1
|
Targeting erythrocyte-mediated hypoxia to alleviate lung injury induced by pyrrolizidine alkaloids. Arch Toxicol 2023; 97:819-829. [PMID: 36639515 DOI: 10.1007/s00204-023-03443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are widely distributed natural toxins and have been extensively studied for their hepatotoxicity. However, PA-induced pulmonary toxicity remains less studied regarding the initiating mechanism and treatment approaches. Our previous study demonstrated the formation of pyrrole-hemoglobin adducts after PA exposure in vivo, which is suspected to affect the oxygen-carrying capacity of erythrocytes [red blood cells (RBCs)] consequently. The present study aimed to investigate the effects of PAs on the oxygen-carrying capacity of RBCs and the potential of targeting RBC-mediated hypoxia to alleviate PA-induced lung injury. First, rats were treated with retrorsine (RTS) or monocrotaline (MCT) intravenously at 0.2 mmol/kg. The results of Raman spectrometry analysis on blood samples revealed both RTS and MCT significantly reduced the oxygen-carrying capacity of RBCs. Further, MCT (0.2 mmol/kg) was orally given to the rats with or without pretreatment with two doses of erythropoietin (Epo, 500 IU/kg/dose every other day), an RBC-stimulating agent. Biochemical and histological results showed pretreatment with Epo effectively reduced the cardiopulmonary toxicity induced by MCT. These findings provide the first evidence that adduction on hemoglobin, and the resulting RBC damage and impaired oxygen-carrying capacity, are the major initiating mechanism underlying PA-induced pulmonary arterial hypertension (PAH), while targeting the RBC damage is a potential therapeutic approach for PA-induced lung injury.
Collapse
|
2
|
Hecht SS, Hatsukami DK. Smokeless tobacco and cigarette smoking: chemical mechanisms and cancer prevention. Nat Rev Cancer 2022; 22:143-155. [PMID: 34980891 PMCID: PMC9308447 DOI: 10.1038/s41568-021-00423-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Tobacco products present a deadly combination of nicotine addiction and carcinogen exposure resulting in millions of cancer deaths per year worldwide. A plethora of smokeless tobacco products lead to unacceptable exposure to multiple carcinogens, including the tobacco-specific nitrosamine N'-nitrosonornicotine, a likely cause of the commonly occurring oral cavity cancers observed particularly in South-East Asian countries. Cigarettes continue to deliver a large number of carcinogens, including tobacco-specific nitrosamines, polycyclic aromatic hydrocarbons and volatile organic compounds. The multiple carcinogens in cigarette smoke are responsible for the complex mutations observed in critical cancer genes. The exposure of smokeless tobacco users and smokers to carcinogens and toxicants can now be monitored by urinary and DNA adduct biomarkers that may be able to identify those individuals at highest risk of cancer so that effective cancer prevention interventions can be initiated. Regulation of the levels of carcinogens, toxicants and nicotine in tobacco products and evidence-based tobacco control efforts are now recognized as established pathways to preventing tobacco related cancer.
Collapse
Affiliation(s)
- Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| | | |
Collapse
|
3
|
He Y, Zhu L, Ma J, Lin G. Metabolism-mediated cytotoxicity and genotoxicity of pyrrolizidine alkaloids. Arch Toxicol 2021; 95:1917-1942. [PMID: 34003343 DOI: 10.1007/s00204-021-03060-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and PA N-oxides are common phytotoxins produced by over 6000 plant species. Humans are frequently exposed to PAs via ingestion of PA-containing herbal products or PA-contaminated foods. PAs require metabolic activation to form pyrrole-protein adducts and pyrrole-DNA adducts which lead to cytotoxicity and genotoxicity. Individual PAs differ in their metabolic activation patterns, which may cause significant difference in toxic potency of different PAs. This review discusses the current knowledge and recent advances of metabolic pathways of different PAs, especially the metabolic activation and metabolism-mediated cytotoxicity and genotoxicity, and the risk evaluation methods of PA exposure. In addition, this review provides perspectives of precision toxicity assessment strategies and biomarker development for the risk control and translational investigations of human intoxication by PAs.
Collapse
Affiliation(s)
- Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
4
|
Fu Z, Yang L, Sun D, Qu Z, Zhao Y, Gao J, Wang Y. Coupled electron and proton transfer in the piperidine drug metabolism pathway by the active species of cytochromes P450. Dalton Trans 2020; 49:11099-11107. [DOI: 10.1039/c9dt03056e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
KS-DFT and MSDFT studies reveal a novel CEPT step that triggers ring contraction of piperidines by P450.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
- China
| | - Lili Yang
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- China
| | - Dongru Sun
- Institute of Drug Discovery Technology
- Ningbo University
- Ningbo 315211
- China
| | - Zexing Qu
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- China
| | - Yufen Zhao
- Institute of Drug Discovery Technology
- Ningbo University
- Ningbo 315211
- China
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
- Institute of Systems and Physical Biology
| | - Yong Wang
- Institute of Drug Discovery Technology
- Ningbo University
- Ningbo 315211
- China
| |
Collapse
|
5
|
Attwa MW, Kadi AA, Abdelhameed AS. Detection and characterization of olmutinib reactive metabolites by LC-MS/MS: Elucidation of bioactivation pathways. J Sep Sci 2019; 43:708-718. [PMID: 31788977 DOI: 10.1002/jssc.201900818] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/04/2023]
Abstract
Olmutinib (Olita™) is an orally bioavailable third generation epidermal growth factor receptor tyrosine kinase inhibitor. Olmutinib was approved in South Korea in May 2016 for the treatment of patients suffering from locally advanced or metastatic epidermal growth factor receptor T790M mutation-positive non-small cell lung cancer. Reactive olmutinib intermediates may be responsible for the severe side effects associated with the treatment. However, literature review revealed no previous reports on the structural identification of reactive olmutinib metabolites. In this work, the formation of reactive olmutinib metabolites in rat liver microsomes was investigated. Methoxylamine, glutathione, and potassium cyanide were used as capturing agents for aldehyde, iminoquinones, and iminium intermediates, respectively. The stable complexes formed were identified using liquid chromatography-tandem mass spectrometry. The major phase I metabolic pathway observed in vitro was hydroxylation of the piperazine ring. Seven potential reactive intermediates were characterized, including three iminium ions, three iminoquinones, and one aldehyde. Based on the findings, various bioactivation pathways were postulated. Hence, identifying the reactive intermediates of olmutinib that may be the cause of severe side effects can provide new insights, leading to improved treatments for patients.
Collapse
Affiliation(s)
- Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Students' University Hospital, Mansoura University, Mansoura, Egypt
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Attwa MW, Kadi AA, Darwish HW. Belizatinib: Novel reactive intermediates and bioactivation pathways characterized by LC-MS/MS. J Pharm Biomed Anal 2019; 171:132-147. [PMID: 30999224 DOI: 10.1016/j.jpba.2019.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
Abstract
Belizatinib (BZB; TSR-011) is a next-generation anaplastic lymphoma kinase inhibitor that also inhibits tropomyosin-related kinases A/B/C. In this in-vitro study, we examined the formation of reactive metabolites from BZB using rat liver microsomes or human liver microsomes in the presence of a trapping agent (potassium cyanide) to generate iminium reactive intermediates. Identification of the in vitro BZB metabolites indicated that the major in-vitro metabolic reaction involved hydroxylation of the piperidine moiety. We identified eight in-vitro phase I metabolites and three iminium reactive intermediates, suggesting two possible BZB-bioactivation pathways. We propose that the tertiary nitrogen in the piperidine ring activates the attached benzyl carbon in addition to the two α carbons inside the ring. To our knowledge, this is the first report on the structural identification of reactive metabolites derived from BZB.
