1
|
Fu F, Crespy D, Landfester K, Jiang S. In situ characterization techniques of protein corona around nanomaterials. Chem Soc Rev 2024. [PMID: 39291461 DOI: 10.1039/d4cs00507d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nanoparticles (NPs) inevitably interact with proteins upon exposure to biological fluids, leading to the formation of an adsorption layer known as the "protein corona". This corona imparts NPs with a new biological identity, directly influencing their interactions with living systems and dictating their fates in vivo. Thus, gaining a comprehensive understanding of the dynamic interplay between NPs and proteins in biological fluids is crucial for predicting therapeutic effects and advancing the clinical translation of nanomedicines. Numerous methods have been established to decode the protein corona fingerprints. However, these methods primarily rely on prior isolation of NP-protein complex from the surrounding medium by centrifugation, resulting in the loss of outer-layer proteins that directly interact with the biological system and determine the in vivo fate of NPs. We discuss here separation techniques as well as in situ characterization methods tailored for comprehensively unraveling the inherent complexities of NP-protein interactions, highlighting the challenges of in situ protein corona characterization and its significance for nanomedicine development and clinical translation.
Collapse
Affiliation(s)
- Fangqin Fu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | | | - Shuai Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Li Z, Qi J, Fu S, Luan J, Wang Q. Effects of nanographene oxide on adipose-derived stem cell cryopreservation. Cell Tissue Bank 2024; 25:805-830. [PMID: 38844606 DOI: 10.1007/s10561-024-10140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/17/2024] [Indexed: 09/06/2024]
Abstract
Cryoinjury mitigation is key in cell cryopreservation. Here, we aimed to assess the effectiveness of nanographene oxide (nano-GO) for improving cryoprotectant agents (CPAs) in human adipose stem cell (hADSC) cryopreservation. For in vitro experiments, nano-GO (5 μg/mL) was added to the CPAs in the control, and passage (P) 2 hADSCs were collected and cryopreserved for around two weeks. We compared cytotoxicity, cell viability, immunophenotypes, proliferation, cell apoptosis, and tri-lineage differentiation. In vivo, studies used lipoaspirate to create non-enriched or hADSC-enriched fat tissues by combining it with PBS or hADSCs cryopreserved with the aforementioned CPAs. Each nude mouse received a 0.3 mL subcutaneous injection of the graft. At 12 weeks, the grafts were harvested. Histology, adipocyte-associated genes and protein, vascular density and angiogenic cytokines, macrophage infiltration, and inflammatory cytokines were analyzed. Nano-GO CPA contributed to increased cell viability, improved cell recovery, and lowered levels of early apoptosis. Nano GO at concentrations of 0.01-100 μg/mL caused no cytotoxicity to hADSCs. The absence of nano GOs in the intracellular compartments of the cells was confirmed by transmission electron microscopy. The fat grafts from the CPA-GO group showed more viable adipocytes and significantly increased angiogenesis compared to the PBS and CPA-C groups. Adding hADSCs from the CPA-GO group to the graft reduced macrophage infiltration and MCP-1 expression. Nano-GO plays an anti-apoptotic role in the cryopreservation of hADSCs, which could improve the survival of transplanted fat tissues, possibly via improved angiogenesis and lower inflammatory response in the transplanted adipose tissue.
Collapse
Affiliation(s)
- Zifei Li
- Facial and Cervical Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 33 Badachu Road, Shijingshan, Beijing, 100144, People's Republic of China
| | - Jun Qi
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Badachu Road, Shijingshan Dist., Beijing, 100144, People's Republic of China
| | - Su Fu
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Badachu Road, Shijingshan Dist., Beijing, 100144, People's Republic of China
| | - Jie Luan
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Badachu Road, Shijingshan Dist., Beijing, 100144, People's Republic of China.
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Badachu Road, Shijingshan Dist., Beijing, 100144, People's Republic of China.
| |
Collapse
|
3
|
Li YT, Mei KC, Liam-Or R, Wang JTW, Faruqu FN, Zhu S, Wang YL, Lu Y, Al-Jamal KT. Graphene Oxide Nanosheets Toxicity in Mice Is Dependent on Protein Corona Composition and Host Immunity. ACS NANO 2024; 18:22572-22585. [PMID: 39110092 PMCID: PMC11342366 DOI: 10.1021/acsnano.4c08561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Two-dimension graphene oxide (GO) nanosheets with high and low serum protein binding profiles (high/low hard-bound protein corona/HChigh/low) are used in this study as model materials and screening tools to investigate the underlying roles of the protein corona on nanomaterial toxicities in vivo. We proposed that the in vivo biocompatibility/nanotoxicity of GO is protein corona-dependent and host immunity-dependent. The hypothesis was tested by injecting HChigh/low GO nanosheets in immunocompetent ICR/CD1 and immunodeficient NOD-scid II2rγnull mice and performed histopathological and hematological evaluation studies on days 1 and 14 post-injection. HClow GO induced more severe acute lung injury compared to HChigh GO in both immunocompetent and immunodeficient mice, with the effect being particularly pronounced in immunocompetent animals. Additionally, HClow GO caused more significant liver injury in both types of mice, with immunodeficient mice being more susceptible to its hepatotoxic effects. Moreover, administration of HClow GO resulted in increased hematological toxicity and elevated levels of serum pro-inflammatory cytokines in immunocompromised and immunocompetent mice, respectively. Correlation studies were conducted to explore the impact of distinct protein corona compositions on resulting toxicities in both immunocompetent and immunodeficient mice. This facilitated the identification of consistent patterns, aligning with those observed in vitro, thus indicating a robust in vitro-in vivo correlation. This research will advance our comprehension of how hard corona proteins interact with immune cells, leading to toxicity, and will facilitate the development of improved immune-modulating nanomaterials for therapeutic purposes.
Collapse
Affiliation(s)
- Yue-ting Li
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, U.K.
- State
Key Laboratory of Functions and Applications of Medicinal Plants,
Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang 550004, China
| | - Kuo-Ching Mei
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, U.K.
- School
of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, 96 Corliss Avenue, Johnson City, New York 13790, United States
| | - Revadee Liam-Or
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, U.K.
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong SAR, China
| | - Julie Tzu-Wen Wang
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, U.K.
| | - Farid N. Faruqu
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, U.K.
| | - Shengzhang Zhu
- Qiannan
People’s Hospital, No. 9, Wenfeng Road, Duyun 558000, China
| | - Yong-lin Wang
- State
Key Laboratory of Functions and Applications of Medicinal Plants,
Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang 550004, China
| | - Yuan Lu
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, U.K.
- State
Key Laboratory of Functions and Applications of Medicinal Plants,
Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang 550004, China
| | - Khuloud T. Al-Jamal
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, U.K.
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong SAR, China
| |
Collapse
|
4
|
Wu K, Ouyang S, Tao Z, Hu X, Zhou Q. Algal extracellular polymeric substance compositions drive the binding characteristics, affinity, and phytotoxicity of graphene oxide in water. WATER RESEARCH 2024; 260:121908. [PMID: 38878307 DOI: 10.1016/j.watres.2024.121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
Graphene oxide (GO, a popular 2D nanomaterial) poses great potential in water treatment arousing considerable attention regarding its fate and risk in aquatic environments. Extracellular polymeric substances (EPS) exist widely in water and play critical roles in biogeochemical processes. However, the influences of complex EPS fractions on the fate and risk of GO remain unknown in water. This study integrates fluorescence excitation-emission matrix-parallel factor, two-dimensional correlation spectroscopy, and biolayer interferometry studies on the binding characteristics and affinity between EPS fractions and GO. The results revealed the preferential binding of fluorescent aromatic protein-like component, fulvic-like component, and non-fluorescent polysaccharide in soluble EPS (S-EPS) and bound EPS (B-EPS) on GO via π-π stacking and electrostatic interaction that contributed to a higher adsorption capacity of S-EPS on GO and weaker affinity than of B-EPS. Moreover, the EPS fractions drive the morphological and structural alterations, and the attenuated colloid stability of GO in water. Notably, GO-EPS induced stronger phytotoxicity (e.g., photosynthetic damage, and membrane lipid remodeling) compared to pristine GO. Metabolic and functional lipid analysis further elucidated the regulation of amino acid, carbohydrate, and lipid metabolism contributed to the persistent phytotoxicity. This work provides insights into the roles and mechanisms of EPS fractions composition in regulating the environmental fate and risk of GO in natural water.
Collapse
Affiliation(s)
- Kangying Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Park J, Wu Y, Suk Kim J, Byun J, Lee J, Oh YK. Cytoskeleton-modulating nanomaterials and their therapeutic potentials. Adv Drug Deliv Rev 2024; 211:115362. [PMID: 38906478 DOI: 10.1016/j.addr.2024.115362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
The cytoskeleton, an intricate network of protein fibers within cells, plays a pivotal role in maintaining cell shape, enabling movement, and facilitating intracellular transport. Its involvement in various pathological states, ranging from cancer proliferation and metastasis to the progression of neurodegenerative disorders, underscores its potential as a target for therapeutic intervention. The exploration of nanotechnology in this realm, particularly the use of nanomaterials for cytoskeletal modulation, represents a cutting-edge approach with the promise of novel treatments. Inorganic nanomaterials, including those derived from gold, metal oxides, carbon, and black phosphorus, alongside organic variants such as peptides and proteins, are at the forefront of this research. These materials offer diverse mechanisms of action, either by directly interacting with cytoskeletal components or by influencing cellular signaling pathways that, in turn, modulate the cytoskeleton. Recent advancements have introduced magnetic field-responsive and light-responsive nanomaterials, which allow for targeted and controlled manipulation of the cytoskeleton. Such precision is crucial in minimizing off-target effects and enhancing therapeutic efficacy. This review explores the importance of research into cytoskeleton-targeting nanomaterials for developing therapeutic interventions for a range of diseases. It also addresses the progress made in this field, the challenges encountered, and future directions for using nanomaterials to modulate the cytoskeleton. The continued exploration of nanomaterials for cytoskeleton modulation holds great promise for advancing therapeutic strategies against a broad spectrum of diseases, marking a significant step forward in the intersection of nanotechnology and medicine.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Niu Y, Yu Y, Shi X, Fu F, Yang H, Mu Q, Crespy D, Landfester K, Jiang S. In Situ Measurement of Nanoparticle-Blood Protein Adsorption and Its Heterogeneity with Single-Nanoparticle Resolution via Dual Fluorescence Quantification. NANO LETTERS 2024; 24:9202-9211. [PMID: 39037031 PMCID: PMC11299225 DOI: 10.1021/acs.nanolett.4c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
The formation of a protein corona gives nanomedicines a distinct biological identity, profoundly influencing their fate in the body. Nonspecific nanoparticle-protein interactions are typically highly heterogeneous, which can lead to unique biological behaviors and in vivo fates for individual nanoparticles that remain underexplored. To address this, we have established an in situ approach that allows quantitative examination of nanoparticle-protein adsorption at the individual nanoparticle level. This method integrates dual fluorescence quantification techniques, wherein the nanoparticles are first individually analyzed via nanoflow cytometry to detect fluorescent signals from adsorbed proteins. The obtained fluorescence intensity is then translated into protein quantities through calibration with microplate reader quantification. Consequently, this approach enables analysis of interparticle heterogeneity of nano-protein interactions, as well as in situ monitoring of protein adsorption kinetics and nanoparticle aggregation status in blood serum, preconditioning for a comprehensive understanding of nano-bio interactions, and predicting in vivo fate of nanomedicines.
