1
|
Yan X, Li Y, Zhang X. Semiconductor nanowire heterodimensional structures toward advanced optoelectronic devices. NANOSCALE HORIZONS 2024. [PMID: 39451075 DOI: 10.1039/d4nh00385c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Semiconductor nanowires are considered as one of the most promising candidates for next-generation devices due to their unique quasi-one-dimensional structures and novel physical properties. In recent years, advanced heterostructures have been developed by combining nanowires with low-dimensional structures such as quantum wells, quantum dots, and two-dimensional materials. Those heterodimensional structures overcome the limitations of homogeneous nanowires and show great potential in high-performance nano-optoelectronic devices. In this review, we summarize and discuss recent advances in fabrication, properties and applications of nanowire heterodimensional structures. Major heterodimensional structures including nanowire/quantum well, nanowire/quantum dot, and nanowire/2D-material are studied. Representative optoelectronic devices including lasers, single photon sources, light emitting diodes, photodetectors, and solar cells are introduced in detail. Related prospects and challenges are also discussed.
Collapse
Affiliation(s)
- Xin Yan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Yao Li
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Xia Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| |
Collapse
|
2
|
Tilak N, Altvater M, Hung SH, Won CJ, Li G, Kaleem T, Cheong SW, Chung CH, Jeng HT, Andrei EY. Proximity induced charge density wave in a graphene/1T-TaS 2 heterostructure. Nat Commun 2024; 15:8056. [PMID: 39277602 PMCID: PMC11401908 DOI: 10.1038/s41467-024-51608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/07/2024] [Indexed: 09/17/2024] Open
Abstract
The proximity-effect, whereby materials in contact appropriate each other's electronic-properties, is widely used to induce correlated states, such as superconductivity or magnetism, at heterostructure interfaces. Thus far however, demonstrating the existence of proximity-induced charge-density-waves (PI-CDW) proved challenging. This is due to competing effects, such as screening or co-tunneling into the parent material, that obscured its presence. Here we report the observation of a PI-CDW in a graphene layer contacted by a 1T-TaS2 substrate. Using scanning tunneling microscopy (STM) and spectroscopy (STS) together with theoretical-modeling, we show that the coexistence of a CDW with a Mott-gap in 1T-TaS2 coupled with the Dirac-dispersion of electrons in graphene, makes it possible to unambiguously demonstrate the PI-CDW by ruling out alternative interpretations. Furthermore, we find that the PI-CDW is accompanied by a reduction of the Mott gap in 1T-TaS2 and show that the mechanism underlying the PI-CDW is well-described by short-range exchange-interactions that are distinctly different from previously observed proximity effects.
Collapse
Affiliation(s)
- Nikhil Tilak
- Department of Physics and Astronomy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Michael Altvater
- Department of Physics and Astronomy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Sheng-Hsiung Hung
- Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
| | - Choong-Jae Won
- Laboratory for Pohang Emergent Materials and Max Plank POSTECH Center for Complex Phase Materials, Department of Physics, Pohang University of Science and Technology, Pohang, Korea
| | - Guohong Li
- Department of Physics and Astronomy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Taha Kaleem
- Department of Physics and Astronomy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Sang-Wook Cheong
- Department of Physics and Astronomy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Chung-Hou Chung
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- Physics Division, National Center for Theoretical Sciences, Taipei, Taiwan.
- Center for Theoretical and Computational Physics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| | - Horng-Tay Jeng
- Department of Physics, National Tsing Hua University, Hsinchu, Taiwan.
- Physics Division, National Center for Theoretical Sciences, Taipei, Taiwan.
- Institute of Physics, Academia Sinica, Taipei, Taiwan.
| | - Eva Y Andrei
- Department of Physics and Astronomy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
3
|
Sun H, Tian H, Hu Y, Cui Y, Chen X, Xu M, Wang X, Zhou T. Bio-Plausible Multimodal Learning with Emerging Neuromorphic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406242. [PMID: 39258724 DOI: 10.1002/advs.202406242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Indexed: 09/12/2024]
Abstract
Multimodal machine learning, as a prospective advancement in artificial intelligence, endeavors to emulate the brain's multimodal learning abilities with the objective to enhance interactions with humans. However, this approach requires simultaneous processing of diverse types of data, leading to increased model complexity, longer training times, and higher energy consumption. Multimodal neuromorphic devices have the capability to preprocess spatio-temporal information from various physical signals into unified electrical signals with high information density, thereby enabling more biologically plausible multimodal learning with low complexity and high energy-efficiency. Here, this work conducts a comparison between the expression of multimodal machine learning and multimodal neuromorphic computing, followed by an overview of the key characteristics associated with multimodal neuromorphic devices. The bio-plausible operational principles and the multimodal learning abilities of emerging devices are examined, which are classified into heterogeneous and homogeneous multimodal neuromorphic devices. Subsequently, this work provides a detailed description of the multimodal learning capabilities demonstrated by neuromorphic circuits and their respective applications. Finally, this work highlights the limitations and challenges of multimodal neuromorphic computing in order to hopefully provide insight into potential future research directions.
Collapse
Affiliation(s)
- Haonan Sun
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Haoxiang Tian
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yihao Hu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yi Cui
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xinrui Chen
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Minyi Xu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xianfu Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Tao Zhou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
4
|
Fu GE, Yang H, Zhao W, Samorì P, Zhang T. 2D Conjugated Polymer Thin Films for Organic Electronics: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311541. [PMID: 38551322 DOI: 10.1002/adma.202311541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 04/06/2024]
Abstract
2D conjugated polymers (2DCPs) possess extended in-plane π-conjugated lattice and out-of-plane π-π stacking, which results in enhanced electronic performance and potentially unique band structures. These properties, along with predesignability, well-defined channels, easy postmodification, and order structure attract extensive attention from material science to organic electronics. In this review, the recent advance in the interfacial synthesis and conductivity tuning strategies of 2DCP thin films, as well as their application in organic electronics is summarized. Furthermore, it is shown that, by combining topology structure design and targeted conductivity adjustment, researchers have fabricated 2DCP thin films with predesigned active groups, highly ordered structures, and enhanced conductivity. These films exhibit great potential for various thin-film organic electronics, such as organic transistors, memristors, electrochromism, chemiresistors, and photodetectors. Finally, the future research directions and perspectives of 2DCPs are discussed in terms of the interfacial synthetic design and structure engineering for the fabrication of fully conjugated 2DCP thin films, as well as the functional manipulation of conductivity to advance their applications in future organic electronics.
Collapse
Affiliation(s)
- Guang-En Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
5
|
Fu X, Liu Z, Wang H, Xie D, Sun Y. Small Feature-Size Transistors Based on Low-Dimensional Materials: From Structure Design to Nanofabrication Techniques. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400500. [PMID: 38884208 PMCID: PMC11434044 DOI: 10.1002/advs.202400500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/11/2024] [Indexed: 06/18/2024]
Abstract
For several decades after Moore's Law is proposed, there is a continuous effort to reduce the feature-size of transistors. However, as the size of transistors continues to decrease, numerous challenges and obstacles including severe short channel effects (SCEs) are emerging. Recently, low-dimensional materials have provided new opportunities for constructing small feature-size transistors due to their superior electrical properties compared to silicon. Here, state-of-the-art low-dimensional materials-based transistors with small feature-sizes are reviewed. Different from other works that mainly focus on material characteristics of a specific device structure, the discussed topics are utilizing device structure design including vertical structure and nano-gate structure, and nanofabrication techniques to achieve small feature-sizes of transistors. A comprehensive summary of these small feature-size transistors is presented by illustrating their operation mechanism, relevant fabrication processes, and corresponding performance parameters. Besides, the role of small feature-size transistors based on low-dimensional materials in further reducing the small footprint is also clarified and their cutting-edge applications are highlighted. Finally, a comparison and analysis between state-of-art transistors is made, as well as a glimpse into the future research trajectory of low dimensional materials-based small feature-size transistors is briefly outlined.
Collapse
Affiliation(s)
- Xiaqing Fu
- School of MicroelectronicsShanghai UniversityShanghai201800P. R. China
| | - Zhifang Liu
- School of Integrated Circuits and ElectronicsBeijing Institute of TechnologyBeijing100081P. R. China
| | - Huaipeng Wang
- School of Integrated CircuitsBeijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Dan Xie
- School of Integrated CircuitsBeijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Yilin Sun
- School of Integrated Circuits and ElectronicsBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
6
|
Pagaduan J, Hight-Huf N, Zhou L, Dix N, Premadasa UI, Doughty B, Russell TP, Ramasubramaniam A, Barnes M, Katsumata R, Emrick T. Spatial and Bidirectional Work Function Modulation of Monolayer Graphene with Patterned Polymer "Fluorozwitterists". ACS CENTRAL SCIENCE 2024; 10:1629-1639. [PMID: 39220689 PMCID: PMC11363338 DOI: 10.1021/acscentsci.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Understanding the electronic properties resulting from soft-hard material interfacial contact has elevated the utility of functional polymers in advanced materials and nanoscale structures, such as in work function engineering of two-dimensional (2D) materials to produce new types of high-performance devices. In this paper, we describe the electronic impact of functional polymers, containing both zwitterionic and fluorocarbon components in their side chains, on the work function of monolayer graphene through the preparation of negative-tone photoresists, which we term "fluorozwitterists." The zwitterionic and fluorinated groups each represent dipole-containing moieties capable of producing distinct surface energies as thin films. Kelvin probe force microscopy revealed these polymers to have a p-doping effect on graphene, which contrasts the work function decrease typically associated with polymer-to-graphene contact. Copolymerization of fluorinated zwitterionic monomers with methyl methacrylate and a benzophenone-substituted methacrylate produced copolymers that were amenable to photolithographic fabrication of fluorozwitterist structures. Consequently, spatial alteration of zwitterion coverage across graphene yielded stripes that resemble a lateral p-i-n diode configuration, with local increase or decrease of work function. Overall, this polymeric fluorozwitterist design is suitable for enabling simple, solution-based surface patterning and is anticipated to be useful for spatial work function modulation of 2D materials integrated into electronic devices.
Collapse
Affiliation(s)
- James
Nicolas Pagaduan
- Polymer
Science and Engineering Department, University
of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Nicholas Hight-Huf
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Le Zhou
- Polymer
Science and Engineering Department, University
of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Nicholas Dix
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Uvinduni I. Premadasa
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Thomas P. Russell
- Polymer
Science and Engineering Department, University
of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Ashwin Ramasubramaniam
- Department
of Mechanical and Industrial Engineering and Materials Science Graduate
Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Michael Barnes
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Reika Katsumata
- Polymer
Science and Engineering Department, University
of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer
Science and Engineering Department, University
of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Singh M, Kaur SP, Chakraborty B. Modeling and tuning the electronic, mechanical and optical properties of a recently synthesized 2D polyaramid: a first principles study. Phys Chem Chem Phys 2024; 26:21874-21887. [PMID: 39105423 DOI: 10.1039/d4cp02027h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
This work delves into a methodology of modeling 2D materials and their structural engineering, considering an example of a recently synthesized 2D polyaramid (2DPA-1). A bottom-up approach similar to experimental techniques is implemented for modeling, and then its electronic structures and phonon spectrum and the quadratic nature of flexural phonons are analyzed. Furthermore, boron and nitrogen atoms are substituted for the carbon atom of the amide group of 2DPA-1, and their effects on its electronic properties, phonon spectrum, and mechanical properties are compared with those of pristine 2DPA-1 using density functional theory calculations. The ab initio molecular dynamics (AIMD) simulations validate the thermal stability of our system at high temperatures. The spin-polarized electronic structures reveal the transformation of pristine 2DPA-1 from a semiconductor to a half-metal and its magnetic behaviour upon nitrogen substitution. Constraining the quadratic nature of flexural phonons using the Born-Huang criteria significantly enhances the phonon spectra, leading to more accurate and reliable simulations. For modulated 2DPA-1, the elastic modulus varies between 17 and 27 N m-1, and the absorption peaks shift from ∼5.15 eV to 2.42 eV, enabling the application of polymeric 2D nanomaterials in photocatalysis and sensing, where light absorption in the near-infrared region is important. Finally, validation of our methodology is confirmed, as computed Young's modulus (11.26-11.76 GPa) of 2DPA-1 matches excellently with the experimental value (12.7 ± 3.8 GPa). Overall, this study reveals the modeling of a newly synthesized polymeric 2D material, and tuning its properties results in smaller bandgaps and half-metallic and magnetic behaviours.
