1
|
Sarömba JA, Müller JP, Tupiec J, Roeth A, Kurt B, Kahles F, Laurentius T, Bollheimer C, Stingl JC, Just KS. Solanidine-derived CYP2D6 phenotyping elucidates phenoconversion in multimedicated geriatric patients. Br J Clin Pharmacol 2025. [PMID: 39957076 DOI: 10.1002/bcp.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
AIMS Phenoconversion, a genotype-phenotype mismatch, challenges a successful implementation of personalized medicine. The aim of this study was to detect and determine phenoconversion using the solanidine metabolites 3,4-seco-solanidine-3,4-dioic acid (SSDA) and 4-OH-solanidine as diet-derived cytochrome P450 2D6 (CYP2D6) biomarkers in a geriatric, multimorbid cohort with high levels of polypharmacy. METHODS Blood samples and data of geriatric, multimedicated patients were collected during physician counsel (CT: NCT05247814). Solanidine and its metabolites were determined via liquid chromatography/tandem mass spectrometry and used for CYP2D6 phenotyping. CYP2D6 genotyping was performed and activity scores (AS) were assigned. Complete medication intake was assessed. A shift of the AS predicted via genotyping as measured by phenotyping was calculated. RESULTS Solanidine and its metabolites were measured in 88 patients with complete documentation of drug use. Patients had a median age of 83 years (interquartile range [IQR] 77-87) and the majority (70.5%, n = 62) were female. Patients took a median of 15 (IQR 12-17) medications. The SSDA/solanidine metabolic ratio correlated significantly with the genotyping-derived AS (P < .001) and clearly detected poor metabolizers. In the model adjusted for age, sex, Charlson Comorbidity Index and estimated glomerular filtration rate each additional CYP2D6 substrate/inhibitor significantly lowered the expected AS by 0.53 (95% confidence interval 0.85-0.21) points in patients encoding functional CYP2D6 variants (R2 = 0.242). CONCLUSIONS Phenotyping of CYP2D6 activity by measurement of diet-derived biomarkers elucidates phenoconversion in geriatric patients. These results might serve as a prerequisite for the validation and establishment of a bedside method to measure CYP2D6 activity in multimorbid patients for successful application of personalized drug prescribing.
Collapse
Affiliation(s)
- Jens Andreas Sarömba
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, North Rhine-Westphalia, Germany
| | - Julian Peter Müller
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, North Rhine-Westphalia, Germany
| | - Jolanta Tupiec
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, North Rhine-Westphalia, Germany
| | - Anjali Roeth
- Department of General, Visceral, Pediatric and Transplantation Surgery, University Hospital RWTH Aachen, Aachen, North Rhine-Westphalia, Germany
| | - Berkan Kurt
- Department of Internal Medicine I - Cardiology, University Hospital RWTH Aachen, Aachen, North Rhine-Westphalia, Germany
| | - Florian Kahles
- Department of Internal Medicine I - Cardiology, University Hospital RWTH Aachen, Aachen, North Rhine-Westphalia, Germany
| | - Thea Laurentius
- Department of Geriatric Medicine, University Hospital RWTH Aachen, Aachen, North Rhine-Westphalia, Germany
- Department of Geriatrics, Carl von Ossietzky University of Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Cornelius Bollheimer
- Department of Geriatric Medicine, University Hospital RWTH Aachen, Aachen, North Rhine-Westphalia, Germany
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, North Rhine-Westphalia, Germany
| | - Katja S Just
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, North Rhine-Westphalia, Germany
| |
Collapse
|
2
|
Moschella A, Mourou S, Perfler S, Zoroddu E, Bezzini D, Soru D, Trignano C, Miozzo M, Squassina A, Cecchin E, Floris M. Pharmacogenetic Information on Drug Labels of the Italian Agency of Medicines (AIFA): Actionability and Comparison Across Other Regulatory Agencies. Clin Transl Sci 2025; 18:e70138. [PMID: 39910906 PMCID: PMC11799589 DOI: 10.1111/cts.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 01/05/2025] [Indexed: 02/07/2025] Open
Abstract
To plan future steps for the implementation and regulation of pharmacogenetic testing, any issue in the management of pharmacogenetic information by regulatory bodies must be identified. In this paper, an analysis of pharmacogenetic information in the summary of product characteristics (SmCPs) of drugs approved by Italian Drug Agency (AIFA) was conducted. Among 4214 SmCPs of 1063 active ingredients, 53.2% (n = 2240) included pharmacogenetic information in at least one section, most frequently for drugs in the Anatomical Therapeutic Chemical category "Antineoplastic and immunomodulatory agents". To contextualize these data in the international scenario, a pharmacogenetic level of actionability, based on AIFA SmCPs, was assigned to 608 drug/gene pairs included in FDA's "Table of Pharmacogenomic Biomarkers in Drug Labels", according to PharmGKB (The Pharmacogenomics Knowledge Base). Approximately 67% of drug/gene pairs were deemed classifiable: Based on SmCPs phrasing, for half of them the genetic testing was cataloged as "required" or "recommended" (mainly tumor somatic variants), whereas 40% as "actionable" (mostly PK/PD-related germline variants). The comparison with other regulatory agencies highlighted a discordance in the assigned pharmacogenetic levels of actionability ranging from 1% to 14%. This discrepancy may also point out the need to rethink the language used in AIFA-approved SmCPs to clarify whether a pharmacogenetic test is necessary or not and for which subjects it has been recommended. For the first time, a detailed evaluation and comparative analysis of the pharmacogenetic information on Italian SmCPs was presented, placing it in an international context and laying the groundwork for rethinking pharmacogenetic indications in AIFA-approved SmCPs.
Collapse
Affiliation(s)
- Antonino Moschella
- Unit of Medical Genetics, Grande Ospedale Metropolitano Bianchi‐Melacrino‐MorelliReggio CalabriaItaly
| | - Soumaya Mourou
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Samantha Perfler
- Experimental and Clinical PharmacologyCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Enrico Zoroddu
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Daiana Bezzini
- Department of Life SciencesUniversity of SienaSienaItaly
| | | | - Claudia Trignano
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Monica Miozzo
- Medical Genetics Unit, Department of Health Sciences, ASST Santi Paolo e CarloUniversità Degli Studi di MilanoMilanItaly
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical PharmacologyUniversity of CagliariCagliariItaly
| | - Erika Cecchin
- Experimental and Clinical PharmacologyCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Matteo Floris
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| |
Collapse
|
3
|
Salatin S, Shafiee-Kandjani AR, Hamidi S, Amirfiroozi A, Kalejahi P. Individualized psychiatric care: integration of therapeutic drug monitoring, pharmacogenomics, and biomarkers. Per Med 2025; 22:29-44. [PMID: 39706800 DOI: 10.1080/17410541.2024.2442897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Personalized treatment optimization considers individual clinical, genetic, and environmental factors influencing drug efficacy and tolerability. As evidence accumulates, these approaches may become increasingly integrated into standard psychiatric care, potentially transforming the treatment landscape for mental health disorders. While personalized treatment optimization shows promise in enhancing therapeutic outcomes and minimizing adverse effects, further research is needed to establish its clinical utility and cost-effectiveness across various psychiatric disorders. This review examines the potential utility of personalized treatment optimization in psychiatry, addressing the challenge of suboptimal effectiveness and variable patient responses to psychiatric medications. It explores how therapeutic drug monitoring, pharmacogenomics, and biomarker testing can be used to individualize and optimize pharmacotherapy for mental disorders such as depression, bipolar disorder, and schizophrenia.
Collapse
Affiliation(s)
- Sara Salatin
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Shafiee-Kandjani
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Hamidi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Amirfiroozi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Genetics, Tabriz, Iran
| | - Parinaz Kalejahi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Gallego RA, Cho-Schultz S, Del Bel M, Dechert-Schmitt AM, Donaldson JS, He M, Jalaie M, Kania R, Matthews J, McTigue M, Tuttle JB, Risley H, Zhou D, Zhou R, Ahmad OK, Bernier L, Berritt S, Braganza J, Chen Z, Cianfrogna JA, Collins M, Costa Jones C, Cronin CN, Davis C, Dress K, Edwards M, Farrell W, France SP, Grable N, Johnson E, Johnson TW, Jones R, Knauber T, Lafontaine J, Loach RP, Maestre M, Miller N, Moen M, Monfette S, Morse P, Nager AR, Niosi M, Richardson P, Rohner AK, Sach NW, Timofeevski S, Tucker JW, Vetelino B, Zhang L, Nair SK. Discovery of PF-07265028, A Selective Small Molecule Inhibitor of Hematopoietic Progenitor Kinase 1 (HPK1) for the Treatment of Cancer. J Med Chem 2024; 67:22002-22038. [PMID: 39651809 DOI: 10.1021/acs.jmedchem.4c01930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1/MAP4K1) represents a high interest target for the treatment of cancer through an immune-mediated mechanism. Herein we present highlights of the drug discovery campaign within the lactam/azalactam series of inhibitors that yielded a small molecule (21, PF-07265028), which was advanced to a phase 1 clinical trial (NCT05233436). Key components of the discovery effort included optimization of potency through mitigation of ligand strain as guided by the use of cocrystal structures, mitigation of ADME liabilities (plasma instability and fraction metabolism by CYP2D6), and optimization of kinase selectivity, particularly over immune-modulating kinases with high homology to HPK1. Structure-based drug design via leveraging cocrystal structures and lipophilic efficiency analysis proved to be valuable tools that ultimately enabled the delivery of a clinical-quality small molecule inhibitor of HPK1.
Collapse
Affiliation(s)
- Rebecca A Gallego
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Sujin Cho-Schultz
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Matthew Del Bel
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | | | - Joyann S Donaldson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mingying He
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mehran Jalaie
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Rob Kania
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jean Matthews
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Michele McTigue
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jamison B Tuttle
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Hud Risley
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Dahui Zhou
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Ru Zhou
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Omar K Ahmad
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Louise Bernier
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Simon Berritt
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - John Braganza
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Zecheng Chen
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Julie A Cianfrogna
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Michael Collins
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Cinthia Costa Jones
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ciaran N Cronin
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Carl Davis
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Klaus Dress
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Martin Edwards
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - William Farrell
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Scott P France
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Nicole Grable
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Eric Johnson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ted W Johnson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Rhys Jones
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Thomas Knauber
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Jennifer Lafontaine
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Richard P Loach
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Michael Maestre
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Nichol Miller
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mark Moen
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Peter Morse
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Andrew Ross Nager
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mark Niosi
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Paul Richardson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Allison K Rohner
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Neal W Sach
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Sergei Timofeevski
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Joseph W Tucker
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Beth Vetelino
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Lei Zhang
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Sajiv K Nair
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| |
Collapse
|
5
|
Romero A, Gomez-Lumbreras A, Villa-Zapata L, Tan M, Horn J, Malone DC. Evaluation of an electronic health record Drug Interaction Customization Editor (DICE). Am J Health Syst Pharm 2024; 81:1142-1157. [PMID: 38894513 DOI: 10.1093/ajhp/zxae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Indexed: 06/21/2024] Open
Abstract
PURPOSE Due to the low specificity of drug-drug interaction (DDI) warnings, hospitals and healthcare systems would benefit from the ability to customize alerts, thereby reducing the burden of alerts while simultaneously preventing harm. We developed a tool, called the Drug Interaction Customization Editor (DICE), as a prototype to identify features and functionality that could assist healthcare organizations in customizing DDI alerts. METHODS A team of pharmacists, physicians, and DDI experts identified attributes expected to be useful for filtering DDI warnings. A survey was sent to pharmacists with informatics responsibilities and other medication safety committee members to obtain their opinions about the tool. The survey asked participants to evaluate the 4 sections of the DICE tool (General, Medication, Patient, and Visit) on a scale ranging from 0 (not useful) to 100 (very useful). The survey provided an opportunity for participants to express their opinions on the overall usefulness of the DICE tool and to provide other comments. RESULTS The 50 survey respondents were mainly pharmacists (n = 47, 94%) with almost half (n = 23, 47%) having health information technology/informatics training. Most respondents (n = 33, 80%) were employed by organizations with over 350 beds. Respondents indicated the most useful features of the DICE tool were the ability to filter DDI warnings based on routes of administrations (mean [SD] rating scale score, 86.5 [21.6]), primary drug properties (85.7 [20.5]), patient attributes (85.6 [16.7]) and laboratory attributes (88.8 [18.0]). The overall impression of the DICE tool was rated at 82.8 (19.0), and when asked about the potential to reduce DDI alerts, respondents rated the tool at 83.7 (21.8). CONCLUSION The ability to customize DDI alerts using data elements currently within the electronic health records (EHRs) has the potential to decrease alert fatigue and override rates. This prototype DICE tool could be used by end users and vendors as a template for developing a more advanced DDI filtering tool within EHR systems.
Collapse
Affiliation(s)
- Andrew Romero
- Department of Pharmacy, Tucson Medical Center, Tucson, AZ, USA
| | | | - Lorenzo Villa-Zapata
- Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Malinda Tan
- College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - John Horn
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Daniel C Malone
- College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
6
|
Tsirelis D, Tsekouras A, Stamati P, Liampas I, Zoupa E, Dastamani M, Tsouris Z, Papadimitriou A, Dardiotis E, Siokas V. The impact of genetic factors on the response to migraine therapy. Rev Neurosci 2024; 35:789-812. [PMID: 38856190 DOI: 10.1515/revneuro-2024-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
Migraine is a multidimensional disease affecting a large portion of the human population presenting with a variety of symptoms. In the era of personalized medicine, successful migraine treatment presents a challenge, as several studies have shown the impact of a patient's genetic profile on therapy response. However, with the emergence of contemporary treatment options, there is promise for improved outcomes. A literature search was conducted in PubMed and Scopus, in order to obtain studies investigating the impact of genetic factors on migraine therapy outcome. Overall, 23 studies were included in the current review, exhibiting diversity in the treatments used and the genetic variants investigated. Divergent genes were assessed for each category of migraine treatment. Several genetic factors were identified to contribute to the heterogeneous response to treatment. SNPs related to pharmacodynamic receptors, pharmacogenetics and migraine susceptibility loci were the most investigated variants, revealing some interesting significant results. To date, various associations have been recorded correlating the impact of genetic factors on migraine treatment responses. More extensive research needs to take place with the aim of shedding light on the labyrinthine effects of genetic variations on migraine treatment, and, consequently, these findings can promptly affect migraine treatment and improve migraine patients' life quality in the vision of precise medicine.
