1
|
Li H, Lyu X, Xue L, Huo Y, Chen T, Yao D, Lu H, Zhou B, Guo H. Hydroxyl Dicarboxylic Acids at a Mountainous Site in Hong Kong: Formation Mechanisms and Implications for Particle Growth. ACS ENVIRONMENTAL AU 2025; 5:277-286. [PMID: 40416840 PMCID: PMC12100550 DOI: 10.1021/acsenvironau.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 05/27/2025]
Abstract
Secondary organic aerosol (SOA) has been shown to significantly impact climate, air quality, and human health. Hydroxyl dicarboxylic acids (OHDCA) are generally of secondary origin and ubiquitous in the atmosphere, with high concentrations in South China. This study explored the formation of representative OHDCA species based on time-resolved measurements and explainable machine learning. Malic acid, the most commonly studied OHDCA, had higher concentrations in the noncontinental air (63.7 ± 33.3 ng m-3) than in the continental air (7.5 ± 1.4 ng m-3). Machine learning quantitatively revealed the high relative importance of aromatics and monoterpenes SOA, as well as aqueous processes, in the noncontinental air, due to either shared precursors or similar formation pathways. Isoprene SOA, particle surface area, and ozone corrected for titration loss (O x ) also elevated the concentrations of malic acid in the continental air. Aqueous photochemical formation of malic acid was confirmed given the synergy between LWC, temperature, and O x . Moreover, the OHDCA-like SOA might have facilitated a relatively rare particle growth from early afternoon to midnight in the case with the highest malic acid concentrations. This study enhances our understanding of the formation of OHDCA and its climate impacts.
Collapse
Affiliation(s)
- Hongyong Li
- Environment
Research Institute, Shandong University, Qingdao266237, China
- Department
of Geography, Faculty of Arts and Social Sciences, Hong Kong Baptist University, Hong Kong999077, China
| | - Xiaopu Lyu
- Department
of Geography, Faculty of Arts and Social Sciences, Hong Kong Baptist University, Hong Kong999077, China
| | - Likun Xue
- Environment
Research Institute, Shandong University, Qingdao266237, China
| | - Yunxi Huo
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University,Hong Kong999077, China
| | - Tianshu Chen
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University,Hong Kong999077, China
| | - Dawen Yao
- School
of Intelligent Systems Engineering, Sun
Yat-Sen University, Shenzhen518100, China
| | - Haoxian Lu
- Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai519000, China
| | - Beining Zhou
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University,Hong Kong999077, China
| | - Hai Guo
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University,Hong Kong999077, China
| |
Collapse
|
2
|
Jia Q, Duan Y, Song Z, Han X, Wang X, Wang L, Song D, Chen J, Xiu G. Seasonal patterns and environmental drivers of atmospheric microplastics in a coastal megacity. ENVIRONMENTAL RESEARCH 2025; 279:121763. [PMID: 40320030 DOI: 10.1016/j.envres.2025.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/19/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Atmospheric microplastics (MPs) pose emerging environmental and health risks, yet their temporal dynamics, sources and environmental interactions in coastal cities remain poorly understood. To address this gap, a year-long atmospheric MPs monitoring campaign was conducted in Shanghai, employing microscopic and spectroscopic identification of particles, along with multi-indicator correlation analysis involving air pollutants, particulate components, and meteorological factors. Results showed an annual average MPs concentration of 0.08 P/m3, with significantly higher concentrations in winter than in other seasons (p < 0.05) and in the dry season (October-March) compared to the wet season (April-September). PET (42.86 %) was the dominant polymer, and fibers accounted for the highest proportion (∼82 %), showing distinct seasonal variations. MPs concentrations correlated positively with SO2 (r = 0.55), indicating contributions from industrial emissions, and negatively with O3 (r = -0.41), suggesting oxidative degradation. Positive correlations with Cl- (r = 0.82) and Na+ (r = -0.53) implied marine aerosol influence, while the associations of PET, PE, and PP with Pb and K suggested potential sources from industrial emissions and biomass burning. Meteorological factors and marine monsoons climate significantly regulated MPs accumulation and removal, with low wind speeds in winter facilitating pollution accumulation, whereas wet-season southeasterly monsoons and precipitation enhanced particle removal and marine aerosol interactions. In conclusion, this study elucidates the spatiotemporal dynamics, sources, and local-regional mechanisms of atmospheric MPs in coastal cities, emphasizing the regulatory roles of meteorological and monsoonal factors. These findings provide scientific support for pollution control and policy development.
Collapse
Affiliation(s)
- Qilong Jia
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai, 200237, PR China
| | - Yusen Duan
- Shanghai Technology Center for Reduction of Pollution and Carbon Emissions, Shanghai, 200235, PR China
| | - Zhaofeng Song
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China
| | - Xiaolin Han
- School of Public Health, Shandong Second Medical University, Weifang, 261053, PR China
| | - Xiaochong Wang
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai, 200237, PR China
| | - Limin Wang
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai, 200237, PR China
| | - Daoping Song
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai, 200237, PR China
| | - Jia Chen
- Shanghai Environmental Monitoring Centre, Shanghai, 200235, PR China
| | - Guangli Xiu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai, 200237, PR China.
| |
Collapse
|
3
|
Yang Y, Hou Y, Liao Y, Huang Z, Pan J, Yang X, Chen H, Qi Z. Percutaneous penetration of typical Organophosphate esters under catalysis by Carboxylesterase: Characteristics, mechanism and prediction model. ENVIRONMENT INTERNATIONAL 2025; 198:109419. [PMID: 40168787 DOI: 10.1016/j.envint.2025.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/27/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Although the relationship between organophosphate esters (OPEs) percutaneous penetration and their specific physicochemical properties has been investigated, little information is available regarding the percutaneous penetration of OPEs under the interaction of skin enzymes. Herein, we used an in vitro skin model to quantitatively assess the skin permeation of six typical OPEs. The in vitro results demonstrated that 0.34-49.87% of OPEs and 0.80-2.95% of their metabolites (mOPEs) penetrated the skin. Notably, triphenyl phosphate (TPHP) and tri-3-cresyl phosphate (TCRP), which exhibit high lipophilicity and large molecular weights, were more likely to be deposited in the skin tissue, thereby hindering their penetration into the body. However, the concentrations of their metabolites, diphenyl hydrogen phosphate (DPHP) and bis(2-methylphenoxy) phosphinic acid (DCRP), in the receptor fluid were approximately six times higher than those of their parent compounds. After in vivo dermal OPE exposure, all parent OPEs were detected in both the stratum corneum and viable tissue (VT). Proteomic analysis and enzymatic hydrolysis experiments revealed that the percutaneous biotransformation of OPEs in VT is mediated primarily by carboxylesterase (CES). A biomimetic bilayer skin membrane based on the CES level in fresh skin yielded results closer to the real skin absorption data of OPEs than prior models. Thus, a more accurate prediction model was established to assess the percutaneous penetration of OPEs. Our results provide valuable insights into the skin absorption of OPEs and emphasize the role of skin CES in calculating and predicting the percutaneous penetration of OPEs.
Collapse
Affiliation(s)
- Yan Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of Guangdong University of Technology, Shantou 515041, China
| | - Yuwan Hou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of Guangdong University of Technology, Shantou 515041, China
| | - Yonglong Liao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of Guangdong University of Technology, Shantou 515041, China
| | - Zeji Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of Guangdong University of Technology, Shantou 515041, China
| | - Jiejie Pan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of Guangdong University of Technology, Shantou 515041, China
| | - Haojia Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of Guangdong University of Technology, Shantou 515041, China
| | - Zenghua Qi
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Vitucci ECM, Oladeji O, Presto AA, Cannon CL, Johnson NM. The application of PTR-MS and non-targeted analysis to characterize VOCs emitted from a plastic recycling facility fire. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:149-156. [PMID: 38710768 PMCID: PMC12009732 DOI: 10.1038/s41370-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND On April 11th, 2023, the My Way Trading (MWT) recycling facility in Richmond, Indiana caught fire, mandating the evacuation of local residents and necessitating the U.S. Environmental Protection Agency (EPA) to conduct air monitoring. The EPA detected elevated levels of plastic combustion-related air pollutants, including hydrogen cyanide and benzene. OBJECTIVE We aimed to identify these and other volatile organic compounds (VOCs) present as well as to identify the potential hazard of each compound for various human health effects. METHODS To identify the VOCs, we conducted air monitoring at sites within and bordering the evacuation zone using proton transfer reaction mass spectrometry (PTR-MS) and non-targeted analysis (NTA). To facilitate risk assessment of the emitted VOCs, we used the EPA Hazard Comparison Dashboard. RESULTS We identified 46 VOCs, within and outside the evacuation zone, with average detection levels above local background levels measured in Middletown, OH. Levels of hydrogen cyanide and 4 other VOCs were at least 1.8-fold higher near the incidence site in comparison to background levels and displayed unique temporal and spatial patterns. The 46 VOCs identified had the highest hazardous potential for eye and skin irritation, with approximately 45% and 39%, respectively, of the VOCs classified as high and very high hazards for these endpoints. Notably, all detected VOC levels were below the hazard thresholds set for single VOC exposures; however, hazard thresholds for exposure to VOC mixtures are currently unclear. IMPACT This study serves as a proof-of-concept that PTR-MS coupled with NTA can facilitate rapid identification and hazard assessment of VOCs emitted following anthropogenic disasters. Furthermore, it demonstrates that this approach may augment future disaster responses to quantify additional VOCs present in complex combustion mixtures.
Collapse
Affiliation(s)
- Eva C M Vitucci
- Department of Environmental and Occupational Health, Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Oladayo Oladeji
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Albert A Presto
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Carolyn L Cannon
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, 77807, USA
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Dong L, Qi X, Lin L, Zhao K, Yin G, Zhao L, Pan X, Wu Z, Gao Y. Characteristics, sources, and concentration prediction of endocrine disruptors in a large reservoir driven by hydrological rhythms: A case study of the Danjiangkou Reservoir. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136779. [PMID: 39642733 DOI: 10.1016/j.jhazmat.2024.136779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Herein, we present the first systematic investigation to clarify the effect of hydrological rhythms on the concentrations and distributions of polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) in the Danjiangkou Reservoir. The results revealed that hydrological rhythms remarkably affected the PAH and PAE concentrations and distributions in the water body, wherein the PAH concentration peaked in the flood season while the PAE concentration remarkably increased in the dry season. This study represents methodological innovation, revealing significant heterogeneity of PAHs and PAEs across different water layers. The former compounds tended to accumulate in the water body's bottom layer while the latter compounds had the highest concentration at the surface layer, which can be attributed to the different physicochemical properties and environmental transport behaviors of the two compound types. The overall concentrations of PAHs and PAEs fall within the international and domestic safety standards. The primary sources of these contaminants-coal and biomass combustion for PAHs and widespread use of plastic products for PAEs-are critical areas of regulatory focus. A machine learning model is proposed for the first time for predicting PAE concentrations in the Danjiangkou Reservoir, primarily based on the stacking model and supplemented by the random forest or XGBoost models.
Collapse
Affiliation(s)
- Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, PR China
| | - Xingrui Qi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430074, PR China
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, PR China.
| | - Kefeng Zhao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Liangyuan Zhao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, PR China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, PR China
| | - Zhiguang Wu
- Changjiang Technology and Economy Society, Wuhan 430074, PR China
| | - Yu Gao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China
| |
Collapse
|
6
|
Peter E, Monisha J, Sylas VP, George SA. How environmentally friendly is the disposal of clear aligners? A gas chromatography-mass spectrometry study. Am J Orthod Dentofacial Orthop 2025; 167:39-46. [PMID: 39352330 DOI: 10.1016/j.ajodo.2024.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION Used clear aligner trays are often indiscriminately disposed of with general plastic waste and incinerated. This study aimed to analyze the smoke composition from incinerating 2 common aligner materials: glycol-modified polyethylene terephthalate (PET-G) and polyurethane. METHODS Each of the 2 materials in triplets was thermoformed. The thermoformed trays were shredded and subjected individually to open-fire combustion, ignited using a methane torch, in a specially designed combustion chamber. The resultant smoke was collected and analyzed using gas chromatography-mass spectrometry to study its in-depth composition. RESULTS A total of 20 peaks, corresponding to 20 compounds, were identified from each of the 2 material samples. O-xylene (21.06%) showed the maximum concentration in the PET-G sample, whereas 1,4-dimethyl-1,3-cyclohexadiene in polyurethane (18.88%). The first peak in the PET-G sample corresponded to benzene with a relative concentration of 5.18%. Four compounds were common to both samples: 1,4-dimethyl-1,3-cyclohexadiene; 1,3-cyclohexadiene, 2,3-dimethyl-; 1-hydroxymethly-4-methylenecyclohexane; and cyclohexanemethanol, 4-methylene-. CONCLUSIONS Benzene, a group 1 carcinogen, was identified in the PET-G smoke sample, whereas tetrahydrofuran, a suspected carcinogen, was found in the polyurethane sample. Some compounds were hazardous, whereas most were skin, eye, and respiratory irritants. Possible mitigation strategies include proper case selection, efficient manufacturing, direct 3-dimensional printing, and developing biodegradable materials. Clinicians can set up 'used aligner collection points' to ensure responsible disposal. Proper disposal guidelines and stringent regulations are the need of the hour.