Collapse
Affiliation(s)
- Mukesh Singh
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Surinder Pal Kaur
- Quantum Dynamics Lab, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
8
|
Cloninger JA, Harris R, Haley KL, Sterbentz RM, Taniguchi T, Watanabe K, Island JO. A back-to-back diode model applied to van der Waals Schottky diodes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:455301. [PMID: 39084637 DOI: 10.1088/1361-648x/ad69ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
The use of metal and semimetal van der Waals contacts for 2D semiconducting devices has led to remarkable device optimizations. In comparison with conventional thin-film metal deposition, a reduction in Fermi level pinning at the contact interface for van der Waals contacts results in, generally, lower contact resistances and higher mobilities. Van der Waals contacts also lead to Schottky barriers that follow the Schottky-Mott rule, allowing barrier estimates on material properties alone. In this study, we present a double Schottky barrier model and apply it to a barrier tunable all van der Waals transistor. In a molybdenum disulfide (MoS2) transistor with graphene and few-layer graphene contacts, we find that the model can be applied to extract Schottky barrier heights that agree with the Schottky-Mott rule from simple two-terminal current-voltage measurements at room temperature. Furthermore, we show tunability of the Schottky barrierin-situusing a regional contact gate. Our results highlight the utility of a basic back-to-back diode model in extracting device characteristics in all van der Waals transistors.
Collapse
Affiliation(s)
- Jeffrey A Cloninger
- Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154, United States of America
| | - Raine Harris
- Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154, United States of America
| | - Kristine L Haley
- Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154, United States of America
| | - Randy M Sterbentz
- Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154, United States of America
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Joshua O Island
- Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154, United States of America
| |
Collapse
|
9
|
Li C, Xu F, Li B, Li J, Li G, Watanabe K, Taniguchi T, Tong B, Shen J, Lu L, Jia J, Wu F, Liu X, Li T. Tunable superconductivity in electron- and hole-doped Bernal bilayer graphene. Nature 2024; 631:300-306. [PMID: 38898282 DOI: 10.1038/s41586-024-07584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Graphene-based, high-quality, two-dimensional electronic systems have emerged as a highly tunable platform for studying superconductivity1-21. Specifically, superconductivity has been observed in both electron- and hole-doped twisted graphene moiré systems1-17, whereas in crystalline graphene systems, superconductivity has so far been observed only in hole-doped rhombohedral trilayer graphene (RTG)18 and hole-doped Bernal bilayer graphene (BBG)19-21. Recently, enhanced superconductivity has been demonstrated20,21 in BBG because of the proximity to a monolayer WSe2. Here we report the observation of superconductivity and a series of flavour-symmetry-breaking phases in electron- and hole-doped BBG/WSe2 devices by electrostatic doping. The strength of the observed superconductivity is tunable by applied vertical electric fields. The maximum Berezinskii-Kosterlitz-Thouless transition temperature for the electron- and hole-doped superconductivity is about 210 mK and 400 mK, respectively. Superconductivities emerge only when the applied electric fields drive the BBG electron or hole wavefunctions towards the WSe2 layer, underscoring the importance of the WSe2 layer in the observed superconductivity. The hole-doped superconductivity violates the Pauli paramagnetic limit, consistent with an Ising-like superconductor. By contrast, the electron-doped superconductivity obeys the Pauli limit, although the proximity-induced Ising spin-orbit coupling is also notable in the conduction band. Our findings highlight the rich physics associated with the conduction band in BBG, paving the way for further studies into the superconducting mechanisms of crystalline graphene and the development of superconductor devices based on BBG.
Collapse
Affiliation(s)
- Chushan Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Xu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Bohao Li
- School of Physics and Technology, Wuhan University, Wuhan, China
| | - Jiayi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Guoan Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Bingbing Tong
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jie Shen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Li Lu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Hefei National Laboratory, Hefei, China
| | - Jinfeng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China
- Hefei National Laboratory, Hefei, China
- Shanghai Research Center for Quantum Sciences, Shanghai, China
| | - Fengcheng Wu
- School of Physics and Technology, Wuhan University, Wuhan, China.
- Wuhan Institute of Quantum Technology, Wuhan, China.
| | - Xiaoxue Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China.
- Hefei National Laboratory, Hefei, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, China.
| | - Tingxin Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China.
- Hefei National Laboratory, Hefei, China.
| |
Collapse
|
10
|
Seo DB, Kwon YM, Kim J, Kang S, Yim S, Lee SS, Kim ET, Song W, An KS. Edge-Rich 3D Structuring of Metal Chalcogenide/Graphene with Vertical Nanosheets for Efficient Photocatalytic Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28613-28624. [PMID: 38785040 DOI: 10.1021/acsami.4c04329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Constructing pertinent nanoarchitecture with abundant exposed active sites is a valid strategy for boosting photocatalytic hydrogen generation. However, the controllable approach of an ideal architecture comprising vertically standing transition metal chalcogenides (TMDs) nanosheets on a 3D graphene network remains challenging despite the potential for efficient photocatalytic hydrogen production. In this study, we fabricated edge-rich 3D structuring photocatalysts involving vertically grown TMDs nanosheets on a 3D porous graphene framework (referred to as 3D Gr). 2D TMDs (MoS2 and WS2)/3D Gr heterostructures were produced by location-specific photon-pen writing and metal-organic chemical vapor deposition for maximum edge site exposure enabling efficient photocatalytic reactivity. Vertically aligned 2D Mo(W)S2/3D Gr heterostructures exhibited distinctly boosted hydrogen production because of the 3D Gr caused by synergetic impacts associated with the large specific surface area and improved density of exposed active sites in vertically standing Mo(W)S2. The heterostructure involving graphene and TMDs corroborates an optimum charge transport pathway to rapidly separate the photogenerated electron-hole pairs, allowing more electrons to contribute to the photocatalytic hydrogen generation reaction. Consequently, the size-tailored heterostructure showed a superior hydrogen generation rate of 6.51 mmol g-1 h-1 for MoS2/3D graphene and 7.26 mmol g-1 h-1 for WS2/3D graphene, respectively, which were 3.59 and 3.76 times greater than that of MoS2 and WS2 samples. This study offers a promising path for the potential of 3D structuring of vertical TMDs/graphene heterostructure with edge-rich nanosheets for photocatalytic applications.
Collapse
Affiliation(s)
- Dong-Bum Seo
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Yeong Min Kwon
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jin Kim
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Saewon Kang
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Soonmin Yim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sun Sook Lee
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Eui-Tae Kim
- Department of Materials Science & Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wooseok Song
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea
| | - Ki-Seok An
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
11
|
Aslam MA, Leitner S, Tyagi S, Provias A, Tkachuk V, Pavlica E, Dienstleder M, Knez D, Watanabe K, Taniguchi T, Yan D, Shi Y, Knobloch T, Waltl M, Schwingenschlögl U, Grasser T, Matković A. All van der Waals Semiconducting PtSe 2 Field Effect Transistors with Low Contact Resistance Graphite Electrodes. NANO LETTERS 2024; 24:6529-6537. [PMID: 38789104 PMCID: PMC11157664 DOI: 10.1021/acs.nanolett.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Contact resistance is a multifaceted challenge faced by the 2D materials community. Large Schottky barrier heights and gap-state pinning are active obstacles that require an integrated approach to achieve the development of high-performance electronic devices based on 2D materials. In this work, we present semiconducting PtSe2 field effect transistors with all-van-der-Waals electrode and dielectric interfaces. We use graphite contacts, which enable high ION/IOFF ratios up to 109 with currents above 100 μA μm-1 and mobilities of 50 cm2 V-1 s-1 at room temperature and over 400 cm2 V-1 s-1 at 10 K. The devices exhibit high stability with a maximum hysteresis width below 36 mV nm-1. The contact resistance at the graphite-PtSe2 interface is found to be below 700 Ω μm. Our results present PtSe2 as a promising candidate for the realization of high-performance 2D circuits built solely with 2D materials.
Collapse
Affiliation(s)
- M. Awais Aslam
- Chair
of Physics, Department Physics, Mechanical Engineering, and Electrical
Engineering, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Simon Leitner
- Chair
of Physics, Department Physics, Mechanical Engineering, and Electrical
Engineering, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Shubham Tyagi
- Physical
Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Alexandros Provias
- Institute
for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Wien, Austria
| | - Vadym Tkachuk
- Laboratory
of Organic Matter Physics, University of
Nova Gorica, Vipavska
13, Nova Gorica SI-5000, Slovenia
| | - Egon Pavlica
- Laboratory
of Organic Matter Physics, University of
Nova Gorica, Vipavska
13, Nova Gorica SI-5000, Slovenia
| | | | - Daniel Knez
- Institute
of Electron Microscopy and Nanoanalysis, Graz University of Technology (NAWI Graz), Steyrergasse 17, 8010 Graz, Austria
| | - Kenji Watanabe
- Research
Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Dayu Yan
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Youguo Shi
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Theresia Knobloch
- Institute
for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Wien, Austria
| | - Michael Waltl
- Christian
Doppler Laboratory for Single-Defect Spectroscopy at the Institute
for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Wien, Austria
| | - Udo Schwingenschlögl
- Physical
Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Tibor Grasser
- Institute
for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Wien, Austria
| | - Aleksandar Matković
- Chair
of Physics, Department Physics, Mechanical Engineering, and Electrical
Engineering, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| |
Collapse
|
12
|
Josline MJ, Ghods S, Kosame S, Choi JH, Kim W, Kim S, Chang S, Hyun SH, Kim SI, Moon JY, Park HG, Cho SB, Ju H, Lee JH. Uniform Synthesis of Bilayer Hydrogen Substituted Graphdiyne for Flexible Piezoresistive Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307276. [PMID: 38196162 DOI: 10.1002/smll.202307276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/21/2023] [Indexed: 01/11/2024]
Abstract
Graphdiyne (GDY) has garnered significant attention as a cutting-edge 2D material owing to its distinctive electronic, optoelectronic, and mechanical properties, including high mobility, direct bandgap, and remarkable flexibility. One of the key challenges hindering the implementation of this material in flexible applications is its large area and uniform synthesis. The facile growth of centimeter-scale bilayer hydrogen substituted graphdiyne (Bi-HsGDY) on germanium (Ge) substrate is achieved using a low-temperature chemical vapor deposition (CVD) method. This material's field effect transistors (FET) showcase a high carrier mobility of 52.6 cm2 V-1 s-1 and an exceptionally low contact resistance of 10 Ω µm. By transferring the as-grown Bi-HsGDY onto a flexible substrate, a long-distance piezoresistive strain sensor is demonstrated, which exhibits a remarkable gauge factor of 43.34 with a fast response time of ≈275 ms. As a proof of concept, communication by means of Morse code is implemented using a Bi-HsGDY strain sensor. It is believed that these results are anticipated to open new horizons in realizing Bi-HsGDY for innovative flexible device applications.