Collapse
Affiliation(s)
- Daniil Tsirelis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Alexandros Tsekouras
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Elli Zoupa
- Larisa Day Care Center of People with Alzheimer's Disease, Association for Regional Development and Mental Health (EPAPSY), 15124 Marousi, Greece
| | - Metaxia Dastamani
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | | | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41100 Larissa, Greece
| |
Collapse
|
7
|
Okpete UE, Byeon H. Challenges and prospects in bridging precision medicine and artificial intelligence in genomic psychiatric treatment. World J Psychiatry 2024; 14:1148-1164. [PMID: 39165556 PMCID: PMC11331387 DOI: 10.5498/wjp.v14.i8.1148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
Precision medicine is transforming psychiatric treatment by tailoring personalized healthcare interventions based on clinical, genetic, environmental, and lifestyle factors to optimize medication management. This study investigates how artificial intelligence (AI) and machine learning (ML) can address key challenges in integrating pharmacogenomics (PGx) into psychiatric care. In this integration, AI analyzes vast genomic datasets to identify genetic markers linked to psychiatric conditions. AI-driven models integrating genomic, clinical, and demographic data demonstrated high accuracy in predicting treatment outcomes for major depressive disorder and bipolar disorder. This study also examines the pressing challenges and provides strategic directions for integrating AI and ML in genomic psychiatry, highlighting the importance of ethical considerations and the need for personalized treatment. Effective implementation of AI-driven clinical decision support systems within electronic health records is crucial for translating PGx into routine psychiatric care. Future research should focus on developing enhanced AI-driven predictive models, privacy-preserving data exchange, and robust informatics systems to optimize patient outcomes and advance precision medicine in psychiatry.
Collapse
Affiliation(s)
- Uchenna Esther Okpete
- Department of Digital Anti-aging Healthcare (BK21), Inje University, Gimhae 50834, South Korea
| | - Haewon Byeon
- Department of Digital Anti-aging Healthcare (BK21), Inje University, Gimhae 50834, South Korea
- Department of Medical Big Data, Inje University, Gimhae 50834, South Korea
| |
Collapse
|
8
|
Mistry PK, Balwani M, Charrow J, Lorber J, Niederau C, Carwile JL, Oliveira-Dos-Santos A, Perichon MG, Uslu Cil S, Kishnani PS. Long-term effectiveness of eliglustat treatment: A real-world analysis from the International Collaborative Gaucher Group Gaucher Registry. Am J Hematol 2024; 99:1500-1510. [PMID: 38686876 DOI: 10.1002/ajh.27347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Gaucher disease type 1 (GD1) is known for phenotypic heterogeneity and varied natural history. Registrational clinical trials enrolled narrowly defined phenotypes, but greater diversity is encountered in clinical practice. We report real-world outcomes with long-term eliglustat treatment in adults with GD1 in the International Collaborative Gaucher Group Gaucher Registry. Among 5985 GD1 patients in the Registry as of January 6, 2023, 872 started eliglustat at ≥18 years old; of these, 469 met inclusion criteria. We compared clinical parameters at eliglustat initiation (i.e., baseline) and follow-up in treatment-naïve patients and used linear mixed models to estimate annual change from baseline in parameters among patients who switched to eliglustat after ≥1 year on enzyme replacement therapy. Over 4 years of follow-up in non-splenectomized treatment-naïve patients, hemoglobin and platelet count increased, liver and spleen volume decreased, and total lumbar spine bone mineral density (BMD) Z-score decreased slightly. Among non-splenectomized switch patients, on average, hemoglobin decreased -0.030 (95% CI: -0.053, -0.008) g/dL (N = 272) and platelet count increased 2.229 (95% CI: 0.751, 3.706) × 103/mm3 (N = 262) annually up to 10 years; liver volume decreased (-0.009 [95% CI: -0.015, -0.003] MN) (N = 102) and spleen volume remained stable (-0.070 [95% CI: -0.150, 0.010] MN) (N = 106) annually up to 7 years; and total lumbar spine BMD Z-score increased 0.041 (95% CI: 0.015, 0.066) (N = 183) annually up to 8 years. Among splenectomized switch patients, clinical parameters were stable over time. These long-term, real-world outcomes are consistent with the eliglustat clinical trials and emerging real-world experience across the GD phenotypic spectrum.
Collapse
Affiliation(s)
- Pramod K Mistry
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Manisha Balwani
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joel Charrow
- Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Jeremy Lorber
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Beer C, Rae F, Semmler A, Voisey J. Biomarkers in the Diagnosis and Prediction of Medication Response in Depression and the Role of Nutraceuticals. Int J Mol Sci 2024; 25:7992. [PMID: 39063234 PMCID: PMC11277518 DOI: 10.3390/ijms25147992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Depression continues to be a significant and growing public health concern. In clinical practice, it involves a clinical diagnosis. There is currently no defined or agreed upon biomarker/s for depression that can be readily tested. A biomarker is defined as a biological indicator of normal physiological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention that can be objectively measured and evaluated. Thus, as there is no such marker for depression, there is no objective measure of depression in clinical practice. The discovery of such a biomarker/s would greatly assist clinical practice and potentially lead to an earlier diagnosis of depression and therefore treatment. A biomarker for depression may also assist in determining response to medication. This is of particular importance as not all patients prescribed with medication will respond, which is referred to as medication resistance. The advent of pharmacogenomics in recent years holds promise to target treatment in depression, particularly in cases of medication resistance. The role of pharmacogenomics in routine depression management within clinical practice remains to be fully established. Equally so, the use of pharmaceutical grade nutrients known as nutraceuticals in the treatment of depression in the clinical practice setting is largely unknown, albeit frequently self-prescribed by patients. Whether nutraceuticals have a role in not only depression treatment but also in potentially modifying the biomarkers of depression has yet to be proven. The aim of this review is to highlight the potential biomarkers for the diagnosis, prediction, and medication response of depression.
Collapse
Affiliation(s)
- Cristina Beer
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| | - Fiona Rae
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| | - Annalese Semmler
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Joanne Voisey
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| |
Collapse
|
10
|
Floris M, Moschella A, Alcalay M, Montella A, Tirelli M, Fontana L, Idda ML, Guarnieri P, Capasso M, Mammì C, Nicoletti P, Miozzo M. Pharmacogenetics in Italy: current landscape and future prospects. Hum Genomics 2024; 18:78. [PMID: 38987819 PMCID: PMC11234611 DOI: 10.1186/s40246-024-00612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/30/2024] [Indexed: 07/12/2024] Open
Abstract
Pharmacogenetics investigates sequence of genes that affect drug response, enabling personalized medication. This approach reduces drug-induced adverse reactions and improves clinical effectiveness, making it a crucial consideration for personalized medical care. Numerous guidelines, drawn by global consortia and scientific organizations, codify genotype-driven administration for over 120 active substances. As the scientific community acknowledges the benefits of genotype-tailored therapy over traditionally agnostic drug administration, the push for its implementation into Italian healthcare system is gaining momentum. This evolution is influenced by several factors, including the improved access to patient genotypes, the sequencing costs decrease, the growing of large-scale genetic studies, the rising popularity of direct-to-consumer pharmacogenetic tests, and the continuous improvement of pharmacogenetic guidelines. Since EMA (European Medicines Agency) and AIFA (Italian Medicines Agency) provide genotype information on drug leaflet without clear and explicit clinical indications for gene testing, the regulation of pharmacogenetic testing is a pressing matter in Italy. In this manuscript, we have reviewed how to overcome the obstacles in implementing pharmacogenetic testing in the clinical practice of the Italian healthcare system. Our particular emphasis has been on germline testing, given the absence of well-defined national directives in contrast to somatic pharmacogenetics.
Collapse
Affiliation(s)
- Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | - Antonino Moschella
- Unit of Medical Genetics, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Myriam Alcalay
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milano, Italy
| | - Annalaura Montella
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Matilde Tirelli
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Laura Fontana
- Medical Genetics Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Maria Laura Idda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Mario Capasso
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Corrado Mammì
- Unit of Medical Genetics, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Paola Nicoletti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monica Miozzo
- Medical Genetics Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
11
|
Lautier JP, Grosser S, Kim J, Kim H, Kim J. Clustering plasma concentration-time curves: applications of unsupervised learning in pharmacogenomics. J Biopharm Stat 2024:1-19. [PMID: 38888431 DOI: 10.1080/10543406.2024.2365389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Pharmaceutical researchers are continually searching for techniques to improve both drug development processes and patient outcomes. An area of recent interest is the potential for machine learning (ML) applications within pharmacology. One such application not yet given close study is the unsupervised clustering of plasma concentration-time curves, hereafter, pharmacokinetic (PK) curves. In this paper, we present our findings on how to cluster PK curves by their similarity. Specifically, we find clustering to be effective at identifying similar-shaped PK curves and informative for understanding patterns within each cluster of PK curves. Because PK curves are time series data objects, our approach utilizes the extensive body of research related to the clustering of time series data as a starting point. As such, we examine many dissimilarity measures between time series data objects to find those most suitable for PK curves. We identify Euclidean distance as generally most appropriate for clustering PK curves, and we further show that dynamic time warping, Fréchet, and structure-based measures of dissimilarity like correlation may produce unexpected results. As an illustration, we apply these methods in a case study with 250 PK curves used in a previous pharmacogenomic study. Our case study finds that an unsupervised ML clustering with Euclidean distance, without any subject genetic information, is able to independently validate the same conclusions as the reference pharmacogenomic results. To our knowledge, this is the first such demonstration. Further, the case study demonstrates how the clustering of PK curves may generate insights that could be difficult to perceive solely with population level summary statistics of PK metrics.
Collapse
Affiliation(s)
- Jackson P Lautier
- Department of Mathematical Sciences, Bentley University, Waltham, Massachusetts, USA
| | - Stella Grosser
- Office of Biostatistics, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jessica Kim
- Office of Biostatistics, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Hyewon Kim
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Junghi Kim
- Office of Biostatistics, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
12
|
Thomann J, Kolaczynska KE, Stoeckmann OV, Rudin D, Vizeli P, Hoener MC, Pryce CR, Vollenweider FX, Liechti ME, Duthaler U. In vitro and in vivo metabolism of psilocybin's active metabolite psilocin. Front Pharmacol 2024; 15:1391689. [PMID: 38741590 PMCID: PMC11089204 DOI: 10.3389/fphar.2024.1391689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
In vivo, psilocybin is rapidly dephosphorylated to psilocin which induces psychedelic effects by interacting with the 5-HT2A receptor. Psilocin primarily undergoes glucuronidation or conversion to 4-hydroxyindole-3-acetic acid (4-HIAA). Herein, we investigated psilocybin's metabolic pathways in vitro and in vivo, conducting a thorough analysis of the enzymes involved. Metabolism studies were performed using human liver microsomes (HLM), cytochrome P450 (CYP) enzymes, monoamine oxidase (MAO), and UDP-glucuronosyltransferase (UGT). In vivo, metabolism was examined using male C57BL/6J mice and human plasma samples. Approximately 29% of psilocin was metabolized by HLM, while recombinant CYP2D6 and CYP3A4 enzymes metabolized nearly 100% and 40% of psilocin, respectively. Notably, 4-HIAA and 4-hydroxytryptophol (4-HTP) were detected with HLM but not with recombinant CYPs. MAO-A transformed psilocin into minimal amounts of 4-HIAA and 4-HTP. 4-HTP was only present in vitro. Neither 4-HIAA nor 4-HTP showed relevant interactions at assessed 5-HT receptors. In contrast to in vivo data, UGT1A10 did not extensively metabolize psilocin in vitro. Furthermore, two putative metabolites were observed. N-methyl-4-hydroxytryptamine (norpsilocin) was identified in vitro (CYP2D6) and in mice, while an oxidized metabolite was detected in vitro (CYP2D6) and in humans. However, the CYP2D6 genotype did not influence psilocin plasma concentrations in the investigated study population. In conclusion, MAO-A, CYP2D6, and CYP3A4 are involved in psilocin's metabolism. The discovery of putative norpsilocin in mice and oxidized psilocin in humans further unravels psilocin's metabolism. Despite limitations in replicating phase II metabolism in vitro, these findings hold significance for studying drug-drug interactions and advancing research on psilocybin as a therapeutic agent.
Collapse
Affiliation(s)
- Jan Thomann
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Karolina E. Kolaczynska
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Oliver V. Stoeckmann
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Deborah Rudin
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Marius C. Hoener
- Neuroscience Research, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christopher R. Pryce
- Department of Psychiatry, Psychotherapy and Psychosomatics, Preclinical Laboratory for Translational Research Into Affective Disorders, University of Zurich, Zurich, Switzerland
| | - Franz X. Vollenweider
- Department of Psychiatry, Psychotherapy and Psychosomatics, Neurophenomenology and Consciousness, University of Zurich, Zurich, Switzerland
| | - Matthias E. Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Urs Duthaler
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| |
Collapse
|
13
|
Zhao Y, Vary JC, Yadav AS, Czuba LC, Shum S, LaFrance J, Huang W, Isoherranen N, Hebert MF. Effect of isotretinoin on CYP2D6 and CYP3A activity in patients with severe acne. Br J Clin Pharmacol 2024; 90:759-768. [PMID: 37864393 PMCID: PMC10922942 DOI: 10.1111/bcp.15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
AIMS Previously, retinoids have decreased CYP2D6 mRNA expression in vitro and induced CYP3A4 in vitro and in vivo. This study aimed to determine whether isotretinoin administration changes CYP2D6 and CYP3A activities in patients with severe acne. METHODS Thirty-three patients (22 females and 11 males, 23.5 ± 6.0 years old) expected to receive isotretinoin treatment completed the study. All participants were genotyped for CYP2D6 and CYP3A5. Participants received dextromethorphan (DM) 30 mg orally as a dual-probe substrate of CYP2D6 and CYP3A activity at two study timepoints: pre-isotretinoin treatment and with isotretinoin for at least 1 week. The concentrations of isotretinoin, DM and their metabolites were measured in 2-h postdose plasma samples and in cumulative 0-4-h urine collections using liquid chromatography-mass spectrometry. RESULTS In CYP2D6 extensive metabolizers, the urinary dextrorphan (DX)/DM metabolic ratio (MR) (CYP2D6 activity marker) was numerically, but not significantly, lower with isotretinoin administration compared to pre-isotretinoin (geometric mean ratio [GMR] [90% confidence interval (CI)] 0.78 [0.55, 1.11]). The urinary 3-hydroxymorphinan (3HM)/DX MR (CYP3A activity marker) was increased (GMR 1.18 [1.03, 1.35]) and the urinary DX-O-glucuronide/DX MR (proposed UGT2B marker) was increased (GMR 1.22 [1.06, 1.39]) with isotretinoin administration compared to pre-isotretinoin. CONCLUSIONS Administration of isotretinoin did not significantly reduce CYP2D6 activity in extensive metabolizers, suggesting that the predicted downregulation of CYP2D6 based on in vitro data does not translate into humans. We observed a modest increase in CYP3A activity (predominantly CYP3A4) with isotretinoin treatment. The data also suggest that DX glucuronidation is increased following isotretinoin administration.
