1
|
R Muralitharan R, Marques FZ, O'Donnell JA. Recent advancements in targeting the immune system to treat hypertension. Eur J Pharmacol 2024; 983:177008. [PMID: 39304109 DOI: 10.1016/j.ejphar.2024.177008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Hypertension is the key leading risk factor for death globally, affecting ∼1.3 billion adults, particularly in low- and middle-income countries. Most people living with hypertension have uncontrolled high blood pressure, increasing their likelihood of cardiovascular events. Significant issues preventing blood pressure control include lack of diagnosis, treatment, and response to existing therapy. For example, monotherapy and combination therapy are often unable to lower blood pressure to target levels. New therapies are urgently required to tackle this issue, particularly those that target the mechanisms behind hypertension instead of treating its symptoms. Acting via an increase in systemic and tissue-specific inflammation, the immune system is a critical contributor to blood pressure regulation and is considered an early mechanism leading to hypertension development. Here, we review the immune system's role in hypertension, evaluate clinical trials that target inflammation, and discuss knowledge gaps in pre-clinical and clinical data. We examine the effects of anti-inflammatory drugs colchicine and methotrexate on hypertension and evaluate the blockade of pro-inflammatory cytokines IL-1β and TNF-α on blood pressure in clinical trials. Lastly, we highlight how we can move forward to target specific components of the immune system to lower blood pressure. This includes targeting isolevuglandins, which accumulate in dendritic cells to promote T cell activation and cytokine production in salt-induced hypertension. We discuss the potential of the dietary fibre-derived metabolites short-chain fatty acids, which have anti-inflammatory and blood pressure-lowering effects via the gut microbiome. This would limit adverse events, leading to improved medication adherence and better blood pressure control.
Collapse
Affiliation(s)
- Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Chen H, Song J, Zeng L, Zha J, Zhu J, Chen A, Liu Y, Dong Z, Chen G. Dietary sodium modulates mTORC1-dependent trained immunity in macrophages to accelerate CKD development. Biochem Pharmacol 2024; 229:116505. [PMID: 39181336 DOI: 10.1016/j.bcp.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Chronic Kidney Disease (CKD) is a significant global health issue linked to dietary habits, especially high salt intake. However, the precise mechanisms driving this progression remain incompletely understood. This study reveals that a high-salt diet intensifies macrophage trained immunity, leading to a marked pro-inflammatory response upon repeated pathogenic exposures, as evidenced by increased renal damage and fibrosis. Under high-salt conditions, there was an induction of CD45+F4/80+ macrophage infiltration into the renal tissue, accompanied by heightened production of inflammatory cytokines. Distinct responses were observed between circulating and resident renal macrophages to a high-salt diet, with a notable upsurge in the migration of pro-inflammatory macrophages, driven by CCL2-CCR2 signaling and aberrant mTORC1 pathway activation. Treatment with rapamycin-liposome effectively reduced this inflammatory cascade by mitigating mTORC1 signaling. Transplantation of monocytes from CKD mice with a high-salt diet significantly exacerbates renal inflammatory damage in the host mice, showing increased migratory tendency and inflammatory activity. The cell co-culture experiment further confirmed that macrophages derived from CKD mice, particularly those under conditions of high salt exposure, significantly induced apoptosis and inflammatory responses in renal tubular cells. Taken together, recurrent exposure to LPS elicits the activation of trained immunity, consequently augmenting inflammatory response of monocytes/macrophages in the involved kidneys. The high-salt diet exacerbates this phenomenon, attributable at least in part to the overactivation of the mTORC1 pathway. This research emphasizes the importance of dietary modulation and targeted immunological interventions in slowing CKD progression, providing new insights into mTORC1-mediated pathophysiological mechanisms and potential management strategies for CKD.
Collapse
Affiliation(s)
- Huihui Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Song
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zeng
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Zha
- Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiefu Zhu
- Department of Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anqun Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Liu
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Guochun Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
3
|
Hu Z, Tian Y, Yang A, Song X. High sodium intake increases interstitial lung disease and pulmonary sarcoidosis based on the Global Burden of Disease study 1999-2019. Sci Rep 2024; 14:25891. [PMID: 39472704 PMCID: PMC11522497 DOI: 10.1038/s41598-024-77769-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
This study investigated the relationships between dietary sodium intake and the incidence and prevalence of interstitial lung disease (ILD) and pulmonary sarcoidosis using data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019. This study assessed the strength of the abovementioned relationships via LASSO analysis and a generalized additive model with Poisson regression and determined the nonlinear and lagged effects via a distributed lag nonlinear model (DLNM). In the past three decades, global dietary sodium intake has decreased gradually. Two LASSO and generalized additive analyses both suggested that dietary sodium intake is obviously correlated with the incidence and prevalence of ILD and pulmonary sarcoidosis. The overall exposure‒response curve revealed a dose‒effect relationship between dietary sodium intake and the incidence and prevalence of ILD and pulmonary sarcoidosis. The maximum lag-specific RR of extremely high dietary sodium intake was 1.75 (95% CI: 1.61-1.91, lag 0 year) for incidence and 3.19 (95% CI: 2.24-4.53, lag 0 year) for prevalence relative to the reference. Our study suggests that dietary sodium intake is positively associated with the incidence and prevalence of ILD and pulmonary sarcoidosis. These findings may have important policy implications for dietary sodium intake-reduction strategies to decrease the burden of respiratory diseases and promote public health.
Collapse
Affiliation(s)
- Zhigang Hu
- Department of Respiratory and Critical Care Medicine, The First College of Clinical Medicine Science, China Three Gorges University, Yichang, 443003, People's Republic of China.
- Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital, Yichang, 443003, People's Republic of China.
- Clinical Medical Research Center for Precision Diagnosis and Treatment of Lung Cancer and Management of Advance Cancer Pain of Hubei Province, Zhijiang, People's Republic of China.
- Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital at Zhijiang, Zhijiang, 443200, People's Republic of China.
| | - Yufeng Tian
- Department of Teaching Office, Three Gorges University, Yichang, 443003, People's Republic of China
| | - Ailan Yang
- Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital at Zhijiang, Zhijiang, 443200, People's Republic of China
| | - Xinyu Song
- Department of Respiratory and Critical Care Medicine, The First College of Clinical Medicine Science, China Three Gorges University, Yichang, 443003, People's Republic of China.
- Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital, Yichang, 443003, People's Republic of China.
- Clinical Medical Research Center for Precision Diagnosis and Treatment of Lung Cancer and Management of Advance Cancer Pain of Hubei Province, Zhijiang, People's Republic of China.
| |
Collapse
|
4
|
Fujisawa H, Watanabe T, Komine O, Fuse S, Masaki M, Iwata N, Murao N, Seino Y, Takeuchi H, Yamanaka K, Sawada M, Suzuki A, Sugimura Y. Prolonged extracellular low sodium concentrations and subsequent their rapid correction modulate nitric oxide production dependent on NFAT5 in microglia. Free Radic Biol Med 2024; 223:458-472. [PMID: 39155026 DOI: 10.1016/j.freeradbiomed.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Hyponatremia is the most common clinical electrolyte disorder. Chronic hyponatremia has been recently reported to be associated with falls, fracture, osteoporosis, neurocognitive impairment, and mental manifestations. In the treatment of chronic hyponatremia, overly rapid correction of hyponatremia can cause osmotic demyelination syndrome (ODS), a central demyelinating disease that is also associated with neurological morbidity and mortality. Using a rat model, we have previously shown that microglia play a critical role in the pathogenesis of ODS. However, the direct effect of rapid correction of hyponatremia on microglia is unknown. Furthermore, the effect of chronic hyponatremia on microglia remains elusive. Using microglial cell lines BV-2 and 6-3, we show here that low extracellular sodium concentrations (36 mmol/L decrease; LS) suppress Nos2 mRNA expression and nitric oxide (NO) production of microglia. On rapid correction of low sodium concentrations, NO production was significantly increased in both cells, suggesting that acute correction of hyponatremia partly directly contributes to increased Nos2 mRNA expression and NO release in ODS pathophysiology. LS also suppressed expression and nuclear translocation of nuclear factor of activated T cells-5 (NFAT5), a transcription factor that regulates the expression of genes involved in osmotic stress. Furthermore, overexpression of NFAT5 significantly increased Nos2 mRNA expression and NO production in BV-2 cells. Expressions of Nos2 and Nfat5 mRNA were also modulated in microglia isolated from cerebral cortex in chronic hyponatremia model mice. These data indicate that LS modulates microglial NO production dependent on NFAT5 and suggest that microglia contribute to hyponatremia-induced neuronal dysfunctions.
Collapse
Affiliation(s)
- Haruki Fujisawa
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Takashi Watanabe
- Division of Gene Regulation, Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8560, Japan
| | - Sachiho Fuse
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Momoka Masaki
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Naoko Iwata
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Naoya Murao
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, 236-0004, Japan; Department of Neurology, Graduate School of Medicine, International University of Health and Welfare, Narita, Chiba, 286-8686, Japan; Center for Intractable Neurological Diseases and Dementia, International University of Health and Welfare Atami Hospital, Atami, Shizuoka, 413-0012, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8560, Japan
| | - Makoto Sawada
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan; Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 464-8601, Japan
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
5
|
Fuse S, Fujisawa H, Murao N, Iwata N, Watanabe T, Seino Y, Takeuchi H, Suzuki A, Sugimura Y. Effects of hypernatremia on the microglia. Peptides 2024; 179:171267. [PMID: 38908517 DOI: 10.1016/j.peptides.2024.171267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Signs and symptoms of hypernatremia largely indicate central nervous system dysfunction. Acute hypernatremia can cause demyelinating lesions similar to that observed in osmotic demyelination syndrome (ODS). We have previously demonstrated that microglia accumulate in ODS lesions and minocycline protects against ODS by inhibiting microglial activation. However, the direct effect of rapid rise in the sodium concentrations on microglia is largely unknown. In addition, the effect of chronic hypernatremia on microglia also remains elusive. Here, we investigated the effects of acute (6 or 24 h) and chronic (the extracellular sodium concentration was increased gradually for at least 7 days) high sodium concentrations on microglia using the microglial cell line, BV-2. We found that both acute and chronic high sodium concentrations increase NOS2 expression and nitric oxide (NO) production. We also demonstrated that the expression of nuclear factor of activated T-cells-5 (NFAT5) is increased by high sodium concentrations. Furthermore, NFAT5 knockdown suppressed NOS2 expression and NO production. We also demonstrated that high sodium concentrations decreased intracellular Ca2+ concentration and an inhibitor of Na+/Ca2+ exchanger, NCX, suppressed a decrease in intracellular Ca2+ concentrations and NOS2 expression and NO production induced by high sodium concentrations. Furthermore, minocycline inhibited NOS2 expression and NO production induced by high sodium concentrations. These in vitro data suggest that microglial activity in response to high sodium concentrations is regulated by NFAT5 and Ca2+ efflux through NCX and is suppressed by minocycline.
Collapse
Affiliation(s)
- Sachiho Fuse
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Haruki Fujisawa
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Naoya Murao
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Naoko Iwata
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Takashi Watanabe
- Division of Gene Regulation, Oncology Innovation Center, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan; Department of Neurology, Graduate School of Medicine, International University of Health and Welfare, Narita, Chiba 286-8686, Japan; Center for Intractable Neurological Diseases and Dementia, International University of Health and Welfare Atami Hospital, Atami, Shizuoka 413-0012, Japan
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
6
|
Tian J, Li Y, Gao S, Wang Y, Li H, Wei X, Yang J, Gu Y, Wang H, Luo Y. atRA Attenuates High Salt-Driven EAE Mainly Through Suppressing Th17-Like Regulatory T Cell Response Mediated by the Inhibition of IL-23R Signaling Pathway. Inflammation 2024:10.1007/s10753-024-02130-2. [PMID: 39167321 DOI: 10.1007/s10753-024-02130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
High salt diet (HSD) is implicated in numerous disorders, which boosts Th17 cell development and weakens immunosuppressive function of regulatory T cells (Treg cells) Treg cells, leading to the exacerbation of EAE. However, little is known regarding the harness of excessive proinflammatory responses evoked by HSD. Here we show that atRA, a key vitamin A metabolite with multifaceted immunoregulatory properties has the potential in inhibiting the proinflammatory reaction of high salt. Treatment with atRA in vivo elicited the Treg generation in cervical and axillary lymph nodes (CALs), and in CNS of experimental autoimmune encephalomyelitis (EAE). Meanwhile, the proportion of Th17-like Treg cells (RORγt-positive or GM-CSF-positive Treg cells) decreased in CALs. atRA also inhibited IL-17A expression in CD4+ effector T cells. In-vitro mechanistic studies showed that atRA inhibit IL-23R but not SGK1 expression in Treg cells and this results in maintained immunosuppressive function of Treg cells even in the presence of IL-6 and high salt. Furthermore, treatment of EAE with anti-IL-23R mAb attenuated HSD-provoked EAE progress. This was associated with a reduction in the number of CNS-infiltrating Th17 cells and an increase of CAL-Treg cells. Mechanically, treatment with atRA significantly promoted LP-CD103+CD11c+ dendritic cells, a subgroup of cells most closely involved in endogenous retinoic acid metabolism, and enhanced intestinal Aldh1a1 and Rdh10 expression from HSD-fed EAE mice. Interestingly, anti-IL-23R mAb administration also reduced IL-23R expression in Treg cells, along with the increased proportion of LP-CD103+CD11c+ dendritic cells and Rdh10 mRNA expression. In conclusion, administration of atRA might be a way to combat the proinflammatory effects of HSD. Meanwhile, systematic inhibition of IL-23R also had a moderate therapeutic potential in inhibiting inflammatory effects of high salt, which may serve as a basis for the identification of novel therapeutic strategies against HSD-driven autoimmune disorders.