Collapse
Affiliation(s)
- Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Students' University Hospital, Mansoura University, Mansoura 35516, Egypt.
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt.
| |
Collapse
|
7
|
Attwa MW, Kadi AA. Sapitinib: reactive intermediates and bioactivation pathways characterized by LC-MS/MS. RSC Adv 2019; 9:32995-33006. [PMID: 35529145 PMCID: PMC9073192 DOI: 10.1039/c9ra03926k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/06/2019] [Indexed: 11/21/2022] Open
Abstract
Sapitinib is a competitive ATP inhibitor of EGFR and receptor tyrosine-protein kinase (erbB-2). Two cyano and one oxime adducts, and six in vitro metabolites of sapitinib were identified using LC-MS/MS. The bioactivation pathways were characterized.
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Saudi Arabia
- Students' University Hospital
| | - Adnan A. Kadi
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Saudi Arabia
| |
Collapse
|
8
|
Attwa M, Kadi AA, Abdelhameed AS. Characterization of reactive intermediates formation in dacomitinib metabolism and bioactivation pathways elucidation by LC-MS/MS: in vitro phase I metabolic investigation. RSC Adv 2018; 8:38733-38744. [PMID: 35558335 PMCID: PMC9090608 DOI: 10.1039/c8ra06709k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/11/2018] [Indexed: 11/21/2022] Open
Abstract
Dacomitinib (DCB) is a second generation irreversible tyrosine kinase inhibitor (TKI) that is claimed to overcome the disadvantages of the resistance developed by the first line epidermal growth factor receptor (EGFR) TKIs. In the current study, metabolites of phase I for DCB were systematically explored. DCB reactive metabolites were also investigated in rat liver microsomes in presence of potassium cyanide or methoxylamine that were employed as capturing agents for iminium reactive intermediates and aldehyde, respectively, to form stable complexes which can be detected by LC-MS/MS. As a result, four in vitro phase I metabolites were observed with major pathway of piperidine ring hydroxylation. Additionally, two potentially reactive intermediates, one aldehyde and one iminium ions were characterized. Two different pathways of bioactivation were ultimately proposed.
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud UniversityP. O. Box 2457 Riyadh11451Saudi Arabia+966 1146 76 220+966 1146 70237
| | - Adnan A. Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud UniversityP. O. Box 2457 Riyadh11451Saudi Arabia+966 1146 76 220+966 1146 70237
| | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud UniversityP. O. Box 2457 Riyadh11451Saudi Arabia+966 1146 76 220+966 1146 70237
| |
Collapse
|
9
|
Kadi AA, Amer S, Darwish HW, Attwa MW. LC-MS/MS reveals the formation of aldehydes and iminium reactive intermediates in foretinib metabolism: phase I metabolic profiling. RSC Adv 2017. [DOI: 10.1039/c7ra06341e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using LC-MS/MS, six phase I foretinib metabolites in addition to four potential reactive metabolites, two aldehydes and two iminium ions, were detected and the bioactivation pathways were proposed.
Collapse
Affiliation(s)
- Adnan A. Kadi
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | - Sawsan M. Amer
- Analytical Chemistry Department
- Faculty of Pharmacy
- Cairo University
- Cairo 11562
- Egypt
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | - Mohamed W. Attwa
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Wu G, Li Y, Yu X, Gao Y, Chen H. Acetic Acid Accelerated Visible-Light Photoredox CatalyzedN-Demethylation ofN,N-Dimethylaminophenyl Derivatives. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201601108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guolin Wu
- College of Chemistry; Fuzhou University; Fuzhou Fujian 350116 China
| | - Yazhen Li
- College of Chemistry; Fuzhou University; Fuzhou Fujian 350116 China
| | - Xuemei Yu
- College of Chemistry; Fuzhou University; Fuzhou Fujian 350116 China
| | - Yu Gao
- College of Chemistry; Fuzhou University; Fuzhou Fujian 350116 China
| | - Haijun Chen
- College of Chemistry; Fuzhou University; Fuzhou Fujian 350116 China
| |
Collapse
|
11
|
Kalgutkar AS. Liabilities Associated with the Formation of “Hard” Electrophiles in Reactive Metabolite Trapping Screens. Chem Res Toxicol 2016; 30:220-238. [DOI: 10.1021/acs.chemrestox.6b00332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amit S. Kalgutkar
- Pharmacokinetics, Dynamics, and Metabolism − New Chemical
Entities, Pfizer Worldwide Research and Development, 610 Main
Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Herraiz T. N-methyltetrahydropyridines and pyridinium cations as toxins and comparison with naturally-occurring alkaloids. Food Chem Toxicol 2016; 97:23-39. [DOI: 10.1016/j.fct.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/22/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
|
13
|
Thorsell A, Isin EM, Jurva U. Use of Electrochemical Oxidation and Model Peptides To Study Nucleophilic Biological Targets of Reactive Metabolites: The Case of Rimonabant. Chem Res Toxicol 2014; 27:1808-20. [DOI: 10.1021/tx500255r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Annika Thorsell
- DMPK Design and Biotransformation, CVMD iMed DMPK, AstraZeneca R&D Mölndal, Sweden, Pepparedsleden 1, SE-431 83, Mölndal, Sweden
| | - Emre M. Isin
- DMPK Design and Biotransformation, CVMD iMed DMPK, AstraZeneca R&D Mölndal, Sweden, Pepparedsleden 1, SE-431 83, Mölndal, Sweden
| | - Ulrik Jurva
- DMPK Design and Biotransformation, CVMD iMed DMPK, AstraZeneca R&D Mölndal, Sweden, Pepparedsleden 1, SE-431 83, Mölndal, Sweden
| |
Collapse
|
14
|
Woolford L, Fletcher MT, Boardman WSJ. Suspected pyrrolizidine alkaloid hepatotoxicosis in wild southern hairy-nosed wombats (Lasiorhinus latifrons). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7413-7418. [PMID: 24708262 DOI: 10.1021/jf405811n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Southern hairy-nosed wombats (Lasiorhinus latifrons) inhabiting degraded habitat in South Australia were recently identified with extensive hair loss and dermatitis and were in thin to emaciated body condition. Pathological and clinicopathological investigations on affected juvenile wombats identified a toxic hepatopathy suggestive of plants containing pyrrolizidine alkaloids, accompanied by photosensitive dermatitis. Hepatic disease was suspected in additional wombats on the basis of serum biochemical analysis. Preliminary toxicological analysis performed on scats and gastrointestinal contents from wombats found in this degraded habitat identified a number of toxic pyrrolizidine alkaloids consistent with ingestion of Heliotropeum europaeum. Although unpalatable, ingestion may occur by young animals due to decreased availability of preferred forages in degraded habitats and the emergence of weeds around the time of weaning of naive animals. Habitat degradation leading to malnutrition and ingestion of toxic weed species is a significant welfare issue in this species.
