1
|
Shimizu M, Ohwada W, Yano T, Kouzu H, Sato T, Ogawa T, Osanami A, Toda Y, Nagahama H, Tanno M, Miura T, Kuno A, Furuhashi M. Contribution of MLKL to the development of doxorubicin-induced cardiomyopathy and its amelioration by rapamycin. J Pharmacol Sci 2024; 156:9-18. [PMID: 39068035 DOI: 10.1016/j.jphs.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Necroptosis, necrosis characterized by RIPK3-MLKL activation, has been proposed as a mechanism of doxorubicin (DOX)-induced cardiomyopathy. We showed that rapamycin, an mTORC1 inhibitor, attenuates cardiomyocyte necroptosis. Here we examined role of MLKL in DOX-induced myocardial damage and protective effects of rapamycin. Cardiomyopathy was induced in mice by intraperitoneal injections of DOX (10 mg/kg, every other day) and followed for 7 days. DOX-treated mice showed a significant decline in LVEF assessed by cardiac MRI (45.5 ± 5.1% vs. 65.4 ± 4.2%), reduction in overall survival rates, and increases in myocardial RIPK3 and MLKL expression compared with those in vehicle-treated mice, and those changes were prevented by administration of rapamycin (0.25 mg/kg) before DOX injection. In immunohistochemical analyses, p-MLKL signals were detected in the cardiomyocytes of DOX-treated mice, and the signals were reduced by rapamycin. Mlkl+/- and Mlkl-/- mice were similarly resistant to DOX-induced cardiac dysfunction, indicating that a modest reduction in MLKL level is sufficient to prevent the development of DOX-induced cardiomyopathy. However, evidence of cardiomyocyte necrosis assessed by C9 immunostaining, presence of replacement fibrosis, and electron microscopic analyses was negligible in the myocardium of DOX-treated mice. Thus, MLKL-mediated signaling contributes to DOX-induced cardiac dysfunction primarily by a necrosis-independent mechanism, which is inhibitable by rapamycin.
Collapse
Affiliation(s)
- Masaki Shimizu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshifumi Ogawa
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Arata Osanami
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Toda
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nagahama
- Division of Radioisotope Research, Biomedical Research, Education and Instrumentation Center, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Nursing, Division of Medical and Behavioral Subjects, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | - Tetsuji Miura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Lee H, Yang X, Jin PR, Won KJ, Kim CH, Jeong H. The Discovery of Gut Microbial Metabolites as Modulators of Host Susceptibility to Acetaminophen-Induced Hepatotoxicity. Drug Metab Dispos 2024; 52:754-764. [PMID: 38302428 PMCID: PMC11257691 DOI: 10.1124/dmd.123.001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
The mammalian gut microbiota plays diverse and essential roles in modulating host physiology. Key mediators determining the outcome of the microbiota-host interactions are the small molecule metabolites produced by the gut microbiota. The liver is a major organ exposed to gut microbial metabolites, and it serves as the nexus for maintaining healthy interactions between the gut microbiota and the host. At the same time, the liver is the primary target of potentially harmful gut microbial metabolites. In this review, we provide an up-to-date list of gut microbial metabolites that have been identified to either increase or decrease host susceptibility to acetaminophen (APAP)-induced liver injury. The signaling pathways and molecular factors involved in the progression of APAP-induced hepatotoxicity are well-established, and we propose that the mouse model of APAP-induced hepatotoxicity serves as a model system for uncovering gut microbial metabolites with previously unknown functions. Furthermore, we envision that gut microbial metabolites identified to alter APAP-induced hepatotoxicity likely have broader implications in other liver diseases. SIGNIFICANCE STATEMENT: This review provides an overview of the role of the gut microbiota in modulating the host susceptibility to acetaminophen (APAP)-induced liver injury. It focuses on the roles of gut bacterial small molecule metabolites as mediators of the interaction between the gut microbiota and the liver. It also illustrates the utility of APAP-induced liver injury as a model to identify gut microbial metabolites with biological function.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Xiaotong Yang
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Pei-Ru Jin
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Kyoung-Jae Won
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Chang H Kim
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Hyunyoung Jeong
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| |
Collapse
|
3
|
McGill MP, Threadgill DW. Adding robustness to rigor and reproducibility for the three Rs of improving translational medical research. J Clin Invest 2023; 133:e173750. [PMID: 37712424 PMCID: PMC10503792 DOI: 10.1172/jci173750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Affiliation(s)
- Michael P. McGill
- Interdisciplinary Graduate Program in Genetics and Genomics
- Department of Cell Biology and Genetics
| | - David W. Threadgill
- Interdisciplinary Graduate Program in Genetics and Genomics
- Department of Cell Biology and Genetics
- Department of Nutrition, and
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Boeykens F, Bhatti SFM, Peelman L, Broeckx BJG. VariantscanR: an R-package as a clinical tool for variant filtering of known phenotype-associated variants in domestic animals. BMC Bioinformatics 2023; 24:305. [PMID: 37528412 PMCID: PMC10394849 DOI: 10.1186/s12859-023-05426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Since the introduction of next-generation sequencing (NGS) techniques, whole-exome sequencing (WES) and whole-genome sequencing (WGS) have not only revolutionized research, but also diagnostics. The gradual switch from single gene testing to WES and WGS required a different set of skills, given the amount and type of data generated, while the demand for standardization remained. However, most of the tools currently available are solely applicable for human analysis because they require access to specific databases and/or simply do not support other species. Additionally, a complicating factor in clinical genetics in animals is that genetic diversity is often dangerously low due to the breeding history. Combined, there is a clear need for an easy-to-use, flexible tool that allows standardized data processing and preferably, monitoring of genetic diversity as well. To fill these gaps, we developed the R-package variantscanR that allows an easy and straightforward identification and prioritization of known phenotype-associated variants identified in dogs and other domestic animals. RESULTS The R-package variantscanR enables the filtering of variant call format (VCF) files for the presence of known phenotype-associated variants and allows for the estimation of genetic diversity using multi-sample VCF files. Next to this, additional functions are available for the quality control and processing of user-defined input files to make the workflow as easy and straightforward as possible. This user-friendly approach enables the standardisation of complex data analysis in clinical settings. CONCLUSION We developed an R-package for the identification of known phenotype-associated variants and calculation of genetic diversity.
Collapse
Affiliation(s)
- Fréderique Boeykens
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium.
| | - Sofie F M Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Luc Peelman
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Bart J G Broeckx
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium.
| |
Collapse
|
5
|
Broeckx BJG. Incorporating Genetic Testing into a Breeding Program. Vet Clin North Am Small Anim Pract 2023:S0195-5616(23)00064-5. [PMID: 37221103 DOI: 10.1016/j.cvsm.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Genetic tests are powerful tools that enable (1) a focus on genetic diversity as mating outcomes can be predicted and thus optimized to minimize or even avoid exclusion and (2) working toward breeding goals by improving a phenotype.
Collapse
Affiliation(s)
- Bart J G Broeckx
- Department of Veterinary and Biosciences, Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke 9820, Belgium.
| |
Collapse
|
6
|
Cho S, Yang X, Won KJ, Leone VA, Chang EB, Guzman G, Ko Y, Bae ON, Lee H, Jeong H. Phenylpropionic acid produced by gut microbiota alleviates acetaminophen-induced hepatotoxicity. Gut Microbes 2023; 15:2231590. [PMID: 37431867 PMCID: PMC10337503 DOI: 10.1080/19490976.2023.2231590] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
The gut microbiota affects hepatic drug metabolism. However, gut microbial factors modulating hepatic drug metabolism are largely unknown. In this study, using a mouse model of acetaminophen (APAP)-induced hepatotoxicity, we identified a gut bacterial metabolite that controls the hepatic expression of CYP2E1 that catalyzes the conversion of APAP to a reactive, toxic metabolite. By comparing C57BL/6 substrain mice from two different vendors, Jackson (6J) and Taconic (6N), which are genetically similar but harbor different gut microbiotas, we established that the differences in the gut microbiotas result in differential susceptibility to APAP-induced hepatotoxicity. 6J mice exhibited lower susceptibility to APAP-induced hepatotoxicity than 6N mice, and such phenotypic difference was recapitulated in germ-free mice by microbiota transplantation. Comparative untargeted metabolomic analysis of portal vein sera and liver tissues between conventional and conventionalized 6J and 6N mice led to the identification of phenylpropionic acid (PPA), the levels of which were higher in 6J mice. PPA supplementation alleviated APAP-induced hepatotoxicity in 6N mice by lowering hepatic CYP2E1 levels. Moreover, PPA supplementation also reduced carbon tetrachloride-induced liver injury mediated by CYP2E1. Our data showed that previously known PPA biosynthetic pathway is responsible for PPA production. Surprisingly, while PPA in 6N mouse cecum contents is almost undetectable, 6N cecal microbiota produces PPA as well as 6J cecal microbiota in vitro, suggesting that PPA production in the 6N gut microbiota is suppressed in vivo. However, previously known gut bacteria harboring the PPA biosynthetic pathway were not detected in either 6J or 6N microbiota, suggesting the presence of as-yet-unidentified PPA-producing gut microbes. Collectively, our study reveals a novel biological function of the gut bacterial metabolite PPA in the gut-liver axis and presents a critical basis for investigating PPA as a modulator of CYP2E1-mediated liver injury and metabolic diseases.
