1
|
Ishida Y, Matsushita M, Yoneshiro T, Saito M, Nakayama K. Association between thermogenic brown fat and genes under positive natural selection in circumpolar populations. J Physiol Anthropol 2024; 43:19. [PMID: 39160621 PMCID: PMC11331686 DOI: 10.1186/s40101-024-00368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Adaptation to cold was essential for human migration across Eurasia. Non-shivering thermogenesis through brown adipose tissue (BAT) participates in cold adaptation because some genes involved in the differentiation and function of BAT exhibit signatures of positive natural selection in populations at high latitudes. Whether these genes are associated with the inter-individual variability in BAT thermogenesis remains unclear. In this study, we evaluated the potential associations between BAT activity and single nucleotide polymorphisms (SNPs) in candidate gene regions in East Asian populations. METHODS BAT activity induced by mild cold exposure was measured in 399 healthy Japanese men and women using fluorodeoxyglucose-positron emission tomography and computed tomography (FDG-PET/CT). The capacity for cold-induced thermogenesis and fat oxidation was measured in 56 men. Association analyses with physiological traits were performed for 11 SNPs at six loci (LEPR, ANGPTL8, PLA2G2A, PLIN1, TBX15-WARS2, and FADS1) reported to be under positive natural selection. Associations found in the FDG-PET/CT population were further validated in 84 healthy East Asian men and women, in whom BAT activity was measured using infrared thermography. Associations between the SNP genotypes and BAT activity or other related traits were tested using multiple logistic and linear regression models. RESULTS Of the 11 putative adaptive alleles of the six genes, two intronic SNPs in LEPR (rs1022981 and rs12405556) tended to be associated with higher BAT activity. However, these did not survive multiple test comparisons. Associations with lower body fat percentage, plasma triglyceride, insulin, and HOMA-IR levels were observed in the FDG-PET/CT population (P < 0.05). Other loci, including TBX15-WARS2, which is speculated to mediate cold adaptation in Greenland Inuits, did not show significant differences in BAT thermogenesis. CONCLUSIONS Our results suggest a marginal but significant association between LEPR SNPs. However, robust supporting evidence was not established for the involvement of other loci under positive natural selection in cold adaptation through BAT thermogenesis in East Asian adults. Given the pleiotropic function of these genes, factors other than cold adaptation through BAT thermogenesis, such as diet adaptation, may contribute to positive natural selection at these loci.
Collapse
Affiliation(s)
- Yuka Ishida
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Mami Matsushita
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Hokkaido, 065-0013, Japan
| | - Takeshi Yoneshiro
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Masayuki Saito
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Hokkaido, 065-0013, Japan
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Kazuhiro Nakayama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
2
|
Ishida Y, Matsushita M, Yoneshiro T, Saito M, Fuse S, Hamaoka T, Kuroiwa M, Tanaka R, Kurosawa Y, Nishimura T, Motoi M, Maeda T, Nakayama K. Genetic evidence for involvement of β2-adrenergic receptor in brown adipose tissue thermogenesis in humans. Int J Obes (Lond) 2024; 48:1110-1117. [PMID: 38632325 PMCID: PMC11281906 DOI: 10.1038/s41366-024-01522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Sympathetic activation of brown adipose tissue (BAT) thermogenesis can ameliorate obesity and related metabolic abnormalities. However, crucial subtypes of the β-adrenergic receptor (AR), as well as effects of its genetic variants on functions of BAT, remains unclear in humans. We conducted association analyses of genes encoding β-ARs and BAT activity in human adults. METHODS Single nucleotide polymorphisms (SNPs) in β1-, β2-, and β3-AR genes (ADRB1, ADRB2, and ADRB3) were tested for the association with BAT activity under mild cold exposure (19 °C, 2 h) in 399 healthy Japanese adults. BAT activity was measured using fluorodeoxyglucose-positron emission tomography and computed tomography (FDG-PET/CT). To validate the results, we assessed the effects of SNPs in the two independent populations comprising 277 healthy East Asian adults using near-infrared time-resolved spectroscopy (NIRTRS) or infrared thermography (IRT). Effects of SNPs on physiological responses to intensive cold exposure were tested in 42 healthy Japanese adult males using an artificial climate chamber. RESULTS We found a significant association between a functional SNP (rs1042718) in ADRB2 and BAT activity assessed with FDG-PET/CT (p < 0.001). This SNP also showed an association with cold-induced thermogenesis in the population subset. Furthermore, the association was replicated in the two other independent populations; BAT activity was evaluated by NIRTRS or IRT (p < 0.05). This SNP did not show associations with oxygen consumption and cold-induced thermogenesis under intensive cold exposure, suggesting the irrelevance of shivering thermogenesis. The SNPs of ADRB1 and ADRB3 were not associated with these BAT-related traits. CONCLUSIONS The present study supports the importance of β2-AR in the sympathetic regulation of BAT thermogenesis in humans. The present collection of DNA samples is the largest to which information on the donor's BAT activity has been assigned and can serve as a reference for further in-depth understanding of human BAT function.
Collapse
MESH Headings
- Humans
- Thermogenesis/physiology
- Thermogenesis/genetics
- Adipose Tissue, Brown/metabolism
- Male
- Adult
- Polymorphism, Single Nucleotide
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Female
- Middle Aged
- Japan
- Positron Emission Tomography Computed Tomography
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
- Asian People/genetics
Collapse
Affiliation(s)
- Yuka Ishida
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Mami Matsushita
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Hokkaido, 065-0013, Japan
| | - Takeshi Yoneshiro
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
- Department of Molecular Metabolism and Physiology, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, 980-8575, Japan
| | - Masayuki Saito
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Hokkaido, 065-0013, Japan
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Sayuri Fuse
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Riki Tanaka
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Fukuoka, 814-0180, Japan
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Takayuki Nishimura
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, Fukuoka, Fukuoka, 815-8540, Japan
- Physiological Anthropology Research Center, Faculty of Design, Kyushu University, Fukuoka, Fukuoka, 815-8540, Japan
| | - Midori Motoi
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, Fukuoka, Fukuoka, 815-8540, Japan
| | - Takafumi Maeda
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, Fukuoka, Fukuoka, 815-8540, Japan
- Physiological Anthropology Research Center, Faculty of Design, Kyushu University, Fukuoka, Fukuoka, 815-8540, Japan
| | - Kazuhiro Nakayama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
3
|
Kwok TC, Ramage LE, Kelman A, Suchacki KJ, Gray C, Boyle LD, Semple SI, MacGillivray T, MacNaught G, Patel D, van Beek EJR, Semple RK, Wakelin SJ, Stimson RH. UCP1 expression in human brown adipose tissue is inversely associated with cardiometabolic risk factors. Eur J Endocrinol 2024; 191:106-115. [PMID: 38917410 PMCID: PMC11265601 DOI: 10.1093/ejendo/lvae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/02/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE Brown adipose tissue (BAT) is a therapeutic target for obesity. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) is commonly used to quantify human BAT mass and activity. Detectable 18F-FDG uptake by BAT is associated with reduced prevalence of cardiometabolic disease. However, 18F-FDG uptake may not always be a reliable marker of BAT thermogenesis, for example, insulin resistance may reduce glucose uptake. Uncoupling protein 1 (UCP1) is the key thermogenic protein in BAT. Therefore, we hypothesised that UCP1 expression may be altered in individuals with cardiometabolic risk factors. METHODS We quantified UCP1 expression as an alternative marker of thermogenic capacity in BAT and white adipose tissue (WAT) samples (n = 53) and in differentiated brown and white pre-adipocytes (n = 85). RESULTS UCP1 expression in BAT, but not in WAT or brown/white differentiated pre-adipocytes, was reduced with increasing age, obesity, and adverse cardiometabolic risk factors such as fasting glucose, insulin, and blood pressure. However, UCP1 expression in BAT was preserved in obese subjects of <40 years of age. To determine if BAT activity was also preserved in vivo, we undertook a case-control study, performing 18F-FDG scanning during mild cold exposure in young (mean age ∼22 years) normal weight and obese volunteers. 18F-FDG uptake by BAT and BAT volume were similar between groups, despite increased insulin resistance. CONCLUSION 18F-FDG uptake by BAT and UCP1 expression are preserved in young obese adults. Older subjects retain precursor cells with the capacity to form new thermogenic adipocytes. These data highlight the therapeutic potential of BAT mass expansion and activation in obesity.