Collapse
Affiliation(s)
- Elbe Peter
- Department of Orthodontics and Dentofacial Orthopedics, Government Dental College, Thrissur, Kerala, India.
| | - J Monisha
- Department of Orthodontics and Dentofacial Orthopedics, St. Gregorios Dental College, Ernakulam, Kerala, India
| | - V P Sylas
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Suja Ani George
- Department of Orthodontics and Dentofacial Orthopedics, Government Dental College, Kottayam, Kerala, India
| |
Collapse
|
7
|
Liu D, Xu S, Lang Y, Hou S, Wei L, Pan X, Sun Y, Wang Z, Kawamura K, Fu P. Seasonal variation and size distribution of aromatic acids in urban aerosols in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176504. [PMID: 39341241 DOI: 10.1016/j.scitotenv.2024.176504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Aromatic acids are an integral component of organic acids in the atmosphere, contributing to the formation of climate-altering brown carbon (BrC). To better understand the sources and formation processes of aromatic acids, we collected size-segregated particulate matter samples in urban Beijing from April 2017 to January 2018, which were analyzed using solvent-extraction followed by gas chromatography/mass spectrometry. Phthalic acid (o-PhA) had the greatest average annual concentration, followed by terephthalic acid (p-PhA), 4-hydroxybenzoic acid (4-OHBA), dehydroabietic acid (DA), syringic acid (SA), 3-hydroxybenzoic acid (3-OHBA), isophthalic acid (m-PhA), and vanillic acid (VA). We identified distinct seasonal variations in aromatic acids, with o-PhA peaking in summer due to photochemical activity, while p-PhA and 4-OHBA elevated in autumn and summer, respectively, influenced by open waste and biomass burning. Wintertime variations in all aromatic acids were driven by complex meteorology and increased anthropogenic emissions, including rural biomass burning for cooking and heating. Particle size distribution of aromatic acids was affected by seasonal agricultural activities and dust storms, multiple emission sources, and formation mechanisms. The o-PhA has predominantly bimodal distribution, with diverse sources and complex formation mechanisms including gas- and aqueous-phase chemistry. The applicability of o-PhA as a tracer for specific secondary organic aerosols has been questioned due to its potential primary sources. The 3-OHBA, 4-OHBA, VA, SA, and DA exhibited bimodal or trimodal patterns during haze and non-haze periods across different particle size ranges. The seasonal variation in VA/SA and VA/4-OHBA ratios demonstrated the complexity of biomass burning types, influenced by season, particle size, meteorological conditions, and combustion sources.
Collapse
Affiliation(s)
- Di Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Shaofeng Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yunchao Lang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Shengjie Hou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lianfang Wei
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiaole Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
8
|
Hoang NMH, Park K. Applications of Tert-Butyl-Phenolic Antioxidants in Consumer Products and Their Potential Toxicities in Humans. TOXICS 2024; 12:869. [PMID: 39771084 PMCID: PMC11679822 DOI: 10.3390/toxics12120869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Tert-butyl phenolic antioxidants (TBP-AOs) are employed to inhibit oxidation and function as stabilizers and protectants in a broad spectrum of consumer products, such as food packaging, adhesives, lubricants, plastics, and cosmetics. The extensive utilization of TBP-AOs results in human exposure through various pathways. Furthermore, some TBP-AOs have been identified as potential endocrine disruptors and may cause liver and lung damage, as well as allergic reactions. Considering their varied applications and potential toxicity, a detailed evaluation of their safety profiles is imperative. However, existing research is often segmented and tends to focus narrowly on specific compounds. Consequently, this review collates recent data on TBP-AOs regarding their production, exposure, and toxicity, incorporating different databases and prior studies, as well as predictions of toxicity using ADMET. Our review strives to offer a comprehensive overview of the characteristics and health effects of TBP-AOs to guide future research and inform policy decisions.
Collapse
Affiliation(s)
| | - Kwangsik Park
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea;
| |
Collapse
|
9
|
Moll E, Chiralt A. Improving Thermo-Sealing of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Blending with Polycaprolactone. Polymers (Basel) 2024; 16:3255. [PMID: 39684000 DOI: 10.3390/polym16233255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a biodegradable biopolymer from the PHAs family that has potential to replace conventional plastics and reduce plastic pollution. However, PHBV has thermo-sealability issues, making it challenging to use for bags. Blending it with polycaprolactone (PCL) could address this but may alter the barrier properties of the films, affecting their effectiveness as food packaging material. This study examined the properties and heat-sealing capacity of PHBV/PCL blend films (ratios: 60/40, 50/50, and 40/60), obtained by melt blending and compression moulding. Both polymers are immiscible and were in separated phases; the continuous phase was PHBV in the 60/40 blend and PCL in the 40/60 blend, while the 50/50 sample exhibited interpenetrating bicontinuous phases of both polymers. The permeability to water vapour, oxygen, and D-limonene increased as the PCL content rose, especially when it formed the continuous phase in the matrix. The elastic modulus and resistance to break decreased, while extensibility increased, more markedly when PCL was the continuous phase. However, the continuity of PCL phase provided the films with better thermal adhesion and seal strength. The 50/50 blend showed the best balance between heat sealability and barrier properties, making it the most suitable for food packaging in sealed bags.
Collapse
Affiliation(s)
- Eva Moll
- Instituto Universitario de Ingeniería de Alimentos (FoodUPV), Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Amparo Chiralt
- Instituto Universitario de Ingeniería de Alimentos (FoodUPV), Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| |
Collapse
|
10
|
Raimondo S, Chiusano ML, Gentile M, Gentile T, Cuomo F, Gentile R, Danza D, Siani L, Crescenzo C, Palmieri M, Iaccarino S, Iaccarino M, Fortunato A, Liguori F, Esposito A, Zullo C, Sosa L, Sosa L, Ferrara I, Piscopo M, Notari T, Lacatena R, Gentile A, Montano L. Comparative analysis of the bioaccumulation of bisphenol A in the blood serum and follicular fluid of women living in two areas with different environmental impacts. Front Endocrinol (Lausanne) 2024; 15:1392550. [PMID: 39439569 PMCID: PMC11495266 DOI: 10.3389/fendo.2024.1392550] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Bisphenol A (BPA) is a common contaminant widely used in many industrial sectors. Because of its wide use and dispersion, it can be accumulated in living human bodies through both oral assumption and nondietary routes. BPA exhibits hormone-like properties, falling under the class of endocrine disruptors; therefore, it can alter relevant physiological functions. In particular, in women, it can affect folliculogenesis and therefore reproduction, contributing not only to infertility, but also to endometriosis and premature puberty. Methods We conducted a multicenter study on 91 women undergoing a first in vitro fertilization (IVF) treatment in the Campania region (Southern Italy). We investigated the presence and concentration of BPA in serum and follicular fluids to assess the effects of airborne BPA contamination. The analysis was conducted on 32 women living in a low environmental impact (LEI) area, from the Sele Valley River and Cilento region, and 59 women living in a high environmental impact (HEI) area, the so-called "Land of Fires", a highly contaminated territory widely exposed to illegal waste practices. Results A higher average BPA content in both blood serum and follicular fluid was revealed in the HEI group when compared with the LEI group. In addition, we revealed higher average BPA content in blood serum than in folliclular fluid in the HEI area, with opposite average content in the two fluids in the LEI zone. In addition, our results also showed a lack of correlation between BPA content in follicular and serum fluids both in the overall population and in the HEI and LEI groups, with peculiar trends in different subsets of women. Conclusion From our results, we revealed a heterogeneity in the distribution of BPA content between serum and follicular fluid. Further studies are needed to unravel the bioaccumulation mechanisms of BPA in highly polluted and nonpolluted areas.
Collapse
Affiliation(s)
- Salvatore Raimondo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Mariacira Gentile
- Residential Program in laboratory Medicine, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Tommaso Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Felice Cuomo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Raffaella Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Domenico Danza
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | - Laura Siani
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | | | | | - Stefania Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | - Mirella Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | | | | | - Antonio Esposito
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | - Clelia Zullo
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | | | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Notari
- Andrology Unit, Check-Up PolyDiagnostics and Research Laboratory, Salerno, Italy
| | - Raffaele Lacatena
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “St. Francis of Assisi Hospital”, Salerno, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
11
|
Rogers K, Jaspers I. ToxPoint: Waste incineration management of plastic materials-an issue of increasing global public health importance. Toxicol Sci 2024:kfae111. [PMID: 39365924 DOI: 10.1093/toxsci/kfae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Affiliation(s)
- Keith Rogers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
12
|
Oh SH, Choe S, Song M, Schauer JJ, Yu GH, Bae MS. Impact of terephthalic acid emissions from intensive nocturnal biomass incineration on oxidative potential in Seoul, South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173587. [PMID: 38810754 DOI: 10.1016/j.scitotenv.2024.173587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
This study investigated the impact of large-scale incineration facilities on PM2.5 levels in Seoul during winter. Due to the challenge of obtaining accurate combustion data from external sources, heat supply records were used as a proxy for combustion activity. To assess health risks, dithiothreitol-oxidative potential (DTT-OP) was analyzed to identify potential hazards to human health. By comparing DTT-OP with PM2.5 sources related to combustion, the study aimed to understand the impact of local pollution sources on human health in Seoul. The diurnal analysis showed that oxidative potential (0.19 μM/m3) and the biomass burning factor (5.53 μg/m3) peaked between 4:00 and 8:00 AM, with lower levels observed from 12:00 to 20:00. A significant correlation was found between combustion sources and oxidative potential, with a high correlation coefficient (r2 = 0.92). The presence of terephthalic acid (TPA) in the Cellulose combustion source profile, which is produced by the pyrolysis of plastics like polyester fiber and polyethylene terephthalate (PET), further supported the link to emissions from incineration facilities. These findings suggest that the biomass burning source is strongly correlated with DTT-OP, indicating a significant association with health risks among various local sources of PM2.5 in Seoul.
Collapse
Affiliation(s)
- Sea-Ho Oh
- Department of Environmental Engineering, Mokpo National University, Muan 58554, Republic of Korea
| | - Seoyeong Choe
- Department of Environmental Engineering, Mokpo National University, Muan 58554, Republic of Korea
| | - Myoungki Song
- Department of Environmental Engineering, Mokpo National University, Muan 58554, Republic of Korea
| | - James J Schauer
- Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison 53705, USA
| | - Geun-Hye Yu
- Department of Environmental Engineering, Mokpo National University, Muan 58554, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan 58554, Republic of Korea.
| |
Collapse
|
13
|
Shang L, Dong Z, Li Z, Wang M, Kong Z, Li X, Zhang R. Abundance and sources of particulate polycyclic aromatic hydrocarbons and aromatic acids at an urban site in central China. J Environ Sci (China) 2024; 142:155-168. [PMID: 38527881 DOI: 10.1016/j.jes.2023.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 03/27/2024]
Abstract
We conducted a simultaneous field study of PM2.5-bound particulate polycyclic aromatic hydrocarbons (PAHs) and aromatic acids (AAs) in a polluted city Zhengzhou to explore the concentration, sources and potential conversion pathways between PAHs and AAs in different seasons. The average concentrations of PM2.5, 28PAHs and 8AAs during the sampling period were 77 µg/m3, 75 ng/m3, and 283 ng/m3, respectively. The concentration of both 28PAHs and 8AAs were highest in winter and lowest in summer with ratios of 6.3 and 2.3, respectively. PAHs with 5-7 rings were the main components of PAHs (52%), followed by 4 rings PAHs (30%) and 2-3 rings PAHs (18%). According to the source appointment results obtained by positive matrix factorization, the main sources of PAHs were combustion and vehicle emissions, which account for 37% and 34%, respectively. 8AAs were divided into three groups, including four benzene dicarboxylic acids (B2CAs), three benzene tricarboxylic acids (B3CAs) and one benzene tetracarboxylic acid (B4CA). And interspecies correlation analysis with PM2.5 source markers were used to investigate potential sources. Phthalic acid (o-Ph) was the most abundant specie of 8AAs (157 ng/m3, 55% of 8AAs), which was well correlated with sulfate. Meanwhile, B3CAs and B4CA were highly correlated with sulfate and weakly correlated with levoglucosan, suggesting that secondary formation was their main source. As logical oxidation products of PAHs, o-Ph and B3CAs showed good correlations with a number of PAHs, indicating possible photochemical oxidation pathway by PAHs. In addition, O3, NO2, temperature and relative humidity have positive effects on the secondary formation of B3CAs.
