1
|
Těšínská P, Škarohlíd R, Kroužek J, McGachy L. Environmental fate of organic UV filters: Global occurrence, transformation, and mitigation via advanced oxidation processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125134. [PMID: 39419468 DOI: 10.1016/j.envpol.2024.125134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Organic UV filters are used in personal care products, plastics, paints, and textiles to protect against UV radiation. Despite regulatory limits, these compounds still enter the environment through direct wash-off during swimming, evaporation, leaching from products, and incomplete removal in wastewater treatment plants. They have been detected in various environmental matrices worldwide. Once in the environment, organic UV filters can undergo phototransformation and biotransformation, forming transformation products that, together with parent substances, pose health risks to humans and wildlife and harm marine ecosystems, especially coral reefs. The increasing concern over water scarcity and the environmental impact of pollutants underscores the importance of eliminating these contaminants from aquatic environments. This review primarily focuses on organic UV filters approved for use in sunscreens, many of which are also utilized in other materials, with a few exceptions including UV stabilizer UV-328. It includes an in-depth analysis of 155 peer-reviewed articles published from 2015 to 2024, assessing the concentrations of these filters in various environmental matrices, including water and solid matrices, air and biota. Moreover, this review explores the environmental transformation of these chemicals and assesses the effectiveness of advanced oxidation processes (AOPs) in removing these pollutants. The findings highlight the pervasive presence of organic UV filters in the environment and the promising potential of AOPs to mitigate the associated environmental challenges.
Collapse
Affiliation(s)
- Pavlína Těšínská
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Radek Škarohlíd
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Jiří Kroužek
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Lenka McGachy
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic.
| |
Collapse
|
2
|
Li C, Li S, Zhang X, Jiang X, Yang Y, Qu J, Martyniuk CJ. Photochemical behaviour and toxicity evolution of phenylbenzoate liquid crystal monomers in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134320. [PMID: 38640663 DOI: 10.1016/j.jhazmat.2024.134320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Liquid crystal monomers (LCMs) are a group of emerging pollutants that pose potential environmental risks because of their ubiquitous occurrence and toxicity. Understanding their environmental transformation is essential for assessing the ecological risk. In this study, we investigated the photochemical transformation kinetics, mechanism, and photo-induced toxicity of three phenylbenzoate LCMs in water. Their apparent photolytic rate constants were within (0.023 - 0.058) min-1, and the half-lives were < 30.0 min, showing lower persistence in water. Dissolved organic matter significantly inhibited their photolysis because of light-shielding effect and quenching of excited triplet states of LCMs. Their photolysis mainly occurred through excited triplet states, and the reactive oxygen species (i.e., ⋅OH, 1O2 and ⋅O2-) contributed to their degradation. The main photolysis pathways were ester bond cleavage, ⋅OH substitution/addition, and defluorination. Experiments and computational simulation revealed that some ·OH addition/substitution products have similar toxicity with LCMs. Additionally, the ∙OH reaction rate constants (kOH) of LCMs were determined to be > 1 × 109 M-1 s-1, evidence for their high reactivity toward ⋅OH. We have further developed reliable methods to estimate kOH of other phenylbenzoate-like LCMs with quantum chemical calculations. These results are useful for understanding the transformation and fate of LCMs in aquatic environments.
Collapse
Affiliation(s)
- Chao Li
- Engineering Lab for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Shaochen Li
- Engineering Lab for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiao Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiangkun Jiang
- Engineering Lab for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yi Yang
- Engineering Lab for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jiao Qu
- Engineering Lab for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Sun J, Rene ER, Tao D, Lu Y, Jin Q, Lam JCH, Leung KMY, He Y. Degradation of organic UV filters in the water environment: A concise review on the mechanism, toxicity, and technologies. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132822. [PMID: 37898090 DOI: 10.1016/j.jhazmat.2023.132822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/15/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Organic ultraviolet filters (OUVFs) have been used globally for the past 20 years. Given that OUVFs can be quickly released from sunscreens applied on human skins, they have been frequently detected in aquatic environments and organisms. Some byproducts of OUVFs might be more recalcitrant and toxic than their parent compounds. To further assess the toxicity and potential risk of OUVFs' byproducts, it is necessary to determine the fate of OUVFs and identify their transformation products. This review summarizes and analyzes pertinent literature and reports in the field of OUVFs research. These published research works majorly focus on the degradation mechanisms of OUVFs in aquatic environments, their intermediates/byproducts, and chlorination reaction. Photodegradation (direct photolysis, self-sensitive photolysis and indirect photolysis) and biodegradation are the main transformation pathways of OUVFs through natural degradation. To remove residual OUVFs' pollutants from aqueous environments, novel physicochemical and biological approaches have been developed in recent years. Advanced oxidation, ultrasound, and bio-based technologies have been proven to eliminate OUVFs from wastewaters. In addition, the disinfection mechanism and the byproducts (DBPs) of various OUVFs in swimming pools are discussed in this review. Besides, knowledge gaps and future research directions in this field of study are also mentioned.
Collapse
Affiliation(s)
- Jiaji Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2611AX Delft, the Netherlands
| | - Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yichun Lu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jason Chun-Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China.
| |
Collapse
|
4
|
Guo Z, He H, Liu K, Yang S, Li Z, Lai C, Liao Z, Ren X, Huang B, Pan X. Sunlight-induced degradation of COVID-19 antivirals arbidol in natural aquatic environments: Mechanisms, pathways and toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119113. [PMID: 37769471 DOI: 10.1016/j.jenvman.2023.119113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Insights into COVID-19 antivirals' environmental fate and ecological risk are urgently required due to their increasing concentrations in aquatic environments, which have rarely been studied. Herein, we first investigated the photochemical transformation and the resulting alterations in toxicity of arbidol, an antiviral drug with relatively higher toxicity. The photolysis of arbidol was rapid with a rate constant of 0.106 min-1 due to its superior ultraviolet light absorption, in which the direct photolysis was predominated with a contribution of 91.5%. Despite its substantial photolysis, only 14.45% of arbidol was mineralized after 100 min, implying that arbidol and its products might have a long-term impact on aquatic environment. It was inferred that arbidol was photolyzed mainly via the loss of thiophenol, bromine, and alkylamine, based on twelve photolytic products identified. Notably, the experimental results demonstrated that the photolysis process increased the acute toxicity of arbidol, and the toxicity prediction indicated that the ecotoxicity of two photolytic products was very high with LC50 values below 0.1 mg/L. Due to the co-effect of multiple constituents, the photolytic rate observed in wastewater treatment plant effluent and in river water was comparable to that in ultra-pure water, while it was slightly enhanced in lake water. The presence of dissolved organic matter suppressed arbidol photolysis, while NO3- exhibited a promotion effect. These results would be of great significance to assess the fate and risk of COVID-19 antivirals in natural aquatic environments.
Collapse
Affiliation(s)
- Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shicheng Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zihui Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
5
|
Jentzsch F, Kümmerer K, Olsson O. Status quo on identified transformation products of organic ultraviolet filters and their persistence. Int J Cosmet Sci 2023; 45 Suppl 1:101-126. [PMID: 37638891 DOI: 10.1111/ics.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 08/29/2023]
Abstract
Organic micropollutants of concern-including organic UV filters (UVF)-are getting increasing attention. Personal care products such as sunscreens or cosmetic articles often contain large quantities of UVF. These substances enter the environment either directly (during outdoor activities) or indirectly (via sewages from households). Therefore, the removal or degradation of UVF by natural or technical treatment processes is important to understand. UVF are often incompletely removed and transformed to side products of incomplete mineralization by abiotic and biotic processes. An extensive overview on transformation products (TPs) is essential to systematically identify knowledge gaps and to derive research needs. While there are many reviews on the UVF themselves, the number of reviews which focus on their TPs is limited. Consequently, this review gives an overview on the latest findings regarding TPs of UVF. In this publication, known TPs of UVF, which were formed during abiotic and biotic processes, are reviewed. Target substances were defined and a literature database was reviewed for studies on TPs of the target substances. The first list of studies was shortened stepwise, thus generating a final list of studies which contained only the relevant studies. Since biodegradation is one of the most important pathways for removal of organic compounds from the environment, this review presents an overview on known TPs of organic UVF and their biodegradability, which determines their environmental fate. In this way, all identified TPs of UVF were listed and checked for information on their biodegradability. A total of 2731 records of studies were assessed. Forty-two studies, which assessed 46 processes that lead to the formation of identified TPs, were included in this review. One hundred and seventyseven different TPs resulting from 11 different UVF were identified. Little to no data on the biodegradability was found for TPs. This indicates a severe lack of data on the biodegradability of TPs of organic UVF substances. Since most TPs lack information on biodegradability, further research should provide information on both-identity and biodegradability-of formed TPs to be able to assess their hazardousness for the environment.
Collapse
Affiliation(s)
- Franziska Jentzsch
- Institute of Sustainable Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Oliver Olsson
- Institute of Sustainable Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Lüneburg, Germany
| |
Collapse
|
6
|
Fu Y, Yan Y, Wei Z, Spinney R, Dionysiou DD, Vione D, Liu M, Xiao R. Overlooked Transformation of Nitrated Polycyclic Aromatic Hydrocarbons in Natural Waters: Role of Self-Photosensitization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37327199 DOI: 10.1021/acs.est.3c02276] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photochemical transformation is an important process that involves trace organic contaminants (TrOCs) in sunlit surface waters. However, the environmental implications of their self-photosensitization pathway have been largely overlooked. Here, we selected 1-nitronaphthalene (1NN), a representative nitrated polycyclic aromatic hydrocarbon, to study the self-photosensitization process. We investigated the excited-state properties and relaxation kinetics of 1NN after sunlight absorption. The intrinsic decay rate constants of triplet (31NN*) and singlet (11NN*) excited states were estimated to be 1.5 × 106 and 2.5 × 108 s-1, respectively. Our results provided quantitative evidence for the environmental relevance of 31NN* in waters. Possible reactions of 31NN* with various water components were evaluated. With the reduction and oxidation potentials of -0.37 and 1.95 V, 31NN* can be either oxidized or reduced by dissolved organic matter isolates and surrogates. We also showed that hydroxyl (•OH) and sulfate (SO4•-) radicals can be generated via the 31NN*-induced oxidation of inorganic ions (OH- and SO42-, respectively). We further investigated the reaction kinetics of 31NN* and OH- forming •OH, an important photoinduced reactive intermediate, through complementary experimental and theoretical approaches. The rate constants for the reactions of 31NN* with OH- and 1NN with •OH were determined to be 4.22 × 107 and 3.95 ± 0.01 × 109 M-1 s-1, respectively. These findings yield new insights into self-photosensitization as a pathway for TrOC attenuation and provide more mechanistic details into their environmental fate.