Collapse
Affiliation(s)
- T’ng Choong Kwok
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Lynne E Ramage
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Alexandra Kelman
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Karla J Suchacki
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Calum Gray
- Edinburgh Imaging Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Luke D Boyle
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Scott I Semple
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
- Edinburgh Imaging Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Tom MacGillivray
- Edinburgh Imaging Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Gillian MacNaught
- Department of Radiology, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, Scotland, United Kingdom
| | - Dilip Patel
- Department of Radiology, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, Scotland, United Kingdom
| | - Edwin J R van Beek
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
- Edinburgh Imaging Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Robert K Semple
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Sonia J Wakelin
- Department of Surgery, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, Scotland, United Kingdom
| | - Roland H Stimson
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
4
|
Kruczkowska W, Gałęziewska J, Kciuk M, Gielecińska A, Płuciennik E, Pasieka Z, Zhao LY, Yu YJ, Kołat D, Kałuzińska-Kołat Ż. Senescent adipocytes and type 2 diabetes - current knowledge and perspective concepts. Biomol Concepts 2024; 15:bmc-2022-0046. [PMID: 38530804 DOI: 10.1515/bmc-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Among civilization diseases, the number of individuals suffering from type 2 diabetes (T2DM) is expected to increase to more than a billion in less than 20 years, which is associated with, e.g., populational aging, poor diet, sedentary lifestyle, genetic predispositions, and immunological factors. T2DM affects many organs and is characterized by insulin resistance, high glucose levels, and adipocyte dysfunction, which are related to senescence. Although this type of cellular aging has beneficial biological functions, it can also act unfavorable since senescent adipocytes resist apoptosis, enhance cytokine secretion, downregulate cell identity genes, and acquire the senescence-associated secretory phenotype that renders a more oxidative environment. Opposing T2DM is possible via a wide variety of senotherapies, including senolytics and senomorphics; nevertheless, further research is advised to expand therapeutic possibilities and benefits. Consequences that ought to be deeply researched include secretory phenotype, chronic inflammation, increasing insulin resistance, as well as impairment of adipogenesis and functioning of adipocyte cells. Herein, despite reviewing T2DM and fat tissue senescence, we summarized the latest adipocyte-related anti-diabetes solutions and suggested further research directions.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Faculty of Biomedical Sciences, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Julia Gałęziewska
- Faculty of Biomedical Sciences, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Jin Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| |
Collapse
|
5
|
de Lange P, Lombardi A, Silvestri E, Cioffi F, Giacco A, Iervolino S, Petito G, Senese R, Lanni A, Moreno M. Physiological Approaches Targeting Cellular and Mitochondrial Pathways Underlying Adipose Organ Senescence. Int J Mol Sci 2023; 24:11676. [PMID: 37511435 PMCID: PMC10380998 DOI: 10.3390/ijms241411676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The adipose organ is involved in many metabolic functions, ranging from the production of endocrine factors to the regulation of thermogenic processes. Aging is a natural process that affects the physiology of the adipose organ, leading to metabolic disorders, thus strongly impacting healthy aging. Cellular senescence modifies many functional aspects of adipose tissue, leading to metabolic alterations through defective adipogenesis, inflammation, and aberrant adipocytokine production, and in turn, it triggers systemic inflammation and senescence, as well as insulin resistance in metabolically active tissues, leading to premature declined physiological features. In the various aging fat depots, senescence involves a multiplicity of cell types, including mature adipocytes and immune, endothelial, and progenitor cells that are aging, highlighting their involvement in the loss of metabolic flexibility, one of the common features of aging-related metabolic disorders. Since mitochondrial stress represents a key trigger of cellular senescence, and senescence leads to the accumulation of abnormal mitochondria with impaired dynamics and hindered homeostasis, this review focuses on the beneficial potential of targeting mitochondria, so that strategies can be developed to manage adipose tissue senescence for the treatment of age-related metabolic disorders.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Assunta Lombardi
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Elena Silvestri
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Antonia Giacco
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Stefania Iervolino
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Giuseppe Petito
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
6
|
Sun Y, Zhang J, Hong J, Zhang Z, Lu P, Gao A, Ni M, Zhang Z, Yang H, Shen J, Lu J, Xue W, Lv Q, Bi Y, Zeng YA, Gu W, Ning G, Wang W, Liu R, Wang J. Human RSPO1 Mutation Represses Beige Adipocyte Thermogenesis and Contributes to Diet-Induced Adiposity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207152. [PMID: 36755192 PMCID: PMC10131814 DOI: 10.1002/advs.202207152] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Recent genetic evidence has linked WNT downstream mutations to fat distribution. However, the roles of WNTs in human obesity remain unclear. Here, the authors screen all Wnt-related paracrine factors in 1994 obese cases and 2161 controls using whole-exome sequencing (WES) and identify that 12 obese patients harbor the same mutations in RSPO1 (p.R219W/Q) predisposing to human obesity. RSPO1 is predominantly expressed in visceral fat, primarily in the fibroblast cluster, and is increased with adiposity. Mice overexpressing human RSPO1 in adipose tissues develop obesity under a high-fat diet (HFD) due to reduced brown/beige fat thermogenesis. In contrast, Rspo1 ablation resists HFD-induced adiposity by increasing thermogenesis. Mechanistically, RSPO1 overexpression or administration significantly inhibits adipocyte mitochondrial respiration and thermogenesis via LGR4-Wnt/β-catenin signaling pathway. Importantly, humanized knockin mice carrying the hotspot mutation (p.R219W) display suppressed thermogenesis and recapitulate the adiposity feature of obese carriers. The mutation disrupts RSPO1's electrostatic interaction with the extracellular matrix, leading to excessive RSPO1 release that activates LGR4-Wnt/β-catenin signaling and attenuates thermogenic capacity in differentiated beige adipocytes. Therefore, these findings identify that gain-of-function mutations and excessive expression of RSPO1, acting as a paracrine Wnt activator, suppress fat thermogenesis and contribute to obesity in humans.
Collapse
Affiliation(s)
- Yingkai Sun
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Juan Zhang
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Jie Hong
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Zhongyun Zhang
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Peng Lu
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Aibo Gao
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Mengshan Ni
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Zhiyin Zhang
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Huanjie Yang
- BGI GenomicsBGI‐ShenzhenShenzhen860755P. R. China
| | - Juan Shen
- BGI GenomicsBGI‐ShenzhenShenzhen860755P. R. China
| | - Jieli Lu
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Wenzhi Xue
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Qianqian Lv
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Yufang Bi
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Yi Arial Zeng
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031P. R. China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Guang Ning
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Weiqing Wang
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Ruixin Liu
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| |
Collapse
|
7
|
Xue S, Lee D, Berry DC. Thermogenic adipose tissue in energy regulation and metabolic health. Front Endocrinol (Lausanne) 2023; 14:1150059. [PMID: 37020585 PMCID: PMC10067564 DOI: 10.3389/fendo.2023.1150059] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
The ability to generate thermogenic fat could be a targeted therapy to thwart obesity and improve metabolic health. Brown and beige adipocytes are two types of thermogenic fat cells that regulate energy balance. Both adipocytes share common morphological, biochemical, and thermogenic properties. Yet, recent evidence suggests unique features exist between brown and beige adipocytes, such as their cellular origin and thermogenic regulatory processes. Beige adipocytes also appear highly plastic, responding to environmental stimuli and interconverting between beige and white adipocyte states. Additionally, beige adipocytes appear to be metabolically heterogenic and have substrate specificity. Nevertheless, obese and aged individuals cannot develop beige adipocytes in response to thermogenic fat-inducers, creating a key clinical hurdle to their therapeutic promise. Thus, elucidating the underlying developmental, molecular, and functional mechanisms that govern thermogenic fat cells will improve our understanding of systemic energy regulation and strive for new targeted therapies to generate thermogenic fat. This review will examine the recent advances in thermogenic fat biogenesis, molecular regulation, and the potential mechanisms for their failure.
Collapse
Affiliation(s)
| | | | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
8
|
Wu T, Xu S. Understanding the contemporary high obesity rate from an evolutionary genetic perspective. Hereditas 2023; 160:5. [PMID: 36750916 PMCID: PMC9903520 DOI: 10.1186/s41065-023-00268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The topic of obesity is gaining increasing popularity globally. From an evolutionary genetic perspective, it is believed that the main cause of the high obesity rate is the mismatch between environment and genes after people have shifted toward a modern high-calorie diet. However, it has been debated for over 60 years about how obesity-related genes become prevalent all over the world. Here, we review the three most influential hypotheses or viewpoints, i.e., the thrifty gene hypothesis, the drifty gene hypothesis, and the maladaptation viewpoint. In particular, genome-wide association studies in the recent 10 years have provided rich findings and evidence to be considered for a better understanding of the evolutionary genetic mechanisms of obesity. We anticipate this brief review to direct further studies and inspire the future application of precision medicine in obesity treatment.
Collapse
Affiliation(s)
- Tong Wu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China. .,Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Saito M, Okamatsu-Ogura Y. Thermogenic Brown Fat in Humans: Implications in Energy Homeostasis, Obesity and Metabolic Disorders. World J Mens Health 2023:41.e26. [PMID: 36792089 DOI: 10.5534/wjmh.220224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/08/2022] [Indexed: 01/27/2023] Open
Abstract
In mammals including humans, there are two types of adipose tissue, white and brown adipose tissues (BATs). White adipose tissue is the primary site of energy storage, while BAT is a specialized tissue for non-shivering thermogenesis to dissipate energy as heat. Although BAT research has long been limited mostly in small rodents, the rediscovery of metabolically active BAT in adult humans has dramatically promoted the translational studies on BAT in health and diseases. It is now established that BAT, through its thermogenic and energy dissipating activities, plays a role in the regulation of body temperature, whole-body energy expenditure, and body fatness. Moreover, increasing evidence has demonstrated that BAT secretes various paracrine and endocrine factors, which influence other peripheral tissues and control systemic metabolic homeostasis, suggesting BAT as a metabolic regulator, other than for thermogenesis. In fact, clinical studies have revealed an association of BAT not only with metabolic disorders such as insulin resistance, diabetes, dyslipidemia, and fatty liver, but also with cardiovascular diseases including hypertension and atherosclerosis. Thus, BAT is an intriguing tissue combating obesity and related metabolic diseases. In this review, we summarize current knowledge on human BAT, focusing its patho-physiological roles in energy homeostasis, obesity and related metabolic disorders. The effects of aging and sex on BAT are also discussed.
Collapse
Affiliation(s)
- Masayuki Saito
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
SIRT7 suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions in mice. Nat Commun 2022; 13:7439. [PMID: 36509749 PMCID: PMC9744749 DOI: 10.1038/s41467-022-35219-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Brown adipose tissue plays a central role in the regulation of the energy balance by expending energy to produce heat. NAD+-dependent deacylase sirtuins have widely been recognized as positive regulators of brown adipose tissue thermogenesis. However, here we reveal that SIRT7, one of seven mammalian sirtuins, suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions. Whole-body and brown adipose tissue-specific Sirt7 knockout mice have higher body temperature and energy expenditure. SIRT7 deficiency increases the protein level of UCP1, a key regulator of brown adipose tissue thermogenesis. Mechanistically, we found that SIRT7 deacetylates insulin-like growth factor 2 mRNA-binding protein 2, an RNA-binding protein that inhibits the translation of Ucp1 mRNA, thereby enhancing its inhibitory action on Ucp1. Furthermore, SIRT7 attenuates the expression of batokine genes, such as fibroblast growth factor 21. In conclusion, we propose that SIRT7 serves as an energy-saving factor by suppressing brown adipose tissue functions.
Collapse
|
11
|
Wang G, Song A, Bae M, Wang QA. Adipose Tissue Plasticity in Aging. Compr Physiol 2022; 12:4119-4132. [PMID: 36214190 DOI: 10.1002/cphy.c220005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As a dynamic endocrine organ, white adipose tissue (WAT) stores lipids and plays a critical role in maintaining whole-body energy homeostasis and insulin sensitivity. A large group of the population over 65 years old suffer from increased WAT mass, especially in the visceral location. Visceral adiposity accelerates aging through promoting age-associated chronic conditions, significantly shortening life expectancy. Unlike WAT, brown adipose tissue (BAT) functions as an effective energy sink that burns and disposes of excess lipids and glucose upon activation of thermogenesis. Unfortunately, the thermogenic activity of BAT declines during aging. New appreciation of cellular and functional remodeling of WAT and BAT during aging has emerged in recent years. Efforts are underway to explore the potential underlying mechanisms behind these age-associated alterations in WAT and BAT and the impact of these alterations on whole-body metabolism. Lastly, it is intriguing to translate our knowledge obtained from animal models to the clinic to prevent and treat age-associated metabolic disorders. © 2022 American Physiological Society. Compr Physiol 12: 4119-4132, 2022.
Collapse
Affiliation(s)
- Guan Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Anying Song
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Marie Bae
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Qiong A Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA
| |
Collapse
|
12
|
Association of Type 2 Deiodinase Thr92Ala Polymorphism with Pediatric Obesity in Japanese Children: A Case-Control Study. CHILDREN 2022; 9:children9101421. [PMID: 36291357 PMCID: PMC9600981 DOI: 10.3390/children9101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
Genetic factors play critical roles in the onset and progression of obesity. Brown adipose tissue (BAT) activity is also critical for adiposity. The objective of this study was to evaluate the prevalence and effects of BAT gene polymorphisms in pediatric obesity. This case-control study included 270 non-obese and 86 obese children. All participants underwent genotyping for type 2 deiodinase (DIO2) Thr92Ala (rs225014). The prevalence of the homozygous Ala/Ala allele of the DIO2 gene in the obese group was 15.1% versus 6.3% in the non-obese group, resulting in an odds ratio (OR) of 3.393 (p = 0.003). The results of this study indicate that the homozygous Ala/Ala allele of the DIO2 gene is associated with an increased risk of pediatric obesity and suggest that pediatric obesity might be suitable for assessing the association with gene polymorphisms related to BAT, especially DIO2 Thr92Ala.