Collapse
Affiliation(s)
- Mukkath Joseph Josline
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Soheil Ghods
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Saikiran Kosame
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
- Department of Physics, Gachon University, Seongnam, South Korea
| | - Jun-Hui Choi
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Woongchan Kim
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Sein Kim
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - SooHyun Chang
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Sang Hwa Hyun
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Seung-Il Kim
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Ji-Yun Moon
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Hyeong Gi Park
- AI-Superconvergence KIURI Translational Research Center, Ajou University, School of Medicine, Suwon, 16499, South Korea
| | - Sung Beom Cho
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam, South Korea
| | - Jae-Hyun Lee
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| |
Collapse
|
13
|
Liu X, Geng X, Dun G, Wang Z, Du J, Xie D, Yang Y, Ren T. Single Crystal Perovskite/Graphene Self-Driven Photodetector with Fast Response Speed. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2599. [PMID: 38893863 PMCID: PMC11173920 DOI: 10.3390/ma17112599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Recently, the combination of two-dimensional (2D) materials and perovskites has gained increasing attention in optoelectronic applications owing to their excellent optical and electrical characteristics. Here, we report a self-driven photodetector consisting of a monolayer graphene sheet and a centimeter-sized CH3NH3PbBr3 single crystal, which was prepared using an optimized wet transfer method. The photodetector exhibits a short response time of 2/30 μs by virtue of its high-quality interface, which greatly enhances electron-hole pair separation in the heterostructure under illumination. In addition, a responsivity of ~0.9 mA/W and a detectivity over 1010 Jones are attained at zero bias. This work inspires new methods for preparing large-scale high-quality perovskite/2D material heterostructures, and provides a new direction for the future enhancement of perovskite optoelectronics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianling Ren
- The Beijing National Research Center for Information Science and Technology (BNRist), School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Gabbett C, Kelly AG, Coleman E, Doolan L, Carey T, Synnatschke K, Liu S, Dawson A, O'Suilleabhain D, Munuera J, Caffrey E, Boland JB, Sofer Z, Ghosh G, Kinge S, Siebbeles LDA, Yadav N, Vij JK, Aslam MA, Matkovic A, Coleman JN. Understanding how junction resistances impact the conduction mechanism in nano-networks. Nat Commun 2024; 15:4517. [PMID: 38806479 PMCID: PMC11133347 DOI: 10.1038/s41467-024-48614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Networks of nanowires, nanotubes, and nanosheets are important for many applications in printed electronics. However, the network conductivity and mobility are usually limited by the resistance between the particles, often referred to as the junction resistance. Minimising the junction resistance has proven to be challenging, partly because it is difficult to measure. Here, we develop a simple model for electrical conduction in networks of 1D or 2D nanomaterials that allows us to extract junction and nanoparticle resistances from particle-size-dependent DC network resistivity data. We find junction resistances in porous networks to scale with nanoparticle resistivity and vary from 5 Ω for silver nanosheets to 24 GΩ for WS2 nanosheets. Moreover, our model allows junction and nanoparticle resistances to be obtained simultaneously from AC impedance spectra of semiconducting nanosheet networks. Through our model, we use the impedance data to directly link the high mobility of aligned networks of electrochemically exfoliated MoS2 nanosheets (≈ 7 cm2 V-1 s-1) to low junction resistances of ∼2.3 MΩ. Temperature-dependent impedance measurements also allow us to comprehensively investigate transport mechanisms within the network and quantitatively differentiate intra-nanosheet phonon-limited bandlike transport from inter-nanosheet hopping.
Collapse
Affiliation(s)
- Cian Gabbett
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Adam G Kelly
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
- i3N/CENIMAT, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Emmet Coleman
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Luke Doolan
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Tian Carey
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Kevin Synnatschke
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Shixin Liu
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Anthony Dawson
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Domhnall O'Suilleabhain
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Jose Munuera
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
- Department of Physics, Faculty of Sciences, University of Oviedo, C/ Leopoldo Calvo Sotelo, 18, 33007, Oviedo, Asturias, Spain
| | - Eoin Caffrey
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - John B Boland
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Goutam Ghosh
- Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, NL-2629, HZ, Delft, The Netherlands
| | - Sachin Kinge
- Materials Research & Development, Toyota Motor Europe, B1930, Zaventem, Belgium
| | - Laurens D A Siebbeles
- Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, NL-2629, HZ, Delft, The Netherlands
| | - Neelam Yadav
- Department of Electronic & Electrical Engineering, Trinity College Dublin 2, Dublin 2, Ireland
| | - Jagdish K Vij
- Department of Electronic & Electrical Engineering, Trinity College Dublin 2, Dublin 2, Ireland
| | - Muhammad Awais Aslam
- Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Franz Josef Strasse 18, 8700, Leoben, Austria
| | - Aleksandar Matkovic
- Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Franz Josef Strasse 18, 8700, Leoben, Austria
| | - Jonathan N Coleman
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
15
|
Yao Y, Kononov A, Metzlaff A, Wucher A, Kalkhoff L, Breuer L, Schleberger M, Schleife A. Nonequilibrium Dynamics of Electron Emission from Cold and Hot Graphene under Proton Irradiation. NANO LETTERS 2024; 24:5174-5181. [PMID: 38587459 DOI: 10.1021/acs.nanolett.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Characteristic properties of secondary electrons emitted from irradiated two-dimensional materials arise from multi-length and multi-time-scale relaxation processes that connect the initial nonequilibrium excited electron distribution with their eventual emission. To understand these processes, which are critical for using secondary electrons as high-resolution thermalization probes, we combine first-principles real-time electron dynamics with irradiation experiments. Our data for cold and hot proton-irradiated graphene show signatures of kinetic and potential emission and generally good agreement for electron yields between experiment and theory. The duration of the emission pulse is about 1.5 fs, which indicates high time resolution when used as a probe. Our newly developed method to predict kinetic energy spectra shows good agreement with electron and ion irradiation experiments and prior models. We find that the lattice temperature significantly increases secondary electron emission, whereas electron temperature has a negligible effect.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alina Kononov
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Arne Metzlaff
- University of Duisburg-Essen, Faculty of Physics and CENIDE, 47057 Duisburg, Germany
| | - Andreas Wucher
- University of Duisburg-Essen, Faculty of Physics and CENIDE, 47057 Duisburg, Germany
| | - Lukas Kalkhoff
- University of Duisburg-Essen, Faculty of Physics and CENIDE, 47057 Duisburg, Germany
| | - Lars Breuer
- University of Duisburg-Essen, Faculty of Physics and CENIDE, 47057 Duisburg, Germany
| | - Marika Schleberger
- University of Duisburg-Essen, Faculty of Physics and CENIDE, 47057 Duisburg, Germany
| | - André Schleife
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Alijabbari M, Karimzadeh R, Pakniyat S, Gomez-Diaz JS. Dual-band and spectrally selective infrared absorbers based on hybrid gold-graphene metasurfaces. OPTICS EXPRESS 2024; 32:16578-16590. [PMID: 38859281 DOI: 10.1364/oe.522046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/04/2024] [Indexed: 06/12/2024]
Abstract
In this paper, we propose a dual-band and spectrally selective infrared (IR) absorber based on a hybrid structure comprising a patterned graphene monolayer and cross-shaped gold resonators within a metasurface. Rooted in full-wave numerical simulations, our study shows that the fundamental absorption mode of the gold metasurface hybridizes with the graphene pattern, leading to a second absorptive mode whose properties depend on graphene's electrical properties and physical geometry. Specifically, the central operation band of the absorber is defined by the gold resonators whereas the relative absorption level and spectral separation between the two modes can be controlled by graphene's chemical potential and its pattern, respectively. We analyze this platform using coupled-mode theory to understand the coupling mechanism between these modes and to elucidate the emergence and tuning of the dual band response. The proposed dual-band device can operate at different bands across the IR spectrum and may open new possibilities for tailored sensing applications in spectroscopy, thermal imaging, and environmental monitoring.
Collapse
|
17
|
Shin JC, Jeong JH, Kwon J, Kim YH, Kim B, Woo SJ, Woo KY, Cho M, Watanabe K, Taniguchi T, Kim YD, Cho YH, Lee TW, Hone J, Lee CH, Lee GH. Electrically Confined Electroluminescence of Neutral Excitons in WSe 2 Light-Emitting Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310498. [PMID: 38169481 DOI: 10.1002/adma.202310498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Monolayer transition metal dichalcogenides (TMDs) have drawn significant attention for their potential in optoelectronic applications due to their direct band gap and exceptional quantum yield. However, TMD-based light-emitting devices have shown low external quantum efficiencies as imbalanced free carrier injection often leads to the formation of non-radiative charged excitons, limiting practical applications. Here, electrically confined electroluminescence (EL) of neutral excitons in tungsten diselenide (WSe2) light-emitting transistors (LETs) based on the van der Waals heterostructure is demonstrated. The WSe2 channel is locally doped to simultaneously inject electrons and holes to the 1D region by a local graphene gate. At balanced concentrations of injected electrons and holes, the WSe2 LETs exhibit strong EL with a high external quantum efficiency (EQE) of ≈8.2 % at room temperature. These experimental and theoretical results consistently show that the enhanced EQE could be attributed to dominant exciton emission confined at the 1D region while expelling charged excitons from the active area by precise control of external electric fields. This work shows a promising approach to enhancing the EQE of 2D light-emitting transistors and modulating the recombination of exciton complexes for excitonic devices.
Collapse
Affiliation(s)
- June-Chul Shin
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Hwan Jeong
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junyoung Kwon
- Department of Material Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeon Ho Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Bumho Kim
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Seung-Je Woo
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kie Young Woo
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minhyun Cho
- Department of Physics and Department of Information Display, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Young Duck Kim
- Department of Physics and Department of Information Display, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yong-Hoon Cho
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Chul-Ho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
18
|
Guba M, Höltzl T. Stability and Electronic Structure of Nitrogen-Doped Graphene-Supported Cu n ( n = 1-5) Clusters in Vacuum and under Electrochemical Conditions: Toward Sensor and Catalyst Design. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:4677-4686. [PMID: 38533239 PMCID: PMC10961840 DOI: 10.1021/acs.jpcc.3c06475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/28/2024]
Abstract
Here, we present a detailed computational study of the stability and the electronic structure of nitrogen-doped graphene (N4V2) supported Cun (n = 1-5) clusters, which are promising carbon-dioxide electroreduction catalysts. The binding of the clusters to the nitrogen-doped graphene and the electronic structure of these systems were investigated under vacuum and electrochemical conditions. The stability analysis showed that among the systems, the nitrogen-doped graphene bound Cu4 is the most stable in vacuum, while in an electrolyte, and at a negative potential, the N4V2-Cu3 is energetically more favorable. The ground state electronic structure of the nitrogen-doped graphene substrate undergoes topological phase transition, from a semimetallic state, and we observed a metallic and topologically trivial state after the clusters are deposited. The electrode potential adjusts the type and density of the charge carriers in the semimetallic models, while the structures containing copper exhibit bands which are deformed and relaxed by the modified number of electrons.
Collapse
Affiliation(s)
- Márton Guba
- Department
of Inorganic and Analytical Chemistry and HUN-REN-BME Computation
Driven Chemistry Research Group, Budapest
University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary
| | - Tibor Höltzl
- Department
of Inorganic and Analytical Chemistry and HUN-REN-BME Computation
Driven Chemistry Research Group, Budapest
University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary
- Nanomaterials
Science Group, Furukawa Electric Institute
of Technology, Késmárk
utca 28/A, Budapest H-1158, Hungary
| |
Collapse
|
19
|
Chava P, Kateel V, Watanabe K, Taniguchi T, Helm M, Mikolajick T, Erbe A. Electrical characterization of multi-gated WSe 2/MoS 2 van der Waals heterojunctions. Sci Rep 2024; 14:5813. [PMID: 38461196 PMCID: PMC10925069 DOI: 10.1038/s41598-024-56455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Vertical stacking of different two-dimensional (2D) materials into van der Waals heterostructures exploits the properties of individual materials as well as their interlayer coupling, thereby exhibiting unique electrical and optical properties. Here, we study and investigate a system consisting entirely of different 2D materials for the implementation of electronic devices that are based on quantum mechanical band-to-band tunneling transport such as tunnel diodes and tunnel field-effect transistors. We fabricated and characterized van der Waals heterojunctions based on semiconducting layers of WSe2 and MoS2 by employing different gate configurations to analyze the transport properties of the junction. We found that the device dielectric environment is crucial for achieving tunneling transport across the heterojunction by replacing thick oxide dielectrics with thin layers of hexagonal-boronnitride. With the help of additional top gates implemented in different regions of our heterojunction device, it was seen that the tunneling properties as well as the Schottky barriers at the contact interfaces could be tuned efficiently by using layers of graphene as an intermediate contact material.