Collapse
Affiliation(s)
- Yuanyuan Niu
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Yingjie Yu
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Xinyang Shi
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Fangqin Fu
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Hai Yang
- Department
of Pharmacy, Qingdao Central Hospital, University
of Health and Rehabilitation Sciences, Qingdao 266042, China
| | - Qiang Mu
- The
First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao
Central Medical Group), Qingdao 266042, China
| | - Daniel Crespy
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Katharina Landfester
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shuai Jiang
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
7
|
Ayreen Z, Khatoon U, Kirti A, Sinha A, Gupta A, Lenka SS, Yadav A, Mohanty R, Naser SS, Mishra R, Chouhan RS, Samal SK, Kaushik NK, Singh D, Suar M, Verma SK. Perilous paradigm of graphene oxide and its derivatives in biomedical applications: Insight to immunocompatibility. Biomed Pharmacother 2024; 176:116842. [PMID: 38810404 DOI: 10.1016/j.biopha.2024.116842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
With advancements in nanotechnology and innovative materials, Graphene Oxide nanoparticles (GONP) have attracted lots of attention among the diverse types of nanomaterials owing to their distinctive physicochemical characteristics. However, the usage at scientific and industrial level has also raised concern to their toxicological interaction with biological system. Understanding these interactions is crucial for developing guidelines and recommendations for applications of GONP in various sectors, like biomedicine and environmental technologies. This review offers crucial insights and an in-depth analysis to the biological processes associated with GONP immunotoxicity with multiple cell lines including human whole blood cultures, dendritic cells, macrophages, and multiple cancer cell lines. The complicated interactions between graphene oxide nanoparticles and the immune system, are highlighted in this work, which reveals a range of immunotoxic consequences like inflammation, immunosuppression, immunostimulation, hypersensitivity, autoimmunity, and cellular malfunction. Moreover, the immunotoxic effects are also highlighted with respect to in vivo models like mice and zebrafish, insighting GO Nanoparticles' cytotoxicity. The study provides invaluable review for researchers, policymakers, and industrialist to understand and exploit the beneficial applications of GONP with a controlled measure to human health and the environment.
Collapse
Affiliation(s)
- Zobia Ayreen
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Uzma Khatoon
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Abha Gupta
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Rupali Mohanty
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Shaikh Sheeran Naser
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Richa Mishra
- Parul University, Vadodara, Gujarat 391760, India
| | - Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana 1000, Slovenia
| | | | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
8
|
Krętowski R, Szynaka B, Jabłońska-Trypuć A, Kiełtyka-Dadasiewicz A, Cechowska-Pasko M. The Synergistic Effect of Reduced Graphene Oxide and Proteasome Inhibitor in the Induction of Apoptosis through Oxidative Stress in Breast Cancer Cell Lines. Int J Mol Sci 2024; 25:5436. [PMID: 38791473 PMCID: PMC11121306 DOI: 10.3390/ijms25105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Reduced graphene oxide (rGO) and a proteasome inhibitor (MG-132) are some of the most commonly used compounds in various biomedical applications. However, the mechanisms of rGO- and MG-132-induced cytotoxicity remain unclear. The aim of this study was to investigate the anticancer effect of rGO and MG-132 against ZR-75-1 and MDA-MB-231 breast cancer cell lines. The results demonstrated that rGO, MG-132 or a mix (rGO + MG-132) induced time- and dose-dependent cytotoxicity in ZR-75-1 and MDA-MB-231 cells. Apart from that, we found that treatment with rGO and MG-132 or the mix increased apoptosis, necrosis and induction of caspase-8 and caspase-9 activity in both breast cancer cell lines. Apoptosis and caspase activation were accompanied by changes in the ultrastructure of mitochondria in ZR-75-1 and MDA-MB-231 cells incubated with rGO. Additionally, in the analyzed cells, we observed the induction of oxidative stress, accompanied by increased apoptosis and cell necrosis. In conclusion, oxidative stress induces apoptosis in the tested cells. At the same time, both mitochondrial and receptor apoptosis pathways are activated. These studies provided new information on the molecular mechanisms of apoptosis in the ZR-75-1 and MDA-MB-231 breast cancer cell lines.
Collapse
Affiliation(s)
- Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Białystok, Poland;
| | - Beata Szynaka
- Department of Histology and Embryology, Medical University of Białystok, Waszyngtona 13, 15-269 Białystok, Poland;
| | - Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland;
| | - Anna Kiełtyka-Dadasiewicz
- Department of Plant Production Technology and Commodity, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Garden of Cosmetic Plants and Raw Materials, Research and Science Innovation Center, 20-819 Lublin, Poland
| | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Białystok, Poland;
| |
Collapse
|
9
|
Ji Y, Wang Y, Wang X, Lv C, Zhou Q, Jiang G, Yan B, Chen L. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133800. [PMID: 38368688 DOI: 10.1016/j.jhazmat.2024.133800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The exploration of nanoparticle applications is filled with promise, but their impact on the environment and human health raises growing concerns. These tiny environmental particles can enter the human body through various routes, such as the respiratory system, digestive tract, skin absorption, intravenous injection, and implantation. Once inside, they can travel to distant organs via the bloodstream and lymphatic system. This journey often results in nanoparticles adhering to cell surfaces and being internalized. Upon entering cells, nanoparticles can provoke significant structural and functional changes. They can potentially disrupt critical cellular processes, including damaging cell membranes and cytoskeletons, impairing mitochondrial function, altering nuclear structures, and inhibiting ion channels. These disruptions can lead to widespread alterations by interfering with complex cellular signaling pathways, potentially causing cellular, organ, and systemic impairments. This article delves into the factors influencing how nanoparticles behave in biological systems. These factors include the nanoparticles' size, shape, charge, and chemical composition, as well as the characteristics of the cells and their surrounding environment. It also provides an overview of the impact of nanoparticles on cells, organs, and physiological systems and discusses possible mechanisms behind these adverse effects. Understanding the toxic effects of nanoparticles on physiological systems is crucial for developing safer, more effective nanoparticle-based technologies.
Collapse
Affiliation(s)
- Yunxia Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
10
|
Guo X, Yang L, Deng C, Ren L, Li S, Zhang X, Zhao J, Yue T. Nanoparticles traversing the extracellular matrix induce biophysical perturbation of fibronectin depicted by surface chemistry. NANOSCALE 2024; 16:6199-6214. [PMID: 38446101 DOI: 10.1039/d3nr06305d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
While the filtering and accumulation effects of the extracellular matrix (ECM) on nanoparticles (NPs) have been experimentally observed, the detailed interactions between NPs and specific biomolecules within the ECM remain poorly understood and pose challenges for in vivo molecular-level investigations. Herein, we adopt molecular dynamics simulations to elucidate the impacts of methyl-, hydroxy-, amine-, and carboxyl-modified gold NPs on the cell-binding domains of fibronectin (Fn), an indispensable component of the ECM for cell attachment and signaling. Simulation results show that NPs can specifically bind to distinct Fn domains, and the strength of these interactions depends on the physicochemical properties of NPs. NP-NH3+ exhibits the highest affinity to domains rich in acidic residues, leading to strong electrostatic interactions that induce severe deformation, potentially disrupting the normal functioning of Fn. NP-CH3 and NP-COO- selectively occupy the RGD/PHSRN motifs, which may hinder their recognition by integrins on the cell surface. Additionally, NPs can disrupt the dimerization of Fn through competing for residues at the dimer interface or by diminishing the shape complementarity between dimerized proteins. The mechanical stretching of Fn, crucial for ECM fibrillogenesis, is suppressed by NPs due to their local rigidifying effect. These results provide valuable molecular-level insights into the impacts of various NPs on the ECM, holding significant implications for advancing nanomedicine and nanosafety evaluation.
Collapse
Affiliation(s)
- Xing Guo
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Lin Yang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Chaofan Deng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Luyao Ren
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Shixin Li
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| |
Collapse
|
11
|
Wang J, Xu Y, Zhou Y, Zhang J, Jia J, Jiao P, Liu Y, Su G. Modulating the toxicity of engineered nanoparticles by controlling protein corona formation: Recent advances and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169590. [PMID: 38154635 DOI: 10.1016/j.scitotenv.2023.169590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development and widespread application of engineered nanoparticles (ENPs), understanding the fundamental interactions between ENPs and biological systems is essential to assess and predict the fate of ENPs in vivo. When ENPs are exposed to complex physiological environments, biomolecules quickly and inevitably adsorb to ENPs to form a biomolecule corona, such as a protein corona (PC). The formed PC has a significant effect on the physicochemical properties of ENPs and gives them a brand new identity in the biological environment, which determines the subsequent ENP-cell/tissue/organ interactions. Controlling the formation of PCs is therefore of utmost importance to accurately predict and optimize the behavior of ENPs within living organisms, as well as ensure the safety of their applications. In this review, we provide an overview of the fundamental aspects of the PC, including the formation mechanism, composition, and frequently used characterization techniques. We comprehensively discuss the potential impact of the PC on ENP toxicity, including cytotoxicity, immune response, and so on. Additionally, we summarize recent advancements in manipulating PC formation on ENPs to achieve the desired biological outcomes. We further discuss the challenges and prospects, aiming to provide valuable insights for a better understanding and prediction of ENP behaviors in vivo, as well as the development of low-toxicity ENPs.
