1
|
Moran KM, Delville Y. A hamster model for stress-induced weight gain. Horm Behav 2024; 160:105488. [PMID: 38306877 DOI: 10.1016/j.yhbeh.2024.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
This review addresses the translational relevance of animal models of stress and their effects on body weight. In humans, stress, whether chronic or acute, has often been associated with increased food intake and weight gain. In view of the current obesity epidemic, this phenomenon is especially relevant. Such observations contrast with reports with commonly used laboratory animals, especially rats and mice. In these species, it is common to find individuals gaining less weight under stress, even with potent social stressors. However, there are laboratory species that present increased appetite and weight gain under stress, such as golden hamsters. Furthermore, these animals also include metabolic and behavioral similarities with humans, including hoarding behavior which is also enhanced under stress. Consequently, we propose that our comparative perspective provides useful insights for future research on the development of obesity in humans as a consequence of chronic stress exposure.
Collapse
Affiliation(s)
- Kevin M Moran
- Psychology Department, The University of Texas at Austin, USA.
| | - Yvon Delville
- Psychology Department, The University of Texas at Austin, USA
| |
Collapse
|
2
|
Zhang X, Wang H, Kilpatrick LA, Dong TS, Gee GC, Labus JS, Osadchiy V, Beltran-Sanchez H, Wang MC, Vaughan A, Gupta A. Discrimination exposure impacts unhealthy processing of food cues: crosstalk between the brain and gut. NATURE MENTAL HEALTH 2023; 1:841-852. [PMID: 38094040 PMCID: PMC10718506 DOI: 10.1038/s44220-023-00134-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/28/2023] [Indexed: 12/17/2023]
Abstract
Experiences of discrimination are associated with adverse health outcomes, including obesity. However, the mechanisms by which discrimination leads to obesity remain unclear. Utilizing multi-omics analyses of neuroimaging and fecal metabolites, we investigated the impact of discrimination exposure on brain reactivity to food images and associated dysregulations in the brain-gut-microbiome system. We show that discrimination is associated with increased food-cue reactivity in frontal-striatal regions involved in reward, motivation and executive control; altered glutamate-pathway metabolites involved in oxidative stress and inflammation as well as preference for unhealthy foods. Associations between discrimination-related brain and gut signatures were skewed towards unhealthy sweet foods after adjusting for age, diet, body mass index, race and socioeconomic status. Discrimination, as a stressor, may contribute to enhanced food-cue reactivity and brain-gut-microbiome disruptions that can promote unhealthy eating behaviors, leading to increased risk for obesity. Treatments that normalize these alterations may benefit individuals who experience discrimination-related stress.
Collapse
Affiliation(s)
- Xiaobei Zhang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Hao Wang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou, China
| | - Lisa A. Kilpatrick
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Tien S. Dong
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Goodman–Luskin Microbiome Center, UCLA, Los Angeles, CA, USA
| | - Gilbert C. Gee
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Community Health Sciences Fielding School of Public Health, UCLA, Los Angeles, CA, USA
- California Center for Population Research, UCLA, Los Angeles, CA, USA
| | - Jennifer S. Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Goodman–Luskin Microbiome Center, UCLA, Los Angeles, CA, USA
| | - Vadim Osadchiy
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Urology, UCLA, Los Angeles, CA, USA
| | - Hiram Beltran-Sanchez
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Community Health Sciences Fielding School of Public Health, UCLA, Los Angeles, CA, USA
- California Center for Population Research, UCLA, Los Angeles, CA, USA
| | - May C. Wang
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Community Health Sciences Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Allison Vaughan
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Goodman–Luskin Microbiome Center, UCLA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Kilpatrick LA, Zhang K, Dong TS, Gee GC, Beltran-Sanchez H, Wang M, Labus JS, Naliboff BD, Mayer EA, Gupta A. Mediation of the association between disadvantaged neighborhoods and cortical microstructure by body mass index. COMMUNICATIONS MEDICINE 2023; 3:122. [PMID: 37714947 PMCID: PMC10504354 DOI: 10.1038/s43856-023-00350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Living in a disadvantaged neighborhood is associated with worse health outcomes, including brain health, yet the underlying biological mechanisms are incompletely understood. We investigated the relationship between neighborhood disadvantage and cortical microstructure, assessed as the T1-weighted/T2-weighted ratio (T1w/T2w) on magnetic resonance imaging, and the potential mediating roles of body mass index (BMI) and stress, as well as the relationship between trans-fatty acid intake and cortical microstructure. METHODS Participants comprised 92 adults (27 men; 65 women) who underwent neuroimaging and provided residential address information. Neighborhood disadvantage was assessed as the 2020 California State area deprivation index (ADI). The T1w/T2w ratio was calculated at four cortical ribbon levels (deep, lower-middle, upper-middle, and superficial). Perceived stress and BMI were assessed as potential mediating factors. Dietary data was collected in 81 participants. RESULTS Here, we show that worse ADI is positively correlated with BMI (r = 0.27, p = .01) and perceived stress (r = 0.22, p = .04); decreased T1w/T2w ratio in middle/deep cortex in supramarginal, temporal, and primary motor regions (p < .001); and increased T1w/T2w ratio in superficial cortex in medial prefrontal and cingulate regions (p < .001). Increased BMI partially mediates the relationship between worse ADI and observed T1w/T2w ratio increases (p = .02). Further, trans-fatty acid intake (high in fried fast foods and obesogenic) is correlated with these T1w/T2w ratio increases (p = .03). CONCLUSIONS Obesogenic aspects of neighborhood disadvantage, including poor dietary quality, may disrupt information processing flexibility in regions involved in reward, emotion regulation, and cognition. These data further suggest ramifications of living in a disadvantaged neighborhood on brain health.