Collapse
Affiliation(s)
- Yifu Fu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Engineering, Aarhus University, Hangøvej 2, Aarhus N DK-8200, Denmark
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Davide Vione
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, Torino 10125, Italy
| | - Min Liu
- State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
7
|
Wang J, Li S, Yang Y, Fan L, Qin W, Su L, Zhao Y, Li C. Photochemical behavior and photo-induced toxicity of chiral pesticides and their chiral monomers in aqueous environment. ENVIRONMENT INTERNATIONAL 2023; 177:107996. [PMID: 37276764 DOI: 10.1016/j.envint.2023.107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
The photochemical behaviors of chiral pollutants in aqueous solutions are rarely studied using chiral monomers, which may hamper their precise risk assessment and lead to suspicious conclusions. In this study, we systematically investigated the phototransformation behavior and toxicity evolution of two widely used chiral pesticides (triadimefon (TF) and triadimenol (TN)) at enantiomer and diastereomer levels, and proposed a calculation method of total photolysis rate constants of chiral mixture. Results show that TF and TN could be photodegraded faster in pure water than in natural waters, and the observed photolysis rate constants (kobs) of TN with two chiral centers exhibit enantioselectivity, i.e., kobs(TN-RS) = kobs(TN-SR) > kobs(TN-RR) = kobs(TN-SS). The photolysis of TF and TN mainly occurs through their excited singlet and triplet states, respectively. Their photodegradation pathways mainly include dechlorination and elimination of triazole ring. TF could also undergo ether bond cleavage. It is also found that, both TF and TN exhibit photo-induced toxicity to V. fischeri, due to the generation of more toxic products than parent compounds. Furthermore, TN exhibits enantioselective photo-induced toxicity after 240-min irradiation, which could be ascribed to the formation of chiral products. These results could benefit the understanding of enantioselective environmental behavior of chiral pollutants.
Collapse
Affiliation(s)
- Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Shaochen Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Yandong Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Lingyun Fan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Weichao Qin
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Limin Su
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China.
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China.
| |
Collapse
|
8
|
Tu YN, Li C, Shi F, Li Y, Zhang Z, Liu H, Tian S. Enhancive and inhibitory effects of copper complexation on triplet dissolved black carbon-sensitized photodegradation of organic micropollutants. CHEMOSPHERE 2022; 307:135968. [PMID: 35964723 DOI: 10.1016/j.chemosphere.2022.135968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Excited-triplet dissolved black carbon (DBC) was deemed as a significant reactive intermediate in the phototransformation of environmental micropollutants, but the impacts of concomitant metal ions on photochemical behavior of excited-triplet DBC (3DBC*) are poorly understood. Here, the photolytic kinetics of sulfadiazine and carbamazepine induced by 3DBC* involving Cu2+ was explored. The presence of Cu2+ reduced the 3DBC*-induced photodegradation rate of sulfadiazine; whereas for carbamazepine, Cu2+ enhanced 3DBC*-induced photodegradation. Cu(II)-DBC complex was formed due to the decreasing fluorescence intensities of DBC in the presence of Cu2+. Cu2+ complexation caused the decrease of 3DBC* steady-state concentrations, which markedly reduced 3DBC*-induced photodegradation rate of sulfadiazine due to its high triplet reactivity. Kinetic model showed that 3DBC* quenching rate by Cu2+ was 7.98 × 109 M-1 s-1. Cu2+ complexation can also enhance the electron transfer ability, thereby producing more ∙OH in Cu(II)-DBC complex, which explains the promoting effect of Cu2+ complexation on carbamazepine photodegradation in view of its low triplet reaction rate. These indicate that 3DBC* reactivity differences of organic micropollutants may explain their photodegradation kinetics differences in DBC system with/without Cu2+, which was supported by the linearized relationship between the photodegradation rate ratios of ten micropollutants with/without Cu2+ and their triplet reaction activity.
Collapse
Affiliation(s)
- Yi-Na Tu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Fengli Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Zhiyu Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Huaying Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| |
Collapse
|
9
|
Mubeen M, Khalid MA, Gul T, Mukhtar M, Ul-Hamid A, Iqbal A. Cu-Enhanced Efficient Förster Resonance Energy Transfer in PBSA Sunscreen-Associated Ternary Cu x Cd 1-x S Quantum Dots. ACS OMEGA 2022; 7:35014-35022. [PMID: 36211065 PMCID: PMC9535639 DOI: 10.1021/acsomega.2c03729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Quantum dots (QDs) are semiconducting nanocrystals that exhibit size- and composition-dependent optical and electronic properties. Recently, Cu-based II-VI ternary Cu x Cd1-x S (CCS) QDs have emerged as a promising class of QDs as compared to their binary counterparts (CuS and CdS). Herein, a series of ternary CCS QDs are synthesized by changing the molar concentration of Cu2+ ions only keeping the 1:1 ratio of the stoichiometric mixture of Cd2+ and S2-. These CCS QDs are attached to 2-phenylbenzimidazole-5-sulfonic acid (PBSA), an eminent UV-B filter widely used in many commercial sunscreen products to avoid skin erythema and DNA mutagenic photolesions. The photoinduced Förster resonance energy transfer (FRET) is investigated from PBSA to CCS QDs as a function of Cu concentration in CCS QDs using the steady-state photoluminescence and time-resolved photoluminescence measurements. A 2-fold increase in the magnitude of non-radiative energy transfer rate (K T(r)) is observed as the molar concentration of Cu in CCS QDs increases from 2 to 10 mM. Our findings suggest that in PBSA-CCS QD dyads, the FRET occurrence from PBSA to QDs is dictated by the dynamic mode of photoluminescence (PL) quenching. The bimolecular PL quenching rate constants (k q) estimated by Stern-Volmer's plots for PBSA-CCS QD dyads are of the order of 1010 M-1 s-1, which signifies that in the PBSA-CCS QD dyad FRET system, the process of PL quenching is entirely diffusion-controlled.
Collapse
Affiliation(s)
- Muhammad Mubeen
- Department
of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | | | - Tehreem Gul
- Department
of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Maria Mukhtar
- Department
of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Azhar Iqbal
- Department
of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
10
|
Lv Y, Jin J, Li R, Ma R, Huang W, Wang Y. Photodegradation Kinetics and Solvent Effect of New Brominated Flame Retardants (NBFRS) in Liquid Medium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11690. [PMID: 36141972 PMCID: PMC9517406 DOI: 10.3390/ijerph191811690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The photolysis of four typical NBFRs, hexabromobenzene (HBB), pentabromotoluene (PBT), pentabromobenzyl acrylateare (PBBA) and pentabromoethylbenzene (PBEB), were explored under different irradiation light wavelengths, initial concentrations and organic solvents. Density functional theory was used for chemical calculation to explore the internal mechanism of solvent effect. All degradation kinetics conformed to the first-order kinetic model. Under different irradiation light wavelengths, the degradation rates were in the following order: 180~400 nm (0.1702~0.3008 min-1) > 334~365 nm (0.0265~0.0433 min-1) > 400~700 nm (0.0058~0.0099 min-1). When the initial concentration varied from 0.25 mg/L to 1 mg/L, the degradation rate decreased from 0.0379~0.0784 min-1 to 0.0265~0.0433 min-1 under 334~365 nm irradiation, which might be attributed to the reduction in light energy received per unit area and competition from intermediate metabolites. In different organic solvents, the degradation rates were in the order of acetone (0.1702~0.3008 min-1) > toluene (0.0408~0.0534 min-1) > n-hexane (0.0124~0.0299 min-1). Quantum chemical calculation and analysis showed that the energy change in electron transfer between solvent and NBFRs was the key factor to solvent effect in the degradation of NBFRs. The active sites and degradation pathways of NBFRs were also speculated, the nucleophilic reaction of the Br atom on a benzene ring was the main process of photodegradation and it was preferential to remove the bromine and then the ethyl group on the benzene ring. Our research will be helpful in predicting and evaluating their photochemical behavior in different environment conditions.
Collapse
Affiliation(s)
- Yan Lv
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China
| | - Ru Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ruiwen Ma
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Weixiang Huang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ying Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China
| |
Collapse
|
11
|
Kumar P, Kumar A, Singh D. CORAL: Development of a hybrid descriptor based QSTR model to predict the toxicity of dioxins and dioxin-like compounds with correlation intensity index and consensus modelling. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103893. [PMID: 35654373 DOI: 10.1016/j.etap.2022.103893] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
In the present study, ninety-five halogenated dioxins and related chemicals (dibenzo-p-dioxins, dibenzofurans, biphenyls, and naphthalene) with endpoint pEC50 were used to develop twelve quantitative structure toxicity relationship (QSTR) models using inbuilt Monte Carlo algorithm of CORAL software. The hybrid optimal descriptor of correlation weights (DCW) using a combination of SMILES and HSG (hydrogen suppressed graph) was employed to generate QSTR models. Three target functions i.e. TF1 (WIIC=WCII=0), TF2 (WIIC= 0.3 & WCII=0) and TF3 (WIIC= 0.0 &WCII=0.3) were employed to develop robust QSTR models and the statistical outcomes of each target function were compared with each other. The correlation intensity index (CII) was found a reliable benchmark of the predictive potential for QSTR models. The numerical value of the determination coefficient of the validation set of split 1 computed by TF3 was found highest (RValid2=0.8438). The fragments responsible for the toxicity of dioxins and related chemicals were also identified in terms of the promoter of increase/decrease for pEC50. Three random splits (Split 1, Split 2 and Split 4) were selected for the extraction of the promoter of increase/decrease for pEC50. In the last, consensus modelling was performed using the intelligent consensus tool of DTC lab (https://dtclab.webs.com/software-tools). The original consensus model, which was created by combining four distinct models employing the split 4 arrangement, was more predictive for the validation set and the numerical value of the determination coefficient of the test set (validation set) was increased from 0.8133 to 0.9725. For the validation set of split 4, the mean absolute error (MAE 100%) was also lowered from 0.513 to 0.2739.
Collapse
Affiliation(s)
- Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India.