Collapse
|
13
|
Silva GDN, Amato AA. Thermogenic adipose tissue aging: Mechanisms and implications. Front Cell Dev Biol 2022; 10:955612. [PMID: 35979379 PMCID: PMC9376969 DOI: 10.3389/fcell.2022.955612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022] Open
Abstract
Adipose tissue undergoes significant anatomical and functional changes with aging, leading to an increased risk of metabolic diseases. Age-related changes in adipose tissue include overall defective adipogenesis, dysfunctional adipokine secretion, inflammation, and impaired ability to produce heat by nonshivering thermogenesis. Thermogenesis in adipose tissue is accomplished by brown and beige adipocytes, which also play a role in regulating energy homeostasis. Brown adipocytes develop prenatally, are found in dedicated depots, and involute in early infancy in humans. In contrast, beige adipocytes arise postnatally in white adipose tissue and persist throughout life, despite being lost with aging. In recent years, there have been significant advances in the understanding of age-related reduction in thermogenic adipocyte mass and function. Mechanisms underlying such changes are beginning to be delineated. They comprise diminished adipose precursor cell pool size and adipogenic potential, mitochondrial dysfunction, decreased sympathetic signaling, and altered paracrine and endocrine signals. This review presents current evidence from animal models and human studies for the mechanisms underlying thermogenic adipocyte loss and discusses potential strategies targeting brown and beige adipocytes to increase health span and longevity.
Collapse
|
14
|
Dinas PC, Nintou E, Vliora M, Pravednikova AE, Sakellariou P, Witkowicz A, Kachaev ZM, Kerchev VV, Larina SN, Cotton J, Kowalska A, Gkiata P, Bargiota A, Khachatryan ZA, Hovhannisyan AA, Antonosyan MA, Margaryan S, Partyka A, Bogdanski P, Szulinska M, Kregielska-Narozna M, Czepczyński R, Ruchała M, Tomkiewicz A, Yepiskoposyan L, Karabon L, Shidlovskii Y, Metsios GS, Flouris AD. Prevalence of uncoupling protein one genetic polymorphisms and their relationship with cardiovascular and metabolic health. PLoS One 2022; 17:e0266386. [PMID: 35482655 PMCID: PMC9049362 DOI: 10.1371/journal.pone.0266386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Contribution of UCP1 single nucleotide polymorphisms (SNPs) to susceptibility for cardiometabolic pathologies (CMP) and their involvement in specific risk factors for these conditions varies across populations. We tested whether UCP1 SNPs A-3826G, A-1766G, Ala64Thr and A-112C are associated with common CMP and their risk factors across Armenia, Greece, Poland, Russia and United Kingdom. This case-control study included genotyping of these SNPs, from 2,283 Caucasians. Results were extended via systematic review and meta-analysis. In Armenia, GA genotype and A allele of Ala64Thr displayed ~2-fold higher risk for CMP compared to GG genotype and G allele, respectively (p<0.05). In Greece, A allele of Ala64Thr decreased risk of CMP by 39%. Healthy individuals with A-3826G GG genotype and carriers of mutant allele of A-112C and Ala64Thr had higher body mass index compared to those carrying other alleles. In healthy Polish, higher waist-to-hip ratio (WHR) was observed in heterozygotes A-3826G compared to AA homozygotes. Heterozygosity of A-112C and Ala64Thr SNPs was related to lower WHR in CMP individuals compared to wild type homozygotes (p<0.05). Meta-analysis showed no statistically significant odds-ratios across our SNPs (p>0.05). Concluding, the studied SNPs could be associated with the most common CMP and their risk factors in some populations.
Collapse
Affiliation(s)
- Petros C. Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, West Midlands, United Kingdom
| | - Eleni Nintou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Maria Vliora
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Anna E. Pravednikova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Paraskevi Sakellariou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Agata Witkowicz
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Zaur M. Kachaev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victor V. Kerchev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Svetlana N. Larina
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - James Cotton
- Royal Wolverhampton NHS Trust, New Cross Hospital, Wolverhampton, United Kingdom
| | - Anna Kowalska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Paraskevi Gkiata
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, Medical School, Larissa University Hospital, University of Thessaly, Larissa, Greece
| | - Zaruhi A. Khachatryan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Anahit A. Hovhannisyan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Mariya A. Antonosyan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Sona Margaryan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Anna Partyka
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Pawel Bogdanski
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Monika Szulinska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Matylda Kregielska-Narozna
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Rafał Czepczyński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Anna Tomkiewicz
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Levon Yepiskoposyan
- Department of Bioengineering, Bioinformatics and Molecular Biology, Russian-Armenian University, Yerevan, Armenia
| | - Lidia Karabon
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Yulii Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - George S. Metsios
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece
| | - Andreas D. Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| |
Collapse
|
15
|
Ou MY, Zhang H, Tan PC, Zhou SB, Li QF. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis 2022; 13:300. [PMID: 35379822 PMCID: PMC8980023 DOI: 10.1038/s41419-022-04752-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023]
Abstract
Adipose tissue, which is the crucial energy reservoir and endocrine organ for the maintenance of systemic glucose, lipid, and energy homeostasis, undergoes significant changes during aging. These changes cause physiological declines and age-related disease in the elderly population. Here, we review the age-related changes in adipose tissue at multiple levels and highlight the underlying mechanisms regulating the aging process. We also discuss the pathogenic pathways of age-related fat dysfunctions and their systemic negative consequences, such as dyslipidemia, chronic general inflammation, insulin resistance, and type 2 diabetes (T2D). Age-related changes in adipose tissue involve redistribution of deposits and composition, in parallel with the functional decline of adipocyte progenitors and accumulation of senescent cells. Multiple pathogenic pathways induce defective adipogenesis, inflammation, aberrant adipocytokine production, and insulin resistance, leading to adipose tissue dysfunction. Changes in gene expression and extracellular signaling molecules regulate the aging process of adipose tissue through various pathways. In addition, adipose tissue aging impacts other organs that are infiltrated by lipids, which leads to systemic inflammation, metabolic system disruption, and aging process acceleration. Moreover, studies have indicated that adipose aging is an early onset event in aging and a potential target to extend lifespan. Together, we suggest that adipose tissue plays a key role in the aging process and is a therapeutic target for the treatment of age-related disease, which deserves further study to advance relevant knowledge.
Collapse
Affiliation(s)
- Min-Yi Ou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Hao Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Poh-Ching Tan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Qing-Feng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
16
|
Human Brown Adipose Tissue and Metabolic Health: Potential for Therapeutic Avenues. Cells 2021; 10:cells10113030. [PMID: 34831253 PMCID: PMC8616549 DOI: 10.3390/cells10113030] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
Obesity-associated metabolic abnormalities comprise a cluster of conditions including dyslipidemia, insulin resistance, diabetes and cardiovascular diseases that has affected more than 650 million people all over the globe. Obesity results from the accumulation of white adipose tissues mainly due to the chronic imbalance of energy intake and energy expenditure. A variety of approaches to treat or prevent obesity, including lifestyle interventions, surgical weight loss procedures and pharmacological approaches to reduce energy intake and increase energy expenditure have failed to substantially decrease the prevalence of obesity. Brown adipose tissue (BAT), the primary source of thermogenesis in infants and small mammals may represent a promising therapeutic target to treat obesity by promoting energy expenditure through non-shivering thermogenesis mediated by mitochondrial uncoupling protein 1 (UCP1). Since the confirmation of functional BAT in adult humans by several groups, approximately a decade ago, and its association with a favorable metabolic phenotype, intense interest on the significance of BAT in adult human physiology and metabolic health has emerged within the scientific community to explore its therapeutic potential for the treatment of obesity and metabolic diseases. A substantially decreased BAT activity in individuals with obesity indicates a role for BAT in the setting of human obesity. On the other hand, BAT mass and its prevalence correlate with lower body mass index (BMI), decreased age and lower glucose levels, leading to a lower incidence of cardio-metabolic diseases. The increased cold exposure in adult humans with undetectable BAT was associated with decreased body fat mass and increased insulin sensitivity. A deeper understanding of the role of BAT in human metabolic health and its interrelationship with body fat distribution and deciphering proper strategies to increase energy expenditure, by either increasing functional BAT mass or inducing white adipose browning, holds the promise for possible therapeutic avenues for the treatment of obesity and associated metabolic disorders.
Collapse
|
17
|
Yuko OO, Saito M. Brown Fat as a Regulator of Systemic Metabolism beyond Thermogenesis. Diabetes Metab J 2021; 45:840-852. [PMID: 34176254 PMCID: PMC8640153 DOI: 10.4093/dmj.2020.0291] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 12/01/2022] Open
Abstract
Brown adipose tissue (BAT) is a specialized tissue for nonshivering thermogenesis to dissipate energy as heat. Although BAT research has long been limited mostly in small rodents, the rediscovery of metabolically active BAT in adult humans has dramatically promoted the translational studies on BAT in health and diseases. Moreover, several remarkable advancements have been made in brown fat biology over the past decade: The molecular and functional analyses of inducible thermogenic adipocytes (socalled beige adipocytes) arising from a developmentally different lineage from classical brown adipocytes have been accelerated. In addition to a well-established thermogenic activity of uncoupling protein 1 (UCP1), several alternative thermogenic mechanisms have been discovered, particularly in beige adipocytes. It has become clear that BAT influences other peripheral tissues and controls their functions and systemic homeostasis of energy and metabolic substrates, suggesting BAT as a metabolic regulator, other than for thermogenesis. This notion is supported by discovering that various paracrine and endocrine factors are secreted from BAT. We review the current understanding of BAT pathophysiology, particularly focusing on its role as a metabolic regulator in small rodents and also in humans.