Collapse
Affiliation(s)
- Lisa A Kilpatrick
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA.
| | - Keying Zhang
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
| | - Tien S Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Gilbert C Gee
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- California Center for Population Research, University of California, Los Angeles, CA, USA
| | - Hiram Beltran-Sanchez
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- California Center for Population Research, University of California, Los Angeles, CA, USA
| | - May Wang
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Jennifer S Labus
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA
| | - Bruce D Naliboff
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA
| | - Emeran A Mayer
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Nelson TD, Stice E. Contextualizing the Neural Vulnerabilities Model of Obesity. Nutrients 2023; 15:2988. [PMID: 37447312 DOI: 10.3390/nu15132988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, investigators have focused on neural vulnerability factors that increase the risk of unhealthy weight gain, which has provided a useful organizing structure for obesity neuroscience research. However, this framework, and much of the research it has informed, has given limited attention to contextual factors that may interact with key vulnerabilities to impact eating behaviors and weight gain. To fill this gap, we propose a Contextualized Neural Vulnerabilities Model of Obesity, extending the existing theory to more intentionally incorporate contextual factors that are hypothesized to interact with neural vulnerabilities in shaping eating behaviors and weight trajectories. We begin by providing an overview of the Neural Vulnerabilities Model of Obesity, and briefly review supporting evidence. Next, we suggest opportunities to add contextual considerations to the model, including incorporating environmental and developmental context, emphasizing how contextual factors may interact with neural vulnerabilities to impact eating and weight. We then synthesize earlier models and new extensions to describe a Contextualized Neural Vulnerabilities Model of Obesity with three interacting components-food reward sensitivity, top-down regulation, and environmental factors-all within a developmental framework that highlights adolescence as a key period. Finally, we propose critical research questions arising from the framework, as well as opportunities to inform novel interventions.
Collapse
Affiliation(s)
- Timothy D Nelson
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Eric Stice
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Kilpatrick L, Zhang K, Dong T, Gee G, Beltran-Sanchez H, Wang M, Labus J, Naliboff B, Mayer E, Gupta A. Mediating role of obesity on the association between disadvantaged neighborhoods and intracortical myelination. RESEARCH SQUARE 2023:rs.3.rs-2592087. [PMID: 36993600 PMCID: PMC10055549 DOI: 10.21203/rs.3.rs-2592087/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We investigated the relationship between neighborhood disadvantage (area deprivation index [ADI]) and intracortical myelination (T1-weighted/T2-weighted ratio at deep to superficial cortical levels), and the potential mediating role of the body mass index (BMI) and perceived stress in 92 adults. Worse ADI was correlated with increased BMI and perceived stress (p's<.05). Non-rotated partial least squares analysis revealed associations between worse ADI and decreased myelination in middle/deep cortex in supramarginal, temporal, and primary motor regions and increased myelination in superficial cortex in medial prefrontal and cingulate regions (p<.001); thus, neighborhood disadvantage may influence the flexibility of information processing involved in reward, emotion regulation, and cognition. Structural equation modelling revealed increased BMI as partially mediating the relationship between worse ADI and observed myelination increases (p=.02). Further, trans-fatty acid intake was correlated with observed myelination increases (p=.03), suggesting the importance of dietary quality. These data further suggest ramifications of neighborhood disadvantage on brain health.
Collapse
Affiliation(s)
| | | | - Tien Dong
- University of California Los Angeles
| | | | | | - May Wang
- University of California Los Angeles
| | | | | | | | | |
Collapse
|
6
|
Wang J, Ji G, Li G, Hu Y, Zhang W, Ji W, Tan Z, Li H, Jiang F, Zhang Y, Wu F, von Deneen KM, Yu J, Han Y, Cui G, Manza P, Tomasi D, Volkow ND, Nie Y, Zhang Y, Wang GJ. Habenular connectivity predict weight loss and negative emotional-related eating behavior after laparoscopic sleeve gastrectomy. Cereb Cortex 2023; 33:2037-2047. [PMID: 35580853 PMCID: PMC10365841 DOI: 10.1093/cercor/bhac191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
Abstract
Habenular (Hb) processes negative emotions that may drive compulsive food-intake. Its functional changes were reported following laparoscopic-sleeve-gastrectomy (LSG). However, structural connectivity (SC) of Hb-homeostatic/hedonic circuits after LSG remains unclear. We selected regions implicated in homeostatic/hedonic regulation that have anatomical connections with Hb as regions-of-interest (ROIs), and used diffusion-tensor-imaging with probabilistic tractography to calculate SC between Hb and these ROIs in 30 obese participants before LSG (PreLSG) and at 12-month post-LSG (PostLSG12) and 30 normal-weight controls. Three-factor-eating-questionnaire (TFEQ) and Dutch-eating-behavior-questionnaire (DEBQ) were used to assess eating behaviors. LSG significantly decreased weight, negative emotion, and improved self-reported eating behavior. LSG increased SC between the Hb and homeostatic/hedonic regions including hypothalamus (Hy), bilateral superior frontal gyri (SFG), left amygdala (AMY), and orbitofrontal cortex (OFC). TFEQ-hunger negatively correlated with SC of Hb-Hy at PostLSG12; and increased SC of Hb-Hy correlated with reduced depression and DEBQ-external eating. TFEQ-disinhibition negatively correlated with SC of Hb-bilateral SFG at PreLSG. Increased SC of Hb-left AMY correlated with reduced DEBQ-emotional eating. Higher percentage of total weight-loss negatively correlated with SC of Hb-left OFC at PreLSG. Enhanced SC of Hb-homeostatic/hedonic regulatory regions post-LSG may contribute to its beneficial effects in improving eating behaviors including negative emotional eating, and long-term weight-loss.
Collapse
Affiliation(s)
- Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Zongxin Tan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hao Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Juan Yu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Devoto F, Coricelli C, Paulesu E, Zapparoli L. Neural circuits mediating food cue-reactivity: Toward a new model shaping the interplay of internal and external factors. Front Nutr 2022; 9:954523. [PMID: 36276811 PMCID: PMC9579536 DOI: 10.3389/fnut.2022.954523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Francantonio Devoto
- Psychology Department and NeuroMi—Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy,*Correspondence: Francantonio Devoto
| | - Carol Coricelli
- Psychology Department, Western University, London, ON, Canada
| | - Eraldo Paulesu
- Psychology Department and NeuroMi—Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy,fMRI Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Galeazzi, Milan, Italy
| | - Laura Zapparoli
- Psychology Department and NeuroMi—Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy,fMRI Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Galeazzi, Milan, Italy,Laura Zapparoli
| |
Collapse
|
8
|
Carnell S, Benson L, Papantoni A, Chen L, Huo Y, Wang Z, Peterson BS, Geliebter A. Obesity and acute stress modulate appetite and neural responses in food word reactivity task. PLoS One 2022; 17:e0271915. [PMID: 36170275 PMCID: PMC9518890 DOI: 10.1371/journal.pone.0271915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Obesity can result from excess intake in response to environmental food cues, and stress can drive greater intake and body weight. We used a novel fMRI task to explore how obesity and stress influenced appetitive responses to relatively minimal food cues (words representing food items, presented similarly to a chalkboard menu). Twenty-nine adults (16F, 13M), 17 of whom had obesity and 12 of whom were lean, completed two fMRI scans, one following a combined social and physiological stressor and the other following a control task. A food word reactivity task assessed subjective food approach (wanting) as well as food avoidant (restraint) responses, along with neural responses, to words denoting high energy-density (ED) foods, low-ED foods, and non-foods. A multi-item ad-libitum meal followed each scan. The obese and lean groups demonstrated differences as well as similarities in activation of appetitive and attention/self-regulation systems in response to food vs. non-food, and to high-ED vs. low-ED food words. Patterns of activation were largely similar across stress and non-stress conditions, with some evidence for differences between conditions within both obese and lean groups. The obese group ate more than the lean group in both conditions. Our results suggest that neural responses to minimal food cues in stressed and non-stressed states may contribute to excess consumption and adiposity.