Collapse
Affiliation(s)
- Sungjoon Cho
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaotong Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyoung-Jae Won
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Vanessa A Leone
- Department of Animal & Dairy Sciences, College of Agriculture & Life Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugene B Chang
- Section of Gastroenterology, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Grace Guzman
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yeonju Ko
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Hyunwoo Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Hyunyoung Jeong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
7
|
Yoshiki A, Ballard G, Perez AV. Genetic quality: a complex issue for experimental study reproducibility. Transgenic Res 2022; 31:413-430. [PMID: 35751794 PMCID: PMC9489590 DOI: 10.1007/s11248-022-00314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Laboratory animal research involving mice, requires consideration of many factors to be controlled. Genetic quality is one factor that is often overlooked but is essential for the generation of reproducible experimental results. Whether experimental research involves inbred mice, spontaneous mutant, or genetically modified strains, exercising genetic quality through careful breeding, good recordkeeping, and prudent quality control steps such as validation of the presence of mutations and verification of the genetic background, will help ensure that experimental results are accurate and that reference controls are representative for the particular experiment. In this review paper, we will discuss various techniques used for the generation of genetically altered mice, and the different aspects to be considered regarding genetic quality, including inbred strains and substrains used, quality check controls during and after genetic manipulation and breeding. We also provide examples for when to use the different techniques and considerations on genetic quality checks. Further, we emphasize on the importance of establishing an in-house genetic quality program.
Collapse
Affiliation(s)
- Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, 3050074, Japan.
| | - Gregory Ballard
- Comparative Medicine and Quality, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
8
|
Francisco A, Figueira TR, Castilho RF. Mitochondrial NAD(P) + Transhydrogenase: From Molecular Features to Physiology and Disease. Antioxid Redox Signal 2022; 36:864-884. [PMID: 34155914 DOI: 10.1089/ars.2021.0111] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Significance: Proton-translocating NAD(P)+ transhydrogenase, also known as nicotinamide nucleotide transhydrogenase (NNT), catalyzes a reversible reaction coupling the protonmotive force across the inner mitochondrial membrane and hydride (H-, a proton plus two electrons) transfer between the mitochondrial pools of NAD(H) and NADP(H). The forward NNT reaction is a source of NADPH in the mitochondrial matrix, fueling antioxidant and biosynthetic pathways with reductive potential. Despite the greater emphasis given to the net forward reaction, the reverse NNT reaction that oxidizes NADPH also occurs in physiological and pathological conditions. Recent Advances: NNT (dys)function has been linked to various metabolic pathways and disease phenotypes. Most of these findings have been based on spontaneous loss-of-function Nnt mutations found in the C57BL/6J mouse strain (NntC57BL/6J mutation) and disease-causing Nnt mutations in humans. The present review focuses on recent advances based on the mouse NntC57BL/6J mutation. Critical Issues: Most studies associating NNT function with disease phenotypes have been based on comparisons between different strains of inbred mice (with or without the NntC57BL/6J mutation), which creates uncertainties over the actual contribution of NNT in the context of other potential genetic modifiers. Future Directions: Future research might contribute to understanding the role of NNT in pathological conditions and elucidate how NNT regulates physiological signaling through its forward and reverse reactions. The importance of NNT in redox balance and tumor cell proliferation makes it a potential target of new therapeutic strategies for oxidative-stress-mediated diseases and cancer. Antioxid. Redox Signal. 36, 864-884.
Collapse
Affiliation(s)
- Annelise Francisco
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Tiago Rezende Figueira
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Roger Frigério Castilho
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
9
|
Rawle DJ, Le TT, Dumenil T, Bishop C, Yan K, Nakayama E, Bird PI, Suhrbier A. Widespread discrepancy in Nnt genotypes and genetic backgrounds complicates granzyme A and other knockout mouse studies. eLife 2022; 11:e70207. [PMID: 35119362 PMCID: PMC8816380 DOI: 10.7554/elife.70207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Granzyme A (GZMA) is a serine protease secreted by cytotoxic lymphocytes, with Gzma-/- mouse studies having informed our understanding of GZMA's physiological function. We show herein that Gzma-/- mice have a mixed C57BL/6J and C57BL/6N genetic background and retain the full-length nicotinamide nucleotide transhydrogenase (Nnt) gene, whereas Nnt is truncated in C57BL/6J mice. Chikungunya viral arthritis was substantially ameliorated in Gzma-/- mice; however, the presence of Nnt and the C57BL/6N background, rather than loss of GZMA expression, was responsible for this phenotype. A new CRISPR active site mutant C57BL/6J GzmaS211A mouse provided the first insights into GZMA's bioactivity free of background issues, with circulating proteolytically active GZMA promoting immune-stimulating and pro-inflammatory signatures. Remarkably, k-mer mining of the Sequence Read Archive illustrated that ≈27% of Run Accessions and ≈38% of BioProjects listing C57BL/6J as the mouse strain had Nnt sequencing reads inconsistent with a C57BL/6J genetic background. Nnt and C57BL/6N background issues have clearly complicated our understanding of GZMA and may similarly have influenced studies across a broad range of fields.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Thuy T Le
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Troy Dumenil
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Cameron Bishop
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Kexin Yan
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Eri Nakayama
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Department of Virology I, National Institute of Infectious DiseasesTokyoJapan
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash UniversityMelbourneAustralia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Australian Infectious Disease Research Centre, GVN Center of ExcellenceBrisbaneAustralia
| |
Collapse
|
10
|
Jaeschke H, Adelusi OB, Akakpo JY, Nguyen NT, Sanchez-Guerrero G, Umbaugh DS, Ding WX, Ramachandran A. Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharm Sin B 2021; 11:3740-3755. [PMID: 35024303 PMCID: PMC8727921 DOI: 10.1016/j.apsb.2021.09.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, which is safe at therapeutic doses but can cause severe liver injury and even liver failure after overdoses. The mouse model of APAP hepatotoxicity recapitulates closely the human pathophysiology. As a result, this clinically relevant model is frequently used to study mechanisms of drug-induced liver injury and even more so to test potential therapeutic interventions. However, the complexity of the model requires a thorough understanding of the pathophysiology to obtain valid results and mechanistic information that is translatable to the clinic. However, many studies using this model are flawed, which jeopardizes the scientific and clinical relevance. The purpose of this review is to provide a framework of the model where mechanistically sound and clinically relevant data can be obtained. The discussion provides insight into the injury mechanisms and how to study it including the critical roles of drug metabolism, mitochondrial dysfunction, necrotic cell death, autophagy and the sterile inflammatory response. In addition, the most frequently made mistakes when using this model are discussed. Thus, considering these recommendations when studying APAP hepatotoxicity will facilitate the discovery of more clinically relevant interventions.