Collapse
Affiliation(s)
- Phanish Chava
- Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany.
| | - Vaishnavi Kateel
- Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Manfred Helm
- Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Thomas Mikolajick
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany
- NaMLab gGmbH, 01187, Dresden, Germany
| | - Artur Erbe
- Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
20
|
Zhao Q, Man Y, He J, Li S, Li L. CO and HCHO Sensing by Single Au Atom-Decorated WS 2 Monolayer for Diagnosis of Thermal Aging Faults in the Dry-Type Reactor: A First-Principles Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1173. [PMID: 38473644 DOI: 10.3390/ma17051173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
CO and HCHO are the main pyrolysis gases in long-term running dry-type reactors, and thus the diagnosis of thermal insulation faults inside such devices can be realized by sensing these gases. In this paper, a single Au atom-decorated WS2 (Au-WS2) monolayer is proposed as an original sensing material for CO or HCHO detection to evaluate the operation status of dry-type reactors. It was found that the Au atom prefers to be adsorbed at the top of the S atom of the pristine WS2 monolayer, wherein the binding force is calculated as -3.12 eV. The Au-WS2 monolayer behaves by chemisorption upon the introduction of CO and HCHO molecules, with the adsorption energies of -0.82 and -1.01 eV, respectively. The charge density difference was used to analyze the charge-transfer and bonding behaviors in the gas adsorptions, and the analysis of density of state as well as band structure indicate gas-sensing mechanisms. As calculated, the sensing responses of the Au-WS2 monolayer upon CO and HCHO molecule introduction were 58.7% and -74.4%, with recovery times of 0.01 s and 11.86 s, respectively. These findings reveal the favorable potential of the Au-WS2 monolayer to be a reusable and room-temperature sensing candidate for CO and HCHO detections. Moreover, the work function of the Au-WS2 monolayer was decreased by 13.0% after the adsorption of CO molecules, while it increased by 1.2% after the adsorption of HCHO molecules, which implies its possibility to be a work-function-based gas sensor for CO detection. This theoretical report paves the way for further investigations into WS2-based gas sensors in some other fields, and it is our hope that our findings can stimulate more reports on novel gas-sensing materials for application in evaluating the operation conditions of dry-type reactors.
Collapse
Affiliation(s)
- Qi Zhao
- State Grid Tianjin Electric Power Research Institute, Tianjin 300384, China
- Tianjin Key Laboratory of Internet of Things in Electricity, Tianjin 300384, China
| | - Yuyan Man
- State Grid Tianjin Electric Power Company, Tianjin 300232, China
| | - Jin He
- State Grid Tianjin Electric Power Research Institute, Tianjin 300384, China
- Tianjin Key Laboratory of Internet of Things in Electricity, Tianjin 300384, China
| | - Songyuan Li
- State Grid Tianjin Electric Power Research Institute, Tianjin 300384, China
- Tianjin Key Laboratory of Internet of Things in Electricity, Tianjin 300384, China
| | - Lin Li
- State Grid Tianjin Electric Power Research Institute, Tianjin 300384, China
- Tianjin Key Laboratory of Internet of Things in Electricity, Tianjin 300384, China
| |
Collapse
|
21
|
Demirok AC, Sahin H, Yagmurcukardes M. Ultra-thin double-layered hexagonal CuI: strain tunable properties and robust semiconducting behavior. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:215401. [PMID: 38354421 DOI: 10.1088/1361-648x/ad294d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
In this study, the freestanding form of ultra-thin CuI crystals, which have recently been synthesized experimentally, and their strain-dependent properties are investigated by means of density functional theory calculations. Structural optimizations show that CuI crystallizes in a double-layered hexagonal crystal (DLHC) structure. While phonon calculations predict that DLHC CuI crystals are dynamically stable, subsequent vibrational spectrum analyzes reveal that this structure has four unique Raman-active modes, allowing it to be easily distinguished from similar ultra-thin two-dimensional materials. Electronically, DLHC CuI is found to be a semiconductor with a direct band gap of 3.24 eV which is larger than that of its wurtzite and zincblende phases. Furthermore, it is found that in both armchair (AC) and zigzag (ZZ) orientations the elastic instabilities occur over the high strain strengths indicating the soft nature of CuI layer. In addition, the stress-strain curve along the AC direction reveal that DLHC CuI undergoes a structural phase transition between the 4% and 5% tensile uniaxial strains as indicated by a sudden drop of the stress in the lattice. Moreover, the phonon band dispersions show that the phononic instability occurs at much smaller strain along the ZZ direction than that of along the AC direction. Furthermore, the external strain direction can be deduced from the predicted Raman spectra through the splitting rates of the doubly degenerate in-plane vibrations. The mobility of the hole carriers display highly anisotropic characteristic as the applied strain reaches 5% along the AC direction. Due to its anomalous strain-dependent electronic features and elastically soft nature, DLHC of CuI is a potential candidate for future electro-mechanical applications.
Collapse
Affiliation(s)
- A C Demirok
- Department of Photonics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - H Sahin
- Department of Photonics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - M Yagmurcukardes
- Department of Photonics, Izmir Institute of Technology, 35430 Izmir, Turkey
| |
Collapse
|
22
|
Wang J, Han N, Lin Z, Hu S, Tian R, Zhang M, Zhang Y, Zhao J, Gan X. A giant intrinsic photovoltaic effect in atomically thin ReS 2. NANOSCALE 2024; 16:3101-3106. [PMID: 38250820 DOI: 10.1039/d3nr05355e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The photovoltaic (PV) effect in non-centrosymmetric materials consisting of a single component under homogeneous illumination can exceed the fundamental Shockley-Queisser limit compared to the traditional p-n junctions. Two-dimensional (2D) materials with a reduced dimensionality and smaller bandgap were predicated to be better candidates for the PV effect with high efficiency exceeding that of traditional ferroelectric perovskite oxides. Here, we report the giant intrinsic PV effect in atomically thin rhenium disulfide (ReS2) with centrosymmetry breaking. In graphene/ReS2/graphene sandwich structures, significant short-circuit currents (Isc) were observed with illumination over the visible spectral range, presenting the highest responsivity (110 mA W-1) and external quantum efficiency (25.7%) among those reported PV effects in 2D materials. This giant PV effect could be ascribed to the spontaneous-polarization induced depolarization field in even-number-layered ReS2 flakes benefiting from the distorted 1T lattice structure. Our results provide a new potential candidate material for the development of novel high-efficiency, miniaturized and easily integrated photodetectors and solar cells.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Nannan Han
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zhihua Lin
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Siqi Hu
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Ruijuan Tian
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Mingwen Zhang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Yu Zhang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Jianlin Zhao
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Xuetao Gan
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| |
Collapse
|
23
|
Phung VBT, Pham BL, Duy NVA, Dang MT, Tran TN, Tran QH, Luong TT, Dinh VA. First-principles study of highly sensitive graphene/hexagonal boron nitride heterostructures for application in toxic gas-sensing devices. RSC Adv 2024; 14:4904-4916. [PMID: 38323020 PMCID: PMC10846490 DOI: 10.1039/d3ra08017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Graphene-based sensors exhibit high sensitivity, fast response, and good selectivity towards toxic gases but have low mechanical stability. The combination of graphene and two-dimensional hexagonal boron nitride (h-BN) is expected to increase the mechanical stability and enhance the adsorption performance of these gas sensors. Using first-principles calculations, we demonstrate that two-dimensional graphene/h-BN double layers can be used as good substrates for gas sensors with a small lattice mismatch of only 1.78%. Moreover, the presence of a h-BN layer widens the band gap by about 38 meV and considerably increases the work function, thus positively affecting the gas adsorption performance. Although these graphene/h-BN heterostructures do not change the physical adsorption mechanism of these sensors concerning the graphene-based materials, these bilayers significantly enhance the sensitivity of these sensors for detecting CO2, CO, NO, and NO2 toxic gases. Particularly, compared to the pristine graphene-based materials, the gas adsorption energies of graphene/h-BN increased by up to 13.78% for the adsorption of NO, and the shortest distances between the graphene/h-BN substrates and adsorbed gas molecules decreased. We also show that the graphene/h-BN heterostructure is more selective towards NOx gases while more inert towards COx gases, based on the different amounts of charge transferred from the substrate to the adsorbed gas molecules. Using the non-equilibrium Green functions in the context of density functional theory, we quantitatively associated these charge transfers with the reduction of the current passing through these scattering regions. These results demonstrate that graphene/h-BN heterostructures can be exploited as highly sensitive and selective room-temperature gas sensors for detecting toxic gases.
Collapse
Affiliation(s)
- Viet Bac T Phung
- Center for Environmental Intelligence and College of Engineering & Computer Science, Vin University Hanoi 100000 Vietnam
| | - Ba Lich Pham
- Institut de Chimie Physique, Faculté des Sciences d'Orsay, Université Paris-Saclay Orsay 91405 France
| | - Nguyen Vo Anh Duy
- FPT University Can Tho Campus, 600 Nguyen Van Cu Street, Ninh Kieu Can Tho Vietnam
| | - Minh Triet Dang
- School of Education, Can Tho University 3-2 Road Can Tho Vietnam
| | - Thi Nhan Tran
- Faculty of Fundamental Sciences, Hanoi University of Industry 298 Cau Dien Street, Bac Tu Liem District Hanoi 100000 Vietnam
| | - Quang-Huy Tran
- Faculty of Physics, Hanoi Pedagogical University 2 Phuc Yen Vinh Phuc Vietnam
| | - Thi Theu Luong
- Hoa Binh University Bui Xuan Phai Str., My Dinh II, Nam Tu Liem Hanoi 100000 Vietnam
| | - Van An Dinh
- Department of Precision Engineering, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
24
|
Phung VBT, Tran TN, Tran QH, Luong TT, Dinh VA. Graphene as a Sensor for Lung Cancer: Insights into Adsorption of VOCs Using vdW DFT. ACS OMEGA 2024; 9:2302-2313. [PMID: 38250431 PMCID: PMC10795125 DOI: 10.1021/acsomega.3c06159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
The adsorption mechanism of individual volatile organic compounds (VOCs) on the surface of graphene is investigated using nonempirical van der Waals (vdW) density functional theory. The VOCs chosen as adsorbates are ethanol, benzene, and toluene, which are found in the exhaled breath of lung cancer patients. The most energetically favorable configurations of the adsorbed systems, adsorption energy profiles, charge transfer, and work function are calculated. The fundamental insight into the interactions between the considered VOC molecules and graphene through molecular doping, i.e., charge transfer, is estimated. It is found that the adsorption energy is highly sensitive to the vdW functionals. Adsorption energies calculated by revPBE-vdW are in good agreement with the available experimental data, and the revPBE-vdW functional can cover well the physical phenomena behind the adsorption of these VOCs on graphene. Bader charge analysis shows that 0.064, 0.042, and 0.061e of charge were transferred from the graphene surface to ethanol, benzene, and toluene, respectively. All of the considered VOCs act as electron acceptors from graphene. By analyzing the electronic structure of the adsorption systems, we found that the energy level of the highest occupied molecular orbitals of these considered VOCs is shifted backward toward the Fermi level. The interaction of the VOCs with the π and π* states of the C atoms in graphene breaks the symmetry of graphene, leading to the opening of a band gap at the Fermi level. The adsorption of these considered VOCs onto the pristine graphene produces a band gap of 5-12 meV.
Collapse
Affiliation(s)
- Viet Bac T. Phung
- Institute
of Sustainability Science, VNU Vietnam Japan
University, Luu Huu Phuoc
Str., My Dinh I, Nam Tu Liem, Hanoi 1000000, Vietnam
- Center
for Environmental Intelligence and College of Engineering & Computer
Science, VinUniversity, Hanoi 100000, Vietnam
| | - Thi Nhan Tran
- Faculty
of Fundamental Sciences, Hanoi University
of Industry, 298 Cau Dien Street, Bac Tu Liem District, Hanoi 100000, Vietnam
| | - Quang Huy Tran
- Faculty
of Physics, Hanoi Pedagogical University
2, Phuc Yen, Vinh Phuc 280000, Vietnam
| | - Thi Theu Luong
- Hoa
Binh University, Bui
Xuan Phai Str., My Dinh II, Nam Tu Liem, Hanoi 100000, Vietnam
| | - Van An Dinh
- Department
of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Naseri M, Amirian S, Faraji M, Rashid MA, Lourenço MP, Thangadurai V, Salahub DR. Perovskenes: two-dimensional perovskite-type monolayer materials predicted by first-principles calculations. Phys Chem Chem Phys 2024; 26:946-957. [PMID: 38088085 DOI: 10.1039/d3cp04435a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Inspired by the successful transfer of freestanding ultrathin films of SrTiO3 and BiFeO3 onto various substrates without any thickness limitation, in this study, using density functional theory (DFT), we assessed the structural stability of a group of two-dimensional perovskite-type materials which we call perovskenes. Specifically, we analyzed the stability of 2D SrTiO3, SrZrO3, BaTiO3, and BaZrO3 monolayers. Our simulations revealed that the 2D monolayers of SrTiO3, BaTiO3, and BaZrO3 are at least meta-stable, as confirmed by cohesive energy calculations, evaluation of elastic constants, and simulation of phonon dispersion modes. With this information, we proceeded to investigate the electronic, optical, and thermoelectric properties of these perovskenes. To gain insight into their promising applications, we investigated the electronic and optical properties of these 2D materials and found that they are wide bandgap semiconductors with significant absorption and reflection in the ultraviolet (UV) region of the electromagnetic field, suggesting them as promising materials for use in UV shielding applications. In addition, evaluating their thermoelectric factors revealed that these materials become better conductors of electricity and heat as the temperature rises. They can, hence, convert temperature gradients into electrical energy and transport electrical charges, which is beneficial for efficient power generation in thermoelectric devices. This work opens a new window for designing a novel family of 2D perovskite type materials termed perovskenes. The vast variety of different perovskite compounds and their variety of applications suggest deeper studies on the perovskenes materials for use in innovative technologies.