Collapse
Affiliation(s)
- Luqi Shang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zihan Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingkai Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zihan Kong
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ruiqin Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Rogers K, WaMaina E, Barber A, Masood S, Love C, Kim YH, Gilmour MI, Jaspers I. Emissions from plastic incineration induce inflammation, oxidative stress, and impaired bioenergetics in primary human respiratory epithelial cells. Toxicol Sci 2024; 199:301-315. [PMID: 38539046 PMCID: PMC11131019 DOI: 10.1093/toxsci/kfae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Inhalation exposure to plastic incineration emissions (PIEs) is a problem of increasing human relevance, as plastic production and waste creation have drastically increased since mainstream integration during the 20th century. We investigated the effects of PIEs on human nasal epithelial cells (HNECs) to understand if such exposures cause damage and dysfunction to respiratory epithelia. Primary HNECs from male and female donors were cultured at air-liquid interface (ALI), and 16HBE cells were cultured on coverslips. Smoke condensates were generated from incineration of plastic at flaming (640°C) and smoldering (500°C) temperatures, and cells were subsequently exposed to these materials at 5-50 μg/cm2 concentrations. HNECs were assessed for mitochondrial dysfunction and 16HBE cells for glutathione oxidation in real-time analyses. HNEC culture supernatants and total RNA were collected at 4-h postexposure for cytokine and gene expression analysis, and results show that PIEs can acutely induce inflammation, oxidative stress, and mitochondrial dysfunction in HNECs, and that incineration temperature modifies biological responses. Specifically, condensates from flaming and smoldering PIEs significantly increased HNEC secretion of cytokines IL-8, IL-1β, and IL-13, as well as expression of xenobiotic metabolism pathways and genes such as CYP1A1 and CYP1B1 at 5 and 20 μg/cm2 concentrations. Only 50 μg/cm2 flaming PIEs significantly increased glutathione oxidation in 16HBEs, and decreased respiration and ATP production in HNEC mitochondria. Impact Statement: Our data reveal the impact of incineration temperatures on biological outcomes associated with PIE exposures, emphasizing the importance of temperature as a factor when evaluating respiratory disease associated with PIEs exposure.
Collapse
Affiliation(s)
- Keith Rogers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA
| | | | - Andrew Barber
- North Carolina Central University, Durham, North Carolina 27707, USA
| | - Syed Masood
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA
| | - Charlotte Love
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Ilona Jaspers
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
15
|
Argamino CRA, Sebben BG, da Costa G, Towers S, Bogush A, Stevanovic S, Godoi RHM, Kourtchev I. Development and validation of a GC Orbitrap-MS method for the analysis of phthalate esters (PAE) and bis(2-ethylhexyl)adipate (DEHA) in atmospheric particles and its application for screening PM 2.5 from Curitiba, Brazil. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1579-1592. [PMID: 38407576 DOI: 10.1039/d3ay02197a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Phthalates or phthalic acid esters (PAE) and bis(2-ethylhexyl)adipate (DEHA) are ubiquitous chemicals often used as plasticisers and additives in many industrial products and are classified as both persistent organic pollutants (POPs) and new emerging pollutants (NEPs). Exposure to these chemicals, especially through inhalation, is linked to a wide range of negative health effects, including endocrine disruption. Air particulate matter (PM) with an aerodynamic diameter ≤ 2.5 μm can be enriched with PAEs and DEHA and if inhaled can cause multi-system human toxicity. Therefore, proper monitoring of PAEs and DEHA in PM is required to assess human exposure to these pollutants. In this work, we developed and validated a new and sensitive gas-chromatography high-resolution mass spectrometry (GC-HRMS) method for targeted analysis of PAEs including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), bis(2-ethylhexyl)adipate (DEHA), bis(2-ethylhexyl)phthalate (DEHP), di-n-octyl phthalate (DOP), in PM. Analytical aspects including sample preparation steps and GC-HRMS parameters, e.g., quadrupole isolation window, to enhance method sensitivity have been assessed. The estimated limit of detection (LODs) of target PAEs and DEHA ranged from 5.5 to 17 pg μL-1, allowing their trace-level detection in PM. Extraction efficiencies of 78-101% were obtained for the target compounds. Low DMP and DEP extraction efficiencies from the spiked filter substrates indicated that significant losses of higher volatility PAEs can occur during the sample collection when filter-based techniques are used. This work is the first targeted method based on GC-Orbitrap MS for PAEs and DEHA in environmental samples. The validated method was successfully applied for the targeted analysis of PAEs and DEHA in PM2.5 samples from the eighth most populous city in Brazil, Curitiba. This work is the first to report DBP, DEHA, DEHP, and DOP in urban PM from Brazil. The observed concentrations of PAEs (up to 29 ng m-3) in PM2.5 from Curitiba may not represent the extent of pollution by these toxic compounds since the analysed samples were collected during a COVID-19 restriction when anthropogenic activities were reduced.
Collapse
Affiliation(s)
- Cristian Ryan A Argamino
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
- School of Engineering, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3220, Australia
| | - Bruna G Sebben
- Environmental Engineering Department, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Gabriela da Costa
- Environmental Engineering Department, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Sam Towers
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
| | - Anna Bogush
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
| | - Svetlana Stevanovic
- School of Engineering, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3220, Australia
| | - Ricardo H M Godoi
- Environmental Engineering Department, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Ivan Kourtchev
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
| |
Collapse
|
16
|
Canez CR, Li L. Studies of Labware Contamination during Lipid Extraction in Mass Spectrometry-Based Lipidome Analysis. Anal Chem 2024; 96:3544-3552. [PMID: 38359325 DOI: 10.1021/acs.analchem.3c05431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
In lipidomic analysis, plasticware is increasingly being used for lipid extraction and other sample processing procedures over glassware. However, a systematic investigation of the consequences of plasticware use on mass spectrometry (MS)-based lipidome analysis is lacking. In this work, we present an analytical approach for detecting and comparing solvent and labware contaminants encountered in lipidomic workflows. It is shown that the contaminant profiles varied widely between microcentrifuge tubes from different manufacturers. The most suitable polypropylene tubes tested introduced 847 labware-originating contaminant m/z's when three different manufacturing batches were tested for Folch lipid extractions. Of particular concern is that 21 primary amide and fatty acid surfactants were introduced that were identical to biological endogenous lipids, 16 of which had not been previously reported as leachables from polypropylene materials. Alternatively, the use of borosilicate glassware and PTFE-lined screw caps introduced 98 different contaminant m/z's across three manufacturing batches tested for Folch extractions. Despite the overwhelming number of labware contaminants introduced, current databases and literature only facilitated the identification of 32 contaminants. To address the dearth of publicly available contaminant information, we provide a comprehensive labware contamination repository containing high-resolution m/z values, adductation information, retention times, and MS/MS spectra. This resource should prove to be valuable for researchers in detecting and distinguishing contaminants from analytes of interest. A companion paper presents a detailed study of how labware contamination can lead to ion-suppression effects on coeluting lipids and interference in the analysis of endogenous lipids, such as those from human sera.
Collapse
Affiliation(s)
- Carlos R Canez
- Department of Chemistry, University of Alberta, Edmonton, AlbertaT6G 2G2, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AlbertaT6G 2G2, Canada
| |
Collapse
|
17
|
Rajeev P, Gupta T, Marynowski L. Neutral saccharides and hemicellulose over two urban sites in Indo-Gangetic Plain and Central Europe during winter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168849. [PMID: 38056638 DOI: 10.1016/j.scitotenv.2023.168849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/01/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Saccharides are ubiquitous organic compounds that are omnipresent in nature and are considered tracers of aerosol sources. Saccharides and hemicellulose were analyzed in the aerosols of two polluted regions (Allahabad, India and Sosnowiec, Poland). The chemical compositions of the compounds and their abundances were significantly different at the two sites. Levoglucosan was the most dominant saccharide present at both sites. Galactosan, anhydroglucofuranose, mannosan, glucose, arabitol, D-pinitol, sucrose, and trehalose were found in Allahabad samples in high abundance but were significantly lower than levoglucosan. Mannosan, galactosan, arabinose, glycerol, and sucrose were significant compounds in Sosnowiec after dominating levoglucosan. The major sources of saccharides present in the Allahabad aerosols are hardwood and agricultural waste-burning emissions, whereas those at Sosnowiec are attributed to the burning of softwood (mainly gymnosperm trees), pine needles, or sporadically grass during the winter. Further, the chemical characteristics of hemicellulose remnants present in ambient aerosol at the Indian and European sites were analyzed and discussed. At both locations, hemicellulose was found using methanolysis of the filter samples; however, its state of preservation was poor. We believe that the primary sources of hemicellulose remnants are incomplete wood burning, crop straw, grass burning, or plant debris. Relatively poor preservation is associated with partial hemicellulose degradation when exposed to elevated temperatures or due to the oxidation and microbial degradation of plant fragments.
Collapse
Affiliation(s)
- Pradhi Rajeev
- Faculty of Natural Sciences, University of Silesia in Katowice, Sosnowiec 41-200, Poland; Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Patna 801106, India
| | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Leszek Marynowski
- Faculty of Natural Sciences, University of Silesia in Katowice, Sosnowiec 41-200, Poland.
| |
Collapse
|
18
|
Park J, Lee KH, Kim H, Woo J, Heo J, Jeon K, Lee CH, Yoo CG, Hopke PK, Koutrakis P, Yi SM. Analysis of PM 2.5 inorganic and organic constituents to resolve contributing sources in Seoul, South Korea and Beijing, China and their possible associations with cytokine IL-8. ENVIRONMENTAL RESEARCH 2024; 243:117860. [PMID: 38072108 DOI: 10.1016/j.envres.2023.117860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 02/06/2024]
Abstract
China and South Korea are the most polluted countries in East Asia due to significant urbanization and extensive industrial activities. As neighboring countries, collaborative management plans to maximize public health in both countries can be helpful in reducing transboundary air pollution. To support such planning, PM2.5 inorganic and organic species were determined in simultaneously collected PM2.5 integrated filters. The resulting data were used as inputs to positive matrix factorization, which identified nine sources at the ambient air monitoring sites in both sites. Secondary nitrate, secondary sulfate/oil combustion, soil, mobile, incinerator, biomass burning, and secondary organic carbon (SOC) were found to be sources at both sampling sites. Industry I and II were only identified in Seoul, whereas combustion and road dust sources were only identified in Beijing. A subset of samples was selected for exposure assessment. The expression levels of IL-8 were significantly higher in Beijing (167.7 pg/mL) than in Seoul (72.7 pg/mL). The associations between the PM2.5 chemical constituents and its contributing sources with PM2.5-induced inflammatory cytokine (interleukin-8, IL-8) levels in human bronchial epithelial cells were investigated. For Seoul, the soil followed by the secondary nitrate and the biomass burning showed increase with IL-8 production. However, for the Beijing, the secondary nitrate exhibited the highest association with IL-8 production and SOC and biomass burning showed modest increase with IL-8. As one of the highest contributing sources in both cities, secondary nitrate showed an association with IL-8 production. The soil source having the strongest association with IL-8 production was found only for Seoul, whereas SOC showed a modest association only for Beijing. This study can provide the scientific basis for identifying the sources to be prioritized for control to provide effective mitigation of particulate air pollution in each city and thereby improve public health.
Collapse
Affiliation(s)
- Jieun Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Boston, MA, 02215, USA
| | - Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyewon Kim
- Incheon Regional Customs, Korea Customs Service, 70, Gonghangdong-ro 193 Beon-gil Jung-gu, Incheon, 22381, Republic of Korea
| | - Jisu Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jongbae Heo
- Busan Development Institute, 955 Jungangdae-ro, Busanjin-gu, Busan, 47210, Republic of Korea
| | - Kwonho Jeon
- Climate and Air Quality Research, Department Global Environment Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Boston, MA, 02215, USA
| | - Seung-Muk Yi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Villacura L, Sánchez LF, Catalán F, Toro A R, Leiva G MA. An overview of air pollution research in Chile: Bibliometric analysis and scoping review, challenger and future directions. Heliyon 2024; 10:e25431. [PMID: 38327474 PMCID: PMC10847656 DOI: 10.1016/j.heliyon.2024.e25431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
This study provides a comprehensive overview and bibliometric analysis of air pollution research in Chile from 1980 to 2022. The analysis reveals a significant increase in scientific production, a 9.2 annual growth rate, and an H-index of 60. The research spans 33 countries and is influenced by environmental sciences, meteorology, and atmospheric sciences journals. The top ten authors account for 33.49 % of all publications, with local institutions contributing more than 35 %. The University of Chile and the Pontifical Catholic University of Chile are significant contributors. The most cited articles focus on health impacts and various pollutant sources, emphasizing air pollution as a critical public health concern. The study also emphasizes environmental science, meteorology, and atmospheric science, focusing on topics such as air pollution and health, pollutants, models, sources and chemistry, and social sciences. The findings are affirmed through rigorous discussion and review, providing a roadmap for future research, guiding decision-making processes, and expanding the knowledge frontier in the field.