Collapse
Affiliation(s)
- Jiali Wang
- School of Pharmacy, Nantong University, Nantong 226019, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Yun Zhou
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Jian Zhang
- Digestive Diseases Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 510001, China; Center for Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 510001 Guangzhou, China
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peifu Jiao
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226019, China.
| |
Collapse
|
12
|
Lin H, Buerki-Thurnherr T, Kaur J, Wick P, Pelin M, Tubaro A, Carniel FC, Tretiach M, Flahaut E, Iglesias D, Vázquez E, Cellot G, Ballerini L, Castagnola V, Benfenati F, Armirotti A, Sallustrau A, Taran F, Keck M, Bussy C, Vranic S, Kostarelos K, Connolly M, Navas JM, Mouchet F, Gauthier L, Baker J, Suarez-Merino B, Kanerva T, Prato M, Fadeel B, Bianco A. Environmental and Health Impacts of Graphene and Other Two-Dimensional Materials: A Graphene Flagship Perspective. ACS NANO 2024; 18:6038-6094. [PMID: 38350010 PMCID: PMC10906101 DOI: 10.1021/acsnano.3c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| | - Tina Buerki-Thurnherr
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Jasreen Kaur
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Peter Wick
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Aurelia Tubaro
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Mauro Tretiach
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emmanuel Flahaut
- CIRIMAT,
Université de Toulouse, CNRS, INPT,
UPS, 31062 Toulouse CEDEX 9, France
| | - Daniel Iglesias
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Giada Cellot
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Valentina Castagnola
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Fabio Benfenati
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, 16163 Genoa, Italy
| | - Antoine Sallustrau
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Frédéric Taran
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Mathilde Keck
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Cyrill Bussy
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Sandra Vranic
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Mona Connolly
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - José Maria Navas
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - Florence Mouchet
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Laury Gauthier
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - James Baker
- TEMAS Solutions GmbH, 5212 Hausen, Switzerland
| | | | - Tomi Kanerva
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bengt Fadeel
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Alberto Bianco
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
13
|
Srivastava A, Azad UP. Nanobioengineered surface comprising carbon based materials for advanced biosensing and biomedical application. Int J Biol Macromol 2023; 253:126802. [PMID: 37690641 DOI: 10.1016/j.ijbiomac.2023.126802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Carbon-based nanomaterials (CNMs) are at the cutting edge of materials science. Due to their distinctive architectures, substantial surface area, favourable biocompatibility, and reactivity to internal and/or external chemico-physical stimuli, carbon-based nanomaterials are becoming more and more significant in a wide range of applications. Numerous research has been conducted and still is going on to investigate the potential uses of carbon-based hybrid materials for diverse applications such as biosensing, bioimaging, smart drug delivery with the potential for theranostic or combinatorial therapies etc. This review is mainly focused on the classifications and synthesis of various types of CNMs and their electroanalytical application for development of efficient and ultra-sensitive electrochemical biosensors for the point of care diagnosis of fatal and severe diseases at their very initial stage. This review is mainly focused on the classification, synthesis and application of carbon-based material for biosensing applications. The integration of various types of CNMs with nanomaterials, enzymes, redox mediators and biomarkers have been used discussed in development of smart biosensing platform. We have also made an effort to discuss the future prospects for these CNMs in the biosensing area as well as the most recent advancements and applications which will be quite useful for the researchers working across the globe working specially in biosensors field.
Collapse
Affiliation(s)
- Ananya Srivastava
- Department of Chemistry, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Uday Pratap Azad
- Laboratory of Nanoelectrochemistry, Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur 495 009, CG, India.
| |
Collapse
|
14
|
Priyam J, Saxena U. Therapeutic applications of carbon nanomaterials in renal cancer. Biotechnol Lett 2023; 45:1395-1416. [PMID: 37864745 DOI: 10.1007/s10529-023-03429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 10/23/2023]
Abstract
Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene, and nanodiamonds (NDs), have shown great promise in detecting and treating numerous cancers, including kidney cancer. CNMs can increase the sensitivity of diagnostic techniques for better kidney cancer identification and surveillance. They enable targeted medicine delivery specifically to tumour locations, with little effect on healthy tissue. Because of their unique chemical and physical characteristics, they can avoid the body's defence mechanisms, making it easier to accumulate where tumours exist. Consequently, CNMs provide more effective drug delivery to kidney cancer cells. It also helps in improving the efficacy of treatment. This review explores the potential of several CNMs in improving therapeutic strategies for kidney cancer. We briefly covered the physicochemical properties and therapeutic applications of CNMs. Additionally, we discussed how structural modifications in CNMs enhance their precision in treating renal cancer. A thorough overview of CNM-based gene, peptide, and drug delivery strategies for the treatment of renal cancer is presented in this review. It covers information on other CNM-based therapeutic approaches, such as hyperthermia, photodynamic therapy, and photoacoustic therapy. Also, the interactions of CNMs with the tumour microenvironment (TME) are explored, including modulation of the immune response, regulation of tumour hypoxia, interactions between CNMs and TME cells, effects of TME pH on CNMs, and more. Finally, potential side effects of CNMs, such as toxicity, bio corona formation, enzymatic degradation, and biocompatibility, are also discussed.
Collapse
Affiliation(s)
- Jyotsna Priyam
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Urmila Saxena
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
15
|
Li X, Yu D, Li H, Sun R, Zhang Z, Zhao T, Guo G, Zeng J, Wen CY. High-density Au nanoshells assembled onto Fe 3O 4 nanoclusters for integrated enrichment and photothermal/colorimetric dual-mode detection of SARS-CoV-2 nucleocapsid protein. Biosens Bioelectron 2023; 241:115688. [PMID: 37714062 DOI: 10.1016/j.bios.2023.115688] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Traditional lateral flow immunoassays (LFIA) suffer from insufficient sensitivity, difficulty for quantitation, and susceptibility to complex substrates, limiting their practical application. Herein, we developed a polyethylenimine (PEI)-mediated approach for assembling high-density Au nanoshells onto Fe3O4 nanoclusters (MagAushell) as LFIA labels for integrated enrichment and photothermal/colorimetric dual-mode detection of SARS-CoV-2 nucleocapsid protein (N protein). PEI layer served not only as "binders" to Fe3O4 nanoclusters and Au nanoshells, but also "barriers" to ambient environment. Thus, MagAushell not only combined magnetic and photothermal properties, but also showed good stability. With MagAushell, N protein was first separated and enriched from complex samples, and then loaded to the strip for detection. By observation of the color stripes, qualitative detection was performed with naked eye, and by measuring the temperature change under laser irradiation, quantification was attained free of sophisticated instruments. The introduction of Fe3O4 nanoclusters facilitated target purification and enrichment before LFIA, which greatly improved the anti-interference ability and increased the detection sensitivity by 2 orders compared with those without enrichment. Moreover, the high loading density of Au nanoshells on one Fe3O4 nanocluster enhanced the photothermal signal of the nanoprobe significantly, which could further increase the detection sensitivity. The photothermal detection limit reached 43.64 pg/mL which was 1000 times lower than colloidal gold strips. Moreover, this method was successfully applied to real samples, showing great application potential in practice. We envision that this LFIA could serve not only for SARS-CoV-2 detection but also as a general test platform for other biotargets in clinical samples.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Dong Yu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Huiwen Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Ruichang Sun
- Huangdao Customs of the People's Republic of China, 266580, PR China
| | - Zhuoran Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Tianyu Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Gengchen Guo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China.
| | - Cong-Ying Wen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
16
|
Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther 2023; 8:435. [PMID: 37996406 PMCID: PMC10667354 DOI: 10.1038/s41392-023-01654-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 11/25/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, 100035, Beijing, China.
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
17
|
Lan J, Peng Y, Liang L, Duan X, Kong Z, Zhang L, Shen JW. Theoretical study of protein adsorption on graphene/h-BN heterostructures. Phys Chem Chem Phys 2023; 25:31206-31221. [PMID: 37955184 DOI: 10.1039/d3cp03303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The biological characteristics of planar heterojunction nanomaterials and their interactions with biomolecules are crucial for the potential application of these materials in the biomedical field. This study employed molecular dynamics (MD) simulations to investigate the interactions between proteins with distinct secondary structures (a single α-helix representing the minimal oligomeric domain protein, a single β-sheet representing the WW structural domain of the Yap65 protein, and a mixed α/β structure representing the BBA protein) and a planar two-dimensional heterojunction (a GRA/h-BN heterojunction consisting of a graphene nanoplate (GRA) and a hexagonal boron nitride nanoplate (h-BN)). The results indicate that all three kinds of protein can be quickly and stably adsorbed on the GRA/h-BN heterojunction due to the strong van der Waals interaction, regardless of their respective types, structures and initial orientations. Moreover, the proteins exhibit a pronounced binding preference for the hBN region of the GRA/h-BN heterojunction. Upon adsorption, the α-helix structure of the minimal oligomeric domain protein experiences partial or complete denaturation. Conversely, while the secondary structure of the single β-sheet and mixed α/β structure (BBA protein) undergoes slight changes (focus on the coil and turn regions), the main α-helix and β-sheet structures remain intact. The initial orientation significantly impacts the degree of protein adsorption and its position on the GRA/h-BN heterojunction. However, regardless of the initial orientation, proteins can ultimately be adsorbed onto the GRA/h-BN heterojunction. Furthermore, the initial orientation has a minor influence on the structural changes of proteins. Significantly, the combination of different secondary structures helps mitigate the denaturation of a single α-helix structure to some extent. Overall, the adsorption of proteins on GRA/h-BN is primarily driven by van der Waals and hydrophobic interactions. Proteins with β-sheet or mixed structures exhibit stronger biocompatibility on the GRA/h-BN heterojunction. Our research elucidated the biological characteristics of GRA/h-BN heterojunction nanomaterials and their interactions with proteins possessing diverse secondary structures. It offers a theoretical foundation for considering heterojunction nanomaterials as promising candidates for biomedical applications.
Collapse
Affiliation(s)
- Jun Lan
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Yiran Peng
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Xing Duan
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Zhe Kong
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
18
|
Barria-Urenda M, Ruiz-Fernandez A, Gonzalez C, Oostenbrink C, Garate JA. Size Matters: Free-Energy Calculations of Amino Acid Adsorption over Pristine Graphene. J Chem Inf Model 2023; 63:6642-6654. [PMID: 37909535 DOI: 10.1021/acs.jcim.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
There is still growing interest in graphene interactions with proteins, both for its possible biological applications and due to concerns over detrimental effects at the cellular level. As with any process involving proteins, an understanding of amino acid composition is desirable. In this work, we systematically studied the adsorption process of amino acids onto pristine graphene via rigorous free-energy calculations. We characterized the free energy, potential energy, and entropy of the adsorption of all proteinogenic amino acids. The energetic components were further separated into pair interaction contributions. A linear correlation was found between the free energy and the solvent accessible surface area change during adsorption (ΔSASAads) over pristine graphene and uncharged amino acids. Free energies over pristine graphene were compared with adsorption onto graphene oxide, finding an almost complete loss of the favorability of amino acid adsorption onto graphene. Finally, the correlation with ΔSASAads was used to successfully predict the free energy of adsorption of several penta-l-peptides in different structural states and sequences. Due to the relative ease of calculating the ΔSASAads compared to free-energy calculations, it could prove to be a cost-effective predictor of the free energy of adsorption for proteins onto nonpolar surfaces.