Collapse
Affiliation(s)
- Mosayeb Naseri
- Department of Chemistry, Department of Physics and Astronomy, CMS - Center for Molecular Simulation, IQST - Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
- Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Shirin Amirian
- Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Mehrdad Faraji
- Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Mohammad Abdur Rashid
- Department of Physics, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Maicon Pierre Lourenço
- Departamento de Química e Física - Centro de Ciências Exatas, Naturais e da Saúde - CCENS - Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | | | - D R Salahub
- Department of Chemistry, Department of Physics and Astronomy, CMS - Center for Molecular Simulation, IQST - Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
26
|
Scott RJ, Valencia-Acuna P, Zhao H. Spatiotemporal Observation of Quasi-Ballistic Transport of Electrons in Graphene. ACS NANO 2023; 17:25368-25376. [PMID: 38091261 DOI: 10.1021/acsnano.3c08816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
We report spatiotemporal observations of room-temperature quasi-ballistic electron transport in graphene, which is achieved by utilizing a four-layer van der Waals heterostructure to generate free charge carriers. The heterostructure is formed by sandwiching a MoS2 and MoSe2 heterobilayer between two graphene monolayers. Transient absorption measurements reveal that the electrons and holes separated by the type-II interface between MoS2 and MoSe2 can transfer to the two graphene layers, respectively. Transient absorption microscopy measurements, with high spatial and temporal resolution, reveal that while the holes in one graphene layer undergo a classical diffusion process with a large diffusion coefficient of 65 cm2 s-1 and a charge mobility of 5000 cm2 V-1 s-1, the electrons in the other graphene layer exhibit a quasi-ballistic transport feature, with a ballistic transport time of 20 ps and a speed of 22 km s-1, respectively. The different in-plane transport properties confirm that electrons and holes move independently of each other as charge carriers. The optical generation of ballistic charge carriers suggests potential applications for such van der Waals heterostructures as optoelectronic materials.
Collapse
Affiliation(s)
- Ryan J Scott
- Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Pavel Valencia-Acuna
- Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Hui Zhao
- Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
27
|
Yuan Y, Peng X, Weng X, He J, Liao C, Wang Y, Liu L, Zeng S, Song J, Qu J. Two-dimensional nanomaterials as enhanced surface plasmon resonance sensing platforms: Design perspectives and illustrative applications. Biosens Bioelectron 2023; 241:115672. [PMID: 37716156 DOI: 10.1016/j.bios.2023.115672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Both increasing demand for ultrasensitive detection in the scientific community and significant new breakthroughs in materials science field have inspired and promoted the development of new-generation multifunctional plasmonic sensing platforms by adopting promising plasmonic nanomaterials. Recently, high-quality surface plasmon resonance (SPR) sensors, assisted by two dimensional (2D) nanomaterials including 2D van der Waals (vdWs) materials (such as graphene/graphene oxide, transition metal dichalcogenides (TMDs), phosphorene, antimonene, tellurene, MXenes, and metal oxides), 2D metal-organic frameworks (MOFs), 2D hyperbolic metamaterials (HMMs), and 2D optical metasurfaces, have emerged as a class of novel plasmonic sensing platforms that show unprecedented detection sensitivity and impressive performance. This review of recent progress in 2D nanomaterials-enhanced SPR platforms will highlight their compelling plasmonic enhancement features, working mechanisms, and design methodologies, as well as discuss illustrative practical applications. Hence, it is of great importance to describe the latest research progress in 2D nanomaterials-enhanced SPR sensing cases. In this review, we present some concepts of SPR enhanced by 2D nanomaterials, including the basic principles of SPR, signal modulation approaches, and working enhancement mechanisms for various 2D materials-enhanced SPR systems. In addition, we also demonstrate a detailed categorization of 2D nanomaterials-enhanced SPR sensing platforms and comment on their ability to realize ultrasensitive SPR detection. Finally, we conclude with future perspectives for exploring a new generation of 2D nanomaterials-based sensors.
Collapse
Affiliation(s)
- Yufeng Yuan
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiao Peng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jun He
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Changrui Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, 10000, Troyes, France.
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
28
|
Jahng J, Lee S, Hong SG, Lee CJ, Menabde SG, Jang MS, Kim DH, Son J, Lee ES. Characterizing and controlling infrared phonon anomaly of bilayer graphene in optical-electrical force nanoscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:281. [PMID: 37996403 PMCID: PMC10667502 DOI: 10.1038/s41377-023-01320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/29/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
We, for the first time, report the nanoscopic imaging study of anomalous infrared (IR) phonon enhancement of bilayer graphene, originated from the charge imbalance between the top and bottom layers, resulting in the enhancement of E1u mode of bilayer graphene near 0.2 eV. We modified the multifrequency atomic force microscope platform to combine photo-induced force microscope with electrostatic/Kelvin probe force microscope constituting a novel hybrid nanoscale optical-electrical force imaging system. This enables to observe a correlation between the IR response, doping level, and topographic information of the graphene layers. Through the nanoscale spectroscopic image measurements, we demonstrate that the charge imbalance at the graphene interface can be controlled by chemical (doping effect via Redox mechanism) and mechanical (triboelectric effect by the doped cantilever) approaches. Moreover, we can also diagnosis the subsurface cracks on the stacked few-layer graphene at nanoscale, by monitoring the strain-induced IR phonon shift. Our approach provides new insights into the development of graphene-based electronic and photonic devices and their potential applications.
Collapse
Affiliation(s)
- Junghoon Jahng
- Hyperspectral Nano-imaging Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea.
| | - Sunho Lee
- Hyperspectral Nano-imaging Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
- Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Seong-Gu Hong
- Multiscale Mechanical Properties Measurement Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Chang Jun Lee
- Multiscale Mechanical Properties Measurement Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sergey G Menabde
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min Seok Jang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Dong-Hyun Kim
- Functional Composite Materials Research Center, Korea Institute of Science and Technology, Jeonbuk, 55324, Republic of Korea
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jangyup Son
- Functional Composite Materials Research Center, Korea Institute of Science and Technology, Jeonbuk, 55324, Republic of Korea
- Division of Nano & Information Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Eun Seong Lee
- Hyperspectral Nano-imaging Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
29
|
Huang S, Griffin E, Cai J, Xin B, Tong J, Fu Y, Kravets V, Peeters FM, Lozada-Hidalgo M. Gate-controlled suppression of light-driven proton transport through graphene electrodes. Nat Commun 2023; 14:6932. [PMID: 37907470 PMCID: PMC10618495 DOI: 10.1038/s41467-023-42617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Recent experiments demonstrated that proton transport through graphene electrodes can be accelerated by over an order of magnitude with low intensity illumination. Here we show that this photo-effect can be suppressed for a tuneable fraction of the infra-red spectrum by applying a voltage bias. Using photocurrent measurements and Raman spectroscopy, we show that such fraction can be selected by tuning the Fermi energy of electrons in graphene with a bias, a phenomenon controlled by Pauli blocking of photo-excited electrons. These findings demonstrate a dependence between graphene's electronic and proton transport properties and provide fundamental insights into molecularly thin electrode-electrolyte interfaces and their interaction with light.
Collapse
Affiliation(s)
- S Huang
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - E Griffin
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.
| | - J Cai
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- College of Advanced Interdisciplinary Studies, National University of Defence Technology, Changsha, Hunan, 410073, China
| | - B Xin
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - J Tong
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Y Fu
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - V Kravets
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - F M Peeters
- Departamento de Fisica, Universidade Federal do Ceara, 60455-900, Fortaleza, Ceara, Brazil
- Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - M Lozada-Hidalgo
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.
- Research and Innovation Center for graphene and 2D materials (RIC2D), Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
30
|
Koschinski L, Lenyk B, Jung M, Lenzi I, Kampa B, Mayer D, Offenhäusser A, Musall S, Rincón Montes V. Validation of transparent and flexible neural implants for simultaneous electrophysiology, functional imaging, and optogenetics. J Mater Chem B 2023; 11:9639-9657. [PMID: 37610228 DOI: 10.1039/d3tb01191g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The combination of electrophysiology and neuroimaging methods allows the simultaneous measurement of electrical activity signals with calcium dynamics from single neurons to neuronal networks across distinct brain regions in vivo. While traditional electrophysiological techniques are limited by photo-induced artefacts and optical occlusion for neuroimaging, different types of transparent neural implants have been proposed to resolve these issues. However, reproducing proposed solutions is often challenging and it remains unclear which approach offers the best properties for long-term chronic multimodal recordings. We therefore created a streamlined fabrication process to produce, and directly compare, two types of transparent surface micro-electrocorticography (μECoG) implants: nano-mesh gold structures (m-μECoGs) versus a combination of solid gold interconnects and PEDOT:PSS-based electrodes (pp-μECoGs). Both implants allowed simultaneous multimodal recordings but pp-μECoGs offered the best overall electrical, electrochemical, and optical properties with negligible photo-induced artefacts to light wavelengths of interest. Showing functional chronic stability for up to four months, pp-μECoGs also allowed the simultaneous functional mapping of electrical and calcium neural signals upon visual and tactile stimuli during widefield imaging. Moreover, recordings during two-photon imaging showed no visible signal attenuation and enabled the correlation of network dynamics across brain regions to individual neurons located directly below the transparent electrical contacts.
Collapse
Affiliation(s)
- Lina Koschinski
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
- Helmholtz Nano Facility (HNF), Forschungszentrum, Jülich, Germany
- RWTH Aachen University, Germany
| | - Bohdan Lenyk
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
| | - Marie Jung
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
- RWTH Aachen University, Germany
| | - Irene Lenzi
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
- RWTH Aachen University, Germany
| | - Björn Kampa
- RWTH Aachen University, Germany
- JARA BRAIN Institute of Neuroscience and Medicine (INM-10), Forschungszentrum, Jülich, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
| | - Andreas Offenhäusser
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
| | - Simon Musall
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
- RWTH Aachen University, Germany
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research, Germany
- University Hospital Bonn, Germany
| | - Viviana Rincón Montes
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
| |
Collapse
|
31
|
Le TK, Mai TH, Iqbal MA, Vernardou D, Dao VD, Ponnusamy VK, Rout CS, Pham PV. Advances in solar energy harvesting integrated by van der Waals graphene heterojunctions. RSC Adv 2023; 13:31273-31291. [PMID: 37901851 PMCID: PMC10603566 DOI: 10.1039/d3ra06016k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
Graphene has garnered increasing attention for solar energy harvesting owing to its unique features. However, limitations hinder its widespread adoption in solar energy harvesting, comprising the band gapless in the molecular orbital of graphene lattice, its vulnerability to oxidation in oxidative environments, and specific toxic properties that require careful consideration during development. Beyond current challenges, researchers have explored doping graphene with ionic liquids to raise the lifespan of solar cells (SCs). Additionally, they have paid attention to optimizing graphene/Si Schottky junction or Schottky barrier SCs by enhancing the conductivity and work function of graphene, improving silicon's reflectivity, and addressing passivation issues at the surface/interface of graphene/Si, resulting in significant advancements in their power conversion efficiency. Increasing the functional area of graphene-based SCs and designing efficient grid electrodes are also crucial for enhancing carrier collection efficiency. Flaws and contaminants present at the interface between graphene and silicon pose significant challenges. Despite the progress of graphene/Si-based photovoltaic cells still needs to catch up to the efficiency achieved by commercially available Si p-n junction SCs. The low Schottky barrier height, design-related challenges associated with transfer techniques, and high lateral resistivity of graphene contribute to this performance gap. To maximize the effectiveness and robustness of graphene/Si-based photovoltaic cells, appropriate interlayers have been utilized to tune the interface and modulate graphene's functionality. This mini-review will address ongoing research and development endeavors using van der Waals graphene heterojunctions, aiming to overcome the existing limitations and unlock graphene's full potential in solar energy harvesting and smart storage systems.