Collapse
Affiliation(s)
| | - Masayuki Saito
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Nutrition, Tenshi College, Sapporo, Japan
- Corresponding author: Masayuki Saito https://orcid.org/0000-0002-3058-3003 Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan E-mail:
| |
Collapse
|
18
|
Yasukochi Y, Shin S, Wakabayashi H, Maeda T. Upregulation of cathepsin L gene under mild cold conditions in young Japanese male adults. J Physiol Anthropol 2021; 40:16. [PMID: 34686211 PMCID: PMC8533667 DOI: 10.1186/s40101-021-00267-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/09/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Physiological thermoregulatory systems in humans have been a key factor for adaptation to local environments after their exodus from Africa, particularly, to cold environments outside Africa. Recent studies using high-throughput sequencing have identified various genes responsible for cold adaptation. However, the molecular mechanisms underlying initial thermoregulation in response to acute cold exposure remain unclear. Therefore, we investigated transcriptional profiles of six young Japanese male adults exposed to acute cold stress. METHODS In a climatic chamber, the air temperature was maintained at 28°C for 65 min and was then gradually decreased to 19°C for 70 min. Saliva samples were obtained from the subjects at 28°C before and after 19°C cold exposure and were used for RNA sequencing. RESULTS In the cold exposure experiment, expression levels of 14 genes were significantly changed [false discovery rate (FDR) < 0.05] although the degree of transcriptional changes was not high due to experimental conditions or blunted transcriptional reaction in saliva to cold stress. As a result, differential gene expression analyses detected the cathepsin L (CTSL) gene to be significantly upregulated, with FDR < 0.05 and log2 fold change value > 1; thus, this gene was identified as a differentially expressed gene. Given that the cathepsin L protein is related to invasion of the novel coronavirus (SARS-CoV-2), mild cold stress might alter the susceptibility to coronavirus disease-19 in humans. The gene ontology enrichment analysis for 14 genes with FDR < 0.05 suggested that immune-related molecules could be activated by mild cold stress. CONCLUSIONS The results obtained from this study indicate that CTSL expression levels can be altered by acute mild cold stress.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Organization for the Promotion of Regional Innovation, Mie University, 1577 Kurima-machiya, Tsu, Mie, 514-8507, Japan.
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Sora Shin
- Department of Human Science, Graduate School of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan
| | - Hitoshi Wakabayashi
- Faculty of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Takafumi Maeda
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan
- Physiological Anthropology Research Center, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan
| |
Collapse
|
19
|
Chang SH, Jang J, Oh S, Yoon JH, Jo DG, Yun UJ, Park KW. Nrf2 induces Ucp1 expression in adipocytes in response to β3-AR stimulation and enhances oxygen consumption in high-fat diet-fed obese mice. BMB Rep 2021. [PMID: 33691909 PMCID: PMC8411042 DOI: 10.5483/bmbrep.2021.54.8.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coldinduced norepinephrine activates β3-adrenergic receptors (β3-AR) to stimulate the kinase cascade and cAMP-response element-binding protein, leading to the induction of thermogenic gene expression including uncoupling protein 1 (Ucp1). Here, we showed that stimulation of the β3-AR by its agonists isoproterenol and CL316,243 in adipocytes increased the expression of Ucp1 and Heme Oxygenase 1 (Hmox1), the principal Nrf2 target gene, suggesting the functional interaction of Nrf2 with β3-AR signaling. The activation of Nrf2 by tert-butylhydroquinone and reactive oxygen species (ROS) production by glucose oxidase induced both Ucp1 and Hmox1 expression. The increased expression of Ucp1 and Hmox1 was significantly reduced in the presence of a Nrf2 chemical inhibitor or in Nrf2-deleted (knockout) adipocytes. Furthermore, Nrf2 directly activated the Ucp1 promoter, and this required DNA regions located at −3.7 and −2.0 kb of the transcription start site. The CL316,243-induced Ucp1 expression in adipocytes and oxygen consumption in obese mice were partly compromised in the absence of Nrf2 expression. These data provide additional insight into the role of Nrf2 in β3-AR-mediated Ucp1 expression and energy expenditure, further highlighting the utility of Nrf2-mediated thermogenic stimulation as a therapeutic approach to diet-induced obesity.
Collapse
Affiliation(s)
- Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Suwon 16419, Korea
| | - Jaeyool Jang
- Department of Food Science and Biotechnology, Suwon 16419, Korea
| | - Seungjun Oh
- Department of Food Science and Biotechnology, Suwon 16419, Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Suwon 16419, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Ui Jeong Yun
- Department of Food Science and Biotechnology, Suwon 16419, Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Suwon 16419, Korea
| |
Collapse
|
20
|
Wang B, Tsakiridis EE, Zhang S, Llanos A, Desjardins EM, Yabut JM, Green AE, Day EA, Smith BK, Lally JSV, Wu J, Raphenya AR, Srinivasan KA, McArthur AG, Kajimura S, Patel JS, Wade MG, Morrison KM, Holloway AC, Steinberg GR. The pesticide chlorpyrifos promotes obesity by inhibiting diet-induced thermogenesis in brown adipose tissue. Nat Commun 2021; 12:5163. [PMID: 34453052 PMCID: PMC8397754 DOI: 10.1038/s41467-021-25384-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/02/2021] [Indexed: 01/01/2023] Open
Abstract
Obesity results from a caloric imbalance between energy intake, absorption and expenditure. In both rodents and humans, diet-induced thermogenesis contributes to energy expenditure and involves the activation of brown adipose tissue (BAT). We hypothesize that environmental toxicants commonly used as food additives or pesticides might reduce BAT thermogenesis through suppression of uncoupling protein 1 (UCP1) and this may contribute to the development of obesity. Using a step-wise screening approach, we discover that the organophosphate insecticide chlorpyrifos suppresses UCP1 and mitochondrial respiration in BAT at concentrations as low as 1 pM. In mice housed at thermoneutrality and fed a high-fat diet, chlorpyrifos impairs BAT mitochondrial function and diet-induced thermogenesis, promoting greater obesity, non-alcoholic fatty liver disease (NAFLD) and insulin resistance. This is associated with reductions in cAMP; activation of p38MAPK and AMPK; protein kinases critical for maintaining UCP1 and mitophagy, respectively in BAT. These data indicate that the commonly used pesticide chlorpyrifos, suppresses diet-induced thermogenesis and the activation of BAT, suggesting its use may contribute to the obesity epidemic.
Collapse
Affiliation(s)
- Bo Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Evangelia E Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Shuman Zhang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Andrea Llanos
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Eric M Desjardins
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Julian M Yabut
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alexander E Green
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Emily A Day
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Brennan K Smith
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - James S V Lally
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jianhan Wu
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amogelang R Raphenya
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Krishna A Srinivasan
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andrew G McArthur
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Shingo Kajimura
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Michael G Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
21
|
Sun W, Luo Y, Zhang F, Tang S, Zhu T. Involvement of TRP Channels in Adipocyte Thermogenesis: An Update. Front Cell Dev Biol 2021; 9:686173. [PMID: 34249940 PMCID: PMC8264417 DOI: 10.3389/fcell.2021.686173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 01/27/2023] Open
Abstract
Obesity prevalence became a severe global health problem and it is caused by an imbalance between energy intake and expenditure. Brown adipose tissue (BAT) is a major site of mammalian non-shivering thermogenesis or energy dissipation. Thus, modulation of BAT thermogenesis might be a promising application for body weight control and obesity prevention. TRP channels are non-selective calcium-permeable cation channels mainly located on the plasma membrane. As a research focus, TRP channels have been reported to be involved in the thermogenesis of adipose tissue, energy metabolism and body weight regulation. In this review, we will summarize and update the recent progress of the pathological/physiological involvement of TRP channels in adipocyte thermogenesis. Moreover, we will discuss the potential of TRP channels as future therapeutic targets for preventing and combating human obesity and related-metabolic disorders.
Collapse
Affiliation(s)
- Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yixuan Luo
- Department of Cardiovascular Surgery, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Fei Zhang
- Department of Cardiovascular Surgery, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shuo Tang
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tao Zhu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Cohen P, Kajimura S. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol 2021; 22:393-409. [PMID: 33758402 PMCID: PMC8159882 DOI: 10.1038/s41580-021-00350-0] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 02/01/2023]
Abstract
Brown and beige adipocytes are mitochondria-enriched cells capable of dissipating energy in the form of heat. These thermogenic fat cells were originally considered to function solely in heat generation through the action of the mitochondrial protein uncoupling protein 1 (UCP1). In recent years, significant advances have been made in our understanding of the ontogeny, bioenergetics and physiological functions of thermogenic fat. Distinct subtypes of thermogenic adipocytes have been identified with unique developmental origins, which have been increasingly dissected in cellular and molecular detail. Moreover, several UCP1-independent thermogenic mechanisms have been described, expanding the role of these cells in energy homeostasis. Recent studies have also delineated roles for these cells beyond the regulation of thermogenesis, including as dynamic secretory cells and as a metabolic sink. This Review presents our current understanding of thermogenic adipocytes with an emphasis on their development, biological functions and roles in systemic physiology.
Collapse
Affiliation(s)
- Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Cell and Tissue Biology, UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Bové M, Monto F, Guillem-Llobat P, Ivorra MD, Noguera MA, Zambrano A, Sirerol-Piquer MS, Requena AC, García-Alonso M, Tejerina T, Real JT, Fariñas I, D’Ocon P. NT3/TrkC Pathway Modulates the Expression of UCP-1 and Adipocyte Size in Human and Rodent Adipose Tissue. Front Endocrinol (Lausanne) 2021; 12:630097. [PMID: 33815288 PMCID: PMC8015941 DOI: 10.3389/fendo.2021.630097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Neurotrophin-3 (NT3), through activation of its tropomyosin-related kinase receptor C (TrkC), modulates neuronal survival and neural stem cell differentiation. It is widely distributed in peripheral tissues (especially vessels and pancreas) and this ubiquitous pattern suggests a role for NT3, outside the nervous system and related to metabolic functions. The presence of the NT3/TrkC pathway in the adipose tissue (AT) has never been investigated. Present work studies in human and murine adipose tissue (AT) the presence of elements of the NT3/TrkC pathway and its role on lipolysis and adipocyte differentiation. qRT-PCR and immunoblot indicate that NT3 (encoded by NTF3) was present in human retroperitoneal AT and decreases with age. NT3 was also present in rat isolated adipocytes and retroperitoneal, interscapular, perivascular, and perirenal AT. Histological analysis evidences that NT3 was mainly present in vessels irrigating AT close associated to sympathetic fibers. Similar mRNA levels of TrkC (encoded by NTRK3) and β-adrenoceptors were found in all ATs assayed and in isolated adipocytes. NT3, through TrkC activation, exert a mild effect in lipolysis. Addition of NT3 during the differentiation process of human pre-adipocytes resulted in smaller adipocytes and increased uncoupling protein-1 (UCP-1) without changes in β-adrenoceptors. Similarly, transgenic mice with reduced expression of NT3 (Ntf3 knock-in lacZ reporter mice) or lacking endothelial NT3 expression (Ntf3flox1/flox2;Tie2-Cre+/0) displayed enlarged white and brown adipocytes and lower UCP-1 expression. Conclusions NT3, mainly released by blood vessels, activates TrkC and regulates adipocyte differentiation and browning. Disruption of NT3/TrkC signaling conducts to hypertrophied white and brown adipocytes with reduced expression of the thermogenesis marker UCP-1.
