesterol transport. MS/MS analysis has demonstrated that HDL might contain >80 different proteins. Key challenges are demonstrating that these proteins truly associate with HDL, are functionally important, and that MS-based HDL proteomics can reproducibly detect biomarkers in translational studies of disease risk.
Collapse
Affiliation(s)
- Baohai Shao
- a Department of Medicine , University of Washington , Seattle , WA , USA
| | - Jay W Heinecke
- a Department of Medicine , University of Washington , Seattle , WA , USA
| |
Collapse
|
40
|
Rubinow KB, Henderson CM, Robinson-Cohen C, Himmelfarb J, de Boer IH, Vaisar T, Kestenbaum B, Hoofnagle AN. Kidney function is associated with an altered protein composition of high-density lipoprotein. Kidney Int 2017; 92:1526-1535. [PMID: 28754556 DOI: 10.1016/j.kint.2017.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/28/2022]
Abstract
Patients with chronic kidney disease (CKD) exhibit a myriad of metabolic derangements, including dyslipidemia characterized by low plasma concentrations of high-density lipoprotein (HDL)-associated cholesterol. However, the effects of kidney disease on HDL composition have not been comprehensively determined. Here we used a targeted mass spectrometric approach to quantify 38 proteins contained in the HDL particles within a CKD cohort of 509 participants with a broad range of estimated glomerular filtration rates (eGFRs) (CKD stages I-V, and a mean eGFR of 45.5 mL/min/1.73m2). After adjusting for multiple testing, demographics, comorbidities, medications, and other characteristics, eGFR was significantly associated with differences in four HDL proteins. Compared to participants with an eGFR of 60 mL/min/1.73m2 or more, those with an eGFR under 15 mL/min/1.73m2 exhibited 1.89-fold higher retinol-binding protein 4 (95% confidence interval 1.34-2.67), 1.52-fold higher apolipoprotein C-III (1.25-1.84), 0.70-fold lower apolipoprotein L1 (0.55-0.92), and 0.64-fold lower vitronectin (0.48-0.85). Although the HDL apolipoprotein L1 was slightly lower among African Americans than among Caucasian individuals, the relationship to eGFR did not differ by race. After adjustment, no HDL-associated proteins associated with albuminuria. Thus, modest changes in the HDL proteome provide preliminary evidence for an association between HDL proteins and declining kidney function, but this needs to be replicated. Future analyses will determine if HDL proteomics is indeed a clinical predictor of declining kidney function or cardiovascular outcomes.
Collapse
Affiliation(s)
- Katya B Rubinow
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Clark M Henderson
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Cassianne Robinson-Cohen
- Department of Medicine, University of Washington, Seattle, Washington, USA; Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Jonathan Himmelfarb
- Department of Medicine, University of Washington, Seattle, Washington, USA; Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Ian H de Boer
- Department of Medicine, University of Washington, Seattle, Washington, USA; Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Bryan Kestenbaum
- Department of Medicine, University of Washington, Seattle, Washington, USA; Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Andrew N Hoofnagle
- Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA; Kidney Research Institute, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
41
|
Boyce G, Button E, Soo S, Wellington C. The pleiotropic vasoprotective functions of high density lipoproteins (HDL). J Biomed Res 2017; 32:164. [PMID: 28550271 PMCID: PMC6265396 DOI: 10.7555/jbr.31.20160103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
The pleiotropic functions of circulating high density lipoprotein (HDL) on peripheral vascular health are well established. HDL plays a pivotal role in reverse cholesterol transport and is also known to suppress inflammation, endothelial activation and apoptosis in peripheral vessels. Although not expressed in the central nervous system, HDL has nevertheless emerged as a potential resilience factor for dementia in multiple epidemiological studies. Animal model data specifically support a role for HDL in attenuating the accumulation of β-amyloid within cerebral vessels concomitant with reduced neuroinflammation and improved cognitive performance. As the vascular contributions to dementia are increasingly appreciated, this review seeks to summarize recent literature focused on the vasoprotective properties of HDL that may extend to cerebral vessels, discuss potential roles of HDL in dementia relative to brain-derived lipoproteins, identify gaps in current knowledge, and highlight new opportunities for research and discovery.
Collapse
Affiliation(s)
- Guilaine Boyce
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Emily Button
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sonja Soo
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
42
|
HDL Glycoprotein Composition and Site-Specific Glycosylation Differentiates Between Clinical Groups and Affects IL-6 Secretion in Lipopolysaccharide-Stimulated Monocytes. Sci Rep 2017; 7:43728. [PMID: 28287093 PMCID: PMC5347119 DOI: 10.1038/srep43728] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/27/2017] [Indexed: 12/27/2022] Open
Abstract
The goal of this pilot study was to determine whether HDL glycoprotein composition affects HDL’s immunomodulatory function. HDL were purified from healthy controls (n = 13), subjects with metabolic syndrome (MetS) (n = 13), and diabetic hemodialysis (HD) patients (n = 24). Concentrations of HDL-bound serum amyloid A (SAA), lipopolysaccharide binding protein (LBP), apolipoprotein A-I (ApoA-I), apolipoprotein C-III (ApoC-III), α-1-antitrypsin (A1AT), and α-2-HS-glycoprotein (A2HSG); and the site-specific glycovariations of ApoC-III, A1AT, and A2HSG were measured. Secretion of interleukin 6 (IL-6) in lipopolysaccharide-stimulated monocytes was used as a prototypical assay of HDL’s immunomodulatory capacity. HDL from HD patients were enriched in SAA, LBP, ApoC-III, di-sialylated ApoC-III (ApoC-III2) and desialylated A2HSG. HDL that increased IL-6 secretion were enriched in ApoC-III, di-sialylated glycans at multiple A1AT glycosylation sites and desialylated A2HSG, and depleted in mono-sialylated ApoC-III (ApoC-III1). Subgroup analysis on HD patients who experienced an infectious hospitalization event within 60 days (HD+) (n = 12), vs. those with no event (HD−) (n = 12) showed that HDL from HD+ patients were enriched in SAA but had lower levels of sialylation across glycoproteins. Our results demonstrate that HDL glycoprotein composition, including the site-specific glycosylation, differentiate between clinical groups, correlate with HDL’s immunomodulatory capacity, and may be predictive of HDL’s ability to protect from infection.