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
12
|
Wan D, Kong Y, Wang X, Selvinsimpson S, Sharma VK, Zuo Y, Chen Y. Effect of permanganate oxidation on the photoreactivity of dissolved organic matter for photodegradation of typical pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152647. [PMID: 34968593 DOI: 10.1016/j.scitotenv.2021.152647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Permanganate has been widely used in the remediation of contaminated water due to its relatively strong oxidation properties and ease of use. The ubiquitous dissolved organic matter (DOM) in natural waters causes a significant sink of permanganate in treatments, which further impacts the photoformation of reactive species and the removal of trace pollutants by DOM. Significantly, the effect of permanganate oxidation on the photoreactivity of DOM remains unknown. The present paper investigated for the first time the photophysical and photochemical properties variation of DOM from different sources after permanganate oxidation. Results showed that the permanganate oxidation caused a decrease in UV absorbance, fluorescence intensity, aromaticity, and molecular weight for all tested DOM samples, as well as photoformation rate of DOM triplet states (3DOM⁎), singlet oxygen (1O2), and hydroxyl radical (OH) under simulated sunlight. Quantum yield of 1O2 showed positively linear correlations with both triplet quantum yield coefficient (fTMP) and E2/E3 (ratio of absorbance at 254 and 365 nm) for all the DOM samples before and after permanganate oxidation. The quantum yield of OH exhibited no significant correlation with fTMP or E2/E3. Permanganate oxidation inhibited the DOM-photosensitized indirect photodegradation of pollutants that do not absorb sunlight (e.g., decreased by 15-29%). For the tested pollutants that undergo direct photolysis under sunlight, their photodegradation was promoted (e.g., increased by 1-19%) in the permanganate oxidized DOM solutions due to the decrease of light-screening effect by DOM. These findings suggest that permanganate oxidation affects the photoreactivity of DOM and the corresponding photochemical fate of organic pollutants in natural waters.
Collapse
Affiliation(s)
- Dong Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yaqian Kong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xing Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, United States
| | - Yuegang Zuo
- University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747-2300, United States
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
13
|
3D hexagonal hierachitectured cobalt sulfide as an enhanced catalyst for activating monopersulfate to degrade sunscreen agent ensulizole. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Zhang Y, Huang K, Zhu Y, Chen X, Wei M, Yu K. Kinetics and mechanisms of flumequine degradation by sulfate radical based AOP in different water samples containing inorganic anions. RSC Adv 2022; 12:10088-10096. [PMID: 35424923 PMCID: PMC8966717 DOI: 10.1039/d2ra00199c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Many studies have reported that hydroxyl radical (HO˙) driven advanced oxidation processes (AOPs) could degrade fluoroquinolones (FQs) antibiotics effectively. Compared with HO˙, sulfate radical (SO4˙−) shows a similar oxidation capacity but a longer half-life. SO4˙− could cause chain reactions and resulted in the generation of halogen radicals and carbonate radicals from the main anions in sea water including Cl−, Br− and HCO3−. However, few studies were focused on the degradation of FQs in marine aquaculture water and seawater, as well as the bioaccumulation of transformation products. As a typical member of FQs, flumequine (FLU) was degraded by UV/peroxodisulfate (PDS) AOPs in synthetic fresh water, marine aquaculture water and seawater. The reaction rate constants in the three water samples were 0.0348 min−1, 0.0179 min−1 and 0.0098 min−1, respectively. The reason was attributed to the inhibition of the anions as they could consume SO4˙− and initiate the quenching reaction of free radicals. When the pH value increased from 5 to 9, the reaction rate decreased from 0.0197 min−1 to 0.0066 min−1. The energy difference between HOMO and LUMO of FLU was calculated to be 8.07 eV indicating that FLU was a stable compound. The atoms on quinolone ring of FLU with high negative charge would be more vulnerable to attack by free radicals through electrophilic reactions. Two possible degradation pathways of FLU were inferred according to the degradation products. Preliminary bioaccumulation analysis of transformation products by the EPI suite software proved that the values of log Kow and log BCF of the final product P100 were less than those of FLU and the intermediates. Many studies have reported that hydroxyl radical (HO˙) driven advanced oxidation processes (AOPs) could degrade fluoroquinolones (FQs) antibiotics effectively.![]()
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Nanning 530004, China
| | - Kunling Huang
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Yunjie Zhu
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xuan Chen
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Min Wei
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Nanning 530004, China
| |
Collapse
|
15
|
Ye Z, Guo Z, Wang J, Zhang L, Guo Y, Yoshimura C, Niu J. Photodegradation of acebutolol in natural waters: Important roles of carbonate radical and hydroxyl radical. CHEMOSPHERE 2022; 287:132318. [PMID: 34826949 DOI: 10.1016/j.chemosphere.2021.132318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/12/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Acebutolol (ACE) has been widely used for the treatment of cardiovascular disorders, and its photochemical fate in natural waters is a matter of concern due to its ubiquitous occurrence and its toxicity to aquatic organisms. In this study, the photodegradation of ACE in river water and synthetic waters were investigated under simulated sunlight irradiation. The results demonstrated that ACE photodegradation rate in river water was 3.2 times higher than that in pure water. Then the influences of HCO3-, NO3- and DOM on ACE photolysis were investigated under their concentrations similar with the ones in river water. ACE photodegradation was significantly enhanced in the presence of HCO3- alone, and the scavenging experiments and the electron paramagnetic resonance experiments together proved that HCO3- could be oxidized by triplet-excited state of ACE to generate CO3•-, which subsequently played a key role in ACE degradation. The presence of both NO3- and DOM also increased the ACE photodegradation rates, and •OH and 3DOM* were found to be involved in the degradation. In addition, when DOM was added to a solution with HCO3-, the enhancement effect of HCO3- on ACE photodegradation was weakened due to the scavenging of CO3•- by DOM combined with the light screening effect of DOM.
Collapse
Affiliation(s)
- Zimi Ye
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Jieqiong Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China.
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yuchen Guo
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| |
Collapse
|
16
|
Tian Y, Feng L, Li R, Li J, Du Z, Zhang L, Liu Y. Inhibitory effects of antioxidant moieties in humic substances on phototransformation of chlortetracycline mediated by the algae extracellular organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149001. [PMID: 34325136 DOI: 10.1016/j.scitotenv.2021.149001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/19/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In algae rich waters, sunlight-driven transformation of antibiotics could be accelerated via sensitization by algae extracellular organic matter (EOM), and this photosensitization process will be affected by coexisting humic substances. In this study, we explored the effect and mechanism of humic substances on photodegradation of chlortetracycline (CTC) mediated by EOM. We found that humic substances exhibited a marked inhibitory effect on the EOM-mediated photodegradation of CTC. Given that humic substances exhibited little effects on the EOM-mediated formation of triplet state species, the quenching effect of humic substances on reactive species was excluded. The inhibitory effect of humic substances was mainly attributed to the back reduction of CTC oxidation intermediates by the antioxidant moieties in humic substances. The ozone oxidation treatment for humic substances was applied to destroy antioxidant moieties. After ozonation, the inhibitory effects of humic substances were greatly decreased, confirming the dominant role of antioxidant moieties in humic substances, which inhibited CTC photodegradation mediated by EOM via reducing oxidation intermediates of CTC. This back reduction was further verified to be exergonic via reactive Gibbs free energy, indicating the back reduction by humic substances of CTC oxidation intermediates could occur spontaneously. The present study will be helpful for predicting the fate and risk of CTC in algae rich water environments, and is of great significance for the study of phototransformation of other antibiotics.
Collapse
Affiliation(s)
- Yajun Tian
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China; College of Environment, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Renna Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Ziwen Du
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
17
|
Lian L, Jiang B, Xing Y, Zhang N. Identification of photodegradation product of organophosphorus pesticides and elucidation of transformation mechanism under simulated sunlight irradiation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112655. [PMID: 34418856 DOI: 10.1016/j.ecoenv.2021.112655] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPs) are posing great threat to the environment and human health, due to their overuse and persistence in the environment. Photolysis has been established as an effective method to degrade OPs. The influence of pH value, the initial concentration of pesticides and the light source on the photolysis of two OPs, including chlorpyrifos and dimethoate, was investigated. The optimal reaction condition for OPs degradation was under pH 9, with xenon lamp as the light source, in which the photodegradation efficiencies of chlorpyrifos and dimethoate (500 mg/L) were 75.12% and 94.31%, respectively. The photodegradation products of chlorpyrifos and dimethoate were identified by GC-MS. Also, density functional theory (DFT) calculations were used to characterize the molecular properties of chlorpyrifos and dimethoate, as well as predicting potential photolysis reactions. Photodegradation mechanisms of chlorpyrifos and dimethoate were proposed, in which 3,5,6-trichloropyridinol (TCP), O,O-diethyl thiophosphate (DETP), 2,3,5-Trichloro-6-methoxypyridine (TMP) and O,O,S-trimethyl phosphorothioate were identified as the main products of chlorpyrifos degradation. Omethoate, O,O,S-trimethyl thiophosphorothioate, N-methyl-2-sulfanylacetamide, O,O,O-trimethyl thiophosphate, O,O,S-trimethylphosphorothiate, and O,O,O-trimethyl phosphoric ester as the main photodegradation products for dimethoate. The main degradation mechanisms included ring opening, cleavage, oxidation and demethylation. This work demonstrated the feasibility of combining chemical analysis with quantum chemical calculation in unraveling degradation mechanisms of OPs. Also, it is of great significance for evaluating the environmental fate of OPs in aquatic system and further environmental risk assessment.
Collapse
Affiliation(s)
- Luning Lian
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China; National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China; National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing 100083, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China; National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing 100083, PR China.
| | - Nana Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China; National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
18
|
Carve M, Allinson G, Nugegoda D, Shimeta J. Trends in environmental and toxicity research on organic ultraviolet filters: A scientometric review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145628. [PMID: 33940738 DOI: 10.1016/j.scitotenv.2021.145628] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
In recent decades, the potential toxicological and environmental effects of organic ultraviolet filters (OUVF) have received growing attention. The number of studies in this area has increased; however, presently there is no scientometric perspective addressing this topic. The purpose of this study is to identify the intellectual base and research front using the visualization and analysis software, CiteSpace. We retrieved 453 articles, published in print or online as an early-access article between 2002 and 2020, from the Web of Science with a topic search related to OUVFs, environment, and toxicology. We then analysed synthesized networks of co-authorship (author, institution, country), co-citation (author, document, journal) and co-occurring keywords. The annual publication output has trended upwards since 2002. Authors based in China accounted for 29.4% of the total publications, followed by USA (17.4%); but overall publications from Switzerland and Spain were more influential. Major research themes identified included OUVF concentrations in aquatic environments, and hormonal effects. Emerging themes included improving the sensitivity of analytical detection methods for both OUVFs and their metabolites, consequences of OUVF transport to the marine environment, and concerns over prenatal exposure. Based on keyword analysis, benzophenone-3, 4-methylbenzylidene-camphor, 3-benzylidene camphor, and ethylhexyl-methoxycinnamate are the most studied OUVFs, and effects on estrogenic activity, gene expression, reproduction, and more recently, oxidative stress, have received most attention from a toxicological perspective. Other prominent topics were sources of environmental contamination and ecological risk assessments. This study maps the major research domains of OUVF environmental toxicology research; explanations and implications of the findings are discussed; and emerging trends highlighted.