Collapse
Affiliation(s)
- María Bové
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Fermi Monto
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Paloma Guillem-Llobat
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - M Dolores Ivorra
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - M Antonia Noguera
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Andrea Zambrano
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - M Salome Sirerol-Piquer
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- CIBER en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ana Cristina Requena
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
| | - Mauricio García-Alonso
- Servicio de Cirugía General y Aparato Digestivo, Hospital Clínico San Carlos, Madrid, Spain
| | - Teresa Tejerina
- Servicio de Cirugía General y Aparato Digestivo, Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - José T. Real
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario e INCLIVA, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Isabel Fariñas
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- CIBER en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pilar D’Ocon
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| |
Collapse
|
24
|
Liu YL, Zhou ZY, Gao M, Ji G, Huang C, Fan SJ. Therapeutic effects of herbal formula Huangqisan on metabolic disorders via SREBF1, SCD1 and AMPK signaling pathway. JOURNAL OF INTEGRATIVE MEDICINE 2021; 19:167-176. [PMID: 33279449 DOI: 10.1016/j.joim.2020.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Metabolic syndrome is a complex medical condition that has become an alarming epidemic, but an effective therapy for this disease is still lacking. The use of the herbal formula Huangqisan (HQS) to treat diabetes is documented in the Chinese medical literature as early as 1117 A.D.; however, its therapeutic effects and underlying mechanisms remain elusive. METHODS To investigate the beneficial effects of HQS on metabolic disorders, high-fat diet-induced obesity (DIO), leptin receptor dysfunction (db/db) and low-density lipoprotein receptor-knockout (LDLR-/-) mice were used. Obese mice were treated with either HQS or vehicle. Blood, liver tissue, white fat tissue and brown adipose tissue were harvested at the end of the treatment. Metabolic disease-related parameters were evaluated to test effects of HQS against diabetes, obesity and hyperlipidemia. Aortic arches from LDLR-/- mice were analyzed to investigate the effects of HQS on atherosclerosis. RNA-sequence, quantitative real-time polymerase chain reaction and Western blot were performed to investigate the mechanisms of HQS against metabolic disorder. RESULTS HQS lowered body weight, fasting blood glucose and serum lipid levels and improved glucose tolerance and insulin sensitivity in DIO mice and db/db mice (P < 0.05). HQS also blocked atherosclerotic plaque formation in LDLR-/- mice. HQS suppressed de novo lipid synthesis by reducing the expression of messenger RNA for sterol regulatory element-binding factor 1, stearyl coenzyme A desaturase 1 and fatty acid synthase, and enhancing adenosine 5'-monophosphate-activated protein kinase signaling in both in vivo and in vitro experiments, indicating potential mechanisms for HQS's activity against diabetes. CONCLUSION HQS is effective for reversing metabolic disorder and has the potential to be used as therapy for metabolic syndrome.
Collapse
Affiliation(s)
- Ya-Lei Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhen-Yu Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; College of Pharmacy, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sheng-Jie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
25
|
Santhanam P, Rowe SP, Solnes LB, Quainoo B, Ahima RS. A systematic review of imaging studies of human brown adipose tissue. Ann N Y Acad Sci 2021; 1495:5-23. [PMID: 33604891 DOI: 10.1111/nyas.14579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023]
Abstract
Brown adipose tissue (BAT) is involved in energy dissipation and has been linked to weight loss, insulin sensitivity, and reduced risk of atherosclerotic disease. BAT is found most often in the supraclavicular region, as well as mediastinal and paravertebral areas, and it is predominantly seen in young persons. BAT is activated by cold temperature and the sympathetic nervous system. In humans, BAT was initially detected via 2-deoxy-2-[18 F]fluoro-d-glucose (FDG) positron emission tomography/computed tomography (PET/CT), a high-resolution molecular imaging modality used to identify and stage malignancies. Recent studies have shown that BAT can be localized using conventional imaging modalities, such as CT or magnetic resonance imaging, as well as radiotracers used for single-photon emission CT. In this systematic review, we have summarized the evidence for BAT detection in humans using various imaging techniques.
Collapse
Affiliation(s)
- Prasanna Santhanam
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Asthma and Allergy Center, Baltimore, Maryland
| | - Steven P Rowe
- Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lilja B Solnes
- Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brittany Quainoo
- Columbian College of Arts and Sciences, George Washington University, Washington, DC
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Asthma and Allergy Center, Baltimore, Maryland
| |
Collapse
|
26
|
Galmés S, Palou A, Serra F. Increased Risk of High Body Fat and Altered Lipid Metabolism Associated to Suboptimal Consumption of Vitamin A Is Modulated by Genetic Variants rs5888 ( SCARB1), rs1800629 ( UCP1) and rs659366 ( UCP2). Nutrients 2020; 12:E2588. [PMID: 32858880 PMCID: PMC7551832 DOI: 10.3390/nu12092588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023] Open
Abstract
Obesity is characterized by an excessive body fat percentage (BF%). Animal and cell studies have shown benefits of vitamin A (VA) on BF% and lipid metabolism, but it is still controversial in humans. Furthermore, although some genetic variants may explain heterogeneity in VA plasma levels, their role in VA metabolic response is still scarcely characterized. This study was designed as a combination of an observational study involving 158 male subjects followed by a study with a well-balanced genotype-phenotype protocol, including in the design an ex vivo intervention study performed on isolated peripheral blood mononuclear cells (PBMCs) of the 41 former males. This is a strategy to accurately identify the delivery of Precision Nutrition recommendations to targeted subjects. The study assesses the influence of rs5888 (SCARB1), rs659366 (UCP2), and rs1800629 (UCP1) variants on higher BF% associated with suboptimal VA consumption and underlines the cellular mechanisms involved by analyzing basal and retinoic acid (RA) response on PBMC gene expression. Data show that male carriers with the major allele combinations and following suboptimal-VA diet show higher BF% (adjusted ANOVA test p-value = 0.006). Genotype-BF% interaction is observed on oxidative/inflammatory gene expression and also influences lipid related gene expression in response to RA. Data indicate that under suboptimal consumption of VA, carriers of VA responsive variants and with high-BF% show a gene expression profile consistent with an impaired basal metabolic state. The results show the relevance of consuming VA within the required amounts, its impact on metabolism and energy balance, and consequently, on men's adiposity with a clear influence of genetic variants SCARB1, UCP2 and UCP1.
Collapse
Affiliation(s)
- Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology, NUO Group, Universitat de les Illes Balears, 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- Alimentómica S.L., Spin-off n.1 of the University of the Balearic Islands, 07121 Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, NUO Group, Universitat de les Illes Balears, 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology, NUO Group, Universitat de les Illes Balears, 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- Alimentómica S.L., Spin-off n.1 of the University of the Balearic Islands, 07121 Palma, Spain
| |
Collapse
|
27
|
Relationships between plasma lipidomic profiles and brown adipose tissue density in humans. Int J Obes (Lond) 2020; 44:1387-1396. [PMID: 32127643 PMCID: PMC7260127 DOI: 10.1038/s41366-020-0558-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/29/2020] [Accepted: 02/21/2020] [Indexed: 01/20/2023]
Abstract
Background/objectives The thermogenic function of brown adipose tissue (BAT) is generally activated in winter and tightly regulated through various metabolic processes. However, the mechanisms mediating these changes have not been elucidated in humans. Here, we investigated the relationships between BAT density (BAT-d) and lipid metabolites in plasma from men and women in the winter and summer. Subjects/methods In total, 92 plasma samples were obtained from 23 men and 23 women, aged 21–55 years, on two different occasions (summer and winter). Lipid metabolites were comprehensively quantified using liquid chromatography-time-of-flight-mass spectrometry. BAT-d was evaluated by measuring total hemoglobin concentrations in the supraclavicular region using near-infrared time-resolved spectroscopy. Anthropometric parameters, such as the percentage of whole body fat and visceral fat area (VFA), were evaluated. Factors influencing BAT-d were investigated by univariate and multivariate regression analyses. Results A variety of metabolite peaks, such as glycerophospholipids (168 peaks), steroids and derivatives (78 peaks), fatty acyls (62 peaks), and glycerolipids (31 peaks), were detected. Univariate regression analysis, corrected by false discovery rate to yield Q values, revealed significant correlations in BAT-d and phosphatidylethanolamine (PE(46:2), r = 0.62, Q = 4.9 × 10−2) in the summer, androgens (r = 0.75, Q = 7.0 × 10−3) in the winter, and diacylglycerol (DG(36:1), r = −0.68, Q = 4.9 × 10−2) in the summer in men, but not in women. Multivariate regression analysis in the winter revealed a significant correlation between BAT-d and plasma androgens (P = 5.3 × 10−5) in men and between BAT-d and VFA (P = 2.2 × 10−3) in women. Conclusions Certain lipids in plasma showed unique correlations with BAT-d depending on sex and season. BAT-d showed a specific correlation with plasma androgens in men in the winter.
Collapse
|
28
|
Saito M, Matsushita M, Yoneshiro T, Okamatsu-Ogura Y. Brown Adipose Tissue, Diet-Induced Thermogenesis, and Thermogenic Food Ingredients: From Mice to Men. Front Endocrinol (Lausanne) 2020; 11:222. [PMID: 32373072 PMCID: PMC7186310 DOI: 10.3389/fendo.2020.00222] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022] Open
Abstract
Since the recent rediscovery of brown adipose tissue (BAT) in adult humans, this thermogenic tissue has been attracting increasing interest. The inverse relationship between BAT activity and body fatness suggests that BAT, because of its energy dissipating activity, is protective against body fat accumulation. Cold exposure activates and recruits BAT, resulting in increased energy expenditure and decreased body fatness. The stimulatory effects of cold exposure are mediated through transient receptor potential (TRP) channels and the sympathetic nervous system (SNS). Most TRP members also function as chemesthetic receptors for various food ingredients, and indeed, agonists of TRP vanilloid 1 such as capsaicin and its analog capsinoids mimic the effects of cold exposure to decrease body fatness through the activation and recruitment of BAT. The antiobesity effect of other food ingredients including tea catechins may be attributable, at least in part, to the activation of the TRP-SNS-BAT axis. BAT is also involved in the facultative thermogenesis induced by meal intake, referred to as diet-induced thermogenesis (DIT), which is a significant component of the total energy expenditure in our daily lives. Emerging evidence suggests a crucial role for the SNS in BAT-associated DIT, particularly during the early phase, but several gut-derived humoral factors may also participate in meal-induced BAT activation. One intriguing factor is bile acids, which activate BAT directly through Takeda G-protein receptor 5 (TGR5) in brown adipocytes. Given the apparent beneficial effects of some TRP agonists and bile acids on whole-body substrate and energy metabolism, the TRP/TGR5-BAT axis represents a promising target for combating obesity and related metabolic disorders in humans.
Collapse
Affiliation(s)
- Masayuki Saito
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- *Correspondence: Masayuki Saito
| | | | - Takeshi Yoneshiro
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
29
|
Nakayama K, Inaba Y. Genetic variants influencing obesity-related traits in Japanese population. Ann Hum Biol 2019; 46:298-304. [PMID: 31307227 DOI: 10.1080/03014460.2019.1644373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Context: Adipose tissue is the main organ that stores energy and participates in adaptive thermogenesis of the human body. The adipose tissue content in an individual is determined by a combination of genetic factors and lifestyle related factors. While Japanese people, along with the closely related East Asians, are generally thinner than individuals of European ancestry, they are prone to accumulating visceral adipose tissues. Genome-wide discovery of loci influencing obesity-related traits, and application of the genome sequence data to assess natural selection, provides evidence that the obesity-related traits in East Asians might be shaped by natural selection. Objective: This review aims to summarise health and evolutionary implications of genetic variants influencing obesity-related traits in Japanese. Methods: This study gathered recently published papers of medical, genetic and evolutionary studies regarding obesity-related traits in the Japanese and closely related East Asians. Results and conclusion: A high susceptibility to central obesity of Japanese and closely related East Asians might have been shaped by natural selection favouring thrifty genotypes. Moreover, natural selection favouring higher thermogenic activity of brown adipose tissues would contribute to increased non-thrifty alleles in ancestors of East Asians.