Collapse
Key Words
- AIF, apoptosis-inducing factor
- AMPK, AMP-activated protein kinase
- APAP, acetaminophen
- ARE, antioxidant response element
- ATG, autophagy-related genes
- Acetaminophen hepatotoxicity
- Apoptosis
- Autophagy
- BSO, buthionine sulfoximine
- CAD, caspase-activated DNase
- CYP, cytochrome P450 enzymes
- DAMPs, damage-associated molecular patterns
- DMSO, dimethylsulfoxide
- Drug metabolism
- EndoG, endonuclease G
- FSP1, ferroptosis suppressing protein 1
- Ferroptosis
- GPX4, glutathione peroxidase 4
- GSH, glutathione
- GSSG, glutathione disulfide
- Gclc, glutamate–cysteine ligase catalytic subunit
- Gclm, glutamate–cysteine ligase modifier subunit
- HMGB1, high mobility group box protein 1
- HNE, 4-hydroxynonenal
- Innate immunity
- JNK, c-jun N-terminal kinase
- KEAP1, Kelch-like ECH-associated protein 1
- LAMP, lysosomal-associated membrane protein
- LC3, light chain 3
- LOOH, lipid hydroperoxides
- LPO, lipid peroxidation
- MAP kinase, mitogen activated protein kinase
- MCP-1, monocyte chemoattractant protein-1
- MDA, malondialdehyde
- MPT, mitochondrial permeability transition
- Mitochondria
- MnSOD, manganese superoxide dismutase
- NAC, N-acetylcysteine
- NAPQI, N-acetyl-p-benzoquinone imine
- NF-κB, nuclear factor κB
- NQO1, NAD(P)H:quinone oxidoreductase 1
- NRF2
- NRF2, nuclear factor erythroid 2-related factor 2
- PUFAs, polyunsaturated fatty acids
- ROS, reactive oxygen species
- SMAC/DIABLO, second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI
- TLR, toll like receptor
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- UGT, UDP-glucuronosyltransferases
- mTORC1, mammalian target of rapamycin complex 1
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Olamide B. Adelusi
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jephte Y. Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nga T. Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David S. Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
11
|
Shirey KA, Blanco JCG, Vogel SN. Targeting TLR4 Signaling to Blunt Viral-Mediated Acute Lung Injury. Front Immunol 2021; 12:705080. [PMID: 34282358 PMCID: PMC8285366 DOI: 10.3389/fimmu.2021.705080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/10/2021] [Indexed: 01/14/2023] Open
Abstract
Respiratory viral infections have been a long-standing global burden ranging from seasonal recurrences to the unexpected pandemics. The yearly hospitalizations from seasonal viruses such as influenza can fluctuate greatly depending on the circulating strain(s) and the congruency with the predicted strains used for the yearly vaccine formulation, which often are not predicted accurately. While antiviral agents are available against influenza, efficacy is limited due to a temporal disconnect between the time of infection and symptom development and viral resistance. Uncontrolled, influenza infections can lead to a severe inflammatory response initiated by pathogen-associated molecular patterns (PAMPs) or host-derived danger-associated molecular patterns (DAMPs) that ultimately signal through pattern recognition receptors (PRRs). Overall, these pathogen-host interactions result in a local cytokine storm leading to acute lung injury (ALI) or the more severe acute respiratory distress syndrome (ARDS) with concomitant systemic involvement and more severe, life threatening consequences. In addition to traditional antiviral treatments, blocking the host's innate immune response may provide a more viable approach to combat these infectious pathogens. The SARS-CoV-2 pandemic illustrates a critical need for novel treatments to counteract the ALI and ARDS that has caused the deaths of millions worldwide. This review will examine how antagonizing TLR4 signaling has been effective experimentally in ameliorating ALI and lethal infection in challenge models triggered not only by influenza, but also by other ALI-inducing viruses.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
12
|
Yuskaitis CJ, Rossitto L, Groff KJ, Dhamne SC, Zhang B, Lalani LK, Singh AK, Rotenberg A, Sahin M. Factors influencing the acute pentylenetetrazole-induced seizure paradigm and a literature review. Ann Clin Transl Neurol 2021; 8:1388-1397. [PMID: 34102033 PMCID: PMC8283168 DOI: 10.1002/acn3.51375] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/23/2021] [Accepted: 04/14/2021] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To confirm the critical factors affecting seizure susceptibility in acute pentylenetetrazole (PTZ) mouse epilepsy models and evaluate the prior literature for these factors. METHODS Serial cohorts of wild-type mice administered intraperitoneal (IP)-PTZ were aggregated and analyzed by multivariate logistic regression for the effect of sex, age, background strain, dose, and physiologic stress (i.e., EEG implantation and/or single-housing) on seizure response. We assessed the reporting of these factors in a comprehensive literature review over the last 10 years (2010-2020). RESULTS We conducted aggregated analysis of pooled data of 307 mice (220 C57BL/6J mice and 87 mixed background mice; 202 males, 105 females) with median age of 10 weeks (range: 6-49 weeks) with acute PTZ injection (dose range 40-65 mg/kg). Significance in multivariate analysis was found between seizures and increased PTZ dose (odds ratio (OR) 1.149, 95% confidence interval (CI) 1.102-1.205), older age (OR 1.1, 95% CI 1.041-1.170), physiologic stress (OR 17.36, 95% CI 7.349-44.48), and mixed background strain (OR 0.4725, 95% CI 0.2315-0.9345). Literature review identified 97 papers using acute PTZ-seizure models. Age, housing, sex, and background were omitted by 61% (59/97), 51% (49/97), 18% (17/97), and 8% (8/97) papers, respectively. Only 17% of publications specified all four factors (16/97). INTERPRETATION Our analysis and literature review demonstrate a critical gap in standardization of acute PTZ-induced seizure paradigm in mice. We recommend that future studies specify and control for age, background strain, sex, and housing conditions of experimental animals.
Collapse
Affiliation(s)
- Christopher J. Yuskaitis
- F.M. Kirby Neurobiology CenterBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
- Department of NeurologyBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics ProgramBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
| | - Leigh‐Ana Rossitto
- F.M. Kirby Neurobiology CenterBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
| | - Karenna J. Groff
- F.M. Kirby Neurobiology CenterBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
| | - Sameer C. Dhamne
- F.M. Kirby Neurobiology CenterBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
| | - Bo Zhang
- Department of NeurologyBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
- Biostatistics and Research Design CenterInstitutional Centers for Clinical and Translational ResearchBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
| | - Lahin K. Lalani
- F.M. Kirby Neurobiology CenterBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
- Rosamund Stone Zander Translational Neuroscience CenterBoston Children’s HospitalBostonMassachusetts02115USA
| | - Achint K. Singh
- F.M. Kirby Neurobiology CenterBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
- Rosamund Stone Zander Translational Neuroscience CenterBoston Children’s HospitalBostonMassachusetts02115USA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology CenterBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
- Department of NeurologyBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics ProgramBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
- Neuromodulation ProgramDepartment of NeurologyBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology CenterBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
- Department of NeurologyBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts02115USA
- Rosamund Stone Zander Translational Neuroscience CenterBoston Children’s HospitalBostonMassachusetts02115USA
| |
Collapse
|
13
|
Zhang C, Franklin CL, Ericsson AC. Consideration of Gut Microbiome in Murine Models of Diseases. Microorganisms 2021; 9:microorganisms9051062. [PMID: 34068994 PMCID: PMC8156714 DOI: 10.3390/microorganisms9051062] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome (GM), a complex community of bacteria, viruses, protozoa, and fungi located in the gut of humans and animals, plays significant roles in host health and disease. Animal models are widely used to investigate human diseases in biomedical research and the GM within animal models can change due to the impact of many factors, such as the vendor, husbandry, and environment. Notably, variations in GM can contribute to differences in disease model phenotypes, which can result in poor reproducibility in biomedical research. Variation in the gut microbiome can also impact the translatability of animal models. For example, standard lab mice have different pathogen exposure experiences when compared to wild or pet store mice. As humans have antigen experiences that are more similar to the latter, the use of lab mice with more simplified microbiomes may not yield optimally translatable data. Additionally, the literature describes many methods to manipulate the GM and differences between these methods can also result in differing interpretations of outcomes measures. In this review, we focus on the GM as a potential contributor to the poor reproducibility and translatability of mouse models of disease. First, we summarize the important role of GM in host disease and health through different gut–organ axes and the close association between GM and disease susceptibility through colonization resistance, immune response, and metabolic pathways. Then, we focus on the variation in the microbiome in mouse models of disease and address how this variation can potentially impact disease phenotypes and subsequently influence research reproducibility and translatability. We also discuss the variations between genetic substrains as potential factors that cause poor reproducibility via their effects on the microbiome. In addition, we discuss the utility of complex microbiomes in prospective studies and how manipulation of the GM through differing transfer methods can impact model phenotypes. Lastly, we emphasize the need to explore appropriate methods of GM characterization and manipulation.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA;
| | - Craig L. Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA;
- Mutant Mouse Resource and Research Center, University of Missouri, Columbia, MO 65201, USA
- Metagenomics Center, University of Missouri, Columbia, MO 65201, USA
- Correspondence: (C.L.F.); (A.C.E.)
| | - Aaron C. Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA;
- Mutant Mouse Resource and Research Center, University of Missouri, Columbia, MO 65201, USA
- Metagenomics Center, University of Missouri, Columbia, MO 65201, USA
- Correspondence: (C.L.F.); (A.C.E.)
| |
Collapse
|
14
|
Ma Q, Grigorescu M, Schreiber A, Kettritz R, Lindenmeyer M, Anders HJ, Steiger S. Genetic Background but Not Intestinal Microbiota After Co-Housing Determines Hyperoxaluria-Related Nephrocalcinosis in Common Inbred Mouse Strains. Front Immunol 2021; 12:673423. [PMID: 33968083 PMCID: PMC8100042 DOI: 10.3389/fimmu.2021.673423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Calcium oxalate (CaOx) crystal formation, aggregation and growth is a common cause of kidney stone disease and nephrocalcinosis-related chronic kidney disease (CKD). Genetically modified mouse strains are frequently used as an experimental tool in this context but observed phenotypes may also relate to the genetic background or intestinal microbiota. We hypothesized that the genetic background or intestinal microbiota of mice determine CaOx crystal deposition and thus the outcome of nephrocalcinosis. Indeed, Casp1-/-, Cybb-/- or Casp1-/-/Cybb-/- knockout mice on a 129/C57BL/6J (B6J) background that were fed an oxalate-rich diet for 14 days did neither encounter intrarenal CaOx crystal deposits nor nephrocalcinosis-related CKD. To test our assumption, we fed C57BL/6N (B6N), 129, B6J and Balb/c mice an oxalate-rich diet for 14 days. Only B6N mice displayed CaOx crystal deposits and developed CKD associated with tubular injury, inflammation and interstitial fibrosis. Intrarenal mRNA expression profiling of 64 known nephrocalcinosis-related genes revealed that healthy B6N mice had lower mRNA levels of uromodulin (Umod) compared to the other three strains. Feeding an oxalate-rich diet caused an increase in uromodulin protein expression and CaOx crystal deposition in the kidney as well as in urinary uromodulin excretion in B6N mice but not 129, B6J and Balb/c mice. However, backcrossing 129 mice on a B6N background resulted in a gradual increase in CaOx crystal deposits from F2 to F7, of which all B6N/129 mice from the 7th generation developed CaOx-related nephropathy similar to B6N mice. Co-housing experiments tested for a putative role of the intestinal microbiota but B6N co-housed with 129 mice or B6N/129 (3rd and 6th generation) mice did not affect nephrocalcinosis. In summary, genetic background but not the intestinal microbiome account for strain-specific crystal formation and, the levels of uromodulin secretion may contribute to this phenomenon. Our results imply that only littermate controls of the identical genetic background strain are appropriate when performing knockout mouse studies in this context, while co-housing is optional.