Collapse
Affiliation(s)
- Mateo Barria-Urenda
- Centro Interdisciplinario de Neurociencia de Valparaíso, Pasaje Harrington 287, Playa Ancha, 2381850 Valparaíso, Chile
- Doctorado en Ciencias, Mención Biofísica y Biología Computacional, Facultad de Ciencias, Universidad de Valparaíso, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics (NNBP), Universidad San Sebastian, Bellavista, 7510602 Santiago, Chile
| | - Alvaro Ruiz-Fernandez
- Centro Científico y Tecnológico de Excelencia, Fundacion Ciencia & Vida, Santiago, Santiago 7780272, Chile
| | - Carlos Gonzalez
- Millennium Nucleus in NanoBioPhysics (NNBP), Universidad San Sebastian, Bellavista, 7510602 Santiago, Chile
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Jose Antonio Garate
- Centro Interdisciplinario de Neurociencia de Valparaíso, Pasaje Harrington 287, Playa Ancha, 2381850 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics (NNBP), Universidad San Sebastian, Bellavista, 7510602 Santiago, Chile
- Centro Científico y Tecnológico de Excelencia, Fundacion Ciencia & Vida, Santiago, Santiago 7780272, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista, 7510602 Santiago, Chile
| |
Collapse
|
19
|
Guo J, Cao G, Wei S, Han Y, Xu P. Progress in the application of graphene and its derivatives to osteogenesis. Heliyon 2023; 9:e21872. [PMID: 38034743 PMCID: PMC10682167 DOI: 10.1016/j.heliyon.2023.e21872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/13/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
As bone and joint injuries from various causes become increasingly prominent, how to effectively reconstruct and repair bone defects presents a difficult problem for clinicians and researchers. In recent years, graphene and its derivatives have been the subject of growing body of research and have been found to promote the proliferation and osteogenic differentiation of stem cells. This provides a new idea for solving the clinical problem of bone defects. However, as as numerous articles address various aspects and have not been fully systematized, there is an urgent need to classify and summarize them. In this paper, for the first time, the effects of graphene and its derivatives on stem cells in solution, in 2D and 3D structures and in vivo and their possible mechanisms are reviewed, and the cytotoxic effects of graphene and its derivatives were summarized and analyzed. The toxicity of graphene and its derivatives is further reviewed. In addition, we suggest possible future development directions of graphene and its derivatives in bone tissue engineering applications to provide a reference for further clinical application.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guihua Cao
- Department of Geriatrics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Song Wei
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yisheng Han
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Peng Xu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Forte G, La Mendola D, Satriano C. The Hybrid Nano-Biointerface between Proteins/Peptides and Two-Dimensional Nanomaterials. Molecules 2023; 28:7064. [PMID: 37894543 PMCID: PMC10609159 DOI: 10.3390/molecules28207064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In typical protein-nanoparticle surface interactions, the biomolecule surface binding and consequent conformational changes are intermingled with each other and are pivotal to the multiple functional properties of the resulting hybrid bioengineered nanomaterial. In this review, we focus on the peculiar properties of the layer formed when biomolecules, especially proteins and peptides, face two-dimensional (2D) nanomaterials, to provide an overview of the state-of-the-art knowledge and the current challenges concerning the biomolecule coronas and, in general, the 2D nano-biointerface established when peptides and proteins interact with the nanosheet surface. Specifically, this review includes both experimental and simulation studies, including some recent machine learning results of a wide range of nanomaterial and peptide/protein systems.
Collapse
Affiliation(s)
- Giuseppe Forte
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy;
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Cristina Satriano
- NanoHybrid Biointerfaces Laboratory (NHBIL), Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| |
Collapse
|
21
|
Dar MS, Tabish TA, Thorat ND, Swati G, Sahu NK. Photothermal therapy using graphene quantum dots. APL Bioeng 2023; 7:031502. [PMID: 37614868 PMCID: PMC10444203 DOI: 10.1063/5.0160324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
The rapid development of powerful anti-oncology medicines have been possible because of advances in nanomedicine. Photothermal therapy (PTT) is a type of treatment wherein nanomaterials absorb the laser energy and convert it into localized heat, thereby causing apoptosis and tumor eradication. PTT is more precise, less hazardous, and easy-to-control in comparison to other interventions such as chemotherapy, photodynamic therapy, and radiation therapy. Over the past decade, various nanomaterials for PTT applications have been reviewed; however, a comprehensive study of graphene quantum dots (GQDs) has been scantly reported. GQDs have received huge attention in healthcare technologies owing to their various excellent properties, such as high water solubility, chemical stability, good biocompatibility, and low toxicity. Motivated by the fascinating scientific discoveries and promising contributions of GQDs to the field of biomedicine, we present a comprehensive overview of recent progress in GQDs for PTT. This review summarizes the properties and synthesis strategies of GQDs including top-down and bottom-up approaches followed by their applications in PTT (alone and in combination with other treatment modalities such as chemotherapy, photodynamic therapy, immunotherapy, and radiotherapy). Furthermore, we also focus on the systematic study of in vitro and in vivo toxicities of GQDs triggered by PTT. Moreover, an overview of PTT along with the synergetic application used with GQDs for tumor eradication are discussed in detail. Finally, directions, possibilities, and limitations are described to encourage more research, which will lead to new treatments and better health care and bring people closer to the peak of human well-being.
Collapse
Affiliation(s)
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Nanasaheb D. Thorat
- Nuffield Department of Women's and Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - G. Swati
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
22
|
Gatou MA, Vagena IA, Pippa N, Gazouli M, Pavlatou EA, Lagopati N. The Use of Crystalline Carbon-Based Nanomaterials (CBNs) in Various Biomedical Applications. CRYSTALS 2023; 13:1236. [DOI: 10.3390/cryst13081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
This review study aims to present, in a condensed manner, the significance of the use of crystalline carbon-based nanomaterials in biomedical applications. Crystalline carbon-based nanomaterials, encompassing graphene, graphene oxide, reduced graphene oxide, carbon nanotubes, and graphene quantum dots, have emerged as promising materials for the development of medical devices in various biomedical applications. These materials possess inorganic semiconducting attributes combined with organic π-π stacking features, allowing them to efficiently interact with biomolecules and present enhanced light responses. By harnessing these unique properties, carbon-based nanomaterials offer promising opportunities for future advancements in biomedicine. Recent studies have focused on the development of these nanomaterials for targeted drug delivery, cancer treatment, and biosensors. The conjugation and modification of carbon-based nanomaterials have led to significant advancements in a plethora of therapies and have addressed limitations in preclinical biomedical applications. Furthermore, the wide-ranging therapeutic advantages of carbon nanotubes have been thoroughly examined in the context of biomedical applications.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
23
|
Roy S, Aastha, Deo KA, Dey K, Gaharwar AK, Jaiswal A. Nanobio Interface Between Proteins and 2D Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35753-35787. [PMID: 37487195 PMCID: PMC10866197 DOI: 10.1021/acsami.3c04582] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023]
Abstract
Two-dimensional (2D) nanomaterials have significantly contributed to recent advances in material sciences and nanotechnology, owing to their layered structure. Despite their potential as multifunctional theranostic agents, the biomedical translation of these materials is limited due to a lack of knowledge and control over their interaction with complex biological systems. In a biological microenvironment, the high surface energy of nanomaterials leads to diverse interactions with biological moieties such as proteins, which play a crucial role in unique physiological processes. These interactions can alter the size, surface charge, shape, and interfacial composition of the nanomaterial, ultimately affecting its biological activity and identity. This review critically discusses the possible interactions between proteins and 2D nanomaterials, along with a wide spectrum of analytical techniques that can be used to study and characterize such interplay. A better understanding of these interactions would help circumvent potential risks and provide guidance toward the safer design of 2D nanomaterials as a platform technology for various biomedical applications.
Collapse
Affiliation(s)
- Shounak Roy
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Aastha
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Kaivalya A. Deo
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kashmira Dey
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Akhilesh K. Gaharwar
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843, United States
| | - Amit Jaiswal
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
24
|
Han G, Noh D, Lee H, Lee S, Kim S, Yoon HY, Lee SH. Advances in mRNA therapeutics for cancer immunotherapy: From modification to delivery. Adv Drug Deliv Rev 2023; 199:114973. [PMID: 37369262 PMCID: PMC10290897 DOI: 10.1016/j.addr.2023.114973] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
RNA vaccines have demonstrated their ability to solve the issues posed by the COVID-19 pandemic. This success has led to the renaissance of research into mRNA and their nanoformulations as potential therapeutic modalities for various diseases. The potential of mRNA as a template for synthesizing proteins and protein fragments for cancer immunotherapy is now being explored. Despite the promise, the use of mRNA in cancer immunotherapy is limited by challenges, such as low stability against extracellular RNases, poor delivery efficiency to the target organs and cells, short circulatory half-life, variable expression levels and duration. This review highlights recent advances in chemical modification and advanced delivery systems that are helping to address these challenges and unlock the biological and pharmacological potential of mRNA therapeutics in cancer immunotherapy. The review concludes by discussing future perspectives for mRNA-based cancer immunotherapy, which holds great promise as a next-generation therapeutic modality.