Collapse
Affiliation(s)
- Loreto Villacura
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Luis Felipe Sánchez
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Francisco Catalán
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Richard Toro A
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Manuel A. Leiva G
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| |
Collapse
|
20
|
Huang YQ, Zeng Y, Mai JL, Huang ZS, Guan YF, Chen SJ. Disposable Plastic Waste and Associated Antioxidants and Plasticizers Generated by Online Food Delivery Services in China: National Mass Inventories and Environmental Release. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38316131 DOI: 10.1021/acs.est.3c06345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
China's online food delivery (OFD) services consume enormous amounts of disposable plastics. Here, we investigated and modeled the national mass inventories and environmental release of plastics and chemical additives in the plastic. The extra-tree regression identified six key descriptors in determining OFD sales in Chinese cities. Approximately 847 kt of OFD plastic waste was generated in 2021 (per capita 1.10 kg/yr in the megacities and 0.39 kg/yr in other cities). Various additives were extensively detected, with geomean concentrations of 140.96, 4.76, and 0.25 μg/g for ∑8antioxidants, ∑21phthalates, and bisphenol A (BPA), respectively. The estimated mass inventory of these additives in the OFD plastics was 164.7 t, of which 51.1 t was released into the atmosphere via incineration plants and 51.0 t was landfilled. The incineration also released 8.07 t of polycyclic aromatic hydrocarbons and 39.1 kt of particulate matter into the atmosphere. Takeout food may increase the dietary intake of phthalates and BPA by 30% to 50% and raise concerns about considerable exposure to antioxidant transformation products. This study provides profound environmental implications for plastic waste in the Chinese OFD industry. We call for a sustainable circular economy action plan for waste disposal, but mitigating the hazardous substance content and their emissions is urgent.
Collapse
Affiliation(s)
- Yu-Qi Huang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuan Zeng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jin-Long Mai
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhen-Shan Huang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu-Feng Guan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - She-Jun Chen
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
21
|
Alijagic A, Kotlyar O, Larsson M, Salihovic S, Hedbrant A, Eriksson U, Karlsson P, Persson A, Scherbak N, Färnlund K, Engwall M, Särndahl E. Immunotoxic, genotoxic, and endocrine disrupting impacts of polyamide microplastic particles and chemicals. ENVIRONMENT INTERNATIONAL 2024; 183:108412. [PMID: 38183898 DOI: 10.1016/j.envint.2023.108412] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Due to their exceptional properties and cost effectiveness, polyamides or nylons have emerged as widely used materials, revolutionizing diverse industries, including industrial 3D printing or additive manufacturing (AM). Powder-based AM technologies employ tonnes of polyamide microplastics to produce complex components every year. However, the lack of comprehensive toxicity assessment of particulate polyamides and polyamide-associated chemicals, especially in the light of the global microplastics crisis, calls for urgent action. This study investigated the physicochemical properties of polyamide-12 microplastics used in AM, and assessed a number of toxicity endpoints focusing on inflammation, immunometabolism, genotoxicity, aryl hydrocarbon receptor (AhR) activation, endocrine disruption, and cell morphology. Specifically, microplastics examination by means of field emission scanning electron microscopy revealed that work flow reuse of material created a fraction of smaller particles with an average size of 1-5 µm, a size range readily available for uptake by human cells. Moreover, chemical analysis by means of gas chromatography high-resolution mass spectrometry detected several polyamide-associated chemicals including starting material, plasticizer, thermal stabilizer/antioxidant, and migrating slip additive. Even if polyamide particles and chemicals did not induce an acute inflammatory response, repeated and prolonged exposure of human primary macrophages disclosed a steady increase in the levels of proinflammatory chemokine Interleukin-8 (IL-8/CXCL-8). Moreover, targeted metabolomics disclosed that polyamide particles modulated the kynurenine pathway and some of its key metabolites. The p53-responsive luciferase reporter gene assay showed that particles per se were able to activate p53, being indicative of a genotoxic stress. Polyamide-associated chemicals triggered moderate activation of AhR and elicited anti-androgenic activity. Finally, a high-throughput and non-targeted morphological profiling by Cell Painting assay outlined major sites of bioactivity of polyamide-associated chemicals and indicated putative mechanisms of toxicity in the cells. These findings reveal that the increasing use of polyamide microplastics may pose a potential health risk for the exposed individuals, and it merits more attention.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro SE-701 82, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro SE-701 82, Sweden.
| | - Oleksandr Kotlyar
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden; Centre for Applied Autonomous Sensor Systems (AASS), Mobile Robotics and Olfaction Lab (MRO), Örebro University, SE-701 82 Örebro, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden
| | - Samira Salihovic
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro SE-701 82, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro SE-701 82, Sweden
| | - Alexander Hedbrant
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro SE-701 82, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro SE-701 82, Sweden
| | - Ulrika Eriksson
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden
| | - Patrik Karlsson
- Department of Mechanical Engineering, Örebro University, Örebro SE-701 82, Sweden
| | - Alexander Persson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro SE-701 82, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro SE-701 82, Sweden
| | - Nikolai Scherbak
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden
| | | | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro SE-701 82, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro SE-701 82, Sweden
| |
Collapse
|
22
|
Wang H, Li C, Yan G, Zhang Y, Wang H, Dong W, Chu Z, Chang Y, Ling Y. Seasonal distribution characteristics and ecological risk assessment of phthalate esters in surface sediment of Songhua River basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122567. [PMID: 37717898 DOI: 10.1016/j.envpol.2023.122567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Phthalic acid esters (PAEs) are typical industrial chemicals used in China. PAEs have received considerable attention because of their ubiquity and potential hazard to humans and the ecology. The spatiotemporal distributions of six PAEs in the surface sediments of the Songhua River in the spring (March), summer (July), and autumn (September) are investigated in this study. The total concentration of phthalic acid esters (∑6PAEs) ranges from 1.62 × 102 ng g-1 dry weight (dw) to 3.63 × 104 ng g-1·dw, where the amount in the spring is substantially higher (p < 0.01) than those in the autumn and summer. Seasonal variations in PAEs may be due to rainfall and temperature. The ∑6PAEs in the Songhua River's upper reaches are significantly higher than those in the middle and lower reaches (p < 0.05). Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are the two most abundant PAEs. The ecological hazard of five PAEs is assessed using the hazard quotient method. DBP and DEHP pose moderate or high ecological risks to aquatic organisms at various trophic levels. PAEs originate primarily from industrial, agricultural, and domestic sources. Absolute principal components-multiple linear regression results indicate that agricultural sources are the most dominant contributor to the ∑6PAEs (53.7%). Guidelines for controlling PAEs pollution in the Songhua River are proposed.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| |
Collapse
|
23
|
James BD, Reddy CM, Hahn ME, Nelson RK, de Vos A, Aluwihare LI, Wade TL, Knap AH, Bera G. Fire and Oil Led to Complex Mixtures of PAHs on Burnt and Unburnt Plastic during the M/V X-Press Pearl Disaster. ACS ENVIRONMENTAL AU 2023; 3:319-335. [PMID: 37743953 PMCID: PMC10515710 DOI: 10.1021/acsenvironau.3c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 09/26/2023]
Abstract
In May 2021, the M/V X-Press Pearl container ship burned for 2 weeks, leading to the largest maritime spill of resin pellets (nurdles). The disaster was exacerbated by the leakage of other cargo and the ship's underway fuel. This disaster affords the unique opportunity to study a time-stamped, geolocated release of plastic under real-world conditions. Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles exposed to heat and combustion, burnt plastic pieces (pyroplastic), and oil-plastic agglomerates (petroplastic). An unresolved question is whether the 1600+ tons of spilled and recovered plastic should be considered hazardous waste. Due to the known formation and toxicity of combustion-derived polycyclic aromatic hydrocarbons (PAHs), we measured 20 parent and 21 alkylated PAHs associated with several types of spilled plastic. The maximum PAH content of the sampled pyroplastic had the greatest amount of PAHs recorded for marine plastic debris (199,000 ng/g). In contrast, the sampled unburnt white nurdles had two orders of magnitude less PAH content. The PAH composition varied between the types of spilled plastic and presented features typical of and conflicting with petrogenic and pyrogenic sources. Nevertheless, specific markers and compositional changes for burning plastics were identified, revealing that the fire was the main source of PAHs. Eight months after the spill, the PAH contents of sampled stray nurdles and pyroplastic were reduced by more than 50%. Due to their PAH content exceeding levels allowable for plastic consumer goods, classifying burnt plastic as hazardous waste may be warranted. Following a largely successful cleanup, we recommend that the Sri Lankans re-evaluate the identification, handling, and disposal of the plastic debris collected from beaches and the potential exposure of responders and the public to PAHs from handling it. The maritime disaster underscores pyroplastic as a type of plastic pollution that has yet to be fully explored, despite the pervasiveness of intentional and unintentional burning of plastic globally.
Collapse
Affiliation(s)
- Bryan D. James
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Biology
Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Christopher M. Reddy
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Mark E. Hahn
- Biology
Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Robert K. Nelson
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Asha de Vos
- Oceanswell, 9 Park Gardens, Colombo 00500, Sri Lanka
- The
Oceans Institute, University of Western
Australia, 35 Stirling
Highway, Perth, WA 6009, Australia
| | - Lihini I. Aluwihare
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Terry L. Wade
- Geochemical
and Environmental Research Group, Texas
A&M University, College Station, Texas 77845, United States
- Department
of Oceanography, Texas A&M University, College Station, Texas 77843, United States
| | - Anthony H. Knap
- Geochemical
and Environmental Research Group, Texas
A&M University, College Station, Texas 77845, United States
- Department
of Oceanography, Texas A&M University, College Station, Texas 77843, United States
- Department
of Ocean Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Gopal Bera
- Geochemical
and Environmental Research Group, Texas
A&M University, College Station, Texas 77845, United States
| |
Collapse
|
24
|
Muhib MI, Rahman MM. Microplastics contamination in fish feeds: Characterization and potential exposure risk assessment for cultivated fish of Bangladesh. Heliyon 2023; 9:e19789. [PMID: 37809616 PMCID: PMC10559114 DOI: 10.1016/j.heliyon.2023.e19789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Fish feed is becoming an increasingly vital source of nourishment for farmed fish, which are mainly coming from marine fish and agricultural sources. Anthropogenic particles, such as microplastics, are abundant in both marine fish and agricultural byproducts that are utilized to make fish feed. This study investigated whether fish feed could be a source of microplastic contamination, and revealed that a 20 weeks adult farmed tilapia fish might consume up to 268.45 ± 1.438 microplastic particles via fish feed where finisher type feeds were found to be mostly contributory in this number. The microplastics were initially observed with a stereomicroscope and FESEM-EDS. Polymeric composition of microplastics was determined to be polypropylene (PP), nylon-6 (NY-6), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl alcohol (PVA), polyethylene (PE), high- and low-density polyethylene (HDPE, LDPE), ethylene vinyl acetate (EVA), polycarbonate (PC), poly vinyl acetate (PVAc), poly urethane (PU) and polyvinyl chloride (PVC) by FTIR. Results also revealed that the size of microplastic particles in all fish feed ranged from 14 μm to 4480 μm, with 550 ± 45.45 to 11,600 ± 56.1 microplastic particles/kg of fish feed. The FESEM-EDS data demonstrated to overlook the microplastic surface along with attachment of heavy metals onto that surface such as Pb, Ni, and Co in finisher type feed that could create additional health risks.