Collapse
Affiliation(s)
- Qiuyue Ma
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Melissa Grigorescu
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Adrian Schreiber
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefanie Steiger
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
15
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. WITHDRAWN: Utilizing comparative models in biomedical research. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110938. [PMID: 33737041 DOI: 10.1016/j.cbpa.2021.110938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Volume 255, 2021, 110593, https://doi.org/10.1016/j.cbpb.2021.110593. The duplicate article has therefore been withdrawn.
The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA.
| | | |
Collapse
|
16
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. Utilizing comparative models in biomedical research. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110593. [PMID: 33779562 DOI: 10.1016/j.cbpb.2021.110593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review serves as an introduction to a Special Issue of Comparative Biochemistry and Physiology, focused on using non-human models to study biomedical physiology. The concept of a model differs across disciplines. For example, several models are used primarily to gain an understanding of specific human pathologies and disease states, whereas other models may be focused on gaining insight into developmental or evolutionary mechanisms. It is often the case that animals initially used to gain knowledge of some unique biochemical or physiological process finds foothold in the biomedical community and becomes an established model. The choice of a particular model for biomedical research is an ongoing process and model validation must keep pace with existing and emerging technologies. While the importance of non-mammalian models, such as Caenorhabditis elegans, Drosophila melanogaster, Danio rerio and Xenopus laevis, is well known, we also seek to bring attention to emerging alternative models of both invertebrates and vertebrates, which are less established but of interest to the comparative biochemistry and physiology community.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA
| | | |
Collapse
|
17
|
Abstract
The inbred mouse strain C57BL/6 has been widely used as a background strain for spontaneous and induced mutations. Developed in the 1930s, the C57BL/6 strain
diverged into two major groups in the 1950s, namely, C57BL/6J and C57BL/6N, and more than 20 substrains have been established from them worldwide. We previously
reported genetic differences among C57BL/6 substrains in 2009 and 2015. Since then, dozens of reports have been published on phenotypic differences in
behavioral, neurological, cardiovascular, and metabolic traits. Substrains need to be chosen according to the purpose of the study because phenotypic
differences might affect the experimental results. In this paper, we review recent reports of phenotypic and genetic differences among C57BL/6 substrains, focus
our attention on the proper use of C57BL/6 and other inbred strains in the era of genome editing, and provide the life science research community wider
knowledge about this subject.
Collapse
Affiliation(s)
- Kazuyuki Mekada
- Department of Zoology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.,Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
18
|
Shojaie L, Iorga A, Dara L. Cell Death in Liver Diseases: A Review. Int J Mol Sci 2020; 21:ijms21249682. [PMID: 33353156 PMCID: PMC7766597 DOI: 10.3390/ijms21249682] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Regulated cell death (RCD) is pivotal in directing the severity and outcome of liver injury. Hepatocyte cell death is a critical event in the progression of liver disease due to resultant inflammation leading to fibrosis. Apoptosis, necrosis, necroptosis, autophagy, and recently, pyroptosis and ferroptosis, have all been investigated in the pathogenesis of various liver diseases. These cell death subroutines display distinct features, while sharing many similar characteristics with considerable overlap and crosstalk. Multiple types of cell death modes can likely coexist, and the death of different liver cell populations may contribute to liver injury in each type of disease. This review addresses the known signaling cascades in each cell death pathway and its implications in liver disease. In this review, we describe the common findings in each disease model, as well as the controversies and the limitations of current data with a particular focus on cell death-related research in humans and in rodent models of alcoholic liver disease, non-alcoholic fatty liver disease and steatohepatitis (NASH/NAFLD), acetaminophen (APAP)-induced hepatotoxicity, autoimmune hepatitis, cholestatic liver disease, and viral hepatitis.
Collapse
Affiliation(s)
- Layla Shojaie
- Division of Gastrointestinal & Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (L.S.); (A.I.)
- Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andrea Iorga
- Division of Gastrointestinal & Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (L.S.); (A.I.)
- Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lily Dara
- Division of Gastrointestinal & Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (L.S.); (A.I.)
- Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Correspondence:
| |
Collapse
|
19
|
Bhushan B, Apte U. Acetaminophen Test Battery (ATB): A Comprehensive Method to Study Acetaminophen-Induced Acute Liver Injury. Gene Expr 2020; 20:125-138. [PMID: 32443984 PMCID: PMC7650012 DOI: 10.3727/105221620x15901763757677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) overdose is the major cause of acute liver failure (ALF) in the Western world. Extensive research is ongoing to identify the mechanisms of APAP-induced ALF. APAP-induced acute liver injury is also one of the most commonly studied drug-induced liver injury models in the field of hepatotoxicity. APAP toxicity is triphasic and includes three mechanistically interlinked but temporally distinct phases of initiation, progression, and recovery/regeneration. Despite how commonly it is studied, the methods to study APAP toxicity differ significantly, often leading to confusing and contradictory data. There are number of reviews on mechanisms of APAP toxicity, but a detailed mechanism-based comprehensive method and list of assays that covers all phases of APAP hepatotoxicity are missing. The goal of this review is to provide a standard protocol and guidelines to study APAP toxicity in mice including a test battery that can help investigators to comprehensively analyze APAP toxicity in the specific context of their hypothesis. Further, we will identify the major roadblocks and common technical problems that can significantly affect the results. This acetaminophen test battery (ATB) will be an excellent guide for scientists studying this most common and clinically relevant drug-induced liver injury and will also be helpful as a roadmap for hypothesis development to study novel mechanisms.
Collapse
Affiliation(s)
- Bharat Bhushan
- *Department of Pathology and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Udayan Apte
- †Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
20
|
McGill MR, Hinson JA. The development and hepatotoxicity of acetaminophen: reviewing over a century of progress. Drug Metab Rev 2020; 52:472-500. [PMID: 33103516 DOI: 10.1080/03602532.2020.1832112] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acetaminophen (APAP) was first synthesized in the 1800s, and came on the market approximately 65 years ago. Since then, it has become one of the most used drugs in the world. However, it is also a major cause of acute liver failure. Early investigations of the mechanisms of toxicity revealed that cytochrome P450 enzymes catalyze formation of a reactive metabolite in the liver that depletes glutathione and covalently binds to proteins. That work led to the introduction of N-acetylcysteine (NAC) as an antidote for APAP overdose. Subsequent studies identified the reactive metabolite N-acetyl-p-benzoquinone imine, specific P450 enzymes involved, the mechanism of P450-mediated oxidation, and major adducted proteins. Significant gaps remain in our understanding of the mechanisms downstream of metabolism, but several events appear critical. These events include development of an initial oxidative stress, reactive nitrogen formation, altered calcium flux, JNK activation and mitochondrial translocation, inhibition of mitochondrial respiration, the mitochondrial permeability transition, and nuclear DNA fragmentation. Additional research is necessary to complete our knowledge of the toxicity, such as the source of the initial oxidative stress, and to greatly improve our understanding of liver regeneration after APAP overdose. A better understanding of these mechanisms may lead to additional treatment options. Even though NAC is an excellent antidote, its effectiveness is limited to the first 16 hours following overdose.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, Little Rock, AR, USA.,Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jack A Hinson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
21
|
Fertan E, Wong AA, Purdon MK, Weaver ICG, Brown RE. The effect of background strain on the behavioral phenotypes of the MDGA2 +/- mouse model of autism spectrum disorder. GENES BRAIN AND BEHAVIOR 2020; 20:e12696. [PMID: 32808443 DOI: 10.1111/gbb.12696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
The membrane-associated mucin (MAM) domain containing glycosylphosphatidylinositol anchor 2 protein single knock-out mice (MDGA2+/- ) are models of ASD. We examined the behavioral phenotypes of male and female MDGA2+/- and wildtype mice on C57BL6/NJ and C57BL6/N backgrounds at 2 months of age and measured MDGA2, neuroligin 1 and neuroligin 2 levels at 7 months. Mice on the C57BL6/NJ background performed better than those on the C57BL6/N background in visual ability and in learning and memory performance in the Morris water maze and differed in measures of motor behavior and anxiety. Mice with the MDGA2+/- genotype differed from WT mice in motor, social and repetitive behavior and anxiety, but most of these effects involved interactions between MDGA2+/- genotype and background strain. The background strain also influenced MDGA2 levels and NLGN2 association in MDGA2+/- mice. Our findings emphasize the importance of the background strain used in studies of genetically modified mice.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michaela K Purdon
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
22
|
Jaeschke H, Ramachandran A. Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food Chem Toxicol 2020; 138:111240. [PMID: 32145352 DOI: 10.1016/j.fct.2020.111240] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) is a widely used analgesic drug, which can cause severe liver injury after an overdose. The intracellular signaling mechanisms of APAP-induced cell death such as reactive metabolite formation, mitochondrial dysfunction and nuclear DNA fragmentation have been extensively studied. Hepatocyte necrosis releases damage-associated molecular patterns (DAMPs) which activate cytokine and chemokine formation in macrophages. These signals activate and recruit neutrophils, monocytes and other leukocytes into the liver. While this sterile inflammatory response removes necrotic cell debris and promotes tissue repair, the capability of leukocytes to also cause tissue injury makes this a controversial topic. This review summarizes the literature on the role of various DAMPs, cytokines and chemokines, and the pathophysiological function of Kupffer cells, neutrophils, monocytes and monocyte-derived macrophages, and NK and NKT cells during APAP hepatotoxicity. Careful evaluation of results and experimental designs of studies dealing with the inflammatory response after APAP toxicity provide very limited evidence for aggravation of liver injury but support of the hypothesis that these leukocytes promote tissue repair. In addition, many cytokines and chemokines modulate tissue injury by affecting the intracellular signaling events of cell death rather than toxicity of leukocytes. Reasons for the controversial results in this area are also discussed.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
23
|
Abstract
In recent years, concerns have been raised on the diversity, health and welfare of our (pedigree) dog population. Somewhat justified, the popular sire effect, population bottlenecks, the founder effect and inbreeding have left their marks on the dog as we know it. In order to improve the health and welfare of the canine population in general, individual breeding programs should adhere to the concept of ethical breeding (i.e. "the use of healthy animals true to their species in behaviour and looks, and when applicable, showing a sustainable performance") when population-specific breeding goals are defined. Even though every population has its own problems, the approach to get to possible solution(s) is similar. The starting point will always be the identification of which (un)desirable pheno- and genotypes are segregating and what their prevalence is, followed by an evaluation of the genetic diversity. Based on that information and, when applicable, additional criteria like breed standards, breeding goals can be defined. It is of critical importance that these goals are put forward with a long term vision in mind and with consensus from the stakeholders to ensure collaboration. Upon prioritization of the most important goals, when necessary with the help of specifically developed tools, the final step is choosing the most optimal combination of breeding strategies. This paper aims to provide a stepwise approach to identify and tackle population-specific problems encountered in breeding programs.