Collapse
Affiliation(s)
- Jiale Tian
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yating Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Shuo Gao
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, 730000, Gansu, China
| | - Yong Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Haolin Li
- Rheumatic Bone Disease Center, Gansu Hospital of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Xiaofeng Wei
- Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, 730000, Gansu, China
- Clinical Research Center for General Surgery of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Jun Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Youquan Gu
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Haidong Wang
- Rheumatic Bone Disease Center, Gansu Hospital of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yang Luo
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, 730000, Gansu, China.
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
7
|
Navaneethabalakrishnan S, Goodlett B, Smith H, Cardenas A, Burns A, Mitchell B. Differential changes in end organ immune cells and inflammation in salt-sensitive hypertension: effects of lowering blood pressure. Clin Sci (Lond) 2024; 138:901-920. [PMID: 38949825 PMCID: PMC11250109 DOI: 10.1042/cs20240698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
We reported that salt-sensitive hypertension (SSHTN) is associated with increased pro-inflammatory immune cells, inflammation, and inflammation-associated lymphangiogenesis in the kidneys and gonads of male and female mice. However, it is unknown whether these adverse end organ effects result from increased blood pressure (BP), elevated levels of salt, or both. We hypothesized that pharmaceutically lowering BP would not fully alleviate the renal and gonadal immune cell accumulation, inflammation, and lymphangiogenesis associated with SSHTN. SSHTN was induced in male and female C57BL6/J mice by administering nitro-L-arginine methyl ester hydrochloride (L-NAME; 0.5 mg/ml) in their drinking water for 2 weeks, followed by a 2-week washout period. Subsequently, the mice received a 3-week 4% high salt diet (SSHTN). The treatment group underwent the same SSHTN induction protocol but received hydralazine (HYD; 250 mg/L) in their drinking water during the diet phase (SSHTN+HYD). Control mice received tap water and a standard diet for 7 weeks. In addition to decreasing systolic BP, HYD treatment generally decreased pro-inflammatory immune cells and inflammation in the kidneys and gonads of SSHTN mice. Furthermore, the decrease in BP partially alleviated elevated renal and gonadal lymphatics and improved renal and gonadal function in mice with SSHTN. These data demonstrate that high systemic pressure and salt differentially act on end organ immune cells, contributing to the broader understanding of how BP and salt intake collectively shape immune responses and highlight implications for targeted therapeutic interventions.
Collapse
Affiliation(s)
| | - Bethany L. Goodlett
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Hannah L. Smith
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Alyssa Cardenas
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Asia Burns
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| |
Collapse
|
8
|
Masenga SK, Liweleya S, Kirabo A. High salt intake and HIV infection on endothelial glycocalyx shedding in salt-sensitive hypertension. Front Cell Dev Biol 2024; 12:1395885. [PMID: 39081863 PMCID: PMC11286502 DOI: 10.3389/fcell.2024.1395885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
The endothelial glycocalyx is closely associated with various physiological and pathophysiological events. Significant modification of the endothelial glycocalyx is an early process in the pathogenesis of cardiovascular disease. High dietary salt and HIV infection damages the endothelial glycocalyx causing endothelial dysfunction and increasing the risk for salt-sensitive hypertension and cardiovascular disease. The two factors, HIV infection and dietary salt are critical independent predictors of hypertension and cardiovascular disease and often synergize to exacerbate and accelerate disease pathogenesis. Salt-sensitive hypertension is more common among people living with HIV and is associated with risk for cardiovascular disease, stroke, heart attack and even death. However, the underlying mechanisms linking endothelial glycocalyx damage to dietary salt and HIV infection are lacking. Yet, both HIV infection/treatment and dietary salt are closely linked to endothelial glycocalyx damage and development of salt-sensitive hypertension. Moreover, the majority of individuals globally, consume more salt than is recommended and the burden of HIV especially in sub-Sahara Africa is disproportionately high. In this review, we have discussed the missing link between high salt and endothelial glycocalyx shedding in the pathogenesis of salt-sensitive hypertension. We have further elaborated the role played by HIV infection and treatment in modifying endothelial glycocalyx integrity to contribute to the development of hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Situmbeko Liweleya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, United States
- Vanderbilt Institute for Global Health, Nashville, TN, United States
| |
Collapse
|
9
|
Zhang J, Wang X, Li K, Rao W, Jiao X, Liang W, Gao H, Wang D, Cao Y, Wei X, Yang J. Hyperosmotic Stress Induces Inflammation and Excessive Th17 Response to Blunt T-Cell Immunity in Tilapia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1877-1890. [PMID: 38700398 DOI: 10.4049/jimmunol.2300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024]
Abstract
Despite the advances in study on osmotic physiology in bony fish, the mechanism by which the immune system, especially T-cell immunity, adapts and responds to osmotic stress remains unknown. In the current study, we investigated the response of T cells to hyperosmotic stress in the bony fish Nile tilapia (Oreochromis niloticus). As a euryhaline fish, tilapia was able to adapt to a wide range of salinities; however, hypertonic stress caused inflammation and excessive T-cell activation. Furthermore, hypertonic stress increased the expression of IL-17A in T cells, upregulated the transcription factor RORα, and activated STAT3 signaling, along with IL-6- and TGF-β1-mediated pathways, revealing an enhanced Th17 response in this early vertebrate. These hypertonic stress-induced events collectively resulted in an impaired antibacterial immune response in tilapia. Hypertonic stress elevated the intracellular ROS level, which in turn activated the p38-MK2 signaling pathway to promote IL-17A production by T cells. Both ROS elimination and the p38-MK2 axis blockade diminished the increased IL-17A production in T cells under hypertonic conditions. Moreover, the produced proinflammatory cytokines further amplified the hypertonic stress signaling via the MKK6-p38-MK2 axis-mediated positive feedback loop. To our knowledge, these findings represent the first description of the mechanism by which T-cell immunity responds to hypertonic stress in early vertebrates, thus providing a novel perspective for understanding the adaptive evolution of T cells under environmental stress.
Collapse
Affiliation(s)
- Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaodan Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenzhuo Rao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinying Jiao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
10
|
Klümper N, Cox A, Eckstein M, Kuppe C, Ritter M, Brossart P, Luetkens J, Hölzel M, Stein J, Saal J. High serum sodium predicts immunotherapy response in metastatic renal cell and urothelial carcinoma. Eur J Cancer 2024; 204:114089. [PMID: 38703618 DOI: 10.1016/j.ejca.2024.114089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVES The development of reliable biomarkers for the prediction of immune checkpoint inhibition (ICI) response in patients with metastatic renal cell carcinoma (mRCC) and urothelial carcinoma (mUC) remains an unresolved challenge. Conventional ICI biomarkers typically focus on tumor-related factors such as PD-L1 expression. However, a comprehensive evaluation of the predictive value of serum electrolyte levels, a so far widely unexplored area, is still pending. METHODS We conducted a post-hoc analysis of baseline sodium, potassium, chloride, magnesium and calcium levels in two independent phase 3 clinical trials: IMvigor211 for mUC comparing atezolizumab to chemotherapy, and IMmotion151 for mRCC comparing atezolizumab+bevacizumab to sunitinib. This analysis aimed to evaluate the prognostic and predictive value of these electrolyte levels in these clinical settings. A total of 1787 patients (IMvigor211 n = 901; IMmotion151 n = 886) were analyzed. RESULTS We found a linear correlation of baseline serum sodium and chloride with prognosis across both trials, which was not found for potassium, magnesium and calcium. In multivariate analysis, the prognostic capacity of sodium was limited to patients receiving ICI as compared to the control group. Interestingly, in both studies, the chance of achieving an objective response was highest in the patient subgroup with high baseline serum sodium levels of > 140 mmol/L (IMmotion151: Complete response in 17.9% versus 2.0% in patients with mRCC with baseline sodium < 135 mmol/L). Serum sodium outperformed tumor PD-L1 expression as a predictor for immunotherapy efficacy. CONCLUSIONS Patients exhibiting elevated serum sodium levels derive the greatest benefit from immunotherapy, suggesting that baseline serum concentration could serve as a valuable and cost-effective predictive biomarker for immunotherapy across entities.
Collapse
MESH Headings
- Humans
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/blood
- Kidney Neoplasms/pathology
- Kidney Neoplasms/immunology
- Male
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/blood
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/secondary
- Carcinoma, Renal Cell/pathology
- Female
- Sodium/blood
- Aged
- Middle Aged
- Immunotherapy/methods
- Antibodies, Monoclonal, Humanized/therapeutic use
- Bevacizumab/therapeutic use
- Biomarkers, Tumor/blood
- Immune Checkpoint Inhibitors/therapeutic use
- Prognosis
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Sunitinib/therapeutic use
- Carcinoma, Transitional Cell/drug therapy
- Carcinoma, Transitional Cell/blood
- Carcinoma, Transitional Cell/secondary
- Carcinoma, Transitional Cell/immunology
Collapse
Affiliation(s)
- Niklas Klümper
- Department of Urology, University Hospital Bonn (UKB), Bonn, Germany; Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Germany; Institute of Experimental Oncology, University Hospital Bonn (UKB), Bonn, Germany
| | - Alexander Cox
- Department of Urology, University Hospital Bonn (UKB), Bonn, Germany; Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Bavarian Center for Cancer Research (Bayerisches Zentrum für Krebsforschung, BZKF)
| | - Christoph Kuppe
- Department of Nephrology, Rheumatology, and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Manuel Ritter
- Department of Urology, University Hospital Bonn (UKB), Bonn, Germany; Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Germany
| | - Peter Brossart
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Germany; Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Hospital Bonn (UKB), Germany
| | - Julian Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany; Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Michael Hölzel
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Germany; Institute of Experimental Oncology, University Hospital Bonn (UKB), Bonn, Germany
| | - Johannes Stein
- Department of Urology, University Hospital Bonn (UKB), Bonn, Germany; Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Germany
| | - Jonas Saal
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Germany; Department of Nephrology, Rheumatology, and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany; Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Hospital Bonn (UKB), Germany.
| |
Collapse
|
11
|
Cieślik M, Strobel SD, Bryniarski P, Twardowska H, Chmielowski A, Rudek M, Felkle D, Zięba K, Kaleta K, Jarczyński M, Nowak B, Bryniarski K, Nazimek K. Hypotensive drugs mitigate the high-sodium diet-induced pro-inflammatory activation of mouse macrophages in vivo. Biomed Pharmacother 2024; 175:116648. [PMID: 38677242 DOI: 10.1016/j.biopha.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
Nowadays, there is an increasing emphasis on the need to alleviate the chronic inflammatory response to effectively treat hypertension. However, there are still gaps in our understanding on how to achieve this. Therefore, research on interaction of antihypertensive drugs with the immune system is extremely interesting, since their therapeutic effect could partly result from amelioration of hypertension-related inflammation, in which macrophages seem to play a pivotal role. Thus, current comprehensive studies have investigated the impact of repeatedly administered hypotensive drugs (captopril, olmesartan, propranolol, carvedilol, amlodipine, verapamil) on macrophage functions in the innate and adaptive immunity, as well as if drug-induced effects are affected by a high-sodium diet (HSD), one of the key environmental risk factors of hypertension. Although the assayed medications increased the generation of reactive oxygen and nitrogen intermediates by macrophages from standard fed donors, they reversed HSD-induced enhancing effects on macrophage oxidative burst and secretion of pro-inflammatory cytokines. On the other hand, some drugs increased macrophage phagocytic activity and the expression of surface markers involved in antigen presentation, which translated into enhanced macrophage ability to activate B cells for antibody production. Moreover, the assayed medications augmented macrophage function and the effector phase of contact hypersensitivity reaction, but suppressed the sensitization phase of cell-mediated hypersensitivity under HSD conditions. Our current findings contribute to the recognition of mechanisms, by which excessive sodium intake affects macrophage immune activity in hypertensive individuals, and provide evidence that the assayed medications mitigate most of the HSD-induced adverse effects, suggesting their additional protective therapeutic activity.