Collapse
Affiliation(s)
- Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide , Roseworthy, 5371 South Australia, Australia
| | | | | |
Collapse
|
15
|
Bolleddula J, DeMent K, Driscoll JP, Worboys P, Brassil PJ, Bourdet DL. Biotransformation and bioactivation reactions of alicyclic amines in drug molecules. Drug Metab Rev 2014; 46:379-419. [DOI: 10.3109/03602532.2014.924962] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Kralj A, Kurt E, Tschammer N, Heinrich MR. Synthesis and Biological Evaluation of Biphenyl Amides That Modulate the US28 Receptor. ChemMedChem 2013; 9:151-68. [DOI: 10.1002/cmdc.201300369] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/23/2013] [Indexed: 11/10/2022]
|
17
|
Wichitnithad W, O’Callaghan JP, Miller DB, Train BC, Callery PS. Time-dependent slowly-reversible inhibition of monoamine oxidase A by N-substituted 1,2,3,6-tetrahydropyridines. Bioorg Med Chem 2011; 19:7482-92. [DOI: 10.1016/j.bmc.2011.10.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/06/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
|
18
|
Bergström MA, Isin EM, Castagnoli N, Milne CE. Bioactivation pathways of the cannabinoid receptor 1 antagonist rimonabant. Drug Metab Dispos 2011; 39:1823-32. [PMID: 21733882 DOI: 10.1124/dmd.111.039412] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the present work, the characterization of the biotransformation and bioactivation pathways of the cannabinoid receptor 1 antagonist rimonabant (Acomplia) is described. Rimonabant was approved in Europe in 2006 for the treatment of obesity but was withdrawn in 2008 because of a significant drug-related risk of serious psychiatric disorders. The aim of the present work is to characterize the biotransformation and potential bioactivation pathways of rimonabant in vitro in human and rat liver microsomes. The observation of a major iminium ion metabolite led us to perform reactive metabolite trapping, covalent binding to proteins, and time-dependent inhibition of cytochrome P450 3A4 studies. The major biotransformation pathways were oxidative dehydrogenation of the piperidinyl ring to an iminium ion, hydroxylation of the 3 position of the piperidinyl ring, and cleavage of the amide linkage. In coincubations with potassium cyanide, three cyanide adducts were detected. A high level of covalent binding of rimonabant in human liver microsomes was observed (920 pmol equivalents/mg protein). In coincubations with potassium cyanide and methoxylamine, the covalent binding was reduced by approximately 40 and 30%, respectively, whereas GSH had no significant effect on covalent binding levels. Rimonabant was also found to inhibit cytochrome P450 3A4 irreversibly in a time-dependent manner. In view of these findings, it is noteworthy that, to date, no toxicity findings related to the formation of reactive metabolites from rimonabant have been reported.
Collapse
|
19
|
Chen G, Xia H, Cai Y, Ma D, Yuan J, Yuan C. Synthesis and SAR study of diphenylbutylpiperidines as cell autophagy inducers. Bioorg Med Chem Lett 2011; 21:234-9. [DOI: 10.1016/j.bmcl.2010.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/10/2010] [Accepted: 11/04/2010] [Indexed: 12/19/2022]
|
20
|
A new approach for simultaneous screening and quantification of toxic pyrrolizidine alkaloids in some potential pyrrolizidine alkaloid-containing plants by using ultra performance liquid chromatography-tandem quadrupole mass spectrometry. Anal Chim Acta 2010; 681:33-40. [PMID: 21035600 DOI: 10.1016/j.aca.2010.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 11/21/2022]
Abstract
A rapid, but sensitive and selective method for simultaneous screening and quantification of toxic pyrrolizidine alkaloids (PAs) by ultra performance liquid-chromatography (UPLC) coupled with tandem mass spectrometry (MS/MS) on a tandem quadrupole mass spectrometer (TQ-MS) is described. This was accomplished by incorporating the precursor ion scan (PIS) acquisition and multiple reaction monitoring (MRM) acquisition in the same UPLC-MS/MS run. Notably, the developed PIS approach for detecting two pairs of characteristic product ions at m/z 120/138 or 168/150, allowed specific identification of toxic retronecine and otonecine types PAs. This PIS method is highly sensitive with over 10-fold sensitivity improvement upon previously published LC-MS method. Moreover, this new approach is suitable for high sample throughput and was applied to the screening and quantifying toxic PAs in 22 samples collected from seven Parasenecio species and four Senecio species. In addition, coupling the MRM with PIS approach generated quantitative results equivalent to those obtained by conventional MRM-only approach. This coupled MRM with PIS approach could provide both qualitative and quantitative results without the need of repetitive analyses.
Collapse
|
21
|
Ruan Q, Zhu M. Investigation of Bioactivation of Ticlopidine Using Linear Ion Trap/Orbitrap Mass Spectrometry and an Improved Mass Defect Filtering Technique. Chem Res Toxicol 2010; 23:909-17. [DOI: 10.1021/tx1000046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qian Ruan
- Department of Biotransformation, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, New Jersey 08543
| | - Mingshe Zhu
- Department of Biotransformation, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, New Jersey 08543
| |
Collapse
|
22
|
Kalgutkar AS, Bauman JN, McClure KF, Aubrecht J, Cortina SR, Paralkar J. Biochemical basis for differences in metabolism-dependent genotoxicity by two diazinylpiperazine-based 5-HT2C receptor agonists. Bioorg Med Chem Lett 2009; 19:1559-63. [PMID: 19246199 DOI: 10.1016/j.bmcl.2009.02.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
The biochemical basis for S9-dependent mutagenic response of the 5-HT(2C) receptor agonist and diazinylpiperazine derivative 1 in the Salmonella Ames assay involves P450-mediated bioactivation to DNA-reactive quinone-methide, aldehyde and nitrone intermediates. Mechanistic information pertaining to the metabolism of 1 was used in the design of diazinylpiperazine 5 to eliminate the safety liability. While 5 was negative in the Ames assay, the compound retained the ability of 1 to form certain electrophilic intermediates. Plausible hypotheses that can collectively account for the differences in mutagenic response of the two piperazine analogs are discussed.
Collapse
Affiliation(s)
- Amit S Kalgutkar
- Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | | | | | | | | | | |
Collapse
|
23
|
Discovery of 4,6-bis-anilino-1H-pyrrolo[2,3-d]pyrimidines: potent inhibitors of the IGF-1R receptor tyrosine kinase. Bioorg Med Chem Lett 2008; 19:469-73. [PMID: 19056263 DOI: 10.1016/j.bmcl.2008.11.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/08/2008] [Accepted: 11/12/2008] [Indexed: 11/23/2022]
Abstract
The evaluation of a series of 4,6-bis-anilino-1H-pyrrolo[2,3-d]pyrimidines as inhibitors of the IGF-1R (IGF-IR) receptor tyrosine kinase is reported. Examples demonstrate nanomolar potencies in in vitro enzyme and mechanistic cellular assays as well as promising in vivo pharmacokinetics in rat.