Collapse
Affiliation(s)
- Bart J G Broeckx
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium.
| |
Collapse
|
24
|
Sukoff Rizzo SJ, McTighe S, McKinzie DL. Genetic Background and Sex: Impact on Generalizability of Research Findings in Pharmacology Studies. Handb Exp Pharmacol 2020; 257:147-162. [PMID: 31595415 DOI: 10.1007/164_2019_282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Animal models consisting of inbred laboratory rodent strains have been a powerful tool for decades, helping to unravel the underpinnings of biological problems and employed to evaluate potential therapeutic treatments in drug discovery. While inbred strains demonstrate relatively reliable and predictable responses, using a single inbred strain alone or as a background to a mutation is analogous to running a clinical trial in a single individual and their identical twins. Indeed, complex etiologies drive the most common human diseases, and a single inbred strain that is a surrogate of a single genome, or data generated from a single sex, is not representative of the genetically diverse patient populations. Further, pharmacological and toxicology data generated in otherwise healthy animals may not translate to disease states where physiology, metabolism, and general health are compromised. The purpose of this chapter is to provide guidance for improving generalizability of preclinical studies by providing insight into necessary considerations for introducing systematic variation within the study design, such as genetic diversity, the use of both sexes, and selection of appropriate age and disease model. The outcome of implementing these considerations should be that reproducibility and generalizability of significant results are significantly enhanced leading to improved clinical translation.
Collapse
|
25
|
Win S, Min RW, Chen CQ, Zhang J, Chen Y, Li M, Suzuki A, Abdelmalek MF, Wang Y, Aghajan M, Aung FW, Diehl AM, Davis RJ, Than TA, Kaplowitz N. Expression of mitochondrial membrane-linked SAB determines severity of sex-dependent acute liver injury. J Clin Invest 2019; 129:5278-5293. [PMID: 31487267 PMCID: PMC6877311 DOI: 10.1172/jci128289] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
SH3 domain-binding protein that preferentially associates with Btk (SAB) is an outer-membrane docking protein for JNK-mediated impairment of mitochondrial function. Deletion of Sab in hepatocytes inhibits sustained JNK activation and cell death. The current study demonstrates that an increase in SAB expression enhanced the severity of acetaminophen-induced (APAP-induced) liver injury. Female mice were resistant to liver injury and exhibited markedly decreased hepatic SAB protein expression compared with male mice. The mechanism of SAB repression involved a pathway from ERα to p53 expression that induced miR34a-5p. miR34a-5p targeted the Sab mRNA coding region, thereby repressing SAB expression. Fulvestrant or p53 knockdown decreased miR34a-5p and increased SAB expression in female mice, leading to increased injury from APAP and TNF/galactosamine. In contrast, an ERα agonist increased p53 and miR34a-5p, which decreased SAB expression and hepatotoxicity in male mice. Hepatocyte-specific deletion of miR34a also increased the severity of liver injury in female mice, which was prevented by GalNAc-ASO knockdown of Sab. Similar to mice, premenopausal women expressed elevated levels of hepatic p53 and low levels of SAB, whereas age-matched men expressed low levels of p53 and high levels of SAB, but there was no difference in SAB expression between the sexes in the postmenopausal stage. In conclusion, SAB expression levels determined the severity of JNK-dependent liver injury. Female mice expressed low levels of hepatic SAB protein because of the ERα/p53/miR34a pathway, which repressed SAB expression and accounted for the resistance to liver injury seen in these females.
Collapse
Affiliation(s)
- Sanda Win
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Robert W.M. Min
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Christopher Q. Chen
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Jun Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yibu Chen
- USC Libraries Bioinformatics Service, Norris Medical Library, USC, Los Angeles, California, USA
| | - Meng Li
- USC Libraries Bioinformatics Service, Norris Medical Library, USC, Los Angeles, California, USA
| | - Ayako Suzuki
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Manal F. Abdelmalek
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Ying Wang
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Filbert W.M. Aung
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Roger J. Davis
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Tin A. Than
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Neil Kaplowitz
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| |
Collapse
|
26
|
Benavides F, Rülicke T, Prins JB, Bussell J, Scavizzi F, Cinelli P, Herault Y, Wedekind D. Genetic quality assurance and genetic monitoring of laboratory mice and rats: FELASA Working Group Report. Lab Anim 2019; 54:135-148. [PMID: 31431136 PMCID: PMC7160752 DOI: 10.1177/0023677219867719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetic quality assurance (QA), including genetic monitoring (GeMo) of inbred
strains and background characterization (BC) of genetically altered (GA) animal
models, should be an essential component of any QA programme in laboratory
animal facilities. Genetic quality control is as important for ensuring the
validity of the animal model as health and microbiology monitoring are. It
should be required that studies using laboratory rodents, mainly mice and rats,
utilize genetically defined animals. This paper, presented by the FELASA Working
Group on Genetic Quality Assurance and Genetic Monitoring of Laboratory Murines,
describes the objectives of and available methods for genetic QA programmes in
rodent facilities. The main goals of any genetic QA programme are: (a) to verify
the authenticity and uniformity of inbred stains and substrains, thus ensuring a
genetically reliable colony maintenance; (b) to detect possible genetic
contamination; and (c) to precisely describe the genetic composition of GA
lines. While this publication focuses mainly on mouse and rat genetic QA, the
principles will apply to other rodent species some of which are briefly
mentioned within the context of inbred and outbred stocks.
Collapse
Affiliation(s)
- Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Center, USA
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine, Vienna, Austria
| | - Jan-Bas Prins
- The Francis Crick Institute, London, UK.,Leiden University Medical Centre, Leiden, The Netherlands
| | - James Bussell
- Biomedical and Veterinary Services Department, University of Oxford, Oxford, UK
| | | | - Paolo Cinelli
- Department of Trauma Surgery, University of Zurich, Zurich, Switzerland
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France.,Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, CELPHEDIA-PHENOMIN-ICS, Illkirch, France
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Jones BG, Penkert RR, Surman SL, Sealy RE, Pelletier S, Berns H, Hurwitz JL. Background check: Profound differences in serum antibody isotypes among C57BL/6 mouse substrains discourage substrain interchanges in immunology experiments. Immunol Lett 2019; 216:9-11. [PMID: 31437463 DOI: 10.1016/j.imlet.2019.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 02/08/2023]
Affiliation(s)
- B G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - R R Penkert
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - S L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - R E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - S Pelletier
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - H Berns
- Department of Transgenic/Gene Knockout Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - J L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
28
|
Åhlgren J, Voikar V. Experiments done in Black-6 mice: what does it mean? Lab Anim (NY) 2019; 48:171-180. [DOI: 10.1038/s41684-019-0288-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
|
29
|
Zhao L, Mulligan MK, Nowak TS. Substrain- and sex-dependent differences in stroke vulnerability in C57BL/6 mice. J Cereb Blood Flow Metab 2019; 39:426-438. [PMID: 29260927 PMCID: PMC6421252 DOI: 10.1177/0271678x17746174] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The C57BL/6 mouse strain is represented by distinct substrains, increasingly recognized to differ genetically and phenotypically. The current study compared stroke vulnerability among C57BL/6 J (J), C57BL/6JEiJ (JEiJ), C57BL/6ByJ (ByJ), C57BL/6NCrl (NCrl), C57BL/6NJ (NJ) and C57BL/6NTac (NTac) substrains, using a model of permanent distal middle cerebral artery and common carotid artery occlusion. Mean infarct volume was nearly two-fold smaller in J, JEiJ and ByJ substrains relative to NCrl, NJ and NTac (N-lineage) mice. This identifies a previously unrecognized confound in stroke studies involving genetically modified strain comparisons if control substrain background were not rigorously matched. Mean infarct size was smaller in females of J and ByJ substrains than in the corresponding males, but there was no sex difference for NCrl and NJ mice. A higher proportion of small infarcts in J and ByJ substrains was largely responsible for both substrain- and sex-dependent differences. These could not be straightforwardly explained by variations in posterior communicating artery patency, MCA anatomy or acute penumbral blood flow deficits. Their larger and more homogeneously distributed infarcts, together with their established use as the common background for many genetically modified strains, may make N-lineage C57BL/6 substrains the preferred choice for future studies in experimental stroke.