Collapse
Affiliation(s)
- Md Iftakharul Muhib
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| |
Collapse
|
25
|
Khishdost M, Dobaradaran S, Goudarzi G, Takdastan A, Babaei AA. Contaminant occurrence, distribution and ecological risk assessment of phthalate esters in the Persian Gulf. PLoS One 2023; 18:e0287504. [PMID: 37418450 PMCID: PMC10328224 DOI: 10.1371/journal.pone.0287504] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/04/2023] [Indexed: 07/09/2023] Open
Abstract
Due to the increasing population of the world, the presence of harmful compounds, especially phthalate esters (PAEs), are one of the important problems of environmental pollution. These compounds are known as carcinogenic compounds and Endocrine-disrupting chemicals (EDCs) for humans. In this study, the occurrence of PAEs and the evaluation of its ecological risks were carried out in the Persian Gulf. Water samples were collected from two industrial sites, a rural site and an urban site. Samples were analyzed using magnetic solid phase extraction (MSPE) and gas chromatography-mass spectrometry (GC/MS) technique to measure seven PAEs including Di(2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), diethyl phthalate (DEP), dibutyl phthalate (DBP), Dimethyl phthalate (DMP), di-n-octyl phthalate (DNOP), and Di-iso-butyl phthalate (DIBP). The BBP was not detected in any of the samples. The total concentration of six PAEs (Σ6PAEs) ranged from 7.23 to 23.7 μg/L, with a mean concentration of 13.7μg/L. The potential ecological risk of each target PAEs was evaluated by using the risk quotient (RQ) method in seawater samples, and the relative results declined in the sequence of DEHP >DIBP > DBP > DEP > DMP in examined water samples. DEHP had a high risk to algae, crustaceans and fish at all sites. While DMP and DEP showed lower risk for all mentioned trophic levels. The results of this study will be helpful for the implementation of effective control measures and remedial strategies for PAEs pollution in the Persian Gulf.
Collapse
Affiliation(s)
- Maria Khishdost
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Gholamreza Goudarzi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Takdastan
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Babaei
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
26
|
Xu Y, Hu Y, Wang X, Wei X, Zhu Q, Hu L, Liao C, Jiang G. Profiles of novel high-molecular-weight synthetic antioxidants in urine and associated child exposure in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161844. [PMID: 36716867 DOI: 10.1016/j.scitotenv.2023.161844] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study is to investigate the exposure of novel high-molecular-weight (HMW) synthetic antioxidants (AOs), including nine synthetic phenolic antioxidants (SPAs), one low-molecular-weight (LMW) SPA, two organophosphite antioxidants (OPAs) as well as one transformation product in children's urine from eastern (n = 82) and western (n = 105) China. For the first time, all analytes were detected in children's urine such as the representative HMW SPAs pentaerythritol tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate) (AO1010, median = 0.447 ng/mL), octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate (AO1076, median = 0.0300 ng/mL), and 1,3,5-tris[(3,5-di-tert-butyl-4-hydroxyphenyl)methyl]-1,3,5-triazinane-2,4,6-trione(1,2-dioxoethylene)bis(iminoethylene) (AO3114, median = 0.0166 ng/mL) and representative OPAs bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite (AO626, median = 0.00216 ng/mL), tris(2,4-di-tert-butylphenyl) phosphite (AO168, median = 0.0296 ng/mL) as well as its transformation product tris(2,4-di-tert-butylphenyl) phosphate (AO168O, median = 1.53 ng/mL). Significant differences were observed in the concentrations of AO1010, AO3114, AO168, and AO168O between urine samples from eastern and western China (p < 0.01). The high-frequency combination of AOs from binary to a mixture of six AOs was acquired, which would provide a better investigation of the mixture toxicity. The high estimated daily intakes of AO1010 (85.4 ng/kg/day), AO1076 (10.2 ng/kg/day), AO3114 (4.50 ng/kg/day), and AO168 (1231 ng/kg/day) were less than the values of the tolerable daily intake (3,020,000, 1,500,000, 10,000,000, and 580,000 ng/kg/day for AO1010, AO1076, AO3114, and AO168, respectively), indicating low health risk to children. Our findings showed the co-occurrence of those novel AOs and transformation products in children, the overall risks associated with the mixture of transformation products and the mixture with other emerging pollutants need to be considered when assessing the risks of AOs in further studies.
Collapse
Affiliation(s)
- Yaqian Xu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianping Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Chunyang Liao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| |
Collapse
|
27
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
28
|
Zhang Q, Wang Y, Gao M, Li Y, Zhao L, Yao Y, Chen H, Wang L, Sun H. Organophosphite Antioxidants and Novel Organophosphate Esters in Dust from China: Large-Scale Distribution and Heterogeneous Phototransformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4187-4198. [PMID: 36848063 DOI: 10.1021/acs.est.2c08239] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A large-scale survey was conducted by measuring five organophosphite antioxidants (OPAs) and three novel organophosphate esters (NOPEs) in 139 dust samples across China. The median summed concentrations of OPAs and NOPEs in outdoor dust were 33.8 ng/g (range: 0.12-53,400 ng/g) and 7990 ng/g (2390-27,600 ng/g), respectively. The dust concentrations of OPAs associated with the increasing economic development and population density from western to eastern China, whereas the NOPE concentration in Northeast China (median, 11,900 ng/g; range, 4360-16,400 ng/g) was the highest. Geographically, the distribution of NOPEs was significantly associated with annual sunshine duration and precipitation at each sampling site. Results of laboratory experiments further revealed that the simulated sunlight irradiation promoted the heterogeneous phototransformation of OPAs in dust, and this process was accelerated with the existence of reactive oxygen species and enhanced relative humidity. Importantly, during this phototransformation, the hydroxylated, hydrolyzed, dealkylated, and methylated products, e.g., bis(2,4-di-tert-butylphenyl) methyl phosphate, were identified by nontargeted analysis, part of which were estimated to be more toxic than their parent compounds. The heterogeneous phototransformation pathway of OPAs was suggested accordingly. For the first time, the large-scale distribution of OPAs and NOPEs and the phototransformation of these "new chemicals" in dust were revealed.
Collapse
Affiliation(s)
- Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yongcheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
29
|
Pandey P, Dhiman M, Kansal A, Subudhi SP. Plastic waste management for sustainable environment: techniques and approaches. WASTE DISPOSAL & SUSTAINABLE ENERGY 2023; 5:1-18. [PMID: 37359812 PMCID: PMC9987405 DOI: 10.1007/s42768-023-00134-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 03/08/2023]
Abstract
Excessive exploitation, negligence, non-degradable nature, and physical and chemical properties of plastic waste have resulted in a massive pollution load into the environment. Consequently, plastic entres the food chain and can cause serious health issues in aquatic animals and humans. The present review summarizes currently reported techniques and approaches for the removal of plastic waste. Many techniques, such as adsorption, coagulation, photocatalysis, and microbial degradation, and approaches like reduction, reuse and recycling are potentially in trend and differ from each other in their efficiency and interaction mechanism. Moreover, substantial advantages and challenges associated with these techniques and approaches are highlighted to develop an understanding of the selection of possible ways for a sustainable future. Nevertheless, in addition to the reduction of plastic waste from the ecosystem, many alternative opportunities have also been explored to cash plastic waste. These fields include the synthesis of adsorbents for the removal of pollutants from aqueous and gaseous stream, their utility in clothing, waste to energy and fuel and in construction (road making). Substantial evidence can be observed in the reduction of plastic pollution from various ecosystems. In addition, it is important to develop an understanding of factors that need to be emphasized while considering alternative approaches and opportunities to cash plastic waste (like adsorbent, clothing, waste to energy and fuel). The thrust of this review is to provide readers with a comprehensive overview of the development status of techniques and approaches to overcome the global issue of plastic pollution and the outlook on the exploitation of this waste as resources.
Collapse
Affiliation(s)
- Prashant Pandey
- Uttarakhand Pollution Control Board, Gaura Devi Paryavaran Bhawan, IT Park, Sahastradhara Road, Dehradun, Uttarakhand 248001 India
| | - Manisha Dhiman
- School of Management, IMS Unison University, Makkawala Greens, Mussoorie Road, Dehradun, Uttarakhand 248001 India
| | - Ankur Kansal
- Uttarakhand Pollution Control Board, Gaura Devi Paryavaran Bhawan, IT Park, Sahastradhara Road, Dehradun, Uttarakhand 248001 India
| | - Sarada Prasannan Subudhi
- Uttarakhand Pollution Control Board, Gaura Devi Paryavaran Bhawan, IT Park, Sahastradhara Road, Dehradun, Uttarakhand 248001 India
| |
Collapse
|
30
|
Zhao A, Wei C, Xin Y, Wang X, Zhu Q, Xie J, Ma H, Xu J, Wang M. Pollution profiles, influencing factors, and source apportionment of target and suspect organophosphate esters in ambient air: A case study in a typical city of Northern China. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130373. [PMID: 36427485 DOI: 10.1016/j.jhazmat.2022.130373] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Organophosphate esters (OPEs) are attracting attention because they pose risks to biota, including humans. Little research has been performed into the environmental fates of OPEs in the atmosphere. Here, target/suspect OPEs were determined in 122 atmosphere samples (gas phase (n = 31), PM2.5 (n = 30), PM10 (n = 30), and total suspended particles (n = 31)) from a city in Northern China. Pollution profiles were established, influencing factors identified, and sources apportioned. We found 12 target OPEs and 29 suspect OPEs. The target and suspect OPE concentrations in the ambient air samples were 2.2-172.5 and 0.7-53.9 ng/m3, respectively. Tris(chloroethyl) phosphate, tris(1-chloro-2-propyl) phosphate, and tris(2,4-di-t-butylphenyl) phosphate were the dominant OPEs in all samples. The OPEs were not in equilibrium, indicated by a multi-parameter linear free energy relationship model. The air quality index and OPE concentrations significantly correlated, indicating that OPE pollution is often more serious during weather with worse air quality. The target and suspect screening strategy and a positive matrix factorization model allowed OPE sources to be apportioned, improving our understanding of OPE sources. The four dominant sources were (1) construction, (2) indoor emissions, (3) the plastic industry and industrial activities, and (4) traffic emissions, textiles, and foam products.
Collapse
Affiliation(s)
- Ang Zhao
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Chao Wei
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
| | - Yue Xin
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xiaoli Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Qingqing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jixing Xie
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Haiyun Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Jianzhong Xu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Mei Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China.
| |
Collapse
|
31
|
Cook E, Derks M, Velis CA. Plastic waste reprocessing for circular economy: A systematic scoping review of risks to occupational and public health from legacy substances and extrusion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160385. [PMID: 36427715 DOI: 10.1016/j.scitotenv.2022.160385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The global plastics reprocessing sector is likely expand as the circular economy becomes more established and efforts to curb plastic pollution increase. Via a critical systematic scoping review (PRISMA-ScR), we focused on two critical challenges for occupational and public health that will require consideration along with this expansion: (1) Legacy contamination in secondary plastics, addressing the risk of materials and substances being inherited from the previous use and carried (circulated or transferred) through into new products when reprocessed material enters its subsequent use phase (recycled, secondary plastic); and, (2) Extrusion of secondary plastics during the final stage of conventional mechanical reprocessing. Based on selected literature, we semi-quantitatively assessed nine risk scenarios and ranked them according to the comparative magnitude of risk to human health. Our analysis highlights that despite stringent regulation, industrial diligence and enforcement, occasionally small amounts of potentially hazardous substances contained in waste plastics are able to pass through established safeguards and re-enter (cascade into) the next use phase (product cycle) after being recycled. Although many of these 'inherited' chemical substances are present at concentrations unlikely to pose a serious and imminent threat, their existence may indicate a wider or possible increase in pollution dispersion. Our assessment indicates that the highest risk results from exposure to these substances during extrusion by mechanical reprocessors in contexts where only passive ventilation, dilution and dispersion are used as control measures. Our work sets the basis to inform improved future risk management protocols for a non-polluting circular economy for plastics.
Collapse
Affiliation(s)
- Ed Cook
- School of Civil Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Michiel Derks
- School of Civil Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom; M&A Transaction Services, Deloitte, London EC4A 3HQ, United Kingdom
| | - Costas A Velis
- School of Civil Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
32
|
Bardales Cruz M, Saikawa E, Hengstermann M, Ramirez A, McCracken JP, Thompson LM. Plastic waste generation and emissions from the domestic open burning of plastic waste in Guatemala. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2023; 3:156-167. [PMID: 36743128 PMCID: PMC9850929 DOI: 10.1039/d2ea00082b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Domestic, or household-level, open burning of plastic waste is a source of air pollutants and greenhouse gases that are often neglected in emission inventories. Domestic open burning is a considerable concern in Guatemala due to the lack of access to waste collection services, particularly in rural areas. This paper offers the first attempt to estimate emissions from the domestic open burning of waste at the city and departmental levels in Guatemala. Data were collected from the Xalapán region of Jalapa, Guatemala and analyzed to determine the change in plastic waste generation over time as well as the socioeconomic factors that may affect the extent of plastic waste generation and burning. The annual per capita masses of plastic waste burned were used to estimate emissions from domestic open burning of plastic waste in the region of Xalapán, the cities of Jutiapa and Guatemala city, and all 22 departments in Guatemala. Our results show that rural areas burn more waste domestically, likely because of a lack of access to waste collection, and 30.4% of OC, 24.0% of BC, 23.6% of PM2.5, and 2.4% of CO2 emissions in Guatemala may not be accounted for by excluding open plastic burning as a source.