Collapse
Affiliation(s)
- Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| | - Leora Benson
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Afroditi Papantoni
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Liuyi Chen
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Yuankai Huo
- Department of Psychiatry, Columbia University Medical Center, New York, NY, United States of America
| | - Zhishun Wang
- Department of Psychiatry, Columbia University Medical Center, New York, NY, United States of America
| | - Bradley S. Peterson
- Children’s Hospital Los Angeles and Department of Psychiatry at Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Allan Geliebter
- Mt Sinai St. Luke’s Hospital and Department of Psychiatry, Icahn School of Medicine at Mt Sinai, New York, NY, United States of America
| |
Collapse
|
9
|
Cheng RK, Tan JXM, Chua KX, Tan CJX, Wee CL. Osmotic Stress Uncovers Correlations and Dissociations Between Larval Zebrafish Anxiety Endophenotypes. Front Mol Neurosci 2022; 15:900223. [PMID: 35813064 PMCID: PMC9269111 DOI: 10.3389/fnmol.2022.900223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/05/2022] [Indexed: 01/22/2023] Open
Abstract
Larval zebrafish are often used to model anxiety disorders. However, since it is impossible to recapitulate the full complexity and heterogeneity of anxiety in this model, examining component endophenotypes is key to dissecting the mechanisms underlying anxiety. While individual anxiety endophenotypes have been examined in zebrafish, an understanding of the relationships between them is still lacking. Here, we investigate the effects of osmotic stress on a range of anxiety endophenotypes such as thigmotaxis, dark avoidance, light-dark transitions, sleep, night startle, and locomotion. We also report a novel assay for stress-induced anorexia that extends and improves on previously reported food intake quantification methods. We show that acute <30 min osmotic stress decreases feeding but has no effect on dark avoidance. Further, acute osmotic stress dose-dependently increases thigmotaxis and freezing in a light/dark choice condition, but not uniform light environmental context. Prolonged >2 h osmotic stress has similar suppressive effects on feeding while also significantly increasing dark avoidance and sleep, with weaker effects on thigmotaxis and freezing. Notably, the correlations between anxiety endophenotypes were dependent on both salt and dark exposure, with increased dissociations at higher stressor intensities. Our results demonstrate context-dependent effects of osmotic stress on diverse anxiety endophenotypes, and highlight the importance of examining multiple endophenotypes in order to gain a more complete understanding of anxiety mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Caroline Lei Wee
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| |
Collapse
|
10
|
Tan JXM, Ang RJW, Wee CL. Larval Zebrafish as a Model for Mechanistic Discovery in Mental Health. Front Mol Neurosci 2022; 15:900213. [PMID: 35813062 PMCID: PMC9263853 DOI: 10.3389/fnmol.2022.900213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
Animal models are essential for the discovery of mechanisms and treatments for neuropsychiatric disorders. However, complex mental health disorders such as depression and anxiety are difficult to fully recapitulate in these models. Borrowing from the field of psychiatric genetics, we reiterate the framework of 'endophenotypes' - biological or behavioral markers with cellular, molecular or genetic underpinnings - to reduce complex disorders into measurable behaviors that can be compared across organisms. Zebrafish are popular disease models due to the conserved genetic, physiological and anatomical pathways between zebrafish and humans. Adult zebrafish, which display more sophisticated behaviors and cognition, have long been used to model psychiatric disorders. However, larvae (up to 1 month old) are more numerous and also optically transparent, and hence are particularly suited for high-throughput screening and brain-wide neural circuit imaging. A number of behavioral assays have been developed to quantify neuropsychiatric phenomena in larval zebrafish. Here, we will review these assays and the current knowledge regarding the underlying mechanisms of their behavioral readouts. We will also discuss the existing evidence linking larval zebrafish behavior to specific human behavioral traits and how the endophenotype framework can be applied. Importantly, many of the endophenotypes we review do not solely define a diseased state but could manifest as a spectrum across the general population. As such, we make the case for larval zebrafish as a promising model for extending our understanding of population mental health, and for identifying novel therapeutics and interventions with broad impact.
Collapse
Affiliation(s)
| | | | - Caroline Lei Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
11
|
Jensen CD, Zaugg KK, Muncy NM, Allen WD, Blackburn R, Duraccio KM, Barnett KA, Kirwan CB, Jarcho JM. Neural mechanisms that promote food consumption following sleep loss and social stress: An fMRI study in adolescent girls with overweight/obesity. Sleep 2021; 45:6418083. [PMID: 34727185 DOI: 10.1093/sleep/zsab263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Insufficient sleep and social stress are associated with weight gain and obesity development in adolescent girls. Functional magnetic resonance imaging (fMRI) research suggests that altered engagement of emotion-related neural networks may explain overeating when under stress. The purpose of this study is to explore the effects of acute sleep restriction on female adolescents' neural responding during social evaluative stress and their subsequent eating behavior. METHODS Forty-two adolescent females (ages 15-18 years) with overweight or obesity completed a social stress induction task in which they were told they would be rated by peers based on their photograph and profile. Participants were randomly assigned to one night of sleep deprivation or 9 hours of sleep the night before undergoing fMRI while receiving positive and negative evaluations from their peers. After which, subjects participated in an ad libitum buffet. RESULTS Sleep deprived, relative to non-deprived girls had distinct patterns of neural engagement to positive and negative evaluation in anterior, mid, and posterior aspects of midline brain structures. Moreover, a sleep deprivation-by-evaluation valence-by-caloric intake interaction emerged in bilateral dorsal anterior cingulate. Among sleep deprived girls, greater engagement during negative, but not positive, feedback was associated with lower caloric intake. This was not observed for non-sleep deprived girls. CONCLUSIONS Results suggest an interaction between acute sleep loss and social evaluation that predicts emotion-related neural activation and caloric intake in adolescents. This research helps to elucidate the relationship between sleep loss, social stress, and weight status using a novel health neuroscience model.