Collapse
|
24
|
Shu YZ, Johnson BM, Yang TJ. Role of biotransformation studies in minimizing metabolism-related liabilities in drug discovery. AAPS JOURNAL 2008; 10:178-92. [PMID: 18446518 DOI: 10.1208/s12248-008-9016-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 02/13/2008] [Indexed: 02/02/2023]
Abstract
Metabolism-related liabilities continue to be a major cause of attrition for drug candidates in clinical development. Such problems may arise from the bioactivation of the parent compound to a reactive metabolite capable of modifying biological materials covalently or engaging in redox-cycling reactions leading to the formation of other toxicants. Alternatively, they may result from the formation of a major metabolite with systemic exposure and adverse pharmacological activity. To avert such problems, biotransformation studies are becoming increasingly important in guiding the refinement of a lead series during drug discovery and in characterizing lead candidates prior to clinical evaluation. This article provides an overview of the methods that are used to uncover metabolism-related liabilities in a pre-clinical setting and offers suggestions for reducing such liabilities via the modification of structural features that are used commonly in drug-like molecules.
Collapse
Affiliation(s)
- Yue-Zhong Shu
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, USA.
| | | | | |
Collapse
|
25
|
Li SL, Lin G, Fu PP, Chan CL, Li M, Jiang ZH, Zhao ZZ. Identification of five hepatotoxic pyrrolizidine alkaloids in a commonly used traditional Chinese medicinal herb, Herba Senecionis scandentis (Qianliguang). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:591-602. [PMID: 18220326 DOI: 10.1002/rcm.3398] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Senecio scandens Buch.-Ham is a plant source for a commonly used traditional Chinese medicinal (TCM) herb Qianliguang. A TCM herbal proprietary product containing Qianliguang as the major herb for the treatment of sinusitis has been used in China for several decades, and has also been exported to other regions and countries worldwide. In the present study, the aqueous extract of S. scandens collected in the Shanxi Province of China was determined, for the first time, to contain hepatotoxic and tumorigenic pyrrolizidine alkaloids (PAs) by using high-performance liquid chromatography/mass spectrometric (HPLC/MS) analysis in various scanning modes. A total of nine toxic and two non-toxic PAs were detected in the aqueous extract of S. scandens, of which six PAs, namely neoplatyphylline, senecionine, senecionine N-oxide, seneciphylline, seneciphylline N-oxide and senkirkine, were unequivocally characterized, while other PAs were tentatively assigned as jacobine, jacozine N-oxide (or erucifoline N-oxide), 7-tigloylplatynecine, usaramine and an isomer of yamataimine. The estimated total content of toxic PAs in S. scandens was 10.82 microg/g herb, which was significantly higher than that (> or =1 microg/g herb) recommended by Belgium and Germany not to be used clinically. Among the PAs definitively identified, senecionine, seneciphylline, and senkirkine are known tumorigens capable of inducing liver tumors in experimental animals, while seneciphylline N-oxide and senecionine N-oxide are probably tumorigenic due to their potential conversion into seneciphylline and senecionine via metabolic reduction in the body. Thus, the current finding of the presence of toxic/tumorigenic PAs in S. scandens challenges the safety of using this TCM herb and its proprietary products.
Collapse
Affiliation(s)
- Song-Lin Li
- Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR
| | | | | | | | | | | | | |
Collapse
|
26
|
Testa B, Krämer SD. The biochemistry of drug metabolism--an introduction: Part 2. Redox reactions and their enzymes. Chem Biodivers 2007; 4:257-405. [PMID: 17372942 DOI: 10.1002/cbdv.200790032] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review continues a general presentation of the metabolism of drugs and other xenobiotics started in a recent issue of Chemistry & Biodiversity. This Part 2 presents the numerous oxidoreductases involved, their nomenclature, relevant biochemical properties, catalytic mechanisms, and the very diverse reactions they catalyze. Many medicinally, environmentally, and toxicologically relevant examples are presented and discussed. Cytochromes P450 occupy a majority of the pages of Part 2, but a large number of relevant oxidoreductases are also considered, e.g., flavin-containing monooxygenases, amine oxidases, molybdenum hydroxylases, peroxidases, and the innumerable dehydrogenases/reductases.
Collapse
Affiliation(s)
- Bernard Testa
- Department of Pharmacy, University Hospital Centre (CHUV), Rue du Bugnon, CH-1011 Lausanne.
| | | |
Collapse
|
27
|
Unexpected formation of 4-methyl-1-vinyl-δ-carboline in the reaction of 3-acetylindole oxime with acetylene. MENDELEEV COMMUNICATIONS 2007. [DOI: 10.1016/j.mencom.2007.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Waser J, Gaspar B, Nambu H, Carreira EM. Hydrazines and Azides via the Metal-Catalyzed Hydrohydrazination and Hydroazidation of Olefins. J Am Chem Soc 2006; 128:11693-712. [PMID: 16939295 DOI: 10.1021/ja062355+] [Citation(s) in RCA: 312] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discovery, study, and implementation of the Co- and Mn-catalyzed hydrohydrazination and hydroazidation reactions of olefins are reported. These reactions are equivalent to direct hydroaminations of C-C double bonds with protected hydrazines or hydrazoic acid but are based on a different concept in which the H and the N atoms come from two different reagents, a silane and an oxidizing nitrogen source (azodicarboxylate or sulfonyl azide). The hydrohydrazination reaction using di-tert-butyl azodicarboxylate is characterized by its ease of use, large functional group tolerance, and broad scope, including mono-, di-, tri-, and tetrasubstituted olefins. Key to the development of the hydroazidation reaction was the use of sulfonyl azides as nitrogen sources and the activating effect of tert-butyl hydroperoxide. The reaction was found to be efficient for the functionalization of mono-, di-, and trisubstituted olefins, and only a few functional groups are not tolerated. The alkyl azides obtained are versatile intermediates and can be transformed to the free amines or triazoles without isolation of the azides. Preliminary mechanistic investigations suggest a rate-limiting hydrocobaltation of the alkene, followed by an amination reaction. Radical intermediates cannot be ruled out and may be involved.
Collapse
Affiliation(s)
- Jérôme Waser
- Laboratorium für Organische Chemie, ETH Zürich, Hönggerberg HCI-H335, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
29
|
Hulshof JW, Vischer HF, Verheij MHP, Fratantoni SA, Smit MJ, de Esch IJP, Leurs R. Synthesis and pharmacological characterization of novel inverse agonists acting on the viral-encoded chemokine receptor US28. Bioorg Med Chem 2006; 14:7213-30. [PMID: 16843661 DOI: 10.1016/j.bmc.2006.06.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 06/08/2006] [Accepted: 06/23/2006] [Indexed: 11/16/2022]
Abstract
G-protein coupled receptors encoded by viruses represent an unexplored class of potential drug targets. In this study, we describe the synthesis and pharmacological characterization of the first class of inverse agonists acting on the HCMV-encoded receptor US28. It is shown that replacement of the 4-hydroxy group of lead compound 1 with a methylamine group results in a significant 6-fold increase in affinity. Interestingly, increasing the rigidity of the spacer by the introduction of a double bond also leads to a significant increase in binding affinity compared to 1. These novel inverse agonists serve as valuable tools to elucidate the role of constitutive signaling in the pathogenesis of viral infection and may have therapeutic potential as leads for new antiviral drugs.