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The ability of HDL to promote cholesterol efflux from macrophages is a predictor of cardiovascular risk independent of HDL cholesterol levels. However, the molecular determinants of HDL cholesterol efflux capacity (CEC) are largely unknown. RECENT FINDINGS The term HDL defines a heterogeneous population of particles with distinct size, shape, protein, and lipid composition. Cholesterol efflux is mediated by multiple pathways that may be differentially modulated by HDL composition. Furthermore, different subpopulations of HDL particles mediate CEC via specific pathways, but the molecular determinants of CEC, either proteins or lipids, are unclear. Inflammation promotes a profound remodeling of HDL and impairs overall HDL CEC while improving ATP-binding cassette transporter G1-mediated efflux. This review discusses recent findings that connect HDL composition and CEC. SUMMARY Data from recent animal and human studies clearly show that multiple factors associate with CEC including individual proteins, lipid composition, as well as specific particle subpopulations. Although acute inflammation remodels HDL and impairs CEC, chronic inflammation has more subtle effects. Standardization of assays measuring HDL composition and CEC is a necessary prerequisite for understanding the factors controlling HDL CEC. Unraveling these factors may help the development of new therapeutic interventions improving HDL function.
Collapse
Affiliation(s)
| | - Tomas Vaisar
- Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
- Corresponding author: Tomas Vaisar, Diabetes Institute, Department of Medicine, University of Washington, 850 Republican St, Seattle, WA 98109, Ph: (206) 616-4972,
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Mass spectrometry is an ever evolving technology that is equipped with a variety of tools for protein research. Some lipoprotein studies, especially those pertaining to HDL biology, have been exploiting the versatility of mass spectrometry to understand HDL function through its proteome. Despite the role of mass spectrometry in advancing research as a whole, however, the technology remains obscure to those without hands on experience, but still wishing to understand it. In this review, we walk the reader through the coevolution of common mass spectrometry workflows and HDL research, starting from the basic unbiased mass spectrometry methods used to profile the HDL proteome to the most recent targeted methods that have enabled an unprecedented view of HDL metabolism. RECENT FINDINGS Unbiased global proteomics have demonstrated that the HDL proteome is organized into subgroups across the HDL size fractions providing further evidence that HDL functional heterogeneity is in part governed by its varying protein constituents. Parallel reaction monitoring, a novel targeted mass spectrometry method, was used to monitor the metabolism of HDL apolipoproteins in humans and revealed that apolipoproteins contained within the same HDL size fraction exhibit diverse metabolic properties. SUMMARY Mass spectrometry provides a variety of tools and strategies to facilitate understanding, through its proteins, the complex biology of HDL.
Collapse
Affiliation(s)
- Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
45
|
Bonomini M, Sirolli V, Pieroni L, Felaco P, Amoroso L, Urbani A. Proteomic Investigations into Hemodialysis Therapy. Int J Mol Sci 2015; 16:29508-21. [PMID: 26690416 PMCID: PMC4691132 DOI: 10.3390/ijms161226189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/26/2015] [Accepted: 12/02/2015] [Indexed: 01/07/2023] Open
Abstract
The retention of a number of solutes that may cause adverse biochemical/biological effects, called uremic toxins, characterizes uremic syndrome. Uremia therapy is based on renal replacement therapy, hemodialysis being the most commonly used modality. The membrane contained in the hemodialyzer represents the ultimate determinant of the success and quality of hemodialysis therapy. Membrane's performance can be evaluated in terms of removal efficiency for unwanted solutes and excess fluid, and minimization of negative interactions between the membrane material and blood components that define the membrane's bio(in)compatibility. Given the high concentration of plasma proteins and the complexity of structural functional relationships of this class of molecules, the performance of a membrane is highly influenced by its interaction with the plasma protein repertoire. Proteomic investigations have been increasingly applied to describe the protein uremic milieu, to compare the blood purification efficiency of different dialyzer membranes or different extracorporeal techniques, and to evaluate the adsorption of plasma proteins onto hemodialysis membranes. In this article, we aim to highlight investigations in the hemodialysis setting making use of recent developments in proteomic technologies. Examples are presented of why proteomics may be helpful to nephrology and may possibly affect future directions in renal research.
Collapse
Affiliation(s)
- Mario Bonomini
- Nephrology and Dialysis Institute, Department of Medicine, G. d'Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy.
| | - Vittorio Sirolli
- Nephrology and Dialysis Institute, Department of Medicine, G. d'Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy.
| | - Luisa Pieroni
- Proteomics and Metabonomics Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) S. Lucia Foundation, 00179 Rome, Italy.
- Department of Surgery and Experimental Medicine, Tor Vergata University, 00134 Rome, Italy.
| | - Paolo Felaco
- Nephrology and Dialysis Institute, Department of Medicine, G. d'Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy.
| | - Luigi Amoroso
- Nephrology and Dialysis Institute, Department of Medicine, G. d'Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy.
| | - Andrea Urbani
- Proteomics and Metabonomics Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) S. Lucia Foundation, 00179 Rome, Italy.
- Department of Surgery and Experimental Medicine, Tor Vergata University, 00134 Rome, Italy.
| |
Collapse
|