Collapse
Affiliation(s)
- Top Khac Le
- Faculty of Materials Science and Technology, University of Science Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - The-Hung Mai
- Department of Physics, National Sun Yat-sen University Kaohsiung 80424 Taiwan
| | - Muhammad Aamir Iqbal
- School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Dimitra Vernardou
- Department of Electrical and Computer Engineering, School of Engineering, Hellenic Mediterranean University Heraklion 71410 Greece
| | - Van-Duong Dao
- Faculty of Biotechnology, Chemistry, and Environmental Engineering, Phenikaa University Hanoi 100000 Vietnam
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry and Research Center for Precision Environmental Medicine, Kaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital Kaohsiung 807 Taiwan
- Department of Chemistry, National Sun Yat-sen University Kaohsiung 80424 Taiwan
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain University Bangalore 562112 India
| | - Phuong V Pham
- Department of Physics, National Sun Yat-sen University Kaohsiung 80424 Taiwan
| |
Collapse
|
32
|
Meng G, Zhan F, She J, Xie J, Zheng Q, Cheng Y, Yin Z. Tuneable effects of pyrrolic N and pyridinic N on the enhanced field emission properties of nitrogen-doped graphene. NANOSCALE 2023; 15:15994-16001. [PMID: 37766512 DOI: 10.1039/d3nr02861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Graphene is one of the most potential field emission cathode materials and a lot of work has been carried out to demonstrate the effectiveness of nitrogen doping (N doping) for the enhancement of field emission properties of graphene. However, the effect of N doping on graphene field emission is lacking systematic and thorough understanding. In this study, undoped graphene and N-doped graphene were prepared and characterized for measurements, and the field emission property dependence of the doping content was investigated and the tuneable effect was discussed. For the undoped graphene, the turn-on field was 7.95 V μm-1 and the current density was 7.3 μA cm-2, and for the 10 mg, 20 mg, and 30 mg N-doped graphene samples, the turn-on fields declined to 7.50 V μm-1, 6.38 V μm-1, and 7.28 V μm-1, and current densities increased to 21.0 μA cm-2, 42.6 μA cm-2, and 13.2 μA cm-2, respectively. Density functional theory (DFT) calculations revealed that N doping could bring about additional charge and then cause charge aggregation around the N atom. At the same time, it also lowered the work function, which further enhanced the field emission. The doping effect was determined by the content of the pyrrolic-type N and pyridinic-type N. Pyridinic-type N is more favourable for field emission because of its smaller work function, which is in good agreement with the experimental results. This study would be of great benefit to the understanding of N doping modulation for superior field emission properties.
Collapse
Affiliation(s)
- Guodong Meng
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Fuzhi Zhan
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Junyi She
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jinan Xie
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qinren Zheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.
| |
Collapse
|
33
|
Bourgalais J, Mercier X, Al-Mogren MM, Hochlaf M. Accurate Prediction of Adiabatic Ionization Energies for PAHs and Substituted Analogues. J Phys Chem A 2023; 127:8447-8458. [PMID: 37773010 DOI: 10.1021/acs.jpca.3c04088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The accurate calculation of adiabatic ionization energies (AIEs) for polycyclic aromatic hydrocarbons (PAHs) and their substituted analogues is essential for understanding their electronic properties, reactivity, stability, and environmental/health implications. This study demonstrates that the M06-2X density functional theory method excels in predicting the AIEs of polycyclic aromatic hydrocarbons and related molecules, rivaling the (R)CCSD(T)-F12 method in terms of accuracy. These findings suggest that M06-2X, coupled with an appropriate basis set, represents a reliable and efficient method for studying polycyclic aromatic hydrocarbons and related molecules, aligning well with the experimental techniques. The set of molecules examined in this work encompasses numerous polycyclic aromatic hydrocarbons from m/z 67 up to m/z 1,176, containing heteroatoms that may be found in biofuels or nucleic acid bases, making the results highly relevant for photoionization experiments and mass spectrometry. For coronene-derivative molecular species with the C6n2H6n chemical formula, we give an expression to predict their AIEs (AIE (n) = 4.359 + 4.8743n-0.72057, in eV) upon extending the π-aromatic cloud until reaching graphene. In the long term, the application of this method is anticipated to contribute to a deeper understanding of the relationships between PAHs and graphene, guiding research in materials science and electronic applications and serving as a valuable tool for validating theoretical calculation methods.
Collapse
Affiliation(s)
| | | | - Muneerah Mogren Al-Mogren
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/IMSE, 77454 Champs sur Marne, France
| |
Collapse
|
34
|
Kastner J, Tomarchio F, Decorde N, Kehrer M, Hesser G, Fuchsbauer A. Integration of Inkjet Printed Graphene as a Hole Transport Layer in Organic Solar Cells. MICROMACHINES 2023; 14:1858. [PMID: 37893294 PMCID: PMC10608915 DOI: 10.3390/mi14101858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
This work demonstrates the green production of a graphene ink for inkjet printing and its use as a hole transport layer (HTL) in an organic solar cell. Graphene as an HTL improves the selective hole extraction at the anode and prevents charge recombination at the electronic interface and metal diffusion into the photoactive layer. Graphite was exfoliated in water, concentrated by iterative centrifugation, and characterized by Raman. The concentrated graphene ink was incorporated into inverted organic solar cells by inkjet printing on the active polymer in an ambient atmosphere. Argon plasma was used to enhance wetting of the polymer with the graphene ink during printing. The argon plasma treatment of the active polymer P3HT:PCBM was investigated by XPS, AFM and contact angle measurements. Efficiency and lifetime studies undertaken show that the device with graphene as HTL is fully functional and has good potential for an inkjet printable and flexible alternative to PEDOT:PSS.
Collapse
Affiliation(s)
- Julia Kastner
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| | - Flavia Tomarchio
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK
| | - Nicolas Decorde
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK
| | - Matthias Kehrer
- Center of Surface- and Nanoanalytics, Johannes Kepler University, 4040 Linz, Austria (G.H.)
| | - Günter Hesser
- Center of Surface- and Nanoanalytics, Johannes Kepler University, 4040 Linz, Austria (G.H.)
| | - Anita Fuchsbauer
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| |
Collapse
|
35
|
Yuan J, Dai JQ, Liu YZ, Zhao MW. Polarization-tunable interfacial properties in monolayer-MoS 2 transistors integrated with ferroelectric BiAlO 3(0001) polar surfaces. Phys Chem Chem Phys 2023; 25:25177-25190. [PMID: 37712428 DOI: 10.1039/d3cp02866f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
With the explosion of data-centric applications, new in-memory computing technologies, based on nonvolatile memory devices, have become competitive due to their merged logic-memory functionalities. Herein, employing first-principles quantum transport simulation, we theoretically investigate for the first time the electronic and contact properties of two types of monolayer (ML)-MoS2 ferroelectric field-effect transistors (FeFETs) integrated with ferroelectric BiAlO3(0001) (BAO(0001)) polar surfaces. Our study finds that the interfacial properties of the investigated partial FeFET devices are highly tunable by switching the electric polarization of the ferroelectric BAO(0001) dielectric. Specifically, the transition from quasi-Ohmic to the Schottky contact, as well as opposite contact polarity of respective n-type and p-type Schottky contact under two polarization states can be obtained, suggesting their superior performance metrics in terms of nonvolatile information storage. In addition, due to the feature of (quasi-)Ohmic contact in some polarization states, the explored FeFET devices, even when operating in the regular field-effect transistor (FET) mode, can be extremely significant in realizing a desirable low threshold voltage and interfacial contact resistance. In conjunction with the formed van der Waals (vdW) interfaces in ML-MoS2/ferroelectric systems with an interlayer, the proposed FeFETs are expected to provide excellent device performance with regard to cycling endurance and memory density.
Collapse
Affiliation(s)
- Jin Yuan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China.
| | - Jian-Qing Dai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China.
| | - Yu-Zhu Liu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China.
| | - Miao-Wei Zhao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China.
| |
Collapse
|
36
|
Rossi A, Johnson C, Balgley J, Thomas JC, Francaviglia L, Dettori R, Schmid AK, Watanabe K, Taniguchi T, Cothrine M, Mandrus DG, Jozwiak C, Bostwick A, Henriksen EA, Weber-Bargioni A, Rotenberg E. Direct Visualization of the Charge Transfer in a Graphene/α-RuCl 3 Heterostructure via Angle-Resolved Photoemission Spectroscopy. NANO LETTERS 2023; 23:8000-8005. [PMID: 37639696 PMCID: PMC10510581 DOI: 10.1021/acs.nanolett.3c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/21/2023] [Indexed: 08/31/2023]
Abstract
We investigate the electronic properties of a graphene and α-ruthenium trichloride (α-RuCl3) heterostructure using a combination of experimental techniques. α-RuCl3 is a Mott insulator and a Kitaev material. Its combination with graphene has gained increasing attention due to its potential applicability in novel optoelectronic devices. By using a combination of spatially resolved photoemission spectroscopy and low-energy electron microscopy, we are able to provide a direct visualization of the massive charge transfer from graphene to α-RuCl3, which can modify the electronic properties of both materials, leading to novel electronic phenomena at their interface. A measurement of the spatially resolved work function allows for a direct estimate of the interface dipole between graphene and α-RuCl3. Their strong coupling could lead to new ways of manipulating electronic properties of a two-dimensional heterojunction. Understanding the electronic properties of this structure is pivotal for designing next generation low-power optoelectronics devices.
Collapse
Affiliation(s)
- Antonio Rossi
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Center
for Nanotechnology Innovation @ NEST, Istituto
Italiano di Tecnologia, Pisa 56127, Italy
| | - Cameron Johnson
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jesse Balgley
- Department
of Physics and Institute for Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - John C. Thomas
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Luca Francaviglia
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Riccardo Dettori
- Physical
and Life Sciences Directorate, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Andreas K. Schmid
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Matthew Cothrine
- Material
Science & Technology Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David G. Mandrus
- Material
Science & Technology Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Chris Jozwiak
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Aaron Bostwick
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Erik A. Henriksen
- Department
of Physics and Institute for Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Alexander Weber-Bargioni
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Eli Rotenberg
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Ma L, Tao Q, Chen Y, Lu Z, Liu L, Li Z, Lu D, Wang Y, Liao L, Liu Y. Realizing On/Off Ratios over 10 4 for Sub-2 nm Vertical Transistors. NANO LETTERS 2023; 23:8303-8309. [PMID: 37646535 DOI: 10.1021/acs.nanolett.3c02518] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Vertical transistors hold promise for the development of ultrascaled transistors. However, their on/off ratios are limited by a strong source-drain tunneling current in the off state, particularly for vertical devices with a sub-5 nm channel length. Here, we report an approach for suppressing the off-state tunneling current by designing the barrier height via a van der Waals metal contact. Via lamination of the Pt electrode on a MoS2 vertical transistor, a high Schottky barrier is observed due to their large work function difference, thus suppressing direct tunneling currents. Meanwhile, this "low-energy" lamination process ensures an optimized metal/MoS2 interface with minimized interface states and defects. Together, the highest on/off ratios of 5 × 105 and 104 are realized in vertical transistors with 5 and 2 nm channel lengths, respectively. Our work not only pushes the on/off ratio limit of vertical transistors but also provides a general rule for reducing short-channel effects in ultrascaled devices.