Collapse
Affiliation(s)
- Martyna Cieślik
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Spencer D Strobel
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Paweł Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Hanna Twardowska
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Adam Chmielowski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Michał Rudek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Dominik Felkle
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Katarzyna Zięba
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Konrad Kaleta
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Mateusz Jarczyński
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Bernadeta Nowak
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland.
| |
Collapse
|
12
|
Izzy S, Yahya T, Albastaki O, Cao T, Schwerdtfeger LA, Abou-El-Hassan H, Chopra K, Ekwudo MN, Kurdeikaite U, Verissimo IM, LeServe DS, Lanser TB, Aronchik M, Oliveira MG, Moreira T, Rezende RM, El Khoury J, Cox LM, Weiner HL, Zafonte R, Whalen MJ. High-salt diet induces microbiome dysregulation, neuroinflammation and anxiety in the chronic period after mild repetitive closed head injury in adolescent mice. Brain Commun 2024; 6:fcae147. [PMID: 39045090 PMCID: PMC11264151 DOI: 10.1093/braincomms/fcae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 07/25/2024] Open
Abstract
The associations between human concussions and subsequent sequelae of chronic neuropsychiatric and cardiovascular diseases such as hypertension have been reported; however, little is known about the underlying biological processes. We hypothesized that dietary changes, including a high-salt diet, disrupt the bidirectional gut-brain axis, resulting in worsening neuroinflammation and emergence of cardiovascular and behavioural phenotypes in the chronic period after repetitive closed head injury in adolescent mice. Adolescent mice were subjected to three daily closed head injuries, recovered for 12 weeks and then maintained on a high-salt diet or a normal diet for an additional 12 weeks. Experimental endpoints were haemodynamics, behaviour, microglial gene expression (bulk RNA sequencing), brain inflammation (brain tissue quantitative PCR) and microbiome diversity (16S RNA sequencing). High-salt diet did not affect systemic blood pressure or heart rate in sham or injured mice. High-salt diet increased anxiety-like behaviour in injured mice compared to sham mice fed with high-salt diet and injured mice fed with normal diet. Increased anxiety in injured mice that received a high-salt diet was associated with microgliosis and a proinflammatory microglial transcriptomic signature, including upregulation in interferon-gamma, interferon-beta and oxidative stress-related pathways. Accordingly, we found upregulation of tumour necrosis factor-alpha and interferon-gamma mRNA in the brain tissue of high salt diet-fed injured mice. High-salt diet had a larger effect on the gut microbiome composition than repetitive closed head injury. Increases in gut microbes in the families Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae were positively correlated with anxiety-like behaviours. In contrast, Muribaculaceae, Acholeplasmataceae and Lactobacillaceae were negatively correlated with anxiety in injured mice that received a high-salt diet, a time-dependent effect. The findings suggest that high-salt diet, administered after a recovery period, may affect neurologic outcomes following mild repetitive head injury, including the development of anxiety. This effect was linked to microbiome dysregulation and an exacerbation of microglial inflammation, which may be physiological targets to prevent behavioural sequelae in the chronic period after mild repetitive head injury. The data suggest an important contribution of diet in determining long-term outcomes after mild repetitive head injury.
Collapse
Affiliation(s)
- Saef Izzy
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- The Football Players Health Study at Harvard University, Boston, MA 02138, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Taha Yahya
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Omar Albastaki
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tian Cao
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luke A Schwerdtfeger
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kusha Chopra
- Cancer Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Millicent N Ekwudo
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ugne Kurdeikaite
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Isabelly M Verissimo
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Danielle S LeServe
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Toby B Lanser
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Aronchik
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marilia G Oliveira
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thais Moreira
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Joseph El Khoury
- Harvard Medical School, Boston, MA 02115, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ross Zafonte
- Harvard Medical School, Boston, MA 02115, USA
- The Football Players Health Study at Harvard University, Boston, MA 02138, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women’s Hospital, Boston, MA 02129, USA
| | - Michael J Whalen
- Harvard Medical School, Boston, MA 02115, USA
- The Football Players Health Study at Harvard University, Boston, MA 02138, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
13
|
Li W, Wu P, Jin T, Jia J, Chen B, Liu T, Liu Y, Mei J, Luo B, Zhang Z. L-fucose and fucoidan alleviate high-salt diet-promoted acute inflammation. Front Immunol 2024; 15:1333848. [PMID: 38596683 PMCID: PMC11002173 DOI: 10.3389/fimmu.2024.1333848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
Excessive salt intake is a widespread health issue observed in almost every country around the world. A high salt diet (HSD) has a strong correlation with numerous diseases, including hypertension, chronic kidney disease, and autoimmune disorders. However, the mechanisms underlying HSD-promotion of inflammation and exacerbation of these diseases are not fully understood. In this study, we observed that HSD consumption reduced the abundance of the gut microbial metabolite L-fucose, leading to a more substantial inflammatory response in mice. A HSD led to increased peritonitis incidence in mice, as evidenced by the increased accumulation of inflammatory cells and elevated levels of inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and monocyte chemotactic protein-1 (MCP-1, also known as C-C motif chemokine ligand 2 or CCL2), in peritoneal lavage fluid. Following the administration of broad-spectrum antibiotics, HSD-induced inflammation was abolished, indicating that the proinflammatory effects of HSD were not due to the direct effect of sodium, but rather to HSD-induced alterations in the composition of the gut microbiota. By using untargeted metabolomics techniques, we determined that the levels of the gut microbial metabolite L-fucose were reduced by a HSD. Moreover, the administration of L-fucose or fucoidan, a compound derived from brown that is rich in L-fucose, normalized the level of inflammation in mice following HSD induction. In addition, both L-fucose and fucoidan inhibited LPS-induced macrophage activation in vitro. In summary, our research showed that reduced L-fucose levels in the gut contributed to HSD-exacerbated acute inflammation in mice; these results indicate that L-fucose and fucoidan could interfere with HSD-promotion of the inflammatory response.
Collapse
Affiliation(s)
- Wenhua Li
- Institute of Immunology, Third Military Medical University, Chongqing, China
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengfei Wu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Tianrong Jin
- Medical College of Chongqing University, Chongqing, China
| | - Jialin Jia
- Medical College of Chongqing University, Chongqing, China
| | - Bo Chen
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Tingting Liu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yu Liu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jie Mei
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Bangwei Luo
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Zhiren Zhang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
14
|
Wardlaw JM, Chabriat H, de Leeuw FE, Debette S, Dichgans M, Doubal F, Jokinen H, Katsanos AH, Ornello R, Pantoni L, Pasi M, Pavlovic AM, Rudilosso S, Schmidt R, Staals J, Taylor-Rowan M, Hussain S, Lindgren AG. European stroke organisation (ESO) guideline on cerebral small vessel disease, part 2, lacunar ischaemic stroke. Eur Stroke J 2024; 9:5-68. [PMID: 38380638 PMCID: PMC10916806 DOI: 10.1177/23969873231219416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/22/2023] [Indexed: 02/22/2024] Open
Abstract
A quarter of ischaemic strokes are lacunar subtype, typically neurologically mild, usually resulting from intrinsic cerebral small vessel pathology, with risk factor profiles and outcome rates differing from other stroke subtypes. This European Stroke Organisation (ESO) guideline provides evidence-based recommendations to assist with clinical decisions about management of lacunar ischaemic stroke to prevent adverse clinical outcomes. The guideline was developed according to ESO standard operating procedures and Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology. We addressed acute treatment (including progressive lacunar stroke) and secondary prevention in lacunar ischaemic stroke, and prioritised the interventions of thrombolysis, antiplatelet drugs, blood pressure lowering, lipid lowering, lifestyle, and other interventions and their potential effects on the clinical outcomes recurrent stroke, dependency, major adverse cardiovascular events, death, cognitive decline, mobility, gait, or mood disorders. We systematically reviewed the literature, assessed the evidence and where feasible formulated evidence-based recommendations, and expert concensus statements. We found little direct evidence, mostly of low quality. We recommend that patients with suspected acute lacunar ischaemic stroke receive intravenous alteplase, antiplatelet drugs and avoid blood pressure lowering according to current acute ischaemic stroke guidelines. For secondary prevention, we recommend single antiplatelet treatment long-term, blood pressure control, and lipid lowering according to current guidelines. We recommend smoking cessation, regular exercise, other healthy lifestyle modifications, and avoid obesity for general health benefits. We cannot make any recommendation concerning progressive stroke or other drugs. Large randomised controlled trials with clinically important endpoints, including cognitive endpoints, are a priority for lacunar ischaemic stroke.
Collapse
Affiliation(s)
- Joanna M Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Hugues Chabriat
- CNVT and Department of Neurology, Hopital Lariboisière, Paris, France
| | - Frank-Erik de Leeuw
- Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Stéphanie Debette
- Bordeaux Population Health Research Center; University of Bordeaux – Inserm U1219; Bordeaux; Department of Neurology, Institute for Neurodegenerative Diseases, Bordeaux University Hospital, Bordeaux, France
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Medical Center, Munich; Munich Cluster for Systems Neurology (SyNergy), Munich; German Center for Neurodegenerative Diseases (DZNE, Munich), Munich; German Centre for Cardiovascular Research (DZHK, Munich), Munich, Germany
| | - Fergus Doubal
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, Edinburgh, UK
| | - Hanna Jokinen
- Neurocenter, Helsinki University Hospital and University of Helsinki, HUS, Helsinki, Finland
| | - Aristeidis H Katsanos
- Neurology, McMaster University & Population Health Research Institute, Hamilton, ON, Canada
| | - Raffaele Ornello
- Neurology/Department of Biotechnological ad Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | | | - Marco Pasi
- Department of Neurology, University of Tours, Tours, France
| | - Aleksandra M Pavlovic
- University of Belgrade, Faculty of Special Education and Rehabilitation, Belgrade, Serbia
| | - Salvatore Rudilosso
- Comprehensive Stroke Center, Department of Neurology, Hospital Clínic of Barcelona, Barcelona, Spain
| | | | - Julie Staals
- Department of Neurology and CARIM School for cardiovascular diseases, MUMC+, Maastricht, The Netherlands
| | - Martin Taylor-Rowan
- School of Health and Wellbeing; General Practice and Primary Care, Clarice Pears Building, University of Glasgow, Glasgow, UK
| | | | - Arne G Lindgren
- Department of Clinical Sciences Lund, Neurology, Lund University; Department of Neurology, Skåne University Hospital, Lund, Skånes Universitetssjukhus, Lund, Sweden
| |
Collapse
|
15
|
Thangaraj SS, Gunlund TSG, Stubbe J, Palarasah Y, Svenningsen P, Nielsen LH, Ovesen PG, Jensen BL. Effect of short-term changes in salt intake on plasma cytokines in women with healthy and hypertensive pregnancies. Pregnancy Hypertens 2024; 35:82-87. [PMID: 38301351 DOI: 10.1016/j.preghy.2024.01.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Salt (NaCl) promotes T-lymphocyte conversion to pro-inflammatory Th-17 cells in vitro. Interleukin (IL)-17A aggravates hypertension in preeclampsia (PE) models. OBJECTIVES It was hypothesized that 1) women with PE exhibit increased plasma IL-17A and related cytokines and 2) high dietary salt intake elevates circulating IL-17A in patients with PE compared to women with healthy pregnancy (HP) and non-pregnant (NonP) women. MAIN OUTCOME MEASURES Plasma concentration of cytokines IL-17A, IFN-γ, IL-10, TNF, IL-6, and IL-1β in samples from NonP women (n = 13), HP (n = 15), and women with PE (n = 7). STUDY DESIGN Biobanked samples from a randomized, double-blind, cross-over placebo-controlled dietary intervention study. Participants received a low sodium diet (50-60 mmol NaCl/24 h) for 10 days and were randomly assigned to ingest placebo tablets (low salt intake) or salt tablets (172 mmol NaCl/24 h, high salt intake) for 5 + 5 days. Plasma samples were drawn at baseline and after each diet. RESULTS While a high salt diet suppressed renin, angiotensin II, and aldosterone levels, it did not affect blood pressure or plasma cytokine concentrations in any group compared to low salt intake. Plasma TNF was significantly higher in PE than in HP and NonP at baseline and after a low salt diet. Plasma IL-6 was significantly higher in PE compared to HP at baseline and NonP at low salt. CONCLUSION Interleukin-17A and related T-cell and macrophage-cytokines are not sensitive to salt-intake in PE. Preeclampsia is associated with elevated levels of TNF and IL-6 macrophage-derived cytokines. Salt-sensitive changes in systemic IL-17A are less likely to explain hypertension in PE.
