1
|
Fantinelli Franco F, Malik MH, Manjakkal L, Roshanghias A, Smith CJ, Gauchotte-Lindsay C. Optimizing Carbon Structures in Laser-Induced Graphene Electrodes Using Design of Experiments for Enhanced Electrochemical Sensing Characteristics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65489-65502. [PMID: 39539231 PMCID: PMC11615855 DOI: 10.1021/acsami.4c13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
In this study, we explored the morphological and electrochemical properties of carbon-based electrodes derived from laser-induced graphene (LIG) and compared them to commercially available graphene-sheet screen-printed electrodes (GS-SPEs). By optimizing the laser parameters (average laser power, speed, and focus) using a design of experiments response surface (DoE-RS) approach, binder-free LIG electrodes were achieved in a single-step process. Traditional trial-and-error methods can be time-consuming and may not capture the interactions between all variables effectively. To address this, we focused on linear resistance and substrate delamination to streamline the DoE-RS optimization process. Two LIGs, designated LIG A and LIG B, were fabricated using distinct and optimized laser settings, which resulted in a sheet resistance of 25 ± 2 Ω/sq and 21 ± 1 Ω/sq, respectively. These LIGs, characterized by scanning electron microscopy, Raman spectroscopy, and contact angle analysis, exhibited a highly porous morphology with 13% pore coverage and a contact angle <50°, which significantly increased their hydrophilicity when compared to the GS-SPE. For the electrochemical studies, the oxidation of NO2- ion by the graphene-based working electrodes was investigated, as it allowed for the direct comparison of the LIGs to the GS-SPE. These included cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulsed voltammetry studies, which revealed that LIG electrodes displayed a remarkable 500% increase in peak current during NO2- oxidation compared to the GS-SPE. The LIGs also demonstrated improved stability and sensitivity (420 ± 30 and 570 ± 10 nAμM-1 cm-2) compared to the GS-SPE (73 ± 4 nAμM-1 cm-2) in the oxidation of NO2- ions; however, LIG B was more susceptible to ionic interference than LIG A. These findings highlight the value of applying statistical approaches such as DoE-RS to systematically improve the LIG fabrication process, enabling the rapid production of optimized LIGs that outperform conventional carbon-based electrodes.
Collapse
Affiliation(s)
- Fabiane Fantinelli Franco
- Water
and Environment Group, Infrastructure and Environment Division, James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8LT, U.K.
| | | | - Libu Manjakkal
- School
of Computing and Engineering & the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, U.K.
| | - Ali Roshanghias
- Silicon
Austria Laboratories GmbH, Europastrasse 12, A-9524 Villach, Austria
| | - Cindy J. Smith
- Water
and Environment Group, Infrastructure and Environment Division, James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8LT, U.K.
| | - Caroline Gauchotte-Lindsay
- Water
and Environment Group, Infrastructure and Environment Division, James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8LT, U.K.
| |
Collapse
|
2
|
Javaid A, Hameed S, Li L, Zhang Z, Zhang B, -Rahman MU. Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development? Funct Integr Genomics 2024; 24:216. [PMID: 39549144 PMCID: PMC11569009 DOI: 10.1007/s10142-024-01485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.
Collapse
Affiliation(s)
- Arzish Javaid
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| | - Sadaf Hameed
- Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| | - Lijie Li
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Zhiyong Zhang
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | - Mehboob-Ur -Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan.
| |
Collapse
|
3
|
Krivačić S, Boček Ž, Zubak M, Kojić V, Kassal P. Flexible ammonium ion-selective electrode based on inkjet-printed graphene solid contact. Talanta 2024; 279:126614. [PMID: 39094532 DOI: 10.1016/j.talanta.2024.126614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Miniaturization and mass-production of potentiometric sensor systems is paving the way towards distributed environmental sensing, on-body measurements and industrial process monitoring. Inkjet printing is gaining popularity as a highly adaptable and scalable production technique. Presented here is a scalable and low-cost route for flexible solid-contact ammonium ion-selective electrode fabrication by inkjet printing. Utilization of inkjet-printed melamine-intercalated graphene nanosheets as the solid-contact material significantly improved charge transport, while evading the detrimental water-layer formation. External polarization was investigated as a means of improving the inter-electrode reproducibility: the standard deviations of E0 values were reduced after electrode polarization, the linear region of the response was extended to the range 10-1-10-6 M of NH4Cl and LODs reduced to 0.88 ± 0.17 μM. Finally, we have shown that the electrodes are adequate for measurements in a complex real sample: ammonium concentration was determined in landfill leachate water, with less than 4 % deviation from the reference method.
Collapse
Affiliation(s)
- Sara Krivačić
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Željka Boček
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Marko Zubak
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Vedran Kojić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia; HIS d.o.o., Donja Višnjica 61D, 42255, Donja Višnjica, Croatia
| | - Petar Kassal
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia.
| |
Collapse
|
4
|
Li Z, Huang L, Cheng L, Guo W, Ye R. Laser-Induced Graphene-Based Sensors in Health Monitoring: Progress, Sensing Mechanisms, and Applications. SMALL METHODS 2024; 8:e2400118. [PMID: 38597770 PMCID: PMC11579578 DOI: 10.1002/smtd.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
The rising global population and improved living standards have led to an alarming increase in non-communicable diseases, notably cardiovascular and chronic respiratory diseases, posing a severe threat to human health. Wearable sensing devices, utilizing micro-sensing technology for real-time monitoring, have emerged as promising tools for disease prevention. Among various sensing platforms, graphene-based sensors have shown exceptional performance in the field of micro-sensing. Laser-induced graphene (LIG) technology, a cost-effective and facile method for graphene preparation, has gained particular attention. By converting polymer films directly into patterned graphene materials at ambient temperature and pressure, LIG offers a convenient and environmentally friendly alternative to traditional methods, opening up innovative possibilities for electronic device fabrication. Integrating LIG-based sensors into health monitoring systems holds the potential to revolutionize health management. To commemorate the tenth anniversary of the discovery of LIG, this work provides a comprehensive overview of LIG's evolution and the progress of LIG-based sensors. Delving into the diverse sensing mechanisms of LIG-based sensors, recent research advances in the domain of health monitoring are explored. Furthermore, the opportunities and challenges associated with LIG-based sensors in health monitoring are briefly discussed.
Collapse
Affiliation(s)
- Zihao Li
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
| | - Libei Huang
- Division of Science, Engineering and Health StudySchool of Professional Education and Executive DevelopmentThe Hong Kong Polytechnic University (PolyU SPEED)KowloonHong Kong999077China
| | - Le Cheng
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
| | - Weihua Guo
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
| | - Ruquan Ye
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
| |
Collapse
|
5
|
Francis C, Rektor A, Valayil-Varghese T, McKibben N, Estrada I, Forbey J, Estrada D. Laser-induced graphene gas sensors for environmental monitoring. Front Chem 2024; 12:1448205. [PMID: 39544719 PMCID: PMC11560773 DOI: 10.3389/fchem.2024.1448205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
Artemesia tridentata is a foundational plant taxon in western North America and an important medicinal plant threatened by climate change. Low-cost fabrication of sensors is critical for developing large-area sensor networks for understanding and monitoring a range of environmental conditions. However, the availability of materials and manufacturing processes is still in the early stages, limiting the capacity to develop cost-effective sensors at a large scale. In this study, we demonstrate the fabrication of low-cost flexible sensors using laser-induced graphene (LIG); a graphitic material synthesized using a 450-nm wavelength bench top laser patterned onto polyimide substrates. We demonstrate the effect of the intensity and focus of the incident beam on the morphology and electrical properties of the synthesized material. Raman analyses of the synthesized LIG show a defect-rich graphene with a crystallite size in the tens of nanometers. This shows that the high level of disorder within the LIG structure, along with the porous nature of the material provide a good surface for gas adsorption. The initial characterization of the material has shown an analyte response represented by a change in resistance of up to 5% in the presence of volatile organic compounds (VOCs) that are emitted and detected by Artemisia species. Bend testing up to 100 cycles provides evidence that these sensors will remain resilient when deployed across the landscapes to assess VOC signaling in plant communities. The versatile low-cost laser writing technique highlights the promise of low-cost and scalable fabrication of LIG sensors for gas sensor monitoring.
Collapse
Affiliation(s)
- Cadré Francis
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Attila Rektor
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Tony Valayil-Varghese
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
- Department of Electrical and Computer and Engineering, Boise State University, Boise, ID, United States
| | - Nicholas McKibben
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Isaac Estrada
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Jennifer Forbey
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - David Estrada
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
- Center for Advanced Energy Studies, Boise State University, Boise, ID, United States
| |
Collapse
|
6
|
Xu K, Cai Z, Luo H, Lu Y, Ding C, Yang G, Wang L, Kuang C, Liu J, Yang H. Toward Integrated Multifunctional Laser-Induced Graphene-Based Skin-Like Flexible Sensor Systems. ACS NANO 2024; 18:26435-26476. [PMID: 39288275 DOI: 10.1021/acsnano.4c09062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The burgeoning demands for health care and human-machine interfaces call for the next generation of multifunctional integrated sensor systems with facile fabrication processes and reliable performances. Laser-induced graphene (LIG) with highly tunable physical and chemical characteristics plays vital roles in developing versatile skin-like flexible or stretchable sensor systems. This Progress Report presents an in-depth overview of the latest advances in LIG-based techniques in the applications of flexible sensors. First, the merits of the LIG technique are highlighted especially as the building blocks for flexible sensors, followed by the description of various fabrication methods of LIG and its variants. Then, the focus is moved to diverse LIG-based flexible sensors, including physical sensors, chemical sensors, and electrophysiological sensors. Mechanisms and advantages of LIG in these scenarios are described in detail. Furthermore, various representative paradigms of integrated LIG-based sensor systems are presented to show the capabilities of LIG technique for multipurpose applications. The signal cross-talk issues are discussed with possible strategies. The LIG technology with versatile functionalities coupled with other fabrication strategies will enable high-performance integrated sensor systems for next-generation skin electronics.