Collapse
Affiliation(s)
- Chad D Jensen
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Kelsey K Zaugg
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Nathan M Muncy
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Whitney D Allen
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Robyn Blackburn
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Kara M Duraccio
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | | | - C Brock Kirwan
- Department of Psychology, Brigham Young University, Provo, UT, USA.,Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Johanna M Jarcho
- Department of Psychology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Nelson TD, Brock RL, Yokum S, Tomaso CC, Savage CR, Stice E. Much Ado About Missingness: A Demonstration of Full Information Maximum Likelihood Estimation to Address Missingness in Functional Magnetic Resonance Imaging Data. Front Neurosci 2021; 15:746424. [PMID: 34658780 PMCID: PMC8514662 DOI: 10.3389/fnins.2021.746424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
The current paper leveraged a large multi-study functional magnetic resonance imaging (fMRI) dataset (N = 363) and a generated missingness paradigm to demonstrate different approaches for handling missing fMRI data under a variety of conditions. The performance of full information maximum likelihood (FIML) estimation, both with and without auxiliary variables, and listwise deletion were compared under different conditions of generated missing data volumes (i.e., 20, 35, and 50%). FIML generally performed better than listwise deletion in replicating results from the full dataset, but differences were small in the absence of auxiliary variables that correlated strongly with fMRI task data. However, when an auxiliary variable created to correlate r = 0.5 with fMRI task data was included, the performance of the FIML model improved, suggesting the potential value of FIML-based approaches for missing fMRI data when a strong auxiliary variable is available. In addition to primary methodological insights, the current study also makes an important contribution to the literature on neural vulnerability factors for obesity. Specifically, results from the full data model show that greater activation in regions implicated in reward processing (caudate and putamen) in response to tastes of milkshake significantly predicted weight gain over the following year. Implications of both methodological and substantive findings are discussed.
Collapse
Affiliation(s)
- Timothy D Nelson
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rebecca L Brock
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sonja Yokum
- Oregon Research Institute, Eugene, OR, United States
| | - Cara C Tomaso
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Cary R Savage
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric Stice
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
13
|
Yokum S, Bohon C, Berkman E, Stice E. Test-retest reliability of functional MRI food receipt, anticipated receipt, and picture tasks. Am J Clin Nutr 2021; 114:764-779. [PMID: 33851199 PMCID: PMC8326039 DOI: 10.1093/ajcn/nqab096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Functional MRI (fMRI) tasks are increasingly being used to advance knowledge of the etiology and maintenance of obesity and eating disorders. Thus, understanding the test-retest reliability of BOLD signal contrasts from these tasks is important. OBJECTIVES To evaluate test-retest reliability of responses in reward-related brain regions to food receipt paradigms (palatable tastes, anticipated palatable tastes), food picture paradigms (high-calorie food pictures), a monetary reward paradigm (winning money and anticipating winning money), and a thin female model picture paradigm (thin female model pictures). METHOD We conducted secondary univariate contrast-based analyses in data drawn from 4 repeated-measures fMRI studies. Participants (Study 1: N = 60, mean [M] age = 15.2 ± 1.1 y; Study 2: N = 109, M age = 15.1 ± 0.9 y; Study 3: N = 39, M age = 21.2 ± 3.7 y; Study 4: N = 62, M age = 29.7 ± 6.2 y) completed the same tasks over 3-wk to 3-y test-retest intervals. Studies 3 and 4 included participants with eating disorders and obesity, respectively. RESULTS Test-retest reliability of the food receipt and food picture paradigms was poor, with average ICC values ranging from 0.07 to 0.20. The monetary reward paradigm and the thin female model picture paradigm also showed poor test-retest reliability: average ICC values 0.21 and 0.12, respectively. Although several regions demonstrated moderate to good test-retest reliability, these results did not replicate across studies using similar paradigms. In Studies 3 and 4, but not Study 1, test-retest reliability in visual processing regions was moderate to good when contrasting single conditions with a low-level baseline. CONCLUSIONS Results underscore the importance of examining the temporal reliability of fMRI tasks and call for the development and use of well-validated standardized fMRI tasks in eating- and obesity-related studies that can provide more reliable measures of neural activation. The trials were registered at clinicaltrials.gov as NCT02084836, NCT01949636, NCT03261050, and NCT03375853.
Collapse
Affiliation(s)
| | - Cara Bohon
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - Elliot Berkman
- Department of Psychology, Center for Translational Neuroscience, University of Oregon, Eugene, OR, USA
| | - Eric Stice
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| |
Collapse
|
14
|
Lee NJ, Herzog H. Coordinated regulation of energy and glucose homeostasis by insulin and the NPY system. J Neuroendocrinol 2020; 33:e12925. [PMID: 33427385 DOI: 10.1111/jne.12925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022]
Abstract
Insulin is a major contributor to many important physiological processes. Although its function in the periphery has been studied in detail, the contributions that it makes to functions in the brain are far less understood. The neuropeptide Y (NPY) neurones comprise a major target of insulin in the brain and are inhibited by its action. In particular, NPY neurones in the arcuate nucleus of the hypothalamus are critical control centres for insulin's central action on control energy homeostasis, as well as glucose homeostasis regulation. However, the colocalisation of insulin receptors with NPY neurones is also found in many other brain areas, although very little is known about their interactions and control functions. In this review, we explore the recent advances that have been made to further the understanding of the hypothalamic insulin receptor-NPY network, as well as provide insights from other lesser explored areas, such as the amygdala and hippocampus. We will also look at the peripheral interaction of the NPY system with insulin release, thereby closing the loop between these two energy and glucose homeostasis controlling systems and highlighting the critical interaction points that may be dysregulated in conditions of obesity and diabetes.