Collapse
Affiliation(s)
- Sai Sindhu Thangaraj
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark.
| | - Tina-Signe Gissel Gunlund
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Jane Stubbe
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Yaseelan Palarasah
- Dept. of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Per Svenningsen
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Lise Hald Nielsen
- Dept. of women's disease and births, Gødstrup Regional hospital, Aarhus University Hospital Skejby, Denmark
| | - Per Glud Ovesen
- Department of Gynecology and Obstetrics, Institute of Clinical Medicine, Aarhus University Hospital Skejby, Denmark
| | - Boye L Jensen
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
16
|
Khan D, Li X, Hashimoto T, Tanikawa R, Niemela M, Lawton M, Muhammad S. Current Mouse Models of Intracranial Aneurysms: Analysis of Pharmacological Agents Used to Induce Aneurysms and Their Impact on Translational Research. J Am Heart Assoc 2024; 13:e031811. [PMID: 38258667 PMCID: PMC11056163 DOI: 10.1161/jaha.123.031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Intracranial aneurysms (IAs) are rare vascular lesions that are more frequently found in women. The pathophysiology behind the formation and growth of IAs is complex. Hence, to date, no single pharmacological option exists to treat them. Animal models, especially mouse models, represent a valuable tool to explore such complex scientific questions. Genetic modification in a mouse model of IAs, including deletion or overexpression of a particular gene, provides an excellent means for examining basic mechanisms behind disease pathophysiology and developing novel pharmacological approaches. All existing animal models need some pharmacological treatments, surgical interventions, or both to develop IAs, which is different from the spontaneous and natural development of aneurysms under the influence of the classical risk factors. The benefit of such animal models is the development of IAs in a limited time. However, clinical translation of the results is often challenging because of the artificial course of IA development and growth. Here, we summarize the continuous improvement in mouse models of IAs. Moreover, we discuss the pros and cons of existing mouse models of IAs and highlight the main translational roadblocks and how to improve them to increase the success of translational IA research.
Collapse
Affiliation(s)
- Dilaware Khan
- Department of NeurosurgeryMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐Universität DüsseldorfDüsseldorfGermany
| | - Xuanchen Li
- Department of NeurosurgeryMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐Universität DüsseldorfDüsseldorfGermany
| | - Tomoki Hashimoto
- Department of Neurosurgery and NeurobiologyBarrow Neurological InstitutePhoenixAZUSA
| | - Rokuya Tanikawa
- Department of Neurosurgery, Stroke CenterSapporo Teishinkai HospitalSapporoHokkaidoJapan
| | - Mika Niemela
- Department of NeurosurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Michael Lawton
- Department of Neurological SurgeryBarrow Neurological Institute, St. Joseph’s Hospital and Medical CenterPhoenixAZUSA
| | - Sajjad Muhammad
- Department of NeurosurgeryMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐Universität DüsseldorfDüsseldorfGermany
- Department of NeurosurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
17
|
Gan L, Ye D, Feng Y, Pan H, Lu X, Wan J, Ye J. Immune cells and hypertension. Immunol Res 2024; 72:1-13. [PMID: 38044398 DOI: 10.1007/s12026-023-09414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/10/2023] [Indexed: 12/05/2023]
Abstract
Hypertension is one of the leading causes of death due to target organ injury from cardiovascular disease. Although there are many treatments, only one-sixth of hypertensive patients effectively control their blood pressure. Therefore, further understanding the pathogenesis of hypertension is essential for the treatment of hypertension. Much research shows that immune cells play an important role in the pathogenesis of hypertension. Here, we discuss the roles of different immune cells in hypertension. Many immune cells participate in innate and adaptive immune responses, such as monocytes/macrophages, neutrophils, dendritic cells, NK cells, and B and T lymphocytes. Immune cells infiltrate the blood vessels, kidneys, and hearts and cause damage. The mechanism is that immune cells secrete cytokines such as interleukin, interferon, and tumor necrosis factor, which affect the inflammatory reaction, oxidative stress, and kidney sodium water retention, and finally aggravate or reduce the dysfunction, remodeling, and fibrosis of the blood vessel, kidney, and heart to participate in blood pressure regulation. This article reviews the research progress on immune cells and hypertension.
Collapse
Affiliation(s)
- Liren Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
18
|
Krampert L, Ossner T, Schröder A, Schatz V, Jantsch J. Simultaneous Increases in Intracellular Sodium and Tonicity Boost Antimicrobial Activity of Macrophages. Cells 2023; 12:2816. [PMID: 38132136 PMCID: PMC10741518 DOI: 10.3390/cells12242816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Inflamed and infected tissues can display increased local sodium (Na+) levels, which can have various effects on immune cells. In macrophages, high salt (HS) leads to a Na+/Ca2+-exchanger 1 (NCX1)-dependent increase in intracellular Na+ levels. This results in augmented osmoprotective signaling and enhanced proinflammatory activation, such as enhanced expression of type 2 nitric oxide synthase and antimicrobial function. In this study, the role of elevated intracellular Na+ levels in macrophages was investigated. Therefore, the Na+/K+-ATPase (NKA) was pharmacologically inhibited with two cardiac glycosides (CGs), ouabain (OUA) and digoxin (DIG), to raise intracellular Na+ without increasing extracellular Na+ levels. Exposure to HS conditions and treatment with both inhibitors resulted in intracellular Na+ accumulation and subsequent phosphorylation of p38/MAPK. The CGs had different effects on intracellular Ca2+ and K+ compared to HS stimulation. Moreover, the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5) was not upregulated on RNA and protein levels upon OUA and DIG treatment. Accordingly, OUA and DIG did not boost nitric oxide (NO) production and showed heterogeneous effects toward eliminating intracellular bacteria. While HS environments cause hypertonic stress and ionic perturbations, cardiac glycosides only induce the latter. Cotreatment of macrophages with OUA and non-ionic osmolyte mannitol (MAN) partially mimicked the HS-boosted antimicrobial macrophage activity. These findings suggest that intracellular Na+ accumulation and hypertonic stress are required but not sufficient to mimic boosted macrophage function induced by increased extracellular sodium availability.
Collapse
Affiliation(s)
- Luka Krampert
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
| | - Thomas Ossner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
| | - Agnes Schröder
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
- Institute of Orthodontics, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
- Institute for Medical Microbiology, Immunology, and Hygiene, Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne and Faculty of Medicine, University of Cologne, 50935 Cologne, Germany
| |
Collapse
|
19
|
Lin T, Jiang D, Chen W, Lin JS, Zhang X, Chen C, Hsu C, Lai L, Chen P, Yang K, Sansing LH, Chang C. Trained immunity induced by high-salt diet impedes stroke recovery. EMBO Rep 2023; 24:e57164. [PMID: 37965920 PMCID: PMC10702837 DOI: 10.15252/embr.202357164] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
A high-salt diet (HSD) elicits sustained sterile inflammation and worsens tissue injury. However, how this occurs after stroke, a leading cause of morbidity and mortality, remains unknown. Here, we report that HSD impairs long-term brain recovery after intracerebral hemorrhage, a severe form of stroke, despite salt withdrawal prior to the injury. Mechanistically, HSD induces innate immune priming and training in hematopoietic stem and progenitor cells (HSPCs) by downregulation of NR4a family and mitochondrial oxidative phosphorylation. This training compromises alternative activation of monocyte-derived macrophages (MDMs) without altering the initial inflammatory responses of the stroke brain. Healthy mice transplanted with bone marrow from HSD-fed mice retain signatures of reduced MDM reparative functions, further confirming a persistent form of innate immune memory that originates in the bone marrow. Loss of NR4a1 in macrophages recapitulates HSD-induced negative impacts on stroke outcomes while gain of NR4a1 enables stroke recovery in HSD animals. Together, we provide the first evidence that links HSD-induced innate immune memory to the acquisition of persistent dysregulated inflammatory responses and unveils NR4a1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Tze‐Yen Lin
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Danye Jiang
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center in HoustonHoustonTXUSA
| | - Wan‐Ru Chen
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
- School of MedicineNational Taiwan University College of MedicineTaipeiTaiwan
| | - Jhih Syuan Lin
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Xin‐Yu Zhang
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Chih‐Hung Chen
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Chia‐Lang Hsu
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Liang‐Chuan Lai
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Ping‐Hung Chen
- Department and Graduate Institute of Biochemistry and Molecular BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Kai‐Chien Yang
- Department and Graduate Institute of PharmacologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Lauren H Sansing
- Department of NeurologyYale University School of MedicineNew HavenCTUSA
| | - Che‐Feng Chang
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
20
|
Afsar B, Afsar RE. Salt Behind the Scenes of Systemic Lupus Erythematosus and Rheumatoid Arthritis. Curr Nutr Rep 2023; 12:830-844. [PMID: 37980312 DOI: 10.1007/s13668-023-00509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE OF REVIEW Sodium is vital for human health. High salt intake is a global health problem and is associated with cardiovascular morbidity and mortality. Recent evidence suggests that both innate and adaptive immune systems are affected by sodium. In general, excess salt intake drives immune cells toward a pro-inflammatory phenotype. The incidence of autoimmune diseases, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), is steadily increasing. As excess salt induces a pro-inflammatory state, increased salt intake may have impacts on autoimmune diseases. The relationship between salt intake and autoimmune diseases is most widely studied in patients with SLE or RA. This review aimed to summarize the relationship between salt intake and SLE and RA. RECENT FINDINGS Most, but not all, of these studies showed that high salt intake might promote SLE by M1 macrophage shift, increase in Th17/Treg cell ratio, activation of dendritic and follicular helper T cells, and increased secretion of pro-inflammatory cytokines. In RA, apart from driving immune cells toward a pro-inflammatory state, high salt intake also influences cellular signaling pathways, including receptor activator of nuclear factor κB ligand (RANKL), Rho GTPases, and MAPK (mitogen-activated protein kinase). There is now sufficient evidence that excess salt intake may be related to the development and progression of SLE and RA, although there are still knowledge gaps. More studies are warranted to further highlight the relationship between excess salt intake, SLE, and RA. Salt intake may affect cell types and pro-inflammatory cytokines and signaling pathways associated with the development and progression of systemic lupus erythematosus and rheumatoid arthritis. Bcl-6 B-cell lymphoma, 6 Erk extracellular signal-regulated kinases, IFN-γ interferon-gamma, JNK c-Jun N-terminal kinase, IL-4 interleukin 4, IL-6 interleukin 6, MAPK mitogen-activated protein kinase, STAT signal transducer and activator of transcription, Tnf-α tumor necrosis factor, Treg T regulatory cell.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, 32260, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, 32260, Turkey
| |
Collapse
|
21
|
Perla S, Kumar A. Epigenetic and transcriptional regulation of the human angiotensinogen gene by high salt. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568343. [PMID: 38045346 PMCID: PMC10690268 DOI: 10.1101/2023.11.22.568343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hypertension is caused by a combination of genetic and environmental factors. Angiotensinogen (AGT) is a component of RAAS, that regulates blood pressure. The human angiotensinogen (hAGT) gene has -6A/-6G polymorphism and -6A variant is associated with human hypertension. In this study, we have investigated the epigenetic regulation of the hAGT. To understand transcriptional regulation of the hAGT, we have made transgenic animals containing -6A. We show that HS affects DNA methylation and modulates transcriptional regulation of this gene in liver and kidney. High salt (HS) increases hAGT gene expression in -6A TG mice. We have observed that the number of CpG sites in the hAGT promoter is decreased after HS treatment. In the liver, seven CpG sites are methylated whereas after HS treatment, only three CpG sites remain methylated. In the kidney, five CpG sites are methylated, whereas after HS treatment, only three CpG sites remain methylated. These results suggest that HS promotes DNA demethylation and increasing AGT gene expression. RT-PCR and immunoblot analysis show that hAGT gene expression is increased by HS. Chip assay has shown that transcription factors bind strongly after HS treatment. RNA-Seq identified differentially expressed genes, novel target genes associated with hypertension, top canonical pathways, upstream regulators. One of the plausible mechanisms for HS induced up-regulation of the hAGT gene is through IL-6/JAK/STAT3/AGT axis.
Collapse
|
22
|
Fang HY, Wilund KR. Muscle Sodium Accumulation in Kidney Failure: Physiological Impact and Mitigation Strategies. J Ren Nutr 2023; 33:S93-S102. [PMID: 36965750 DOI: 10.1053/j.jrn.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 03/27/2023] Open
Abstract
Skeletal muscle has recently been recognized as a nonosmotic sodium reservoir that buffers dietary sodium. The in-vivo quantification of muscle sodium is based on a novel technology, sodium magnetic resonance imaging. Studies using this technology have shown that muscle sodium accumulation may be a clinical complication of chronic kidney disease (CKD). This review aims to summarize existing evidence on muscle sodium accumulation in patients with CKD and to identify knowledge gaps and topics for further research. The literature examined in this review suggests that muscle sodium accumulation is associated with CKD progression and pathological conditions. However, the causalities between muscle sodium accumulation and its related pathological changes are still elusive mainly because it is still uncertain where and how sodium accumulates in the muscle. More research is needed to address these gaps and determine if muscle sodium is a new intervention target in CKD.