Collapse
Affiliation(s)
- Liang Zhao
- 1 Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Megan K Mulligan
- 2 Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Thaddeus S Nowak
- 1 Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
30
|
Farkas C, Fuentes-Villalobos F, Rebolledo-Jaramillo B, Benavides F, Castro AF, Pincheira R. Streamlined computational pipeline for genetic background characterization of genetically engineered mice based on next generation sequencing data. BMC Genomics 2019; 20:131. [PMID: 30755158 PMCID: PMC6373082 DOI: 10.1186/s12864-019-5504-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/31/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Genetically engineered mice (GEM) are essential tools for understanding gene function and disease modeling. Historically, gene targeting was first done in embryonic stem cells (ESCs) derived from the 129 family of inbred strains, leading to a mixed background or congenic mice when crossed with C57BL/6 mice. Depending on the number of backcrosses and breeding strategies, genomic segments from 129-derived ESCs can be introgressed into the C57BL/6 genome, establishing a unique genetic makeup that needs characterization in order to obtain valid conclusions from experiments using GEM lines. Currently, SNP genotyping is used to detect the extent of 129-derived ESC genome introgression into C57BL/6 recipients; however, it fails to detect novel/rare variants. RESULTS Here, we present a computational pipeline implemented in the Galaxy platform and in BASH/R script to determine genetic introgression of GEM using next generation sequencing data (NGS), such as whole genome sequencing (WGS), whole exome sequencing (WES) and RNA-Seq. The pipeline includes strategies to uncover variants linked to a targeted locus, genome-wide variant visualization, and the identification of potential modifier genes. Although these methods apply to congenic mice, they can also be used to describe variants fixed by genetic drift. As a proof of principle, we analyzed publicly available RNA-Seq data from five congenic knockout (KO) lines and our own RNA-Seq data from the Sall2 KO line. Additionally, we performed target validation using several genetics approaches. CONCLUSIONS We revealed the impact of the 129-derived ESC genome introgression on gene expression, predicted potential modifier genes, and identified potential phenotypic interference in KO lines. Our results demonstrate that our new approach is an effective method to determine genetic introgression of GEM.
Collapse
Affiliation(s)
- C Farkas
- Laboratorio de Transducción de Señales y Cáncer. Departamento de Bioquímica y Biología Molecular. Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - F Fuentes-Villalobos
- Laboratorio de Transducción de Señales y Cáncer. Departamento de Bioquímica y Biología Molecular. Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | | | - F Benavides
- Department of Epigenetics and Molecular Carcinogenesis, M.D. Anderson Cancer Center, Smithville, TX, USA
| | - A F Castro
- Laboratorio de Transducción de Señales y Cáncer. Departamento de Bioquímica y Biología Molecular. Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - R Pincheira
- Laboratorio de Transducción de Señales y Cáncer. Departamento de Bioquímica y Biología Molecular. Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
31
|
Abstract
Cancer research relies on model systems, which reflect the biology of actual human tumours to only a certain extent. One important feature of human cancer is its intra-tumour genomic heterogeneity and instability. However, the extent of such genomic instability in cancer models has received limited attention in research. Here, we review the state of knowledge of genomic instability of cancer models and discuss its biological origins and implications for basic research and for cancer precision medicine. We discuss strategies to cope with such genomic evolution and evaluate both the perils and the emerging opportunities associated with it.
Collapse
Affiliation(s)
- Uri Ben-David
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Rameen Beroukhim
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Brigham and Women's Hospital, Boston, MA, USA.
| | - Todd R Golub
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
32
|
Rejection of adoptively transferred Eµ-TCL1 chronic lymphocytic leukemia cells in C57BL/6 substrains or knockout mouse lines. Leukemia 2019; 33:1514-1539. [DOI: 10.1038/s41375-018-0332-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/10/2018] [Accepted: 10/29/2018] [Indexed: 01/14/2023]
|
33
|
Kowaltowski AJ. Strategies to detect mitochondrial oxidants. Redox Biol 2018; 21:101065. [PMID: 30576921 PMCID: PMC6302213 DOI: 10.1016/j.redox.2018.101065] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial oxidants (or reactive oxygen species) participate in a myriad of physiological and pathological processes. They are, however, quite hard to measure due to their chemical nature and specific subcellular location. Here, we review techniques to measure mitochondrial oxidants in biological systems as well as the results of their activity, highlighting conditions to be considered, controls and recommended practices. We will delineate experimental setups that use combined strategies to convincingly demonstrate the biological effects of mitochondrial oxidants, using the imperfect methodology available today.
Collapse
Affiliation(s)
- Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
34
|
Vercesi AE, Castilho RF, Kowaltowski AJ, de Oliveira HCF, de Souza-Pinto NC, Figueira TR, Busanello ENB. Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radic Biol Med 2018; 129:1-24. [PMID: 30172747 DOI: 10.1016/j.freeradbiomed.2018.08.034] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
Abstract
Mitochondria possess a Ca2+ transport system composed of separate Ca2+ influx and efflux pathways. Intramitochondrial Ca2+ concentrations regulate oxidative phosphorylation, required for cell function and survival, and mitochondrial redox balance, that participates in a myriad of signaling and damaging pathways. The interaction between Ca2+ accumulation and redox imbalance regulates opening and closing of a highly regulated inner membrane pore, the membrane permeability transition pore (PTP). In this review, we discuss the regulation of the PTP by mitochondrial oxidants, reactive nitrogen species, and the interactions between these species and other PTP inducers. In addition, we discuss the involvement of mitochondrial redox imbalance and PTP in metabolic conditions such as atherogenesis, diabetes, obesity and in mtDNA stability.
Collapse
Affiliation(s)
- Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Helena C F de Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tiago R Figueira
- Escola de Educação Física e Esporte de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Estela N B Busanello
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
35
|
Nowak TS, Mulligan MK. Impact of C57BL/6 substrain on sex-dependent differences in mouse stroke models. Neurochem Int 2018; 127:12-21. [PMID: 30448566 DOI: 10.1016/j.neuint.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/18/2023]
Abstract
We have recently found significant variation in stroke vulnerability among substrains of C57BL/6 mice, observing that commonly used N-lineage substrains exhibit larger infarcts than C57BL/6J and related substrains. Parallel variation was also seen with respect to sex differences in stroke vulnerability, in that C57BL/6 mice of the N-lineage exhibited comparable infarct sizes in males and females, whereas infarcts tended to be smaller in females than in males of J-lineage substrains. This adds to the growing list of recognized phenotypic and genetic differences among C57BL/6 substrains. Although no previous studies have explicitly compared substrains with respect to sex differences in stroke vulnerability, unrecognized background mismatch has occurred in some studies involving control and genetically modified mice. The aims of this review are to: present the evidence for associated substrain- and sex-dependent differences in a mouse permanent occlusion stroke model; examine the extent to which the published literature in other models compares with these recent results; and consider the potential impact of unrecognized heterogeneity in substrain background on the interpretation of studies investigating the impact of genetic modifications on sex differences in stroke outcome. Substrain emerges as a critical variable to be documented in any experimental stroke study in mice.
Collapse
Affiliation(s)
- Thaddeus S Nowak
- Department of Neurology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
36
|
McGill MR, Jaeschke H. Animal models of drug-induced liver injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1031-1039. [PMID: 31007174 DOI: 10.1016/j.bbadis.2018.08.037] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/18/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023]
Abstract
Drug-induced liver injury (DILI) presents unique challenges for consumers, clinicians, and regulators. It is the most common cause of acute liver failure in the US. It is also one of the most common reasons for termination of new drugs during pre-clinical testing and withdrawal of new drugs post-marketing. DILI is generally divided into two forms: intrinsic and idiosyncratic. Many of the challenges with DILI are due in large part to poor understanding of the mechanisms of toxicity. Although useful models of intrinsic DILI are available, they are frequently misused. Modeling idiosyncratic DILI presents greater challenges, but promising new models have recently been developed. The purpose of this manuscript is to provide a critical review of the most popular animal models of DILI, and to discuss the future of DILI research.
Collapse
Affiliation(s)
- Mitchell R McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hartmut Jaeschke
- Dept. of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
37
|
Dobrowolski P, Fischer M, Naumann R. Novel insights into the genetic background of genetically modified mice. Transgenic Res 2018; 27:265-275. [PMID: 29663254 DOI: 10.1007/s11248-018-0073-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
Unclear or misclassified genetic background of laboratory rodents or a lack of strain awareness causes a number of difficulties in performing or reproducing scientific experiments. Until now, genetic differentiation between strains and substrains of inbred mice has been a challenge. We have developed a screening method for analyzing inbred strains regarding their genetic background. It is based on 240 highly informative short tandem repeat (STR) markers covering the 19 autosomes as well as X and Y chromosomes. Combination of analysis results for presence of known C57BL/6 substrain-specific mutations together with autosomal STR markers and the Y-chromosomal STR-haplotype provides a comprehensive snapshot of the genetic background of mice. In this study, the genetic background of 72 mouse lines obtained from 18 scientific institutions in Germany and Austria was determined. By analyzing only 3 individuals per genetically modified line it was possible to detect mixed genetic backgrounds frequently. In several lines presence of a mispairing Y chromosome was detected. At least every second genetically modified line displayed a mixed genetic background which could lead to unexpected and non-reproducible results, irrespective of the investigated gene of interest.