Collapse
Affiliation(s)
- Nicola J Lee
- Eating Disorder Laboratory, Garvan Institute of Medical Research, NSW, Australia
- St Vincent's Clinical School, UNSW Sydney, NSW, Australia
| | - Herbert Herzog
- Eating Disorder Laboratory, Garvan Institute of Medical Research, NSW, Australia
- St Vincent's Clinical School, UNSW Sydney, NSW, Australia
| |
Collapse
|
15
|
Donofry SD, Erickson KI, Levine MD, Gianaros PJ, Muldoon MF, Manuck SB. Relationship between Dispositional Mindfulness, Psychological Health, and Diet Quality among Healthy Midlife Adults. Nutrients 2020; 12:nu12113414. [PMID: 33172203 PMCID: PMC7695007 DOI: 10.3390/nu12113414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/19/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Mindfulness, a practice of non-judgmental awareness of present experience, has been associated with reduced eating psychopathology and emotion-driven eating. However, it remains unclear whether mindfulness relates to diet quality. Thus, the purpose of this study was to examine whether dispositional mindfulness is associated with diet quality and to explore psychological factors relating dispositional mindfulness to diet quality. Community-dwelling adults (N = 406; Mage = 43.19, SD = 7.26; Mbody mass index [BMI] = 27.08, SD = 5.28; 52% female) completed ratings of dispositional mindfulness, depressive symptoms, perceived stress, positive affect (PA), and negative affect (NA). Dietary intake was assessed using the Block Food Frequency Questionnaire, from which the 2015 Healthy Eating Index was derived. Analyses were conducted using the "lavaan" package in R with bias-corrected bootstrapped confidence intervals (BootCI). Age, sex, race, education, and BMI were entered as covariates in all models. Higher dispositional mindfulness was associated with higher diet quality (β = 0.11, p = 0.03), and this effect was mediated through lower depressive symptoms (indirect effect β = 0.06, p = 0.02, BootCI = 0.104-1.42, p = 0.03). Dispositional mindfulness was negatively correlated with perceived stress (β = -0.31, p < 0.01) and NA (β = -0.43, p < 0.01), as well as positively correlated with PA (β = -0.26, p < 0.01). However, these factors were unrelated to diet quality. These cross-sectional data provide initial evidence that dispositional mindfulness relates to diet quality among midlife adults, an effect that may be explained in part by less depressive symptomatology. Given that lifestyle behaviors in midlife are leading determinants of risk for cardiovascular disease and neurocognitive impairment in late life, interventions to enhance mindfulness in midlife may mitigate disease risk. Additional research assessing the impact of mindfulness interventions on diet quality are warranted.
Collapse
Affiliation(s)
- Shannon D. Donofry
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (K.I.E.); (M.D.L.); (P.J.G.); (S.B.M.)
- Correspondence: or
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (K.I.E.); (M.D.L.); (P.J.G.); (S.B.M.)
- The Center for the Neural Basis of Cognition, Pittsburgh, PA 15260, USA
| | - Michele D. Levine
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (K.I.E.); (M.D.L.); (P.J.G.); (S.B.M.)
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter J. Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (K.I.E.); (M.D.L.); (P.J.G.); (S.B.M.)
- The Center for the Neural Basis of Cognition, Pittsburgh, PA 15260, USA
| | - Matthew F. Muldoon
- Heart and Vascular Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Stephen B. Manuck
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (K.I.E.); (M.D.L.); (P.J.G.); (S.B.M.)
| |
Collapse
|
16
|
Ayton A, Ibrahim A. The Western diet: a blind spot of eating disorder research?-a narrative review and recommendations for treatment and research. Nutr Rev 2020; 78:579-596. [PMID: 31846028 PMCID: PMC7682725 DOI: 10.1093/nutrit/nuz089] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the last 50 years, in parallel with the obesity epidemic, the prevalence of eating disorders has increased and presentations have changed. In this narrative review, we consider recent research exploring the implications of changing patterns of food consumption on metabolic and neurobiological pathways, a hitherto neglected area in eating disorder research. One of the major changes over this time has been the introduction of ultra-processed (NOVA-4) foods, which are gradually replacing unprocessed and minimally processed foods. This has resulted in the increased intake of various sugars and food additives worldwide, which has important metabolic consequences: triggering insulin and glucose response, stimulating appetite, and affecting multiple endocrine and neurobiological pathways, as well as the microbiome. A paradigm shift is needed in the conceptual framework by which the vulnerability to, and maintenance of, different eating disorders may be understood, by integrating recent knowledge of the individual metabolic responses to modern highly processed foods into existing psychological models. This could stimulate research and improve treatment outcomes.
Collapse
Affiliation(s)
- Agnes Ayton
- University of Oxford, Oxford, United Kingdom
| | - Ali Ibrahim
- South London and Maudsley NHS Foundation Trust, Snowsfields Adolescent Unit, Mapother House, Maudsley Hospital, London
| |
Collapse
|
17
|
Simmons WK, Burrows K, Avery JA, Kerr KL, Taylor A, Bodurka J, Potter W, Teague TK, Drevets WC. Appetite changes reveal depression subgroups with distinct endocrine, metabolic, and immune states. Mol Psychiatry 2020; 25:1457-1468. [PMID: 29899546 PMCID: PMC6292746 DOI: 10.1038/s41380-018-0093-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 01/10/2023]
Abstract
There exists little human neuroscience research to explain why some individuals lose their appetite when they become depressed, while others eat more. Answering this question may reveal much about the various pathophysiologies underlying depression. The present study combined neuroimaging, salivary cortisol, and blood markers of inflammation and metabolism collected prior to scanning. We compared the relationships between peripheral endocrine, metabolic, and immune signaling and brain activity to food cues between depressed participants experiencing increased (N = 23) or decreased (N = 31) appetite and weight in their current depressive episode and healthy control participants (N = 42). The two depression subgroups were unmedicated and did not differ in depression severity, anxiety, anhedonia, or body mass index. Depressed participants experiencing decreased appetite had higher cortisol levels than subjects in the other two groups, and their cortisol values correlated inversely with the ventral striatal response to food cues. In contrast, depressed participants experiencing increased appetite exhibited marked immunometabolic dysregulation, with higher insulin, insulin resistance, leptin, CRP, IL-1RA, and IL-6, and lower ghrelin than subjects in other groups, and the magnitude of their insulin resistance correlated positively with the insula response to food cues. These findings provide novel evidence linking aberrations in homeostatic signaling pathways within depression subtypes to the activity of neural systems that respond to food cues and select when, what, and how much to eat. In conjunction with prior work, the present findings strongly support the existence of pathophysiologically distinct depression subtypes for which the direction of appetite change may be an easily measured behavioral marker.
Collapse
Affiliation(s)
- W Kyle Simmons
- Laureate Institute for Brain Research, Tulsa, OK, USA.
- School of Community Medicine, The University of Tulsa, Tulsa, OK, USA.