Collapse
Affiliation(s)
- Hsin-Yu Fang
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Kenneth R Wilund
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
23
|
Wu Q, Meng W, Zhu B, Chen X, Fu J, Zhao C, Liu G, Luo X, Lv Y, Zhao W, Wang F, Hu S, Zhang S. VEGFC ameliorates salt-sensitive hypertension and hypertensive nephropathy by inhibiting NLRP3 inflammasome via activating VEGFR3-AMPK dependent autophagy pathway. Cell Mol Life Sci 2023; 80:327. [PMID: 37837447 PMCID: PMC11072217 DOI: 10.1007/s00018-023-04978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/29/2023] [Accepted: 09/23/2023] [Indexed: 10/16/2023]
Abstract
Salt-sensitivity hypertension (SSHTN) is an independent predictor for cardiovascular mortality. VEGFC has been reported to be a protective role in SSHTN and hypertensive kidney injury. However, the underlying mechanisms remain largely unclear. The current study aimed to explore the protective effects and mechanisms of VEGFC against SSHTN and hypertensive nephropathy. Here, we reported that VEGFC attenuated high blood pressure as well as protected against renal inflammation and fibrosis in SSHTN mice. Moreover, VEGFC suppressed the activation of renal NLRP3 inflammasome in SSHTN mice. In vitro, we found VEGFC inhibited NLRP3 inflammasome activation, meanwhile, upregulated autophagy in high-salt-induced macrophages, while these effects were reversed by an autophagy inhibitor 3MA. Furthermore, in vivo, 3MA pretreatment weakened the protective effects of VEGFC on SSHTN and hypertensive nephropathy. Mechanistically, VEGF receptor 3 (VEGFR3) kinase domain activated AMPK by promoting the phosphorylation at Thr183 via binding to AMPK, thus enhancing autophagy activity in the context of high-salt-induced macrophages. These findings indicated that VEGFC inhibited NLRP3 inflammasome activation by promoting VEGFR3-AMPK-dependent autophagy pathway in high-salt-induced macrophages, which provided a mechanistic basis for the therapeutic target in SSHTN and hypertensive kidney injury.
Collapse
Affiliation(s)
- Qiuwen Wu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, China
| | - Wei Meng
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, China
| | - Bin Zhu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, China
| | - Xi Chen
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Jiaxin Fu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Chunyu Zhao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Gang Liu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xing Luo
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Ying Lv
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Wenqi Zhao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Fan Wang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Sining Hu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, China.
| | - Shuo Zhang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
24
|
Pap D, Pajtók C, Veres-Székely A, Szebeni B, Szász C, Bokrossy P, Zrufkó R, Vannay Á, Tulassay T, Szabó AJ. High Salt Promotes Inflammatory and Fibrotic Response in Peritoneal Cells. Int J Mol Sci 2023; 24:13765. [PMID: 37762068 PMCID: PMC10531298 DOI: 10.3390/ijms241813765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Recent studies draw attention to how excessive salt (NaCl) intake induces fibrotic alterations in the peritoneum through sodium accumulation and osmotic events. The aim of our study was to better understand the underlying mechanisms. The effects of additional NaCl were investigated on human primary mesothelial cells (HPMC), human primary peritoneal fibroblasts (HPF), endothelial cells (HUVEC), immune cells (PBMC), as well as ex vivo on peritoneal tissue samples. Our results showed that a high-salt environment and the consequently increased osmolarity increase the production of inflammatory cytokines, profibrotic growth factors, and components of the renin-angiotensin-aldosterone system, including IL1B, IL6, MCP1, TGFB1, PDGFB, CTGF, Renin and Ace both in vitro and ex vivo. We also demonstrated that high salt induces mesenchymal transition by decreasing the expression of epithelial marker CDH1 and increasing the expression of mesenchymal marker ACTA2 and SNAIL1 in HPMCs, HUVECs and peritoneal samples. Furthermore, high salt increased extracellular matrix production in HPFs. We demonstrated that excess Na+ and the consequently increased osmolarity induce a comprehensive profibrotic response in the peritoneal cells, thereby facilitating the development of peritoneal fibrosis.
Collapse
Affiliation(s)
- Domonkos Pap
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Csenge Pajtók
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
| | - Apor Veres-Székely
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Csenge Szász
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
| | - Péter Bokrossy
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
| | - Réka Zrufkó
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
| | - Ádám Vannay
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Tivadar Tulassay
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Attila J. Szabó
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
25
|
Copur S, Peltek IB, Mutlu A, Tanriover C, Kanbay M. A new immune disease: systemic hypertension. Clin Kidney J 2023; 16:1403-1419. [PMID: 37664577 PMCID: PMC10469084 DOI: 10.1093/ckj/sfad059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Indexed: 09/05/2023] Open
Abstract
Systemic hypertension is the most common medical comorbidity affecting the adult population globally, with multiple associated outcomes including cerebrovascular diseases, cardiovascular diseases, vascular calcification, chronic kidney disease, metabolic syndrome and mortality. Despite advancements in the therapeutic field approximately one in every five adult patients with hypertension is classified as having treatment-resistant hypertension, indicating the need for studies to provide better understanding of the underlying pathophysiology and the need for more therapeutic targets. Recent pre-clinical studies have demonstrated the role of the innate and adaptive immune system including various cell types and cytokines in the pathophysiology of hypertension. Moreover, pre-clinical studies have indicated the potential beneficial effects of immunosuppressant medications in the control of hypertension. Nevertheless, it is unclear whether such pathophysiological mechanisms and therapeutic alternatives are applicable to human subjects, while this area of research is undoubtedly a rapidly growing field.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ibrahim B Peltek
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mehmet Kanbay
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
26
|
Kim JY, Lee S, Jang S, Kim CW, Gu BH, Kim M, Kim I. T helper cell polarity determines salt sensitivity and hypertension development. Hypertens Res 2023; 46:2168-2178. [PMID: 37463980 DOI: 10.1038/s41440-023-01365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023]
Abstract
High-salt intake is known to induce pathogenic T helper (Th) 17 cells and hypertension, but contrary to what is known, causes hypertension only in salt-sensitive (SS) individuals. Thus, we hypothesized that Th cell polarity determines salt sensitivity and hypertension development. Cultured splenic T cells from Dahl SS and salt-resistant (SR) rats subjected to hypertonic salt solutions were evaluated via ELISA, flow cytometry, immunocytochemistry and RT-qPCR. Seven-week-old SS and SR rats were fed a chow (CD) or high-salt diet (HSD) for 4 weeks, with weekly measurements of systolic blood pressure. The relaxation response of the aorta rings to the cumulative addition of acetylcholine was measured ex vivo. In these experimental animals, the Th cell polarity (Th17 and T regulatory [Treg]), the expression of Th17- or Treg-related genes, and the enrichment of the transcription factors RORγt and FOXP3 on the target gene promoter regions were determined via flow cytometry, RT-qPCR, and chromatin immunoprecipitation. Hypertonic salt solution induced Th17 and Treg cell differentiation in cultured splenic T cells isolated from SS and SR rats, respectively. HSD induced hypertension, endothelial dysfunction and proinflammatory Th17 cell differentiation only in SS rats. The enrichment of RORγt on the promoter regions of Il17a and Il23r increased their expression only in SS rats. Regardless of HSD, SR rats remained normotensive with Treg polarity, causing high Treg-related gene expressions (Il10, Cd25 and Foxp3). This study demonstrated that Th cell polarity determines salt sensitivity and drives hypertension development. SR rats were protected from HSD-associated hypertension via anti-inflammatory Treg polarity.
Collapse
Affiliation(s)
- Jee Young Kim
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Soyung Lee
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sungmin Jang
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Cheong-Wun Kim
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Bon-Hee Gu
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang, 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang, 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
27
|
Chattopadhyay A, Tully J, Shan J, Sheikh S, Ohliger M, Gordon JW, Mauro T, Abuabara K. Sodium in the skin: a summary of the physiology and a scoping review of disease associations. Clin Exp Dermatol 2023; 48:733-743. [PMID: 36970766 DOI: 10.1093/ced/llad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Indexed: 07/20/2023]
Abstract
A large and growing body of research suggests that the skin plays an important role in regulating total body sodium, challenging traditional models of sodium homeostasis that focused exclusively on blood pressure and the kidney. In addition, skin sodium may help to prevent water loss and facilitate macrophage-driven antimicrobial host defence, but may also trigger immune dysregulation via upregulation of proinflammatory markers and downregulation of anti-inflammatory processes. We performed a systematic search of PubMed for published literature on skin sodium and disease outcomes and found that skin sodium concentration is increased in patients with cardiometabolic conditions including hypertension, diabetes and end-stage renal disease; autoimmune conditions including multiple sclerosis and systemic sclerosis; and dermatological conditions including atopic dermatitis, psoriasis and lipoedema. Several patient characteristics are associated with increased skin sodium concentration including older age and male sex. Animal evidence suggests that increased salt intake results in higher skin sodium levels; however, there are conflicting results from small trials in humans. Additionally, limited data suggest that pharmaceuticals such as diuretics and sodium-glucose co-transporter-2 inhibitors approved for diabetes, as well as haemodialysis may reduce skin sodium levels. In summary, emerging research supports an important role for skin sodium in physiological processes related to osmoregulation and immunity. With the advent of new noninvasive magnetic resonance imaging measurement techniques and continued research on skin sodium, it may emerge as a marker of immune-mediated disease activity or a potential therapeutic target.
Collapse
Affiliation(s)
- Aheli Chattopadhyay
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Janell Tully
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Judy Shan
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Sidra Sheikh
- Kaiser Permanente, Department of Physical Medicine & Rehabilitation, Oakland, CA, USA
| | - Michael Ohliger
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Theodora Mauro
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Dermatology Service, Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Katrina Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
28
|
Akbari A, McIntyre CW. Recent Advances in Sodium Magnetic Resonance Imaging and Its Future Role in Kidney Disease. J Clin Med 2023; 12:4381. [PMID: 37445416 PMCID: PMC10342976 DOI: 10.3390/jcm12134381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Sodium imbalance is a hallmark of chronic kidney disease (CKD). Excess tissue sodium in CKD is associated with hypertension, inflammation, and cardiorenal disease. Sodium magnetic resonance imaging (23Na MRI) has been increasingly utilized in CKD clinical trials especially in the past few years. These studies have demonstrated the association of excess sodium tissue accumulation with declining renal function across whole CKD spectrum (early- to end-stage), biomarkers of systemic inflammation, and cardiovascular dysfunction. In this article, we review recent advances of 23Na MRI in CKD and discuss its future role with a focus on the skin, the heart, and the kidney itself.
Collapse
Affiliation(s)
- Alireza Akbari
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada;
- Lilibeth Caberto Kidney Clinic Research Unit, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Christopher W. McIntyre
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada;
- Lilibeth Caberto Kidney Clinic Research Unit, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Departments of Medicine, Pediatrics and Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
29
|
Lillico DME, Hussain NAS, Choo-Yin YY, Qin R, How ZT, El-Din MG, Stafford JL. Using immune cell-based bioactivity assays to compare the inflammatory activities of oil sands process-affected waters from a pilot scale demonstration pit lake. J Environ Sci (China) 2023; 128:55-70. [PMID: 36801042 DOI: 10.1016/j.jes.2022.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/18/2023]
Abstract
In this study, we provide evidence that oil sands process-affected waters (OSPW) contain factors that activate the antimicrobial and proinflammatory responses of immune cells. Specifically, using the murine macrophage RAW 264.7 cell line, we establish the bioactivity of two different OSPW samples and their isolated fractions. Here, we directly compared the bioactivity of two pilot scale demonstration pit lake (DPL) water samples, which included expressed water from treated tailings (termed the before water capping sample; BWC) as well as an after water capping (AWC) sample consisting of a mixture of expressed water, precipitation, upland runoff, coagulated OSPW and added freshwater. Significant inflammatory (i.e. macrophage activating) bioactivity was associated with the AWC sample and its organic fraction (OF), whereas the BWC sample had reduced bioactivity that was primarily associated with its inorganic fraction (IF). Overall, these results indicate that at non-toxic exposure doses, the RAW 264.7 cell line serves as an acute, sensitive and reliable biosensor for the screening of inflammatory constituents within and among discrete OSPW samples.