Collapse
Affiliation(s)
- Yuqian Zhao
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Jay C. Vary
- Department of Medicine, Division of Dermatology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Aprajita S. Yadav
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Lindsay C. Czuba
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Jeffrey LaFrance
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Weize Huang
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
- Milo Gibaldi Endowed Chair of Pharmaceutics, Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Mary F. Hebert
- Department of Pharmacy, University of Washington, School of Pharmacy, Seattle, Washington, USA
- Department of Obstetrics and Gynecology, University of Washington, School of Medicine, Seattle, Washington, USA
| |
Collapse
|
14
|
Shubbar Q, Alchakee A, Issa KW, Adi AJ, Shorbagi AI, Saber-Ayad M. From genes to drugs: CYP2C19 and pharmacogenetics in clinical practice. Front Pharmacol 2024; 15:1326776. [PMID: 38420192 PMCID: PMC10899532 DOI: 10.3389/fphar.2024.1326776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
The CYP2C19 gene is frequently included in different pharmacogenomic panels tested in clinical practice, due to its involvement in the metabolism of a myriad of frequently prescribed medications. Accordingly, CYP2C19 genotyping can promote precise therapeutic decisions and avoid the occurrence of significant drug-drug-gene interactions in the clinical setting. A comprehensive examination of the role of the CYP2C19 gene in real-world medical settings is presented in this review. This review summarizes the most recent information on how genetic variants in CYP2C19 affect drug metabolism and therapeutic outcomes. It goes into the wide range of CYP2C19 phenotypes, with different degrees of metabolizing activity, and their implications for customized medication response through a review of the literature. The review also analyzes the clinical significance of CYP2C19 in several medical specialties, including cardiology, psychiatry, and gastro-enterology clinics, and illuminates how it affects pharmacological efficacy, safety, and adverse effects. Finally, CYP2C19-supported clinical decision-making is outlined, highlighting the possibility of improving therapeutic outcomes and achieving more affordable treatment options, a step towards optimizing healthcare provision through precision medicine.
Collapse
Affiliation(s)
- Qamar Shubbar
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Aminah Alchakee
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Khaled Walid Issa
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdul Jabbar Adi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
15
|
Bayat A, Iavarone S, Miceli F, Jakobsen AV, Johannesen KM, Nikanorova M, Ploski R, Szymanska K, Flamini R, Cooper EC, Weckhuysen S, Taglialatela M, Møller RS. Phenotypic and functional assessment of two novel KCNQ2 gain-of-function variants Y141N and G239S and effects of amitriptyline treatment. Neurotherapeutics 2024; 21:e00296. [PMID: 38241158 PMCID: PMC10903081 DOI: 10.1016/j.neurot.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 01/21/2024] Open
Abstract
While loss-of-function (LoF) variants in KCNQ2 are associated with a spectrum of neonatal-onset epilepsies, gain-of-function (GoF) variants cause a more complex phenotype that precludes neonatal-onset epilepsy. In the present work, the clinical features of three patients carrying a de novo KCNQ2 Y141N (n = 1) or G239S variant (n = 2) respectively, are described. All three patients had a mild global developmental delay, with prominent language deficits, and strong activation of interictal epileptic activity during sleep. Epileptic seizures were not reported. The absence of neonatal seizures suggested a GoF effect and prompted functional testing of the variants. In vitro whole-cell patch-clamp electrophysiological experiments in Chinese Hamster Ovary cells transiently-transfected with the cDNAs encoding Kv7.2 subunits carrying the Y141N or G239S variants in homomeric or heteromeric configurations with Kv7.2 subunits, revealed that currents from channels incorporating mutant subunits displayed increased current densities and hyperpolarizing shifts of about 10 mV in activation gating; both these functional features are consistent with an in vitro GoF phenotype. The antidepressant drug amitriptyline induced a reversible and concentration-dependent inhibition of current carried by Kv7.2 Y141N and G239S mutant channels. Based on in vitro results, amitriptyline was prescribed in one patient (G239S), prompting a significant improvement in motor, verbal, social, sensory and adaptive behavior skillsduring the two-year-treatment period. Thus, our results suggest that KCNQ2 GoF variants Y141N and G239S cause a mild DD with prominent language deficits in the absence of neonatal seizures and that treatment with the Kv7 channel blocker amitriptyline might represent a potential targeted treatment for patients with KCNQ2 GoF variants.
Collapse
Affiliation(s)
- Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Filadelfia, Dianalund, Denmark; Department for Regional Health Research, University of Southern Denmark, Odense, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Stefano Iavarone
- Section of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| | - Francesco Miceli
- Section of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| | - Anne V Jakobsen
- Department of Pediatrics, Danish Epilepsy Center, Filadelfia, Dianalund, Denmark
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Filadelfia, Dianalund, Denmark; Department of Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Marina Nikanorova
- Department of Pediatrics, Danish Epilepsy Center, Filadelfia, Dianalund, Denmark
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Krystyna Szymanska
- Department of Pediatric Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | - Edward C Cooper
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston TX, USA
| | - Sarah Weckhuysen
- Applied and Translational Genomics Group, VIB-Center for Molecular Neurology, VIB, University of Antwerp, Antwerp, Belgium; Neurology Department, University Hospital Antwerp, Antwerp, Belgium; Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Filadelfia, Dianalund, Denmark; Department for Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
Patel M, Partovi O, Karrento K, Garacchi Z, Balasubramanian G, Venkatesan T. Pharmacogenomic testing for CYP2C19 and CYP2D6 in cyclic vomiting syndrome. Neurogastroenterol Motil 2024; 36:e14705. [PMID: 37953495 DOI: 10.1111/nmo.14705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Amitriptyline (AT) is recommended as first-line prophylactic therapy in patients with cyclic vomiting syndrome (CVS). However, significant side effects limit its use and dosing is based on trial and error. Though the Clinical Pharmacogenetic Implementation Consortium (CPIC) Guidelines recommend dosing for AT based on CY2D6 and CYP2C19 genotype profile, this is not followed in clinical practice. METHODS This pilot study determined CYP2C19 and CYP2D6 genotypes and ascertained its association with adverse drug reactions (ADRs), clinical response, and serum concentration of AT and nortriptyline in a well-characterized cohort of adults with CVS. KEY RESULTS Of 46 subjects with CVS, age 33 ± 12 years, 61% female, 85% Caucasian, a third (33%) had normal CYP2C19 metabolizer status, while 4% were poor, and 43% were ultrarapid metabolizers. Most (61%) had normal CYP2D6 genotype while 9% were poor and 2% were ultra-rapid metabolizers. There was no statistically significant association between genotype and ADRs, clinical response or serum drug concentration. There was a trend towards significance between genotype and clinical response, with 64% of responders having normal CYP2D6 metabolism versus 36% of nonresponders (p = 0.06). ADRs were encountered in 46% of patients with 28% discontinuing the medication as a result. CONCLUSIONS AND INFERENCES A subset of patients with CVS have dysfunctional alleles of CYP2C19 and CYP2D6. Larger prospective studies to evaluate the clinical impact of pharmacogenomic testing in CVS are needed. This has the potential to optimize clinical management, predict ADRs and allow for personalized therapy.
Collapse
Affiliation(s)
- Milan Patel
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Omeed Partovi
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | |
Collapse
|
17
|
Bousman CA, Maruf AA, Marques DF, Brown LC, Müller DJ. The emergence, implementation, and future growth of pharmacogenomics in psychiatry: a narrative review. Psychol Med 2023; 53:7983-7993. [PMID: 37772416 PMCID: PMC10755240 DOI: 10.1017/s0033291723002817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Psychotropic medication efficacy and tolerability are critical treatment issues faced by individuals with psychiatric disorders and their healthcare providers. For some people, it can take months to years of a trial-and-error process to identify a medication with the ideal efficacy and tolerability profile. Current strategies (e.g. clinical practice guidelines, treatment algorithms) for addressing this issue can be useful at the population level, but often fall short at the individual level. This is, in part, attributed to interindividual variation in genes that are involved in pharmacokinetic (i.e. absorption, distribution, metabolism, elimination) and pharmacodynamic (e.g. receptors, signaling pathways) processes that in large part, determine whether a medication will be efficacious or tolerable. A precision prescribing strategy know as pharmacogenomics (PGx) assesses these genomic variations, and uses it to inform selection and dosing of certain psychotropic medications. In this review, we describe the path that led to the emergence of PGx in psychiatry, the current evidence base and implementation status of PGx in the psychiatric clinic, and finally, the future growth potential of precision psychiatry via the convergence of the PGx-guided strategy with emerging technologies and approaches (i.e. pharmacoepigenomics, pharmacomicrobiomics, pharmacotranscriptomics, pharmacoproteomics, pharmacometabolomics) to personalize treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Chad A. Bousman
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, AB, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
- Departments of Physiology and Pharmacology, and Community Health Sciences, University of Calgary, Calgary, AB, Canada
- AB Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Abdullah Al Maruf
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, AB, Canada
- College of Pharmacy, Rady Faculty of Health Sciences, Winnipeg, MB, Canada
| | | | | | - Daniel J. Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Wurzburg, Wurzburg, Germany
| |
Collapse
|
18
|
Gupta P, Muneshwar KN, Juganavar A, Shegekar T. Beyond the Asylum Walls: Tracing the Tapestry of Mental Health Interventions Across Eras and Cultures. Cureus 2023; 15:e48251. [PMID: 38054143 PMCID: PMC10694481 DOI: 10.7759/cureus.48251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/04/2023] [Indexed: 12/07/2023] Open
Abstract
This article offers an extensive review of the changing field of mental health therapies, charting a transformational path from traditional methods to modern breakthroughs and speculating on potential future developments. The story develops by investigating historical viewpoints while reflecting on the present and highlighting the lessons learned and their impact on contemporary practices. We have advanced from the stigmatized constraints of asylums to a paradigm that puts human rights, dignity, and individualized, culturally sensitive treatment first. Modern methods are much more varied and evidence-based, from cutting-edge technical advancements to evidence-based psychotherapies. The ethical considerations arising from the delicate balance of pharmacological therapies underline the responsibility of administering drugs that significantly affect mental health. Cultural factors become a pillar, highlighting how crucial cultural sensitivity is to promoting tolerance. By acknowledging how many facets of the human experience are interrelated, holistic methods help close the gap between the mind and body. Integrative medicine and alternative therapies represent a shift away from reductionist approaches and toward a holistic viewpoint. The delivery of mental health treatment is being reimagined by technological advancements, with virtual and digital environments opening up new access and support channels. These developments cut beyond regional boundaries, reinventing conventional therapy dynamics and paving the way for individualized therapies. Cultural concerns highlight the significance of cultural competency in navigating the complex mental health treatment system and adapting interventions to fit the particular requirements of various cultural contexts. With telepsychiatry, virtual reality, and artificial intelligence among the new technologies that promise to further revolutionize mental health therapies, the essay looks to the future. This review concludes by imagining a day when mental health is prioritized, therapies are available, and the diversity of human experience is valued. The path to a society that values, nurtures, and celebrates mental health continues.
Collapse
Affiliation(s)
- Prachi Gupta
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Komal N Muneshwar
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anup Juganavar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tejas Shegekar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
19
|
van der Drift D, Simoons M, Koch BCP, Brufau G, Bindels P, Matic M, van Schaik RHN. Implementation of Pharmacogenetics in First-Line Care: Evaluation of Its Use by General Practitioners. Genes (Basel) 2023; 14:1841. [PMID: 37895189 PMCID: PMC10606701 DOI: 10.3390/genes14101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Pharmacogenetics (PGx) can explain/predict drug therapy outcomes. There is, however, unclarity about the use and usefulness of PGx in primary care. In this study, we investigated PGx tests ordered by general practitioners (GPs) in 2021 at Dept. Clinical Chemistry, Erasmus MC, and analyzed the gene tests ordered, drugs/drug groups, reasons for testing and single-gene versus panel testing. Additionally, a survey was sent to 90 GPs asking about their experiences and barriers to implementing PGx. In total, 1206 patients and 6300 PGx tests were requested by GPs. CYP2C19 was requested most frequently (17%), and clopidogrel was the most commonly indicated drug (23%). Regarding drug groups, antidepressants (51%) were the main driver for requesting PGx, followed by antihypertensives (26%). Side effects (79%) and non-response (27%) were the main indicators. Panel testing was preferred over single-gene testing. The survey revealed knowledge on when and how to use PGx as one of the main barriers. In conclusion, PGx is currently used by GPs in clinical practice in the Netherlands. Side effects are the main reason for testing, which mostly involves antidepressants. Lack of knowledge is indicated as a major barrier, indicating the need for more education on PGx for GPs.