Collapse
Affiliation(s)
- Janneke W Hulshof
- Leiden/Amsterdam Center for Drug Research, LACDR, Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Jushchyshyn MI, Wahlstrom JL, Hollenberg PF, Wienkers LC. Mechanism of inactivation of human cytochrome P450 2B6 by phencyclidine. Drug Metab Dispos 2006; 34:1523-9. [PMID: 16782764 DOI: 10.1124/dmd.106.010579] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism behind the observed inactivation of human P450 2B6 by phencyclidine (PCP) has been evaluated over the past 2 decades. The scope of the current investigation was to contribute to the fundamental knowledge of PCP oxidation and perhaps the mechanism behind P450 inactivation. To study the chemistry of PCP oxidation, we subjected PCP to the Fenton reagent. Under Fenton chemistry conditions, oxidation on all three PCP rings was observed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). When PCP was incubated with the Fenton system in the presence of glutathione (GSH), three GSH-PCP conjugates were identified. Subsequent LC-MS/MS analysis of these conjugates revealed two species that had GSH attached to the cyclohexane ring of PCP and a third conjugate in which GSH was adducted to the piperidine ring. When PCP was incubated across a panel of P450 enzymes, several enzymes, including P450s 2D6 and 3A4, were able to catalyze the formation of the PCP iminium ion, whereas P450s 2B6 and 2C19 were exclusively able to hydroxylate secondary carbons on the cyclohexane ring of PCP. Subsequent mechanistic experiments revealed that only P450s 2B6 and 2C19 demonstrated loss of catalytic activity after preincubation with 10 microM PCP. Finally, investigation of P450 2B6 inactivation using structural analogs of PCP revealed that blocking the para-carbon atom on the cyclohexane ring of PCP from oxidation protected the P450 2B6 from inactivation, which suggests that a reactive intermediate generated during the hydroxylation of the cyclohexane ring may be linked to the mechanism of inactivation of P450 2B6 by PCP.
Collapse
|
31
|
Obach RS, Dalvie DK. METABOLISM OF NOMIFENSINE TO A DIHYDROISOQUINOLINIUM ION METABOLITE BY HUMAN MYELOPEROXIDASE, HEMOGLOBIN, MONOAMINE OXIDASE A, AND CYTOCHROME P450 ENZYMES. Drug Metab Dispos 2006; 34:1310-6. [PMID: 16679384 DOI: 10.1124/dmd.106.010173] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nomifensine is an antidepressant agent that was removed from use because of a high incidence of hemolytic anemia. It contains an N-methyl-8-aminotetrahydroisoquinoline ring which has the potential to be oxidized to quaternary dihydroisoquinolinium and isoquinolinium ions, albeit such a transformation had not been previously observed. In this report, we demonstrate the conversion of nomifensine to a dihydroisoquinolinium ion metabolite by several human enzymes. Human liver microsomes supplemented with NADPH generated the dihydroisoquinolinium ion metabolite along with other hydroxylated metabolites, whereas when supplemented with t-butyl peroxide, only the dihydroisoquinolinium ion metabolite was observed. Monoamine oxidase A, but not monoamine oxidase B, catalyzed this reaction, as well as human hemoglobin supplemented with H2O2. Human myeloperoxidase catalyzed this reaction in the presence of H2O2, and activation of the reaction was observed when incubations were conducted in the presence of acetaminophen at concentrations relevant to those measured in humans. The reaction was also observed in human whole blood. The equilibrium between the dihydroisoquinolinium ion and carbinolamine was shown to have a pK of about 11.7. The dihydroisoquinolinium ion was shown to react with cyanide and borohydride, but not glutathione. These findings suggest that the electrophilic nomifensine dihydroisoquinolinium metabolite, which can be generated by several enzymes, could be behind toxic responses to nomifensine such as hemolytic anemia and hepatotoxicity.
Collapse
Affiliation(s)
- R Scott Obach
- Department of Pharmacokinetics, Dynamics, and Drug Metabolism, Pfizer Global Research and Development, Groton Laboratories, Groton, CT 06340, USA.
| | | |
Collapse
|
32
|
Shebley M, Jushchyshyn MI, Hollenberg PF. SELECTIVE PATHWAYS FOR THE METABOLISM OF PHENCYCLIDINE BY CYTOCHROME P450 2B ENZYMES: IDENTIFICATION OF ELECTROPHILIC METABOLITES, GLUTATHIONE, AND N-ACETYL CYSTEINE ADDUCTS. Drug Metab Dispos 2005; 34:375-83. [PMID: 16326815 DOI: 10.1124/dmd.105.007047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The metabolism of phencyclidine (PCP) has been studied previously in cytochrome P450 (P450)-containing microsomal systems. However, the reactive intermediate(s) that covalently binds to the P450 and leads to inactivation or leaves the active site to modify other proteins has not been identified. In this study two electrophilic intermediates of PCP were identified by mass spectrometry and by trapping with reduced glutathione (GSH) or N-acetyl cysteine (NAC). The tentative structures of these electrophilic intermediates were determined using mass spectrometry. P450s 2B1 and 2B4 formed a metabolite that exhibited an m/z of 240 corresponding to the mass of the 2,3-dihydropyridinium species of PCP or its conjugate base, the 1,2-dihydropyridine. Chemical reduction of the incubation mixture using NaBH4 resulted in the disappearance of the signal at m/z 240, consistent with reduction of a 2,3-dihydropyridinium species. Furthermore, the reactive metabolite trapped by GSH resulted in an adduct exhibiting an m/z of 547, consistent with the mass of the 2,3-dihydropyridinium species of PCP (m/z 240), that has reacted with a molecule of GSH (m/z 308). However, P450 2B6 formed a different reactive intermediate of PCP that was isolated as a GSH adduct exhibiting an m/z of 581 and an NAC adduct with an m/z of 437. Liquid chromatography-tandem mass spectrometry analysis of these adducts suggested that a di-oxygenated iminium metabolite of PCP could be the reactive intermediate formed by P450 2B6 but not by the other 2B isoforms. These data suggest that P450 2B6 favors oxidation pathways for PCP metabolism that are different from those of P450s 2B1 and 2B4.