Collapse
Affiliation(s)
- Kaichen Xu
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zimo Cai
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Huayu Luo
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyao Lu
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenliang Ding
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Geng Yang
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Cuifang Kuang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jingquan Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Huayong Yang
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
7
|
Bene C, Laborde A, Légnani M, Flahaut E, Launay J, Temple-Boyer P. Study of Ion-to-Electron Transducing Layers for the Detection of Nitrate Ions Using FPSX(TDDAN)-Based Ion-Sensitive Electrodes. SENSORS (BASEL, SWITZERLAND) 2024; 24:5994. [PMID: 39338739 PMCID: PMC11435922 DOI: 10.3390/s24185994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
The development of ISE-based sensors for the analysis of nitrates in liquid phase is described in this work. Focusing on the tetradodecylammonium nitrate (TDDAN) ion exchanger as well as on fluoropolysiloxane (FPSX) polymer-based layers, electrodeposited matrixes containing double-walled carbon nanotubes (DWCNTs), embedded in either polyethylenedioxythiophene (PEDOT) or polypyrrole (PPy) polymers, ensured improved ion-to-electron transducing layers for NO3- detection. Thus, FPSX-based pNO3-ElecCell microsensors exhibited good detection properties (sensitivity up to 55 mV/pX for NO3 values ranging from 1 to 5) and acceptable selectivity in the presence of the main interferent anions (Cl-, HCO3-, and SO42-). Focusing on the temporal drift bottleneck, mixed results were obtained. On the one hand, relatively stable measurements and low temporal drifts (~1.5 mV/day) were evidenced on several days. On the other hand, the pNO3 sensor properties were degraded in the long term, being finally characterized by high response times, low detection sensitivities, and important measurement instabilities. These phenomena were related to the formation of some thin water-based layers at the polymer-metal interface, as well as the physicochemical properties of the TDDAN ion exchanger in the FPSX matrix. However, the improvements obtained thanks to DWCNT-based ion-to-electron transducing layers pave the way for the long-term analysis of NO3- ions in real water-based solutions.
Collapse
Affiliation(s)
- Camille Bene
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France; (C.B.); (A.L.); (J.L.)
- INSAT, UT3-PS, INP, University of Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
| | - Adrian Laborde
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France; (C.B.); (A.L.); (J.L.)
- INSAT, UT3-PS, INP, University of Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
| | - Morgan Légnani
- Toulouse INP, CNRS, CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (M.L.); (E.F.)
| | - Emmanuel Flahaut
- Toulouse INP, CNRS, CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (M.L.); (E.F.)
| | - Jérôme Launay
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France; (C.B.); (A.L.); (J.L.)
- INSAT, UT3-PS, INP, University of Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
| | - Pierre Temple-Boyer
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France; (C.B.); (A.L.); (J.L.)
- INSAT, UT3-PS, INP, University of Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
| |
Collapse
|
8
|
Ali MS, Ali MS, Mallick S, Bhandari S, Ali MI, Hazra S, Roy B, Chattopadhyay S, Karmakar S, Chattopadhyay D. Dual parameter smart sensor for nitrogen and temperature sensing based on defect-engineered 1T-MoS 2. Sci Rep 2024; 14:21469. [PMID: 39277591 PMCID: PMC11401939 DOI: 10.1038/s41598-024-72632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
In general, defects are crucial in designing the different properties of two-dimensional materials. Therefore large variations in the electric and optical characteristics of two-dimensional layered molybdenum disulphide might be attributed to defects. This study presents the design of a temperature and nitrogen sensor based on few-layer molybdenum disulfide sheets (FLMS), which was developed from bulk MoS2 (BMS) through an exfoliation approach. The produced sulfur defect, molybdenum defect, line defect, and plane defect were characterized by scanning transmission electron microscopy (STEM), which substantially impacts the sensing characteristics of the resulting FLMS. Our theoretical analysis validates that the sulfur vacancies of the MoS2 lattice improve sensing performance by promoting effective charge transfer and surface interactions with target analytes. The FLMS-based sensor showed a high sensitivity for detecting nitrogen gas with a detection limit (LOD) of ~ 0.18 ppm. Additionally, temperature-detecting capabilities were assessed over various temperatures, showing outstanding stability and repeatability. To the best of our knowledge, this material is the first of its kind, demonstrating visible N2 gas sensing with chromic behaviour.
Collapse
Affiliation(s)
- Mir Sahanur Ali
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, 700106, India
- Department of Polymer Science and Technology, University of Calcutta, Kolkata, West Bengal, 700009, India
| | - Mir Sahidul Ali
- Department of Polymer Science and Technology, University of Calcutta, Kolkata, West Bengal, 700009, India
| | - Subhasish Mallick
- The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Shubhranshu Bhandari
- Environment and Sustainability Institute (ESI), University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK.
| | - Mir Intaj Ali
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Subhenjit Hazra
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Bodhishatwa Roy
- Department of Electronic Science, University of Calcutta, Kolkata, West Bengal, 700009, India
| | - Sanatan Chattopadhyay
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, 700106, India
- Department of Electronic Science, University of Calcutta, Kolkata, West Bengal, 700009, India
| | - Srikanta Karmakar
- Department of Polymer Science and Technology, University of Calcutta, Kolkata, West Bengal, 700009, India.
| | - Dipankar Chattopadhyay
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, 700106, India.
- Department of Polymer Science and Technology, University of Calcutta, Kolkata, West Bengal, 700009, India.
| |
Collapse
|
9
|
Sonwal S, Gupta VK, Shukla S, Umapathi R, Ghoreishian SM, Han S, Bajpai VK, Cho Y, Huh YS. Panoramic view of artificial fruit ripening agents sensing technologies and the exigency of developing smart, rapid, and portable detection devices: A review. Adv Colloid Interface Sci 2024; 331:103199. [PMID: 38909548 DOI: 10.1016/j.cis.2024.103199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024]
Abstract
Recently, the availability of point-of-care sensor systems has led to the rapid development of smart and portable devices for the detection of hazardous analytes. The rapid flow of artificially ripened fruits into the market is associated with an elevated risk to human life, agriculture, and the ecosystem due to the use of artificial fruit ripening agents (AFRAs). Accordingly, there is a need for the development of "Point-of-care Sensors" to detect AFRAs due to several advantages, such as simple operation, promising detection mechanism, higher selectivity and sensitivity, compact, and portable. Traditional detection approaches are time-consuming and inappropriate for on-the-spot analyses. Presented comprehensive review aimed to reveal how such technology has systematically evolved over time (through conventional, advanced, and portable smart techniques) detection detect AFRA, till date. Moreover, focuses and highlights a framework of initiatives undertaken for technological advancements in the development of smart the portable detection techniques (kits) for the onsite detection of AFRAs in fruits with in-depth discussion over sensing mechanism and analytical performance of the sensing technology. Notably, colorimetric detection methods have the greatest potential for real-time monitoring of AFRA and its residues because they are easy to assemble, have a high level of selectivity and sensitivity, and can be read by the human eye independently. This study sought to differentiate between traditional credible strategies by presenting new prospects, perceptions, and challenges related to portable devices. This review provides systematic framework of advances in portable field recognition strategies for the on-spot AFRA detection in fruits and critical information for development of new paper-based portable sensors for fruit diagnostic sectors.
Collapse
Affiliation(s)
- Sonam Sonwal
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Shruti Shukla
- Department of Nanotechnology, North-Eastern Hill University (NEHU), East Khasi Hills, Shillong, Meghalaya 793022, India
| | - Reddicherla Umapathi
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | | | - Soobin Han
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Vivek Kumar Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Youngjin Cho
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
10
|
Eldeeb M, Dhamu VN, Paul A, Alam FM, Burgos EN, Muthukumar S, Prasad S. ASSERT: A Platform Technology for Rapid Electrochemical Sensing of Soil Ammonium. ACS OMEGA 2024; 9:33928-33934. [PMID: 39130543 PMCID: PMC11308469 DOI: 10.1021/acsomega.4c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
The world is facing a food shortage predicament largely fueled by inefficient, outdated farming conventions that are passed down from generation to generation. Overfertilization is one of the major byproducts of inadequate farming techniques. This leads to an imbalance in the soil ecosystem, affecting carbon sequestration, plant-available nutrients, and microorganisms. Sustainable agriculture, on the other hand, efficiently uses the soil with minimal fertilizer and crop rotation to prevent soil erosion. This method requires real-time information on the soil's health. An electrochemical ion-selective electrode (ISE) is presented to measure soil ammonium in situ. The sensor utilized electrochemical impedance spectroscopy for direct, continuous soil ammonium measurement without any soil pretreatment. The ISE is applied by drop-casting onto the working electrode. The sensor response was calibrated against the three main different soil textures (clay, sandy loam, and loamy clay) to cover the entirety of the soil texture triangle. The linear regression models showed an ammonium-dependent response with Pearson r > 0.991 for the various soil textures in the range of 2-32 ppm. The sensor response was validated against the gold standard spectrophotometric method after KCl extraction showed a less than 20% error rate between the measured ammonium and reference ammonium. A 16 day in situ soil study showed the capability of the sensor to measure soil ammonium in a temporally dynamic manner with a coefficient of variance of 11%, showing robust stability for in situ monitoring.
Collapse
Affiliation(s)
- Mohammed
A Eldeeb
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - Vikram Narayanan Dhamu
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - Anirban Paul
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - Firas Maqsood Alam
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - E. Natalie Burgos
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | | | - Shalini Prasad
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
11
|
Sephra PJ, Chandrapagasam T, Sachdev A, Esakkimuthu M. Bifunctional properties of Ag/α-Fe 2O 3/rGO nanocomposite for supercapacitor and electrochemical nitrate sensing using tetradodecyl ammonium nitrate as ion-selective membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52886-52904. [PMID: 39167143 DOI: 10.1007/s11356-024-34703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Noble metal nanoparticles incorporated in hybrid nanocomposites are considered as promising candidates for electrochemical applications owing to their physicochemical properties. In this work, we demonstrated the preparation of Fe2O3/rGO nanocomposite by hydrothermal method, followed by in situ Ag binding synthesis for the fabrication of hybrid nanocomposite (Ag/α-Fe2O3/rGO). The crystallographic structure of the hybrid nanocomposite is examined by X-ray diffraction (XRD) analysis which confirms the characteristics of Ag, Fe2O3, and rGO. The microscopic studies and energy-dispersive X-ray analysis (EDS) spectra confirmed the presence and formation of hybrid nanostructures. Raman analysis results further corroborate the formation of composite with significant D and G bands in Fe2O3/rGO and Ag/α-Fe2O3/rGO samples, which follow XRD results. Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) studies were carried out to analyze the faradaic capacitor behavior. A specific capacitance of 209.09 F/g was observed by GCD studies for Ag/α-Fe2O3/rGO composites at a current density of 1 A/g, which exhibited good capacitance retention of 94% for 5000 cycles at 7 A/g. Furthermore, the Ag/α-Fe2O3/rGO electrode was used for the electrochemical detection of nitrate ions in soil by utilizing an ion-selective membrane over the surface of the Ag/α-Fe2O3/rGO electrode. The fabricated nanocomposite electrode showed a significant change in the peak current values with the concentration of nitrate in a linear range from 10 to 450 μM with the sensitivity to be calculated 1.426 μA μM-1 cm-2 and limit of detection (LOD) calculated to be 0.18 μM. The reproducibility and interference studies showed a promising result to be utilized for detecting nitrate ions in soil and in real-time applications.