Collapse
Affiliation(s)
- Denise van der Drift
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Mirjam Simoons
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Birgit C. P. Koch
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Gemma Brufau
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Clinical Chemistry, Result Laboratory, 3318 AT Dordrecht, The Netherlands
| | - Patrick Bindels
- Department of General Practice, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Maja Matic
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
20
|
Castaldelli-Maia JM, Camargos de Oliveira V, Irber FM, Blaas IK, Angerville B, Sousa Martins-da-Silva A, Koch Gimenes G, Waisman Campos M, Torales J, Ventriglio A, Guillois C, El Ouazzani H, Gazaix L, Favré P, Dervaux A, Apter G. Psychopharmacology of smoking cessation medications: focus on patients with mental health disorders. Int Rev Psychiatry 2023; 35:397-417. [PMID: 38299651 DOI: 10.1080/09540261.2023.2249084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/14/2023] [Indexed: 02/02/2024]
Abstract
The adverse effects of smoking cessation in individuals with mental health disorders have been a point of concern, and progress in the development of treatment has been slow. The primary first-line treatments for smoking cessation are Nicotine Replacement Therapy, Bupropion, Varenicline, and behavioural support. Nortriptyline and Clonidine are second-line treatments used when the first-line treatments are not effective or are contraindicated. Smoking cessation medications have been shown to be effective in reducing nicotine cravings and withdrawal symptoms and promoting smoking cessation among patients living with mental disorders. However, these medications may have implications for patients' mental health and need to be monitored closely. The efficacy and side effects of these medications may vary depending on the patient's psychiatric condition, medication regimen, substance use, or medical comorbidities. The purpose of this review is to synthesise the pharmacokinetics, pharmacodynamics, therapeutic effects, adverse effects, and pharmacological interactions of first- and second-line smoking cessation drugs, with an emphasis on patients suffering from mental illnesses. Careful consideration of the risks and benefits of using smoking cessation medications is necessary, and treatment plans must be tailored to individual patients' needs. Monitoring symptoms and medication regimens is essential to ensure optimal treatment outcomes.
Collapse
Affiliation(s)
- João Mauricio Castaldelli-Maia
- Cellule de Recherche Clinique, Groupe Hospitalier du Havre, Le Havre, France
- Department of Psychiatry, Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | - Israel K Blaas
- Perdizes Institute (IPer), Clinics Hospital (HCFMUSP), Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | - Gislaine Koch Gimenes
- Perdizes Institute (IPer), Clinics Hospital (HCFMUSP), Medical School, University of São Paulo, São Paulo, Brazil
| | - Marcela Waisman Campos
- Department of Cognitive Neurology, Neuropsychiatry, and Neuropsychology, FLENI, Buenos Aires, Argentina
| | - Julio Torales
- Department of Psychiatry, National University of Asuncion, San Lorenzo, Paraguay
- Regional Institute of Health Research, Universidad Nacional de Caaguazú, Coronel Oviedo, Paraguay
- School of Health Sciences, Universidad Sudamericana, Pedro Juan Caballero, Paraguay
| | - Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Carine Guillois
- Cellule de Recherche Clinique, Groupe Hospitalier du Havre, Le Havre, France
| | - Houria El Ouazzani
- Cellule de Recherche Clinique, Groupe Hospitalier du Havre, Le Havre, France
| | - Léna Gazaix
- Cellule de Recherche Clinique, Groupe Hospitalier du Havre, Le Havre, France
| | - Pascal Favré
- Établissement Public de Santé Mentale, Neuilly sur Marne, France
| | - Alain Dervaux
- Établissement Public de Santé Barthélémy Durand, Étampes, France
- Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Gisèle Apter
- Cellule de Recherche Clinique, Groupe Hospitalier du Havre, Le Havre, France
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Établissement Public de Santé Mentale, Neuilly sur Marne, France
- Societé de l'Information Psychiatrique, Bron, France
- University of Rouen Normandy, Rouen, France
| |
Collapse
|
21
|
Pereira CDS, Cruz JN, Ferreira MKM, Baia-da-Silva DC, Fontes-Junior EA, Lima RR. Global Research Trends and Hotspots Analysis of the Scientific Production of Amitriptyline: A Bibliometric Approach. Pharmaceuticals (Basel) 2023; 16:1047. [PMID: 37513958 PMCID: PMC10386017 DOI: 10.3390/ph16071047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Amitriptyline was first introduced as a medication to treat depression. Over time, this substance has been used to treat other conditions, such as gastrointestinal disorders, fibromyalgia, neuropathic pain, and analgesia, among others. However, there are no published studies that provide a broad view of the possible motivations that have led to changes in the use of amitriptyline. In this study, we have identified the landscape of use for amitriptyline based on knowledge mapping of the 100 most-cited articles about this drug. We searched Web of Science Core Collection without time and language restrictions. We obtained 14,446 results, but we only used the 100 most-cited articles that had amitriptyline as the object of study. We collected the following information from each article: authors, country of the corresponding authors, year of publication, citation count, citation density (number of citations per year), and keywords. In addition, we seek to map in the chosen articles study design and research findings. We found that since 1980, the use of amitriptyline has expanded beyond depression, moving to off-label use to treat a variety of diseases and conditions, including post-herpetic neuralgia, neuropathic pain, primary fibrosis, fibromyalgia, and migraine, can be considered a drug with more clinical applicability than its original clinical indication.
Collapse
Affiliation(s)
- Cristian Dos Santos Pereira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University do Pará, Belém 66075-110, Brazil
| | - Jorddy Neves Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University do Pará, Belém 66075-110, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University do Pará, Belém 66075-110, Brazil
| | - Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University do Pará, Belém 66075-110, Brazil
| | - Eneas Andrade Fontes-Junior
- Laboratory of Pharmacology of Inflammation and Behavior, Federal University of Pará, Belém 66075-110, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University do Pará, Belém 66075-110, Brazil
| |
Collapse
|
22
|
Abstract
The field of psychiatry is facing an important paradigm shift in the provision of clinical care and mental health service organization toward personalization and integration of multimodal data science. This approach, termed precision psychiatry, aims at identifying subgroups of patients more prone to the development of a certain phenotype, such as symptoms or severe mental disorders (risk detection), and/or to guide treatment selection. Pharmacogenomics and computational psychiatry are two fundamental tools of precision psychiatry, which have seen increasing levels of integration in clinical settings. Here we present a brief overview of these two applications of precision psychiatry in clinical settings.
Collapse
Affiliation(s)
- Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, 09127, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, 09127,Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Martino Belvederi Murri
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| |
Collapse
|
23
|
Strawn JR, Moldauer L, Hahn RD, Wise A, Bertzos K, Eisenberg B, Greenberg E, Liu C, Gopalkrishnan M, McVoy M, Knutson JA. A Multicenter Double-Blind, Placebo-Controlled Trial of Escitalopram in Children and Adolescents with Generalized Anxiety Disorder. J Child Adolesc Psychopharmacol 2023; 33:91-100. [PMID: 37074330 DOI: 10.1089/cap.2023.0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Objective: Generalized anxiety disorder (GAD) in children and adolescents is associated with substantial morbidity and increases the risk of future psychopathology. However, relatively few psychopharmacologic studies have examined treatments for GAD in pediatric populations, especially in prepubertal youth. Methods: Children and adolescents aged 7-17 years of age with a primary diagnosis of GAD were treated with flexibly dosed escitalopram (10-20 mg daily, n = 138) or placebo (n = 137) for 8 weeks. Efficacy measures included the Pediatric Anxiety Rating Scale (PARS) for GAD, Clinical Global Impression of Severity (CGI-S) scale, Children's Global Assessment Scale (CGAS); safety measures included the Columbia-Suicide Severity Rating Scale (C-SSRS) as well as adverse events (AEs), vital signs, and electrocardiographic and laboratory monitoring. Results: Escitalopram was superior to placebo in reducing anxiety symptoms of GAD, as seen in the difference in mean change from baseline to week 8 on the PARS severity for GAD score (least squares mean difference = -1.42; p = 0.028). Functional improvement, as reflected by CGAS score, was numerically greater in escitalopram-treated patients compared with those receiving placebo (p = 0.286), and discontinuation owing to AEs did not differ between the two groups. Vital signs, weight, laboratory, and electrocardiographic results were consistent with previous pediatric studies of escitalopram. Conclusions: Escitalopram reduced anxiety symptoms and was well tolerated in pediatric patients with GAD. These findings confirm earlier reports of escitalopram efficacy in adolescents aged 12-17 years and extend the safety and tolerability data to children with GAD aged 7-11 years. ClinicalTrials.gov Identifier: NCT03924323.
Collapse
Affiliation(s)
- Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Anxiety Disorders Research Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Child & Adolescent Psychiatry and Division of Clinical Pharmacology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | - Molly McVoy
- University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | |
Collapse
|
24
|
Peterschmitt MJ, Foster MC, Ji AJ, Zajdel MB, Cox GF. Plasma glucosylsphingosine correlations with baseline disease burden and response to eliglustat in two clinical trials of previously untreated adults with Gaucher disease type 1. Mol Genet Metab 2023; 138:107527. [PMID: 36739645 DOI: 10.1016/j.ymgme.2023.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
In Gaucher disease type 1 (GD1), accumulation of the lipid substrates glucosylceramide and glucosylsphingosine (lyso-GL-1 or lyso-Gb1), primarily in the spleen, liver, and bone marrow, leads to progressive hepatosplenomegaly, anemia, thrombocytopenia, and skeletal disease. Plasma glucosylceramide elevations are modest, variable, and normalize within weeks of starting treatment before clinical changes are evident, and therefore, have limited value for monitoring treatment responses. Serum chitotriosidase activity, a widely used GD biomarker, is also elevated in many other conditions but is not measurable in 5-10% of individuals due to a common CHIT1 null variant. Plasma glucosylsphingosine is increasingly recognized as a useful biomarker for GD1: elevations are highly specific to the disease and show no overlap with normal controls, it is in the causal pathway of disease, and levels are reliably measured by liquid chromatography-tandem mass spectrometry. We report correlations of plasma glucosylsphingosine with baseline disease burden and eliglustat treatment response in previously untreated adults with GD1 in the Phase 2 (NCT00358150), open-label, single-arm trial of 26 patients with up to 8 years of follow-up and the placebo-controlled Phase 3 ENGAGE trial (NCT00891202) of 40 patients with up to 4.5 years of follow-up. At baseline, untreated patients showed moderate to strong correlations between plasma glucosylsphingosine and spleen volume, liver volume, and hemoglobin level. Organ volumes and hematologic parameters improved in parallel with reductions in plasma glucosylsphingosine during eliglustat treatment in both trials. Moderate correlations were seen between plasma glucosylsphingosine reduction and spleen and liver volume reductions during eliglustat treatment. These clinical trial data add to the growing body of evidence supporting plasma glucosylsphingosine as both a diagnostic and pharmacodynamic/response biomarker for GD1.
Collapse
Affiliation(s)
| | | | | | | | - Gerald F Cox
- Gerald Cox Rare Care Consulting, Needham, MA, USA
| |
Collapse
|
25
|
Vasiliu O. The pharmacogenetics of the new-generation antipsychotics - A scoping review focused on patients with severe psychiatric disorders. Front Psychiatry 2023; 14:1124796. [PMID: 36873203 PMCID: PMC9978195 DOI: 10.3389/fpsyt.2023.1124796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Exploring the possible correlations between gene variations and the clinical effects of the new-generation antipsychotics is considered essential in the framework of personalized medicine. It is expected that pharmacogenetic data will be useful for increasing the treatment efficacy, tolerability, therapeutic adherence, functional recovery, and quality of life in patients with severe psychiatric disorders (SPD). This scoping review investigated the available evidence about the pharmacokinetics, pharmacodynamics, and pharmacogenetics of five new-generation antipsychotics, i.e., cariprazine, brexpiprazole, aripiprazole, lumateperone, and pimavanserin. Based on the analysis of 25 primary and secondary sources and the review of these agents' summaries of product characteristics, aripiprazole benefits from the most relevant data about the impact of gene variability on its pharmacokinetics and pharmacodynamics, with significant consequences on this antipsychotic's efficacy and tolerability. The determination of the CYP2D6 metabolizer status is important when administering aripiprazole, either as monotherapy or associated with other pharmacological agents. Allelic variability in genes encoding dopamine D2, D3, and serotonin, 5HT2A, 5HT2C receptors, COMT, BDNF, and dopamine transporter DAT1 was also associated with different adverse events or variations in the clinical efficacy of aripiprazole. Brexpiprazole also benefits from specific recommendations regarding the CYP2D6 metabolizer status and the risks of associating this antipsychotic with strong/moderate CYP2D6 or CYP3A4 inhibitors. US Food and Drug Administration (FDA) and European Medicines Agency (EMA) recommendations about cariprazine refer to possible pharmacokinetic interactions with strong CYP3A4 inhibitors or inducers. Pharmacogenetic data about cariprazine is sparse, and relevant information regarding gene-drug interactions for lumateperone and pimavanserin is yet lacking. In conclusion, more studies are needed to detect the influence of gene variations on the pharmacokinetics and pharmacodynamics of new-generation antipsychotics. This type of research could increase the ability of clinicians to predict favorable responses to specific antipsychotics and to improve the tolerability of the treatment regimen in patients with SPD.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Department of Psychiatry, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| |
Collapse
|
26
|
Long-term effects of eliglustat on skeletal manifestations in clinical trials of patients with Gaucher disease type 1. Genet Med 2023; 25:100329. [PMID: 36469032 DOI: 10.1016/j.gim.2022.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Most patients with Gaucher disease have progressive and often disabling skeletal manifestations. We examined the long-term effect of eliglustat treatment on bone outcomes in clinical trials in adults with Gaucher disease type 1. METHODS Data from 4 completed phase 2 and 3 trials were evaluated in treatment-naïve patients or patients switching to eliglustat from enzyme replacement therapy (ERT). RESULTS Overall, 319 of 393 (81%) eliglustat-treated patients remained in their trials until completion or commercial eliglustat became available. Mean eliglustat treatment duration ranged from 3.3 to 6.5 years. In treatment-naïve patients and ERT-switch patients, frequency and severity of bone pain decreased during eliglustat treatment. Mean lumbar spine T-scores shifted from abnormal to normal in treatment-naïve patients and remained in the healthy reference range or improved modestly in ERT-switch patients. Mean total bone marrow burden score shifted from marked-to-severe to moderate in treatment-naïve patients and remained moderate in ERT-switch patients. MIP-1β (marker of active bone disease) was elevated at baseline and decreased to the healthy reference range in treatment-naïve patients and remained in the healthy reference range among ERT-switch patients. CONCLUSION These findings confirm the long-term efficacy of eliglustat on skeletal complications of Gaucher disease in treatment-naïve and ERT-switch patients.