Collapse
Affiliation(s)
- Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada
| | - Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada
| | - Yemaya Y Choo-Yin
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada
| | - Rui Qin
- Department of Civil and Environmental Engineering, University of Alberta, Alberta T6G 2E9, Canada
| | - Zuo Tong How
- Department of Civil and Environmental Engineering, University of Alberta, Alberta T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Alberta T6G 2E9, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada.
| |
Collapse
|
30
|
Benson LN, Guo Y, Deck K, Mora C, Liu Y, Mu S. The link between immunity and hypertension in the kidney and heart. Front Cardiovasc Med 2023; 10:1129384. [PMID: 36970367 PMCID: PMC10034415 DOI: 10.3389/fcvm.2023.1129384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Hypertension is the primary cause of cardiovascular disease, which is a leading killer worldwide. Despite the prevalence of this non-communicable disease, still between 90% and 95% of cases are of unknown or multivariate cause ("essential hypertension"). Current therapeutic options focus primarily on lowering blood pressure through decreasing peripheral resistance or reducing fluid volume, but fewer than half of hypertensive patients can reach blood pressure control. Hence, identifying unknown mechanisms causing essential hypertension and designing new treatment accordingly are critically needed for improving public health. In recent years, the immune system has been increasingly implicated in contributing to a plethora of cardiovascular diseases. Many studies have demonstrated the critical role of the immune system in the pathogenesis of hypertension, particularly through pro-inflammatory mechanisms within the kidney and heart, which, eventually, drive a myriad of renal and cardiovascular diseases. However, the precise mechanisms and potential therapeutic targets remain largely unknown. Therefore, identifying which immune players are contributing to local inflammation and characterizing pro-inflammatory molecules and mechanisms involved will provide promising new therapeutic targets that could lower blood pressure and prevent progression from hypertension into renal or cardiac dysfunction.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| | | | | | | | | | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| |
Collapse
|
31
|
Zhang X, Liang Y, Jiang J, Lu C, Shi F, Cao Q, Zhang Y, Diao H. A High-Salt Diet Exacerbates Liver Fibrosis through Enterococcus-Dependent Macrophage Activation. Microbiol Spectr 2023; 11:e0340322. [PMID: 36786636 PMCID: PMC10100947 DOI: 10.1128/spectrum.03403-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/14/2023] [Indexed: 02/15/2023] Open
Abstract
People consume more salt than the recommended levels due to poor dietary practices. The effects of long-term consumption of high-salt diets (HSD) on liver fibrosis are unclear. This study aimed to explore the impact of HSD on liver fibrosis. In this study, a carbon tetrachloride (CCL4)-induced liver fibrosis mouse model was used to evaluate fibrotic changes in the livers of mice fed a normal diet (ND) and an HSD. The HSD exacerbated liver injury and fibrosis. Moreover, the protein expression levels of transforming growth factor β (TGF-β), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein 1 (MCP-1) were significantly higher in the HSD group than in the normal group. The proportion of macrophages and activation significantly increased in the livers of HSD-fed mice. Meanwhile, the number of macrophages significantly increased in the small intestinal lamina propria of HSD-fed mice. The levels of profibrotic factors also increased in the small intestine of HSD-fed mice. Additionally, HSD increased the profibrotic chemokines and monocyte chemoattractant levels in the portal vein blood. Further characterization suggested that the HSD decreased the expression of tight junction proteins (ZO-1 and CLDN1), enhancing the translocation of bacteria. Enterococcus promoted liver injury and inflammation. In vitro experiments demonstrated that Enterococcus induced macrophage activation through the NF-κB pathway, thus promoting the expression of fibrosis-related genes, leading to liver fibrogenesis. Similarly, Enterococcus disrupted the gut microbiome in vivo and significantly increased the fibrotic markers, TGF-β, and alpha smooth muscle actin (α-SMA) expression in the liver. IMPORTANCE This study further confirms that Enterococcus induce liver fibrosis in mice. These results indicate that an HSD can exacerbate liver fibrosis by altering the gut microbiota composition, thus impairing intestinal barrier function. Therefore, this may serve as a new target for liver fibrosis therapy and gut microbiota management.
Collapse
Affiliation(s)
- Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Chong Lu
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China
| | - Fan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingyi Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanhui Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Martin K, Toussaint ND, Tan SJ, Hewitson TD. Skin regulation of salt and blood pressure and potential clinical implications. Hypertens Res 2023; 46:408-416. [PMID: 36434290 DOI: 10.1038/s41440-022-01096-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Sodium chloride, as salt, gives rise to hypertension. Nevertheless, individual susceptibility to the ramifications of sodium chloride is heterogeneous. The conventional nephron-centric regulation of sodium with neurohormonal inputs and responses is now expanded to include an intricate extrarenal pathway including the endothelium, skin, lymphatics, and immune cells. An overabundance of sodium is buffered and regulated by the skin interstitium. Excess sodium passes through (and damages) the vascular endothelium and can be dynamically stored in the skin, modulated by skin immune cells and lymphatics. This excess interstitially stored sodium is implicated in hypertension, cardiovascular dysfunction, metabolic disruption, and inflammatory dysregulation. This extrarenal pathway of regulating sodium represents a novel target for better blood pressure management, rebalancing disturbed inflammation, and hence addressing cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Kylie Martin
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia. .,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia.
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Timothy D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
33
|
Kuang R, O'Keefe SJD, Ramos Del Aguila de Rivers C, Koutroumpakis F, Binion DG. Is Salt at Fault? Dietary Salt Consumption and Inflammatory Bowel Disease. Inflamm Bowel Dis 2023; 29:140-150. [PMID: 35380668 DOI: 10.1093/ibd/izac058] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 02/05/2023]
Abstract
Epidemiological trends have led to a growing consensus that diet plays a central role in the etiopathogenesis of inflammatory bowel diseases (IBD). A Western diet high in ultra-processed foods has been associated with an increased prevalence of IBD worldwide. Much attention has focused on components of the Western diet, including the high fat content, lack of fiber, added sugars, and use of additives, such as carrageenan and other emulsifiers. Less attention has been paid to the impact of high salt intake, an integral component of ultra-processed foods, which has increased dramatically in the US diet over the past 50 years. We review a growing body of literature linking the rise in dietary salt intake with the epidemiology of IBD, increased consumption of salt as a component of ultra-processed foods, high salt intake and imbalances in immune homeostasis, the effects of a high-salt diet on other inflammatory disorders, salt's impact on animal colitis models, salt as an underrecognized component in diet modification-induced remission of IBD, and directions for future investigation.
Collapse
Affiliation(s)
- Rebecca Kuang
- University of Toledo College of Medicine & Life Sciences, Toledo, OH, USA
| | - Stephen J D O'Keefe
- University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center (UPMC) Presbyterian Hospital, Pittsburgh, PA, USA
| | | | - Filippos Koutroumpakis
- University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center (UPMC) Presbyterian Hospital, Pittsburgh, PA, USA
| | - David G Binion
- University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center (UPMC) Presbyterian Hospital, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Liu W, Zhou L, Yin W, Wang J, Zuo X. Global, regional, and national burden of chronic kidney disease attributable to high sodium intake from 1990 to 2019. Front Nutr 2023; 10:1078371. [PMID: 36937353 PMCID: PMC10018037 DOI: 10.3389/fnut.2023.1078371] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Background High sodium intake is a crucial risk factor for the development and progression of chronic kidney disease (CKD). However, the latest global spatiotemporal patterns of CKD burden attributable to high sodium intake still remain unclear. We aimed to evaluate the level and trends of the CKD burden associated with high sodium intake according to sex, age, socio-demographic index (SDI), region, and country from 1990 to 2019. Methods Data on CKD burden attributable to high sodium intake from 1990 to 2019 were extracted from the Global Burden of Disease (GBD) Study 2019. The CKD-related deaths, disability-adjusted life years (DALYs), age-standardized mortality rate (ASMR), and age-standardized DALYs rate (ASDR) attributable to high sodium intake were estimated by age, sex, SDI, region, and country. The estimated annual percentage change (EAPC) was calculated to evaluate the secular trends of ASMR and ASDR of CKD attributable to high sodium intake from 1990 to 2019. We further explored the associations of SDI with the ASMR and ASDR of CKD attributable to high sodium intake. Results Globally, the number of CKD-related deaths and DALYs attributable to high sodium intake were 45,530 (95% UI: 12,640 to 93,830) and 1.32 million (95% UI: 0.43 to 2.8) in 2019, both twice as many as those in 1990. However, the ASMR and ASDR slightly grew, with an EAPC of 0.22 (95% CI: 0.16 to 0.28) and 0.10 (95% CI: 0.04 to 0.16), respectively. The age-specific numbers and rates of deaths, as well as DALYs of CKD attributable to high sodium intake, rose with age and were greater in males than in females. The rates of deaths and DALYs peaked in the >95 age group for both females and males in 2019. From 1990 to 2019, the trends of both age-specific rates of mortality and DALYs of CKD attributable to high sodium intake were down in people under 60, while in people over 60, the trends were the opposite. The burden of CKD attributable to high sodium intake in 2019 and its temporal trends from 1990 to 2019 varied greatly by SDI quintile and geographic location. The ASMR or ASDR showed a non-linear negative correlation with SDI at the regional level. The EAPC in ASMR or ASDR showed a markedly negative correlation with ASMR or ASDR in 1990, with a coefficient of -0.40. Nevertheless, the EAPC in ASMR rather than ASDR was positively correlated with SDI in 2019, with a coefficient of 0.18. Conclusion Our findings suggest that there are significant sexual and geographic variations in the burden of CKD attributable to high sodium intake and its temporal trends. Globally, the high sodium intake-caused CKD burden continues to elevate, posing a major challenge to public health. In response to this, strengthened and tailored approaches for CKD prevention and sodium intake management are needed, especially for elderly populations, males, and the population in the middle SDI regions.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingyun Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenjun Yin
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianglin Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Jianglin Wang,
| | - Xiaocong Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Niiranen T, Erlund I, Jalkanen S, Jula A, Salmi M. Effects of altered salt intake and diet on cytokines in humans: A 20-week randomized cross-over intervention study. Eur J Immunol 2023; 53:e2250074. [PMID: 36330564 PMCID: PMC10100453 DOI: 10.1002/eji.202250074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
High sodium concentration alters leukocyte activation, and in particular T-helper (Th) lymphocyte polarization, and drives the development of autoimmune diseases in mouse studies. Similar results have been obtained with human leukocytes under in vitro settings and in few observational studies. Therefore, salt has been implicated as a risk factor for autoimmune diseases. Here, we examined whether physiologically relevant changes in salt intake or diet alter cytokine concentrations. In a 20-wk double-blinded, placebo-controlled study 106 participants were randomized to Habitual and Healthy Nordic diets, and further to Usual Sodium and Reduced Sodium intake groups using a cross-over setup. Plasma concentrations of 45 cytokines were measured at three different time-points using a multiplex assay. Repeated analyses of covariance revealed that high salt ingestion (or changes in the diet) did not induce significant changes in any of the signature cytokines controlling Th1, Th2 or Th17 polarization. Several other pro-inflammatory interleukins, chemokines and growth factors were also unaffected by the level of salt intake or changes in the diet. We conclude that in humans clinically relevant changes in salt intake or diet do not have reflections on the systemic concentrations of pro-inflammatory cytokines in vivo.
Collapse
Affiliation(s)
- Teemu Niiranen
- Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland.,Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Iris Erlund
- Department of Government Services, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Antti Jula
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
36
|
Benson LN, Liu Y, Deck K, Mora C, Mu S. IFN- γ Contributes to the Immune Mechanisms of Hypertension. KIDNEY360 2022; 3:2164-2173. [PMID: 36591357 PMCID: PMC9802558 DOI: 10.34067/kid.0001292022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2022]
Abstract
Hypertension is the leading cause of cardiovascular disease and the primary risk factor for mortality worldwide. For more than half a century, researchers have demonstrated that immunity plays an important role in the development of hypertension; however, the precise mechanisms are still under investigation. The current body of knowledge indicates that proinflammatory cytokines may play an important role in contributing to immune-related pathogenesis of hypertension. Interferon gamma (IFN-γ), in particular, as an important cytokine that modulates immune responses, has been recently identified as a critical regulator of blood pressure by several groups, including us. In this review, we focus on exploring the role of IFN-γ in contributing to the pathogenesis of hypertension, outlining the various immune producers of this cytokine and described signaling mechanisms involved. We demonstrate a key role for IFN-γ in hypertension through global knockout studies and related downstream signaling pathways that IFN-γ production from CD8+ T cell (CD8T) in the kidney promoting CD8T-stimulated salt retention via renal tubule cells, thereby exacerbating hypertension. We discuss potential activators of these T cells described by the current literature and relay a novel hypothesis for activation.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Yunmeng Liu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Katherine Deck
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Christoph Mora
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
37
|
Rossitto G, Delles C. Mechanisms of sodium-mediated injury in cardiovascular disease: old play, new scripts. FEBS J 2022; 289:7260-7273. [PMID: 34355504 DOI: 10.1111/febs.16155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023]
Abstract
There is a strong association between salt intake and cardiovascular diseases, particularly hypertension, on the population level. The mechanisms that explain this association remain incompletely understood and appear to extend beyond blood pressure. In this review, we describe some of the 'novel' roles of Na+ in cardiovascular health and disease: energetic implications of sodium handling in the kidneys; local accumulation in tissue; fluid dynamics; and the role of the microvasculature, with particular focus on the lymphatic system. We describe the interplay between these factors that involves body composition, metabolic signatures, inflammation and composition of the extracellular and intracellular milieus.