Collapse
Affiliation(s)
- Percy J Sephra
- Department of Electronics and Communication Engineering, B. S. Abdur Rahman Crescent Institute of Science & Technology, Chennai, 600048, India
| | - Tharini Chandrapagasam
- Department of Electronics and Communication Engineering, B. S. Abdur Rahman Crescent Institute of Science & Technology, Chennai, 600048, India.
| | - Abhay Sachdev
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India
| | - Manikandan Esakkimuthu
- Centre for Innovation and Product Development, Vellore Institute of Technology (Chennai Campus), Chennai, 600127, India
| |
Collapse
|
12
|
Albuquerque JRDP, Makara CN, Ferreira VG, Brazaca LC, Carrilho E. Low-cost precision agriculture for sustainable farming using paper-based analytical devices. RSC Adv 2024; 14:23392-23403. [PMID: 39055267 PMCID: PMC11270003 DOI: 10.1039/d4ra02310b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
The United Nations estimates that by 2030, agricultural production must increase by 70% to meet food demand. Precision agriculture (PA) optimizes production through efficient resource use, with soil fertility being crucial for nutrient supply. Traditional nutrient quantification methods are costly and time-consuming. This study introduces a rapid (15 min), user-friendly, paper-based platform for determining four essential macronutrients-nitrate, magnesium, calcium, and ammonium-using colorimetric methods and a smartphone for data reading and storage. The sensor effectively detects typical soil nutrient concentrations, showing strong linearity and adequate detection limits. For nitrate, the RGB method resulted in an R 2 of 0.992, a detection range of 0.5 to 10.0 mmol L-1, and an LOD of 0.299 mmol L-1. Calcium quantification using grayscale displayed an R 2 of 0.993, a detection range of 2.0 to 6.0 mmol L-1, and an LOD of 0.595 mmol L-1. Magnesium was best quantified using the hue color space, with an R 2 of 0.999, a detection range of 1.0 to 6.0 mmol L-1, and an LOD of 0.144 mmol L-1. Similarly, ammonium detection using the hue color space had an R 2 of 0.988, a range of 0.5 to 2.5 mmol L-1, and an LOD of 0.170 mmol L-1. This device enhances soil fertility assessment accessibility, supporting PA implementation and higher food production.
Collapse
Affiliation(s)
- Jéssica Rodrigues de Paula Albuquerque
- Instituto de Química de São Carlos, Universidade de São Paulo 400, Trabalhador São-carlense Ave. São Carlos SP 13566-590 Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio Campinas SP 13083-970 Brazil
| | - Cleyton Nascimento Makara
- Instituto de Química de São Carlos, Universidade de São Paulo 400, Trabalhador São-carlense Ave. São Carlos SP 13566-590 Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio Campinas SP 13083-970 Brazil
| | - Vinícius Guimarães Ferreira
- Instituto de Química de São Carlos, Universidade de São Paulo 400, Trabalhador São-carlense Ave. São Carlos SP 13566-590 Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio Campinas SP 13083-970 Brazil
| | - Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo 400, Trabalhador São-carlense Ave. São Carlos SP 13566-590 Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo 400, Trabalhador São-carlense Ave. São Carlos SP 13566-590 Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio Campinas SP 13083-970 Brazil
| |
Collapse
|
13
|
Tang Y, Moreira GA, Vanegas D, Datta SPA, McLamore ES. Batch-to-Batch Variation in Laser-Inscribed Graphene (LIG) Electrodes for Electrochemical Sensing. MICROMACHINES 2024; 15:874. [PMID: 39064384 PMCID: PMC11279040 DOI: 10.3390/mi15070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Laser-inscribed graphene (LIG) is an emerging material for micro-electronic applications and is being used to develop supercapacitors, soft actuators, triboelectric generators, and sensors. The fabrication technique is simple, yet the batch-to-batch variation of LIG quality is not well documented in the literature. In this study, we conduct experiments to characterize batch-to-batch variation in the manufacturing of LIG electrodes for applications in electrochemical sensing. Numerous batches of 36 LIG electrodes were synthesized using a CO2 laser system on polyimide film. The LIG material was characterized using goniometry, stereomicroscopy, open circuit potentiometry, and cyclic voltammetry. Hydrophobicity and electrochemical screening (cyclic voltammetry) indicate that LIG electrode batch-to-batch variation is less than 5% when using a commercial reference and counter electrode. Metallization of LIG led to a significant increase in peak current and specific capacitance (area between anodic/cathodic curve). However, batch-to-batch variation increased to approximately 30%. Two different platinum electrodeposition techniques were studied, including galvanostatic and frequency-modulated electrodeposition. The study shows that formation of metallized LIG electrodes with high specific capacitance and peak current may come at the expense of high batch variability. This design tradeoff has not been discussed in the literature and is an important consideration if scaling sensor designs for mass use is desired. This study provides important insight into the variation of LIG material properties for scalable development of LIG sensors. Additional studies are needed to understand the underlying mechanism(s) of this variability so that strategies to improve the repeatability may be developed for improving quality control. The dataset from this study is available via an open access repository.
Collapse
Affiliation(s)
- Yifan Tang
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Geisianny A. Moreira
- Department of Agricultural Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Diana Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Shoumen P. A. Datta
- Department of Mechanical Engineering, MIT Auto-ID Labs, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- Biomedical Engineering Program, Medical Device (MDPnP) Interoperability and Cybersecurity Labs, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Eric S. McLamore
- Department of Agricultural Sciences, Clemson University, Clemson, SC 29631, USA;
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
14
|
Yan B, Zhang F, Wang M, Zhang Y, Fu S. Flexible wearable sensors for crop monitoring: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1406074. [PMID: 38867881 PMCID: PMC11167128 DOI: 10.3389/fpls.2024.1406074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Crops were the main source of human food, which have met the increasingly diversified demand of consumers. Sensors were used to monitor crop phenotypes and environmental information in real time, which will provide a theoretical reference for optimizing crop growth environment, resisting biotic and abiotic stresses, and improve crop yield. Compared with non-contact monitoring methods such as optical imaging and remote sensing, wearable sensing technology had higher time and spatial resolution. However, the existing crop sensors were mainly rigid mechanical structures, which were easy to cause damage to crop organs, and there were still challenges in terms of accuracy and biosafety. Emerging flexible sensors had attracted wide attention in the field of crop phenotype monitoring due to their excellent mechanical properties and biocompatibility. The article introduced the key technologies involved in the preparation of flexible wearable sensors from the aspects of flexible preparation materials and advanced preparation processes. The monitoring function of flexible sensors in crop growth was highlighted, including the monitoring of crop nutrient, physiological, ecological and growth environment information. The monitoring principle, performance together with pros and cons of each sensor were analyzed. Furthermore, the future opportunities and challenges of flexible wearable devices in crop monitoring were discussed in detail from the aspects of new sensing theory, sensing materials, sensing structures, wireless power supply technology and agricultural sensor network, which will provide reference for smart agricultural management system based on crop flexible sensors, and realize efficient management of agricultural production and resources.
Collapse
Affiliation(s)
- Baoping Yan
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| | - Fu Zhang
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| | - Mengyao Wang
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yakun Zhang
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| | - Sanling Fu
- College of Physical Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
15
|
Chen KY, Kachhadiya J, Muhtasim S, Cai S, Huang J, Andrews J. Underground Ink: Printed Electronics Enabling Electrochemical Sensing in Soil. MICROMACHINES 2024; 15:625. [PMID: 38793198 PMCID: PMC11123188 DOI: 10.3390/mi15050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Improving agricultural production relies on the decisions and actions of farmers and land managers, highlighting the importance of efficient soil monitoring techniques for better resource management and reduced environmental impacts. Despite considerable advancements in soil sensors, their traditional bulky counterparts cause difficulty in widespread adoption and large-scale deployment. Printed electronics emerge as a promising technology, offering flexibility in device design, cost-effectiveness for mass production, and a compact footprint suitable for versatile deployment platforms. This review overviews how printed sensors are used in monitoring soil parameters through electrochemical sensing mechanisms, enabling direct measurement of nutrients, moisture content, pH value, and others. Notably, printed sensors address scalability and cost concerns in fabrication, making them suitable for deployment across large crop fields. Additionally, seamlessly integrating printed sensors with printed antenna units or traditional integrated circuits can facilitate comprehensive functionality for real-time data collection and communication. This real-time information empowers informed decision-making, optimizes resource management, and enhances crop yield. This review aims to provide a comprehensive overview of recent work related to printed electrochemical soil sensors, ultimately providing insight into future research directions that can enable widespread adoption of precision agriculture technologies.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
| | - Jeneel Kachhadiya
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
| | - Sharar Muhtasim
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
| | - Shuohao Cai
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.C.); (J.H.)
| | - Jingyi Huang
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.C.); (J.H.)
| | - Joseph Andrews
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
16
|
Qian H, Moreira G, Vanegas D, Tang Y, Pola C, Gomes C, McLamore E, Bliznyuk N. Improving high throughput manufacture of laser-inscribed graphene electrodes via hierarchical clustering. Sci Rep 2024; 14:7980. [PMID: 38575717 PMCID: PMC10995179 DOI: 10.1038/s41598-024-57932-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
Laser-inscribed graphene (LIG), initially developed for graphene supercapacitors, has found widespread use in sensor research and development, particularly as a platform for low-cost electrochemical sensing. However, batch-to-batch variation in LIG fabrication introduces uncertainty that cannot be adequately tracked during manufacturing process, limiting scalability. Therefore, there is an urgent need for robust quality control (QC) methodologies to identify and select similar and functional LIG electrodes for sensor fabrication. For the first time, we have developed a statistical workflow and an open-source hierarchical clustering tool for QC analysis in LIG electrode fabrication. The QC process was challenged with multi-operator cyclic voltammetry (CV) data for bare and metalized LIG. As a proof of concept, we employed the developed QC process for laboratory-scale manufacturing of LIG-based biosensors. The study demonstrates that our QC process can rapidly identify similar LIG electrodes from large batches (n ≥ 36) of electrodes, leading to a reduction in biosensor measurement variation by approximately 13% compared to the control group without QC. The statistical workflow and open-source code presented here provide a versatile toolkit for clustering analysis, opening a pathway toward scalable manufacturing of LIG electrodes in sensing. In addition, we establish a data repository for further study of LIG variation.