Collapse
Affiliation(s)
- Mohamad Shebley
- Department of Pharmacology, The University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0632, USA
| | | | | |
Collapse
|
33
|
Zhou S, Chan E, Duan W, Huang M, Chen YZ. Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab Rev 2005; 37:41-213. [PMID: 15747500 DOI: 10.1081/dmr-200028812] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A number of therapeutic drugs with different structures and mechanisms of action have been reported to undergo metabolic activation by Phase I or Phase II drug-metabolizing enzymes. The bioactivation gives rise to reactive metabolites/intermediates, which readily confer covalent binding to various target proteins by nucleophilic substitution and/or Schiff's base mechanism. These drugs include analgesics (e.g., acetaminophen), antibacterial agents (e.g., sulfonamides and macrolide antibiotics), anticancer drugs (e.g., irinotecan), antiepileptic drugs (e.g., carbamazepine), anti-HIV agents (e.g., ritonavir), antipsychotics (e.g., clozapine), cardiovascular drugs (e.g., procainamide and hydralazine), immunosupressants (e.g., cyclosporine A), inhalational anesthetics (e.g., halothane), nonsteroidal anti-inflammatory drugs (NSAIDSs) (e.g., diclofenac), and steroids and their receptor modulators (e.g., estrogens and tamoxifen). Some herbal and dietary constituents are also bioactivated to reactive metabolites capable of binding covalently and inactivating cytochrome P450s (CYPs). A number of important target proteins of drugs have been identified by mass spectrometric techniques and proteomic approaches. The covalent binding and formation of drug-protein adducts are generally considered to be related to drug toxicity, and selective protein covalent binding by drug metabolites may lead to selective organ toxicity. However, the mechanisms involved in the protein adduct-induced toxicity are largely undefined, although it has been suggested that drug-protein adducts may cause toxicity either through impairing physiological functions of the modified proteins or through immune-mediated mechanisms. In addition, mechanism-based inhibition of CYPs may result in toxic drug-drug interactions. The clinical consequences of drug bioactivation and covalent binding to proteins are unpredictable, depending on many factors that are associated with the administered drugs and patients. Further studies using proteomic and genomic approaches with high throughput capacity are needed to identify the protein targets of reactive drug metabolites, and to elucidate the structure-activity relationships of drug's covalent binding to proteins and their clinical outcomes.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
34
|
Kovacic P, Cooksy AL. Unifying mechanism for toxicity and addiction by abused drugs: electron transfer and reactive oxygen species. Med Hypotheses 2005; 64:357-66. [PMID: 15607571 DOI: 10.1016/j.mehy.2004.07.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 07/12/2004] [Indexed: 11/26/2022]
Abstract
Abused drugs are of grave concern throughout the world for a variety of reasons. Although impressive advances have been made, there are many unknown mechanistic aspects. This report presents a novel hypothesis based on a unifying theme for action of the major classes of abused drugs, in addition to commonly abused therapeutic drugs. The approach is based on electron transfer (ET), reactive oxygen species (ROS), and oxidative stress (OS). It is significant that physiologically active substances generally incorporate ET functionalities, either per se, or more usually in their metabolites. In order to achieve ET in vivo, the reduction potential must be more positive than -0.5 V, which is the case for metabolites of abused drugs, except for special cases. Since the ET process is catalytic, only small quantities of agent are needed for generation of large amounts of ROS during redox cycyling. Bioaction with cellular materials could entail ET alone or participation of ROS. In the abused category, among the main classes of ET functionalities are quinones and iminiums, with alpha-dicarbonyl and nitroxyl radical being rarer. Nicotine yields nicotine iminium, myosmine iminium, and DNA base iminium via alkylation by a metabolic nitrosamine. In the case of alcohol, diacetyl (an alpha-dicarbonyl) is formed, which can lead to conjugated imine (or iminium) by condensation with pri-amine of protein. Phencyclidine is unusual since the iminium product is non-conjugated. However, data indicate that the conformation present at the binding site can accommodate delocalization of the derived radical. For cocaine, various metabolites may play a role: iminium, nitroxyl radical, nitrosonium and formaldehyde. Dealkylation of the ether moiety of ecstasy provides a catechol function capable of redox cycling with the o-quinone partner. Amphetamine and methamphetamine also appear to function by way of the catechol route, as well as morphine and heroin. Tetrahydrocannabinol produces an epoxide, a functionality capable of DNA base alkylation accompanied by ROS. LSD undergoes oxidation to a phenol which may be a quinone precursor. Therapeutic drugs display the indicated metabolic relationships: benzodiazepines, iminium; phenytoin, quinone; phenobarbital, catechol; aspirin, catechol and hydroquinone; acetaminophen, iminoquinone. Extensive evidence exists for formation of ROS, organ injury by OS, depletion of AOs, and protection by AOs for the various drugs. There is also discussion of computational approaches, addiction mechanism and prevention, and health promotion.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-1030, USA.
| | | |
Collapse
|
35
|
Fu PP, Xia Q, Lin G, Chou MW. Pyrrolizidine Alkaloids—Genotoxicity, Metabolism Enzymes, Metabolic Activation, and Mechanisms. Drug Metab Rev 2004; 36:1-55. [PMID: 15072438 DOI: 10.1081/dmr-120028426] [Citation(s) in RCA: 368] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pyrrolizidine alkaloid-containing plants are widely distributed in the world and are probably the most common poisonous plants affecting livestock, wildlife, and humans. Because of their abundance and potent toxicities, the mechanisms by which pyrrolizidine alkaloids induce genotoxicities, particularly carcinogenicity, were extensively studied for several decades but not exclusively elucidated until recently. To date, the pyrrolizidine alkaloid-induced genotoxicities were revealed to be elicited by the hepatic metabolism of these naturally occurring toxins. In this review, we present updated information on the metabolism, metabolizing enzymes, and the mechanisms by which pyrrolizidine alkaloids exert genotoxicity and tumorigenicity.
Collapse
Affiliation(s)
- Peter P Fu
- National Center for Toxicological Research, Jefferson, Arkansas 72079, USA.
| | | | | | | |
Collapse
|
36
|
Dalvie DK, O'Connell TN. CHARACTERIZATION OF NOVEL DIHYDROTHIENOPYRIDINIUM AND THIENOPYRIDINIUM METABOLITES OF TICLOPIDINE IN VITRO: ROLE OF PEROXIDASES, CYTOCHROMES P450, AND MONOAMINE OXIDASES. Drug Metab Dispos 2004; 32:49-57. [PMID: 14709620 DOI: 10.1124/dmd.32.1.49] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ticlopidine is an agent that inhibits adenosine diphosphate-induced platelet aggregation. Metabolic studies with ticlopidine have indicated that the principal routes of metabolism are N-dealkylation, N-oxidation, and oxidation of the thiophene ring. However, ticlopidine shares some structural features that are similar to those of cyclic tertiary amines such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and tetrahydroisoquinolines, which are converted to neurotoxic pyridinium metabolites, via the iminium (dihydropyridinium) species. The current in vitro studies examined the potential of ticlopidine to undergo a similar conversion by cytochrome P450 (P450), peroxidases, and monoamine oxidase (MAO). The results from these studies have suggested that ticlopidine undergoes an overall 4-electron oxidation to the novel thienopyridinium metabolite (M6) via the intermediate 2-electron oxidation product, the thienodihydropyridinium metabolite (M5) by P450, horseradish peroxidase, and myeloperoxidase and, to a lesser extent, by MAO. The structures of these metabolites were characterized by liquid chromatography (LC)-tandem mass spectrometry and LC-NMR. Qualitative studies with baculovirus-expressed P450s revealed the involvement of P450 3A4 in this conversion. Interestingly, M5 was the primary metabolite in the peroxidase-mediated reactions and was quite stable to air oxidation or disproportionation. It was less electrophilic and did not form cyanide, glutathione, or N-acetylcysteine adducts. On the other hand, M6 was the major metabolite in P450-catalyzed oxidation of ticlopidine. The results from this study have revealed that in addition to metabolism of the thiophene ring of ticlopidine, the tetrahydropyridine moiety of the compound is susceptible to a 2-electron and a 4-electron oxidation like other cyclic tertiary amines.
Collapse
Affiliation(s)
- Deepak K Dalvie
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Groton, Connecticut, USA.
| | | |
Collapse
|
37
|
Beeler AB, Gadepalli RSVS, Steyn S, Castagnoli N, Rimoldi JM. Synthesis and in vitro biological evaluation of fluoro-substituted-4-phenyl-1,2,3,6-tetrahydropyridines as monoamine oxidase B substrates. Bioorg Med Chem 2003; 11:5229-34. [PMID: 14604687 DOI: 10.1016/j.bmc.2003.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The substrate properties of three beta-fluoro-4-phenyl-1,2,3,6-tetrahydropyridines related to the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine have been examined in an effort to evaluate the contribution of electronic parameters to the MAO-B catalyzed allylic-alpha-carbon oxidation of the tetrahydropyridinyl system. The design, synthesis, and biological evaluation of these analogues are presented and correlations to amine ionization potentials versus substrate activity are discussed.