Collapse
Affiliation(s)
- Megan Carve
- Ecotoxicology Research Group, School of Sciences, RMIT University, Bundoora, Victoria 3083, Australia; Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Sciences, RMIT University, Bundoora, Victoria 3083, Australia; Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, 3078, Victoria, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
19
|
Ruxolitinib photodegradation mechanisms by theoretical and experimental chemistry. J Pharm Biomed Anal 2021; 197:113983. [PMID: 33640689 DOI: 10.1016/j.jpba.2021.113983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 11/20/2022]
Abstract
Ruxolitinib is a Janus Kinase inhibitor currently approved for the treatment of myelofibrosis. It is also a promising drug for the treatment of skin and infectious diseases. In terms of pharmaceutical stability, although ruxolitinib has been established as being sensitive to light, no data on photodegradation processes are available to date, while these may be useful for quality risk management and any potential development of other pharmaceutical forms for other routes of administration. One way to partially fill this gap was to carry out a study that combines a consistent determination of the most sensitive sites of the molecule to photolysis through theoretical calculations based on functional density, with the identification of the main photodegradation products obtained after forced degradation. This integrated approach has shown converging results describing the mechanisms based on photo-oxidation that can lead to the opening of the pyrrole ring. Having access to the structure of the degradation products and intermediates then made it possible to carry out an in silico evaluation of their potential mutagenicity and it appears that some of them feature alert structures.
Collapse
|
20
|
Secretan PH, Sadou Yayé H, Sogaldi A, Antignac M, Tortolano L, Thirion O, Vieillard V, Yagoubi N, Do B. Intrinsic stability of the antiviral drug umifenovir by stress testing and DFT studies. J Pharm Biomed Anal 2021; 196:113934. [PMID: 33549876 DOI: 10.1016/j.jpba.2021.113934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022]
Abstract
Umifenovir is an antiviral drug approved in China and Russia for the treatment of influenza. The available dosage form consists of capsules marketed under the brand name Arbidol®. Due to its broad spectrum, umifenovir may also be used in other viral contexts, alone or combined with other antiviral drugs. Although knowledge of umifenovir intrinsic stability may be useful for any potential development of other pharmaceutical forms for other routes of administration and for quality risk management, no data regarding this matter is available to date. In this study, the exploration of the molecule's behaviour under hydrolytic, oxidative and photolytic conditions was carried out experimentally and supported by density functional theory (DFT) studies. It comes out that umifenovir is sensitive to these stress conditions giving rise to 6 structurally characterized degradation products. The one-electron oxidation process produced on the sulphur atom is probably the main cause of umifenovir degradation with reference to the structures of the degradation products formed and the DFT data.
Collapse
Affiliation(s)
- Philippe-Henri Secretan
- Paris Cardiovascular Research Centre, INSERM U970, Paris, France; Université Paris-Saclay, Matériaux et santé, 92296, Châtenay-Malabry, France.
| | - Hassane Sadou Yayé
- Université Paris-Saclay, Matériaux et santé, 92296, Châtenay-Malabry, France; Department of Pharmacy, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Audrey Sogaldi
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, 92296, Châtenay-Malabry, France
| | - Marie Antignac
- Paris Cardiovascular Research Centre, INSERM U970, Paris, France; Department of Pharmacy, Saint-Antoine Hospital, HUEP, AP-HP, Paris, France
| | - Lionel Tortolano
- Université Paris-Saclay, Matériaux et santé, 92296, Châtenay-Malabry, France; Department of Pharmacy, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Olivier Thirion
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, Créteil, France
| | | | - Najet Yagoubi
- Université Paris-Saclay, Matériaux et santé, 92296, Châtenay-Malabry, France
| | - Bernard Do
- Université Paris-Saclay, Matériaux et santé, 92296, Châtenay-Malabry, France; Department of Pharmacy, Henri Mondor Hospital, AP-HP, Créteil, France
| |
Collapse
|
21
|
Wang M, Xiang X, Zuo Y, Peng J, Lu K, Dempsey C, Liu P, Gao S. Singlet oxygen production abilities of oxidated aromatic compounds in natural water. CHEMOSPHERE 2020; 258:127308. [PMID: 32535450 DOI: 10.1016/j.chemosphere.2020.127308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Singlet oxygen (1O2) is well known to be formed through energy transfer from excited state organic matters to O2, playing an important role in the transformations of contaminants. However, the contribution of small oxidated aromatic compounds (OACs) to the production of 1O2 in surface water is unclear. In this study, 28 OACs were selected to investigate the correlations between their photochemical production abilities of 1O2 and molecular structures. Our results showed that the steady-state concentrations and quantum yields of 1O2 (Φ1O2) generated by OACs were in the range of 7.0 × 10-14-1.4 × 10-12 M and 2.2 × 10-4-4.7 × 10-2, respectively, indicating that the photochemical production abilities of 1O2 by OACs varied greatly with types and positions of functional groups on the molecule. More importantly, the observed photochemical production of 1O2 was most notable in cases of molecules containing -OCH3 group and benzoquinone. A good quantitative structure-property relationship model was established between 1O2 producing ability, energy of the lowest unoccupied molecular orbitals (ELUMO) and the most positive net charge of hydrogen atoms (qH+) of OACs. In addition, the role of 1O2 produced by 2, 6-dimethoxy-1, 4-benzoquinone, the OAC with the highest Φ1O2, in the photodegradation of organic contaminants was validated by the enhanced degradation of atorvastatin under simulated sunlight, suggesting that OACs ubiquitously existed in surface water may greatly affect the fate and ecological risks of organic contaminants.
Collapse
Affiliation(s)
- Mengjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xueying Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yuegang Zuo
- University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA, 02747-2300, USA
| | - Jianbiao Peng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Caroline Dempsey
- University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA, 02747-2300, USA
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
22
|
Wan D, Wang H, Pozdnyakov IP, Wang C, Su J, Zhang Y, Zuo Y, Dionysiou DD, Chen Y. Formation and enhanced photodegradation of chlorinated derivatives of bisphenol A in wastewater treatment plant effluent. WATER RESEARCH 2020; 184:116002. [PMID: 32682078 DOI: 10.1016/j.watres.2020.116002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
There are many reports on the detection and removal of emerging pollutants in the wastewater effluents, while the fate of their chlorinated derivatives generated during chlorination is not well understood. Here we investigated the photodegradation of chlorinated derivatives of bisphenol A (CDBPAs), mainly including 3-chlorobisphenol A, 3,3'-dichlorobisphenol A, 3,5-dichlorobisphenol A, 3,3',5-trichlorobisphenol A, and 3,3',5,5'-tetrachlorobisphenol A, under simulated sunlight. Distinct from BPA, CDBPAs underwent rapid direct photodegradation due to a pronounced bathochromic shift of UV absorption. The photodegradation of CDBPAs was significantly enhanced by effluent organic matter (EfOM) from the wastewater effluent. A series of quenching experiments and laser flash photolysis analysis verified the contribution of triplet states of EfOM (3EfOM∗) for the indirect photodegradation of CDBPAs with rate constant of ∼109 M-1 s-1. Both direct and EfOM-induced indirect photodegradation of CDBPAs increased with a higher degree of chlorination. Furthermore, high-resolution mass spectrometry showed similar photoproducts for direct and indirect photodegradation of CDBPAs, mainly ascribed to the cleavage of C-Cl bond and hydroxylation with further cleavage of the benzene ring. The estrogenic activity of the photoproducts was diminished. These findings suggest that photodegradation is an important pathway for the removal and detoxication of CDBPAs from effluents and receiving natural waters under sunlight.
Collapse
Affiliation(s)
- Dong Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, People's Republic of China
| | - Haiyan Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, People's Republic of China
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str, Novosibirsk, 630090, Russian Federation
| | - Chengjun Wang
- College of Resources and Environmental, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - Jing Su
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, People's Republic of China
| | - Yanrong Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, People's Republic of China
| | - Yuegang Zuo
- University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA, 02747-2300, United States
| | - Dionysios D Dionysiou
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, United States
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, People's Republic of China.
| |
Collapse
|
23
|
Jin D, Khanal S, Zhang C, Xu S. Photodegradation of polybenzimidazole/polyvinyl chloride composites and polybenzimidazole: Density functional theory and experimental study. J Appl Polym Sci 2020. [DOI: 10.1002/app.49693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Dandan Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology Shanghai China
| | - Santosh Khanal
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology Shanghai China
| | - Chao Zhang
- School of Chemical Engineering, Qinghai University Xining China
| | - Shiai Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology Shanghai China
- School of Chemical Engineering, Qinghai University Xining China
| |
Collapse
|
24
|
Westphal J, Kümmerer K, Olsson O. Experimental and in silico assessment of fate and effects of the UV filter 2-phenylbenzimidazole 5-sulfonic acid and its phototransformation products in aquatic solutions. WATER RESEARCH 2020; 171:115393. [PMID: 31884378 DOI: 10.1016/j.watres.2019.115393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Often ingredients of personal care products are present in treated wastewaters, e. g grey water (GW), and are discharged into aquatic systems. Conventional treatment of GW does not fully eliminate micropollutants such as the UV filter substance 2-phenylbenzimidazole-5-sulfonic acid (PBSA). Photolysis has been proposed as an alternative treatment method for other micropollutants, but it is not clear yet whether it can also be used to eliminate PBSA. One goal of this study was to better understand the basic pathways involved in this process. It aimed to identify photo-transformation products (PTPs) by using, in the test conditions, an initial concentration of PBSA higher than those expected in the environment. The photolysis experiments were carried out using Xenon and UV lamps. Under Xenon irradiation only slight primary elimination was found. UV irradiation resulted in almost complete primary elimination of PBSA but not in full mineralization. Four isomeric mono-hydroxylated PTPs were identified by high resolution mass spectrometry (HRMS) which could be confirmed by other studies. A modified luminescent bacteria test (LBT) with Vibrio fischeri was employed to assess acute and chronic toxic effects of the irradiated photolytic mixtures. A strong correlation was found between the kinetics of two of the PTPs and luminescence inhibition indicating bacterial toxicity. Using a set of in silico quantitative structure-activity relationship (QSAR) models, this study also offered new insights concerning the environmental fate and toxicity of the TPs of PBSA as the TPs generated by UV-treatment are more persistent and partly more toxic than PBSA.