Collapse
Affiliation(s)
- Hanyu Qian
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Geisianny Moreira
- Department of Agricultural Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Diana Vanegas
- Environmental Engineering and Earth Sciences Department of Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Yifan Tang
- Department of Plant and Environmental Science, Clemson University, Clemson, SC, 29634, USA
| | - Cicero Pola
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Carmen Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Eric McLamore
- Department of Agricultural Sciences, Clemson University, Clemson, SC, 29634, USA.
- Environmental Engineering and Earth Sciences Department of Engineering, Clemson University, Clemson, SC, 29634, USA.
| | - Nikolay Bliznyuk
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
- Departments of Statistics, Biostatistics and Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
17
|
Vićentić T, Greco I, Iorio CS, Mišković V, Bajuk-Bogdanović D, Pašti IA, Radulović K, Klenk S, Stimpel-Lindner T, Duesberg GS, Spasenović M. Laser-induced graphene on cross-linked sodium alginate. NANOTECHNOLOGY 2023; 35:115103. [PMID: 38081076 DOI: 10.1088/1361-6528/ad143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/10/2023] [Indexed: 12/30/2023]
Abstract
Laser-induced graphene (LIG) possesses desirable properties for numerous applications. However, LIG formation on biocompatible substrates is needed to further augment the integration of LIG-based technologies into nanobiotechnology. Here, LIG formation on cross-linked sodium alginate is reported. The LIG is systematically investigated, providing a comprehensive understanding of the physicochemical characteristics of the material. Raman spectroscopy, scanning electron microscopy with energy-dispersive x-ray analysis, x-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectroscopy and x-ray photoelectron spectroscopy techniques confirm the successful generation of oxidized graphene on the surface of cross-linked sodium alginate. The influence of laser parameters and the amount of crosslinker incorporated into the alginate substrate is explored, revealing that lower laser speed, higher resolution, and increased CaCl2content leads to LIG with lower electrical resistance. These findings could have significant implications for the fabrication of LIG on alginate with tailored conductive properties, but they could also play a guiding role for LIG formation on other biocompatible substrates.
Collapse
Affiliation(s)
- T Vićentić
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - I Greco
- Center for Research and Engineering in Space Technologies (CREST), Universite Libre de Bruxelles, Bruxelles, Belgium
| | - C S Iorio
- Center for Research and Engineering in Space Technologies (CREST), Universite Libre de Bruxelles, Bruxelles, Belgium
| | - V Mišković
- Nearlab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy
| | | | - I A Pašti
- University of Belgrade-Faculty of Physical Chemistry Belgrade, Serbia
| | - K Radulović
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - S Klenk
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & SENS Research Center, Neubiberg, Germany
| | - T Stimpel-Lindner
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & SENS Research Center, Neubiberg, Germany
| | - G S Duesberg
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & SENS Research Center, Neubiberg, Germany
| | - M Spasenović
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Yang J, Ding A, Zhou JL, Yan BY, Gu Z, Wang HF. A Floating Capsule Electrochemical System for In Situ and Multichannel Ion-Selective Sensing. BIOSENSORS 2023; 13:914. [PMID: 37887107 PMCID: PMC10605769 DOI: 10.3390/bios13100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Free-floating electrochemical sensors are promising for in situ bioprocess monitoring with the advantages of movability, a lowered risk of contamination, and a simplified structure of the bioreactor. Although floating sensors were developed for the measurement of physical and chemical indicators such as temperature, velocity of flow, pH, and dissolved oxygen, it is the lack of available electrochemical sensors for the determination of the inorganic ions in bioreactors that has a significant influence on cell culture. In this study, a capsule-shaped electrochemical system (iCapsuleEC) is developed to monitor ions including K+, NH4+, Na+, Ca2+, and Mg2+ based on solid-contact ion-selective electrodes (SC-ISEs). It consists of a disposable electrochemical sensor and signal-processing device with features including multichannel measurement, self-calibration, and wireless data transmission. The capacities of the iCapsuleEC were demonstrated not only for in situ measurement of ion concentrations but also for the optimization of the sensing electrodes. We also explored the possibility of the system for use in detection in simulated cell culture media.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ao Ding
- Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jia-Le Zhou
- Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Bing-Yong Yan
- Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Gu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Hui-Feng Wang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Dallinger A, Steinwender F, Gritzner M, Greco F. Different Roles of Surface Chemistry and Roughness of Laser-Induced Graphene: Implications for Tunable Wettability. ACS APPLIED NANO MATERIALS 2023; 6:16201-16211. [PMID: 37772265 PMCID: PMC10526650 DOI: 10.1021/acsanm.3c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 09/30/2023]
Abstract
The control of surface wettability is a technological key aspect and usually poses considerable challenges connected to high cost, nanostructure, and durability, especially when aiming at surface patterning with high and extreme wettability contrast. This work shows a simple and scalable approach by using laser-induced graphene (LIG) and a locally inert atmosphere to continuously tune the wettability of a polyimide/LIG surface from hydrophilic to superhydrophobic (Φ ∼ 160°). This is related to the reduced amount of oxygen on the LIG surface, influenced by the local atmosphere. Furthermore, the influence of the roughness pattern of LIG on the wettability is investigated. Both approaches are combined, and the influence of surface chemistry and roughness is discussed. Measurements of the roll-off angle show that LIG scribed in an inert atmosphere with a low roughness has the highest droplet mobility with a roll-off angle of ΦRO = (1.7 ± 0.3)°. The superhydrophobic properties of the samples were maintained for over a year and showed no degradation after multiple uses. Applications of surfaces with extreme wettability contrast in millifluidics and fog basking are demonstrated. Overall, the proposed processing allows for the continuous tuning and patterning of the surface properties of LIG in a very accessible fashion useful for "lab-on-chip" applications.
Collapse
Affiliation(s)
- Alexander Dallinger
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, 8010 Graz, Austria
| | - Felix Steinwender
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, 8010 Graz, Austria
| | - Matthias Gritzner
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, 8010 Graz, Austria
| | - Francesco Greco
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, 8010 Graz, Austria
- The
Biorobotics Institute, Scuola Superiore
Sant’Anna, Viale
R. Piaggio 34, 56025 Pontedera, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Interdisciplinary
Center on Sustainability and Climate, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
20
|
Garland NT, Schmieder J, Johnson ZT, Hjort RG, Chen B, Andersen C, Sanborn D, Kjeldgaard G, Pola CC, Li J, Gomes C, Smith EA, Angus H, Meyer J, Claussen JC. Wearable Flexible Perspiration Biosensors Using Laser-Induced Graphene and Polymeric Tape Microfluidics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38201-38213. [PMID: 37526921 DOI: 10.1021/acsami.3c04665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Wearable biosensors promise real-time measurements of chemicals in human sweat, with the potential for dramatic improvements in medical diagnostics and athletic performance through continuous metabolite and electrolyte monitoring. However, sweat sensing is still in its infancy, and questions remain about whether sweat can be used for medical purposes. Wearable sensors are focused on proof-of-concept designs that are not scalable for multisubject trials, which could elucidate the utility of sweat sensing for health monitoring. Moreover, many wearable sensors do not include the microfluidics necessary to protect and channel consistent and clean sweat volumes to the sensor surface or are not designed to be disposable to prevent sensor biofouling and inaccuracies due to repeated use. Hence, there is a need to produce low-cost and single-use wearable sensors with integrated microfluidics to ensure reliable sweat sensing. Herein, we demonstrate the convergence of laser-induced graphene (LIG) based sensors with soft tape polymeric microfluidics to quantify both sweat metabolites (glucose and lactate) and electrolytes (sodium) for potential hydration and fatigue monitoring. Distinct LIG-electrodes were functionalized with glucose oxidase and lactate oxidase for selective sensing of glucose and lactate across physiological ranges found in sweat with sensitivities of 26.2 and 2.47 × 10-3 μA mM-1 cm-2, detection limits of 8 and 220 μM, and linear response ranges of 0-1 mM and 0-32 mM, respectively. LIG-electrodes functionalized with a sodium-ion-selective membrane displayed Nernstian sensitivity of 58.8 mV decade-1 and a linear response over the physiological range in sweat (10-100 mM). The sensors were tested in a simulated sweating skin microfluidic system and on-body during cycling tests in a multisubject trial. Results demonstrate the utility of LIG integrated with microfluidics for real-time, continuous measurements of biological analytes in sweat and help pave the way for the development of personalized wearable diagnostic tools.
Collapse
Affiliation(s)
- Nate T Garland
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jacob Schmieder
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Zachary T Johnson
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Robert G Hjort
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Bolin Chen
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Cole Andersen
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Delaney Sanborn
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Gabriel Kjeldgaard
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Cicero C Pola
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jingzhe Li
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Carmen Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Emily A Smith
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Hector Angus
- Department of Kinesiology, Iowa State University, Ames, Iowa 50011, United States
| | - Jacob Meyer
- Department of Kinesiology, Iowa State University, Ames, Iowa 50011, United States
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
21
|
Lau KY, Qiu J. Broad applications of sensors based on laser-scribed graphene. LIGHT, SCIENCE & APPLICATIONS 2023; 12:168. [PMID: 37407560 DOI: 10.1038/s41377-023-01210-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Sensors based on graphene materials have promising applications in the fields of biology, medicine and environment etc. A laser-scribed graphene provides a versatile, low-cost, and environmental friendly method for stress, bio, gas, temperature, humidity and multifunctional integrated sensors.
Collapse
Affiliation(s)
- Kuen Yao Lau
- Institute of Light+X Science and Technology, Faculty of Electrical Engineering and Computer Science, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jianrong Qiu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
22
|
Yadav A, Yadav K, Ahmad R, Abd-Elsalam KA. Emerging Frontiers in Nanotechnology for Precision Agriculture: Advancements, Hurdles and Prospects. AGROCHEMICALS 2023; 2:220-256. [DOI: 10.3390/agrochemicals2020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This review article provides an extensive overview of the emerging frontiers of nanotechnology in precision agriculture, highlighting recent advancements, hurdles, and prospects. The benefits of nanotechnology in this field include the development of advanced nanomaterials for enhanced seed germination and micronutrient supply, along with the alleviation of biotic and abiotic stress. Further, nanotechnology-based fertilizers and pesticides can be delivered in lower dosages, which reduces environmental impacts and human health hazards. Another significant advantage lies in introducing cutting-edge nanodiagnostic systems and nanobiosensors that monitor soil quality parameters, plant diseases, and stress, all of which are critical for precision agriculture. Additionally, this technology has demonstrated potential in reducing agro-waste, synthesizing high-value products, and using methods and devices for tagging, monitoring, and tracking agroproducts. Alongside these developments, cloud computing and smartphone-based biosensors have emerged as crucial data collection and analysis tools. Finally, this review delves into the economic, legal, social, and risk implications of nanotechnology in agriculture, which must be thoroughly examined for the technology’s widespread adoption.