Collapse
Affiliation(s)
| | - Eri Saikawa
- Department of Environmental Sciences, Emory University Atlanta GA USA
- Gangarosa Department of Environmental Health, Emory University Atlanta GA USA
| | | | | | | | - Lisa M Thompson
- Gangarosa Department of Environmental Health, Emory University Atlanta GA USA
- Nell Hodgson Woodruff School of Nursing, Emory University Atlanta GA USA
| |
Collapse
|
33
|
Islam MR, Li T, Mahata K, Khanal N, Werden B, Giordano MR, Praveen Puppala S, Dhital NB, Gurung A, Saikawa E, Panday AK, Yokelson RJ, DeCarlo PF, Stone EA. Wintertime Air Quality across the Kathmandu Valley, Nepal: Concentration, Composition, and Sources of Fine and Coarse Particulate Matter. ACS EARTH & SPACE CHEMISTRY 2022; 6:2955-2971. [PMID: 36561192 PMCID: PMC9761783 DOI: 10.1021/acsearthspacechem.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The Kathmandu Valley in Nepal experiences poor air quality, especially in the dry winter season. In this study, we investigated the concentration, chemical composition, and sources of fine and coarse particulate matter (PM2.5, PM10, and PM10-2.5) at three sites within or near the Kathmandu Valley during the winter of 2018 as part of the second Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE 2). Daily PM2.5 concentrations were very high throughout the study period, ranging 72-149 μg m-3 at the urban Ratnapark site in Kathmandu, 88-161 μg m-3 at the suburban Lalitpur site, and 40-74 μg m-3 at rural Dhulikhel on the eastern rim of the Kathmandu Valley. Meanwhile, PM10 ranged 194-309, 174-377, and 64-131 μg m-3, respectively. At the Ratnapark site, crustal materials from resuspended soil contributed an average of 11% of PM2.5 and 34% of PM10. PM2.5 was largely comprised of organic carbon (OC, 28-30% by mass) and elemental carbon (EC, 10-14% by mass). As determined by chemical mass balance source apportionment modeling, major PM2.5 OC sources were garbage burning (15-21%), biomass burning (10-17%), and fossil fuel (14-26%). Secondary organic aerosol (SOA) contributions from aromatic volatile organic compounds (13-23% OC) were larger than those from isoprene (0.3-0.5%), monoterpenes (0.9-1.4%), and sesquiterpenes (3.6-4.4%). Nitro-monoaromatic compounds-of interest due to their light-absorbing properties and toxicity-indicate the presence of biomass burning-derived SOA. Knowledge of primary and secondary PM sources can facilitate air quality management in this region.
Collapse
Affiliation(s)
- Md. Robiul Islam
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Tianyi Li
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | | | | | - Benjamin Werden
- Department
of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Michael R. Giordano
- Univ
Paris Est Creteil and Université de Paris, CNRS, LISA, Créteil 94000, France
| | - Siva Praveen Puppala
- International
Centre for Integrated Mountain Development (ICIMOD), Khumaltar, Lalitpur 44700, Nepal
| | - Narayan Babu Dhital
- Patan
Multiple
Campus, Department of Environmental Science, Tribhuvan University, Lalitpur 44700, Nepal
| | - Anobha Gurung
- Clean
Cooking Alliance, Washington, District of Columbia 20006, United States
| | - Eri Saikawa
- Department
of Environmental Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Arnico K. Panday
- Institute
for Integrated Development Studies (IIDS), Kathmandu 44600, Nepal
| | - Robert J. Yokelson
- Department
of Chemistry, University of Montana, Missoula, Montana 59812, United States
| | - Peter F. DeCarlo
- Department
of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Elizabeth. A. Stone
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
34
|
Walkinshaw C, Tolhurst TJ, Lindeque PK, Thompson R, Cole M. Detection and characterisation of microplastics and microfibres in fishmeal and soybean meal. MARINE POLLUTION BULLETIN 2022; 185:114189. [PMID: 36257247 DOI: 10.1016/j.marpolbul.2022.114189] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Aquaculture is an increasingly important source of nutrition for global food security, which is reliant on animal- and plant-based feeds. Anthropogenic particles, including microplastics and semi-synthetic cellulosic fibres, are prolific marine pollutants that are readily consumed by marine organisms, including small pelagic fish commonly used in fishmeal. Conversely, there is no indication plants can accumulate anthropogenic microparticles. We explore whether aquaculture feed presents a route of contamination for farmed fish. Commercially-sourced aquaculture feedstocks, including fishmeals and soybean meal, were processed (KOH digestion and ZnCl2 density separation) and anthropogenic particles characterised using microscopy and spectroscopic methods. Both fishmeal and soybean meals contained anthropogenic particles, with concentrations ranging 1070-2000 particles kg-1. The prevalence of anthropogenic particles in plant-based feeds indicates that the majority of contamination occurs post-harvest. Based on our findings, farmed Atlantic salmon may be exposed to a minimum of 1788-3013 anthropogenic particles from aquaculture feed across their commercial lifespan.
Collapse
Affiliation(s)
- Christopher Walkinshaw
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom of Great Britain and Northern Ireland; School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, United Kingdom of Great Britain and Northern Ireland
| | - Trevor J Tolhurst
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, United Kingdom of Great Britain and Northern Ireland
| | - Penelope K Lindeque
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom of Great Britain and Northern Ireland
| | - Richard Thompson
- Marine Institute, University of Plymouth, Level 3, Marine Building, Drake Circus, Plymouth PL4 8AA, United Kingdom of Great Britain and Northern Ireland
| | - Matthew Cole
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
35
|
Cao Y, Lin H, Wang Q, Li J, Liu M, Zhang K, Xu S, Huang G, Ruan Y, Wu J, Leung KMY, Lam PKS. Significant riverine inputs of typical plastic additives-phthalate esters from the Pearl River Delta to the northern South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157744. [PMID: 35926595 DOI: 10.1016/j.scitotenv.2022.157744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Phthalate esters (PAEs) are representative additives used extensively in plastics. In this study, 15 PAEs were investigated at the eight riverine outlets of the Pearl River Delta (PRD). The total concentrations of Σ15PAEs, including both the dissolved and particulate phases, ranged from 562 to 1460 ng/L and 679 ng/L-2830 ng/L in the surface and bottom layers, respectively. Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) dominated in the dissolved and suspended particulate matter (SPM) phases, respectively, accounting for >50 % and > 80 % of Σ15PAEs. Riverine input of wastewater from the PRD was possibly the primary source of the contamination. Higher levels of PAEs occurred at the eastern outlets than at the western ones. The dissolved and particulate PAEs varied seasonally, with significantly higher concentrations observed in the dry season than in the wet season. However, no significant differences of PAE levels in both phases were observed among low, medium, and high tides. The partitioning results demonstrated that SPM is important in the transportation of pollutants in estuaries, where more hydrophobic DEHP was predominantly transported by the SPM phase, while those more hydrophilic ones were regularly transported by the dissolved phase. The total annual flux of Σ15PAEs through the eight outlets to the SCS reached 1390 tons.
Collapse
Affiliation(s)
- Yaru Cao
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Jing Li
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao SAR 999078, China; Research Centre for the Oceans and Human Health, the City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Guangling Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Guangdong Research Institute of Water Resources and Hydropower, Guangzhou 510000, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Research Centre for the Oceans and Human Health, the City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Jiaxue Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Research Centre for the Oceans and Human Health, the City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; Office of the President, Hong Kong Metropolitan University, Hong Kong SAR 999077, China.
| |
Collapse
|
36
|
Luo Y, Zhang Z, Naidu R, Zhang X, Fang C. Raman imaging of microplastics and nanoplastics released from the printed toner powders burned by a mimicked bushfire. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157686. [PMID: 35908713 DOI: 10.1016/j.scitotenv.2022.157686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Plastic contamination is a growing global concern, but the characterisation approaches for microplastics are limited so far, and even more lacking for nanoplastics. As another public concern, bushfire has the potential to exacerbate the negative ecological effects of plastic waste. We thus study the release of microplastics and nanoplastics from toner powers printed on a paper sheet following a mimicked bushfire. The results show that, along the fire frontier, there is a charred area first, then a cindered area towards mineralisation via a full combustion. We find that, depending on the extent of burning, the printed toner powers containing microplastics can melt to aggregate, or crack to break down to nanoplastics, which are well characterised by mass spectrometry and Raman imaging combined with algorithms. Overall, the results shed new light on the microplastics and nanoplastics once affected by bushfire.
Collapse
Affiliation(s)
- Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
37
|
Goetz JD, Giordano MR, Stockwell CE, Bhave PV, Puppala PS, Panday AK, Jayarathne T, Stone EA, Yokelson RJ, DeCarlo PF. Aerosol Mass Spectral Profiles from NAMaSTE Field-Sampled South Asian Combustion Sources. ACS EARTH & SPACE CHEMISTRY 2022; 6:2619-2631. [PMID: 36425341 PMCID: PMC9677502 DOI: 10.1021/acsearthspacechem.2c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Unit mass resolution mass spectral profiles of nonrefractory submicron aerosol were retrieved from undersampled atmospheric emission sources common to South Asia using a "mini" aerosol mass spectrometer. Emission sources including wood- and dung-fueled cookstoves, agricultural residue burning, garbage burning, engine exhaust, and coal-fired brick kilns were sampled during the 2015 Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign. High-resolution peak fitting estimates of the mass spectra were used to characterize ions found within each source profile and help identify mass spectral signatures unique to aerosol emissions from the investigated source types. The first aerosol mass spectral profiles of dung burning, charcoal burning, garbage burning, and brick kilns are provided in this work. The online aerosol mass spectra show that organics were generally the dominant component of the nonrefractory aerosol. However, inorganic aerosol components including ammonium and chloride were significant in dung- and charcoal-fired cookstove emissions and sulfate compounds were major components of the coal-fired brick kiln emissions. Organic mass spectra from both the charcoal burning and zigzag brick kiln were dominated by nitrogen-containing ions thought to be from the electron ionization of amines and amides contained in the emissions. The mixed garbage burning emissions profiles were dominated by plastic combustion with very low fractions of organic markers associated with biomass burning. The plastic burning emissions were associated with enhanced organic signal at mass-to-charge (m/z) 104 and m/z 166, which could be useful fragment ion indicators for garbage burning in ambient aerosol profiles. Finally, a framework for the identification of emission sources using the unit mass resolution organic mass fractions at m/z 55 (f 55), m/z 57 (f 57), and m/z 60 (f 60) is proposed in this work. Plotting the ratio of f 55 to f 57 versus f 60 is found to be effective for the identification of emissions by the fuel type and even useful in separating emissions of similar source types. Although the sample size was limited, these results give further context to the aerosol and gas-phase emission factors presented in other NAMaSTE works and provide a critical reference for future aerosol composition measurements in South Asia.
Collapse
Affiliation(s)
- J. Douglas Goetz
- Laboratory
for Atmospheric and Space Physics, University
of Colorado at Boulder, Boulder, Colorado 80303, United States
| | - Michael R. Giordano
- Department
of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chelsea E. Stockwell
- Department
of Chemistry, University of Montana, Missoula, Montana 59812, United States
| | - Prakash V. Bhave
- International
Centre for Integrated Mountain Development (ICIMOD), Lalitpur 44700, Nepal
| | - Praveen S. Puppala
- International
Centre for Integrated Mountain Development (ICIMOD), Lalitpur 44700, Nepal
| | - Arnico K. Panday
- International
Centre for Integrated Mountain Development (ICIMOD), Lalitpur 44700, Nepal
| | - Thilina Jayarathne
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Elizabeth A. Stone
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Robert J. Yokelson
- Department
of Chemistry, University of Montana, Missoula, Montana 59812, United States
| | - Peter F. DeCarlo
- Department
of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
38
|
Pandey P, Dhiman M, Chopra P, Adlakha A. Investigating the Role of Tourists and Impact of Knowledge, Behaviour, and Attitude Towards Plastic Waste Generation. CIRCULAR ECONOMY AND SUSTAINABILITY 2022; 3:1-15. [PMID: 36245957 PMCID: PMC9552721 DOI: 10.1007/s43615-022-00216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Tourism is one of the lifelines in nations for their strong economy. Through the expansion of tourism industry, enormous amounts of plastic materials are disposed that have detrimental effects on environment, animal and human health. The present study demonstrates the role of tourists on generation of plastic waste and further statistical approach was used to investigate the impact of knowledge, behaviour, and attitude of tourists towards generation of plastic waste. Result shows that the tourists play key role in generating plastic waste at outdoor places which is a serious issue that could block drainage ways in city which leads to many waters born disease. The study highlights that the awareness can make certain changes in plastic waste generation and can bridge the knowledge-practice gap. Moreover, the circular economy can offer opportunity to exploit plastic waste into various decorative and useful products that can generate income to local community and help to reduce plastic wastes. It is also important to highlight that the government needs to take care of surveillance in the market on using plastic bags either by sellers or consumers.