Collapse
Affiliation(s)
- Kazuhiro Nakayama
- Laboratory of Evolutionary Anthropology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo , Chiba , Japan
| | - Yuta Inaba
- Laboratory of Evolutionary Anthropology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo , Chiba , Japan
| |
Collapse
|
30
|
Oka M, Kobayashi N, Matsumura K, Nishio M, Saeki K. Exogenous Cytokine-Free Differentiation of Human Pluripotent Stem Cells into Classical Brown Adipocytes. Cells 2019; 8:cells8040373. [PMID: 31022954 PMCID: PMC6523334 DOI: 10.3390/cells8040373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 01/17/2023] Open
Abstract
We previously established a method for a directed differentiation of human pluripotent stem cells into classical brown adipocytes (BA) by forming aggregates via massive floating culture in the presence of a specific cytokine cocktail. However, use of recombinant cytokines requires significant cost. Moreover, an enforced differentiation by exogenously added cytokines may amend skewed differentiation propensity of patient’s pluripotent stem cells, providing unsatisfactory disease models. Therefore, an exogenous cytokine-free method, where cytokines required for differentiation are provided in an auto/paracrine manner mimicking natural developmental process, is beneficial. Here we show that, if human pluripotent stem cells are cultured as size-controlled spheroids (100–120 µm radius, 2000–2500 cells/spheroid) in a mutually segregated manner with half-change of the medium every other day, they differentiate into classical BA via an authentic MYF5-positive myoblast route in the absence of exogenous cytokines. Differentiated BA exerted thermogenic activity in transplanted mice in response to beta-adrenergic receptor agonist stimuli. The cytokine-free differentiation method has further advantages in exploring BATokines, BA-derived physiologically active substances. Indeed, we have found that BA produces an unknown small (<1000 Da), highly hydrophilic molecule that augments insulin secretion from pancreatic beta cells. Our upgraded technique will contribute to an advancement of stem cell study for diverse purposes.
Collapse
Affiliation(s)
- Masako Oka
- Department of Disease Control, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan.
| | - Norihiko Kobayashi
- Department of Disease Control, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan.
| | - Kazunori Matsumura
- Department of Disease Control, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan.
| | - Miwako Nishio
- Department of Disease Control, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan.
| | - Kumiko Saeki
- Department of Disease Control, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan.
| |
Collapse
|
31
|
Sarapio E, Souza SK, Vogt EL, Rocha DS, Fabres RB, Trapp M, Da Silva RSM. Effects of stanniocalcin hormones on rat brown adipose tissue metabolism under fed and fasted conditions. Mol Cell Endocrinol 2019; 485:81-87. [PMID: 30738951 DOI: 10.1016/j.mce.2019.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
In this study we determined the effect of fed and fasting (48 h) states on the expression of stanniocalcin-1 (Stc1) and stanniocalcin-2 (Stc2) in rat brown adipose tissue (BAT), as well as the in vitro effects of human stanniocalcin 1 and 2 (hSTC-1 and hSTC-2) hormones on lipid and glucose metabolism. In addition, lactate, glycogen levels and hexokinase (HK) activity were determined. In fasting Stc2 expression increased markedly. The targets of action of hSTC-1 and hSTC-2 were glucose uptake and oxidation as well as glycogen storage, controlling the energetic metabolism in BAT. The reduction in glycogen concentration induced by hSTC-2 in fed state might have deleterious consequences in BAT, such as decreased thermogenic activity, FA esterification and other adipocyte functions. On the other hand, the increase of glucose uptake caused by hSTC-1 of fed rats could play a role as a plasma glucose-clearing hormone in the postprandial period.
Collapse
Affiliation(s)
- Elaine Sarapio
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Samir Khal Souza
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Everton Lopes Vogt
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Débora Santos Rocha
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Bandeira Fabres
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcia Trapp
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roselis S M Da Silva
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
32
|
Richard MA, Blondin DP, Noll C, Lebel R, Lepage M, Carpentier AC. Determination of a pharmacokinetic model for [ 11C]-acetate in brown adipose tissue. EJNMMI Res 2019; 9:31. [PMID: 30919091 PMCID: PMC6437247 DOI: 10.1186/s13550-019-0497-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Background [11C]-acetate positron emission tomography is used to assess oxidative metabolism in various tissues including the heart, tumor, and brown adipose tissue. For brown adipose tissue, a monoexponential decay model is commonly employed. However, no systematic assessment of kinetic models has been performed to validate this model or others. The monoexponential decay model and various compartmental models were applied to data obtained before and during brown adipose tissue activation by cold exposure in healthy men. Quality of fit was assessed visually and by analysis of residuals, including the Akaike information criterion. Stability and accuracy of compartmental models were further assessed through simulations, along with sensitivity and identifiability of kinetic parameters. Results Differences were noted in the arterial input function between the warm and cold conditions. These differences are not taken into account by the monoexponential decay model. They are accounted for by compartmental models, but most models proved too complex to be stable. Two and three-tissue models with no more than four distinct kinetic parameters, including blood volume fraction, provided the best compromise between fit quality and stability/accuracy. Conclusion For healthy men, a three-tissue model with four kinetic parameters, similar to a heart [11C]-palmitate model seems the most appropriate based on model stability and its ability to describe the main [11C]-acetate pathways in BAT cells. Further studies are required to validate this model in women and people with metabolic disorders. Electronic supplementary material The online version of this article (10.1186/s13550-019-0497-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Anne Richard
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Denis P Blondin
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Christophe Noll
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Réjean Lebel
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Martin Lepage
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - André C Carpentier
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| |
Collapse
|
33
|
Chondronikola M, Sidossis LS. Brown and beige fat: From molecules to physiology. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:91-103. [DOI: 10.1016/j.bbalip.2018.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/11/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
|
34
|
Clookey SL, Welly RJ, Zidon TM, Gastecki ML, Woodford ML, Grunewald ZI, Winn NC, Eaton D, Karasseva NG, Sacks HS, Padilla J, Vieira-Potter VJ. Increased susceptibility to OVX-associated metabolic dysfunction in UCP1-null mice. J Endocrinol 2018; 239:107-120. [PMID: 30089681 PMCID: PMC7340174 DOI: 10.1530/joe-18-0139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 01/23/2023]
Abstract
Premenopausal females are protected against adipose tissue inflammation and insulin resistance, until loss of ovarian hormone production (e.g., menopause). There is some evidence that females have greater brown adipose tissue (BAT) thermogenic capacity. Because BAT mass correlates inversely with insulin resistance, we hypothesized that increased uncoupling protein 1 (UCP1) expression contributes to the superior metabolic health of females. Given that UCP1 transiently increases in BAT following ovariectomy (OVX), we hypothesized that UCP1 may 'buffer' OVX-mediated metabolic dysfunction. Accordingly, female UCP1-knockout (KO) and WT mice received OVX or sham (SHM) surgeries at 12 weeks of age creating four groups (n = 10/group), which were followed for 14 weeks and compared for body weight and adiposity, food intake, energy expenditure and spontaneous physical activity (metabolic chambers), insulin resistance (HOMA-IR, ADIPO-IR and glucose tolerance testing) and adipose tissue phenotype (histology, gene and protein expression). Two-way ANOVA was used to assess the main effects of genotype (G), OVX treatment (O) and genotype by treatment (GxO) interactions, which were considered significant when P ≤ 0.05. UCP1KO mice experienced a more adverse metabolic response to OVX than WT. Whereas OVX-induced weight gain was not synergistically greater for KO compared to WT (GxO, NS), OVX-induced insulin resistance was significantly exacerbated in KO compared to WT (GxO for HOMA-IR, P < 0.05). These results suggest UCP1 is protective against metabolic dysfunction associated with loss of ovarian hormones and support the need for more research into therapeutics to selectively target UCP1 for prevention and treatment of metabolic dysfunction following ovarian hormone loss.
Collapse
Affiliation(s)
- Stephanie L. Clookey
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
| | - Rebecca J. Welly
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
| | - Terese M. Zidon
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
| | - Michelle L. Gastecki
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
| | - Makenzie L. Woodford
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
| | - Zachary I. Grunewald
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
| | - Nathan C. Winn
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
| | | | | | - Harold S. Sacks
- Endocrine and Diabetes Division, Veterans Greater Los
Angeles Healthcare System, Los Angeles, CA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
- Dalton Cardiovascular Research Center, University of
Missouri, Columbia, MO
- Department of Child Health, University of Missouri,
Columbia, MO
| | | |
Collapse
|
35
|
Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown Adipose Tissue Energy Metabolism in Humans. Front Endocrinol (Lausanne) 2018; 9:447. [PMID: 30131768 PMCID: PMC6090055 DOI: 10.3389/fendo.2018.00447] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
The demonstration of metabolically active brown adipose tissue (BAT) in humans primarily using positron emission tomography coupled to computed tomography (PET/CT) with the glucose tracer 18-fluorodeoxyglucose (18FDG) has renewed the interest of the scientific and medical community in the possible role of BAT as a target for the prevention and treatment of obesity and type 2 diabetes (T2D). Here, we offer a comprehensive review of BAT energy metabolism in humans. Considerable advances in methods to measure BAT energy metabolism, including nonesterified fatty acids (NEFA), chylomicron-triglycerides (TG), oxygen, Krebs cycle rate, and intracellular TG have led to very good quantification of energy substrate metabolism per volume of active BAT in vivo. These studies have also shown that intracellular TG are likely the primary energy source of BAT upon activation by cold. Current estimates of BAT's contribution to energy expenditure range at the lower end of what would be potentially clinically relevant if chronically sustained. Yet, 18FDG PET/CT remains the gold-standard defining method to quantify total BAT volume of activity, used to calculate BAT's total energy expenditure. Unfortunately, BAT glucose metabolism better reflects BAT's insulin sensitivity and blood flow. It is now clear that most glucose taken up by BAT does not fuel mitochondrial oxidative metabolism and that BAT glucose uptake can therefore be disconnected from thermogenesis. Furthermore, BAT thermogenesis is efficiently recruited upon repeated cold exposure, doubling to tripling its total oxidative capacity, with reciprocal reduction of muscle thermogenesis. Recent data suggest that total BAT volume may be much larger than the typically observed 50-150 ml with 18FDG PET/CT. Therefore, the current estimates of total BAT thermogenesis, largely relying on total BAT volume using 18FDG PET/CT, may underestimate the true contribution of BAT to total energy expenditure. Quantification of the contribution of BAT to energy expenditure begs for the development of more integrated whole body in vivo methods.