Collapse
Affiliation(s)
- Geonhee Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Dahye Noh
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792; Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hokyung Lee
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sangmin Lee
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sehoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792.
| | - Soo Hyeon Lee
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
25
|
Bhatt S, Pathak R, Punetha VD, Punetha M. Recent advances and mechanism of antimicrobial efficacy of graphene-based materials: a review. JOURNAL OF MATERIALS SCIENCE 2023; 58:7839-7867. [PMID: 37200572 PMCID: PMC10166465 DOI: 10.1007/s10853-023-08534-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Graphene-based materials have undergone substantial investigation in recent years owing to their wide array of physicochemical characteristics. Employment of these materials in the current state, where infectious illnesses caused by microbes have severely damaged human life, has found widespread application in combating fatal infectious diseases. These materials interact with the physicochemical characteristics of the microbial cell and alter or damage them. The current review is dedicated to molecular mechanisms underlying the antimicrobial property of graphene-based materials. Various physical and chemical mechanisms leading to cell membrane stress, mechanical wrapping, photo-thermal ablation as well as oxidative stress exerting antimicrobial effect have also been thoroughly discussed. Furthermore, an overview of the interactions of these materials with membrane lipids, proteins, and nucleic acids has been provided. A thorough understanding of discussed mechanisms and interactions is essential to develop extremely effective antimicrobial nanomaterial for application as an antimicrobial agent. Graphical abstract
Collapse
Affiliation(s)
- Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| |
Collapse
|
26
|
Huang HL, Huang CC, Su CK. Post-administration labeling with Palladium(II) ions enables ICP-MS-based determination of the biodistribution of carbonized nanogels. Anal Chim Acta 2023; 1256:341155. [PMID: 37037630 DOI: 10.1016/j.aca.2023.341155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Carbonized nanogels (CNGs) are carbon-based nanomaterials possessing excellent antibacterial and antiviral activities for treating infectious diseases. Thus, investigations of the biodistribution of CNGs are crucial in ensuring their biosafety for in vivo applications. In this study, we combined a labeling scheme, employing tetrachloropalladate (PdCl42-) ions to selectively label the administered CNGs in solubilized tissue samples, and an automatic sample pretreatment scheme, using a knotted reactor to effectively separate the PdCl42--labeled CNGs from the free PdCl42- ions and the tissue matrices, to enable reliable and interference-free quantification of CNGs through measuring the signal intensities of Pd using inductively coupled plasma mass spectrometry (ICP-MS). After optimizing the labeling conditions and the separation scheme, we observed that the PdCl42- ions bound strongly to the CNGs (dissociation constant: 23.0 nM), with the method's detection limits reaching 1.6 fg L-1 and 0.9 μg L-1 within working ranges from 10-4 to 1 μg L-1 and from 1 to 1000 μg L-1, respectively. We verified the reliability and applicability of this analytical method through spike analyses of solubilized rat liver, spleen, kidney, lung, brain, and blood samples (recoveries ranging from 96 to 102%) and through analyses of these rat organ and tissue samples after giving rats an intravenous dose of CNGs (2.5 mg kg-1 body weight). The biodistribution data indicated that these administered CNGs deposited mainly in the liver, lung, and spleen at 10 min and 1 h post-administration. Our study revealed that this post-administration labeling scheme coupled with ICP-MS allows accurate determination of the biodistribution of carbonized nanomaterials.
Collapse
|
27
|
Martín C, Bachiller A, Fernández-Blázquez JP, Nishina Y, Jorcano JL. Plasma-Derived Fibrin Hydrogels Containing Graphene Oxide for Infections Treatment. ACS MATERIALS LETTERS 2023; 5:1245-1255. [PMID: 38323142 PMCID: PMC10842975 DOI: 10.1021/acsmaterialslett.2c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/20/2023] [Indexed: 02/08/2024]
Abstract
Wound infection is inevitable in most patients suffering from extensive burns or chronic ulcers, and there is an urgent demand for the production of bactericidal dressings to be used as grafts to restore skin functionalities. In this context, the present study explores the fabrication of plasma-derived fibrin hydrogels containing bactericidal hybrids based on graphene oxide (GO). The hydrogels were fully characterized regarding gelation kinetics, mechanical properties, and internal hydrogel structures by disruptive cryo scanning electron microscopies (cryo-SEMs). The gelation kinetic experiments revealed an acceleration of the gel formation when GO was added to the hydrogels in a concentration of up to 0.2 mg/mL. The cryo-SEM studies showed up a decrease of the pore size when GO was added to the network, which agreed with a faster area contraction and a higher compression modulus of the hydrogels that contained GO, pointing out the critical structural role of the nanomaterial. Afterward, to study the bactericidal ability of the gels, GO was used as a carrier, loading streptomycin (STREP) on its surface. The loading content of the drug to form the hybrid (GO/STREP) resulted in 50.2% ± 4.7%, and the presence of the antibiotic was also demonstrated by Raman spectroscopy, Z-potential studies, and thermogravimetric analyses. The fibrin-derived hydrogels containing GO/STREP showed a dose-response behavior according to the bactericidal hybrid concentration and allowed a sustained release of the antibiotic at a programmed rate, leading to drug delivery over a prolonged period of time.
Collapse
Affiliation(s)
- Cristina Martín
- Department
of Bioengineering, Universidad Carlos III
de Madrid, Leganés 28911, Spain
| | - Ariadna Bachiller
- Department
of Bioengineering, Universidad Carlos III
de Madrid, Leganés 28911, Spain
| | | | - Yuta Nishina
- Graduate
School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Research
Core for Interdisciplinary Sciences, Okayama
University, Okayama 700-8530, Japan
| | - José L. Jorcano
- Department
of Bioengineering, Universidad Carlos III
de Madrid, Leganés 28911, Spain
| |
Collapse
|
28
|
Huang J, Su J, Hou Z, Li J, Li Z, Zhu Z, Liu S, Yang Z, Yin X, Yu G. Cytocompatibility of Ti 3C 2T x MXene with Red Blood Cells and Human Umbilical Vein Endothelial Cells and the Underlying Mechanisms. Chem Res Toxicol 2023; 36:347-359. [PMID: 36791021 PMCID: PMC10032211 DOI: 10.1021/acs.chemrestox.2c00154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 02/16/2023]
Abstract
Two-dimensional (2D) nanomaterials have been widely used in biomedical applications because of their biocompatibility. Considering the high risk of exposure of the circulatory system to Ti3C2Tx, we studied the cytocompatibility of Ti3C2Tx MXene with red blood cells (RBCs) and human umbilical vein endothelial cells (HUVECs) and showed that Ti3C2Tx had excellent compatibility with the two cell lines. Ti3C2Tx at a concentration as high as 200 μg/mL caused a negligible percent hemolysis of 0.8%. By contrast, at the same treatment concentration, graphene oxide (GO) caused a high percent hemolysis of 50.8%. Scanning electron microscopy revealed that RBC structures remained intact in the Ti3C2Tx treatment group, whereas those in the GO group completely deformed, sunk, and shrunk, which resulted in the release of cell contents. This difference can be largely ascribed to the distinct surficial properties of the two nanosheets. In specific, the fully covered surface-terminating -O and -OH groups leading to Ti3C2Tx had a very hydrophilic surface, thereby hindering its penetration into the highly hydrophobic interior of the cell membrane. However, the strong direct van der Waals attractions coordinated with hydrophobic interactions between the unoxidized regions of GO and the lipid hydrophobic tails can still damage the integrity of the cell membranes. In addition, the sharp and keen-edged corners of GO may also facilitate its relatively strong cell membrane damage effects than Ti3C2Tx. Thus, the excellent cell membrane compatibility of Ti3C2Tx nanosheets and their ultraweak capacity to provoke excessive ROS generation endowed them with much better compatibility with HUVECs than GO nanosheets. These results indicate that Ti3C2Tx has much better cytocompatibility than GO and provide a valuable reference for the future biomedical applications of Ti3C2Tx.
Collapse
Affiliation(s)
- Jian Huang
- Department
of Data and Information, The Children’s
Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
- Sino-Finland
Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China
- National
Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Juan Su
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhenyu Hou
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department
of Data and Information, The Children’s
Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
- Sino-Finland
Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China
- National
Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zheming Li
- Department
of Data and Information, The Children’s
Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
- Sino-Finland
Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China
- National
Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zhu Zhu
- Department
of Data and Information, The Children’s
Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
- Sino-Finland
Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China
- National
Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Shengtang Liu
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zaixing Yang
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiuhua Yin
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Gang Yu
- Department
of Data and Information, The Children’s
Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
- Sino-Finland
Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China
- National
Clinical Research Center for Child Health, Hangzhou 310052, China
- Polytechnic
Institute, Zhejiang University, Hangzhou 310052, China
| |
Collapse
|
29
|
Engineered Graphene Quantum Dots as a Magnetic Resonance Signal Amplifier for Biomedical Imaging. Molecules 2023; 28:molecules28052363. [PMID: 36903608 PMCID: PMC10005761 DOI: 10.3390/molecules28052363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
The application of magnetic resonance imaging (MRI) nano-contrast agents (nano-CAs) has increasingly attracted scholarly interest owing to their size, surface chemistry, and stability. Herein, a novel T1 nano-CA (Gd(DTPA)-GQDs) was successfully prepared through the functionalization of graphene quantum dots with poly(ethylene glycol) bis(amine) and their subsequent incorporation into Gd-DTPA. Remarkably, the resultant as-prepared nano-CA displayed an exceptionally high longitudinal proton relaxivity (r1) of 10.90 mM-1 s-1 (R2 = 0.998), which was significantly higher than that of commercial Gd-DTPA (4.18 mM-1 s-1, R2 = 0.996). The cytotoxicity studies indicated that the Gd(DTPA)-GQDs were not cytotoxic by themselves. The results of the hemolysis assay and the in vivo safety evaluation demonstrate the outstanding biocompatibility of Gd(DTPA)-GQDs. The in vivo MRI study provides evidence that Gd(DTPA)-GQDs exhibit exceptional performance as T1-CAs. This research constitutes a viable approach for the development of multiple potential nano-CAs with high-performance MR imaging capabilities.
Collapse
|
30
|
Xiao Y, Pang YX, Yan Y, Qian P, Zhao H, Manickam S, Wu T, Pang CH. Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205292. [PMID: 36658693 PMCID: PMC10037997 DOI: 10.1002/advs.202205292] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Since its discovery in 2004, graphene is increasingly applied in various fields owing to its unique properties. Graphene application in the biomedical domain is promising and intriguing as an emerging 2D material with a high surface area, good mechanical properties, and unrivalled electronic and physical properties. This review summarizes six typical synthesis methods to fabricate pristine graphene (p-G), graphene oxide (GO), and reduced graphene oxide (rGO), followed by characterization techniques to examine the obtained graphene materials. As bare graphene is generally undesirable in vivo and in vitro, functionalization methods to reduce toxicity, increase biocompatibility, and provide more functionalities are demonstrated. Subsequently, in vivo and in vitro behaviors of various bare and functionalized graphene materials are discussed to evaluate the functionalization effects. Reasonable control of dose (<20 mg kg-1 ), sizes (50-1000 nm), and functionalization methods for in vivo application are advantageous. Then, the key biomedical applications based on graphene materials are discussed, coupled with the current challenges and outlooks of this growing field. In a broader sense, this review provides a comprehensive discussion on the synthesis, characterization, functionalization, evaluation, and application of p-G, GO, and rGO in the biomedical field, highlighting their recent advances and potential.