Collapse
|
27
|
Torralba-Cabeza MÁ, Morado-Arias M, Pijierro-Amador A, Fernández-Canal MC, Villarrubia-Espinosa J. Recommendations for oral treatment for adult patients with type 1 Gaucher disease. Rev Clin Esp 2022; 222:529-542. [PMID: 35676195 DOI: 10.1016/j.rceng.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/12/2022] [Indexed: 11/17/2022]
Abstract
This work is a review of the scientific evidence on the oral treatment of adult patients with Gaucher disease type 1 (GD1) with a clinical guideline format according to the Agree II regulations. It describes the main differences between the two oral treatments currently available for treating this disease (miglustat and eliglustat). This review reminds us that the criteria for starting oral treatment in patients with GD1 must be assessed individually. Although miglustat and eliglustat are both glucosylceramide synthase (GCS) enzyme inhibitors, they have different mechanisms of action and pharmacological properties and should never be considered equivalent. Miglustat is indicated in patients with non-severe GD1 who cannot receive other first-line treatments, while eliglustat is indicated as first-line treatment for patients with GD1 of any severity without the need for prior stabilization with enzyme replacement therapy (ERT). It is important to emphasize that in order to start treatment with eliglustat, we must know the CYP2D6 metabolic phenotype and its association with drugs metabolized through the CYP2D6 and CYP3A4 cytochromes-or alternatively those that use P-Glycoprotein must be evaluated on an individual basis. During pregnancy, the use of eliglustat should be avoided; only ERT can be used. Unlike miglustat, whose adverse effects have limited its use, eliglustat has not only demonstrated similar efficacy to ERT but has also been shown to improve the quality of life of patients with GD1.
Collapse
Affiliation(s)
- M Á Torralba-Cabeza
- Servicio de Medicina Interna, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain; Grupo de Trabajo en Enfermedades Minoritarias, Sociedad Española de Medicina Interna (SEMI), Spain; Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain.
| | - M Morado-Arias
- Servicio de Hematología, Hospital Universitario La Paz, Madrid, Spain
| | - A Pijierro-Amador
- Servicio de Medicina Interna, Hospital Universitario de Badajoz, Badajoz, Spain; Grupo de Trabajo en Enfermedades Minoritarias, Sociedad Española de Medicina Interna (SEMI), Spain
| | | | | |
Collapse
|
28
|
Muhn S, Amin NS, Bardolia C, Del Toro-Pagán N, Pizzolato K, Thacker D, Turgeon J, Tomaino C, Michaud V. Pharmacogenomics and Drug-Induced Phenoconversion Informed Medication Safety Review in the Management of Pain Control and Quality of Life: A Case Report. J Pers Med 2022; 12:jpm12060974. [PMID: 35743759 PMCID: PMC9225568 DOI: 10.3390/jpm12060974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/16/2022] Open
Abstract
Utilizing pharmacogenomics (PGx) and integrating drug-induced phenoconversion to guide opioid therapies could improve the treatment response and decrease the occurrence of adverse drug events. Genetics contribute to the interindividual differences in opioid response. The purpose of this case report highlights the impact of a PGx-informed medication safety review, assisted by a clinical decision support system, in mitigating the drug–gene and drug–drug–gene interactions (DGI and DDGI, respectively) that increase the risk of an inadequate drug response and adverse drug events (ADEs). This case describes a 69-year-old female who was referred for PGx testing for uncontrolled chronic pain caused by osteoarthritis and neuropathy. The clinical pharmacist reviewed the PGx test results and medication regimen and identified several (DGIs and DDGIs, respectively) at Cytochrome P450 (CYP) 2C19 and CYP2D6. The recommendations were to: (1) switch tramadol to buprenorphine transdermal patch, an opioid with lower potential for ADEs, to mitigate a CYP2D6 DDGI; (2) gradually discontinue amitriptyline to alleviate the risk of anticholinergic side effects, ADEs, and multiple DDGIs; and (3) optimize the pregabalin. The provider and the patient agreed to implement these recommendations. Upon follow-up one month later, the patient reported an improved quality of life and pain control. Following the amitriptyline taper, the patient experienced tremors in the upper and lower extremities. When the perpetrator drug, omeprazole, was stopped, the metabolic capacity was no longer impeded; the patient experienced possible amitriptyline withdrawal symptoms due to the rapid withdrawal of amitriptyline, which was reinitiated and tapered off more slowly. This case report demonstrates a successful PGx-informed medication safety review that considered drug-induced phenoconversion and mitigated the risks of pharmacotherapy failure, ADEs, and opioid misuse.
Collapse
Affiliation(s)
- Selina Muhn
- Office of Translational Research and Residency Programs, Tabula Rasa HealthCare, Moorestown, NJ 08057, USA; (S.M.); (N.S.A.); (C.B.); (N.D.T.-P.); (K.P.)
| | - Nishita Shah Amin
- Office of Translational Research and Residency Programs, Tabula Rasa HealthCare, Moorestown, NJ 08057, USA; (S.M.); (N.S.A.); (C.B.); (N.D.T.-P.); (K.P.)
| | - Chandni Bardolia
- Office of Translational Research and Residency Programs, Tabula Rasa HealthCare, Moorestown, NJ 08057, USA; (S.M.); (N.S.A.); (C.B.); (N.D.T.-P.); (K.P.)
| | - Nicole Del Toro-Pagán
- Office of Translational Research and Residency Programs, Tabula Rasa HealthCare, Moorestown, NJ 08057, USA; (S.M.); (N.S.A.); (C.B.); (N.D.T.-P.); (K.P.)
| | - Katie Pizzolato
- Office of Translational Research and Residency Programs, Tabula Rasa HealthCare, Moorestown, NJ 08057, USA; (S.M.); (N.S.A.); (C.B.); (N.D.T.-P.); (K.P.)
| | - David Thacker
- Precision Pharmacotherapy Research & Development Institute, Tabula Rasa HealthCare, Orlando, FL 32827, USA; (D.T.); (J.T.)
| | - Jacques Turgeon
- Precision Pharmacotherapy Research & Development Institute, Tabula Rasa HealthCare, Orlando, FL 32827, USA; (D.T.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Crystal Tomaino
- VieCare Beaver, Program of All-Inclusive Care for the Elderly (PACE), Lutheran Senior Life, Aliquippa, PA 15001, USA;
| | - Veronique Michaud
- Precision Pharmacotherapy Research & Development Institute, Tabula Rasa HealthCare, Orlando, FL 32827, USA; (D.T.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Research Center of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
- Correspondence: ; Tel.: +1-407-454-9964
| |
Collapse
|
29
|
Zheng B, Chen L, Zheng T, Hou L, Huang X, Li C, Wang X, Fang Q, Chen J, Tang Z, Li Z, Ouyang D. A novel solid phase extraction sample preparation method for sensitively determining doxepin and N-nordoxepin in human plasma and its application in a bioequivalence study in healthy Chinese volunteers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2168-2178. [PMID: 35608048 DOI: 10.1039/d2ay00129b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Doxepin, a tricyclic antidepressant (TCA), is widely used in the treatment of depressive disorder and anxiety. There are some liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods that have been reported for detecting doxepin, but inadequacies in recovery and cumbersome sample preparation obstruct the pharmacokinetics study. Therefore, we aimed to develop and validate a rapid sample preparation method based on solid-phase extraction (SPE) for the precise quantification of doxepin and its metabolites. Chromatography separation was performed on a Waters ACQUITY UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) and a mobile phase consisting of 70% of mobile phase A (0.1% formic acid and 10 mM ammonium formate) and 30% mobile phase B (0.1% formic acid in acetonitrile) at a flow rate of 0.4 mL min-1 in the step gradient elution conditions. The lower limits of quantification for doxepin and N-nordoxepin were 4 pg mL-1 and 2 pg mL-1, respectively. This method was validated with satisfactory results including good precision and accuracy. A rapid, sensitive, and specific LC-MS/MS method was developed and validated for the determination of doxepin in human plasma. This method could be applied for determining doxepin and N-nordoxepin concentrations in plasma that could be useful for bioequivalence study of 3 mg doxepin.
Collapse
Affiliation(s)
- Binjie Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd, Changsha, China.
- Hunan Changsha Duxact Clinical Laboratory Co., Ltd, Changsha Duxact Biotech Co., Ltd, Changsha, China
- School of Pharmacy, Xiangnan University, Chenzhou 423000, China
| | - Tiandong Zheng
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd, Changsha, China.
- Hunan Changsha Duxact Clinical Laboratory Co., Ltd, Changsha Duxact Biotech Co., Ltd, Changsha, China
| | - Liping Hou
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd, Changsha, China.
| | - Xinyi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China
| | - Chao Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd, Changsha, China.
- Hunan Changsha Duxact Clinical Laboratory Co., Ltd, Changsha Duxact Biotech Co., Ltd, Changsha, China
| | - Xintong Wang
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd, Changsha, China.
- Hunan Changsha Duxact Clinical Laboratory Co., Ltd, Changsha Duxact Biotech Co., Ltd, Changsha, China
| | - Qing Fang
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd, Changsha, China.
- Hunan Changsha Duxact Clinical Laboratory Co., Ltd, Changsha Duxact Biotech Co., Ltd, Changsha, China
| | - Jie Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd, Changsha, China.
- Hunan Changsha Duxact Clinical Laboratory Co., Ltd, Changsha Duxact Biotech Co., Ltd, Changsha, China
| | - Zhi Tang
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd, Changsha, China.
- Hunan Changsha Duxact Clinical Laboratory Co., Ltd, Changsha Duxact Biotech Co., Ltd, Changsha, China
| | - Zhenyu Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China.
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd, Changsha, China.
| |
Collapse
|
30
|
Pharmacogenetics and Pain Treatment with a Focus on Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Antidepressants: A Systematic Review. Pharmaceutics 2022; 14:pharmaceutics14061190. [PMID: 35745763 PMCID: PMC9228102 DOI: 10.3390/pharmaceutics14061190] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background: This systematic review summarizes the impact of pharmacogenetics on the effect and safety of non-steroidal anti-inflammatory drugs (NSAIDs) and antidepressants when used for pain treatment. Methods: A systematic literature search was performed according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines regarding the human in vivo efficacy and safety of NSAIDs and antidepressants in pain treatment that take pharmacogenetic parameters into consideration. Studies were collected from PubMed, Scopus, and Web of Science up to the cutoff date 18 October 2021. Results: Twenty-five articles out of the 6547 initially detected publications were identified. Relevant medication–gene interactions were noted for drug safety. Interactions important for pain management were detected for (1) ibuprofen/CYP2C9; (2) celecoxib/CYP2C9; (3) piroxicam/CYP2C8, CYP2C9; (4) diclofenac/CYP2C9, UGT2B7, CYP2C8, ABCC2; (5) meloxicam/CYP2C9; (6) aspirin/CYP2C9, SLCO1B1, and CHST2; (7) amitriptyline/CYP2D6 and CYP2C19; (8) imipramine/CYP2C19; (9) nortriptyline/CYP2C19, CYP2D6, ABCB1; and (10) escitalopram/HTR2C, CYP2C19, and CYP1A2. Conclusions: Overall, a lack of well powered human in vivo studies assessing the pharmacogenetics in pain patients treated with NSAIDs or antidepressants is noted. Studies indicate a higher risk for partly severe side effects for the CYP2C9 poor metabolizers and NSAIDs. Further in vivo studies are needed to consolidate the relevant polymorphisms in NSAID safety as well as in the efficacy of NSAIDs and antidepressants in pain management.
Collapse
|
31
|
Torralba-Cabeza M, Morado-Arias M, Pijierro-Amador A, Fernández-Canal M, Villarrubia-Espinosa J. Recomendaciones para el tratamiento oral de pacientes adultos con enfermedad de Gaucher tipo 1. Rev Clin Esp 2022. [DOI: 10.1016/j.rce.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Zemanova N, Anzenbacher P, Anzenbacherova E. The role of cytochromes P450 in metabolism of selected antidepressants and anxiolytics under psychological stress. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2022; 166:140-149. [PMID: 35438085 DOI: 10.5507/bp.2022.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/05/2022] [Indexed: 12/25/2022] Open
Abstract
In today's modern society, it seems to be more and more challenging to cope with life stresses. The effect of psychological stress on emotional and physical health can be devastating, and increased stress is associated with increased rates of heart attack, hypertension, obesity, addiction, anxiety and depression. This review focuses on the possibility of an influence of psychological stress on the metabolism of selected antidepressants (TCAs, SSRIs, SNRIs, SARIs, NDRIs a MMAs) and anxiolytics (benzodiazepines and azapirone), as patients treated with antidepressants and/or anxiolytics can still suffer from psychological stress. Emphasis is placed on the drug metabolism mediated by the enzymes of Phase I, typically cytochromes P450 (CYPs), which are the major enzymes involved in drug metabolism, as the majority of psychoactive substances are metabolized by numerous CYPs (such as CYP1A2, CYP2B6, CYP2C19, CYP2C9, CYP2A6, CYP2D6, CYP3A4). As the data on the effect of stress on human enzymes are extremely rare, modulation of the efficacy and even regulation of the biotransformation pathways of drugs by psychological stress can be expected to play a significant role, as there is increasing evidence that stress can alter drug metabolism, hence there is a risk of less effective drug metabolism and increased side effects.