Collapse
Affiliation(s)
- André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Kirsi A. Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Éric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
36
|
Recent advances in the detection of brown adipose tissue in adult humans: a review. Clin Sci (Lond) 2018; 132:1039-1054. [PMID: 29802209 DOI: 10.1042/cs20170276] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
The activation of brown adipose tissue (BAT) is associated with reductions in circulating lipids and glucose in rodents and contributes to energy expenditure in humans indicating the potential therapeutic importance of targetting this tissue for the treatment of a variety of metabolic disorders. In order to evaluate the therapeutic potential of human BAT, a variety of methodologies for assessing the volume and metabolic activity of BAT are utilized. Cold exposure is often utilized to increase BAT activity but inconsistencies in the characteristics of the exposure protocols make it challenging to compare findings. The metabolic activity of BAT in response to cold exposure has most commonly been measured by static positron emission tomography of 18F-fluorodeoxyglucose in combination with computed tomography (18F-FDG PET-CT) imaging, but recent studies suggest that under some conditions this may not always reflect BAT thermogenic activity. Therefore, recent studies have used alternative positron emission tomography and computed tomography (PET-CT) imaging strategies and radiotracers that may offer important insights. In addition to PET-CT, there are numerous emerging techniques that may have utility for assessing BAT metabolic activity including magnetic resonance imaging (MRI), skin temperature measurements, near-infrared spectroscopy (NIRS) and contrast ultrasound (CU). In this review, we discuss and critically evaluate the various methodologies used to measure BAT metabolic activity in humans and provide a contemporary assessment of protocols which may be useful in interpreting research findings and guiding the development of future studies.
Collapse
|
37
|
Abstract
Brown fat is emerging as an interesting and promising target for therapeutic intervention in obesity and metabolic disease. Activation of brown fat in humans is associated with marked improvement in metabolic parameters such as levels of free fatty acids and insulin sensitivity. Skeletal muscle is another important organ for thermogenesis, with the capacity to induce energy-consuming futile cycles. In this Review, we focus on how these two major thermogenic organs - brown fat and muscle - act and cooperate to maintain normal body temperature. Moreover, in the light of disease-relevant mechanisms, we explore the molecular pathways that regulate thermogenesis in brown fat and muscle. Brown adipocytes possess a unique cellular mechanism to convert chemical energy into heat: uncoupling protein 1 (UCP1), which can short-circuit the mitochondrial proton gradient. However, recent research demonstrates the existence of several other energy-expending 'futile' cycles in both adipocytes and muscle, such as creatine and calcium cycling. These mechanisms can complement or even substitute for UCP1-mediated thermogenesis. Moreover, they expand our view of cold-induced thermogenesis from a special feature of brown adipocytes to a more general physiological principle. Finally, we discuss how thermogenic mechanisms can be exploited to expend energy and hence offer new therapeutic opportunities.
Collapse
Affiliation(s)
- Matthias J Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Sven Enerbäck
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9A, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
38
|
Nguyen AD, Lee NJ, Wee NKY, Zhang L, Enriquez RF, Khor EC, Nie T, Wu D, Sainsbury A, Baldock PA, Herzog H. Uncoupling protein-1 is protective of bone mass under mild cold stress conditions. Bone 2018; 106:167-178. [PMID: 26055106 DOI: 10.1016/j.bone.2015.05.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/16/2022]
Abstract
Brown adipose tissue (BAT), largely controlled by the sympathetic nervous system (SNS), has the ability to dissipate energy in the form of heat through the actions of uncoupling protein-1 (UCP-1), thereby critically influencing energy expenditure. Besides BAT, the SNS also strongly influences bone, and recent studies have demonstrated a positive correlation between BAT activity and bone mass, albeit the interactions between BAT and bone remain unclear. Here we show that UCP-1 is critical for protecting bone mass in mice under conditions of permanent mild cold stress for this species (22°C). UCP-1-/- mice housed at 22°C showed significantly lower cancellous bone mass, with lower trabecular number and thickness, a lower bone formation rate and mineralising surface, but unaltered osteoclast number, compared to wild type mice housed at the same temperature. UCP-1-/- mice also displayed shorter femurs than wild types, with smaller cortical periosteal and endocortical perimeters. Importantly, these altered bone phenotypes were not observed when UCP-1-/- and wild type mice were housed in thermo-neutral conditions (29°C), indicating a UCP-1 dependent support of bone mass and bone formation at the lower temperature. Furthermore, at 22°C UCP-1-/- mice showed elevated hypothalamic expression of neuropeptide Y (NPY) relative to wild type, which is consistent with the lower bone formation and mass of UCP-1-/- mice at 22°C caused by the catabolic effects of hypothalamic NPY-induced SNS modulation. The results from this study suggest that during mild cold stress, when BAT-dependent thermogenesis is required, UCP-1 activity exerts a protective effect on bone mass possibly through alterations in central NPY pathways known to regulate SNS activity.
Collapse
Affiliation(s)
- Amy D Nguyen
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Nicola J Lee
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Natalie K Y Wee
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Ronaldo F Enriquez
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Ee Cheng Khor
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Tao Nie
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510663, China
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510663, China
| | - Amanda Sainsbury
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul A Baldock
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of NSW, Kensington, Sydney, NSW 2052, Australia.
| |
Collapse
|
39
|
Jankovic A, Otasevic V, Stancic A, Buzadzic B, Korac A, Korac B. Physiological regulation and metabolic role of browning in white adipose tissue. Horm Mol Biol Clin Investig 2017; 31:hmbci-2017-0034. [PMID: 28862984 DOI: 10.1515/hmbci-2017-0034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/24/2017] [Indexed: 04/25/2024]
Abstract
Great progress has been made in our understanding of the browning process in white adipose tissue (WAT) in rodents. The recognition that i) adult humans have physiologically inducible brown adipose tissue (BAT) that may facilitate resistance to obesity and ii) that adult human BAT molecularly and functionally resembles beige adipose tissue in rodents, reignited optimism that obesity and obesity-related diabetes type 2 can be battled by controlling the browning of WAT. In this review the main cellular mechanisms and molecular mediators of browning of WAT in different physiological states are summarized. The relevance of browning of WAT in metabolic health is considered primarily through a modulation of biological role of fat tissue in overall metabolic homeostasis.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, Belgrade, Serbia
| | - Bato Korac
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia, Phone: (381-11)-2078-307, Fax: (381-11)-2761-433
| |
Collapse
|
40
|
Scheele C, Nielsen S. Metabolic regulation and the anti-obesity perspectives of human brown fat. Redox Biol 2017; 12:770-775. [PMID: 28431377 PMCID: PMC5397125 DOI: 10.1016/j.redox.2017.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/08/2017] [Indexed: 12/02/2022] Open
Abstract
Activation of brown adipose tissue (BAT) in adult humans increase glucose and fatty acid clearance as well as resting metabolic rate, whereas a prolonged elevation of BAT activity improves insulin sensitivity. However, substantial reductions in body weight following BAT activation has not yet been shown in humans. This observation raise the possibility for feedback mechanisms in adult humans in terms of a brown fat-brain crosstalk, possibly mediated by batokines, factors produced by and secreted from brown fat. Batokines also seems to be involved in BAT recruitment by stimulating proliferation and differentiation of brown fat progenitors. Increasing human BAT capacity could thus include inducing brown fat biogenesis as well as identifying novel batokines. Another attractive approach would be to induce a brown fat phenotype, the so-called brite or beige fat, within the white fat depots. In adult humans, white fat tissue transformation into beige has been observed in patients with pheochromocytoma, a norepinephrine-producing tumor. Interestingly, human beige fat is predominantly induced in regions that were BAT during early childhood, possibly reflecting that a presence of human beige progenitors is depot specific and originating from BAT. In conclusion, to utilize the anti-obesity potential of human BAT focus should be directed towards identifying novel regulators of brown and beige fat progenitor cells, as well as feedback mechanisms of BAT activation. This would allow for identification of novel anti-obesity targets.
Collapse
Affiliation(s)
- Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Denmark.
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Denmark
| |
Collapse
|
41
|
Mitochondria and mitochondria-induced signalling molecules as longevity determinants. Mech Ageing Dev 2017; 165:115-128. [DOI: 10.1016/j.mad.2016.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
|
42
|
|
43
|
Bonet ML, Mercader J, Palou A. A nutritional perspective on UCP1-dependent thermogenesis. Biochimie 2017; 134:99-117. [DOI: 10.1016/j.biochi.2016.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022]
|
44
|
Soccio RE, Li Z, Chen ER, Foong YH, Benson KK, Dispirito JR, Mullican SE, Emmett MJ, Briggs ER, Peed LC, Dzeng RK, Medina CJ, Jolivert JF, Kissig M, Rajapurkar SR, Damle M, Lim HW, Won KJ, Seale P, Steger DJ, Lazar MA. Targeting PPARγ in the epigenome rescues genetic metabolic defects in mice. J Clin Invest 2017; 127:1451-1462. [PMID: 28240605 DOI: 10.1172/jci91211] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/30/2016] [Indexed: 01/08/2023] Open
Abstract
Obesity causes insulin resistance, and PPARγ ligands such as rosiglitazone are insulin sensitizing, yet the mechanisms remain unclear. In C57BL/6 (B6) mice, obesity induced by a high-fat diet (HFD) has major effects on visceral epididymal adipose tissue (eWAT). Here, we report that HFD-induced obesity in B6 mice also altered the activity of gene regulatory elements and genome-wide occupancy of PPARγ. Rosiglitazone treatment restored insulin sensitivity in obese B6 mice, yet, surprisingly, had little effect on gene expression in eWAT. However, in subcutaneous inguinal fat (iWAT), rosiglitazone markedly induced molecular signatures of brown fat, including the key thermogenic gene Ucp1. Obesity-resistant 129S1/SvImJ mice (129 mice) displayed iWAT browning, even in the absence of rosiglitazone. The 129 Ucp1 locus had increased PPARγ binding and gene expression that were preserved in the iWAT of B6x129 F1-intercrossed mice, with an imbalance favoring the 129-derived alleles, demonstrating a cis-acting genetic difference. Thus, B6 mice have genetically defective Ucp1 expression in iWAT. However, when Ucp1 was activated by rosiglitazone, or by iWAT browning in cold-exposed or young mice, expression of the B6 version of Ucp1 was no longer defective relative to the 129 version, indicating epigenomic rescue. These results provide a framework for understanding how environmental influences like drugs can affect the epigenome and potentially rescue genetically determined disease phenotypes.