Collapse
Affiliation(s)
- Prashant Pandey
- Uttarakhand Pollution Control Board, CPCB, Gauradevi Bhawan, IT Park, Dehradun, Uttarakhand India
- Uttarakhand Pollution Control Board, CPCB, New Delhi, India
| | - Manisha Dhiman
- Makkawala Greens, IMS Unison University, Kothal Gate, Mussoorie Road, Dehradun, 248009 Uttarakhand India
| | - Priyanka Chopra
- Makkawala Greens, IMS Unison University, Kothal Gate, Mussoorie Road, Dehradun, 248009 Uttarakhand India
| | - Amit Adlakha
- Makkawala Greens, IMS Unison University, Kothal Gate, Mussoorie Road, Dehradun, 248009 Uttarakhand India
| |
Collapse
|
39
|
Mohammadi A, Malakootian M, Dobaradaran S, Hashemi M, Jaafarzadeh N. Occurrence, seasonal distribution, and ecological risk assessment of microplastics and phthalate esters in leachates of a landfill site located near the marine environment: Bushehr port, Iran as a case. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156838. [PMID: 35750192 DOI: 10.1016/j.scitotenv.2022.156838] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Plastic wastes are produced in a large amount everywhere, and are commonly disposed in landfills. So landfill leachate seems an obvious source of microplastics (MPs) and phthalate esters (PAEs) due to a huge usage as plastic additives and plasticizers. But this issue still lacks attention and the present study provides the first information on the levels of MPs and PAEs in the fresh landfill leachate of Bushehr port during different seasons. The mean levels of MPs and PAEs in the fresh leachate in all seasons were 79.16 items/L and 3.27 mg/L, respectively. Also, the mean levels of PAEs in MPs were 48.33 μg/g. A statistically significant difference was detected in the levels of MPs and PAEs among different seasons with the highest values in summer and fall. MPs with a size of >1000 μm had the highest abundance in all seasons. The most prominent shape, color, and type of MPs in the leachate were fibers black, and nylon, respectively. Dibutyl phthalate (DBP) and Di(2-ethylhexyl) phthalate (DEHP) were the most dominant PAEs present in the leachate samples. The results of this study revealed high hazard index (HI) and pollution load index (PLI) of MPs in all seasons. Dioctyl phthalate (DOP), DEHP, DBP, diisobutyl phthalate (DiBP), butyl benzyl phthalate (BBP), and diethyl phthalate (DEP) represented a high risk to the sensitive organisms. The results of this study showed that significant levels of MPs and PAEs may release into the surrounding environment from the landfill sites without sufficient protection. This issue is more critical when the landfill sites in particular are located near the marine environments like the Bushehr landfill that is located near the Persian Gulf, which can lead to serious environmental problems. Thus permanent control and monitor of landfills, especially in the coastal areas are highly needed to prevent further pollution.
Collapse
Affiliation(s)
- Azam Mohammadi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Neemat Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
40
|
Separation of plastic wastes using froth flotation - An overview. Adv Colloid Interface Sci 2022; 308:102769. [PMID: 36116142 DOI: 10.1016/j.cis.2022.102769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022]
Abstract
Despite various initiatives and efforts, plastic solid waste (PSW) has become a major global problem due to decades of relentless use of plastics. Since non-biodegradable plastics can persist in the environment for hundreds of years, threatening animal and human life, discarding them into the environment is not a viable option. Plastic recycling is a critical research area that requires urgent attention since less than 10% of the seven billion tons of globally generated plastic waste has been recycled so far. With recent technological developments, it is now possible to recycle many types of PSW using a variety of methods. This review provides an overview of the froth flotation technology that is currently being researched for PSW recycling. Fundamental working principles, the current state of the development, and limitations of this technique are reviewed. It is suggested that froth flotation with continuous development has tremendous potential to result in a more efficient and environmentally friendly approach to PSW recycling.
Collapse
|
41
|
James BD, de Vos A, Aluwihare LI, Youngs S, Ward CP, Nelson RK, Michel APM, Hahn ME, Reddy CM. Divergent Forms of Pyroplastic: Lessons Learned from the M/V X-Press Pearl Ship Fire. ACS ENVIRONMENTAL AU 2022; 2:467-479. [PMID: 37101454 PMCID: PMC10125272 DOI: 10.1021/acsenvironau.2c00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 04/28/2023]
Abstract
In late May 2021, the M/V X-Press Pearl container ship caught fire while anchored 18 km off the coast of Colombo, Sri Lanka and spilled upward of 70 billion pieces of plastic or "nurdles" (∼1680 tons), littering the country's coastline. Exposure to combustion, heat, chemicals, and petroleum products led to an apparent continuum of changes from no obvious effects to pieces consistent with previous reports of melted and burned plastic (pyroplastic) found on beaches. At the middle of this continuum, nurdles were discolored but appeared to retain their prefire morphology, resembling nurdles that had been weathered in the environment. We performed a detailed investigation of the physical and surface properties of discolored nurdles collected on a beach 5 days after the ship caught fire and within 24 h of their arrival onshore. The color was the most striking trait of the plastic: white for nurdles with minimal alteration from the accident, orange for nurdles containing antioxidant degradation products formed by exposure to heat, and gray for partially combusted nurdles. Our color analyses indicate that this fraction of the plastic released from the ship was not a continuum but instead diverged into distinct groups. Fire left the gray nurdles scorched, with entrained particles and pools of melted plastic, and covered in soot, representing partial pyroplastics, a new subtype of pyroplastic. Cross sections showed that the heat- and fire-induced changes were superficial, leaving the surfaces more hydrophilic but the interior relatively untouched. These results provide timely and actionable information to responders to reevaluate cleanup end points, monitor the recurrence of these spilled nurdles, gauge short- and long-term effects of the spilled nurdles to the local ecosystem, and manage the recovery of the spill. These findings underscore partially combusted plastic (pyroplastic) as a type of plastic pollution that has yet to be fully explored despite the frequency at which plastic is burned globally.
Collapse
Affiliation(s)
- Bryan D. James
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Department
of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Asha de Vos
- Oceanswell, 9 Park Gardens, Colombo 5 00500, Sri Lanka
- The
Oceans Institute, University of Western
Australia, 35 Stirling
Highway, Perth, WA 6009, Australia
| | - Lihini I. Aluwihare
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Sarah Youngs
- Department
of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Collin P. Ward
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Robert K. Nelson
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Anna P. M. Michel
- Department
of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Mark E. Hahn
- Department
of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Christopher M. Reddy
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
42
|
Islam MR, Welker J, Salam A, Stone EA. Plastic Burning Impacts on Atmospheric Fine Particulate Matter at Urban and Rural Sites in the USA and Bangladesh. ACS ENVIRONMENTAL AU 2022; 2:409-417. [PMID: 36164352 PMCID: PMC9502013 DOI: 10.1021/acsenvironau.1c00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To better understand the impact of plastic burning on atmospheric fine particulate matter (PM2.5), we evaluated two methods for the quantification of 1,3,5-triphenylbenzene (TPB), a molecular tracer of plastic burning. Compared to traditional solvent-extraction gas chromatography mass spectrometry (GCMS) techniques, thermal-desorption (TD) GCMS provided higher throughput, lower limits of detection, more precise spike recoveries, a wider linear quantification range, and reduced solvent use. This method enabled quantification of TPB in fine particulate matter (PM2.5) samples collected at rural and urban sites in the USA and Bangladesh. These analyses demonstrated a measurable impact of plastic burning at 5 of the 6 study locations, with the largest absolute and relative TPB concentrations occurring in Dhaka, Bangladesh, where plastic burning is expected to be a significant source of PM2.5. Background-level contributions of plastic burning in the USA were estimated to be 0.004-0.03 μg m-3 of PM2.5 mass. Across the four sites in the USA, the lower estimate of plastic burning contributions to PM2.5 ranged 0.04-0.8%, while the median estimate ranged 0.3-3% (save for Atlanta, Georgia, in the wintertime at 2-7%). The results demonstrate a consistent presence of plastic burning emissions in ambient PM2.5 across urban and rural sites in the USA, with a relatively small impact in comparison to other anthropogenic combustion sources in most cases. Much higher TPB concentrations were observed in Dhaka, with estimated plastic burning impacts on PM2.5 ranging from a lower estimate of 0.3-1.8 μg m-3 (0.6-2% of PM2.5) and the median estimate ranging 2-35 μg m-3 (5-15% of PM2.5). The methodological advances and new measurements presented herein help to assess the air quality impacts of burning plastic more broadly.
Collapse
Affiliation(s)
- Md. Robiul Islam
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Josie Welker
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Abdus Salam
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Elizabeth A. Stone
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States,Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States,
| |
Collapse
|
43
|
Lanzafame GM, Bessagnet B, Srivastava D, Jaffrezo JL, Favez O, Albinet A, Couvidat F. Modelling aerosol molecular markers in a 3D air quality model: Focus on anthropogenic organic markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155360. [PMID: 35460764 DOI: 10.1016/j.scitotenv.2022.155360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/18/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
We developed and implemented in the 3D air quality model CHIMERE the formation of several key anthropogenic aerosol markers including one primary anthropogenic marker (levoglucosan) and 4 secondary anthropogenic markers (nitrophenols, nitroguaiacols, methylnitrocatechols and phthalic acid). Modelled concentrations have been compared to measurements performed at 12 locations in France for levoglucosan in winter 2014-15, and at a sub-urban station in the Paris region over the whole year 2015 for secondary molecular markers. While a good estimation of levoglucosan concentrations by the model has been obtained for a few sites, a strong underestimation was simulated for most of the stations especially for western locations due to a probable underestimation of residential wood burning emissions. The simulated ratio between wood burning organic matter and particulate phase levoglucosan is constant only at high OM values (>10 μg m-3) indicating that using marker contribution ratio may be valid only under certain conditions. Concentrations of secondary markers were well reproduced by the model for nitrophenols and nitroguaiacols but were underestimated for methylnitrocatechols and phthalic acid highlighting missing formation pathways and/or precursor emissions. By comparing modelled to measured Gas/Particle Partitioning (GPP) of markers, the simulated partitioning of Semi-Volatile Organic Compounds (SVOCs) was evaluated. Except for nitroguaiacols and nitrophenols when ideality was assumed, the GPP for all the markers was underestimated and mainly driven by the hydrophilic partitioning. SVOCs GPP, and more generally of all SVOC contributing to the formation of SOA, could therefore be significantly underestimated by air quality models, especially when only the partitioning on the organic phase is considered. Our results show that marker modelling can give insights on some processes (such as precursor emissions or missing mechanisms) involved in SOA formation and could prove especially useful to evaluate the GPP in 3D air quality models.
Collapse
Affiliation(s)
- Grazia Maria Lanzafame
- INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France; Sorbonne Universités, UPMC, 75252 PARIS cedex 05, France
| | - Bertrand Bessagnet
- INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France; Sorbonne Universités, UPMC, 75252 PARIS cedex 05, France
| | | | - Jean Luc Jaffrezo
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000 Grenoble, France
| | - Olivier Favez
- INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Alexandre Albinet
- INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Florian Couvidat
- INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
44
|
Yong SB, Gau SY, Guo YC, Wei JCC. Allergy from perspective of environmental pollution effects: from an aspect of atopic dermatitis, immune system, and atmospheric hazards-a narrative review of current evidences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57091-57101. [PMID: 35759095 DOI: 10.1007/s11356-022-21582-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution has become more diversified in recent years as technologies for urbanization is increasingly more advanced. Several environmental factors such as air and water pollutants have been linked to allergic symptoms. For instance, because of industrialization for city development in many countries, polluted soil or tiny particles in the air could result in an even more hazardous environment for people to reside. Aside from the aspects of environmental issues, other newly emerging factors such as the electromagnetic field (EMF) also require further investigation. Here, in this narrative review, we focused on allergens from atmospheric and water pollution, hygiene improvement, changes in food trend, and residential environmental pollution. Current evidences regarding the association between various pollutants and the potential clinical diseases could be induced. For people with high skin exposure to air pollutants such as PM 2.5, PM 10, or sulfur dioxide, potential onset of dermatological allergic events should be alerted. The mechanisms involved in allergic diseases are being discussed and summarized. Interactions between immunological mechanisms and clinical implications could potentially provide clearer view to the association between allergic status and pollutants. Moreover, understanding the mechanistic role of allergens can raise awareness to global environment and public health.
Collapse
Affiliation(s)
- Su Boon Yong
- Division of Pediatric Allergy, Immunology, Rheumatology, Lin-Shin Hospital, Taichung, Taiwan, Republic of China
| | - Shuo-Yan Gau
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Yu-Chen Guo
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China.