Collapse
Affiliation(s)
- Janin Westphal
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainablilty, Leuphana University of Lüneburg, Universitätsallee1/C13, DE-21335, Lüneburg, Germany.
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainablilty, Leuphana University of Lüneburg, Universitätsallee1/C13, DE-21335, Lüneburg, Germany.
| | - Oliver Olsson
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainablilty, Leuphana University of Lüneburg, Universitätsallee1/C13, DE-21335, Lüneburg, Germany.
| |
Collapse
|
25
|
Zhou C, Xie Q, Wang J, Chen X, Niu J, Chen J. Effects of dissolved organic matter derived from freshwater and seawater on photodegradation of three antiviral drugs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113700. [PMID: 31838398 DOI: 10.1016/j.envpol.2019.113700] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/10/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Dissolved organic matter (DOM) is the most important light absorber that may induce indirect photolytic transformation of organic pollutants in natural waters. In this study, effects of DOM derived from freshwater and seawater on the photodegradation of three antiviral drugs acyclovir, lamivudine and zidovudine were investigated. Results show that the photodegradation of acyclovir is promoted mainly by excited triplet states DOM (3DOM*), and the photodegradation of lamivudine is accelerated by 3DOM*, •OH and 1O2 together; however, the photodegradation of zidovudine is inhibited by DOM mainly via light screening. Compared with DOM from freshwater, promotion effect of DOM extracted from seawater (SDOM) on the photodegradation of acyclovir and lamivudine is weaker, which is attributed to lower productivity of reactive intermediates. On the other hand, inhibitory effect of SDOM on the photodegradation of zidovudine is also weaker, which is due to weaker light screening caused by lower light absorption. Photodegradation half-lives of the three antiviral drugs are predicted to be all more than 20 days in freshwater and seawater bodies of the Yellow River estuarine region. These findings are significant for understanding the phototransformation processes of antiviral drugs and other organic pollutants in estuarine and coastal regions.
Collapse
Affiliation(s)
- Chengzhi Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China; Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Jieqiong Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Xi Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
26
|
Han W, Sun H, Zhang S, Zhao Q, Zhang X, Ma Y, Chen J, Li H. Hydroxyl radical oxidation of cyclic methylsiloxanes D4 ∼ D6 in aqueous phase. CHEMOSPHERE 2020; 242:125200. [PMID: 31683163 DOI: 10.1016/j.chemosphere.2019.125200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Cyclic methylsiloxanes (CMS) were listed as candidates of substances of very high concerns in 2018 by the REACH. These compounds can enter environmental waters, and potentially cause harmful effects to aquatic organisms and human beings. Until now, reaction mechanisms of these pollutants with hydroxyl radicals (HO) in aqueous phase were unknown. In this study, reaction mechanisms of three typical CMS (D4 ∼ D6) with HO in aqueous phase were investigated by employing both UV/H2O2 experiments and density functional theoretical calculations. Bimolecular reaction rate constants (kHO·) of D4 ∼ D6 with HO were determined as kHO·(D4) = 8kHO·(D5) = 12kHO·(D6) = 6.6 × 108 L mol-1 s-1. Half-lives of HO oxiding D4 ∼ D6 ranged from 12 to 140 days at [HO] = 10-15 mol L-1 in sunlit surface water, and were comparable to (D4, D5) or much shorter (D6) than hydrolytic half-lives. The reactivity to HO decreased with the increasing size of siloxane ring in aqueous phase, in an order totally opposite to that in gaseous phase. Calculation results indicated that HO oxidation of the three CMS proceeded spontaneously through an exothermic H-abstraction process at the first step. Water molecules participated into H-abstraction of CMS and caused energy barrier of D5 higher than that of D4. Thus, H-bonds formed by water molecules were responsible for the reverse reactivity of CMS in aqueous phase. This work provided basic evidences suggesting environmental persistence of CMS in aqueous phase completely different from that in gaseous phase.
Collapse
Affiliation(s)
- Wenjing Han
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hongyu Sun
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yuqin Ma
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
27
|
Chen X, Wang J, Chen J, Zhou C, Cui F, Sun G. Photodegradation of 2-(2-hydroxy-5-methylphenyl)benzotriazole (UV-P) in coastal seawaters: Important role of DOM. J Environ Sci (China) 2019; 85:129-137. [PMID: 31471019 DOI: 10.1016/j.jes.2019.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 06/10/2023]
Abstract
Benzotriazole UV stabilizers (BT-UVs) have attracted concerns due to their ubiquitous occurrence in the aquatic environment, and their bioaccumulative and toxic properties. However, little is known about their aquatic environmental degradation behavior. In this study, photodegradation of a representative of BT-UVs, 2-(2-hydroxy-5-methylphenyl)benzotriazole (UV-P), was investigated under simulated sunlight irradiation. Results show that UV-P photodegrades slower under neutral conditions (neutral form) than under acidic or alkaline conditions (cationic and anionic forms). Indirect photodegradation is a dominant elimination pathway of UV-P in coastal seawaters. Dissolved organic matter (DOM) from seawaters accelerate the photodegradation rates mainly through excited triplet DOM (3DOM⁎), and the roles of singlet oxygen and hydroxyl radical are negligible in the matrixes. DOM from seawaters impacted by mariculture exhibits higher steady-state concentration of 3DOM⁎ ([3DOM⁎]) relative to those from pristine seawaters, leading to higher photosensitizing effects on the photodegradation. Halide ions inhibit the DOM-sensitized photodegradation of UV-P by decreasing [3DOM⁎]. Photodegradation half-lives of UV-P are estimated to range from 24.38 to 49.66 hr in field water bodies of the Yellow River estuary. These results are of importance for assessing environmental fate and risk UV-P in coastal water bodies.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jieqiong Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Chengzhi Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feifei Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guoxin Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
28
|
Zhou Y, Zhao J, Zhang YN, Qu J, Li C, Qin W, Zhao Y, Chen J, Peijnenburg WJGM. Trace amounts of fenofibrate acid sensitize the photodegradation of bezafibrate in effluents: Mechanisms, degradation pathways, and toxicity evaluation. CHEMOSPHERE 2019; 235:900-907. [PMID: 31299703 DOI: 10.1016/j.chemosphere.2019.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Effluent organic matter (EfOM), which is composed of background natural organic matter (NOM), soluble microbial degradation products, and trace amounts of organic pollutants, can play an important role in the photodegradation of emerging pollutants in the effluent. In this study, the impact of organic pollutants, using fenofibrate acid (FNFA) as a representative, on the photodegradation of emerging contaminants, using bezafibrate (BZF) as a representative, in effluents was investigated. It is found that BZF undergo fast degradation in the presence of FNFA although BZF is recalcitrant to degradation under simulated sunlight irradiation. The promotional effect of FNFA is due to the generation of singlet oxygen (1O2) and hydrated electrons (e-aq). Based on the structures of the identified intermediates, 1O2 initiated oxidation and e-aq initiated reduction reactions were the main photodegradation pathways of BZF in the effluents. The toxicity of the main photodegradation intermediates for BZF and FNFA was higher than that of the parent compounds, and the acute toxicity increased during simulated sunlight irradiation. The results demonstrated that trace amounts of organic compounds in EfOM can play an important role in sensitizing the photodegradation of some emerging pollutants in the effluent.
Collapse
Affiliation(s)
- Yangjian Zhou
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Jianchen Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Weichao Qin
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yahui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
29
|
Direct Observation of Photochemical Free Radical Production from the Sunscreen 2‐Phenylbenzimidazole‐5‐Sulfonic Acid via Laser‐Interfaced Mass Spectrometry. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Zhou L, Sleiman M, Fine L, Ferronato C, de Sainte Claire P, Vulliet E, Chovelon JM, Xiu G, Richard C. Contrasting photoreactivity of β2-adrenoceptor agonists Salbutamol and Terbutaline in the presence of humic substances. CHEMOSPHERE 2019; 228:9-16. [PMID: 31015039 DOI: 10.1016/j.chemosphere.2019.04.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/13/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
The photodegradation reactions of two typical β2-adrenoceptor agonists, salbutamol (SAL) and terbutaline (TBL), alone, and in the presence of Aldrich humic acid (AHA) or Suwannee River fulvic acid (SRFA) were investigated by steady-state photolysis experiments, laser flash photolysis (LFP), kinetic modeling and quantum calculation. AHA and SRFA (2-20 mgC L-1) accelerated the phototransformation of both SAL and TBL. For SAL, an inhibiting effect of oxygen on the photodegradation was observed that is fully consistent with the main involvement of excited triplet states of HS (3HS*). On the contrary, oxygen drastically enhanced the photodegradation of TBL showing that 3HS* were negligibly involved in the reaction. The involvement of singlet oxygen was also ruled out because of the low reaction rate constant measured between TBL and singlet oxygen. Quantum calculations were therefore performed to explore whether oxygenated radicals could through addition reactions explain the differences of reactivity of TBL and SAL in oxygen medium. Interestingly, calculations showed that in the presence of oxygen, the addition of phenoxyl on TBL led to the formation of adducts and to the loss of TBL while the same addition reaction on SAL partly regenerated the starting compound and at the end degraded SAL less efficiently. This study is of high relevance to understand the processes involved in SAL and TBL phototransformation and the photoreactivity of HS. Moreover, our findings suggest that TBL might be a promising probe molecule to delineate the role of oxygenated radicals.