Collapse
Affiliation(s)
- Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, District Banaskantha, Gujarat 385506, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Rumana Ahmad
- Department of Biochemistry, Era University, Lucknow 226003, India
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
23
|
Wanjari VP, Reddy AS, Duttagupta SP, Singh SP. Laser-induced graphene-based electrochemical biosensors for environmental applications: a perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42643-42657. [PMID: 35622288 DOI: 10.1007/s11356-022-21035-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Biosensors are miniaturized devices that provide the advantage of in situ and point-of-care monitoring of analytes of interest. Electrochemical biosensors use the mechanism of oxidation-reduction reactions and measurement of corresponding electron transfer as changes in current, voltage, or other parameters using different electrochemical techniques. The use of electrochemically active materials is critical for the effective functioning of electrochemical biosensors. Laser-induced graphene (LIG) has garnered increasing interest in biosensor development and improvement due to its high electrical conductivity, specific surface area, and simple and scalable fabrication process. The effort of this perspective is to understand the existing classes of analytes and the mechanisms of their detection using LIG-based biosensors. The manuscript has highlighted the potential use of LIG, its modifications, and its use with various receptors for sensing various environmental pollutants. Although the conventional graphene-based sensors effectively detect trace levels for many analytes in different applications, the chemical and energy-intensive fabrication and time-consuming processes make it imperative to explore a low-cost and scalable option such as LIG for biosensors production. The focus of these potential biosensors has been kept on detection analytes of environmental significance such as heavy metals ions, organic and inorganic compounds, fertilizers, pesticides, pathogens, and antibiotics. The use of LIG directly as an electrode, its modifications with nanomaterials and polymers, and its combination with bioreceptors such as aptamers and polymers has been summarized. The strengths, weaknesses, opportunities, and threats analysis has also been done to understand the viability of incorporating LIG-based electrochemical biosensors for environmental applications.
Collapse
Affiliation(s)
- Vikram P Wanjari
- Centre for Research in Nanotechnology and Science, IIT Bombay, Mumbai, India
| | - A Sudharshan Reddy
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, India
| | - Siddhartha P Duttagupta
- Centre for Research in Nanotechnology and Science, IIT Bombay, Mumbai, India
- Department of Electrical Engineering, IIT Bombay, Mumbai, India
| | - Swatantra P Singh
- Centre for Research in Nanotechnology and Science, IIT Bombay, Mumbai, India.
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, India.
- Interdisciplinary Program in Climate Studies, IIT Bombay, Mumbai, India.
| |
Collapse
|
24
|
Khan MA, Ramzan F, Ali M, Zubair M, Mehmood MQ, Massoud Y. Emerging Two-Dimensional Materials-Based Electrochemical Sensors for Human Health and Environment Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040780. [PMID: 36839148 PMCID: PMC9964193 DOI: 10.3390/nano13040780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 05/27/2023]
Abstract
Two-dimensional materials (2DMs) have been vastly studied for various electrochemical sensors. Among these, the sensors that are directly related to human life and health are extremely important. Owing to their exclusive properties, 2DMs are vastly studied for electrochemical sensing. Here we have provided a selective overview of 2DMs-based electrochemical sensors that directly affect human life and health. We have explored graphene and its derivatives, transition metal dichalcogenide and MXenes-based electrochemical sensors for applications such as glucose detection in human blood, detection of nitrates and nitrites, and sensing of pesticides. We believe that the areas discussed here are extremely important and we have summarized the prominent reports on these significant areas together. We believe that our work will be able to provide guidelines for the evolution of electrochemical sensors in the future.
Collapse
|
25
|
Fozia, Zhao G, Nie Y, Jiang J, Chen Q, Wang C, Xu X, Ying M, Hu Z, Xu H. Preparation of Nitrate Bilayer Membrane Ion-Selective Electrode Modified by Pericarpium Granati-Derived Biochar and Its Application in Practical Samples. Electrocatalysis (N Y) 2023. [DOI: 10.1007/s12678-023-00812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
26
|
Soares RRA, Hjort RG, Pola CC, Jing D, Cecon VS, Claussen JC, Gomes CL. Ion-selective electrodes based on laser-induced graphene as an alternative method for nitrite monitoring. Mikrochim Acta 2023; 190:43. [PMID: 36595104 DOI: 10.1007/s00604-022-05615-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/05/2022] [Indexed: 01/04/2023]
Abstract
Nitrite is an important food additive for cured meats; however, high nitrite levels pose adverse health effects to humans. Hence, monitoring nitrite concentration is critical to comply with limits imposed by regulatory agencies. Laser-induced graphene (LIG) has proven to be a scalable manufacturing alternative to produce high-performance electrochemical transducers for sensors. Herein, we expand upon initial LIG studies by fabricating hydrophilic and hydrophobic LIG that are subsequently converted into ion-selective sensors to monitor nitrite in food samples with comparable performance to the standard photometric method (Griess method). The hydrophobic LIG resulted in an ion-selective electrode with improved potential stability due partly to a decrease in the water layer between the electrode and the nitrite poly(vinyl) chloride-based ion-selective membrane. These resultant nitrite ion-selective sensors displayed Nernstian response behavior with a sensitivity of 59.5 mV dec-1, a detection limit of 0.3 ± 0.1 mg L-1 (mean ± standard deviation), and a broad linear sensing range from 10-5 to 10-1 M, which was significantly larger than currently published nitrite methods. Nitrite levels were determined directly in food extract samples of sausage, ham, and bacon for 5 min. These sensor metrics are significant as regulatory agencies limit nitrite levels up to 200 mg L-1 in finished products to reduce the potential formation of nitrosamine (carcinogenic compound). These results demonstrate the versatility of LIG as a platform for ion-selective-LIG sensors and simple, efficient, and scalable electrochemical sensing in general while demonstrating a promising alternative to monitor nitrite levels in food products ensuring regulatory compliance.
Collapse
Affiliation(s)
- Raquel R A Soares
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Robert G Hjort
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Cícero C Pola
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Dapeng Jing
- Materials Analysis and Research Laboratory, Iowa State University, Ames, IA, 50011, USA
| | - Victor S Cecon
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
27
|
Thuy NTD, Wang X, Zhao G, Liang T, Zou Z. A Co 3O 4 Nanoparticle-Modified Screen-Printed Electrode Sensor for the Detection of Nitrate Ions in Aquaponic Systems. SENSORS (BASEL, SWITZERLAND) 2022; 22:9730. [PMID: 36560098 PMCID: PMC9787752 DOI: 10.3390/s22249730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
In this study, a screen-printed electrode (SPE) modified with cobalt oxide nanoparticles (Co3O4 NPs) was used to create an all-solid-state ion-selective electrode used as a potentiometric ion sensor for determining nitrate ion (NO3-) concentrations in aquaculture water. The effects of the Co3O4 NPs on the characterization parameters of the solid-contact nitrate ion-selective electrodes (SC-NO3--ISEs) were investigated. The morphology, physical properties and analytical performance of the proposed NO3--ion selective membrane (ISM)/Co3O4 NPs/SPEs were studied by X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), potentiometric measurements, and potentiometric water layer tests. Once all conditions were optimized, it was confirmed that the screen-printed electrochemical sensor had high potential stability, anti-interference performance, good reproducibility, and no water layer formation between the selective membrane and the working electrode. The developed NO3--ISM/Co3O4 NPs/SPE showed a Nernstian slope of -56.78 mV/decade for NO3- detection with a wide range of 10-7-10-2 M and a quick response time of 5.7 s. The sensors were successfully used to measure NO3- concentrations in aquaculture water. Therefore, the electrodes have potential for use in aquaponic nutrient solution applications with precise detection of NO3- in a complicated matrix and can easily be used to monitor other ions in aquaculture water.
Collapse
Affiliation(s)
| | - Xiaochan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
| | - Tingyu Liang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
| | - Zaihan Zou
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
| |
Collapse
|
28
|
Goel S, Amreen K. Laser induced graphanized microfluidic devices. BIOMICROFLUIDICS 2022; 16:061505. [PMID: 36483020 PMCID: PMC9726225 DOI: 10.1063/5.0111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
With the advent of cyber-physical system-based automation and intelligence, the development of flexible and wearable devices has dramatically enhanced. Evidently, this has led to the thrust to realize standalone and sufficiently-self-powered miniaturized devices for a variety of sensing and monitoring applications. To this end, a range of aspects needs to be carefully and synergistically optimized. These include the choice of material, micro-reservoir to suitably place the analytes, integrable electrodes, detection mechanism, microprocessor/microcontroller architecture, signal-processing, software, etc. In this context, several researchers are working toward developing novel flexible devices having a micro-reservoir, both in flow-through and stationary phases, integrated with graphanized zones created by simple benchtop lasers. Various substrates, like different kinds of cloths, papers, and polymers, have been harnessed to develop laser-ablated graphene regions along with a micro-reservoir to aptly place various analytes to be sensed/monitored. Likewise, similar substrates have been utilized for energy harvesting by fuel cell or solar routes and supercapacitor-based energy storage. Overall, realization of a prototype is envisioned by integrating various sub-systems, including sensory, energy harvesting, energy storage, and IoT sub-systems, on a single mini-platform. In this work, the diversified work toward developing such prototypes will be showcased and current and future commercialization potential will be projected.
Collapse
Affiliation(s)
- Sanket Goel
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Khairunnisa Amreen
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
29
|
Neo ZH, Seah GEKK, Ng SH, Safanama D, Seng DHL, Goh SS. Solution-Printable PEDOT Solid-Contact for Nitrate-Selective Electrodes: Enhanced Selectivity from Anion Dopant Exchange. Anal Chem 2022; 94:15956-15963. [DOI: 10.1021/acs.analchem.2c02119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi Hao Neo
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| | - Georgina E. K. K. Seah
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| | - Shi Hoe Ng
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| | - Dorsasadat Safanama
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| | - Debbie H. L. Seng
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| | - Shermin S. Goh
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| |
Collapse
|
30
|
Thakur AK, Mahbub H, Nowrin FH, Malmali M. Highly Robust Laser-Induced Graphene (LIG) Ultrafiltration Membrane with a Stable Microporous Structure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46884-46895. [PMID: 36200611 DOI: 10.1021/acsami.2c09563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Laser-induced graphene (LIG) materials have great potential in water treatment applications. Herein, we report the fabrication of a mechanically robust electroconductive LIG membrane with tailored separation properties for ultrafiltration (UF) applications. These LIG membranes are facilely fabricated by directly lasing poly(ether sulfone) (PES) membrane support. Control PES membranes were fabricated through a nonsolvent-induced phase separation (NIPS) technique. A major finding was that when PES UF membranes were treated with glycerol, the membrane porous structure remained almost unchanged upon drying, which also assisted with protecting the membrane's nanoscale features after lasing. Compared to the control PES membrane, the membrane fabricated with 8% laser power on the bottom layer of PES (PES (B)-LIG-HP) demonstrated 4 times higher flux (865 LMH) and 90.9% bovine serum albumin (BSA) rejection. Moreover, LIG membranes were found to be highly hydrophilic and exhibited excellent mechanical and chemical stability. Owing to their excellent permeance and separation efficiency, these highly robust electroconductive LIG membranes have a great potential to be used for designing functional membranes.