Collapse
Affiliation(s)
- Giacomo Rossitto
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK.,Department of Medicine (DIMED), University of Padua, Italy
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| |
Collapse
|
38
|
Cai T, Du P, Suo L, Jiang X, Qin Q, Song R, Yang X, Jiang Y, Zhang JA. High iodine promotes autoimmune thyroid disease by activating hexokinase 3 and inducing polarization of macrophages towards M1. Front Immunol 2022; 13:1009932. [PMID: 36325332 PMCID: PMC9618622 DOI: 10.3389/fimmu.2022.1009932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune thyroid disease (AITD), the most common autoimmune disease, includes Graves’ disease (GD) and Hashimoto’s thyroiditis (HT). Currently, the pathogenesis of AITD is not fully understood. Our study aimed to examine the presence of macrophage polarization imbalance in AITD patients, to investigate whether high iodine can cause macrophage polarization imbalance, and to investigate the role of key genes of metabolic reprogramming in macrophage polarization imbalance caused by high iodine. We synergistically used various research strategies such as systems biology, clinical studies, cell culture and mouse disease models. Gene set enrichment analysis (GSEA) revealed that M1 macrophage hyperpolarization was involved in the pathogenesis of AITD. In vitro and in vivo experiments showed that high iodine can affect the polarization of M1 or M2 macrophages and their related cytokines. Robust rank aggregation (RRA) method revealed that hexokinase 3 (HK3) was the most aberrantly expressed metabolic gene in autoimmune diseases. In vitro and in vivo studies revealed HK3 could mediate macrophage polarization induced by high iodine. In summary, hyperpolarization of M1-type macrophages is closely related to the pathogenesis of AITD. High iodine can increase HK3 expression in macrophages and promote macrophage polarization towards M1. Targeting HK3 can inhibit M1 polarization induced by high iodine.
Collapse
Affiliation(s)
- Tiantian Cai
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peng Du
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lixia Suo
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Jiading District Central Hospital, Shanghai, China
| | - Xiaozhen Jiang
- Department of Endocrinology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Qiu Qin
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Ronghua Song
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiaorong Yang
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yanfei Jiang
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Yanfei Jiang, ; Jin-an Zhang,
| | - Jin-an Zhang
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Yanfei Jiang, ; Jin-an Zhang,
| |
Collapse
|
39
|
Inflammatory Bowel Disease and Customized Nutritional Intervention Focusing on Gut Microbiome Balance. Nutrients 2022; 14:nu14194117. [PMID: 36235770 PMCID: PMC9572914 DOI: 10.3390/nu14194117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Inflammatory bowel disease (IBD) represents a chronic relapsing–remitting condition affecting the gastrointestinal system. The specific triggering IBD elements remain unknown: genetic variability, environmental factors, and alterations in the host immune system seem to be involved. An unbalanced diet and subsequent gut dysbiosis are risk factors, too. This review focuses on the description of the impact of pro- and anti-inflammatory food components on IBD, the role of different selected regimes (such as Crohn’s Disease Exclusion Diet, Immunoglobulin Exclusion Diet, Specific Carbohydrate Diet, LOFFLEX Diet, Low FODMAPs Diet, Mediterranean Diet) in the IBD management, and their effects on the gut microbiota (GM) composition and balance. The purpose is to investigate the potential positive action on IBD inflammation, which is associated with the exclusion or addition of certain foods or nutrients, to more consciously customize the nutritional intervention, taking also into account GM fluctuations during both disease flare-up and remission.
Collapse
|
40
|
Basalely AM, Griffin R, Gist KM, Guillet R, Askenazi DJ, Charlton JR, Selewski DT, Fuloria M, Kaskel FJ, Reidy KJ. Association of early dysnatremia with mortality in the neonatal intensive care unit: results from the AWAKEN study. J Perinatol 2022; 42:1353-1360. [PMID: 34775486 PMCID: PMC10228559 DOI: 10.1038/s41372-021-01260-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To determine the association of dysnatremia in the first postnatal week and risk of acute kidney injury (AKI) and mortality. STUDY DESIGN A secondary analysis of 1979 neonates in the AWAKEN cohort evaluated the association of dysnatremia with (1) AKI in the first postnatal week and (2) mortality, utilizing time-varying Cox proportional hazard models. RESULT Dysnatremia developed in 50.2% of the cohort and was not associated with AKI. Mortality was associated with hyponatremia (HR 2.15, 95% CI 1.07-4.31), hypernatremia (HR 4.23, 95% CI 2.07-8.65), and combined hypo/hypernatremia (HR 6.39, 95% CI 2.01-14.01). In stratified models by AKI-status, hypernatremia and hypo/hypernatremia increased risk of mortality in neonates without AKI. CONCLUSION Dysnatremia within the first postnatal week was associated with increased risk of mortality. Hypernatremia and combined hypo/hypernatremia remained significantly associated with mortality in neonates without AKI. This may reflect fluid strategies kidney injury independent of creatinine and urine-output defined AKI, and/or systemic inflammation.
Collapse
Affiliation(s)
- Abby M Basalely
- Division of Pediatric Nephrology, Department of Pediatrics, Cohen Children's Medical Center of New York, New Hyde Park, NY, USA.
- Division of Nephrology, Department of Pediatrics, The Children's Hospital at Montefiore/Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Russell Griffin
- Pediatric and Infant Center for Acute Nephrology (PICAN) Department of Pediatrics, University of Alabama, Birmingham, AL, USA
| | - Katja M Gist
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ronnie Guillet
- Division of Neonatology, University of Rochester Medical Center, Rochester, NY, USA
| | - David J Askenazi
- Pediatric and Infant Center for Acute Nephrology (PICAN) Department of Pediatrics, University of Alabama, Birmingham, AL, USA
| | - Jennifer R Charlton
- Division of Nephrology, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David T Selewski
- Division of Nephrology, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Mamta Fuloria
- Division of Pediatric Neonatology, Department of Pediatrics, The Children's Hospital at Montefiore/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Frederick J Kaskel
- Division of Nephrology, Department of Pediatrics, The Children's Hospital at Montefiore/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kimberly J Reidy
- Division of Nephrology, Department of Pediatrics, The Children's Hospital at Montefiore/Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
41
|
Agarwal D, Paul S, Lele P, Piprode V, Kawade A, Hajela N, Bavdekar A, Parulekar V, Ginde M, Paranjape G, Matsuda K, Hori T, Juvekar S, Lal G. Changes in immunological parameters by ageing in rural healthy Indian adults and their associations with sex and lifestyle. Sci Rep 2022; 12:15012. [PMID: 36056136 PMCID: PMC9438881 DOI: 10.1038/s41598-022-19227-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Several factors including sex and lifestyle have been reported to contribute to the age-related alteration of immune functions. The study was undertaken to determine age-related differences in the proportion of peripheral blood mononuclear lymphocytes in the Indian population using blood samples from 67 healthy adults (33 females and 34 males) aged between 20 and 80 years old. In the linear regression analysis to estimate the relationship with age categories, there was a significant increase in the frequency of natural killer cells with ageing, while their cytolytic activity significantly declined. The frequency of CD4+ T cells increased with age, whereas that of CD8+ T cells decreased, resulting in the age-associated increase of the CD4/CD8 ratio. The subsets of B cells did not show any significant relationship with age. Although there were variations between the male and female subgroups in effect size of ageing, the trends were in the same direction in all the parameters. Reduced fat intake was associated with a lower frequency of CD4+ T cells, and higher serum cotinine level was associated with a higher CD4/CD8 ratio. The results indicate that cellular immunity in the Indian population is affected by ageing, while humoral immunity is less susceptible to ageing.
Collapse
Affiliation(s)
- Dhiraj Agarwal
- KEM Hospital Research Centre, Vadu Rural Health Program, Pune, Maharashtra, 412216, India
| | - Sourav Paul
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Pallavi Lele
- KEM Hospital Research Centre, Vadu Rural Health Program, Pune, Maharashtra, 412216, India
| | - Vikrant Piprode
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Anand Kawade
- KEM Hospital Research Centre, Vadu Rural Health Program, Pune, Maharashtra, 412216, India
| | - Neerja Hajela
- Yakult Danone India Pvt. Ltd., 212, Ground Floor, Okhla Industrial Estate Phase-III, New Delhi, Delhi, 110020, India
| | - Ashish Bavdekar
- Paediatrics Department, KEM Hospital Research Centre, Pune, Maharashtra, 411011, India
| | - Varsha Parulekar
- DiagnoSearch Life Sciences Pvt. Ltd., 702, Dosti Pinnacle Plot No. E-7, Road No. 22 Wagle Industrial Estate, Thane, Maharashtra, 400604, India
| | - Manisha Ginde
- DiagnoSearch Life Sciences Pvt. Ltd., 702, Dosti Pinnacle Plot No. E-7, Road No. 22 Wagle Industrial Estate, Thane, Maharashtra, 400604, India
| | - Gandhali Paranjape
- DiagnoSearch Life Sciences Pvt. Ltd., 702, Dosti Pinnacle Plot No. E-7, Road No. 22 Wagle Industrial Estate, Thane, Maharashtra, 400604, India
| | - Kazunori Matsuda
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Tetsuji Hori
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Sanjay Juvekar
- KEM Hospital Research Centre, Vadu Rural Health Program, Pune, Maharashtra, 412216, India
| | - Girdhari Lal
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
42
|
The Role of Diet in Regulation of Macrophages Functioning. Biomedicines 2022; 10:biomedicines10092087. [PMID: 36140188 PMCID: PMC9495355 DOI: 10.3390/biomedicines10092087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
The great importance of diet for health and high life-expectancy is established. The impact of nutrients on immune system is a point of growing research interest. Recent studies have found pro- and anti-inflammatory properties of some diet patterns and nutrients that can be used from the bench to the bedside for chronic low-grade inflammatory status correction. In this regard, the assessment of potential effects of nutrition on macrophage differentiation, proliferation, and functioning in health and disease is highly demanded. In this review, we present current data on the effects of nutrients on the macrophage functioning.
Collapse
|
43
|
Pitzer A, Elijovich F, Laffer CL, Ertuglu LA, Sahinoz M, Saleem M, Krishnan J, Dola T, Aden LA, Sheng Q, Raddatz MA, Wanjalla C, Pakala S, Davies SS, Patrick DM, Kon V, Ikizler TA, Kleyman T, Kirabo A. DC ENaC-Dependent Inflammasome Activation Contributes to Salt-Sensitive Hypertension. Circ Res 2022; 131:328-344. [PMID: 35862128 PMCID: PMC9357159 DOI: 10.1161/circresaha.122.320818] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Salt sensitivity of blood pressure is an independent predictor of cardiovascular morbidity and mortality. The exact mechanism by which salt intake increases blood pressure and cardiovascular risk is unknown. We previously found that sodium entry into antigen-presenting cells (APCs) via the amiloride-sensitive epithelial sodium channel EnaC (epithelial sodium channel) leads to the formation of IsoLGs (isolevuglandins) and release of proinflammatory cytokines to activate T cells and modulate salt-sensitive hypertension. In the current study, we hypothesized that ENaC-dependent entry of sodium into APCs activates the NLRP3 (NOD [nucleotide-binding and oligomerization domain]-like receptor family pyrin domain containing 3) inflammasome via IsoLG formation leading to salt-sensitive hypertension. METHODS We performed RNA sequencing on human monocytes treated with elevated sodium in vitro and Cellular Indexing of Transcriptomes and Epitopes by Sequencing analysis of peripheral blood mononuclear cells from participants rigorously phenotyped for salt sensitivity of blood pressure using an established inpatient protocol. To determine mechanisms, we analyzed inflammasome activation in mouse models of deoxycorticosterone acetate salt-induced hypertension as well as salt-sensitive mice with ENaC inhibition or expression, IsoLG scavenging, and adoptive transfer of wild-type dendritic cells into NLRP3 deficient mice. RESULTS We found that high levels of salt exposure upregulates the NLRP3 inflammasome, pyroptotic and apoptotic caspases, and IL (interleukin)-1β transcription in human monocytes. Cellular Indexing of Transcriptomes and Epitopes by Sequencing revealed that components of the NLRP3 inflammasome and activation marker IL-1β dynamically vary with changes in salt loading/depletion. Mechanistically, we found that sodium-induced activation of the NLRP3 inflammasome is ENaC and IsoLG dependent. NLRP3 deficient mice develop a blunted hypertensive response to elevated sodium, and this is restored by the adoptive transfer of NLRP3 replete APCs. CONCLUSIONS These findings reveal a mechanistic link between ENaC, inflammation, and salt-sensitive hypertension involving NLRP3 inflammasome activation in APCs. APC activation via the NLRP3 inflammasome can serve as a potential diagnostic biomarker for salt sensitivity of blood pressure.