Collapse
Affiliation(s)
- Peter Dobrowolski
- GVG Genetic Monitoring GmbH, Deutscher Platz 5b, 04103, Leipzig, Germany.
| | - Melina Fischer
- Genolytic GmbH, Deutscher Platz 5b, 04103, Leipzig, Germany
| | - Ronald Naumann
- MPI of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| |
Collapse
|
38
|
Kennon-McGill S, McGill MR. Extrahepatic toxicity of acetaminophen: critical evaluation of the evidence and proposed mechanisms. J Clin Transl Res 2018. [PMID: 30895271 PMCID: PMC5815839 DOI: 10.18053/jctres.03.201703.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Research on acetaminophen (APAP) toxicity over the last several decades has focused on the pathophysiology of liver injury, but increasingly attention is paid to other known and possible adverse effects. It has been known for decades that APAP causes acute kidney injury, but confusion exists regarding prevalence, and the mechanisms have not been well investigated. More recently, evidence for pulmonary, endocrine, neurological, and neurodevelopmental toxicity has been reported in a number of published experimental, clinical, and epidemiological studies, but the quality of those studies has varied. It is important to view those data critically due to implications for regulation and clinical practice. Here, we review evidence and proposed mechanisms for extrahepatic adverse effects of APAP and weigh weaknesses and strengths in the available data.
Collapse
Affiliation(s)
- Stefanie Kennon-McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States.,Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
39
|
Navarro CDC, Figueira TR, Francisco A, Dal'Bó GA, Ronchi JA, Rovani JC, Escanhoela CAF, Oliveira HCF, Castilho RF, Vercesi AE. Redox imbalance due to the loss of mitochondrial NAD(P)-transhydrogenase markedly aggravates high fat diet-induced fatty liver disease in mice. Free Radic Biol Med 2017; 113:190-202. [PMID: 28964917 DOI: 10.1016/j.freeradbiomed.2017.09.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/30/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
The mechanisms by which a high fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunctions and redox imbalance. We hypothesized that a HFD would increase mitochondrial reliance on NAD(P)-transhydrogenase (NNT) as the source of NADPH for antioxidant systems that counteract NAFLD development. Therefore, we studied HFD-induced liver mitochondrial dysfunctions and NAFLD in C57Unib.B6 congenic mice with (Nnt+/+) or without (Nnt-/-) NNT activity; the spontaneously mutated allele (Nnt-/-) was inherited from the C57BL/6J mouse substrain. After 20 weeks on a HFD, Nnt-/- mice exhibited a higher prevalence of steatohepatitis and content of liver triglycerides compared to Nnt+/+ mice on an identical diet. Under a HFD, the aggravated NAFLD phenotype in the Nnt-/- mice was accompanied by an increased H2O2 release rate from mitochondria, decreased aconitase activity (a redox-sensitive mitochondrial enzyme) and higher susceptibility to Ca2+-induced mitochondrial permeability transition. In addition, HFD led to the phosphorylation (inhibition) of pyruvate dehydrogenase (PDH) and markedly reduced the ability of liver mitochondria to remove peroxide in Nnt-/- mice. Bypass or pharmacological reactivation of PDH by dichloroacetate restored the peroxide removal capability of mitochondria from Nnt-/- mice on a HFD. Noteworthy, compared to mice that were chow-fed, the HFD did not impair peroxide removal nor elicit redox imbalance in mitochondria from Nnt+/+ mice. Therefore, HFD interacted with Nnt mutation to generate PDH inhibition and further suppression of peroxide removal. We conclude that NNT plays a critical role in counteracting mitochondrial redox imbalance, PDH inhibition and advancement of NAFLD in mice fed a HFD. The present study provide seminal experimental evidence that redox imbalance in liver mitochondria potentiates the progression from simple steatosis to steatohepatitis following a HFD.
Collapse
Affiliation(s)
- Claudia D C Navarro
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Tiago R Figueira
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Annelise Francisco
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Genoefa A Dal'Bó
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Juliana A Ronchi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Juliana C Rovani
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-865 Campinas, SP, Brazil
| | - Cecilia A F Escanhoela
- Departamento de Anatomia Patológica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Helena C F Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-865 Campinas, SP, Brazil
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil.
| | - Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil.
| |
Collapse
|
40
|
Meyer KJ, Anderson MG. Genetic modifiers as relevant biological variables of eye disorders. Hum Mol Genet 2017; 26:R58-R67. [PMID: 28482014 DOI: 10.1093/hmg/ddx180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
From early in the study of mammalian genetics, it was clear that modifiers can have a striking influence on phenotypes. Today, several modifiers have now been studied in enough detail to allow a glimpse of how they function and influence our perspective of disease. With respect to diseases of the eye, some modifiers are an important source of phenotypic variation that can elucidate how genes function in networks to collectively shape ocular anatomy and physiology, thus influencing our understanding of basic biology. Other modifiers represent an opportunity for new therapeutic targets, whose manipulation could be used to mitigate ophthalmic disease. Here, we review progress in the study of genetic modifiers of eye disorders, with examples from mice and humans that together illustrate the ubiquitous nature of genetic modifiers and why they are relevant biological variables in experimental design. Special emphasis is given to ophthalmic modifiers in mice, especially those relevant to selection of genetic background and those that might inadvertently be a source of experimental variability. These modifiers are capable of influencing interpretations of many experiments using targeted genome manipulations such as knockouts or transgenics. Whereas there are fewer examples of modifiers of eye disorders in humans with a molecular identification, there is ample evidence that they exist and should be considered as a relevant biological variable in human genetic studies as well.
Collapse
Affiliation(s)
- Kacie J Meyer
- Department of Molecular Physiology and Biophysics.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA.,Center for Prevention and Treatment of Visual Loss, Iowa City Veterans Administration Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
41
|
Genetic and phenotypic characterization of the novel mouse substrain C57BL/6N Korl with increased body weight. Sci Rep 2017; 7:14217. [PMID: 29079844 PMCID: PMC5660189 DOI: 10.1038/s41598-017-14196-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/03/2017] [Indexed: 01/10/2023] Open
Abstract
In inbred mouse lines, there is generally little genetic difference between individuals. This small genetic variability facilitates carrying out research on minute changes of various traits and the gene pool. Also, characterizing the diversity and detecting selective genetic and phenotypic signatures are crucial to understanding the genomic basis of a population and to identify specific patterns of evolutionary change. In this study, we investigated the underlying genetic profiles of a newly developed mouse strain, C57BL/6NKorl (Korl), established through sibling mating over 30 generations. To analyse the distinctive genomic features of Korl mice, we used whole-genome sequencing from six samples, which were compared to those of other C57BL/6N-based mouse strains. Korl strain-specific polymorphisms were identified and signatures of a selective sweep were detected. In particular, the candidate genes related to the increased body weight of the Korl strain were identified. Establishment of the genetic profile of Korl mice can provide insight into the inbreeding-induced changes to the gene pool, and help to establish this strain as a useful model for practical and targeted research purposes.
Collapse
|
42
|
McCracken JM, Chalise P, Briley SM, Dennis KL, Jiang L, Duncan FE, Pritchard MT. C57BL/6 Substrains Exhibit Different Responses to Acute Carbon Tetrachloride Exposure: Implications for Work Involving Transgenic Mice. Gene Expr 2017; 17:187-205. [PMID: 28234577 PMCID: PMC5500426 DOI: 10.3727/105221617x695050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biological differences exist between strains of laboratory mice, and it is becoming increasingly evident that there are differences between substrains. In the C57BL/6 mouse, the primary substrains are called 6J and 6N. Previous studies have demonstrated that 6J and 6N mice differ in response to many experimental models of human disease. The aim of our study was to determine if differences exist between 6J and 6N mice in terms of their response to acute carbon tetrachloride (CCl4) exposure. Mice were given CCl4 once and were euthanized 12 to 96 h later. Relative to 6J mice, we found that 6N mice had increased liver injury but more rapid repair. This was because of the increased speed with which necrotic hepatocytes were removed in 6N mice and was directly related to increased recruitment of macrophages to the liver. In parallel, enhanced liver regeneration was observed in 6N relative to 6J mice. Hepatic stellate cell activation occurred earlier in 6N mice, but there was no difference in matrix metabolism between substrains. Taken together, these data demonstrate specific and significant differences in how the C57BL/6 substrains respond to acute CCl4, which has important implications for all mouse studies utilizing this model.