Collapse
Affiliation(s)
- Yuqin Xiao
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Yoong Xin Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
| | - Yuxin Yan
- College of Energy EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Ping Qian
- Beijing Advanced Innovation Center for Materials Genome EngineeringBeijing100083P. R. China
- School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Haitao Zhao
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Sivakumar Manickam
- Petroleum and Chemical EngineeringFaculty of EngineeringUniversiti Teknologi BruneiBandar Seri BegawanBE1410Brunei Darussalam
| | - Tao Wu
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Key Laboratory for Carbonaceous Wastes Processing and ProcessIntensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Cheng Heng Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Municipal Key Laboratory of Clean Energy Conversion TechnologiesUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| |
Collapse
|
31
|
Kim DH, Kim MJ, Kwak SY, Jeong J, Choi D, Choi SW, Ryu J, Kang KS. Bioengineered liver crosslinked with nano-graphene oxide enables efficient liver regeneration via MMP suppression and immunomodulation. Nat Commun 2023; 14:801. [PMID: 36781854 PMCID: PMC9925774 DOI: 10.1038/s41467-023-35941-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
Decellularized extracellular matrix scaffold, widely utilized for organ engineering, often undergoes matrix decomposition after transplantation and produces byproducts that cause inflammation, leading to clinical failure. Here we propose a strategy using nano-graphene oxide to modify the biophysical properties of decellularized liver scaffolds. Notably, we demonstrate that scaffolds crosslinked with nano-graphene oxide show high resistance to enzymatic degradation via direct inhibition of matrix metalloproteinase activity and increased mechanical rigidity. We find that M2-like macrophage polarization is promoted within the crosslinked scaffolds, which reduces graft-elicited inflammation. Moreover, we show that low activities of matrix metalloproteinases, attributed to both nano-graphene oxide and tissue inhibitors of metalloproteinases expressed by M2c, can protect the crosslinked scaffolds against in vivo degradation. Lastly, we demonstrate that bioengineered livers fabricated with the crosslinked scaffolds remain functional, thereby effectively regenerating damaged livers after transplantation into liver failure mouse models. Overall, nano-graphene oxide crosslinking prolongs allograft survival and ultimately improves therapeutic effects of bioengineered livers, which offer an alternative for donor organs.
Collapse
Affiliation(s)
- Da-Hyun Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Ji Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seon-Yeong Kwak
- Department of Agriculture, Forestry and Life Science, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea.,Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Institute of Bio & Nano Convergence, Biogo Co., LTD, Seoul, 08826, Republic of Korea
| | - Jaechul Ryu
- Adult Stem Cell Research Center and Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Institute of Bio & Nano Convergence, Biogo Co., LTD, Seoul, 08826, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea. .,Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
32
|
Shi Y, Pu K, Yao H, Chen Y, Zheng X, Zhao L, Ma X, Ge C. Gold Nanorods Inhibit Tumor Metastasis by Regulating MMP-9 Activity: Implications for Radiotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9034-9043. [PMID: 36762612 DOI: 10.1021/acsami.2c20944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Dysregulation of matrix metalloproteinase (MMP) is strongly implicated in tumor invasion and metastasis. Nanomaterials can interact with proteins and have impacts on protein activity, which provides a potential strategy for inhibiting tumor invasion and metastasis. However, the regulation of MMP activity by nanomaterials has not been fully determined. Herein, we have found that gold nanorods (Au NRs) are able to induce the change of the secondary structure of MMP-9 and thereby inhibit their activity. Interestingly, the inhibition of MMP-9 activity is highly dependent on the aspect ratio of Au NRs, and an aspect ratio of 3.3 shows the maximum inhibition efficiency. Molecular dynamics simulations combined with mathematical statistics algorithm reveal the binding behaviors and interaction modes of MMP-9 with Au NRs in atomic details and disclose the mechanism of aspect ratio-dependent inhibition effect of Au NRs on MMP-9 activity. Au NRs with an aspect ratio of 3.3 successfully suppress the X-ray-activated invasion and metastasis of tumor by inhibiting MMP-9 activity. Our findings provide important guidance for the modulation of MMP-9 activity by tuning key parameters of nanomaterials and demonstrate that gold nanorods could be developed as potential MMP inhibitors.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Kefeng Pu
- Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Haodong Yao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingting Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xuewen Zheng
- Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lina Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaochuan Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Cuicui Ge
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
33
|
Wang Y, Di S, Yu J, Wang L, Li Z. Recent advances of graphene-biomacromolecule nanocomposites in medical applications. J Mater Chem B 2023; 11:500-518. [PMID: 36541392 DOI: 10.1039/d2tb01962k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, graphene-based composites have received increasing attention due to their high biocompatibility, large specific surface area, high electrical conductivity and unique mechanical properties. The combination of biomacromolecules and graphene provides a promising route for the preparation of novel graphene-based nanocomposites. Novel graphene-based nanocomposites with unique functions could be applied to medicine, biology, biosensors, environmental science, energy storage and other fields. Graphene-biomacromolecule nanocomposites have excellent biocompatibility, outstanding biofunctionality and low cytotoxicity, and have more advantages and development prospects than other traditional graphene-based materials in biological and biomedical fields. In this work, we summarize the research on the covalent and non-covalent interactions between different biomacromolecules (peptides, DNA/RNA, proteins and enzymes) and graphene, as well as the synthesis methods of novel functionalized graphene-biomacromolecule composites in recent years. We mainly introduce the recent advances (last 5 years) of graphene-biomacromolecule nanocomposites in medical applications, such as medical detection and disease treatment. We hope that this review will help readers to understand the methods and mechanisms of biomolecules modifying the surface of graphene, as well as the synthesis and application of graphene-based nanocomposites, which will promote the future developments of graphene-biomolecule composites in biomedicine, tissue engineering, materials engineering, and so on.
Collapse
Affiliation(s)
- Yiting Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Shuhan Di
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Jinhui Yu
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Li Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Zhuang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
34
|
Kaur H, Garg R, Singh S, Jana A, Bathula C, Kim HS, Kumbar SG, Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. J Mol Liq 2022; 368:120703. [PMID: 38130892 PMCID: PMC10735213 DOI: 10.1016/j.molliq.2022.120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanomaterials by virtue of their small size and enhanced surface area, present unique physicochemical properties that enjoy widespread applications in bioengineering, biomedicine, biotechnology, disease diagnosis, and therapy. In recent years, graphene and its derivatives have attracted a great deal of attention in various applications, including photovoltaics, electronics, energy storage, catalysis, sensing, and biotechnology owing to their exceptional structural, optical, thermal, mechanical, and electrical. Graphene is a two-dimensional sheet of sp2 hybridized carbon atoms of atomic thickness, which are arranged in a honeycomb crystal lattice structure. Graphene derivatives are graphene oxide (GO) and reduced graphene oxide (rGO), which are highly oxidized and less oxidized forms of graphene, respectively. Another form of graphene is graphene quantum dots (GQDs), having a size of less than 20 nm. Contemporary graphene research focuses on using graphene nanomaterials for biomedical purposes as they have a large surface area for loading biomolecules and medicine and offer the potential for the conjugation of fluorescent dyes or quantum dots for bioimaging. The present review begins with the synthesis, purification, structure, and properties of graphene nanomaterials. Then, we focussed on the biomedical application of graphene nanomaterials with special emphasis on drug delivery, bioimaging, biosensing, tissue engineering, gene delivery, and chemotherapy. The implications of graphene nanomaterials on human health and the environment have also been summarized due to their exposure to their biomedical applications. This review is anticipated to offer useful existing understanding and inspire new concepts to advance secure and effective graphene nanomaterials-based biomedical devices.
Collapse
Affiliation(s)
- Harshdeep Kaur
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
| | - Rahul Garg
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Nangal Rd, Hussainpur, Rupnagar, Punjab 140001, India
| | - Sajan Singh
- AMBER/School of Chemistry, Trinity College of Dublin, Ireland
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Mona Mittal
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
- Department of Chemistry, Galgotia college of engineering, Knowledge Park, I, Greater Noida, Uttar Pradesh 201310, India
| |
Collapse
|
35
|
Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022; 10:9944-9967. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synthesis, design, characterization, and application of carbon-based nanostructures (CBNSs) as drug carriers have attracted a great deal of interest over the past half of the century because of their promising chemical, thermal, physical, optical, mechanical, and electrical properties and their structural diversity. CBNSs are well-known in drug delivery applications due to their unique features such as easy cellular uptake, high drug loading ability, and thermal ablation. CBNSs, including carbon nanotubes, fullerenes, nanodiamond, graphene, and carbon quantum dots have been quite broadly examined for drug delivery systems. This review not only summarizes the most recent studies on developing carbon-based nanostructures for drug delivery (e.g. delivery carrier, cancer therapy and bioimaging), but also tries to deal with the challenges and opportunities resulting from the expansion in use of these materials in the realm of drug delivery. This class of nanomaterials requires advanced techniques for synthesis and surface modifications, yet a lot of critical questions such as their toxicity, biodistribution, pharmacokinetics, and fate of CBNSs in biological systems must be answered.
Collapse
Affiliation(s)
- Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. .,School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Sachin S Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Su Sam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
36
|
Habibzadeh F, Sadraei SM, Mansoori R, Singh Chauhan NP, Sargazi G. Nanomaterials supported by polymers for tissue engineering applications: A review. Heliyon 2022; 8:e12193. [PMID: 36578390 PMCID: PMC9791886 DOI: 10.1016/j.heliyon.2022.e12193] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/21/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
In the biomedical sciences, particularly in wound healing, tissue engineering, and regenerative medicine, the development of natural-based biomaterials as a carrier has revealed a wide range of advantages. Tissue engineering is one of the therapeutic approaches used to replace damaged tissue. Polymers have received a lot of attention for their beneficial interactions with cells, but they have some drawbacks, such as poor mechanical properties. Due to their relatively large surface area, nanoparticles can cause significant changes in polymers and improve their mechanical properties. The nanoparticles incorporated into biomaterial scaffolds have been associated with positive effects on cell adhesion, viability, proliferation, and migration in the majority of studies. This review paper discusses recent applications of polymer-nanoparticle composites in the development of tissue engineering scaffolds, as well as the effects of these nanomaterials in the fields of cardiovascular, neural, bone, and skin tissue engineering.
Collapse
Affiliation(s)
- Faezeh Habibzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Sadraei
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Mansoori
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles' University, Udaipur, Rajasthan, India,Corresponding author.
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran,Corresponding author.
| |
Collapse
|
37
|
Wu L, Zhang P, Zhou H, Li J, Shen X, Li T, Kong Z, Hu W, Zhang Y. Molecular Dynamics Simulation of the Interaction between Graphene Oxide Quantum Dots and DNA Fragment. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8506. [PMID: 36500001 PMCID: PMC9737461 DOI: 10.3390/ma15238506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Due to their excellent physical properties, graphene oxide quantum dots (GOQDs) are widely used in various fields, especially biomedicine. However, due to the short study period, their biosafety and potential genotoxicity to human and animal cells are not well elucidated. In this study, the adsorption of GOQDs with different concentrations and oxidation degrees on DNA was investigated using a molecular dynamics simulation method. The toxicity to DNA depended on the interaction mechanism that GOQDs adsorbed on DNA fragments, especially in the minor groove of DNA. When the number of the adsorbed GOQDs in the minor groove of DNA is small, the GOQD inserts into the interior of the base pair. When there are more GOQDs in the minor groove of DNA, the base pairs at the adsorption sites of DNA unwind directly. This interaction way damaged the double helix structure of DNA seriously. We also compare the different functional groups of -1COOH. The results show that the interaction energy between 1COOH-GQD and DNA is stronger than that between 1OH-GQD and DNA. However, the damage to DNA is the opposite. These findings deepen our understanding of graphene nanotoxicity in general.