Collapse
|
45
|
Common and distinct regulation of human and mouse brown and beige adipose tissues: a promising therapeutic target for obesity. Protein Cell 2017; 8:446-454. [PMID: 28220393 PMCID: PMC5445025 DOI: 10.1007/s13238-017-0378-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/26/2017] [Indexed: 01/03/2023] Open
Abstract
Obesity, which underlies various metabolic and cardiovascular diseases, is a growing public health challenge for which established therapies are inadequate. Given the current obesity epidemic, there is a pressing need for more novel therapeutic strategies that will help adult individuals to manage their weight. One promising therapeutic intervention for reducing obesity is to enhance energy expenditure. Investigations into human brown fat and the recently discovered beige/brite fat have galvanized intense research efforts during the past decade because of their pivotal roles in energy dissipation. In this review, we summarize the evolution of human brown adipose tissue (hBAT) research and discuss new in vivo methodologies for evaluating energy expenditure in patients. We highlight the differences between human and mouse BAT by integrating and comparing their cellular morphology, function, and gene expression profiles. Although great advances in hBAT biology have been achieved in the past decade, more cellular models are needed to acquire a better understanding of adipose-specific processes and molecular mechanisms. Thus, this review also describes the development of a human brown fat cell line, which could provide promising mechanistic insights into hBAT function, signal transduction, and development. Finally, we focus on the therapeutic potential and current limitations of hBAT as an anti-glycemic, anti-lipidemic, and weight loss-inducing ‘metabolic panacea’.
Collapse
|
46
|
Nakayama K, Iwamoto S. An adaptive variant of TRIB2, rs1057001, is associated with higher expression levels of thermogenic genes in human subcutaneous and visceral adipose tissues. J Physiol Anthropol 2017; 36:16. [PMID: 28212671 PMCID: PMC5316227 DOI: 10.1186/s40101-017-0132-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/13/2017] [Indexed: 02/02/2023] Open
Abstract
Background An obesity-related single-nucleotide polymorphism (SNP) of the Tribbles pseudokinase 2 gene (TRIB2) was shown to have underwent adaptive evolution in the last glacial period, suggesting a selective advantage of this SNP in human populations in cold environments. In order to verify this hypothesis, the effect of the TRIB2 SNP on the expression of genes involved in adaptive thermogenesis was tested using messenger RNAs prepared from adipose tissues of Japanese adults. Methods Complementary DNA was prepared from subcutaneous adipose tissues (SAT) and visceral adipose tissues (VAT) obtained from 48 Japanese adults. Transcript levels of 15 selected genes, including five genes that are upregulated in development of thermogenic adipocytes, were measured by using real-time polymerase chain reaction. Differences in transcript levels between the TRIB2 SNP genotype groups (AA genotype versus AT + TT genotype) were assessed using t test. Results Of the five thermogenic genes, DIO2, CIDEA, PPARGC1A, and PRDM16 showed significantly higher transcript levels in SAT of individuals with the AA genotype relative to those with the AT + TT genotype (P < 0.05). However, only 2 out of the 10 non-thermogenic genes exhibited differences in transcript levels according to genotype. Additionally, in silico prediction indicated that this SNP likely affects the expression of nearby genes including TRIB2. Conclusion The higher expression levels of thermogenic genes in individuals homozygous for the adaptive variant of TRIB2 SNP suggest a greater propensity for induction of thermogenesis in adipose tissues in cold environments.
Collapse
Affiliation(s)
- Kazuhiro Nakayama
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, 329-0498, Japan.
| | - Sadahiko Iwamoto
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, 329-0498, Japan
| |
Collapse
|
47
|
Reduction of HbA1c levels by fucoxanthin-enriched akamoku oil possibly involves the thrifty allele of uncoupling protein 1 ( UCP1): a randomised controlled trial in normal-weight and obese Japanese adults. J Nutr Sci 2017; 6:e5. [PMID: 28620480 PMCID: PMC5465861 DOI: 10.1017/jns.2017.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/03/2017] [Indexed: 11/18/2022] Open
Abstract
Lifestyle-related problems are becoming a major health threat in East Asian countries. Therefore, finding an efficacious nutraceutical for this population is important. One candidate is fucoxanthin (Fx), a carotenoid abundantly found in edible brown seaweed that has been associated with a number of valuable health-promoting benefits. Unfortunately, clinical studies of Fx are limited. In the present study, we aimed to evaluate the effects of Fx on obesity-related parameters in Japanese subjects harbouring an SNP associated with lifestyle-related problems. In all, sixty normal-weight and obese Japanese adults with BMI over 22 kg/m2 were single-blinded and randomly assigned to three Fx-dose cohorts and administered Fx-enriched akamoku oil containing Fx at 0, 1 or 2 mg/d for 8 weeks (n 20 per group). Parameters relating to obesity and serum Fx metabolites were measured before and after intervention, but no significant differences were observed between and within the groups. Despite no changes in visceral fat areas and resting energy expenditures after intervention, we observed a significant decline in HbA1c levels in the 2 mg/d Fx group compared with that in the 0 mg/d group (P < 0·05), which was correlated with an increase in serum fucoxanthinol (Fx metabolite) levels. In addition, HbA1c levels declined more significantly in subjects with G/G alleles of the uncoupling protein 1 (UCP1) gene than in those with the A/A and A/G alleles (P < 0·05). We conclude that although Fx supplementation does not affect visceral fat areas, it may reduce HbA1c levels in those harbouring the thrifty allele of UCP1-3826A/G.
Collapse
|
48
|
Villarroya F, Peyrou M, Giralt M. Transcriptional regulation of the uncoupling protein-1 gene. Biochimie 2016; 134:86-92. [PMID: 27693079 DOI: 10.1016/j.biochi.2016.09.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/25/2016] [Indexed: 02/08/2023]
Abstract
Regulated transcription of the uncoupling protein-1 (UCP1) gene, and subsequent UCP1 protein synthesis, is a hallmark of the acquisition of the differentiated, thermogenically competent status of brown and beige/brite adipocytes, as well as of the responsiveness of brown and beige/brite adipocytes to adaptive regulation of thermogenic activity. The 5' non-coding region of the UCP1 gene contains regulatory elements that confer tissue specificity, differentiation dependence, and neuro-hormonal regulation to UCP1 gene transcription. Two main regions-a distal enhancer and a proximal promoter region-mediate transcriptional regulation through interactions with a plethora of transcription factors, including nuclear hormone receptors and cAMP-responsive transcription factors. Co-regulators, such as PGC-1α, play a pivotal role in the concerted regulation of UCP1 gene transcription. Multiple interactions of transcription factors and co-regulators at the promoter region of the UCP1 gene result in local chromatin remodeling, leading to activation and increased accessibility of RNA polymerase II and subsequent gene transcription. Moreover, a commonly occurring A-to-G polymorphism in close proximity to the UCP1 gene enhancer influences the extent of UCP1 gene transcription. Notably, it has been reported that specific aspects of obesity and associated metabolic diseases are associated with human population variability at this site. On another front, the unique properties of the UCP1 promoter region have been exploited to develop brown adipose tissue-specific gene delivery tools for experimental purposes.
Collapse
Affiliation(s)
- Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Catalonia, Spain.
| | - Marion Peyrou
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Catalonia, Spain
| | - Marta Giralt
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Catalonia, Spain
| |
Collapse
|
49
|
Saito M, Yoneshiro T, Matsushita M. Activation and recruitment of brown adipose tissue by cold exposure and food ingredients in humans. Best Pract Res Clin Endocrinol Metab 2016; 30:537-547. [PMID: 27697214 DOI: 10.1016/j.beem.2016.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Since the recent re-discovery of brown adipose tissue (BAT) in adult humans, this thermogenic tissue has attracted increasing interest. The inverse relationship between the BAT activity and body fatness suggests that BAT, because of its energy dissipating activity, is protective against body fat accumulation. Cold exposure activates and recruits BAT in association with increased energy expenditure and decreased body fatness. The stimulatory effects of cold are mediated through transient receptor potential channels (TRP), most of which are also chemesthetic receptors for various food ingredients. In fact, capsaicin and its analog capsinoids, representative agonists of TRPV1, mimic the effects of cold to decrease body fatness through the activation and recruitment of BAT. The anti-obesity effect of some other food ingredients including tea catechins may also be attributable to the activation of the TRP-BAT axis. Thus, BAT is a promising target for combating obesity and related metabolic disorders in humans.
Collapse
Affiliation(s)
- Masayuki Saito
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; Department of Nutrition, Tenshi College, Sapporo 065-0013, Japan.
| | - Takeshi Yoneshiro
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | - Mami Matsushita
- Department of Nutrition, Tenshi College, Sapporo 065-0013, Japan.
| |
Collapse
|
50
|
Hibi M, Oishi S, Matsushita M, Yoneshiro T, Yamaguchi T, Usui C, Yasunaga K, Katsuragi Y, Kubota K, Tanaka S, Saito M. Brown adipose tissue is involved in diet-induced thermogenesis and whole-body fat utilization in healthy humans. Int J Obes (Lond) 2016; 40:1655-1661. [PMID: 27430878 PMCID: PMC5116053 DOI: 10.1038/ijo.2016.124] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/06/2016] [Accepted: 06/23/2016] [Indexed: 12/17/2022]
Abstract
Background/Objectives: Brown adipose tissue (BAT) is a potential therapeutic target against obesity and diabetes through thermogenesis and substrate disposal with cold exposure. The role of BAT in energy metabolism under thermoneutral conditions, however, remains controversial. We assessed the contribution of BAT to energy expenditure (EE), particularly diet-induced thermogenesis (DIT), and substrate utilization in human adults. Methods: In this cross-sectional study, BAT activity was evaluated in 21 men using 18F-fluoro-2-deoxy-D-glucose positron emission tomography combined with computed tomography (18F-FDG-PET/CT) after cold exposure (19 °C). The subjects were divided into BAT-positive (n=13) and BAT-negative (n=8) groups according to the 18F-FDG-PET/CT findings. Twenty-four hour EE, DIT and respiratory quotient were measured using a whole-room indirect calorimeter at 27 °C. Results: Body composition, blood metabolites and 24-h EE did not differ between groups. DIT (%), calculated as DIT divided by total energy intake, however, was significantly higher in the BAT-positive group (BAT-positive: 9.7±2.5%, BAT-negative: 6.5±4.0%, P=0.03). The 24-h respiratory quotient was significantly lower (P=0.03) in the BAT-positive group (0.861±0.027) than in the BAT-negative group (0.889±0.024). Conclusion: DIT and fat utilization were higher in BAT-positive subjects compared to BAT-negative subjects, suggesting that BAT has a physiologic role in energy metabolism.
Collapse
Affiliation(s)
- M Hibi
- Health Care Food Research Laboratories, Kao Corporation, Tokyo, Japan
| | - S Oishi
- Health Care Food Research Laboratories, Kao Corporation, Tokyo, Japan
| | - M Matsushita
- Department of Nutrition, Tenshi College, Sapporo, Japan
| | - T Yoneshiro
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - T Yamaguchi
- Health Care Food Research Laboratories, Kao Corporation, Tokyo, Japan
| | - C Usui
- Department of Nutritional Science, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - K Yasunaga
- Health Care Food Research Laboratories, Kao Corporation, Tokyo, Japan
| | - Y Katsuragi
- Health Care Food Research Laboratories, Kao Corporation, Tokyo, Japan
| | - K Kubota
- Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, Tokyo, Japan
| | - S Tanaka
- Department of Nutritional Science, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - M Saito
- Department of Nutrition, Tenshi College, Sapporo, Japan
| |
Collapse
|