Collapse
Affiliation(s)
- Nina Zemanova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Eva Anzenbacherova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
33
|
Evaluation of CYP2C19 activity using microdosed oral omeprazole in humans. Eur J Clin Pharmacol 2022; 78:975-987. [PMID: 35238961 PMCID: PMC9107402 DOI: 10.1007/s00228-022-03304-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Purpose To investigate the suitability of microdosed oral omeprazole for predicting CYP2C19 activity in vivo in combination with simultaneous assessment of CYP3A and CYP2D6 activity using both microdosed midazolam and yohimbine. Methods An open, fixed-sequence study was carried out in 20 healthy participants. Single microdosed (100 µg) and therapeutic (20 mg) doses of omeprazole were evaluated without comedication and after administration of established CYP2C19 perpetrators fluconazole (inhibition) and rifampicin (induction). To prevent degradation of the uncoated omeprazole microdose, sodium bicarbonate buffer was administered. The pharmacokinetics of omeprazole and its 5-hydroxy-metabolite were assessed as well as the pharmacokinetics of midazolam and yohimbine to estimate CYP3A4 and CYP2D6 activity. Results Calculated pharmacokinetic parameters after administration of 100 µg and 20 mg omeprazole in healthy subjects suggest dose proportionality. Omeprazole clearance was significantly decreased by fluconazole from 388 [95% CI: 266–565] to 47.2 [42.8–52.0] mL/min after 20 mg omeprazole and even further after 100 µg omeprazole (29.4 [24.5–35.1] mL/min). Rifampicin increased CYP2C19-mediated omeprazole metabolism. The omeprazole hydroxylation index was significantly related to omeprazole clearance for both doses. Both fluconazole and rifampicin altered CYP3A4 activity whereas no change of CYP2D6 activity was observed at all. Conclusions Microdosed oral omeprazole is suitable to determine CYP2C19 activity, also during enzyme inhibition and induction. However, the administration of sodium bicarbonate buffer also had a small influence on all victim drugs used. Trial registration EudraCT: 2017–004270-34. Supplementary information The online version contains supplementary material available at 10.1007/s00228-022-03304-3.
Collapse
|
34
|
Brown KE, Staples JW, Woodahl EL. Keeping pace with CYP2D6 haplotype discovery: innovative methods to assign function. Pharmacogenomics 2022; 23:255-262. [PMID: 35083931 PMCID: PMC8890136 DOI: 10.2217/pgs-2021-0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The discovery of haplotypes with unknown or uncertain function in the CYP2D6 pharmacogene is outpacing the capabilities of traditional in vitro and in vivo approaches to characterize their function. This challenge will undoubtedly grow as pharmacogenomic research becomes more inclusive of globally diverse populations. As accurate phenotypic assignment is paramount to the utility of pharmacogenomics, high-throughput technologies are needed for this complex pharmacogene. We describe the evolving landscape of innovative approaches to assign function to CYP2D6 haplotypes and possibilities for adopting these technologies into cohesive processes. Promising approaches include ADME-optimized prediction frameworks, machine learning algorithms, deep mutational scanning and phenoconversion predictions. Implementing these approaches will lead to improved personalization of treatment for patients.
Collapse
Affiliation(s)
- Karen E Brown
- Department of Biomedical & Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Montana, Missoula, MT 59812, USA,Skaggs Institute for Health Innovation, University of Montana, Missoula, MT 59812, USA
| | - Jack W Staples
- Department of Biomedical & Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Montana, Missoula, MT 59812, USA,Skaggs Institute for Health Innovation, University of Montana, Missoula, MT 59812, USA
| | - Erica L Woodahl
- Department of Biomedical & Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Montana, Missoula, MT 59812, USA,Skaggs Institute for Health Innovation, University of Montana, Missoula, MT 59812, USA,Author for correspondence: Tel.: +1 406 243 4129;
| |
Collapse
|
35
|
Belyaeva II, Subbotina AG, Eremenko II, Tarasov VV, Chubarev VN, Schiöth HB, Mwinyi J. Pharmacogenetics in Primary Headache Disorders. Front Pharmacol 2022; 12:820214. [PMID: 35222013 PMCID: PMC8866828 DOI: 10.3389/fphar.2021.820214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
Primary headache disorders, such as migraine, tension-type headache (TTH), and cluster headache, belong to the most common neurological disorders affecting a high percentage of people worldwide. Headache induces a high burden for the affected individuals on the personal level, with a strong impact on life quality, daily life management, and causes immense costs for the healthcare systems. Although a relatively broad spectrum of different pharmacological classes for the treatment of headache disorders are available, treatment effectiveness is often limited by high variances in therapy responses. Genetic variants can influence the individual treatment success by influencing pharmacokinetics or pharmacodynamics of the therapeutic as investigated in the research field of pharmacogenetics. This review summarizes the current knowledge on important primary headache disorders, including migraine, TTH, and cluster headache. We also summarize current acute and preventive treatment options for the three headache disorders based on drug classes and compounds taking important therapy guidelines into consideration. Importantly, the work summarizes and discusses the role of genetic polymorphisms regarding their impact on metabolism safety and the effect of therapeutics that are used to treat migraine, cluster headache, and TTH exploring drug classes such as nonsteroidal anti-inflammatory drugs, triptans, antidepressants, anticonvulsants, calcium channel blockers, drugs with effect on the renin-angiotensin system, and novel headache therapeutics such as ditans, anti-calcitonin-gene-related peptide antibodies, and gepants. Genetic variants in important phase I-, II-, and III-associated genes such as cytochrome P450 genes, UGT genes, and different transporter genes are scrutinized as well as variants in genes important for pharmacodynamics and several functions outside the pharmacokinetic and pharmacodynamic spectrum. Finally, the article evaluates the potential and limitations of pharmacogenetic approaches for individual therapy adjustments in headache disorders.
Collapse
Affiliation(s)
- Irina I. Belyaeva
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anna G. Subbotina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ivan I. Eremenko
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V. Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir N. Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jessica Mwinyi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden,*Correspondence: Jessica Mwinyi,
| |
Collapse
|
36
|
Pavez Loriè E, Baatout S, Choukér A, Buchheim JI, Baselet B, Dello Russo C, Wotring V, Monici M, Morbidelli L, Gagliardi D, Stingl JC, Surdo L, Yip VLM. The Future of Personalized Medicine in Space: From Observations to Countermeasures. Front Bioeng Biotechnol 2021; 9:739747. [PMID: 34966726 PMCID: PMC8710508 DOI: 10.3389/fbioe.2021.739747] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of personalized medicine is to detach from a “one-size fits all approach” and improve patient health by individualization to achieve the best outcomes in disease prevention, diagnosis and treatment. Technological advances in sequencing, improved knowledge of omics, integration with bioinformatics and new in vitro testing formats, have enabled personalized medicine to become a reality. Individual variation in response to environmental factors can affect susceptibility to disease and response to treatments. Space travel exposes humans to environmental stressors that lead to physiological adaptations, from altered cell behavior to abnormal tissue responses, including immune system impairment. In the context of human space flight research, human health studies have shown a significant inter-individual variability in response to space analogue conditions. A substantial degree of variability has been noticed in response to medications (from both an efficacy and toxicity perspective) as well as in susceptibility to damage from radiation exposure and in physiological changes such as loss of bone mineral density and muscle mass in response to deconditioning. At present, personalized medicine for astronauts is limited. With the advent of longer duration missions beyond low Earth orbit, it is imperative that space agencies adopt a personalized strategy for each astronaut, starting from pre-emptive personalized pre-clinical approaches through to individualized countermeasures to minimize harmful physiological changes and find targeted treatment for disease. Advances in space medicine can also be translated to terrestrial applications, and vice versa. This review places the astronaut at the center of personalized medicine, will appraise existing evidence and future preclinical tools as well as clinical, ethical and legal considerations for future space travel.
Collapse
Affiliation(s)
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Alexander Choukér
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Judith-Irina Buchheim
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Cinzia Dello Russo
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica Del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,MRC Centre for Drug Safety Science and Wolfson Centre for Personalized Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| | | | - Monica Monici
- ASA Campus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Dimitri Gagliardi
- Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester, United Kingdom
| | - Julia Caroline Stingl
- Institute of Clinical Pharmacology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Leonardo Surdo
- Space Applications Services NV/SA for the European Space Agency, Noordwijk, Netherlands
| | - Vincent Lai Ming Yip
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalized Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
37
|
Shum S, Yadav A, Fay E, Moreni S, Mao J, Czuba L, Wang C, Isoherranen N, Hebert MF. Infant dextromethorphan and dextrorphan exposure via breast milk from mothers who are CYP2D6 extensive metabolizers. J Clin Pharmacol 2021; 62:747-755. [PMID: 34889461 DOI: 10.1002/jcph.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/03/2021] [Indexed: 11/11/2022]
Abstract
The risk of infant exposure to dextromethorphan (DM) and its active metabolite, dextrorphan (DX), through breast milk has not been evaluated. In this study, bound and unbound DM and DX concentrations in breast milk and plasma at 2 h post-dose were measured in 20 lactating women (n = 20) following a single 30 mg oral dose of DM. The DM and DX concentrations in breast milk were positively correlated with their respective plasma concentrations. The breast milk-to-plasma (M/P) ratios of 1.0 and 1.6 and the unbound M/P ratios of 1.1 and 2.0 for DM and DX, respectively, suggested that DM and DX are extensively distributed into breast milk. The infant exposure following a single dose of 30 mg DM was estimated using the breast milk concentrations to be 0.33 ± 0.32 μg/kg/day and 1.8 ± 1.0 μg/kg/day for DM and DX, respectively. The steady-state infant exposure was estimated using the M/P ratios and previously reported AUC of DM and DX following repeated dosing of DM 60 mg orally twice daily to be 0.64 ± 0.22 μg/kg/day and 1.23 ± 0.38 μg/kg/day, respectively. Based on these estimated infant doses, the relative infant doses (RIDs) were estimated to be <1%, suggesting the infant is only exposed to a minor fraction of adult dose through breast milk; however, one nursing infant developed an erythematous rash during this study which warrants additional research to fully elucidate the risks of infant exposure to DM and DX through breast milk. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sara Shum
- University of Washington, Department of Pharmaceutics, Seattle, WA, USA
| | - Aprajita Yadav
- University of Washington, Department of Pharmaceutics, Seattle, WA, USA
| | - Emily Fay
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA
| | - Sue Moreni
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA
| | - Jennie Mao
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA
| | - Lindsay Czuba
- University of Washington, Department of Pharmaceutics, Seattle, WA, USA
| | - Celine Wang
- University of Washington, Department of Pharmacy, Seattle, WA, USA
| | - Nina Isoherranen
- University of Washington, Department of Pharmaceutics, Seattle, WA, USA
| | - Mary F Hebert
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA.,University of Washington, Department of Pharmacy, Seattle, WA, USA
| |
Collapse
|
38
|
Carvalho Henriques B, Buchner A, Hu X, Wang Y, Yavorskyy V, Wallace K, Dong R, Martens K, Carr MS, Behroozi Asl B, Hague J, Sivapalan S, Maier W, Dernovsek MZ, Henigsberg N, Hauser J, Souery D, Cattaneo A, Mors O, Rietschel M, Pfeffer G, Hume S, Aitchison KJ. Methodology for clinical genotyping of CYP2D6 and CYP2C19. Transl Psychiatry 2021; 11:596. [PMID: 34811360 PMCID: PMC8608805 DOI: 10.1038/s41398-021-01717-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 10/28/2021] [Indexed: 01/10/2023] Open
Abstract
Many antidepressants, atomoxetine, and several antipsychotics are metabolized by the cytochrome P450 enzymes CYP2D6 and CYP2C19, and guidelines for prescribers based on genetic variants exist. Although some laboratories offer such testing, there is no consensus regarding validated methodology for clinical genotyping of CYP2D6 and CYP2C19. The aim of this paper was to cross-validate multiple technologies for genotyping CYP2D6 and CYP2C19 against each other, and to contribute to feasibility for clinical implementation by providing an enhanced range of assay options, customizable automated translation of data into haplotypes, and a workflow algorithm. AmpliChip CYP450 and some TaqMan single nucleotide variant (SNV) and copy number variant (CNV) data in the Genome-based therapeutic drugs for depression (GENDEP) study were used to select 95 samples (out of 853) to represent as broad a range of CYP2D6 and CYP2C19 genotypes as possible. These 95 included a larger range of CYP2D6 hybrid configurations than have previously been reported using inter-technology data. Genotyping techniques employed were: further TaqMan CNV and SNV assays, xTAGv3 Luminex CYP2D6 and CYP2C19, PharmacoScan, the Ion AmpliSeq Pharmacogenomics Panel, and, for samples with CYP2D6 hybrid configurations, long-range polymerase chain reactions (L-PCRs) with Sanger sequencing and Luminex. Agena MassARRAY was also used for CYP2C19. This study has led to the development of a broader range of TaqMan SNV assays, haplotype phasing methodology with TaqMan adaptable for other technologies, a multiplex genotyping method for efficient identification of some hybrid haplotypes, a customizable automated translation of SNV and CNV data into haplotypes, and a clinical workflow algorithm.
Collapse
Affiliation(s)
| | - Avery Buchner
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada ,grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Xiuying Hu
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada
| | - Yabing Wang
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada
| | - Vasyl Yavorskyy
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada ,grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Keanna Wallace
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada
| | - Rachael Dong
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Kristina Martens
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Michael S. Carr
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada ,grid.17089.370000 0001 2190 316XDepartment of Pharmacology, University of Alberta, Edmonton, Canada
| | - Bahareh Behroozi Asl
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada ,grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Joshua Hague
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada ,grid.17089.370000 0001 2190 316XDepartment of Medical Genetics, University of Alberta, Edmonton, Canada
| | - Sudhakar Sivapalan
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada
| | - Wolfgang Maier
- grid.10388.320000 0001 2240 3300Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | | | - Neven Henigsberg
- grid.4808.40000 0001 0657 4636Croatian Institute for Brain Research, Centre for Excellence for Basic, Clinical and Translational Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Joanna Hauser
- grid.22254.330000 0001 2205 0971Departnent of Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
| | - Daniel Souery
- grid.4989.c0000 0001 2348 0746Laboratoire de Psychologie Médicale, Université Libre de Bruxelles and Psy Pluriel, Centre Européen de Psychologie Médicale, Brussels, Belgium
| | - Annamaria Cattaneo
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy ,grid.4708.b0000 0004 1757 2822Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - Ole Mors
- grid.154185.c0000 0004 0512 597XPsychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Marcella Rietschel
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
| | - Gerald Pfeffer
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada ,grid.22072.350000 0004 1936 7697Alberta Child Health Research Institute & Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Stacey Hume
- grid.17089.370000 0001 2190 316XDepartment of Medical Genetics, University of Alberta, Edmonton, Canada ,Alberta Precision Laboratories, Edmonton, Canada
| | - Katherine J. Aitchison
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada ,grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada ,grid.17089.370000 0001 2190 316XDepartment of Medical Genetics, University of Alberta, Edmonton, Canada ,grid.413574.00000 0001 0693 8815Alberta Health Services, Edmonton, Canada ,grid.13097.3c0000 0001 2322 6764King’s College London, London, UK
| |
Collapse
|
39
|
Chadwick A, Frazier A, Khan TW, Young E. Understanding the Psychological, Physiological, and Genetic Factors Affecting Precision Pain Medicine: A Narrative Review. J Pain Res 2021; 14:3145-3161. [PMID: 34675643 PMCID: PMC8517910 DOI: 10.2147/jpr.s320863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Precision pain medicine focuses on employing methods to assess each patient individually, identify their risk profile for disproportionate pain and/or the development of chronic pain, and optimize therapeutic strategies to target specific pathological processes underlying chronic pain. This review aims to provide a concise summary of the current body of knowledge regarding psychological, physiological, and genetic determinants of chronic pain related to precision pain medicine. METHODS Following the Scale for the Assessment of Narrative Review Articles (SANRA) criteria, we employed PubMed/Medline to identify relevant articles using primary database search terms to query articles such as: precision medicine, non-modifiable factors, pain, anesthesiology, quantitative sensory testing, genetics, pain medicine, and psychological. RESULTS Precision pain medicine provides an opportunity to identify populations at risk, develop personalized treatment strategies, and reduce side effects and cost through elimination of ineffective treatment strategies. As in other complex chronic health conditions, there are two broad categories that contribute to chronic pain risk: modifiable and non-modifiable patient factors. This review focuses on three primary determinants of health, representing both modifiable and non-modifiable factors, that may contribute to a patient's profile for risk of developing pain and most effective management strategies: psychological, physiological, and genetic factors. CONCLUSION Consideration of these three domains is already being integrated into patient care in other specialties, but by understanding the role they play in development and maintenance of chronic pain, we can begin to implement both precision and personalized treatment regimens.