Collapse
Affiliation(s)
- Jennifer M. McCracken
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Prabhakar Chalise
- †Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shawn M. Briley
- ‡Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Katie L. Dennis
- §Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lu Jiang
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Francesca E. Duncan
- ‡Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T. Pritchard
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
43
|
Ramachandran A, Jaeschke H. Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology. J Clin Transl Res 2017; 3:157-169. [PMID: 28670625 PMCID: PMC5489132 DOI: 10.18053/jctres.03.2017s1.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/15/2022] Open
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the United States and mechanisms of liver injury induced by APAP overdose have been the focus of extensive investigation. Studies in the mouse model, which closely reproduces the human condition, have shown that hepatotoxicity is initiated by formation of a reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI), which depletes cellular glutathione and forms protein adducts on mitochondrial proteins. This leads to mitochondrial oxidative and nitrosative stress, accompanied by activation of c-jun N-terminal kinase (JNK) and its translocation to the mitochondria. This then amplifies the mitochondrial oxidant stress, resulting in translocation of Bax and dynamin related protein 1 (Drp1) to the mitochondria, which induces mitochondrial fission, and ultimately induction of the mitochondrial membrane permeability transition (MPT). The induction of MPT triggers release of intermembrane proteins such as apoptosis inducing factor (AIF) and endonuclease G into the cytosol and their translocation to the nucleus, causing nuclear DNA fragmentation and activation of regulated necrosis. Though these cascades of events were primarily identified in the mouse model, studies on human hepatocytes and analysis of circulating biomarkers from patients after APAP overdose, indicate that a number of mechanistic events are identical in mice and humans. Circulating biomarkers also seem to be useful in predicting the course of liver injury after APAP overdose in humans and hold promise for significant clinical use in the near future.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
44
|
Woolbright BL, Jaeschke H. Mechanisms of Acetaminophen-Induced Liver Injury. CELLULAR INJURY IN LIVER DISEASES 2017:55-76. [DOI: 10.1007/978-3-319-53774-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
45
|
Dara L, Liu ZX, Kaplowitz N. Questions and controversies: the role of necroptosis in liver disease. Cell Death Discov 2016; 2:16089. [PMID: 27924226 PMCID: PMC5136616 DOI: 10.1038/cddiscovery.2016.89] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/09/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023] Open
Abstract
Acute and chronic liver injury results in hepatocyte death and turnover. If injury becomes chronic, the continuous cell death and turnover leads to chronic inflammation, fibrosis and ultimately cirrhosis and hepatocellular carcinoma. Controlling liver cell death both in acute injury, to rescue the liver from acute liver failure, and in chronic injury, to curb secondary inflammation and fibrosis, is of paramount importance as a therapeutic strategy. Both apoptosis and necrosis occur in the liver, but the occurrence of necroptosis in the liver and its contribution to liver disease is controversial. Necroptosis is a form of regulated necrosis which occurs in certain cell types when caspases (+/-cIAPs) are inhibited through the RIPK1-RIPK3 activation of MLKL. The occurrence of necroptosis in the liver has recently been examined in multiple liver injury models with conflicting results. The aim of this review is to summarize the published data with an emphasis on the controversies and remaining questions in the field.
Collapse
Affiliation(s)
- Lily Dara
- Research Center for Liver Disease, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA; Division of GI/Liver, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhang-Xu Liu
- Research Center for Liver Disease, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA; Division of GI/Liver, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neil Kaplowitz
- Research Center for Liver Disease, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA; Division of GI/Liver, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
46
|
Dara L, Kaplowitz N. The many faces of RIPK3: What about NASH? Hepatology 2016; 64:1411-1413. [PMID: 27338154 PMCID: PMC5074903 DOI: 10.1002/hep.28700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Lily Dara
- Division of GI/Liver, Department of Medicine, Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| | | |
Collapse
|
47
|
Fisher-Wellman KH, Ryan TE, Smith CD, Gilliam LAA, Lin CT, Reese LR, Torres MJ, Neufer PD. A Direct Comparison of Metabolic Responses to High-Fat Diet in C57BL/6J and C57BL/6NJ Mice. Diabetes 2016; 65:3249-3261. [PMID: 27495226 PMCID: PMC5079634 DOI: 10.2337/db16-0291] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/28/2016] [Indexed: 02/02/2023]
Abstract
Although nicotinamide nucleotide transhydrogenase (NNT)-deficient C57BL/6J (6J) mice are known to be highly susceptible to diet-induced metabolic disease, this notion stems primarily from comparisons of 6J mice to other inbred strains. To date, very few studies have directly compared metabolic disease susceptibility between NNT-deficient 6J mice and NNT-competent C57BL/6 substrains. In this study, comprehensive profiling of the metabolic response to a high-fat/high-sucrose diet (HFD) were compared across time in 6J and C57BL/6NJ (6N) mice. Given that increased peroxide exposure drives insulin resistance, coupled with the fact that NNT regulates peroxide detoxification, it was hypothesized that 6J mice would experience greater derangements in redox homeostasis/metabolic disease upon HFD exposure. Contrary to this, both lines were found to be highly susceptible to diet-induced metabolic disease, as evidenced by impairments in glucose tolerance as early as 24 h into the HFD. Moreover, various markers of the metabolic syndrome, as well as peroxide stress, were actually blunted, rather than exacerbated, in the 6J mice, likely reflecting compensatory increases in alterative redox-buffering pathways. Together, these data provide evidence that the susceptibility to HFD-induced metabolic disease is similar in the 6J and 6N substrains. Given the numerous genetic variances in the 6J stain, including loss of NNT function, these findings suggest that the 6N substrain is the more logical and representative genetic background model for metabolic studies.
Collapse
Affiliation(s)
- Kelsey H Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Terence E Ryan
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
| | - Cody D Smith
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
| | - Laura A A Gilliam
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
| | - Chien-Te Lin
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
| | - Lauren R Reese
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
| | - Maria J Torres
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
| |
Collapse
|
48
|
Nlrp12 mutation causes C57BL/6J strain-specific defect in neutrophil recruitment. Nat Commun 2016; 7:13180. [PMID: 27779193 PMCID: PMC5093323 DOI: 10.1038/ncomms13180] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 09/07/2016] [Indexed: 01/08/2023] Open
Abstract
The inbred mouse strain C57BL/6J is widely used in models of immunological and infectious diseases. Here we show that C57BL/6J mice have a defect in neutrophil recruitment to a range of inflammatory stimuli compared with the related C57BL/6N substrain. This immune perturbation is associated with a missense mutation in Nlrp12 in C57BL/6J mice. Both C57BL/6J and NLRP12-deficient mice have increased susceptibility to bacterial infection that correlates with defective neutrophil migration. C57BL/6J and NLRP12-deficient macrophages have impaired CXCL1 production and the neutrophil defect observed in C57BL/6J and NLRP12-deficient mice is rescued by restoration of macrophage NLRP12. These results demonstrate that C57BL/6J mice have a functional defect in NLRP12 and that macrophages require NLRP12 expression for effective recruitment of neutrophils to inflammatory sites.
The role of NLRP12 in immunity to bacterial infection is controversial as varied and contrasting results have been published using C57BL/6 mice. Here the authors shed light on this issue, showing that unlike C57BL/6N mice, C57BL/6J mice have a missense point mutation in NLRP12 that is associated with defective neutrophil recruitment.
Collapse
|
49
|
Duan L, Davis JS, Woolbright BL, Du K, Cahkraborty M, Weemhoff J, Jaeschke H, Bourdi M. Differential susceptibility to acetaminophen-induced liver injury in sub-strains of C57BL/6 mice: 6N versus 6J. Food Chem Toxicol 2016; 98:107-118. [PMID: 27773698 DOI: 10.1016/j.fct.2016.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022]
Abstract
Mouse models of acetaminophen (APAP) hepatotoxicity are considered relevant for the human pathophysiology. The C57BL/6 strain is most popular because it is the background strain of gene knock-out mice. However, conflicting results in the literature may have been caused by sub-strain mismatches, e.g. C57BL/6J and C57BL/6N. This study was initiated to determine the mechanism behind the sub-strain susceptibility to APAP toxicity. C57BL/6N and C57BL/6J mice were dosed with 200 mg/kg APAP and sacrificed at different time points. C57BL/6N mice developed significantly more liver injury as measured by plasma ALT activities and histology. Although there was no difference in glutathione depletion or cytochrome P450 activity between groups, C57BL/6N had a higher glutathione disulfide-to-glutathione ratio and more APAP protein adducts. C57BL/6N showed more mitochondrial translocation of phospho-JNK and BAX, and more release of mitochondrial intermembrane proteins apoptosis-inducing factor (AIF), second mitochondria-derived activator of caspases (SMAC), which caused more DNA fragmentation. The increased mitochondrial dysfunction was confirmed in vitro as C57BL/6N hepatocytes had a more precipitous drop in JC-1 fluorescence after APAP exposure. CONCLUSION C57BL/6N mice are more susceptible to APAP-induced hepatotoxicity, likely due to increased formation of APAP-protein adducts and a subsequent enhancement of mitochondrial dysfunction associated with aggravated nuclear DNA fragmentation.
Collapse
Affiliation(s)
- Luqi Duan
- Department of Pharmacology, Toxicology & Therapeutics, Kansas City, KS, 66160, USA.
| | - John S Davis
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20850, USA.
| | | | - Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, Kansas City, KS, 66160, USA.
| | - Mala Cahkraborty
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20850, USA.
| | - James Weemhoff
- Department of Pharmacology, Toxicology & Therapeutics, Kansas City, KS, 66160, USA.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, Kansas City, KS, 66160, USA.
| | - Mohammed Bourdi
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20850, USA.
| |
Collapse
|
50
|
Jaeschke H. Mechanisms of Acetaminophen Hepatotoxicity: Do We Need JNK for Cell Death? Gastroenterology 2016; 151:371-2. [PMID: 27375192 DOI: 10.1053/j.gastro.2016.02.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/02/2016] [Indexed: 01/27/2023]
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|