Collapse
Affiliation(s)
- Lingxiao Wu
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Pengzhen Zhang
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hanxing Zhou
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jing Li
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xin Shen
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianyu Li
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhe Kong
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Shandong 250353, China
| | - Yongjun Zhang
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
38
|
Yan ZS, Li XL, Ma YQ, Ding HM. Effect of the Graphene Nanosheet on Functions of the Spike Protein in Open and Closed States: Comparison between SARS-CoV-2 Wild Type and the Omicron Variant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13972-13982. [PMID: 36318181 PMCID: PMC9662070 DOI: 10.1021/acs.langmuir.2c02316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Indexed: 05/24/2023]
Abstract
The spread of coronavirus disease 2019 caused by SARS-CoV-2 and its variants has become a global health crisis. Although there were many attempts to use nanomaterials-based devices to fight against SARS-CoV-2, it still remains elusive as to how the nanomaterials interact with SARS-CoV-2 and affect its biofunctions. Here, taking the graphene nanosheet (GN) as the model nanomaterial, we investigate its interaction with the spike protein in both WT and Omicron by molecular simulations. In the closed state, the GN can insert into the region between the receptor binding domain (RBD) and the N-terminal domain (NTD) in both wild type (WT) and Omicron, which keeps the RBD in the down conformation. In the open state, the GN can hamper the binding of up RBD to ACE2 in WT, but it has little impact on up RBD and, even worse, stimulates the down-to-up transition of down RBDs in Omicron. Moreover, the GN can insert in the vicinity of the fusion peptide in both WT and Omicron and prevents the detachment of S1 from the whole spike protein. The present study reveals the effect of the SARS-CoV-2 variant on the nanomaterial-spike protein interaction, which informs prospective efforts to design functional nanomaterials against SARS-CoV-2.
Collapse
Affiliation(s)
- Zeng-Shuai Yan
- National
Laboratory of Solid State Microstructures and Department of Physics,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiao-Lei Li
- National
Laboratory of Solid State Microstructures and Department of Physics,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu-Qiang Ma
- National
Laboratory of Solid State Microstructures and Department of Physics,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hong-Ming Ding
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research,
School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
39
|
Wang F, Duan H, Xu W, Sheng G, Sun Z, Chu H. Light-activated nanomaterials for tumor immunotherapy. Front Chem 2022; 10:1031811. [PMID: 36277335 PMCID: PMC9585221 DOI: 10.3389/fchem.2022.1031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Tumor immunotherapy mainly relies on activating the immune system to achieve antitumor treatment. However, the present tumor immunotherapy used in the clinic showed low treatment efficacy with high systematic toxicity. To overcome the shortcomings of traditional drugs for immunotherapy, a series of antitumor immunotherapies based on nanomaterials have been developed to enhance the body’s antitumor immune response and reduce systematic toxicity. Due to the noninvasiveness, remote controllability, and high temporal and spatial resolution of light, photocontrolled nanomaterials irradiated by excitation light have been widely used in drug delivery and photocontrolled switching. This review aims to highlight recent advances in antitumor immunotherapy based on photocontrolled nanomaterials. We emphasized the advantages of nanocomposites for antitumor immunotherapy and highlighted the latest progress of antitumor immunotherapy based on photoactivated nanomaterials. Finally, the challenges and future prospects of light-activated nanomaterials in antitumor immunity are discussed.
Collapse
Affiliation(s)
- Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weizhe Xu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Gang Sheng
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Hongqian Chu,
| |
Collapse
|
40
|
Wang Y, Soto Rodriguez PED, Woythe L, Sánchez S, Samitier J, Zijlstra P, Albertazzi L. Multicolor Super-Resolution Microscopy of Protein Corona on Single Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37345-37355. [PMID: 35961006 PMCID: PMC9412947 DOI: 10.1021/acsami.2c06975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Nanoparticles represent a promising class of material for nanomedicine and molecular biosensing. The formation of a protein corona due to nonspecific particle-protein interactions is a determining factor for the biological fate of nanoparticles in vivo and strongly impacts the performance of nanoparticles when used as biosensors. Nonspecific interactions are usually highly heterogeneous, yet little is known about the heterogeneity of the protein corona that may lead to inter- and intraparticle differences in composition and protein distribution. Here, we present a super-resolution microscopic approach to study the protein corona on single silica nanoparticles and subsequent cellular interactions using multicolor stimulated emission depletion (STED) microscopy. We demonstrate that STED resolves structural features of protein corona on single particles including the distribution on the particle surface and the degree of protein internalization in porous particles. Using multicolor measurements of multiple labeled protein species, we determine the composition of the protein corona at the single-particle level. We quantify particle-to-particle differences in the composition and find that the composition is considerably influenced by the particle geometry. In a subsequent cellular uptake measurement, we demonstrate multicolor STED of protein corona on single particles internalized by cells. Our study shows that STED microscopy opens the window toward mechanistic understanding of protein coronas and aids in the rational design of nanoparticles as nanomedicines and biosensors.
Collapse
Affiliation(s)
- Yuyang Wang
- Department
of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Paul E. D. Soto Rodriguez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Laura Woythe
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeige Lluís Companys 23, 08010 Barcelona, Spain
| | - Josep Samitier
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department
of Electronics and Biomedical Engineering, University of Barcelona (UB), 08028 Barcelona, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Peter Zijlstra
- Department
of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| |
Collapse
|
41
|
Svadlakova T, Holmannova D, Kolackova M, Malkova A, Krejsek J, Fiala Z. Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes. Int J Mol Sci 2022; 23:ijms23168889. [PMID: 36012161 PMCID: PMC9408998 DOI: 10.3390/ijms23168889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In the field of science, technology and medicine, carbon-based nanomaterials and nanoparticles (CNMs) are becoming attractive nanomaterials that are increasingly used. However, it is important to acknowledge the risk of nanotoxicity that comes with the widespread use of CNMs. CNMs can enter the body via inhalation, ingestion, intravenously or by any other route, spread through the bloodstream and penetrate tissues where (in both compartments) they interact with components of the immune system. Like invading pathogens, CNMs can be recognized by large numbers of receptors that are present on the surface of innate immune cells, notably monocytes and macrophages. Depending on the physicochemical properties of CNMs, i.e., shape, size, or adsorbed contamination, phagocytes try to engulf and process CNMs, which might induce pro/anti-inflammatory response or lead to modulation and disruption of basic immune activity. This review focuses on existing data on the immunotoxic potential of CNMs, particularly in professional phagocytes, as they play a central role in processing and eliminating foreign particles. The results of immunotoxic studies are also described in the context of the entry routes, impacts of contamination and means of possible elimination. Mechanisms of proinflammatory effect depending on endocytosis and intracellular distribution of CNMs are highlighted as well.
Collapse
Affiliation(s)
- Tereza Svadlakova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Correspondence:
| | - Drahomira Holmannova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Andrea Malkova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
42
|
Zhang L, Sun Y, Zhang Z, Shen Y, Li Y, Ma T, Zhang Q, Ying Y, Fu Y. Portable and durable sensor based on porous MOFs hybrid sponge for fluorescent-visual detection of organophosphorus pesticide. Biosens Bioelectron 2022; 216:114659. [DOI: 10.1016/j.bios.2022.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022]
|
43
|
Coreas R, Castillo C, Li Z, Yan D, Gao Z, Chen J, Bitounis D, Parviz D, Strano MS, Demokritou P, Zhong W. Biological Impacts of Reduced Graphene Oxide Affected by Protein Corona Formation. Chem Res Toxicol 2022; 35:1244-1256. [PMID: 35706338 PMCID: PMC9842398 DOI: 10.1021/acs.chemrestox.2c00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Applications of reduced graphene oxide (rGO) in many different areas have been gradually increasing owing to its unique physicochemical characteristics, demanding more understanding of their biological impacts. Herein, we assessed the toxicological effects of rGO in mammary epithelial cells. Because the as-synthesized rGO was dissolved in sodium cholate to maintain a stable aqueous dispersion, we hypothesize that changing the cholate concentration in the dispersion may alter the surface property of rGO and subsequently affect its cellular toxicity. Thus, four types of rGO were prepared and compared: rGO dispersed in 4 and 2 mg/mL sodium cholate, labeled as rGO and concentrated-rGO (c-rGO), respectively, and rGO and c-rGO coated with a protein corona through 1 h incubation in culture media, correspondingly named pro-rGO and pro-c-rGO. Notably, c-rGO and pro-c-rGO exhibited higher toxicity than rGO and pro-rGO and also caused higher reactive oxygen species production, more lipid membrane peroxidation, and more significant disruption of mitochondrial-based ATP synthesis. In all toxicological assessments, pro-c-rGO induced more severe adverse impacts than c-rGO. Further examination of the material surface, protein adsorption, and cellular uptake showed that the surface of c-rGO was coated with a lower content of surfactant and adsorbed more proteins, which may result in the higher cellular uptake observed with pro-c-rGO than pro-rGO. Several proteins involved in cellular redox mediation were also more enriched in pro-c-rGO. These results support the strong correlation between dispersant coating and corona formation and their subsequent cellular impacts. Future studies in this direction could reveal a deeper understanding of the correlation and the specific cellular pathways involved and help gain knowledge on how the toxicity of rGO could be modulated through surface modification, guiding the sustainable applications of rGO.