Collapse
Affiliation(s)
- Amit K Thakur
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| | - Hasib Mahbub
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| | - Fouzia Hasan Nowrin
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| | - Mahdi Malmali
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| |
Collapse
|
31
|
Qin R, Zhang Y, Ren S, Nie P. Rapid Detection of Available Nitrogen in Soil by Surface-Enhanced Raman Spectroscopy. Int J Mol Sci 2022; 23:ijms231810404. [PMID: 36142315 PMCID: PMC9499669 DOI: 10.3390/ijms231810404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Soil-available nitrogen is the main nitrogen source that plants can directly absorb for assimilation. It is of great significance to detect the concentration of soil-available nitrogen in a simple, rapid and reliable method, which is beneficial to guiding agricultural production activities. This study confirmed that Raman spectroscopy is one such approach, especially after surface enhancement; its spectral response is more sensitive. Here, we collected three types of soils (chernozem, loess and laterite) and purchased two kinds of nitrogen fertilizers (ammonium sulfate and sodium nitrate) to determine ammonium nitrogen (NH4-N) and nitrate nitrogen (NO3-N) in the soil. The spectral data were acquired using a portable Raman spectrometer. Unique Raman characteristic peaks of NH4-N and NO3-N in different soils were found at 978 cm−1 and 1044 cm−1, respectively. Meanwhile, it was found that the enhancement of the Raman spectra by silver nanoparticles (AgNPs) was greater than that of gold nanoparticles (AuNPs). Combined with soil characteristics and nitrogen concentrations, Raman peak data were analyzed by multiple linear regression. The coefficient of determination for the validation (Rp2) of multiple linear regression prediction models for NH4-N and NO3-N were 0.976 and 0.937, respectively, which deeply interpreted the quantitative relationship among related physical quantities. Furthermore, all spectral data in the range of 400–2000 cm−1 were used to establish the partial least squares (PLS), back-propagation neural network (BPNN) and least squares support vector machine (LSSVM) models for quantification. After cross-validation and comparative analysis, the results showed that LSSVM optimized by particle swarm methodology had the highest accuracy and stability from an overall perspective. For all datasets of particle swarm optimization LSSVM (PSO-LSSVM), the Rp2 was above 0.99, the root mean square errors of prediction (RMSEP) were below 0.15, and the relative prediction deviation (RPD) was above 10. The ultra-portable Raman spectrometer, in combination with scatter-enhanced materials and machine learning algorithms, could be a promising solution for high-efficiency and real-time field detection of soil-available nitrogen.
Collapse
Affiliation(s)
- Ruimiao Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Yahui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Shijie Ren
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
- Correspondence: ; Tel.: +86-0571-8898-2456
| |
Collapse
|
32
|
Johnson ZT, Jared N, Peterson JK, Li J, Smith EA, Walper SA, Hooe SL, Breger JC, Medintz IL, Gomes C, Claussen JC. Enzymatic Laser-Induced Graphene Biosensor for Electrochemical Sensing of the Herbicide Glyphosate. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2200057. [PMID: 36176938 PMCID: PMC9463521 DOI: 10.1002/gch2.202200057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate is a globally applied herbicide yet it has been relatively undetectable in-field samples outside of gold-standard techniques. Its presumed nontoxicity toward humans has been contested by the International Agency for Research on Cancer, while it has been detected in farmers' urine, surface waters and crop residues. Rapid, on-site detection of glyphosate is hindered by lack of field-deployable and easy-to-use sensors that circumvent sample transportation to limited laboratories that possess the equipment needed for detection. Herein, the flavoenzyme, glycine oxidase, immobilized on platinum-decorated laser-induced graphene (LIG) is used for selective detection of glyphosate as it is a substrate for GlyOx. The LIG platform provides a scaffold for enzyme attachment while maintaining the electronic and surface properties of graphene. The sensor exhibits a linear range of 10-260 µ m, detection limit of 3.03 µ m, and sensitivity of 0.991 nA µ m -1. The sensor shows minimal interference from the commonly used herbicides and insecticides: atrazine, 2,4-dichlorophenoxyacetic acid, dicamba, parathion-methyl, paraoxon-methyl, malathion, chlorpyrifos, thiamethoxam, clothianidin, and imidacloprid. Sensor function is further tested in complex river water and crop residue fluids, which validate this platform as a scalable, direct-write, and selective method of glyphosate detection for herbicide mapping and food analysis.
Collapse
Affiliation(s)
| | - Nathan Jared
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - John K. Peterson
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Jingzhe Li
- Department of ChemistryIowa State UniversityAmesIA50011USA
- The Ames LaboratoryU.S. Department of EnergyAmesIA50011USA
| | - Emily A. Smith
- Department of ChemistryIowa State UniversityAmesIA50011USA
- The Ames LaboratoryU.S. Department of EnergyAmesIA50011USA
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
| | - Shelby L. Hooe
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
- National Research CouncilWashington, DC20001USA
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
| | - Carmen Gomes
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | | |
Collapse
|
33
|
Amali R, Lim H, Ibrahim I, Zainal Z, Ahmad S. Silver nanoparticles-loaded copper (II)-terephthalate framework nanocomposite as a screen-printed carbon electrode modifier for amperometric nitrate detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Jin M, Liu J, Wu W, Zhou Q, Fu L, Zare N, Karimi F, Yu J, Lin CT. Relationship between graphene and pedosphere: A scientometric analysis. CHEMOSPHERE 2022; 300:134599. [PMID: 35427662 DOI: 10.1016/j.chemosphere.2022.134599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The mass production and application of graphene have gradually expanded from academic research to industrial applications, which will inevitably lead to graphene entering the soil actively and passively. Therefore, the relationship between graphene and the pedosphere has attracted a lot of attention in the last decade. The most important question is whether graphene will harm soil health. Fortunately, the evidence is that graphene can alter soil physicochemical properties and microbial communities to some extent, but not dramatically. On this basis, the role of graphene in soil has been investigated in all directions. This review summarizes the literature on the relationship between graphene and soils. Topics include remediation and sensing of soil using graphene materials, the effects of graphene on soil, and the effects of graphene in soil on plant growth. At the same time, this review also uses bibliometrics to review the history of the topic. The number of papers published each year, participating countries, participating institutions and important articles were analyzed in detail. Finally, based on the published literature, we described the future perspectives of graphene and the pedosphere.
Collapse
Affiliation(s)
- Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jinsong Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
35
|
Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology. NANOMATERIALS 2022; 12:nano12142336. [PMID: 35889560 PMCID: PMC9317010 DOI: 10.3390/nano12142336] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
Graphene has been regarded as a potential application material in the field of new energy conversion and storage because of its unique two-dimensional structure and excellent physical and chemical properties. However, traditional graphene preparation methods are complicated in-process and difficult to form patterned structures. In recent years, laser-induced graphene (LIG) technology has received a large amount of attention from scholars and has a wide range of applications in supercapacitors, batteries, sensors, air filters, water treatment, etc. In this paper, we summarized a variety of preparation methods for graphene. The effects of laser processing parameters, laser type, precursor materials, and process atmosphere on the properties of the prepared LIG were reviewed. Then, two strategies for large-scale production of LIG were briefly described. We also discussed the wide applications of LIG in the fields of signal sensing, environmental protection, and energy storage. Finally, we briefly outlined the future trends of this research direction.
Collapse
|
36
|
Baumbauer CL, Goodrich PJ, Payne ME, Anthony T, Beckstoffer C, Toor A, Silver W, Arias AC. Printed Potentiometric Nitrate Sensors for Use in Soil. SENSORS 2022; 22:s22114095. [PMID: 35684715 PMCID: PMC9185318 DOI: 10.3390/s22114095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023]
Abstract
Plant-available nitrogen, often in the form of nitrate, is an essential nutrient for plant growth. However, excessive nitrate in the environment and watershed has harmful impacts on natural ecosystems and consequently human health. A distributed network of nitrate sensors could help to quantify and monitor nitrogen in agriculture and the environment. Here, we have developed fully printed potentiometric nitrate sensors and characterized their sensitivity and selectivity to nitrate. Each sensor comprises an ion-selective electrode and a reference electrode that are functionalized with polymeric membranes. The sensitivity of the printed ion-selective electrodes was characterized by measuring their potential with respect to a commercial silver/silver chloride reference electrode in varying concentrations of nitrate solutions. The sensitivity of the printed reference electrodes to nitrate was minimized with a membrane containing polyvinyl butyral (PVB), sodium chloride, and sodium nitrate. Selectivity studies with sulphate, chloride, phosphate, nitrite, ammonium, calcium, potassium, and magnesium showed that high concentrations of calcium can influence sensor behavior. The printed ion-selective and reference electrodes were combined to form a fully printed sensor with sensitivity of −48.0 ± 3.3 mV/dec between 0.62 and 6200 ppm nitrate in solution and −47 ± 4.1 mV/dec in peat soil.
Collapse
Affiliation(s)
- Carol L. Baumbauer
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA; (C.L.B.); (M.E.P.); (A.T.)
| | - Payton J. Goodrich
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA;
| | - Margaret E. Payne
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA; (C.L.B.); (M.E.P.); (A.T.)
| | - Tyler Anthony
- Department of Environmental Sciences, Policy, and Management, University of California, Berkeley, CA 94720, USA; (T.A.); (C.B.); (W.S.)
| | - Claire Beckstoffer
- Department of Environmental Sciences, Policy, and Management, University of California, Berkeley, CA 94720, USA; (T.A.); (C.B.); (W.S.)
| | - Anju Toor
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA; (C.L.B.); (M.E.P.); (A.T.)
| | - Whendee Silver
- Department of Environmental Sciences, Policy, and Management, University of California, Berkeley, CA 94720, USA; (T.A.); (C.B.); (W.S.)
| | - Ana Claudia Arias
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA; (C.L.B.); (M.E.P.); (A.T.)