Collapse
Affiliation(s)
- Lei Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63178, Aubière, France; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Mohamad Sleiman
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63178, Aubière, France
| | - Ludovic Fine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, 2 Avenue Albert Einstein, Villeurbanne, France
| | - Corinne Ferronato
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, 2 Avenue Albert Einstein, Villeurbanne, France
| | - Pascal de Sainte Claire
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63178, Aubière, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon - Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, 69100, Villeurbanne, France
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, 2 Avenue Albert Einstein, Villeurbanne, France.
| | - Guangli Xiu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Claire Richard
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63178, Aubière, France.
| |
Collapse
|
31
|
Wang J, Chen J, Qiao X, Zhang YN, Uddin M, Guo Z. Disparate effects of DOM extracted from coastal seawaters and freshwaters on photodegradation of 2,4-Dihydroxybenzophenone. WATER RESEARCH 2019; 151:280-287. [PMID: 30616040 DOI: 10.1016/j.watres.2018.12.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Dissolved organic matter (DOM) plays an important role in degradation of organic pollutants by photochemically-produced reactive intermediates (RIs), such as excited triplet-states of DOM (3DOM*), singlet oxygen (1O2) and hydroxyl radical (·OH). However, it is not clear whether DOM extracted from coastal seawaters (CS-DOM) and DOM derived from freshwaters (FW-DOM) exhibit similar effects on photodegradation of organic micropollutants. Herein, 2,4-dihydroxybenzophenone (BP-1) was adopted as a model compound to probe the effects of different DOM on photodegradation kinetics of organic micropollutants. Results show that the CS-DOM promotes the photodegradation of BP-1 mainly via the pathway involving 3DOM*; while 3DOM*, 1O2 and ·OH are responsible for BP-1 photodegradation in the presence of the FW-DOM. Compared with the FW-DOM, the CS-DOM undergoes more photobleaching, and contains less aromatic C=C and C=O functional groups. Although 3DOM* formation quantum yields for the CS-DOM are relatively higher than those for the FW-DOM, the CS-DOM has lower rates of light absorption, leading to lower steady-state RI concentrations for the CS-DOM. BP-1 photodegradation in the presence of the CS-DOM is faster than in the presence of the FW-DOM, due to higher second-order reaction rate constants between BP-1 and CS-3DOM* and fewer antioxidants contained in the CS-DOM.
Collapse
Affiliation(s)
- Jieqiong Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Xianliang Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Misbah Uddin
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhongyu Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
32
|
Zhang YN, Zhao J, Zhou Y, Qu J, Chen J, Li C, Qin W, Zhao Y, Peijnenburg WJGM. Combined effects of dissolved organic matter, pH, ionic strength and halides on photodegradation of oxytetracycline in simulated estuarine waters. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:155-162. [PMID: 30620012 DOI: 10.1039/c8em00473k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Estuarine waters of variable compositions are sinks for many micropollutants. The varying water properties can impact the photodegradation of organic pollutants. In this study, the combined effects of dissolved organic matter (DOM), pH, ionic strength, and halides on the photodegradation of the model organic pollutant oxytetracycline (OTC) were investigated. Suwannee River natural organic matter (SRNOM) was used as a representative DOM. The results showed that the observed photolysis rate constant (kobs) of OTC increased rapidly upon increase of pH. SRNOM induced a 11.0-17.9% decrease of the kobs for OTC. In the presence of SRNOM, the ionic strength and specific halide effects promote OTC photodegradation with a 39.2-84.2% and 7.1-28.8% increase of the kobs, respectively. The effects of SRNOM, ionic strength and halides on OTC photodegradation are pH-dependent. Direct photolysis half-lives (t1/2) of OTC were estimated in view of the more important role of direct photolysis compared to indirect photolysis. The estimated t1/2 values decreased from 187.4-206.6 d to 34.4-36.6 d as the pH increases in the Yellow River estuarine region. The results of this research demonstrate that the photodegradation rate of OTC increases rapidly in the gradient from river water to marine water in estuarine regions.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang J, Chen J, Qiao X, Wang Y, Cai X, Zhou C, Zhang Y, Ding G. DOM from mariculture ponds exhibits higher reactivity on photodegradation of sulfonamide antibiotics than from offshore seawaters. WATER RESEARCH 2018; 144:365-372. [PMID: 30053627 DOI: 10.1016/j.watres.2018.07.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Mariculture activities and river inputs lead to coastal seawaters with DOM levels that are comparable to or even higher than those in terrestrial water bodies. However, effects of seawater DOM, and especially of DOM occurring in areas impacted by mariculture, on photodegradation of organic micropollutants, are largely unknown. In this study, simulated sunlight irradiation experiments were performed to probe the effects of DOM extracted from mariculture impacted seawaters and from offshore areas, on photodegradation of three sulfonamide antibiotics (SAs). Results show that the SAs are transformed mainly by indirect photodegradation induced by triplet excited DOM (3DOM*). Compared with DOM from the more pristine coastal waters, the DOM from mariculture impacted areas undergoes less photobleaching, contains higher percentage of humic-like materials and higher proportions of aromatic and carbonyl structures. Thus, the DOM from mariculture areas exhibits higher rates of light absorption, higher formation quantum yields of 3DOM*, higher 3DOM* steady-state concentrations and higher reactivity on photodegradation of the SAs. Photochemistry of the seawater DOM is different from that reported for freshwater lake DOM. This study highlights the importance of probing the effects of DOM from coastal seawaters on photodegradation of organic micropollutants since coastal seawaters are sinks of many aquatic pollutants.
Collapse
Affiliation(s)
- Jieqiong Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Xianliang Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Xiyun Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Chengzhi Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yaoling Zhang
- Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| |
Collapse
|
34
|
Megat Nabil Mohsin S, Hussein MZ, Sarijo SH, Fakurazi S, Arulselvan P, Taufiq-Yap YH. Nanolayered composite with enhanced ultraviolet ray absorption properties from simultaneous intercalation of sunscreen molecules. Int J Nanomedicine 2018; 13:6359-6374. [PMID: 30349255 PMCID: PMC6188016 DOI: 10.2147/ijn.s171390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Introduction The potential of layered double hydroxide (LDH) as a host of multiple ultraviolet-ray absorbers was investigated by simultaneous intercalation of benzophenone 4 (B4) and Eusolex® 232 (EUS) in Zn/Al LDH. Methods The nanocomposites were prepared via coprecipitation method at various molar ratios of B4 and EUS. Results At equal molar ratios, the obtained nanocomposite showed an intercalation selectivity that is preferential to EUS. However, the selectivity ratio of intercalated anions was shown to be capable of being altered by adjusting the molar ratio of intended guests during synthesis. Dual-guest nanocomposite synthesized with B4:EUS molar ratio 3:1 (ZEB [3:1]) showed an intercalation selectivity ratio of B4:EUS =53:47. Properties of ZEB (3:1) were monitored using powder X-ray diffractometer to show a basal spacing of 21.8 Å. Direct-injection mass spectra, Fourier transform infrared spectra, and ultraviolet–visible spectra confirmed the dual intercalation of both anions into the interlayer regions of dual-guest nanocomposite. The cytotoxicity study of dual-guest nanocomposite ZEB (3:1) on human dermal fibroblast cells showed no significant toxicity until 25 μg/mL. Conclusion Overall, the findings demonstrate successful customization of ultraviolet-ray absorbers composition in LDH host.
Collapse
Affiliation(s)
- Sumaiyah Megat Nabil Mohsin
- Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), Kajang, Selangor, Malaysia,
| | - Mohd Zobir Hussein
- Material Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti Halimah Sarijo
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Palanisamy Arulselvan
- Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamil Nadu, India.,Scigen Research and Innovation, Periyar Technology Business Incubator, Thanjavur, Tamil Nadu, India
| | - Yun Hin Taufiq-Yap
- Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
35
|
Zhang YN, Wang J, Chen J, Zhou C, Xie Q. Phototransformation of 2,3-Dibromopropyl-2,4,6-tribromophenyl ether (DPTE) in Natural Waters: Important Roles of Dissolved Organic Matter and Chloride Ion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10490-10499. [PMID: 30141914 DOI: 10.1021/acs.est.8b03258] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Novel brominated flame retardants (NBFRs) have become ubiquitous emerging organic pollutants. However, little is known about their transformation in natural waters. In this study, aquatic photochemical behavior of a representative NBFR, 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), was investigated by simulated sunlight irradiation experiment. Results show that DPTE can undergo direct photolysis (apparent quantum yield 0.008 ± 0.001) and hydroxyl radical (·OH) initiated oxidation (second order reaction rate constant 2.4 × 109 M-1·s-1). Dissolved organic matter (DOM) promotes the photodegradation due to generation of excited triplet DOM and ·OH. Two chlorinated intermediates were identified in the photodegradation of DPTE in seawaters. Density functional theory calculation showed that ·Cl or ·Cl2- addition reactions on C-Br sites of the phenyl group and H-abstraction reactions from the propyl group are main reaction pathways of DPTE with the chlorine radicals. The ·Cl or ·Cl2- addition proceeds via a replacement mechanism to form chlorinated intermediates. Environmental half-lives of DPTE relevant with photodegradation are estimated to be 6.5-1153.9 days in waters of the Yellow River estuarine region. This study provides valuable insights into the phototransformation behavior of DPTE in natural waters, which is helpful for persistence assessment of the NBFRs.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment , Northeast Normal University , Changchun 130117 , China
| | - Jieqiong Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Chengzhi Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
36
|
Zhang YN, Zhou Y, Qu J, Chen J, Zhao J, Lu Y, Li C, Xie Q, Peijnenburg WJGM. Unveiling the important roles of coexisting contaminants on photochemical transformations of pharmaceuticals: Fibrate drugs as a case study. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:216-221. [PMID: 29990809 DOI: 10.1016/j.jhazmat.2018.06.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals are a group of ubiquitous emerging pollutants, many of which have been shown to undergo efficient photolysis in the environment. Photochemically produced reactive intermediates (PPRIs) sensitized by the pharmaceuticals in sunlit natural waters may induce photodegradation of coexisting compounds. In this study, the roles of coexisting contaminants on the phototransformation of pharmaceuticals were unveiled with the fibrate drugs gemfibrozil (GMF), fenofibrate (FNF), and fenofibric acid (FNFA) as model compounds. GMF undergoes initial concentration dependent photodegradation due to the involvement of singlet oxygen (1O2) initiated self-sensitized photolysis, and undergoes pH dependent photodegradation due to dissociation and hydroxyl radical (OH) generation. The decarboxylated intermediates of GMF and coexisting FNFA significantly accelerated the photodegradation of GMF. The promotional effects of the decarboxylated intermediates are attributed to generation of PPRIs, e.g. 1O2, superoxide (O2-), that subsequently react with GMF. Besides, FNFA can also promote the photodegradation of GMF through the electron transfer reaction from ground state GMF to excited state FNFA, leading to the formation of decarboxylated intermediates. The formed intermediates can subsequently also facilitate GMF photodegradation. The results presented here provided valuable novel insights into the effects of coexisting contaminants on the photodegradation of pharmaceuticals in polluted waters.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yangjian Zhou
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jianchen Zhao
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ying Lu
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chao Li
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands; National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
37
|
Li Y, Liu X, Zhang B, Zhao Q, Ning P, Tian S. Aquatic photochemistry of sulfamethazine: multivariate effects of main water constituents and mechanisms. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:513-522. [PMID: 29393327 DOI: 10.1039/c7em00548b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ubiquity of sulfonamides (SAs) in natural waters requires insight into their environmental fate for ecological risk assessment. Extensive studies focused on the effect of univariate water constituents on the photochemical fate of SAs, yet the multivariate effects of water constituents in environmentally relevant concentrations on SA photodegradation are poorly understood. Here, response surface methodology was employed to explore the integrative effects of main water constituents (dissolved organic matter (DOM), NO3-, HCO3-, Cu2+) on the photodegradation of a representative SA (sulfamethazine). Results showed that besides single factors, interaction of factors also significantly impacted the photodegradation. Radical scavenging experiments indicated that triplet-excited DOM (3DOM*) was responsible for the enhancing effect of DOM on the photodegradation. Additionally, DOM may also quench the 3DOM*-mediated oxidation intermediate of sulfamethazine causing the inhibiting effect of DOM-DOM interaction. We also found that HCO3- was oxidized by triplet-excited sulfamethazine producing CO3˙-, and the high reactivity of CO3˙- with sulfamethazine (second-order rate constant 2.2 × 108 M-1 s-1) determined by laser flash photolysis revealed the enhancing photodegradation mechanism of HCO3-. This study is among the first attempts to probe the photodegradation of SAs considering the integrative effects of water constituents, which is important in accurate ecological risk assessment of organic pollutants in the aquatic environment.