- Department of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd., South District, Taichung City, 40201, Taiwan, Republic of China.
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan, Republic of China.
| |
Collapse
|
45
|
Liu Y, Liu C, Liu H, Zeng Q, Tian X, Long L, Yang J. Catalytic Features and Thermal Adaptation Mechanisms of a Deep Sea Bacterial Cutinase-Type Poly(Ethylene Terephthalate) Hydrolase. Front Bioeng Biotechnol 2022; 10:865787. [PMID: 35557867 PMCID: PMC9086285 DOI: 10.3389/fbioe.2022.865787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/31/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ethylene terephthalate) (PET) plastic is chemically inert and persistent. Massive quantities of PET waste end up in landfill sites and oceans, posing major global pollution concerns. PET degrading enzymes with high efficiency provide plastic recycling and bioremediation possibilities. Here, we report a novel cutinase, MtCut with distinct catalytic behaviors, derived from the deep sea Nocardiopsaceae family strain. Biochemical analyses showed MtCut efficiently hydrolyzed PET at ambient temperatures and in an exo-type manner. The activity and stability of MtCut were enhanced by the addition of calcium ions. Notably, no hydrolysis products inhibition was observed during PET depolymerization, suggesting MtCut is a better biocatalyst when compared to other PET hydrolases. In addition, structural components associated with thermal adaptation were investigated using molecular dynamic (MD) simulations, and key regions regulating MtCut thermostability were identified. Our biochemical and structural analyses of MtCut deepen the understanding of PET hydrolysis by cutinases, and provide invaluable insights on improvement and performance engineering strategies for PET-degrading biocatalysts.
Collapse
Affiliation(s)
- Yu Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Chen Liu
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Huan Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qi Zeng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jian Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
46
|
Ju S, Lim L, Ki YJ, Choi DH, Song H. Oxidative stress generated by polycyclic aromatic hydrocarbons from ambient particulate matter enhance vascular smooth muscle cell migration through MMP upregulation and actin reorganization. Part Fibre Toxicol 2022; 19:29. [PMID: 35449013 PMCID: PMC9026692 DOI: 10.1186/s12989-022-00472-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/15/2022] [Indexed: 01/16/2025] Open
Abstract
Background Epidemiological studies have suggested that elevated concentrations of particulate matter (PM) are strongly associated with the incidence of atherosclerosis, however, the underlying cellular and molecular mechanisms of atherosclerosis by PM exposure and the components that are mainly responsible for this adverse effect remain to be established. In this investigation, we evaluated the effects of ambient PM on vascular smooth muscle cell (VSMC) behavior. Furthermore, the effects of polycyclic aromatic hydrocarbons (PAHs), major components of PM, on VSMC migration and the underlying mechanisms were examined. Results VSMC migration was significantly increased by treatment with organic matters extracted from ambient PM. The total amount of PAHs contained in WPM was higher than that in SPM, leading to higher ROS generation and VSMC migration. The increased migration was successfully inhibited by treatment with the anti-oxidant, N-acetyl-cysteine (NAC). The levels of matrix metalloproteinase (MMP) 2 and 9 were significantly increased in ambient PM-treated VSMCs, with MMP9 levels being significantly higher in WPM-treated VSMCs than in those treated with SPM. As expected, migration was significantly increased in all tested PAHs (anthracene, ANT; benz(a)anthracene, BaA) and their oxygenated derivatives (9,10-Anthraquinone, AQ; 7,12-benz(a)anthraquinone, BAQ, respectively). The phosphorylated levels of focal adhesion kinase (FAK) and formation of the focal adhesion complex were significantly increased in ambient PM or PAH-treated VSMCs, and these effects were blocked by administration of NAC or α-NF, an inhibitor of AhR, the receptor that allows PAH uptake. Subsequently, the levels of phosphorylated Src and NRF, the downstream targets of FAK, were altered with a pattern similar to that of p-FAK. Conclusions PAHs, including oxy-PAHs, in ambient PM may have dual effects that lead to an increase in VSMC migration. One is the generation of oxidative stress followed by MMP upregulation, and the other is actin reorganization that results from the activation of the focal adhesion complex.
Collapse
Affiliation(s)
- Sujin Ju
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, 61452, Korea
| | - Leejin Lim
- Cancer Mutation Research Center, Chosun University, Gwangju, 61452, Korea
| | - Young-Jae Ki
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, 61452, Korea
| | - Dong-Hyun Choi
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, 61452, Korea
| | - Heesang Song
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, 61452, Korea.
| |
Collapse
|
47
|
de Vos A, Aluwihare L, Youngs S, DiBenedetto MH, Ward CP, Michel APM, Colson BC, Mazzotta MG, Walsh AN, Nelson RK, Reddy CM, James BD. The M/V X-Press Pearl Nurdle Spill: Contamination of Burnt Plastic and Unburnt Nurdles along Sri Lanka’s Beaches. ACS ENVIRONMENTAL AU 2022; 2:128-135. [PMID: 37101587 PMCID: PMC10114858 DOI: 10.1021/acsenvironau.1c00031] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In May 2021, the M/V X-Press Pearl cargo ship caught fire 18 km off the west coast of Sri Lanka and spilled ∼1680 tons of spherical pieces of plastic or "nurdles" (∼5 mm; white in color). Nurdles are the preproduction plastic used to manufacture a wide range of end products. Exposure to combustion, heat, and chemicals led to agglomeration, fragmentation, charring, and chemical modification of the plastic, creating an unprecedented complex spill of visibly burnt plastic and unburnt nurdles. These pieces span a continuum of colors, shapes, sizes, and densities with high variability that could impact cleanup efforts, alter transport in the ocean, and potentially affect wildlife. Visibly burnt plastic was 3-fold more chemically complex than visibly unburnt nurdles. This added chemical complexity included combustion-derived polycyclic aromatic hydrocarbons. A portion of the burnt material contained petroleum-derived biomarkers, indicating that it encountered some fossil-fuel products during the spill. The findings of this research highlight the added complexity caused by the fire and subsequent burning of plastic for cleanup operations, monitoring, and damage assessment and provides recommendations to further understand and combat the impacts of this and future spills.
Collapse
Affiliation(s)
- Asha de Vos
- Oceanswell, 9 Park Gardens, Colombo 5 00500, Sri Lanka
- The Oceans Institute, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Lihini Aluwihare
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Sarah Youngs
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Michelle H. DiBenedetto
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Collin P. Ward
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Anna P. M. Michel
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Beckett C. Colson
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT−WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge and Woods Hole, Massachusetts 02139, United States
| | - Michael G. Mazzotta
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Anna N. Walsh
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- MIT−WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge and Woods Hole, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert K. Nelson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Christopher M. Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
48
|
Ding Z, Chen Z, Liu J, Evrendilek F, He Y, Xie W. Co-combustion, life-cycle circularity, and artificial intelligence-based multi-objective optimization of two plastics and textile dyeing sludge. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128069. [PMID: 34959215 DOI: 10.1016/j.jhazmat.2021.128069] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Given the globally abundant availability of waste plastics and the negative environmental impacts of textile dyeing sludge (TDS), their co-combustion can effectively enhance the circular economies, energy recovery, and environmental pollution control. The (co-)combustion performances, gas emissions, and ashes of TDS and two plastics of polypropylene (PP) and polyethylene (PE) were quantified and characterized. The increased blend ratio of PP and PE improved the ignition, burnout, and comprehensive combustion indices. The two plastics interacted with TDS significantly in the range of 200-600 ℃. TDS pre-ignited the combustion of the plastics which in turn promoted the combustion of TDS. The co-combustions released more CO2 but less CH4, C-H, and CO as CO2 was less persistent than the others in the atmosphere. The Ca-based minerals in the plastics enhanced S-fixation and reduced SO2 emission. The activation energy of the co-combustion fell from 126.78 to 111.85 kJ/mol and 133.71-79.91 kJ/mol when the PE and PP additions rose from 10% to 50%, respectively. The co-combustion reaction mechanism was best described by the model of f(α) = (1-α)n. The reaction order was reduced with the additions of the plastics. The co-combustion operation interactions were optimized via an artificial neural network so as to jointly meet the multiple objectives of maximum energy production and minimum emissions.
Collapse
Affiliation(s)
- Ziyi Ding
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zihong Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingyong Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Fatih Evrendilek
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu 14052, Turkey
| | - Yao He
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wuming Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
49
|
Recycling of Plastic Waste, with Particular Emphasis on Thermal Methods—Review. ENERGIES 2022. [DOI: 10.3390/en15062114] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The civilization development requires improvement of technologies and satisfaction of people’s needs on the one side, but on the other one it is directly connected with the increasing production of waste. In this paper, the authors dealt with the second of these aspects, reviewing the recycling of plastic waste, which can be processed without changing its chemical structure (mechanical recycling), and with changing its chemical structure (chemical recycling, of which thermal recycling). Mechanical recycling involves shredding the waste in order to obtain recyclate or regranulate that meets specific quality requirements. Chemical recycling consists of the degradation of the material into low-molecular compounds, and it can take place in the processes of hydrolysis, glycolysis, methanolysis by means of chemical solvents, and during thermal processes of hydrocracking, gasification, pyrolysis, combustion, enabling the recovery of gaseous and liquid hydrocarbons foundings in application as a fuel in the energy and cement-lime industry and enabling the recovery of thermal energy contained in plastics. The paper focuses on thermal methods of plastics recycling that become more important due to legal regulations limiting the landfilling of waste. The authors also took up the properties of plastics and their production in European conditions.
Collapse
|
50
|
Jangirh R, Ahlawat S, Arya R, Mondal A, Yadav L, Kotnala G, Yadav P, Choudhary N, Rani M, Banoo R, Rai A, Saharan US, Rastogi N, Patel A, Gadi R, Saxena P, Vijayan N, Sharma C, Sharma SK, Mandal TK. Gridded distribution of total suspended particulate matter (TSP) and their chemical characterization over Delhi during winter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17892-17918. [PMID: 34686959 DOI: 10.1007/s11356-021-16572-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
In the present study, total suspended particulate matter (TSP) samples were collected at 47 different sites (47 grids of 5 × 5 km2 area) of Delhi during winter (January-February 2019) in campaign mode. To understand the spatial variation of sources, TSP samples were analyzed for chemical compositions including carbonaceous species [organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC)], water-soluble total nitrogen (WSTN), water-soluble inorganic nitrogen (WSIN), polycyclic aromatic hydrocarbons (16 PAHs), water-soluble inorganic species (WSIS) (F-, Cl-, SO42-, NO2-, NO3-, PO43-, NH4+, Ca2+, Mg2+, Na+, and K+), and major and minor trace elements (B, Na, Mg, Al, P, S, Cl, K, Ca, Ti, Fe, Zn, Cr, Mn, Cu, As, Pd, F, and Ag). During the campaign, the maximum concentration of several components of TSP (996 μg/m3) was recorded at the Rana Pratap Bagh area, representing a pollution hotspot of Delhi. The maximum concentrations of PAHs were recorded at Udhyog Nagar, a region close to heavily loaded diesel vehicles, small rubber factories, and waste burning areas. Higher content of Cl- and Cl-/Na+ ratio (>1.7) suggests the presence of nonmarine anthropogenic sources of Cl- over Delhi. Minimum concentrations of OC, EC, WSOC, PAHs, and WSIS in TSP were observed at Kalkaji, representing the least polluted area in Delhi. Enrichment factor <5.0 at several locations and a significant correlation of Al with Mg, Fe, Ti, and Ca and C/N ratio indicated the abundance of mineral/crustal dust in TSP over Delhi. Principal component analysis (PCA) was also performed for the source apportionment of TSP, and extracted soil dust was found to be the major contributor to TSP, followed by biomass burning, open waste burning, secondary aerosol, and vehicular emissions.
Collapse
Affiliation(s)
- Ritu Jangirh
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sakshi Ahlawat
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul Arya
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arnab Mondal
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lokesh Yadav
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India
| | - Garima Kotnala
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Yadav
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nikki Choudhary
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Martina Rani
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rubiya Banoo
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akansha Rai
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ummed Singh Saharan
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neeraj Rastogi
- Physical Research Laboratory, Navrangpura, Ahmedabad, 380009, India
| | - Anil Patel
- Physical Research Laboratory, Navrangpura, Ahmedabad, 380009, India
| | - Ranu Gadi
- Indira Gandhi Delhi Technical University for Women, New Delhi, 110006, India
| | - Priyanka Saxena
- CSIR - National Environmental Engineering Research Institute, Delhi Zonal Centre, New Delhi, India
| | - Narayanasamy Vijayan
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chhemendra Sharma
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sudhir Kumar Sharma
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tuhin Kumar Mandal
- Environmental Sciences & Biomedical Metrology Division, CSIR - National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110012, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|