- Janssen Research and Development, LLC., Titusville, NJ, USA.
| | | | | | - Kara L Kerr
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| | - Ashlee Taylor
- Integrative Immunology Center, The Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Jerzy Bodurka
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, USA
| | - William Potter
- Department of Chemistry and Biochemistry, The University of Tulsa, Tulsa, OK, USA
| | - T Kent Teague
- Departments of Surgery and Psychiatry, School of Community Medicine, The University of Oklahoma, Tulsa, OK, USA
- Department of Biochemistry and Microbiology, The Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, Oklahoma City, OK, USA
| | | |
Collapse
|
18
|
Abstract
OBJECTIVE This study aimed to investigate the relationship between waist circumference as a measure of abdominal obesity and brain responses to stress among patients with coronary artery disease (CAD). METHODS Patients with CAD (N = 151) underwent acute mental stress tasks in conjunction with high-resolution positron emission tomography and radiolabeled water imaging of the brain. Brain responses to mental stress were correlated with waist circumference. RESULTS Waist circumference was positively correlated with increased activation in the right and left frontal lobes (β values ranging from 2.81 to 3.75 in the paracentral, medial, and superior gyri), left temporal lobe, left hippocampal, left amygdala, left uncus, and left anterior and posterior cingulate gyri (β values ranging from 2.93 to 3.55). Waist circumference was also negatively associated with the left and right parietal lobes, right superior temporal gyrus, and right insula and precuneus (β values ranging from 2.82 to 5.20). CONCLUSION Increased brain activation in the brain regions involved in the stress response and autonomic regulation of the cardiovascular system during psychological stress may underlie stress-induced overeating and abdominal obesity in patients with CAD.
Collapse
|
19
|
Masih T, Dimmock JA, Guelfi KJ. The effect of a single, brief practice of progressive muscle relaxation after exposure to an acute stressor on subsequent energy intake. Stress Health 2019; 35:595-606. [PMID: 31430020 DOI: 10.1002/smi.2891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Given previous research suggests an association between stress and the intake of energy-dense foods, this study investigated whether poststressor relaxation practice can attenuate stress-induced eating. METHODS Twenty-five men and women were exposed to four conditions on separate days: an acute laboratory stressor (S), acute stressor followed by 20 min of relaxation (SR) in the form of Abbreviated Progressive Muscle Relaxation (APMR), relaxation alone (R), and a control condition (C). Physiological and psychological responses to stress and relaxation were assessed, in addition to the subsequent energy intake of high-energy snacks. RESULTS Salivary cortisol, blood pressure, heart rate, and perceived stress were transiently elevated postlaboratory stressor (S and SR compared with R and C; p < .05). Meanwhile, perceived relaxation was acutely enhanced after APMR alone (R) compared with S, SR, and C (p < .05) and in SR (immediately after the APMR) compared with S (p < .05). No difference in mean energy intake was observed between conditions (p > .05). Likewise, no differences in perceived appetite or the levels of ghrelin, leptin, and insulin were found between conditions (p > .05). CONCLUSIONS Much variation exists in stress-induced dietary responses, and APMR either postacute stressor or in isolation does not appear to consistently alter the intake of commonly eaten snacks.
Collapse
Affiliation(s)
- Tasmiah Masih
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - James A Dimmock
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Kym J Guelfi
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Berner LA, Brown TA, Lavender JM, Lopez E, Wierenga CE, Kaye WH. Neuroendocrinology of reward in anorexia nervosa and bulimia nervosa: Beyond leptin and ghrelin. Mol Cell Endocrinol 2019; 497:110320. [PMID: 30395874 PMCID: PMC6497565 DOI: 10.1016/j.mce.2018.10.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 12/14/2022]
Abstract
The pathophysiology of anorexia nervosa (AN) and bulimia nervosa (BN) are still poorly understood, but psychobiological models have proposed a key role for disturbances in the neuroendocrines that signal hunger and satiety and maintain energy homeostasis. Mounting evidence suggests that many neuroendocrines involved in the regulation of homeostasis and body weight also play integral roles in food reward valuation and learning via their interactions with the mesolimbic dopamine system. Neuroimaging data have associated altered brain reward responses in this system with the dietary restriction and binge eating and purging characteristic of AN and BN. Thus, neuroendocrine dysfunction may contribute to or perpetuate eating disorder symptoms via effects on reward circuitry. This narrative review focuses on reward-related neuroendocrines that are altered in eating disorder populations, including peptide YY, insulin, stress and gonadal hormones, and orexins. We provide an overview of the animal and human literature implicating these neuroendocrines in dopaminergic reward processes and discuss their potential relevance to eating disorder symptomatology and treatment.
Collapse
Affiliation(s)
- Laura A Berner
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States.
| | - Tiffany A Brown
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Jason M Lavender
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Emily Lopez
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Christina E Wierenga
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Walter H Kaye
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| |
Collapse
|
21
|
The corticosteroid prednisolone increases amygdala and insula reactivity to food approach signals in healthy young men. Psychoneuroendocrinology 2019; 99:154-165. [PMID: 30245328 DOI: 10.1016/j.psyneuen.2018.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/22/2022]
Abstract
Short- and long-term treatment with glucocorticoids is widely used in clinical practice and frequently induces features of iatrogenic Cushing syndrome, such as abdominally centered weight gain. Despite decades of glucocorticoids usage, the mechanisms underlying these side effects are still only partly understood. One possibility is that glucocorticoids impact subcortical (hypothalamus, amygdala, insula) and cortical (orbitofrontal and cingulate cortex) brain regions involved in appetite regulation and reward processing. In the present study, we used functional magnetic resonance imaging (fMRI) to study the acute effects of a prednisolone infusion on reactivity of brain reward systems to food stimuli. Twenty healthy normal-weight men were tested in a randomized, double-blind, cross-over study. After an overnight fast and infusion of either 250 mg prednisolone or placebo (always administered between 8 and 9 A M), fMRI scans were taken while presenting food and object pictures in a Go/NoGo (GNG) task. At home, participants were asked to register what they had eaten. On the following morning they came back to the lab and had a supervised ad libitum breakfast at a standardized buffet. Food-Go in contrast to Object-Go pictures yielded increased blood oxygen level dependent (BOLD) activity in hippocampus, amygdala, orbitofrontal cortex, insula and anterior cingulate cortex. Prednisolone increased activation in the bilateral amygdala and right insula for approach-associated food pictures. The buffet test did not reveal significant differences in calorie consumption or preferences of different macronutrients. However, prednisolone-induced insula reactivity to Food-Go images was associated with greater caloric intake, both at home and in the standardized buffet. In sum, we observed a specific effect of prednisolone on the BOLD response of the amygdala and insula to approach-associated food stimuli. As these brain areas have previously been implicated in hedonic eating, the present pattern of results may reflect an increased anticipated reward value of food modulated by glucocorticoids. These effects might potentially drive increased food intake and weight gain under prolonged glucocorticoid treatment.