Collapse
Affiliation(s)
- Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xiangliang Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Biaojun Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
38
|
Celeiro M, Vignola Hackbarth F, U. de Souza SMG, Llompart M, Vilar VJ. Assessment of advanced oxidation processes for the degradation of three UV filters from swimming pool water. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Jiang L, Qiu Y, Li Y. Effects analysis of substituent characteristics and solvents on the photodegradation of polybrominated diphenyl ethers. CHEMOSPHERE 2017; 185:737-745. [PMID: 28734210 DOI: 10.1016/j.chemosphere.2017.07.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
The ultraviolet spectra and electron transition information of 209 polybrominated diphenyl ethers (PBDEs) in gas were first calculated via time-dependent density functional theory using Gaussian 09 software. The main and second-order interactional effects of substituent characteristics on the photodegradation of PBDEs were then analysed using a full factorial experimental design. Solvent effects were considered to research the effect and promotion mechanism of solvent molecules on the photodegradation of PBDEs compared with that in gas. The results showed that the introduction of substituents at each position promoted excitation of PBDEs from their ground states to excited states to induce photodegradation. The different positions affected the photodegradation of PBDEs with magnitudes of para > meta > ortho. The congeners with a concentrated distribution of substituents can always be photodegraded more easily than those with separated substituents. From the viewpoint of light-induced reactions, the electron transfer reactions between molecules of PBDE* T1 and Solvent* T1 are the main driving force for the enhanced photodegradation of PBDEs in solvents compared with that in gas.
Collapse
Affiliation(s)
- Long Jiang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; North China Electric Power Research Institute Co Ltd., Beijing, 100045, China
| | - Youli Qiu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
40
|
Wang Y, Deng W, Wang F, Su Y, Feng Y, Chen P, Ma J, Su H, Yao K, Liu Y, Lv W, Liu G. Study of the simulated sunlight photolysis mechanism of ketoprofen: the role of superoxide anion radicals, transformation byproducts, and ecotoxicity assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1176-1184. [PMID: 28745761 DOI: 10.1039/c7em00111h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The aim of this study was to investigate the photolysis mechanism of ketoprofen (KET) under simulated sunlight. The results demonstrated that the photolysis of KET aligned well with pseudo first-order kinetics. Radical scavenging experiments and dissolved oxygen experiments revealed that the superoxide anion radical (O2˙-) played a primary role in the photolytic process in pure water. Bicarbonate slightly increased the photodegradation of KET through generating carbonate radicals, while DOM inhibited the photolysis via both attenuating light and competing radicals. Moreover, Zhujiang river water inhibited KET phototransformation. Potential KET degradation pathways were proposed based on the identification of products using LC/MS/MS and GC/MS techniques. The theoretical prediction of reaction sites was derived from Frontier Electron Densities (FEDs), which primarily involved the KET decarboxylation reaction. The ecotoxicity of the treated solutions was evaluated by employing Daphnia magna and V. fischeri as biological indicators. Ecotoxicity was also hypothetically predicted through the "ecological structure-activity relationship" (ECOSAR) program, which revealed that toxic products might be generated during the photolysis process.
Collapse
Affiliation(s)
- Yingfei Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li C, Chen J, Xie HB, Zhao Y, Xia D, Xu T, Li X, Qiao X. Effects of Atmospheric Water on ·OH-initiated Oxidation of Organophosphate Flame Retardants: A DFT Investigation on TCPP. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5043-5051. [PMID: 28368609 DOI: 10.1021/acs.est.7b00347] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tris(2-chloroisopropyl) phosphate (TCPP), a widely used organophosphate flame retardant, has been recognized as an important atmospheric pollutant. It is notable that TCPP has potential for long-range atmospheric transport. However, its atmospheric fate is unknown, restricting its environmental risk assessment. Herein we performed quantum chemical calculations to investigate the atmospheric transformation mechanisms and kinetics of TCPP initiated by ·OH in the presence of O2/NO/NO2, and the effects of ubiquitous water on these reactions. Results show the H-abstraction pathways are the most favorable for the titled reaction. The calculated gaseous rate constant and lifetime at 298 K are 1.7 × 10-10 cm3molecule-1 s-1 and 1.7 h, respectively. However, when considering atmospheric water, the corresponding lifetime is about 0.5-20.2 days. This study reveals for the first time that water has a negative role in the ·OH-initiated degradation of TCPP by modifying the stabilities of prereactive complexes and transition states via forming hydrogen bonds, which unveils one underlying mechanism for the observed persistence of TCPP in the atmosphere. Water also influences secondary reaction pathways of selected TCPP radicals formed from the primary H-abstraction. These results demonstrate the importance of water in the evaluation of the atmospheric fate of newly synthesized chemicals and emerging pollutants.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University , Changchun 130117, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University , Changchun 130117, China
| | - Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Tong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Xianliang Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| |
Collapse
|
42
|
Ji Q, Yamazaki T, Sun J, Górecka Ż, Huang NC, Hsu SH, Shrestha LK, Hill JP, Ariga K. Spongelike Porous Silica Nanosheets: From "Soft" Molecular Trapping to DNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4509-4518. [PMID: 28106369 DOI: 10.1021/acsami.6b15082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Spongelike porous silica nanosheets, with nanometer thicknesses and pores whose diameters are on the hundreds-of-nanometers scale, have been used as a novel carrier for molecular immobilization of different guests. Enhanced properties of encapsulation were shown for drug molecules of different dimensions due to "softness" caused by the specific nanometric features of the porous structure. The encapsulating effect of the structure results in sustained and stimuli-responsive release behavior of immobilized guest molecules. By studying the adsorption process of DNA molecules on spongelike porous nanosheets or on solid nanoparticles by use of a quartz crystal microbalance, we show that better elasticity of surfaces of the porous nanosheets over that of solid nanoparticles can improve the immobilization of guest molecules. The coating of porous silica nanosheets onto various substrates was also found to effectively mediate DNA delivery to mammalian cells.
Collapse
Affiliation(s)
- Qingmin Ji
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science & Technology , 200 Xiaolingwei, Nanjing 210094, China
| | - Tomohiko Yamazaki
- WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jiao Sun
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science & Technology , 200 Xiaolingwei, Nanjing 210094, China
| | - Żaneta Górecka
- Faculty of Materials Science and Engineering, Warsaw University of Technology , Wołoska 141, Warsaw 02-507, Poland
| | - Nien-Chi Huang
- Institute of Polymer Science and Engineering, National Taiwan University . No. 1 Sec. 4 Roosevelt Road, Taipei 10617, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University . No. 1 Sec. 4 Roosevelt Road, Taipei 10617, Taiwan
| | - Lok Kumar Shrestha
- WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
43
|
Zhou L, Wang Q, Zhang Y, Ji Y, Yang X. Aquatic photolysis of β2-agonist salbutamol: kinetics and mechanism studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5544-5553. [PMID: 28028708 DOI: 10.1007/s11356-016-8207-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
Salbutamol (SAL) has been widely used as medicine both in treating asthma and in animal primary production; an increasing number of reports have detected SAL in natural waters. The photolysis kinetic and pathway of SAL in aquatic system were studied, as well as the effect of several natural water constituents, such as nitrate, dissolved oxygen (DO) and ferric ions. According to our research, the direct photolysis of SAL followed pseudo-first-order reaction kinetics. Alkaline condition could promote the degradation of SAL; the increase of solution pH would simultaneously increase the fraction of the deprotonated forms of SAL (including the deprotonated and zwitterionic species), which were easier to be excited, and result in the bathochromic shift of the UV-Vis spectrum and, finally, accelerate the degradation rate of SAL. The presence of nitrate could enhance the removal rate of SAL via generation hydroxyl radical (·OH) under irradiation. In addition, the absence of oxygen in the reaction solution could decrease the photolysis. Moreover, Fe(III) was able to chelate with SAL to form an octahedral complex, which was photochemically reactive. The octahedral complex could generate ·OH to oxidize SAL itself in turn. The pathways of SAL photolysis were also investigated by means of the solid phase extraction (SPE)-LC-MS method. The major pathways of SAL photodegradation included oxidation and side-chain cleavage.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626, Villeurbanne, France.
| | - Qi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ya Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of the People's Republic of China, Nanjing, 210042, China
| | - Yuefei Ji
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
44
|
Zhai P, Chen X, Dong W, Li H, Chovelon JM. Degradation of triclosan in the presence of p-aminobenzoic acid under simulated sunlight irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:558-567. [PMID: 27734316 DOI: 10.1007/s11356-016-7778-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to investigate the degradation of triclosan (TCS) in the presence of p-aminobenzoic acid (PABA) under simulated sunlight irradiation (λ ≥ 290 nm). The effect of PABA concentration, pH, dissolved organic matter (DOM), and DOM-hydrolytic Fe(III) species complexes on the photodegradation of TCS in the presence of PABA (TCS-PABA) was also studied. The photolysis of TCS-PABA obeyed pseudo-first-order kinetics well, and the degradation of TCS-PABA enhanced with increasing solution pH (from 3.0 to 11.0). The presence of PABA inhibited the degradation of TCS-PABA, and the weakest inhibitory effect was observed while the concentration of PABA was 5 mg L-1. The addition of DOM (Suwannee River fulvic acid standard I [SRFA], Suwannee River HA standard II [SRHA], and Suwannee River natural organic matter [SRNOM]) showed different inhibition effects on TCS-PABA degradation. However, higher Fe(III) concentration at the DOM concentration of 5 mg L-1 could favor the formation of DOM-hydrolytic Fe(III) species complexes, further accelerating the degradation of TCS-PABA. In comparison with deionized water (DI water), TCS-PABA could be better photodegraded in river water nearby the effluent of a wastewater treatment plant. This study provides useful information for understanding the natural behavior of TCS in the presence of other organic contaminants.