- Correspondence:
| |
Collapse
|
37
|
Kim MY, Lee KH. Electrochemical Sensors for Sustainable Precision Agriculture—A Review. Front Chem 2022; 10:848320. [PMID: 35615311 PMCID: PMC9124781 DOI: 10.3389/fchem.2022.848320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Greenhouse gases released by agriculture account for 19% of global greenhouse gas emission. Moreover, the abuse of pesticides and fertilizers is a fundamental cause of soil and water pollution. Finding sustainable countermeasures for these problems requires completely new approaches and the integration of knowledge. Precision agriculture (PA) is a technology that reduces environmental pollution with minimal input (e.g., fertilizer, herbicides, and pesticides) and maximize the production of high-quality crops by monitoring the conditions and environment of farmland and crops. However, the lack of data—a key technology for realizing PA—remains a major obstacle to the large-scale adoption of PA. Herein, we discuss important research issues, such as data managements and analysis for accurate decision-making, and specific data acquisition strategies. Moreover, we systematically review and discuss electrochemical sensors, including sensors that monitor the plant, soil, and environmental conditions that directly affect plant growth.
Collapse
Affiliation(s)
- Min-Yeong Kim
- Department of Electrochemistry, Korea Institute of Materials Science (KIMS), Changwon, South Korea
| | - Kyu Hwan Lee
- Department of Electrochemistry, Korea Institute of Materials Science (KIMS), Changwon, South Korea
- Advanced Materials Engineering, Korea University of Science and Technology, Changwon, South Korea
- *Correspondence: Kyu Hwan Lee,
| |
Collapse
|
38
|
Fan Y, Wang X, Qian X, Dixit A, Herman B, Lei Y, McCutcheon J, Li B. Enhancing the Understanding of Soil Nitrogen Fate Using a 3D-Electrospray Sensor Roll Casted with a Thin-Layer Hydrogel. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4905-4914. [PMID: 35274533 DOI: 10.1021/acs.est.1c05661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate and continuous monitoring of soil nitrogen is critical for determining its fate and providing early warning for swift soil nutrient management. However, the accuracy of existing electrochemical sensors is hurdled by the immobility of targeted ions, ion adsorption to soil particles, and sensor reading noise and drifting over time. In this study, polyacrylamide hydrogel with a thickness of 0.45 μm was coated on the surface of solid-state ion-selective membrane (S-ISM) sensors to absorb water contained in soil and, consequently, enhance the accuracy (R2 > 0.98) and stability (drifting < 0.3 mV/h) of these sensors monitoring ammonium (NH4+) and nitrate (NO3-) ions in soil. An ion transport model was built to simulate the long-term NH4+ dynamic process (R2 > 0.7) by considering the soil adsorption process and soil complexity. Furthermore, a soil-based denoising data processing algorithm (S-DDPA) was developed based on the unique features of soil sensors including the nonlinear mass transfer and ion diffusion on the heterogeneous sensor-hydrogel-soil interface. The 14 day tests using real-world soil demonstrated the effectiveness of S-DDPA to eliminate false signals and retrieve the actual soil nitrogen information for accurate (error: <2 mg/L) and continuous monitoring.
Collapse
Affiliation(s)
- Yingzheng Fan
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xingyu Wang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xin Qian
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Anand Dixit
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Brianna Herman
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yu Lei
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jeffrey McCutcheon
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Center for Environmental Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
39
|
Abstract
Nitrogen species present in the atmosphere, soil, and water play a vital role in ecosystem stability. Reactive nitrogen gases are key air quality indicators and are responsible for atmospheric ozone layer depletion. Soil nitrogen species are one of the primary macronutrients for plant growth. Species of nitrogen in water are essential indicators of water quality, and they play an important role in aquatic environment monitoring. Anthropogenic activities have highly impacted the natural balance of the nitrogen species. Therefore, it is critical to monitor nitrogen concentrations in different environments continuously. Various methods have been explored to measure the concentration of nitrogen species in the air, soil, and water. Here, we review the recent advancements in optical and electrochemical sensing methods for measuring nitrogen concentration in the air, soil, and water. We have discussed the advantages and disadvantages of the existing methods and the future prospects. This will serve as a reference for researchers working with environment pollution and precision agriculture.
Collapse
|
40
|
Casanova A, Iniesta J, Gomis-Berenguer A. Recent progress in the development of porous carbon-based electrodes for sensing applications. Analyst 2022; 147:767-783. [PMID: 35107446 DOI: 10.1039/d1an01978c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrochemical (bio)sensors are considered clean and powerful analytical tools capable of converting an electrochemical reaction between analytes and electrodes into a quantitative signal. They are an important part of our daily lives integrated in various fields such as healthcare, food and environmental monitoring. Several strategies including the incorporation of porous carbon materials in its configuration have been applied to improve their sensitivity and selectivity in the last decade. The porosity, surface area, graphitic structure as well as chemical composition of materials greatly influence the electrochemical performance of the sensors. In this review, activated carbons, ordered mesoporous carbons, graphene-based materials, and MOF-derived carbons, which are used to date as crucial elements of electrochemical devices, are described, starting from their textural and chemical compositions to their role in the outcome of electrochemical sensors. Several relevant and meaningful examples about material synthesis, sensor fabrication and applications are illustrated and described. The closer perspectives of these fascinating materials forecast a promising future for the electrochemical sensing field.
Collapse
Affiliation(s)
- Ana Casanova
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, SE-100 44 Stockholm, Sweden
| | - Jesus Iniesta
- Department of Physical Chemistry, University of Alicante, 03080 Alicante, Spain
- Institute of Electrochemistry, University of Alicante, 03080 Alicante, Spain.
| | | |
Collapse
|
41
|
Hydrophobic laser-induced graphene potentiometric ion-selective electrodes for nitrate sensing. Mikrochim Acta 2022; 189:122. [PMID: 35218439 DOI: 10.1007/s00604-022-05233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
Current solid-contact ion-selective electrodes (ISEs) suffer from signal-to-noise drift and short lifespans partly due to water uptake and the development of an aqueous layer between the transducer and ion-selective membrane. To address these challenges, we report on a nitrate ISE based on hydrophobic laser-induced graphene (LIG) coated with a poly(vinyl) chloride-based nitrate selective membrane. The hydrophobic LIG was created using a polyimide substrate and a double lasing process under ambient conditions (air at 23.0 ± 1.0 °C) that resulted in a static water contact angle of 135.5 ± 0.7° (mean ± standard deviation) in wettability testing. The LIG-ISE displayed a Nernstian response of - 58.17 ± 4.21 mV dec-1 and a limit-of-detection (LOD) of 6.01 ± 1.44 µM. Constant current chronopotentiometry and a water layer test were used to evaluate the potential (emf) signal stability with similar performance to previously published work with graphene-based ISEs. Using a portable potentiostat, the sensor displayed comparable (p > 0.05) results to a US Environmental Protection Agency (EPA)-accepted analytical method when analyzing water samples collected from two lakes in Ames, IA. The sensors were stored in surface water samples for 5 weeks and displayed nonsignificant difference in performance (LOD and sensitivity). These results, combined with a rapid and low-cost fabrication technique, make the development of hydrophobic LIG-ISEs appealing for a wide range of long-term in situ surface water quality applications.
Collapse
|
42
|
Kasi V, Sedaghat S, Alcaraz AM, Maruthamuthu MK, Heredia-Rivera U, Nejati S, Nguyen J, Rahimi R. Low-Cost Flexible Glass-Based pH Sensor via Cold Atmospheric Plasma Deposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9697-9710. [PMID: 35142483 DOI: 10.1021/acsami.1c19805] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many commercially available pH sensors are fabricated with a glass membrane as the sensing component because of several advantages of glass-based electrodes such as versatility, high accuracy, and excellent stability in various conditions. However, because of their bulkiness and poor mechanical properties, conventional glass-based sensors are not ideal for wearable or flexible applications. Here, we report for the first time the fabrication of a flexible glass-based pH sensor suitable for biomedical and environmental applications where flexibility and stability of the sensor are critical for long-term and real-time monitoring. The sensor was fabricated via a simple and facile approach using the cold atmospheric plasma technique in which a pH sensitive silica coating was deposited from a siloxane precursor onto a carbon electrode. In order to increase the sensitivity and stability of the sensor, we employed a postprocessing step which involves annealing of the silica coated electrode at elevated temperatures. This process was optimized to ensure that the crucial properties such as porosity and hydration functionality were balanced to obtain the best and most reliable sensitivity of the sensor. Our sensitivity test results indicated that these sensors exhibit excellent and stable sensitivity with a slope of about 48 mV/pH (r2 = 0.998) and selectivity across a pH range of 4 to 10 in the presence of various cations. The optimized sensor has shown stable sensitivity for a long period of time (30 h of immersion) and in different bending conditions. We demonstrate in this investigation that this flexible cost-effective pH sensor can withstand the sterilization process resulting from ultraviolet radiation and shows repeatable sensitivity with less than ±5 mV potential drift from the sensitivity values of the standard optimized sensor.
Collapse
Affiliation(s)
- Venkat Kasi
- School of Material Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sotoudeh Sedaghat
- School of Material Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alejandro M Alcaraz
- School of Material Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Murali Kannan Maruthamuthu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ulisses Heredia-Rivera
- School of Material Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sina Nejati
- School of Material Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rahim Rahimi
- School of Material Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
43
|
Dixit N, Singh SP. Laser-Induced Graphene (LIG) as a Smart and Sustainable Material to Restrain Pandemics and Endemics: A Perspective. ACS OMEGA 2022; 7:5112-5130. [PMID: 35187327 PMCID: PMC8851616 DOI: 10.1021/acsomega.1c06093] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/19/2022] [Indexed: 05/02/2023]
Abstract
A healthy environment is necessary for a human being to survive. The contagious COVID-19 virus has disastrously contaminated the environment, leading to direct or indirect transmission. Therefore, the environment demands adequate prevention and control strategies at the beginning of the viral spread. Laser-induced graphene (LIG) is a three-dimensional carbon-based nanomaterial fabricated in a single step on a wide variety of low-cost to high-quality carbonaceous materials without using any additional chemicals potentially used for antiviral, antibacterial, and sensing applications. LIG has extraordinary properties, including high surface area, electrical and thermal conductivity, environmental-friendliness, easy fabrication, and patterning, making it a sustainable material for controlling SARS-CoV-2 or similar pandemic transmission through different sources. LIG's antiviral, antibacterial, and antibiofouling properties were mainly due to the thermal and electrical properties and texture derived from nanofibers and micropores. This perspective will highlight the conducted research and the future possibilities on LIG for its antimicrobial, antiviral, antibiofouling, and sensing applications. It will also manifest the idea of incorporating this sustainable material into different technologies like air purifiers, antiviral surfaces, wearable sensors, water filters, sludge treatment, and biosensing. It will pave a roadmap to explore this single-step fabrication technique of graphene to deal with pandemics and endemics in the coming future.