Collapse
Affiliation(s)
- Andrea Chadwick
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew Frazier
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Talal W Khan
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Erin Young
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
40
|
Eap CB, Gründer G, Baumann P, Ansermot N, Conca A, Corruble E, Crettol S, Dahl ML, de Leon J, Greiner C, Howes O, Kim E, Lanzenberger R, Meyer JH, Moessner R, Mulder H, Müller DJ, Reis M, Riederer P, Ruhe HG, Spigset O, Spina E, Stegman B, Steimer W, Stingl J, Suzen S, Uchida H, Unterecker S, Vandenberghe F, Hiemke C. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants. World J Biol Psychiatry 2021; 22:561-628. [PMID: 33977870 DOI: 10.1080/15622975.2021.1878427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives: More than 40 drugs are available to treat affective disorders. Individual selection of the optimal drug and dose is required to attain the highest possible efficacy and acceptable tolerability for every patient.Methods: This review, which includes more than 500 articles selected by 30 experts, combines relevant knowledge on studies investigating the pharmacokinetics, pharmacodynamics and pharmacogenetics of 33 antidepressant drugs and of 4 drugs approved for augmentation in cases of insufficient response to antidepressant monotherapy. Such studies typically measure drug concentrations in blood (i.e. therapeutic drug monitoring) and genotype relevant genetic polymorphisms of enzymes, transporters or receptors involved in drug metabolism or mechanism of action. Imaging studies, primarily positron emission tomography that relates drug concentrations in blood and radioligand binding, are considered to quantify target structure occupancy by the antidepressant drugs in vivo. Results: Evidence is given that in vivo imaging, therapeutic drug monitoring and genotyping and/or phenotyping of drug metabolising enzymes should be an integral part in the development of any new antidepressant drug.Conclusions: To guide antidepressant drug therapy in everyday practice, there are multiple indications such as uncertain adherence, polypharmacy, nonresponse and/or adverse reactions under therapeutically recommended doses, where therapeutic drug monitoring and cytochrome P450 genotyping and/or phenotyping should be applied as valid tools of precision medicine.
Collapse
Affiliation(s)
- C B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, Switzerland, Geneva, Switzerland
| | - G Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - P Baumann
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - N Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Conca
- Department of Psychiatry, Health Service District Bolzano, Bolzano, Italy.,Department of Child and Adolescent Psychiatry, South Tyrolean Regional Health Service, Bolzano, Italy
| | - E Corruble
- INSERM CESP, Team ≪MOODS≫, Service Hospitalo-Universitaire de Psychiatrie, Universite Paris Saclay, Le Kremlin Bicetre, France.,Service Hospitalo-Universitaire de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - S Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M L Dahl
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J de Leon
- Eastern State Hospital, University of Kentucky Mental Health Research Center, Lexington, KY, USA
| | - C Greiner
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - O Howes
- King's College London and MRC London Institute of Medical Sciences (LMS)-Imperial College, London, UK
| | - E Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - J H Meyer
- Campbell Family Mental Health Research Institute, CAMH and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - R Moessner
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - H Mulder
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands.,GGZ Drenthe Mental Health Services Drenthe, Assen, The Netherlands.,Department of Pharmacotherapy, Epidemiology and Economics, Department of Pharmacy and Pharmaceutical Sciences, University of Groningen, Groningen, The Netherlands.,Department of Psychiatry, Interdisciplinary Centre for Psychopathology and Emotion Regulation, University of Groningen, Groningen, The Netherlands
| | - D J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Reis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - P Riederer
- Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry, University of Southern Denmark Odense, Odense, Denmark
| | - H G Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - O Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - E Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Stegman
- Institut für Pharmazie der Universität Regensburg, Regensburg, Germany
| | - W Steimer
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany
| | - J Stingl
- Institute for Clinical Pharmacology, University Hospital of RWTH Aachen, Germany
| | - S Suzen
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - H Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - S Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - F Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
41
|
Mistry PK, Lukina E, Ben Turkia H, Shankar SP, Feldman H, Ghosn M, Mehta A, Packman S, Lau H, Petakov M, Assouline S, Balwani M, Danda S, Hadjiev E, Ortega A, Foster MC, Gaemers SJM, Peterschmitt MJ. Clinical outcomes after 4.5 years of eliglustat therapy for Gaucher disease type 1: Phase 3 ENGAGE trial final results. Am J Hematol 2021; 96:1156-1165. [PMID: 34161616 PMCID: PMC8457136 DOI: 10.1002/ajh.26276] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/06/2021] [Accepted: 06/12/2021] [Indexed: 01/31/2023]
Abstract
Eliglustat, an oral substrate reduction therapy, is approved for eligible adults with Gaucher disease type 1. In the Phase 3 ENGAGE trial of previously untreated adults with Gaucher disease type 1, eliglustat‐treated patients had statistically significant improvements in organ volumes and hematologic parameters compared with placebo in the 9‐month primary analysis. We report final outcomes by time on eliglustat among all patients who participated in the ENGAGE trial and extension. No patient deteriorated clinically or withdrew due to adverse events; 39/40 patients entered the open‐label extension period and 34/40 (85%) remained in the trial until completion or switching to commercial eliglustat after its approval (2.3–6 years). Clinically meaningful improvements in Gaucher disease manifestations were seen in all patients concomitant with reductions in pathological lipid substrate levels (glucosylceramide and glucosylsphingosine). Among patients with 4.5 years of eliglustat exposure, mean spleen volume decreased by 66% (from 17.1 to 5.8 multiples of normal [MN], n = 13), mean liver volume decreased by 23% (from 1.5 to 1.1 MN, n = 13), mean hemoglobin increased 1.4 g/dl (from 11.9 to 13.4 g/dl, n = 12), mean platelet count increased by 87% (from 67.6 to 122.6 × 109/L, n = 12), median chitotriosidase decreased by 82% (from 13 394 to 2312 nmol/h/ml, n = 11), median glucosylceramide decreased by 79% (from 11.5 to 2.4 μg/ml, n = 11), median glucosylsphingosine decreased by 84% (from 518.5 to 72.1 ng/ml, n = 10), and mean spine T‐score increased from −1.07 (osteopenia) to −0.53 (normal) (n = 9). The magnitude of improvement in Gaucher disease manifestations and biomarkers over time was similar among the full trial cohort. Eliglustat was well‐tolerated and led to clinically significant improvements in previously untreated patients with Gaucher disease type 1 during 4.5 years of treatment.
Collapse
Affiliation(s)
| | - Elena Lukina
- National Research Center for Hematology Moscow Russia
| | | | | | - Hagit Feldman
- The Genetics Institute, Tel Aviv Sourasky Medical Center, and Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Marwan Ghosn
- Hôtel‐Dieu de France University Hospital Beirut Lebanon
| | | | | | - Heather Lau
- New York University School of Medicine New York New York USA
| | - Milan Petakov
- Clinical Center of Serbia Belgrade University Medical School Belgrade Serbia
| | | | - Manisha Balwani
- Icahn School of Medicine at Mt. Sinai Hospital New York New York USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Sukprasong R, Chuwongwattana S, Koomdee N, Jantararoungtong T, Prommas S, Jinda P, Rachanakul J, Nuntharadthanaphong N, Jongjitsook N, Puangpetch A, Sukasem C. Allele frequencies of single nucleotide polymorphisms of clinically important drug-metabolizing enzymes CYP2C9, CYP2C19, and CYP3A4 in a Thai population. Sci Rep 2021; 11:12343. [PMID: 34117307 PMCID: PMC8195986 DOI: 10.1038/s41598-021-90969-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Prior knowledge of allele frequencies of cytochrome P450 polymorphisms in a population is crucial for the revision and optimization of existing medication choices and doses. In the current study, the frequency of the CYP2C9*2, CYP2C9*3, CYP2C19*2, CYP2C19*3, CYP2C19*6, CYP2C19*17, and CYP3A4 (rs4646437) alleles in a Thai population across different regions of Thailand was examined. Tests for polymorphisms of CYP2C9 and CYP3A4 were performed using TaqMan SNP genotyping assay and CYP2C19 was performed using two different methods; TaqMan SNP genotyping assay and Luminex x Tag V3. The blood samples were collected from 1205 unrelated healthy individuals across different regions within Thailand. Polymorphisms of CYP2C9 and CYP2C19 were transformed into phenotypes, which included normal metabolizer (NM), intermediate metabolizer (IM), poor metabolizer (PM), and rapid metabolizers (RM). The CYP2C9 allele frequencies among the Thai population were 0.08% and 5.27% for the CYP2C9*2 and CYP2C9*3 alleles, respectively. The CYP2C19 allele frequencies among the Thai population were 25.60%, 2.50%, 0.10%, and 1.80% for the CYP2C19*2, CYP2C19*3, CYP2C19*6, and CYP2C19*17 alleles, respectively. The allele frequency of the CYP3A4 (rs4646437) variant allele was 28.50% in the Thai population. The frequency of the CYP2C9*3 allele was significantly lower among the Northern Thai population (P < 0.001). The frequency of the CYP2C19*17 allele was significantly higher in the Southern Thai population (P < 0.001). Our results may provide an understanding of the ethnic differences in drug responses and support for the utilization of pharmacogenomics testing in clinical practice.
Collapse
Affiliation(s)
- Rattanaporn Sukprasong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Sumonrat Chuwongwattana
- Faculty of Medical Technology, Huachiew Chalermprakiet University, Bang Phli District, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Santirhat Prommas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Jiratha Rachanakul
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nutthan Nuntharadthanaphong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nutcha Jongjitsook
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.
| |
Collapse
|
43
|
Baumann P, Bertschy G, Ramseier F, Nil R. Plasma Concentrations and Cardiovascular Effects of Citalopram Enantiomers After Oral Versus Infusion Citalopram Therapy in Dextromethorphan-Mephenytoin-Phenotyped Patients With Major Depression. Ther Drug Monit 2021; 43:436-442. [PMID: 33060488 DOI: 10.1097/ftd.0000000000000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/21/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Authors compared plasma concentrations of citalopram (CIT) enantiomers and their metabolites in patients with depression administered either intravenously (IV) or as oral racemic CIT. Then, plasma concentrations were related to the metabolism of probes used for phenotyping patients with depression for CYP2C19 and CYP2D6 activity and cardiovascular functions. METHODS Dextromethorphan-mephenytoin-phenotyped patients with depression were administered racemic CIT (days 1 and 2: 20 mg/d; days 3-10: 40 mg/d) either orally or as a slow-drop infusion for 10 days and were then orally administered the drug for another 32 days. Blood probes were collected at the time of minimal and maximal concentrations on day 10, immediately before and 2 hours after drug administration, and on days 21 and 42. Plasma CIT and its metabolites were assayed by stereoselective high-performance liquid chromatography. RESULTS The following concentrations (ng/mL) were noted in the group receiving active IV infusion (IV-POS group, n = 27) of racemic CIT on day 10, before drug administration: escitalopram (S-CIT): 24 ± 10.2; R-citalopram (R-CIT): 45 ± 14.5; S-desmethyl-CIT: 13 ± 4.4; and R-desmethyl-CIT: 17 ± 8.2. In patients receiving oral administration (POS-POS group, n = 25), the values were 30 ± 12.7, 51 ± 17.4, 13 ± 4.6, and 17 ± 7.9 ng/mL, respectively. In the IV-POS group, 3 patients were poor dextromethorphan (CYP2D6) metabolizers; in the POS-POS group, one was a poor mephenytoin (CYP2C19) metabolizer. On day 10, before CIT treatment, S/R-CIT and S/R-mephenytoin ratios were significantly correlated, determined at baseline. Overall, CIT reduced the heart rate but did not significantly modify QTc. No relationship was found between any cardiovascular parameters and pharmacokinetic and pharmacogenetic data. CONCLUSIONS Owing to CIT's high bioavailability, the plasma concentrations of its enantiomers remained largely independent on the administration route. CYP2C19 preferentially demethylated S-CIT after CIT therapy.