Collapse
|
22
|
Wierenga CE, Lavender JM, Hays CC. The potential of calibrated fMRI in the understanding of stress in eating disorders. Neurobiol Stress 2018; 9:64-73. [PMID: 30450374 PMCID: PMC6234260 DOI: 10.1016/j.ynstr.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/18/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022] Open
Abstract
Eating disorders (ED), including Anorexia Nervosa (AN), Bulimia Nervosa (BN), and Binge Eating Disorder (BED), are medically dangerous psychiatric disorders of unknown etiology. Accumulating evidence supports a biopsychosocial model that includes genetic heritability, neurobiological vulnerability, and psychosocial factors, such as stress, in the development and maintenance of ED. Notably, stress hormones influence appetite and eating, and dysfunction of the physiological stress response has been implicated in ED pathophysiology. Stress signals also appear associated with food reward neurocircuitry response in ED, providing a possible mechanism for the role of stress in appetite dysregulation. This paper provides a review of some of the interacting psychological, behavioral, physiological, and neurobiological mechanisms involved in the stress response among individuals with ED, and discusses novel neuroimaging techniques to address potential physiological confounds of studying neural correlates of stress in ED, such as calibrated fMRI.
Collapse
Affiliation(s)
| | - Jason M. Lavender
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
| | - Chelsea C. Hays
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| |
Collapse
|
23
|
Gardiner CK, YorkWilliams SL, Bryan AD, Hutchison KE. Body mass is positively associated with neural response to sweet taste, but not alcohol, among drinkers. Behav Brain Res 2017; 331:131-134. [PMID: 28549645 DOI: 10.1016/j.bbr.2017.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 11/19/2022]
Abstract
Obesity is a large and growing public health concern, presenting enormous economic and health costs to individuals and society. A burgeoning literature demonstrates that overweight and obese individuals display different neural processing of rewarding stimuli, including caloric substances, as compared to healthy weight individuals. However, much extant research on the neurobiology of obesity has focused on addiction models, without highlighting potentially separable neural underpinnings of caloric intake versus substance use. The present research explores these differences by examining neural response to alcoholic beverages and a sweet non-alcoholic beverage, among a sample of individuals with varying weight status and patterns of alcohol use and misuse. Participants received tastes of a sweet beverage (litchi juice) and alcoholic beverages during fMRI scanning. When controlling for alcohol use, elevated weight status was associated with increased activation in response to sweet taste in regions including the cingulate cortex, hippocampus, precuneus, and fusiform gyrus. However, weight status was not associated with neural response to alcoholic beverages.
Collapse
Affiliation(s)
- Casey K Gardiner
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Sophie L YorkWilliams
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Kent E Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
24
|
Neseliler S, Tannenbaum B, Zacchia M, Larcher K, Coulter K, Lamarche M, Marliss EB, Pruessner J, Dagher A. Academic stress and personality interact to increase the neural response to high-calorie food cues. Appetite 2017; 116:306-314. [PMID: 28487246 DOI: 10.1016/j.appet.2017.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 02/08/2023]
Abstract
Psychosocial stress is associated with an increased intake of palatable foods and weight gain in stress-reactive individuals. Personality traits have been shown to predict stress-reactivity. However, it is not known if personality traits influence brain activity in regions implicated in appetite control during psychosocial stress. The current study assessed whether Gray's Behavioural Inhibition System (BIS) scale, a measure of stress-reactivity, was related to the activity of brain regions implicated in appetite control during a stressful period. Twenty-two undergraduate students participated in a functional magnetic resonance imaging (fMRI) experiment once during a non-exam period and once during final exams in a counter-balanced order. In the scanner, they viewed food and scenery pictures. In the exam compared with the non-exam condition, BIS scores related to increased perceived stress and correlated with increased blood-oxygen-level dependent (BOLD) response to high-calorie food images in regions implicated in food reward and subjective value, such as the ventromedial prefrontal cortex, (vmPFC) and the amygdala. BIS scores negatively related to the functional connectivity between the vmPFC and the dorsolateral prefrontal cortex. The results demonstrate that the BIS trait influences stress reactivity. This is observed both as an increased activity in brain regions implicated in computing the value of food cues and decreased connectivity of these regions to prefrontal regions implicated in self-control. This suggests that the effects of real life stress on appetitive brain function and self-control is modulated by a personality trait. This may help to explain why stressful periods can lead to overeating in vulnerable individuals.
Collapse
Affiliation(s)
- Selin Neseliler
- Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Beth Tannenbaum
- Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Maria Zacchia
- Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Kevin Larcher
- Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Kirsty Coulter
- Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Marie Lamarche
- Crabtree Nutrition Laboratories, Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montréal, Canada
| | - Errol B Marliss
- Crabtree Nutrition Laboratories, Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montréal, Canada
| | - Jens Pruessner
- Montreal Neurological Institute, McGill University, Montréal, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
25
|
Role of addiction and stress neurobiology on food intake and obesity. Biol Psychol 2017; 131:5-13. [PMID: 28479142 DOI: 10.1016/j.biopsycho.2017.05.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/20/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
The US remains at the forefront of a global obesity epidemic with a significant negative impact on public health. While it is well known that a balance between energy intake and expenditure is homeostatically regulated to control weight, growing evidence points to multifactorial social, neurobehavioral and metabolic determinants of food intake that influence obesity risk. This review presents factors such as the ubiquitous presence of rewarding foods in the environment and increased salience of such foods that stimulate brain reward motivation and stress circuits to influence eating behaviors. These rewarding foods via conditioned and reinforcing effects stimulate not only metabolic, but also stress hormones, that, in turn, hijack the brain emotional (limbic) and motivational (striatal) pathways, to promote food craving and excessive food intake. Furthermore, the impact of high levels of stress and trauma and altered metabolic environment (e.g. higher weight, altered insulin sensitivity) on prefrontal cortical self-control processes that regulate emotional, motivational and visceral homeostatic mechanisms of food intake and obesity risk are also discussed. A heuristic framework is presented in which the interactive dynamic effects of neurobehavioral adaptations in metabolic, motivation and stress neurobiology may further support food craving, excessive food intake and weight gain in a complex feed-forward manner. Implications of such adaptations in brain addictive-motivational and stress pathways and their effects on excessive food intake and weight gain are discussed to highlight key questions that requires future research attention in order to better understand and address the growing obesity epidemic.