Collapse
Affiliation(s)
- Nandini Dixit
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P. Singh
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre
for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
- Interdisciplinary
Program in Climate Studies, Indian Institute
of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
44
|
Chen B, Johnson ZT, Sanborn D, Hjort RG, Garland NT, Soares RRA, Van Belle B, Jared N, Li J, Jing D, Smith EA, Gomes CL, Claussen JC. Tuning the Structure, Conductivity, and Wettability of Laser-Induced Graphene for Multiplexed Open Microfluidic Environmental Biosensing and Energy Storage Devices. ACS NANO 2022; 16:15-28. [PMID: 34812606 DOI: 10.1021/acsnano.1c04197] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The integration of microfluidics and electrochemical cells is at the forefront of emerging sensors and energy systems; however, a fabrication scheme that can create both the microfluidics and electrochemical cells in a scalable fashion is still lacking. We present a one-step, mask-free process to create, pattern, and tune laser-induced graphene (LIG) with a ubiquitous CO2 laser. The laser parameters are adjusted to create LIG with different electrical conductivity, surface morphology, and surface wettability without the need for postchemical modification. Such definitive control over material properties enables the creation of LIG-based integrated open microfluidics and electrochemical sensors that are capable of dividing a single water sample along four multifurcating paths to three ion selective electrodes (ISEs) for potassium (K+), nitrate (NO3-), and ammonium (NH4+) monitoring and to an enzymatic pesticide sensor for organophosphate pesticide (parathion) monitoring. The ISEs displayed near-Nernstian sensitivities and low limits of detection (LODs) (10-5.01 M, 10-5.07 M, and 10-4.89 M for the K+, NO3-, and NH4+ ISEs, respectively) while the pesticide sensor exhibited the lowest LOD (15.4 pM) for an electrochemical parathion sensor to date. LIG was also specifically patterned and tuned to create a high-performance electrochemical micro supercapacitor (MSC) capable of improving the power density by 2 orders of magnitude compared to a Li-based thin-film battery and the energy density by 3 orders of magnitude compared to a commercial electrolytic capacitor. Hence, this tunable fabrication approach to LIG is expected to enable a wide range of real-time, point-of-use health and environmental sensors as well as energy storage/harvesting modules.
Collapse
Affiliation(s)
- Bolin Chen
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Zachary T Johnson
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Delaney Sanborn
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Robert G Hjort
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Nate T Garland
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Raquel R A Soares
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Bryan Van Belle
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Nathan Jared
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jingzhe Li
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, The Ames Laboratory, Ames, Iowa 50011, United States
| | - Dapeng Jing
- U.S. Department of Energy, The Ames Laboratory, Ames, Iowa 50011, United States
| | - Emily A Smith
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, The Ames Laboratory, Ames, Iowa 50011, United States
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
45
|
Abstract
The continuously rising interest in chemical sensors’ applications in environmental monitoring, for soil analysis in particular, is owed to the sufficient sensitivity and selectivity of these analytical devices, their low costs, their simple measurement setups, and the possibility to perform online and in-field analyses with them. In this review the recent advances in chemical sensors for soil analysis are summarized. The working principles of chemical sensors involved in soil analysis; their benefits and drawbacks; and select applications of both the single selective sensors and multisensor systems for assessments of main plant nutrition components, pollutants, and other important soil parameters (pH, moisture content, salinity, exhaled gases, etc.) of the past two decades with a focus on the last 5 years (from 2017 to 2021) are overviewed.
Collapse
|
46
|
Electrochemical Devices to Monitor Ionic Analytes for Healthcare and Industrial Applications. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent advances in electrochemical devices have sparked exciting opportunities in the healthcare, environment, and food industries. These devices can be fabricated at low costs and are capable of multiplex monitoring. This overcomes challenges presnted in traditional sensors for biomolecules and provides us a unique gateway toward comprehensive analyses. The advantages of electrochemical sensors are derived from their direct integration with electronics and their high selectivity along with sensitivity to sense a wide range of ionic analytes at an economical cost. This review paper aims to summarize recent innovations of a wide variety of electrochemical sensors for ionic analytes for health care and industrial applications. Many of these ionic analytes are important biomarkers to target for new diagnostic tools for medicine, food quality monitoring, and pollution detection. In this paper, we will examine various fabrication techniques, sensing mechanisms, and will also discuss various future opportunities in this research direction.
Collapse
|
47
|
Singh S, Anil AG, Kumar V, Kapoor D, Subramanian S, Singh J, Ramamurthy PC. Nitrates in the environment: A critical review of their distribution, sensing techniques, ecological effects and remediation. CHEMOSPHERE 2022; 287:131996. [PMID: 34455120 DOI: 10.1016/j.chemosphere.2021.131996] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Nitrate pollution is eminent in almost all the developing nations as a result of increased natural activities apart from anthropogenic pollution. The release of nitrates in more than critical quantities into the water bodies causes accretion impacts on living creatures, environmental receptors, and human vigour by accumulation through the food chain. Nitrates have recently acquired researchers' huge attention and extend their roots in environmental contamination of surface and groundwater systems. The presence of nitrate in high concentrations in surface and groundwater triggers several health problems, for instance, methemoglobinemia, diabetes, eruption of infectious disorders, harmfully influence aquatic organisms. Sensing nitrate is an alternate option for monitoring the distribution of nitrate in different water bodies. Here we review electrochemical, spectroscopic, and electrical modes of nitrate sensing. It is concluded that, among the various sensors discussed in this review, FET sensors are the most desirable choice. Their sensitivity, ease of use and scope for miniaturisation are exceptional. Advanced functional materials need to be designed to satiate the growing need for environmental monitoring. Different sources of nitrate contamination in ground and surface water can be estimated using different techniques such as nitrate isotopic composition, co contaminants, water tracers, and other specialized techniques. This review intends to explore the research work on remediation of nitrate from wastewater and soil using different processes such as reverse osmosis, chemical denitrification, biological denitrification, ion exchange, electrodialysis, and adsorption. Denitrification proves as a promising alternative over previously reported techniques in terms of their nitrate removal because of its high cost-effectiveness.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India
| | - Amith G Anil
- Department of Material Engineering, Indian Institute of Science, Bangalore, 56001, India
| | - Vijay Kumar
- Department of Chemistry, Central Ayurveda Research Institute, Jhansi, U.P. , India
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - S Subramanian
- Department of Material Engineering, Indian Institute of Science, Bangalore, 56001, India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Jalandhar, Punjab, 144111, India.
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India.
| |
Collapse
|
48
|
Lee JU, Lee CW, Cho SC, Shin BS. Laser-Induced Graphene Heater Pad for De-Icing. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3093. [PMID: 34835856 PMCID: PMC8619929 DOI: 10.3390/nano11113093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
The replacement of electro-thermal material in heaters with lighter and easy-to-process materials has been extensively studied. In this study, we demonstrate that laser-induced graphene (LIG) patterns could be a good candidate for the electro-thermal pad. We fabricated LIG heaters with various thermal patterns on the commercial polyimide films according to laser scanning speed using an ultraviolet pulsed laser. We adopted laser direct writing (LDW) to irradiate on the substrates with computer-aided 2D CAD circuit data under ambient conditions. Our highly conductive and flexible heater was investigated by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller. The influence of laser scanning speed was evaluated for electrical properties, thermal performance, and durability. Our LIG heater showed promising characteristics such as high porosity, light weight, and small thickness. Furthermore, they demonstrated a rapid response time, reaching equilibrium in less than 3 s, and achieved temperatures up to 190 °C using relatively low DC voltages of approximately 10 V. Our LIG heater can be utilized for human wearable thermal pads and ice protection for industrial applications.
Collapse
Affiliation(s)
- Jun-Uk Lee
- Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan 46241, Korea; (J.-U.L.); (C.-W.L.); (S.-C.C.)
| | - Chan-Woo Lee
- Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan 46241, Korea; (J.-U.L.); (C.-W.L.); (S.-C.C.)
| | - Su-Chan Cho
- Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan 46241, Korea; (J.-U.L.); (C.-W.L.); (S.-C.C.)
| | - Bo-Sung Shin
- Department of Optics and Mechatronics Engineering, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
49
|
|
50
|
Kucherenko IS, Chen B, Johnson Z, Wilkins A, Sanborn D, Figueroa-Felix N, Mendivelso-Perez D, Smith EA, Gomes C, Claussen JC. Laser-induced graphene electrodes for electrochemical ion sensing, pesticide monitoring, and water splitting. Anal Bioanal Chem 2021; 413:6201-6212. [PMID: 34468795 DOI: 10.1007/s00216-021-03519-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Laser-induced graphene (LIG) has shown to be a scalable manufacturing route to create graphene electrodes that overcome the expense associated with conventional graphene electrode fabrication. Herein, we expand upon initial LIG reports by functionalizing the LIG with metallic nanoparticles for ion sensing, pesticide monitoring, and water splitting. The LIG electrodes were converted into ion-selective sensors by functionalization with poly(vinyl chloride)-based membranes containing K+ and H+ ionophores. These ion-selective sensors exhibited a rapid response time (10-15 s), near-Nernstian sensitivity (53.0 mV/dec for the K+ sensor and - 56.6 mV/pH for the pH sensor), and long storage stability for 40 days, and were capable of ion monitoring in artificial urine. The pesticide biosensors were created by functionalizing the LIG electrodes with the enzyme horseradish peroxidase and displayed a high sensitivity to atrazine (28.9 nA/μM) with negligible inference from other common herbicides (glyphosate, dicamba, and 2,4-dichlorophenoxyacetic acid). Finally, the LIG electrodes also exhibited a small overpotential for hydrogen evolution reaction and oxygen evolution reaction. The oxygen evolution reaction tests yielded overpotentials of 448 mV and 995 mV for 10 mA/cm2 and 100 mA/cm2, respectively. The hydrogen evolution reaction tests yielded 35 mV and 281 mV for the corresponding current densities. Such a versatile LIG platform paves the way for simple, efficient electrochemical sensing and energy harvesting applications.
Collapse
Affiliation(s)
- Ivan S Kucherenko
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA.,Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, 150 Zabolotnogo str., Kyiv, 03143, Ukraine
| | - Bolin Chen
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | - Zachary Johnson
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | | | - Delaney Sanborn
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | | | | | - Emily A Smith
- Chemistry Department, Iowa State University, Ames, IA, 50011, USA
| | - Carmen Gomes
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan C Claussen
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|