Collapse
Affiliation(s)
- Aaron B Beeler
- Department of Medicinal Chemistry and Laboratory for Applied Drug Design and Synthesis, University of Mississippi, University MS 38677, USA
| | | | | | | | | |
Collapse
|
38
|
Yin W, Doss GA, Stearns RA, Chaudhary AG, Hop CE, Franklin RB, Kumar S. A novel P450-catalyzed transformation of the 2,2,6,6-tetramethyl piperidine moiety to a 2,2-dimethyl pyrrolidine in human liver microsomes: characterization by high resolution quadrupole-time-of-flight mass spectrometry and 1H-NMR. Drug Metab Dispos 2003; 31:215-23. [PMID: 12527703 DOI: 10.1124/dmd.31.2.215] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We describe herein a novel metabolic fate of the 2,2,6,6-tetramethyl-piperidine (2,2,6,6-TMPi) moiety to a ring-contracted 2,2-dimethyl pyrrolidine (2,2-DMPy) in human liver microsomal incubations. The existence of this pathway was demonstrated for three compounds (I-III) of varied structures suggesting that this may be a general biotransformation reaction for the 2,2,6,6-TMPi moiety. The 2,2-DMPy metabolites formed in incubations of the three compounds with human liver microsomes were characterized by online high performance liquid chromatography coupled to a high resolution hybrid quadrupole-time-of-flight mass spectrometer. Suggested elemental composition obtained from accurate mass measurements of the molecular ions and fragment ions of the metabolites clearly indicated the loss of a mass equivalent to C(3)H(6) from the parent 2,2,6,6-TMPi functionality. Additional accurate tandem mass spectrometry data indicated that one of the original two gem-dimethyl groups was intact in the metabolite structure. Proof of a ring-contracted 2,2-DMPy structure was obtained using (1)H-NMR experiments on a metabolite purified from liver microsomal incubations, which showed only two geminal methyl groups, instead of four in the parent compound. Two-dimensional correlation spectroscopy and decoupling experiments established aliphatic protons arranged in a pyrrolidine ring pattern. The fact that the formation of 2,2-DMPy metabolites in human liver microsomes was NADPH-dependent suggested that this novel metabolic reaction was catalyzed by the cytochrome P450 (P450) enzyme(s). Immunoinhibition studies in human liver microsomal incubations using anti-P450 monoclonal antibodies and experiments with insect cell microsomes containing individually expressed recombinant human P450 isozymes indicated that multiple P450 isozymes were capable of catalyzing this novel metabolic transformation.
Collapse
Affiliation(s)
- Wenji Yin
- Department of Drug Metabolism, Merck Research Laboratories, Merck & Co. Inc., Rahway, NJ 07065, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Atkins WM, Lu WD, Cook DL. Is there a toxicological advantage for non-hyperbolic kinetics in cytochrome P450 catalysis? Functional allostery from "distributive catalysis". J Biol Chem 2002; 277:33258-66. [PMID: 12082118 DOI: 10.1074/jbc.m204425200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytochrome P450s (CYPs) are the major enzymatic detoxification and drug metabolism system. Recently, it has become clear that several CYP isoforms exhibit positive and negative homotropic cooperativity. However, the toxicological implications of allosteric kinetics have not been considered, nor understood. The allosteric kinetics are particularly enigmatic in several respects. In many cases, CYPs bioactivate substrates to more toxic products, thus making it difficult to rationalize a functional advantage for positive cooperativity. Also, CYPs exhibit cooperativity with many structurally diverse ligands, in marked contrast to the specificity observed with other allosteric systems. Here, kinetic simulations are used to compare the probabilistic time- and concentration-dependent integrated toxicity function during conversion of substrate to product for CYP models exhibiting Michaelis-Menten (non-cooperative) kinetics, positive cooperativity, or negative cooperativity. The results demonstrate that, at low substrate concentrations, the slower substrate turnover afforded by cooperative CYPs compared with Michaelis-Menten enzymes can be a significant toxicological advantage, when toxic thresholds exist. When present, the advantage results from enhanced "distribution" of toxin in two pools, substrate and product, for an extended period, thus minimizing the chance that either exceeds its toxic threshold. At intermediate concentrations, the allosteric kinetics can be a modest advantage or modest disadvantage, depending on the kinetic parameters. However, at high substrate concentrations associated with a high probability of toxicity, fast turnover is desirable, and this advantage is provided also by the cooperative enzymes. For the positive homotropic cooperativity, the allosteric kinetics minimize the probability of toxicity over the widest range of system parameters. Furthermore, this apparent functional cooperativity is achieved without specific molecular recognition that is the hallmark of "traditional" allostery.
Collapse
Affiliation(s)
- William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, USA.
| | | | | |
Collapse
|
40
|
Miksys S, Rao Y, Hoffmann E, Mash DC, Tyndale RF. Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics. J Neurochem 2002; 82:1376-87. [PMID: 12354285 DOI: 10.1046/j.1471-4159.2002.01069.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytochrome P450 (CYP) 2D6 is expressed in liver, brain and other extrahepatic tissues where it metabolizes a range of centrally acting drugs and toxins. As ethanol can induce CYP2D in rat brain, we hypothesized that CYP2D6 expression is higher in brains of human alcoholics. We examined regional and cellular expression of CYP2D6 mRNA and protein by RT-PCR, Southern blotting, slot blotting, immunoblotting and immunocytochemistry. A significant correlation was found between mean mRNA and CYP2D6 protein levels across 13 brain regions. Higher expression was detected in 13 brain regions of alcoholics (n = 8) compared to nonalcoholics (n = 5) (anovap < 0.0001). In hippocampus this was localized in CA1-3 pyramidal cells and dentate gyrus granular neurons. In cerebellum this was localized in Purkinje cells and their dendrites. Both of these brain regions, and these same cell-types, are known to be susceptible to alcohol damage. For one case, a poor metabolizer (CYP2D6*4/*4), there was no detectable CYP2D6 protein, confirming the specificity of the antibody used. These data suggest that in alcoholics elevated brain CYP2D6 expression may contribute to altered sensitivity to centrally acting drugs and to the mediation of neurotoxic and behavioral effects of alcohol.
Collapse
Affiliation(s)
- Sharon Miksys
- Centre for Addiction and Mental Health, Department of Pharmacology, University of Toronto, Canada
| | | | | | | | | |
Collapse
|
41
|
Abstract
Pyrrolizidine poisoning in humans is regarded by most clinical toxicologists as of little relevance. However, a number of individual case studies in the West and some severe cases of mass poisoning by contaminated grains have led to increased interest in these alkaloids. The increasing use of herbal remedies, some of which contain toxic pyrrolizidines, suggests that the incidence of pyrrolizidine poisoning is likely to increase. In this review the authors describe the chemistry and metabolism of pyrrolizidine alkaloids, the salient features of pyrrolizidine poisoning, and the methods available for detection of these compounds in human fluids.