Collapse
Affiliation(s)
- Likuan Ma
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Quanyang Tao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yang Chen
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zheyi Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liting Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zhiwei Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Donglin Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Lei Liao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
38
|
Mahlouji R, Kessels WMME, Sagade AA, Bol AA. ALD-grown two-dimensional TiS x metal contacts for MoS 2 field-effect transistors. NANOSCALE ADVANCES 2023; 5:4718-4727. [PMID: 37705798 PMCID: PMC10496909 DOI: 10.1039/d3na00387f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 09/15/2023]
Abstract
Metal contacts to MoS2 field-effect transistors (FETs) play a determinant role in the device electrical characteristics and need to be chosen carefully. Because of the Schottky barrier (SB) and the Fermi level pinning (FLP) effects that occur at the contact/MoS2 interface, MoS2 FETs often suffer from high contact resistance (Rc). One way to overcome this issue is to replace the conventional 3D bulk metal contacts with 2D counterparts. Herein, we investigate 2D metallic TiSx (x ∼ 1.8) as top contacts for MoS2 FETs. We employ atomic layer deposition (ALD) for the synthesis of both the MoS2 channels as well as the TiSx contacts and assess the electrical performance of the fabricated devices. Various thicknesses of TiSx are grown on MoS2, and the resultant devices are electrically compared to the ones with the conventional Ti metal contacts. Our findings show that the replacement of 5 nm Ti bulk contacts with only ∼1.2 nm of 2D TiSx is beneficial in improving the overall device metrics. With such ultrathin TiSx contacts, the ON-state current (ION) triples and increases to ∼35 μA μm-1. Rc also reduces by a factor of four and reaches ∼5 MΩ μm. Such performance enhancements were observed despite the SB formed at the TiSx/MoS2 interface is believed to be higher than the SB formed at the Ti/MoS2 interface. These device metric improvements could therefore be mainly associated with an increased level of electrostatic doping in MoS2, as a result of using 2D TiSx for contacting the 2D MoS2. Our findings are also well supported by TCAD device simulations.
Collapse
Affiliation(s)
- Reyhaneh Mahlouji
- Department of Applied Physics, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Wilhelmus M M Erwin Kessels
- Department of Applied Physics, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Abhay A Sagade
- Department of Physics and Nanotechnology, Laboratory for Advanced Nanoelectronic Devices, SRM Institute of Science and Technology SRM Nagar, Kattankulathur 603 203 Tamil Nadu India
| | - Ageeth A Bol
- Department of Applied Physics, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
39
|
Dimov N, Staykov A, Kusdhany MIM, Lyth SM. Tailoring the work function of graphene via defects, nitrogen-doping and hydrogenation: A first principles study. NANOTECHNOLOGY 2023; 34:415001. [PMID: 37490587 DOI: 10.1088/1361-6528/ac7ecf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/06/2022] [Indexed: 07/27/2023]
Abstract
The effect of defects, nitrogen doping, and hydrogen saturation on the work function of graphene is investigated via first principle calculations. Whilst Stone-Wales defects have little effect, single and double vacancy defects increase the work function by decreasing charge density in theπ-electron system. Substitutional nitrogen doping in defect-free graphene significantly decreases the work function, because the nitrogen atoms donate electrons to theπ-electron system. In the presence of defects, these competing effects mean that higher nitrogen content is required to achieve similar reduction in work function as for crystalline graphene. Doping with pyridinic nitrogen atoms at vacancies slightly increases the work function, since pyridinic nitrogen does not contribute electrons to theπ-electron system. Meanwhile, hydrogen saturation of the pyridinic nitrogen atoms significantly reduces the work function, due to a shift from pyridinic to graphitic-type behavior. These findings clearly explain some of the experimental work functions obtained for carbon and nitrogen-doped carbon materials in the literature, and has implications in applications such as photocatalysis, photovoltaics, electrochemistry, and electron field emission.
Collapse
Affiliation(s)
- Nikolay Dimov
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | - Aleksandar Staykov
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | | | - Stephen M Lyth
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
- Department of Automotive Science, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
- Next-Generation Fuel Cell Research Center, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XL, United Kingdom
- Department of Mechanical and Mining Engineering, University of Queensland, St Lucia QLD 4072, Australia
- Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
40
|
Zhao M, Tian Y, Yan L, Liu R, Chen P, Wang H, Chu W. Unique modulation effects on the performance of graphene-based ammonia sensors via ultrathin bimetallic Au/Pt layers and gate voltages. Phys Chem Chem Phys 2023. [PMID: 37448223 DOI: 10.1039/d3cp01813j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Gas sensors with superior comprehensive performance at room temperature (RT) are always desired. Here, Au, Pt and Pt/Au-decorated graphene-based field effect transistor (FET) sensors for ammonia (denoted as Au/Gr, Pt/Gr and Pt/Au/Gr, respectively) are designed and fabricated. All these devices exhibited far better RT sensing performances for ammonia compared with graphene devices. Applying positive back gate voltages can further enhance their RT performance in which the Pt/Au/Gr devices show superior RT comprehensive performance such as a response of -16.2%, a recovery time of 4.6 min, and especially a much reduced response time of 54 s for 200 ppm NH3 with a detection limit of 103 ppb at a gate voltage of +60 V, and can be potentially tailored for further performance improvement by controlling the ratios of Pt and Au. The dependences of their performance on the gate voltage except for the response time could be reasonably explained by theoretical calculations in terms of the changes of the total density of states near the Fermi level, adsorption energies, transferred charges and adsorption distances. This study provides an effective solution for performance improvement of FET-based sensors via synergistic effects of ultrathin-layer multiple-metallic decoration and gate voltage, which would promote the exploration of novel sensors.
Collapse
Affiliation(s)
- Min Zhao
- School of Electronic and Electrical Engineering, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
- Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Yi Tian
- Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Lanqin Yan
- Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Rujun Liu
- School of Electronic and Electrical Engineering, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Peipei Chen
- Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Hanfu Wang
- Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Weiguo Chu
- Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
41
|
Li Y, Liu S, Liu R, Pan J, Li X, Zhang J, Zhang X, Zhao Y, Wang D, Quan H, Zhu S. Nanoarchitectonics on Z-scheme and Mott-Schottky heterostructure for photocatalytic water oxidation via dual-cascade charge-transfer pathways. NANOSCALE ADVANCES 2023; 5:3386-3395. [PMID: 37325531 PMCID: PMC10262966 DOI: 10.1039/d3na00182b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
The bottleneck for water splitting to generate hydrogen fuel is the sluggish oxidation of water. Even though the monoclinic-BiVO4 (m-BiVO4)-based heterostructure has been widely applied for water oxidation, carrier recombination on dual surfaces of the m-BiVO4 component have not been fully resolved by a single heterojunction. Inspired by natural photosynthesis, we established an m-BiVO4/carbon nitride (C3N4) Z-scheme heterostructure based on the m-BiVO4/reduced graphene oxide (rGO) Mott-Schottky heterostructure, constructing the face-contact C3N4/m-BiVO4/rGO (CNBG) ternary composite to remove excessive surface recombination during water oxidation. The rGO can accumulate photogenerated electrons from m-BiVO4 through a high conductivity region over the heterointerface, with the electrons then prone to diffuse along a highly conductive carbon network. In an internal electric field at the heterointerface of m-BiVO4/C3N4, the low-energy electrons and holes are rapidly consumed under irradiation. Therefore, spatial separation of electron-hole pairs occurs, and strong redox potentials are maintained by the Z-scheme electron transfer. These advantages endow the CNBG ternary composite with over 193% growth in O2 yield, and a remarkable rise in ·OH and ·O2- radicals, compared to the m-BiVO4/rGO binary composite. This work shows a novel perspective for rationally integrating Z-scheme and Mott-Schottky heterostructures in the water oxidation reaction.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Siyuan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Runlu Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jian Pan
- Particles and Catalysis Research Group, School of Chemical Engineering, University of New South Wales Sydney 2052 Australia
| | - Xin Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Jianyu Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xiaoxiao Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Dawei Wang
- Particles and Catalysis Research Group, School of Chemical Engineering, University of New South Wales Sydney 2052 Australia
| | - Hengdao Quan
- School of Chemical Engineering and Environment, Beijing Institute of Technology Beijing 100081 China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
42
|
Oswald J, Beretta D, Stiefel M, Furrer R, Lohde S, Vuillaume D, Calame M. Field and Thermal Emission Limited Charge Injection in Au-C60-Graphene van der Waals Vertical Heterostructures for Organic Electronics. ACS APPLIED NANO MATERIALS 2023; 6:9444-9452. [PMID: 37325015 PMCID: PMC10262147 DOI: 10.1021/acsanm.3c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Among the family of 2D materials, graphene is the ideal candidate as top or interlayer electrode for hybrid van der Waals heterostructures made of organic thin films and 2D materials due to its high conductivity and mobility and its inherent ability of forming neat interfaces without diffusing in the adjacent organic layer. Understanding the charge injection mechanism at graphene/organic semiconductor interfaces is therefore crucial to develop organic electronic devices. In particular, Gr/C60 interfaces are promising building blocks for future n-type vertical organic transistors exploiting graphene as tunneling base electrode in a two back-to-back Gr/C60 Schottky diode configuration. This work delves into the charge transport mechanism across Au/C60/Gr vertical heterostructures fabricated on Si/SiO2 using a combination of techniques commonly used in the semiconductor industry, where a resist-free CVD graphene layer functions as a top electrode. Temperature-dependent electrical measurements show that the transport mechanism is injection limited and occurs via Fowler-Nordheim tunneling at low temperature, while it is dominated by a nonideal thermionic emission at room and high temperatures, with energy barriers at room temperature of ca. 0.58 and 0.65 eV at the Gr/C60 and Au/C60 interfaces, respectively. Impedance spectroscopy confirms that the organic semiconductor is depleted, and the energy band diagram results in two electron blocking interfaces. The resulting rectifying nature of the Gr/C60 interface could be exploited in organic hot electron transistors and vertical organic permeable-base transistors.
Collapse
Affiliation(s)
- Jacopo Oswald
- Transport
at Nanoscale Interfaces Laboratory, Empa
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Swiss
Nanoscience Institute, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Davide Beretta
- Transport
at Nanoscale Interfaces Laboratory, Empa
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Michael Stiefel
- Transport
at Nanoscale Interfaces Laboratory, Empa
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Roman Furrer
- Transport
at Nanoscale Interfaces Laboratory, Empa
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Sebastian Lohde
- Transport
at Nanoscale Interfaces Laboratory, Empa
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Dominique Vuillaume
- Institute
of Electronic, Microelectronic and Nanotechnology (IEMN), Centre National de la Recherche Scientifique, Villeneuve d’Ascq 59652, France
| | - Michel Calame
- Transport
at Nanoscale Interfaces Laboratory, Empa
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Swiss
Nanoscience Institute, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
- Department
of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| |
Collapse
|
43
|
Xu Z. Adsorption and sensing mechanisms of Ni-doped PtTe 2 monolayer upon NO 2 and O 3 in air-insulated switchgears. RSC Adv 2023; 13:18129-18137. [PMID: 37323438 PMCID: PMC10267950 DOI: 10.1039/d3ra03030j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Under partial discharge, air would be converted into O3 and NO2 in air-insulated switchgears, therefore, the detection of such two gases can be used to evaluate the operation status of such electrical equipment. In this study, first-principles simulations are implemented to investigate the Ni-doping behavior on the pristine PtTe2 monolayer, and the adsorption and sensing performances of the Ni-doped PtTe2 (Ni-PtTe2) monolayer upon O3 and NO2 in air-insulated switchgears. The formation energy (Eform) of Ni-doping on the PtTe2 surface was calculated to be -0.55 eV, which indicates the exothermicity and spontaneity of the Ni-doping process. Strong interactions occurred in the O3 and NO2 systems given the significant adsorption energy (Ead) of -2.44 and -1.93 eV, respectively. Using the band structure and frontier molecular orbital analysis, the sensing response of the Ni-PtTe2 monolayer upon such two gas species is quite close and large enough for gas detections. Combined with the extremely long recovery time for gas desorption, it is presumed that the Ni-PtTe2 monolayer is a promising one-shot gas sensor for O3 and NO2 detection with a strong sensing response. This study aims at proposing a novel and promising gas sensing material for the detection of the typical fault gases in air-insulated switchgears, so as to ensure their good operation in the whole power system.