Collapse
Affiliation(s)
- Pingping Zhai
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Xuan Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Hongjing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Jean-Marc Chovelon
- Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), UMR CNRS 5256, Université Lyon 1, 2 Avenue Albert Einstein, 69626, Villeurbanne, France
| |
Collapse
|
45
|
Li F, Kong Q, Chen P, Chen M, Liu G, Lv W, Yao K. Effect of halide ions on the photodegradation of ibuprofen in aqueous environments. CHEMOSPHERE 2017; 166:412-417. [PMID: 27701000 DOI: 10.1016/j.chemosphere.2016.09.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/03/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
Typically contained within ambient surface waters and certain industrial wastewaters, are plentiful halide ions, which possess varying degrees of photosensitivity. The effects of halide ions on the photodegradation of ibuprofen (IBP) were investigated under UV irradiation using a 500 W mercury lamp as a light source. Studies of the mechanism of halide ions were inclusive of both their light shielding effects and quenching experiments. The results indicated that chloride ion has a slight inhibition against IBP photodegradation under neutral condition, and significant inhibition is observed with bromide ions and iodide ions. In addition to the observed increased rate of IBP photodegradation in conjunction with elevated pH in solution, the inhibitory effect of halide ions was different. When the pH value of the IBP solution was 5, chloride ions were seen to facilitate the photodegradation of IBP. Halide ions can inhibit IBP photodegradation by means of a light attenuation effect. All of the halide ions significantly facilitated the generation of 1O2.
Collapse
Affiliation(s)
- Fuhua Li
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China.
| | - Qingqing Kong
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Ping Chen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Min Chen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Guoguang Liu
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China.
| | - Wenying Lv
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Kun Yao
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| |
Collapse
|
46
|
Zhang S, Yu G, Chen J, Zhao Q, Zhang X, Wang B, Huang J, Deng S, Wang Y. Elucidating ozonation mechanisms of organic micropollutants based on DFT calculations: Taking sulfamethoxazole as a case. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:971-980. [PMID: 27884467 DOI: 10.1016/j.envpol.2016.10.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/19/2016] [Accepted: 10/26/2016] [Indexed: 05/28/2023]
Abstract
Ozonation is widely used in wastewater treatment plants to remove diverse organic micropollutants. As molecular structures of organic micropollutants contain multiple ozone-preferred reaction sites, and moreover intermediate products can react with ozone again, ozonation mechanism is complex. A fast increasing number of organic micropollutants and a great demand of ecological risk assessments call for an in silico method to provide insights into the ozonation mechanism of organic micropollutants. Here, an in silico model was developed to unveil ozonation mechanisms of organic micropollutants. Sulfamethoxazole was taken as a case. The model enumerates elementary reactions following well-accepted ozonation patterns and secondary transformation reactions established for intermediates by experiments. Density functional theory (DFT) calculations were employed for evaluating thermodynamic feasibilities of reaction pathways. By calculating Gibbs free energies, ozonation products of SMX were predicted. The predicted products are consistent with those detected in experiments. This method is advanced in revealing all possible reaction pathways including minor pathways that produce toxic byproducts but are difficult to be observed by experiments. Accordingly, water treatment engineers can setup necessary treatment technology to ensure water safety.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, and Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, China
| | - Gang Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, POPs Research Center, Tsinghua University, Beijing, 100084, China; Veolia Environment Joint Research Center for Advanced Technology, Tsinghua University, Beijing, 100084, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, and Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, and Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, China
| | - Bin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, POPs Research Center, Tsinghua University, Beijing, 100084, China; Veolia Environment Joint Research Center for Advanced Technology, Tsinghua University, Beijing, 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, POPs Research Center, Tsinghua University, Beijing, 100084, China; Veolia Environment Joint Research Center for Advanced Technology, Tsinghua University, Beijing, 100084, China
| | - Shubo Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, POPs Research Center, Tsinghua University, Beijing, 100084, China; Veolia Environment Joint Research Center for Advanced Technology, Tsinghua University, Beijing, 100084, China
| | - Yujue Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, POPs Research Center, Tsinghua University, Beijing, 100084, China; Veolia Environment Joint Research Center for Advanced Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
47
|
Facile synthesis of ZnO nanoparticles and its photocatalytic activity in the degradation of 2-phenylbenzimidazole-5-sulfonic acid. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Zhang S, Chen J, Zhao Q, Xie Q, Wei X. Unveiling self-sensitized photodegradation pathways by DFT calculations: A case of sunscreen p-aminobenzoic acid. CHEMOSPHERE 2016; 163:227-233. [PMID: 27529387 DOI: 10.1016/j.chemosphere.2016.08.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/04/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Self-sensitized photodegradation has been observed for diverse aquatic organic pollutants. However, photodegradation pathways have not been clarified in previous experimental studies. Here, we attempted to probe self-sensitized photodegradation pathways of organic pollutants employing both photolytic experiments and density functional theory calculations. By performing photolytic experiments, we found that singlet state oxygen ((1)O2) play an essential role in photodegradation of a sunscreen p-aminobenzoic acid (PABA). PABA can photogenerate (1)O2 and react fast with (1)O2. We hypothesized that PABA underwent (1)O2 induced self-sensitized photodegradation. By calculating transition states, intermediates and reaction barriers, we found that (1)O2 can oxidize PABA through electrophilic attacks on the benzene ring to abstract one H atom of the amino group following a 1,3-addition mechanism or to induce decarboxylation. Either pathway produces a hydroperoxide. O-O bond cleavage of the hydroperoxides occurring at ground states or the lowest triplet excited states can produce phenoxyl radical precursors of 4-amino-3-hydroxybenzoic acid and 4-aminophenol, which are photodegradation products detected in experiments. Thus, a viable (1)O2 self-sensitized photodegradation mechanism was unveiled for PABA.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Xiaoxuan Wei
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
49
|
Li Y, Qiao X, Zhang YN, Zhou C, Xie H, Chen J. Effects of halide ions on photodegradation of sulfonamide antibiotics: Formation of halogenated intermediates. WATER RESEARCH 2016; 102:405-412. [PMID: 27393965 DOI: 10.1016/j.watres.2016.06.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/19/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
The occurrence of sulfonamide antibiotics (SAs) in estuarine waters urges insights into their environmental fate for ecological risk assessment. Although many studies focused on the photochemical behavior of SAs, yet the effects of halide ions relevant to estuarine and marine environments on their photodegradation have been poorly understood. Here, we investigated the effects of halide ions on the photodegradation of SAs with sulfapyridine, sulfamethazine, and sulfamethoxazole as representative compounds. Results showed that halide ions did not significantly impact the photodegradation of sulfapyridine and sulfamethoxazole, while they significantly promoted the photodegradation of sulfamethazine. Further experiments found that ionic strength applied with NaClO4 significantly enhanced the photodegradation of the SAs, which was attributed to the decreased quenching rate constant of the triplet-excited SAs ((3)SA(∗)). Compared with ionic strength, specific Cl(-) effects retarded the photodegradation of the SAs. Our study found that triplet-excited sulfamethazine can oxidize halide ions to produce halogen radicals, subsequently leading to the halogenation of sulfamethazine, which was confirmed by the identification of both chlorinated and brominated intermediates. These results indicate that halide ions play an important role in the photochemical behavior of some SAs in estuarine waters and seawater. The occurrence of halogenation for certain organic pollutants can be predicted by comparing the oxidation potentials of triplet-excited contaminants with those of halogen radicals. Our findings are helpful in understanding the photochemical behavior and assessing the ecological risks of SAs and other organic pollutants in estuarine and marine environment.
Collapse
Affiliation(s)
- Yingjie Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xianliang Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Ya-Nan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chengzhi Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
50
|
Zhang YN, Xie Q, Sun G, Yang K, Song S, Chen J, Zhou C, Li Y. Effects of dissolved organic matter on phototransformation rates and dioxin products of triclosan and 2'-HO-BDE-28 in estuarine water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1177-1184. [PMID: 27383795 DOI: 10.1039/c6em00122j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photochemical transformation of hydroxylated polyhalodiphenyl ethers (HO-PXDEs) has attracted much attention for their ubiquitous presence and the photochemical formation of highly toxic dioxins. Dissolved organic matter (DOM) plays an important role in the environmental photochemical transformation of organic pollutants. However, the effects of DOM on the photolysis kinetics and dioxin formation of HO-PXDEs are still not fully understood. Herein, the effects of Suwannee River natural organic matter (SRNOM) on the phototransformation of 2'-HO-2,4,4'-trichlorodiphenyl ether (triclosan) and 2'-HO-2,4,4'-tribromodiphenyl ether (2'-HO-BDE-28) were investigated in artificial estuarine water (AEW). The results showed that although SRNOM induced indirect photolysis of triclosan and 2'-HO-BDE-28, it decreased the observed photolytic rate constants due to light screening, static quenching and dynamic quenching effects. The above effects were quantified firstly. Direct photolysis is more important than indirect photolysis in the transformation of the target compounds and the production of dioxins. SRNOM increased the dioxin yields of the two HO-PXDEs. It was also found that SRNOM decreased the formation rate constant (kp) of 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD) from triclosan and showed no obvious influence on the kp of 2,8-dibromodibenzo-p-dioxin (2,8-DBDD) from 2'-HO-BDE-28. SRNOM showed no obvious influence on the degradation of 2,8-DCDD, while it increased the degradation rate constant of 2,8-DBDD. The promoting effect on the degradation of 2,8-DBDD was attributed to the formation of chloride radicals with the concurrence of SRNOM and Cl(-) in AEW. This study revealed the roles of SRNOM in the photochemical transformation of HO-PXDEs and the photochemical formation and degradation of dioxins, which is important for elucidating the transformation fate of HO-PXDEs in aquatic environments.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | | | | | | | |
Collapse
|