Collapse
Affiliation(s)
- M J Stewart
- Indigenous Toxicology Unit, Department of Chemical Pathology, South African Institute for Medical Research, University of the Witwatersrand Medical School, Johannesburg, South Africa.
| | | |
Collapse
|
42
|
Cui Y, Lin G. Simultaneous analysis of clivorine and its four microsomal metabolites by high-performance liquid chromatography. J Chromatogr A 2000; 903:85-92. [PMID: 11153958 DOI: 10.1016/s0021-9673(00)00896-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A specific high-performance liquid chromatographic assay was developed for a simultaneously qualitative and quantitative determination of clivorine, a hepatotoxic otonecine-type pyrrolizidine alkaloid, and its four putative hepatotoxicity-related metabolites, namely dehydroretronecine, 7-glutathionyldehydroretronecine, 7,9-diglutathionyldehydroretronecine, and clivoric acid, generated in rat microsomal incubation. This simultaneous determination was conducted by a direct analysis of aliquots of the supernatant of incubates using a specific two-column set-up. Impurities in the supernatant were firstly eluted out from the first PRP-1 guard column (50x4.1 mm) during an initial 5 min washing period with isocratic elution by mobile phase A (0.2% formic acid at pH 3.4 adjusted by ammonia). Subsequently, the guard column was then connected to the second PRP-1 analytical column (250x4.6 mm) and analytes were separated by a gradient elution with mobile phases A and B (acetonitrile). The assay provided good reproducibility and accuracy for all analytes tested with less than 12% of overall intra- and inter-day variations and higher than 87% of overall accuracy. This developed method was successfully applied to determine the intact clivorine and its four metabolites generated in rat microsomal incubation.
Collapse
Affiliation(s)
- Y Cui
- Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, SAR
| | | |
Collapse
|
43
|
van der Schyf CJ, Castagnoli K, Palmer S, Hazelwood L, Castagnoli N. Melatonin fails to protect against long-term MPTP-induced dopamine depletion in mouse striatum. Neurotox Res 2000; 1:261-9. [PMID: 12835094 DOI: 10.1007/bf03033256] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several laboratories recently have reported that melatonin may possess neuroprotective properties. The present paper presents the results of our studies on the long term in vivo neuroprotective effects of melatonin in a well-defined neurotoxicity model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the C57BL/6 mouse. MPTP is bioactivated by brain monoamine oxidase B (MAO-B) to its neurotoxic pyridinium metabolite 1-methyl-4-phenylpyridinium (MPP(+)) which destroys dopaminergic nerve terminals leading to the depletion of neostriatal dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC). Our initial study compared striatal DA and DOPAC levels in MPTP-only-treated animals and animals treated with melatonin 30 min prior to and 3 times hourly post-MPTP. DA/DOPAC levels measured 7 days after MPTP were similar in both groups. A second study was designed to address the possibility that melatonin cleared from the brain prior to MPP(+). Animals, that had been administered the same regimen of melatonin as in the first study plus a fourth post-MPTP melatonin dose, were maintained on melatonin in drinking water until 5 days post-MPTP. Striatal DA/DOPAC levels of these melatonin-plus-MPTP treated animals also were the same as the MPTP-only-treated animals. In vitro studies confirmed that melatonin is not an inhibitor of MAO-B. These data demonstrate that melatonin does not have any significant protective effects against the long-term striatal DA and DOPAC depletion induced by MPTP in the C57BL/6 mouse.
Collapse
Affiliation(s)
- C J van der Schyf
- Harvey W. Peters Center, Department of Chemistry, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0212, USA.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Haloperidol is commonly used in the therapy of patients with acute and chronic schizophrenia. The enzymes involved in the biotransformation of haloperidol include cytochrome P450 (CYP), carbonyl reductase and uridine diphosphoglucose glucuronosyltransferase. The greatest proportion of the intrinsic hepatic clearance of haloperidol is by glucuronidation, followed by the reduction of haloperidol to reduced haloperidol and by CYP-mediated oxidation. In studies of CYP-mediated disposition in vitro, CYP3A4 appears to be the major isoform responsible for the metabolism of haloperidol in humans. The intrinsic clearances of the back-oxidation of reduced haloperidol to the parent compound, oxidative N-dealkylation and pyridinium formation are of the same order of magnitude, suggesting that the same enzyme system is responsible for the 3 reactions. Large variation in the catalytic activity was observed in the CYP-mediated reactions, whereas there appeared to be only small variations in the glucuronidation and carbonyl reduction pathways. Haloperidol is a substrate of CYP3A4 and an inhibitor, as well as a stimulator, of CYP2D6. Reduced haloperidol is also a substrate of CYP3A4 and inhibitor of CYP2D6. Pharmacokinetic interactions occur between haloperidol and various drugs given concomitantly, for example, carbamazepine, phenytoin, phenobarbital, fluoxetine, fluvoxamine, nefazodone, venlafaxine, buspirone, alprazolam, rifampicin (rifampin), quinidine and carteolol. Overall, drug interaction studies have suggested that CYP3A4 is involved in the biotransformation of haloperidol in humans. Interactions of haloperidol with most drugs lead to only small changes in plasma haloperidol concentrations, suggesting that the interactions have little clinical significance. On the other hand, the coadministration of carbamazepine, phenytoin, phenobarbital, rifampicin or quinidine affects the pharmacokinetics of haloperidol to an extent that alterations in clinical consequences would be expected. In vivo pharmacogenetic studies have indicated that the metabolism and disposition of haloperidol may be regulated by genetically determined polymorphic CYP2D6 activity. However, these findings appear to contradict those from studies in vitro with human liver microsomes and from studies of drug interactions in vivo. Interethnic and pharmacogenetic differences in haloperidol metabolism may explain these observations.
Collapse
Affiliation(s)
- S Kudo
- Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd, Japan
| | | |
Collapse
|
45
|
Abstract
Pyrrolizidine alkaloids are the leading plant toxins associated with disease in humans and animals. Upon ingestion, metabolic activation in liver converts the parent compounds into highly reactive electrophiles capable of reacting with cellular macromolecules forming adducts which may initiate acute or chronic toxicity. The pyrrolizidine alkaloids present a serious health risk to human populations that may be exposed to them through contamination of foodstuffs or when plants containing them are consumed as medicinal herbs. Some pyrrolizidine alkaloids (PA) adducts are persistent in animal tissue and the metabolites may be re-released and cause damage long after the initial period of ingestion. PAs are also known to act as teratogens and abortifacients. Chronic ingestion of plants containing PAs has also led to cancer in experimental animals and metabolites of several PAs have been shown to be mutagenic in the Salmonella typhimurium/mammalian microsome system. However, no clinical association has yet been found between human cancer and exposure to PAs. Based on the extensive reports on the outcome of human exposure available in the literature, we conclude that while humans face the risk of veno-occlusive disease and childhood cirrhosis PAs are not carcinogenic to humans.
Collapse
Affiliation(s)
- A S Prakash
- National Research Centre for Environmental Toxicology, 39, Kessels Road, Coopers Plains, QLD 4108, Australia.
| | | | | | | |
Collapse
|
46
|
Usuki E, Van der Schyf CJ, Castagnoli N. Metabolism of haloperidol and its tetrahydropyridine dehydration product HPTP. Drug Metab Rev 1998; 30:809-26. [PMID: 9844810 DOI: 10.3109/03602539808996331] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- E Usuki
- Peters Center for the Study of Parkinson's Disease, Department of Chemistry, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg 24061-0212, USA
| | | | | |
Collapse
|