Collapse
Affiliation(s)
- Zhuoli Xu
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
44
|
Won UY, An Vu Q, Park SB, Park MH, Dam Do V, Park HJ, Yang H, Lee YH, Yu WJ. Multi-neuron connection using multi-terminal floating-gate memristor for unsupervised learning. Nat Commun 2023; 14:3070. [PMID: 37244897 DOI: 10.1038/s41467-023-38667-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/10/2023] [Indexed: 05/29/2023] Open
Abstract
Multi-terminal memristor and memtransistor (MT-MEMs) has successfully performed complex functions of heterosynaptic plasticity in synapse. However, theses MT-MEMs lack the ability to emulate membrane potential of neuron in multiple neuronal connections. Here, we demonstrate multi-neuron connection using a multi-terminal floating-gate memristor (MT-FGMEM). The variable Fermi level (EF) in graphene allows charging and discharging of MT-FGMEM using horizontally distant multiple electrodes. Our MT-FGMEM demonstrates high on/off ratio over 105 at 1000 s retention about ~10,000 times higher than other MT-MEMs. The linear behavior between current (ID) and floating gate potential (VFG) in triode region of MT-FGMEM allows for accurate spike integration at the neuron membrane. The MT-FGMEM fully mimics the temporal and spatial summation of multi-neuron connections based on leaky-integrate-and-fire (LIF) functionality. Our artificial neuron (150 pJ) significantly reduces the energy consumption by 100,000 times compared to conventional neurons based on silicon integrated circuits (11.7 μJ). By integrating neurons and synapses using MT-FGMEMs, a spiking neurosynaptic training and classification of directional lines functioned in visual area one (V1) is successfully emulated based on neuron's LIF and synapse's spike-timing-dependent plasticity (STDP) functions. Simulation of unsupervised learning based on our artificial neuron and synapse achieves a learning accuracy of 83.08% on the unlabeled MNIST handwritten dataset.
Collapse
Affiliation(s)
- Ui Yeon Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
- Hyundai motors group, Electronic Devices research Team, Uiwang, 16082, South Korea
| | - Quoc An Vu
- IBS Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sung Bum Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Mi Hyang Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Van Dam Do
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hyun Jun Park
- Display R&D Group, Mobile Communication Business, Samsung Electronics, Suwon, 16677, South Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Young Hee Lee
- IBS Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, 16419, South Korea.
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Woo Jong Yu
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
45
|
Zhang N, Feng W, Wen H, Feng N, Sheng H, Huang Z, Wang J. Physical Mechanism of Nonlinear Spectra in Triangene. Molecules 2023; 28:molecules28093744. [PMID: 37175153 PMCID: PMC10180230 DOI: 10.3390/molecules28093744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
In this work, we theoretically investigate the linear and nonlinear optical absorption properties of open triangulene spin chains and cyclic triangulene spin chains in relation to their lengths and shapes. The physical mechanism of local excitation within the triangular alkene unit and the weak charge transfer between the units are discussed. The uniformly distributed electrostatic potential allows the system to have a small permanent dipole moment that blocks the electronic transition in the light excitation such that the electronic transition can only be carried out between adjacent carbon atoms. The one-photon absorption (OPA) spectra and two-photon absorption (TPA) spectra are red-shifted with the addition of triangulene units compared to N = 3TSCs (triangulene spin chains, TSCs). Here, TPA is mainly caused by the first step of the transition. The length of the spin chain has a significant adjustment effect on the photon cross-section. TSCs of different lengths and shapes can control chirality by adjusting the distribution of the electric dipole moment and transition magnetic dipole moment. These analyses reveal the photophysical properties of triangulene and provide a theoretical basis for studying the photophysical properties of triangulene and its derivatives.
Collapse
Affiliation(s)
- Na Zhang
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, College of Science, Liaoning Petrochemical University, Fushun 113001, China
| | - Weijian Feng
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, College of Science, Liaoning Petrochemical University, Fushun 113001, China
| | - Hanbo Wen
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, College of Science, Liaoning Petrochemical University, Fushun 113001, China
| | - Naixing Feng
- The Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Target Recognition and Feature Extraction, Lu'an 230601, China
- The Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
- The Key Laboratory of Electromagnetic Environmental Sensing of Anhui Higher Education Institutes, Anhui University, Hefei 230601, China
| | - Hao Sheng
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, College of Science, Liaoning Petrochemical University, Fushun 113001, China
| | - Zhixiang Huang
- The Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Target Recognition and Feature Extraction, Lu'an 230601, China
- The Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
- The Key Laboratory of Electromagnetic Environmental Sensing of Anhui Higher Education Institutes, Anhui University, Hefei 230601, China
| | - Jingang Wang
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, College of Science, Liaoning Petrochemical University, Fushun 113001, China
| |
Collapse
|
46
|
Neo Y, Hashimoto G, Koike R, Ohhara T, Matsumoto T. Solid-State Far-Ultraviolet C Light Sources for the Disinfection of Pathogenic Microorganisms Using Graphene Nanostructure Field Emitters. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200236. [PMID: 37020617 PMCID: PMC10069303 DOI: 10.1002/gch2.202200236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/07/2023] [Indexed: 06/19/2023]
Abstract
The ongoing global outbreak of coronavirus disease has necessitated the use of ultraviolet (UV) disinfection techniques to reduce viral transmission in public places. The previously used UV wavelength is harmful to the human body, the wavelength range from 200 to 235 nm, often referred to as far-UVC light, has attracted attention as a novel disinfection wavelength range that can be used in a safe manner. However, the currently used light sources have practical problems, such as an expensive cost, a low efficiency, and short lifetimes. Therefore, environmentally friendly solid-state light sources with a lower cost, higher efficiency, and longer lifetimes are demanded. Here, an efficient mercury-free far-UVC solid-state light source is presented. This light source demonstrates intense 230 nm emission with a narrow spectral width of 30 nm and a long lifetime of more than 1000 h. These characteristics can be achieved by graphene nanostructure field emitters and wide-bandgap magnesium aluminate phosphors. By using this light source, the efficient disinfection of Escherichia coli is demonstrated. The light sources presented here facilitate future technologies for preventing the spread of infectious diseases in a safe and convenient manner.
Collapse
Affiliation(s)
- Yoichiro Neo
- Research Institute of ElectronicsShizuoka UniversityHamamatsu432‐8011Japan
| | - Gai Hashimoto
- Research Institute of ElectronicsShizuoka UniversityHamamatsu432‐8011Japan
| | - Rei Koike
- Research Institute of ElectronicsShizuoka UniversityHamamatsu432‐8011Japan
| | - Takashi Ohhara
- Neutron Science SectionJ‐PARC CenterJapan Atomic Energy AgencyIbaraki319‐1195Japan
| | - Takahiro Matsumoto
- Research Institute of ElectronicsShizuoka UniversityHamamatsu432‐8011Japan
- Graduate School of Medical SciencesNagoya City UniversityNagoya467‐8601Japan
- Graduate School of Design and ArchitectureNagoya City UniversityNagoya464‐0083Japan
| |
Collapse
|
47
|
Gu S, Liu W, Mi S, Xian G, Guo J, Pang F, Chen S, Yang H, Gao HJ, Cheng Z. Twist angle-dependent work functions in CVD-grown twisted bilayer graphene probed by Kelvin probe force microscopy. NANOSCALE 2023; 15:5825-5833. [PMID: 36857709 DOI: 10.1039/d2nr07242d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tailoring the interlayer twist angle of bilayer graphene (BLG) significantly affects its electronic properties, including its superconductivity, topological transitions, ferromagnetic states, and correlated insulating states. These exotic electronic properties are sensitive to the work functions of BLG samples. In this study, the twist angle-dependent work functions of chemical vapour deposition-grown twisted bilayer graphene (tBLG) were investigated in detail using Kelvin probe force microscopy (KPFM) in combination with Raman spectroscopy. The thickness-dependent surface potentials of Bernal-stacked multilayer graphene were measured. It is found that with the increase in the number of layers, the work function decreases and tends to saturate. Bernal-stacked BLG and tBLG were determined via KPFM due to their twist angle-specific surface potentials. The detailed relationship between the twist angle and surface potential was determined via in situ KPFM and Raman spectral measurements. With the increase in the twist angle, the work function of tBLG will increase rapidly and then increase slowly when it is greater than 5°. The thermal stability of tBLG was investigated through a controlled annealing process. tBLG will become Bernal-stacked BLG after annealing at 350 °C. Our work provides the twist angle-dependent surface potentials of tBLG and provides the relevant conditions for the stability of the twist angle, which lays the foundation for further exploration of its twist angle-dependent electronic properties.
Collapse
Affiliation(s)
- Shangzhi Gu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China.
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China.
| | - Wenyu Liu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China.
| | - Shuo Mi
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China.
| | - Guoyu Xian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China.
| | - Jiangfeng Guo
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China.
| | - Fei Pang
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China.
| | - Shanshan Chen
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China.
| | - Haitao Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China.
| | - Hong-Jun Gao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China.
| | - Zhihai Cheng
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
48
|
Oswald J, Beretta D, Stiefel M, Furrer R, Vuillaume D, Calame M. The Effect of C60 and Pentacene Adsorbates on the Electrical Properties of CVD Graphene on SiO 2. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1134. [PMID: 36986028 PMCID: PMC10052095 DOI: 10.3390/nano13061134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Graphene is an excellent 2D material for vertical organic transistors electrodes due to its weak electrostatic screening and field-tunable work function, in addition to its high conductivity, flexibility and optical transparency. Nevertheless, the interaction between graphene and other carbon-based materials, including small organic molecules, can affect the graphene electrical properties and therefore, the device performances. This work investigates the effects of thermally evaporated C60 (n-type) and Pentacene (p-type) thin films on the in-plane charge transport properties of large area CVD graphene under vacuum. This study was performed on a population of 300 graphene field effect transistors. The output characteristic of the transistors revealed that a C60 thin film adsorbate increased the graphene hole density by (1.65 ± 0.36) × 1012 cm-2, whereas a Pentacene thin film increased the graphene electron density by (0.55 ± 0.54) × 1012 cm-2. Hence, C60 induced a graphene Fermi energy downshift of about 100 meV, while Pentacene induced a Fermi energy upshift of about 120 meV. In both cases, the increase in charge carriers was accompanied by a reduced charge mobility, which resulted in a larger graphene sheet resistance of about 3 kΩ at the Dirac point. Interestingly, the contact resistance, which varied in the range 200 Ω-1 kΩ, was not significantly affected by the deposition of the organic molecules.
Collapse
Affiliation(s)
- Jacopo Oswald
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Transport at Nanoscale Interfaces Laboratory, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Davide Beretta
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Transport at Nanoscale Interfaces Laboratory, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Michael Stiefel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Transport at Nanoscale Interfaces Laboratory, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Roman Furrer
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Transport at Nanoscale Interfaces Laboratory, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Dominique Vuillaume
- Centre National de la Recherche Scientifique, Institute for Electronic, Microelectronic and Nanotechnology (IEMN), 59652 Villeneuve d’Ascq, France
| | - Michel Calame
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Transport at Nanoscale Interfaces Laboratory, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| |
Collapse
|
49
|
Zhang M, Han N, Zhang J, Wang J, Chen X, Zhao J, Gan X. Emergent second-harmonic generation in van der Waals heterostructure of bilayer MoS 2 and monolayer graphene. SCIENCE ADVANCES 2023; 9:eadf4571. [PMID: 36921058 PMCID: PMC10017043 DOI: 10.1126/sciadv.adf4571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/14/2023] [Indexed: 05/29/2023]
Abstract
Van der Waals (vdW) stacking of two-dimensional (2D) materials to create artificial structures has enabled remarkable discoveries and novel properties in fundamental physics. Here, we report that vdW stacking of centrosymmetric 2D materials, e.g., bilayer MoS2 (2LM) and monolayer graphene (1LG), could support remarkable second-harmonic generation (SHG). The required centrosymmetry breaking for second-order hyperpolarizability arises from the interlayer charge transfer between 2LM and 1LG and the imbalanced charge distribution in 2LM, which are verified by first-principles calculations, Raman spectroscopy, and polarization-resolved SHG. The strength of SHG from 2LM/1LG is of the same order of magnitude as that from the monolayer MoS2, which is well recognized with strong second-order nonlinearity. The emergent SHG reveals that the interlayer charge transfer can effectively modify the symmetry and nonlinear optical properties of 2D heterostructures. It also indicates the great opportunity of SHG spectroscopy for characterizing interlayer coupling in vdW heterostructures.
Collapse
Affiliation(s)
- Mingwen Zhang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Nannan Han
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE), and Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Jiachen Zhang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Jing Wang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Xiaoqing Chen
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Jianlin Zhao
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Xuetao Gan
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
50
|
Song I. Novel electrodes and gate dielectrics for
field‐effect
transistors based on
two‐dimensional
materials. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Intek Song
- Department of Applied Chemistry Andong National University (ANU) Andong Gyeongbuk Republic of Korea
| |
Collapse
|