Collapse
Affiliation(s)
- Pierre Baumann
- Department of Psychiatry, University Hospital of Lausanne (DP-CHUV), Prilly-Lausanne, Switzerland
| | - Gilles Bertschy
- Service de Psychiatrie II, University of Strasbourg, Strasbourg, France
| | - Fritz Ramseier
- Praxengemeinschaft Zürcherstrasse, Rheinfelden, Switzerland; and
| | - Rico Nil
- Consultant, Clinical Research, Uerikon, Switzerland
| |
Collapse
|
44
|
Vizeli P, Straumann I, Holze F, Schmid Y, Dolder PC, Liechti ME. Genetic influence of CYP2D6 on pharmacokinetics and acute subjective effects of LSD in a pooled analysis. Sci Rep 2021; 11:10851. [PMID: 34035391 PMCID: PMC8149637 DOI: 10.1038/s41598-021-90343-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
Lysergic acid diethylamide (LSD) is a classic psychedelic substance that is used recreationally and investigated in psychiatric research. There are no pharmacogenetic studies on LSD. In vitro metabolic studies indicate that several cytochrome P450 (CYP) isoforms (e.g., CYP2D6, CYP1A2, and CYP2C9) are involved in LSD metabolism, but in vivo data are scarce. The present study examined the influence of genetic polymorphisms of CYP genes on the pharmacokinetics and acute effects of LSD in healthy subjects. We identified common genetic variants of CYPs (CYP2D6, CYP1A2, CYP2C9, CYP2C19, and CYP2B6) in 81 healthy subjects who were pooled from four randomized, placebo-controlled, double-blind Phase 1 studies. We found that genetically determined CYP2D6 functionality significantly influenced the pharmacokinetics of LSD. Individuals with no functional CYP2D6 (i.e., poor metabolizers) had longer LSD half-lives and approximately 75% higher parent drug and main metabolite 2-oxo-3-hydroxy LSD area-under-the-curve blood plasma concentrations compared with carriers of functional CYP2D6. Non-functional CYP2D6 metabolizers also exhibited greater alterations of mind and longer subjective effect durations in response to LSD compared with functional CYP2D6 metabolizers. No effect on the pharmacokinetics or acute effects of LSD were observed with other CYPs. These findings indicate that genetic polymorphisms of CYP2D6 significantly influence the pharmacokinetic and subjective effects of LSD. Given the potential therapeutic use of psychedelics, including LSD, the role of pharmacogenetic tests prior to LSD-assisted psychotherapy needs to be further investigated.
Collapse
Affiliation(s)
- Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Schanzenstrasse 55, 4056, Basel, Switzerland
| | - Isabelle Straumann
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Schanzenstrasse 55, 4056, Basel, Switzerland
| | - Friederike Holze
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Schanzenstrasse 55, 4056, Basel, Switzerland
| | - Yasmin Schmid
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Schanzenstrasse 55, 4056, Basel, Switzerland
| | - Patrick C Dolder
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Schanzenstrasse 55, 4056, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Schanzenstrasse 55, 4056, Basel, Switzerland.
| |
Collapse
|
45
|
Shalimova A, Babasieva V, Chubarev VN, Tarasov VV, Schiöth HB, Mwinyi J. Therapy response prediction in major depressive disorder: current and novel genomic markers influencing pharmacokinetics and pharmacodynamics. Pharmacogenomics 2021; 22:485-503. [PMID: 34018822 DOI: 10.2217/pgs-2020-0157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder is connected with high rates of functional disability and mortality. About a third of the patients are at risk of therapy failure. Several pharmacogenetic markers especially located in CYP450 genes such as CYP2D6 or CYP2C19 are of relevance for therapy outcome prediction in major depressive disorder but a further optimization of predictive tools is warranted. The article summarizes the current knowledge on pharmacogenetic variants, therapy effects and side effects of important antidepressive therapeutics, and sheds light on new methodological approaches for therapy response estimation based on genetic markers with relevance for pharmacokinetics, pharmacodynamics and disease pathology identified in genome-wide association study analyses, highlighting polygenic risk score analysis as a tool for further optimization of individualized therapy outcome prediction.
Collapse
Affiliation(s)
- Alena Shalimova
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Viktoria Babasieva
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Vladimir N Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Institute of Translational Medicine & Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden.,Institute of Translational Medicine & Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden
| |
Collapse
|
46
|
Qian JC, Cai JP, Hu GX. Han Chinese specific cytochrome P450 polymorphisms and their impact on the metabolism of anti-hypertensive drugs with adrenoreceptor blocking properties. Expert Opin Drug Metab Toxicol 2021; 17:707-716. [PMID: 33910442 DOI: 10.1080/17425255.2021.1921147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Cytochrome P450 (CYP) is a monooxygenase superfamily mediating the elimination of anti-hypertensive drugs. Polymorphisms of CYP would lead to differential drug efficacy. Building relationships between genotype and phenotype will benefit individual medical treatment of hypertension.Areas covered: The review systematically summarizes the polymorphisms of four CYPs (CYP2C9, CYP2C19, CYP2D6, and CYP3A4) concentrated distributed in the Han Chinese population. Moreover, the activity of variants on metabolizing anti-hypertensive drugs are reviewed, especially drugs with adrenoceptor blocking properties, as well as their clinical relevancies.Expert opinion: The polymorphisms of CYP can cause stratification in drug exposure of antihypertensive drugs. Although the clinical relevance has been built partially, the translational medicine still lacks reliable data support. Furthermore, the studies have demonstrated that even the same CYP variant will exhibit different catalytic capability for different drugs, which is another obstacle to hinder its application. With the deepening of multiomics research and structural biology, nucleotide polymorphisms can be combined with transcriptome, proteome, metabolome and molecular structure analyses to study the susceptibility to hypertension and drug efficacy. A complete data chain would be further estabolished by combining studies of pharmacokinetics-pharmacodynamics, which can effectively promote the precise application of anti-hypertensive drugs.
Collapse
Affiliation(s)
- Jian-Chang Qian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou Zhejiang, P.R. China
| | - Jian-Ping Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou Zhejiang, P.R. China.,The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing P.R. China
| | - Guo-Xin Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou Zhejiang, P.R. China
| |
Collapse
|
47
|
Studerus E, Vizeli P, Harder S, Ley L, Liechti ME. Prediction of MDMA response in healthy humans: a pooled analysis of placebo-controlled studies. J Psychopharmacol 2021; 35:556-565. [PMID: 33781103 PMCID: PMC8155734 DOI: 10.1177/0269881121998322] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is used both recreationally and therapeutically. Little is known about the factors influencing inter- and intra-individual differences in the acute response to MDMA. Effects of other psychoactive substances have been shown to be critically influenced by personality traits and mood state before intake. METHODS We pooled data from 10 randomized, double-blind, placebo-controlled, cross-over studies performed in the same laboratory in 194 healthy subjects receiving doses of 75 or 125mg of MDMA. We investigated the influence of drug dose, body weight, sex, age, drug pre-experience, genetics, personality and mental state before drug intake on the acute physiological and psychological response to MDMA. RESULTS In univariable analyses, the MDMA plasma concentration was the strongest predictor for most outcome variables. When adjusting for dose per body weight, we found that (a) a higher activity of the enzyme CYP2D6 predicted lower MDMA plasma concentration, (b) a higher score in the personality trait "openness to experience" predicted more perceived "closeness", a stronger decrease in "general inactivation", and higher scores in the 5D-ASC (5 Dimensions of Altered States of Consciousness Questionnaire) scales "oceanic boundlessness" and "visionary restructuralization", and (c) subjects with high "neuroticism" or trait anxiety were more likely to have unpleasant and/or anxious reactions. CONCLUSIONS Although MDMA plasma concentration was the strongest predictor, several personality traits and mood state variables additionally explained variance in the response to MDMA. The results confirm that both pharmacological and non-pharmacological variables influence the response to MDMA. These findings may be relevant for the therapeutic use of MDMA.
Collapse
Affiliation(s)
- Erich Studerus
- Division of Personality and
Developmental Psychology, University of Basel, Basel, Switzerland
| | - Patrick Vizeli
- Division of Clinical Pharmacology
and Toxicology, University Hospital Basel, Basel, Switzerland
| | - Samuel Harder
- Division of Clinical Pharmacology
and Toxicology, University Hospital Basel, Basel, Switzerland
| | - Laura Ley
- Division of Clinical Pharmacology
and Toxicology, University Hospital Basel, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology
and Toxicology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
48
|
CYP2C19 Polymorphisms in Indonesia: Comparison among Ethnicities and the Association with Clinical Outcomes. BIOLOGY 2021; 10:biology10040300. [PMID: 33917299 PMCID: PMC8067412 DOI: 10.3390/biology10040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 01/06/2023]
Abstract
Simple Summary CYP2C19 is known as an enzyme primarily responsible for metabolizing various drugs, such as proton pump inhibitor, antiplatelet, anti-epileptic, and anticoagulant. CYP2C19 is known to be polymorphic and can result in the clinical efficacy of drugs. To examine the prevalence and the distribution of the CYP2C19 genetic polymorphisms in Indonesia, we performed polymerase chain reaction-restriction fragment length polymorphism to the genomic DNA of Indonesian participants. In addition, we also analyzed the distribution of CYP2C19 polymorphisms among ethnicities and clinical outcomes. We found that the prevalence of intermediate metabolizers were the highest in Indonesia, followed by rapid metabolizers and poor metabolizers, respectively. The distribution of metabolizer groups were different between ethnic groups in Indonesia. Therefore, dosage adjustment should be considered when administering drugs-affected by CYP2C19 in Indonesia. The results presented in this study showed the distribution of CYP2C19 variant alleles at the population level in Indonesia and might be used as a consideration for providing personalized treatment in clinical practice. Abstract CYP2C19 polymorphisms are important factors for proton pump inhibitor-based therapy. We examined the CYP2C19 genotypes and analyzed the distribution among ethnicities and clinical outcomes in Indonesia. We employed the polymerase chain reaction-restriction fragment length polymorphism method to determine the CYP2C19 genotypes and evaluated inflammation severity with the updated Sydney system. For CYP2C19*2, 46.4% were the homozygous wild-type allele, 14.5% were the homozygous mutated allele, and 39.2% were the heterozygous allele. For CYP2C19*3, 88.6% were the homozygous wild-type allele, 2.4% were the homozygous mutated allele, and 9.0% were the heterozygous allele. Overall, the prevalence of rapid, intermediate, and poor metabolizers in Indonesia was 38.5, 41.6, and 19.9%, respectively. In the poor metabolizer group, the frequency of allele *2 (78.8%) was higher than the frequency of allele *3 (21.2%). The Papuan had a significantly higher likelihood of possessing poor metabolizers than the Balinese (OR 11.0; P = 0.002). The prevalence of poor metabolizers was lower compared with the rapid and intermediate metabolizers among patients with gastritis and gastroesophageal reflux disease. Intermediate metabolizers had the highest prevalence, followed by rapid metabolizers and poor metabolizers. Dosage adjustment should therefore be considered when administering proton pump inhibitor-based therapy in Indonesia.
Collapse
|
49
|
Meta-analysis of probability estimates of worldwide variation of CYP2D6 and CYP2C19. Transl Psychiatry 2021; 11:141. [PMID: 33627619 PMCID: PMC7904867 DOI: 10.1038/s41398-020-01129-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023] Open
Abstract
Extensive migration has led to the necessity of knowledge regarding the treatment of migrants with different ethnical backgrounds. This is especially relevant for pharmacological treatment, because of the significant variation between migrant groups in their capacity to metabolize drugs. For psychiatric medications, CYP2D6 and CYP2C19 enzymes are clinically relevant. The aim of this meta-analysis was to analyze studies reporting clinically useful information regarding CYP2D6 and CYP2C19 genotype frequencies, across populations and ethnic groups worldwide. To that end, we conducted a comprehensive meta-analysis using Embase, PubMed, Web of Science, and PsycINFO (>336,000 subjects, 318 reports). A non-normal metabolizer (non-NM) probability estimate was introduced as the equivalent of the sum-prevalence of predicted poor, intermediate, and ultrarapid metabolizer CYP2D6 and CYP2C19 phenotypes. The probability of having a CYP2D6 non-NM predicted phenotype was highest in Algeria (61%) and lowest in Gambia (2.7%) while the probability for CYP2C19 was highest in India (80%) and lowest in countries in the Americas, particularly Mexico (32%). The mean total probability estimates of having a non-NM predicted phenotype worldwide were 36.4% and 61.9% for CYP2D6 and CYP2C19, respectively. We provide detailed tables and world maps summarizing clinically relevant data regarding the prevalence of CYP2D6 and CYP2C19 predicted phenotypes and demonstrating large inter-ethnic differences. Based on the documented probability estimates, pre-emptive pharmacogenetic testing is encouraged for every patient who will undergo therapy with a drug(s) that is metabolized by CYP2D6 and/or CYP2C19 pathways and should be considered in case of treatment resistance or serious side effects.
Collapse
|
50
|
A functional polymorphism in the ATP-Binding Cassette B1 transporter predicts pharmacologic response to combination of nortriptyline and morphine in neuropathic pain patients. Pain 2021; 161:619-629. [PMID: 31738228 DOI: 10.1097/j.pain.0000000000001750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many genetic markers have been associated with variations in treatment response to analgesics, but none have been assessed in the context of combination therapies. In this study, the treatment effects of nortriptyline and morphine were tested for an association with genetic markers relevant to pain pathways. Treatment effects were determined for single and combination therapies. A total of 24 functional single nucleotide polymorphisms were tested within the gene loci of mu-opioid receptor (OPRM1) gene locus, ATP-Binding Cassette B1 Transporter (ABCB1), Cytochrome P450 gene family (CYP2C19 and CYP2D6), catecholamine inactivator Catechol-O-Methyl Transferase (COMT), and serotonin receptor 2A (HTR2A). Genotyping was performed in a population of neuropathic pain patients who previously participated in a clinical trial. For monotherapy, neither nortriptyline nor morphine responses were associated with single nucleotide polymorphisms. However, for nortriptyline + morphine combination therapy, the single nucleotide polymorphism rs1045642 within the drug efflux pump ABCB1 transporter significantly predicted analgesic response. The presence of the C allele accounted for 51% of pain variance in this subgroup in response to combination treatment. The T-allele homozygotes demonstrated only 20% improvement in pain scores, whereas the C-allele homozygotes 88%. There was no significant contribution of rs1045642 to the medication side effects under all treatment conditions. The UK Biobank data set was then used to validate this genetic association. Here, patients receiving similar combination therapy (opioid + tricyclic antidepressant) carrying the C allele of rs1045642 displayed 33% fewer body pain sites than patients without that allele, suggesting better pain control. In all, our results show a robust effect of the rs1045642 polymorphism in response to chronic pain treatment with a nortriptyline + morphine combination.
Collapse
|