Collapse
Affiliation(s)
- Roxana Coreas
- Environmental Toxicology Graduate Program, University of California – Riverside, California 92521, United States
| | - Carmen Castillo
- Department of Biochemistry, University of California – Riverside, California 92521, United States
| | - Zongbo Li
- Department of Chemistry, University of California – Riverside, California 92521, United States
| | - Dong Yan
- Nanofabrication Facility, University of California – Riverside, California 92521, United States
| | - Ziting Gao
- Department of Chemistry, University of California – Riverside, California 92521, United States
| | - Junyi Chen
- Environmental Toxicology Graduate Program, University of California – Riverside, California 92521, United States
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public Health Initiative for Sustainable Nanotechnology, Harvard University, Boston, Massachusetts 02115, United States
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public Health Initiative for Sustainable Nanotechnology, Harvard University, Boston, Massachusetts 02115, United States
| | - Wenwan Zhong
- Environmental Toxicology Graduate Program, University of California – Riverside, California 92521, United States,Department of Chemistry, University of California – Riverside, California 92521, United States
| |
Collapse
|
44
|
On the interface between biomaterials and two-dimensional materials for biomedical applications. Adv Drug Deliv Rev 2022; 186:114314. [PMID: 35568105 DOI: 10.1016/j.addr.2022.114314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Two-dimensional (2D) materials have garnered significant attention due to their ultrathin 2D structures with a high degree of anisotropy and functionality. Reliable manipulation of interfaces between 2D materials and biomaterials is a new frontier for biomedical nanoscience and combining biomaterials with 2D materials offers a promising way to fabricate innovative 2D biomaterials composites with distinct functionality for biomedical applications. Here, we focus exclusively on a summary of the current work in the interface investigation of 2D biomaterials. Specifically, we highlight extraordinary features that make 2D materials so desirable, as well as the molecular level interactions between 2D materials and biomaterials that have been studied thus far. Furthermore, the approaches for investigating the interface characteristics of 2D biomaterials are presented and described in depth. To capture the emerging trend in mass manufacturing of 2D materials, we review the research progress on biomaterial-assisted exfoliation. Finally, we present a critical assessment of newly developed 2D biomaterials in biomedical applications.
Collapse
|
45
|
Nanoparticle-mediated corneal neovascularization treatments: Toward new generation of drug delivery systems. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Côa F, Delite FDS, Strauss M, Martinez DST. Toxicity mitigation and biodistribution of albumin corona coated graphene oxide and carbon nanotubes in Caenorhabditis elegans. NANOIMPACT 2022; 27:100413. [PMID: 35940564 DOI: 10.1016/j.impact.2022.100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
In this work, the toxicity and biodistribution of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (MWCNT) were investigated in Caenorhabditis elegans. Bovine serum albumin (BSA) was selected as a model protein to evaluate the influence of protein corona formation on materials physicochemical properties, colloidal stability, and toxicity. Biological assays were performed to assess the effects of bare and albumin corona coated materials on survival, oxidative stress, intestinal barrier permeability, growth, reproduction, and fertility. Critical alterations in topography, surface roughness and chemistry of GO and MWCNT were observed due to albumin corona formation. These modifications were associated with changes in colloidal stability of materials and prevention of their aggregation and sedimentation in nematode testing medium. Both GO and MWCNT caused damage to nematode survival, growth, reproduction, and fertility, as well as enhanced oxidative stress and permeability of the intestinal barrier. But GO was more toxic than MWCNT to C. elegans, especially at long-term assays. Albumin corona mitigated 100% of acute and chronic effects of MWCNT. In contrast, the negative effects of GO were not completely mitigated; GO inhibited 16.2% of nematode growth, 86.5% of reproduction, and 32.0% of fertility at the highest concentration evaluated (10 mg L-1), while corona coated GO mitigated 50% and 100% of fertility and growth, respectively. Confocal Raman spectroscopy imaging was crucial to point out that bare and albumin corona coated GO and MWCNT crossed the C. elegans intestinal barrier reaching its reproductive organs. However, BSA corona protected the nematodes targeted organs from negative effects from MWCNT and blocked its translocation to other tissues, while coated GO was translocated inside the nematode affecting the functionality of crucial organs. In addition, coated MWCNT was excreted after 2 h of food resumption, whereas coated GO still accumulated in the nematode intestine. Our results demonstrate that the materials different translocation and excretion patterns in C. elegans had a relation to the impaired physiological functions of primary and secondary organs. This work is a contribution towards a better understanding of the impacts of protein corona on the toxicity of graphene oxide and carbon nanotubes; essential information for biological applications and nanosafety.
Collapse
Affiliation(s)
- Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Fabrício de Souza Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
47
|
Diaz-Diestra DM, Palacios-Hernandez T, Liu Y, Smith DE, Nguyen AK, Todorov T, Gray PJ, Zheng J, Skoog SA, Goering PL. Impact of surface chemistry of ultrasmall superparamagnetic iron oxide nanoparticles on protein corona formation and endothelial cell uptake, toxicity, and barrier function. Toxicol Sci 2022; 188:261-275. [PMID: 35708658 DOI: 10.1093/toxsci/kfac058] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ultrasmall superparamagnetic iron oxide nanoparticles (USPION) have been investigated for biomedical applications, including novel contrast agents, magnetic tracers for tumor imaging, targeted drug delivery vehicles, and magneto-mechanical actuators for hyperthermia and thrombolysis. Despite significant progress, recent clinical reports have raised concerns regarding USPION safety related to endothelial cell dysfunction; however, there is limited information on factors contributing to these clinical responses. The influence of USPION surface chemistry on nanoparticle interactions with proteins may impact endothelial cell function leading to adverse responses. Therefore, the goal of this study was to assess the effects of carboxyl-functionalized USPION (CU) or amine-functionalized USPION (AU) (∼30 nm diameter) on biological responses in human coronary artery endothelial cells. Increased protein adsorption was observed for AU compared to CU after exposure to serum proteins. Exposure to CU, but not AU, resulted in a concentration-dependent decrease in cell viability and perinuclear accumulation inside cytoplasmic vesicles. Internalization of CU was correlated with endothelial cell functional changes under non-cytotoxic conditions, as evidenced by a marked decreased expression of endothelial-specific adhesion proteins (e.g., VE-cadherin and PECAM-1) and increased endothelial permeability. Evaluation of downstream signaling indicated endothelial permeability is associated with actin cytoskeleton remodeling, possibly elicited by intracellular events involving reactive oxygen species, calcium ions, and the nanoparticle cellular uptake pathway. This study demonstrated that USPION surface chemistry significantly impacts protein adsorption and endothelial cell uptake, viability, and barrier function. This information will advance the current toxicological profile of USPION and improve development, safety assessment, and clinical outcomes of USPION-enabled medical products.
Collapse
Affiliation(s)
- Daysi M Diaz-Diestra
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Teresa Palacios-Hernandez
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Yizhong Liu
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Diane E Smith
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Alexander K Nguyen
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Todor Todorov
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland
| | - Patrick J Gray
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland
| | - Jiwen Zheng
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Shelby A Skoog
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Peter L Goering
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| |
Collapse
|
48
|
Sun B, Zhang Y, Liu X, Wang K, Yang Y, Zhu L. Impacts of photoaging on the interactions between graphene oxide and proteins: Mechanisms and biological effect. WATER RESEARCH 2022; 216:118371. [PMID: 35381431 DOI: 10.1016/j.watres.2022.118371] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) are subjected to photoaging in aquatic environment, and inevitably enter biota and then interact with proteins. Here, the interactions of pristine and photoaged GO with two typical proteins (bovine serum albumin (BSA) and lysozyme) were systematically investigated. Due to long term photoirradiation (1-3 day), the lateral size of GO decreased greatly, and the oxygen-containing groups decreased as well while the graphitic carbon contents increased. Compared to pristine GO, the photoaged GO displayed stronger binding affinities with both proteins, which was mainly attributed to the increased binding sites as a result of smaller lateral size and increased hydrophobicity. The photoaging effect was more obvious for the negatively charged BSA, because hydrogen bonding and van der Waals force were mainly involved in the enthalpy-driven interactions between them. While, the strong electrostatic attraction between the positively charged lysozyme and GO diminished the photoaging effect. Analyses of synchronous, three-dimensional fluorescence spectra and fibrillation experiments intensified that the photoaged GO induced more serious changes in conformational structure of BSA and exhibited stronger inhibition on fibrillation of BSA compared to pristine GO. This study provided novel insights into the increased ecological risks of GO as a result of photoaging.
Collapse
Affiliation(s)
- Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xinwei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Kunkun Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
49
|
Acidic and basic self-assembling peptide and peptide-graphene oxide hydrogels: characterisation and effect on encapsulated nucleus pulposus cells. Acta Biomater 2022; 143:145-158. [PMID: 35196554 DOI: 10.1016/j.actbio.2022.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/28/2022]
Abstract
Extracellular pH can have a profound effect on cell metabolism, gene and protein expression. Nucleus pulposus (NP) cells, for example, under acidic conditions accelerate the production of degradative enzymes and pro-inflammatory cytokines, leading ultimately to intervertebral disc degeneration, a major cause of back pain. Self-assembling peptide hydrogels constitute a well-established class of biomaterials that could be exploited as pH-tunable platform to investigate cell behaviour under normal and non-physiological pH. In this paper we formulated acidic (pH = 4) and basic (pH = 9) hydrogels, from the same octapeptide FEFKFEFK (F8) (F = phenyalanine, E = glutamic acid, K = lysine), to test the effect of non-physiological pH on encapsulated NP cells. Similarly, graphene oxide-containing F8 hydrogels (GO-F8) were formulated as stiffer analogues. Acidic and basic hydrogels showed peculiar morphologies and rheological properties, with all systems able to buffer within 30 minutes of exposure to cell culture media. NP cells seeded in acidic F8 hydrogels showed a more catabolic phenotype compared to basic hydrogels, with increased gene expression of degradative enzymes (MMP-3, ADAMTS-4), neurotrophic factors (NGF and BDNF) and NF-κB p65 phosphorylation. Acidic GO-F8 hydrogels also induced a catabolic response, although milder than basic counterparts and with the highest gene expression of characteristic NP-matrix components, aggrecan and collagen II. In all systems, the cellular response had a peak within 3 days of encapsulation, thereafter decreasing over 7 days, suggesting a 'transitory' effect of hydrogel pH on encapsulated cells. This work gives an insight on the effect of pH (and pH buffering) on encapsulated NP cells and offers new designs of low and high pH peptide hydrogels for 3D cell culture studies. STATEMENT OF SIGNIFICANCE: We have recently shown the potential of graphene oxide - self-assembling peptide hybrid hydrogels for NP cell culture and regeneration. Alongside cell carrier, self-assembling peptide hydrogels actually provide a versatile pH-tunable platform for biological studies. In this work we decided to explore the effect of non-physiological pH (and pH buffering) on encapsulated NP cells. Our approach allows the formulation of both acidic and basic hydrogels, starting from the same peptide sequence. We showed that the initial pH of the scaffold does not affect significantly cell response to encapsulation, but the presence of GO results in lower inflammatory levels and higher NP matrix protein production. This platform could be exploited to study the effect of pH on different cell types whose behaviour can be pH-dependent.
Collapse
|
50
|
Potential Directions in the Use of Graphene Nanomaterials in Pharmacology and Biomedicine (Review). Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|