Collapse
Affiliation(s)
- Ashley Pitzer
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Fernando Elijovich
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Cheryl L. Laffer
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Lale A. Ertuglu
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melis Sahinoz
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Jaya Krishnan
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Thanvi Dola
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Luul A Aden
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael A. Raddatz
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Celestine Wanjalla
- Department of Internal Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center Nashville, TN, USA
| | - Suman Pakala
- Department of Internal Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center Nashville, TN, USA
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - David M Patrick
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - T. Alp Ikizler
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas Kleyman
- Departments of Medicine, Cell Biology, Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| |
Collapse
|
44
|
Schirmbeck GH, Sizonenko S, Sanches EF. Neuroprotective Role of Lactoferrin during Early Brain Development and Injury through Lifespan. Nutrients 2022; 14:2923. [PMID: 35889882 PMCID: PMC9322498 DOI: 10.3390/nu14142923] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Early adverse fetal environments can significantly disturb central nervous system (CNS) development and subsequently alter brain maturation. Nutritional status is a major variable to be considered during development and increasing evidence links neonate and preterm infant impaired brain growth with neurological and psychiatric diseases in adulthood. Breastfeeding is one of the main components required for healthy newborn development due to the many "constitutive" elements breastmilk contains. Maternal intake of specific nutrients during lactation may alter milk composition, thus affecting newborn nutrition and, potentially, brain development. Lactoferrin (Lf) is a major protein present in colostrum and the main protein in human milk, which plays an important role in the benefits of breastfeeding during postnatal development. It has been demonstrated that Lf has antimicrobial, as well as anti-inflammatory properties, and is potentially able to reduce the incidence of sepsis and necrotizing enterocolitis (NEC), which are particularly frequent in premature births. The anti-inflammatory effects of Lf can reduce birth-related pathologies by decreasing the release of pro-inflammatory factors and inhibiting premature cervix maturation (also related to commensal microbiome abnormalities) that could contribute to disrupting brain development. Pre-clinical evidence shows that Lf protects the developing brain from neuronal injury, enhances brain connectivity and neurotrophin production, and decreases inflammation in models of perinatal inflammatory challenge, intrauterine growth restriction (IUGR) and neonatal hypoxia-ischemia (HI). In this context, Lf can provide nutritional support for brain development and cognition and prevent the origin of neuropsychiatric diseases later in life. In this narrative review, we consider the role of certain nutrients during neurodevelopment linking to the latest research on lactoferrin with respect to neonatology. We also discuss new evidence indicating that early neuroprotective pathways modulated by Lf could prevent neurodegeneration through anti-inflammatory and immunomodulatory processes.
Collapse
Affiliation(s)
- Gabriel Henrique Schirmbeck
- Biochemistry Post-Graduate Program, Biochemistry Department, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil;
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| | - Eduardo Farias Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| |
Collapse
|
45
|
Li X, Alu A, Wei Y, Wei X, Luo M. The modulatory effect of high salt on immune cells and related diseases. Cell Prolif 2022; 55:e13250. [PMID: 35747936 PMCID: PMC9436908 DOI: 10.1111/cpr.13250] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The adverse effect of excessive salt intake has been recognized in decades. Researchers have mainly focused on the association between salt intake and hypertension. However, studies in recent years have proposed the existence of extra-renal sodium storage and provided insight into the immunomodulatory function of sodium. OBJECTIVES In this review, we discuss the modulatory effects of high salt on various innate and adaptive immune cells and immune-regulated diseases. METHODS We identified papers through electronic searches of PubMed database from inception to March 2022. RESULTS An increasing body of evidence has demonstrated that high salt can modulate the differentiation, activation and function of multiple immune cells. Furthermore, a high-salt diet can increase tissue sodium concentrations and influence the immune responses in microenvironments, thereby affecting the development of immune-regulated diseases, including hypertension, multiple sclerosis, cancer and infections. These findings provide a novel mechanism for the pathology of certain diseases and indicate that salt might serve as a target or potential therapeutic agent in different disease contexts. CONCLUSION High salt has a profound impact on the differentiation, activation and function of multiple immune cells. Additionally, an HSD can modulate the development of various immune-regulated diseases.
Collapse
Affiliation(s)
- Xian Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Ban QY, Liu M, Ding N, Chen Y, Lin Q, Zha JM, He WQ. Nutraceuticals for the Treatment of IBD: Current Progress and Future Directions. Front Nutr 2022; 9:794169. [PMID: 35734374 PMCID: PMC9207447 DOI: 10.3389/fnut.2022.794169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/11/2022] [Indexed: 11/29/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing-remitting inflammatory disease of the gastrointestinal tract. Patients are usually diagnosed in adolescence and early adulthood and need lifelong treatment. In recent years, it has been found that diet plays an important role in the pathogenesis of IBD. Diet can change intestinal barrier function, affect the structure and function of intestinal flora, and promote immune disorder, thus promoting inflammation. Many patients believe that diet plays a role in the onset and treatment of the disease and changes their diet spontaneously. This review provides some insights into how nutraceuticals regulate intestinal immune homeostasis and improve intestinal barrier function. We reviewed the research results of dietary fiber, polyphenols, bioactive peptides, and other nutraceuticals in the prevention and treatment of IBD and sought better alternative or supplementary treatment methods for IBD patients.
Collapse
Affiliation(s)
- Quan-Yao Ban
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
| | - Mei Liu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
| | - Ning Ding
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
| | - Ying Chen
- Department of Gastroenterology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Qiong Lin
- Department of Gastroenterology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Juan-Min Zha
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
- *Correspondence: Juan-Min Zha
| | - Wei-Qi He
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Wei-Qi He
| |
Collapse
|
47
|
Mazzitelli I, Bleichmar L, Melucci C, Gerber PP, Toscanini A, Cuestas ML, Diaz FE, Geffner J. High Salt Induces a Delayed Activation of Human Neutrophils. Front Immunol 2022; 13:831844. [PMID: 35720394 PMCID: PMC9204211 DOI: 10.3389/fimmu.2022.831844] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
High salt (NaCl) concentrations are found in a number of tissues under physiological and pathological conditions. Here, we analyzed the effects induced by high salt on the function of human neutrophils. The culture of neutrophils in medium supplemented with high salt (50 mM NaCl) for short periods (30-120 min) inhibited the ability of conventional agonists to induce the production of IL-8 and the activation of respiratory burst. By contrast, exposure to high salt for longer periods (6-18 h) resulted in the activation of neutrophils revealed by the production of high levels of IL-8, the activation of the respiratory burst, and a marked synergistic effect on the production of TNF-α induced by LPS. Increasing osmolarity of the culture medium by the addition of sorbitol or mannitol (100 mM) was shown to be completely unable to stimulate neutrophil responses, suggesting that high sodium but not an increased osmolarity mediates the activation on neutrophils responses. A similar biphasic effect was observed when the function of monocytes was analyzed. Short term exposure to high salt suppressed IL-8 and TNF-α production induced by LPS while culture for longer periods triggered the production of IL-8 but not TNF-α in the absence of LPS stimulation. Contradictory results have been published regarding how high salt modulates neutrophil function. Our results suggest that the modulation of neutrophil function by high salt is strongly dependent on the exposure time.
Collapse
Affiliation(s)
- Ignacio Mazzitelli
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Consejo Nacional de Investigaciones Cientìficas y Tecnològicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucía Bleichmar
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Consejo Nacional de Investigaciones Cientìficas y Tecnològicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Melucci
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Consejo Nacional de Investigaciones Cientìficas y Tecnològicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pehuén Pereyra Gerber
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Agustina Toscanini
- Microbiología y Parasitología Médica
Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Consejo Nacional de Investigaciones Cientìficas y Tecnològicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Luján Cuestas
- Microbiología y Parasitología Médica
Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Consejo Nacional de Investigaciones Cientìficas y Tecnològicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Erra Diaz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Consejo Nacional de Investigaciones Cientìficas y Tecnològicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Consejo Nacional de Investigaciones Cientìficas y Tecnològicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Jorge Geffner,
| |
Collapse
|
48
|
Sheng D, Ma W, Zhang R, Zhou L, Deng Q, Tu J, Chen W, Zhang F, Gao N, Dong M, Wang D, Li F, Liu Y, He X, Duan S, Zhang L, Liu T, Liu S. Ccl3 enhances docetaxel chemosensitivity in breast cancer by triggering proinflammatory macrophage polarization. J Immunother Cancer 2022; 10:jitc-2021-003793. [PMID: 35613826 PMCID: PMC9134178 DOI: 10.1136/jitc-2021-003793] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Background Although the antitumor efficacy of docetaxel (DTX) has long been attributed to the antimitotic activities, its impact on the tumor microenvironment (TME) has recently gained more attention. Macrophages are a major component of the TME and play a critical role in DTX efficacy; however, the underlying action mechanisms remain unclear. Methods DTX chemotherapeutic efficacy was demonstrated via both macrophage depletion and C–C motif chemokine ligand 3 (Ccl3)-knockout transgenic allograft mouse model. Ccl3-knockdown and Ccl3-overexpressing breast cancer cell allografts were used for the in vivo study. Combination therapy was used to evaluate the effect of Ccl3 induction on DTX chemosensitivity. Vital regulatory molecules and pathways were identified using RNA sequencing. Macrophage phagocytosis of cancer cells and its influence on cancer cell proliferation under DTX treatment were assessed using an in vitro coculture assay. Serum and tumor samples from patients with breast cancer were used to demonstrate the clinical relevance of our study. Results Our study revealed that Ccl3 induced by DTX in macrophages and cancer cells was indispensable for the chemotherapeutic efficacy of DTX. DTX-induced Ccl3 promoted proinflammatory macrophage polarization and subsequently facilitated phagocytosis of breast cancer cells and cancer stem cells. Ccl3 overexpression in cancer cells promoted proinflammatory macrophage polarization to suppress tumor progression and increase DTX chemosensitivity. Mechanistically, DTX induced Ccl3 by relieving the inhibition of cAMP-response element binding protein on Ccl3 via reactive oxygen species accumulation, and Ccl3 then promoted proinflammatory macrophage polarization via activation of the Ccl3–C-C motif chemokine receptor 5–p38/interferon regulatory factor 5 pathway. High CCL3 expression predicted better prognosis, and high CCL3 induction revealed better DTX chemosensitivity in patients with breast cancer. Furthermore, both the Creb inhibitor and recombinant mouse Ccl3 significantly enhanced DTX chemosensitivity. Conclusions Our results indicate that Ccl3 induced by DTX triggers proinflammatory macrophage polarization and subsequently facilitates phagocytosis of cancer cells. Ccl3 induction in combination with DTX may provide a promising therapeutic rationale for increasing DTX chemosensitivity in breast cancer.
Collapse
Affiliation(s)
- Dandan Sheng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College; Fudan University, Shanghai, China
| | - Wei Ma
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College; Fudan University, Shanghai, China
| | - Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College; Fudan University, Shanghai, China
| | - Lei Zhou
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiaodan Deng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College; Fudan University, Shanghai, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College; Fudan University, Shanghai, China
| | - Weilong Chen
- Intelligent Pathology Institute and Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fuchuang Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College; Fudan University, Shanghai, China
| | - Nailong Gao
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Mengxue Dong
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College; Fudan University, Shanghai, China
| | - Dong Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Fengkai Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College; Fudan University, Shanghai, China
| | - Yin Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College; Fudan University, Shanghai, China
| | - Shengzhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College; Fudan University, Shanghai, China
| | - Tong Liu
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, China .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College; Fudan University, Shanghai, China .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Tissue Sodium Accumulation: Pathophysiology and Clinical Implications. Antioxidants (Basel) 2022; 11:antiox11040750. [PMID: 35453435 PMCID: PMC9031161 DOI: 10.3390/antiox11040750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Excessive sodium intake has been well established as a risk factor for the development and progression of cardiovascular and renal diseases. Its adverse effects are achieved by renal sodium retention and related volume expansion and by inducing low-grade inflammation and oxidative stress (OS) in the target tissues. This review presents the recent concept of nonosmotic sodium storage in the skin interstitium, the subsequent dissociation of sodium and volume homeostasis, and the cellular response to the increased tissue sodium concentration. Furthermore, data are shown on the sodium barrier and buffering potential of the endothelial glycocalyx that may protect the functional integrity of the endothelium when it is challenged by an increased sodium load. Finally, examples will be given of the involvement of oxygen free radicals (OFR) in sodium-induced tissue damage, and some clinical entities will be mentioned that are causally associated with sodium/volume retention and OS.
Collapse
|
50
|
Stock JM, Chelimsky G, Edwards DG, Farquhar WB. Dietary sodium and health: How much is too much for those with orthostatic disorders? Auton Neurosci 2022; 238:102947. [PMID: 35131651 PMCID: PMC9296699 DOI: 10.1016/j.autneu.2022.102947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/09/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
High dietary salt (NaCl) increases blood pressure (BP) and can adversely impact multiple target organs including the vasculature, heart, kidneys, brain, autonomic nervous system, skin, eyes, and bone. However, patients with orthostatic disorders are told to increase their NaCl intake to help alleviate symptoms. While there is evidence to support the short-term benefits of increasing NaCl intake in these patients, there are few studies assessing the benefits and side effects of long-term high dietary NaCl. The evidence reviewed suggests that high NaCl can adversely impact multiple target organs, often independent of BP. However, few of these studies have been performed in patients with orthostatic disorders. We conclude that the recommendation to increase dietary NaCl in patients with orthostatic disorders should be done with care, keeping in mind the adverse impact on dietary NaCl in people without orthostatic disorders. Modest, rather than robust, increases in NaCl intake may be sufficient to alleviate symptoms but also minimize any long-term negative effects.
Collapse
Affiliation(s)
- Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Gisela Chelimsky
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America.
| |
Collapse
|