Collapse
|
26
|
Shearrer GE, Daniels MJ, Toledo-Corral CM, Weigensberg MJ, Spruijt-Metz D, Davis JN. Associations among sugar sweetened beverage intake, visceral fat, and cortisol awakening response in minority youth. Physiol Behav 2016; 167:188-193. [PMID: 27660033 DOI: 10.1016/j.physbeh.2016.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 01/12/2023]
Abstract
CONTEXT Abdominal adiposity has long been associated with excess caloric intake possibly resulting from increased psychosocial stress and associated cortisol dysfunction. However, the relationship of sugar-sweetened beverage (SSB) intake specifically with cortisol variability and visceral adipose tissue (VAT) is unknown. OBJECTIVE To examine the relationships between SSB intake, VAT, and cortisol response in minority youth. DESIGN A cross-sectional analysis. SETTING The University of Southern California. PARTICIPANTS 60 overweight/obese Non-Hispanic Black and Hispanic adolescents ages 14-18years. MAIN OUTCOME MEASURES VAT via Magnet Resonance Imaging (MRI), cortisol awakening response (CAR) via multiple salivary samples, and SSB intake via multiple 24-hour diet recalls. SSB intake was divided into the following: low SSB consumers (<1 servings per day), medium SSB consumers (≥1-<2 servings per day), high SSB consumers (≥2 servings per day). Analysis of covariance were run with VAT and CAR as dependent variables and SSB intake categories (independent variable) with the following a priori covariates: sex, Tanner stage, ethnicity, caloric intake, and body mass index. RESULTS The high SSB intake group exhibited a 7% higher VAT compared to the low SSB intake group (β=0.25, CI:(0.03, 0.33), p=0.02). CAR was associated with VAT (β=0.31, CI:(0.01,0.23), p=0.02). The high SSB intake group exhibited 22% higher CAR compared to the low SSB intake group (β=0.30, CI:(0.02,0.48), p=0.04). CONCLUSION This is the first study exploring the relationship between SSB, VAT, and CAR. SSB consumption appears to be independently associated greater abdominal adiposity and higher morning cortisol variability in overweight and obese minority youth. This study highlights potential targets for interventions specifically to reduce SSB intake in a minority youth population.
Collapse
Affiliation(s)
- G E Shearrer
- Department of Nutrition, University of Texas, Austin, TX, United States.
| | - M J Daniels
- Department of Statistics & Data Sciences, University of Texas, Austin, TX, United States; Department of Integrative Biology, University of Texas, Austin, TX, United States
| | - C M Toledo-Corral
- Department of Public Health, California State University, Los Angeles, CA, United States
| | - M J Weigensberg
- Department of Pediatrics, Institute for Integrative Health, University of Southern California Keck School of Medicine, CA, Unites States
| | - D Spruijt-Metz
- Center for Economic and Social Research, University of Southern California, CA, Unites States
| | - J N Davis
- Department of Nutrition, University of Texas, Austin, TX, United States
| |
Collapse
|
27
|
Coppin G. The anterior medial temporal lobes: Their role in food intake and body weight regulation. Physiol Behav 2016; 167:60-70. [PMID: 27591841 DOI: 10.1016/j.physbeh.2016.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/22/2016] [Accepted: 08/29/2016] [Indexed: 11/25/2022]
Abstract
The anterior medial temporal lobes are one of the most studied parts of the brain. Classically, their two main structures - the amygdalae and the hippocampi - have been linked to key cognitive and affective functions, related in particular to learning and memory. Based on abundant evidence, we will argue for an alternative but complementary point of view: they may also play a major role in food intake and body weight regulation. First, an overview is given of early clinical evidence in this line of thought. Subsequently, empirical evidence is presented on how food intake, including in the extreme case of obesity, may relate to amygdalian and hippocampal functioning. The focus is on the amygdala's role in processing the relevance of food stimuli, cue-induced feeding, and stress-induced eating and on the hippocampus' involvement in the use of interoceptive signals of hunger and satiety, as well as memory and inhibitory processes related to food intake. Additionally, an elaboration takes place on possible reciprocal links between food intake, body weight, and amygdala and hippocampus functioning. Finally, issues that seemed particularly critical for future research in the field are discussed.
Collapse
Affiliation(s)
- Géraldine Coppin
- The John B. Pierce Laboratory, School of Medicine, Yale University, 290 Congress Avenue, New Haven, CT 06519, USA; Department of Psychiatry, School of Medicine, Yale University, 300 George Street, Suite 901, New Haven, CT 06511, USA.
| |
Collapse
|
28
|
Abstract
For many individuals, stress promotes the consumption of sweet, high-sugar foods relative to healthier alternatives. Daily life stressors stimulate the overeating of highly-palatable foods through multiple mechanisms, including altered glucocorticoid, relaxin-3, ghrelin and serotonin signaling in brain. In turn, a history of consuming high-sugar foods attenuates the psychological (anxiety and depressed mood) and physiological (HPA axis) effects of stress. Together the metabolic and hedonic properties of sucrose contribute to its stress relief, possibly via actions in both the periphery (e.g., glucocorticoid receptor signaling in adipose tissue) and in the brain (e.g., plasticity in brain reward regions). Emerging work continues to reveal the bidirectional mechanisms that underlie the use of high-sugar foods as 'self-medication' for stress relief.
Collapse
|
29
|
Farr OM, Li CSR, Mantzoros CS. Central nervous system regulation of eating: Insights from human brain imaging. Metabolism 2016; 65:699-713. [PMID: 27085777 PMCID: PMC4834455 DOI: 10.1016/j.metabol.2016.02.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/28/2022]
Abstract
Appetite and body weight regulation are controlled by the central nervous system (CNS) in a rather complicated manner. The human brain plays a central role in integrating internal and external inputs to modulate energy homeostasis. Although homeostatic control by the hypothalamus is currently considered to be primarily responsible for controlling appetite, most of the available evidence derives from experiments in rodents, and the role of this system in regulating appetite in states of hunger/starvation and in the pathogenesis of overeating/obesity remains to be fully elucidated in humans. Further, cognitive and affective processes have been implicated in the dysregulation of eating behavior in humans, but their exact relative contributions as well as the respective underlying mechanisms remain unclear. We briefly review each of these systems here and present the current state of research in an attempt to update clinicians and clinical researchers alike on the status and future directions of obesity research.
Collapse
Affiliation(s)
- Olivia M Farr
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520
| | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| |
Collapse
|
30
|
Steward T, Picó-Pérez M, Mata F, Martínez-Zalacaín I, Cano M, Contreras-Rodríguez O, Fernández-Aranda F, Yucel M, Soriano-Mas C, Verdejo-García A. Emotion Regulation and Excess Weight: Impaired Affective Processing Characterized by Dysfunctional Insula Activation and Connectivity. PLoS One 2016; 11:e0152150. [PMID: 27003840 PMCID: PMC4803189 DOI: 10.1371/journal.pone.0152150] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/09/2016] [Indexed: 01/09/2023] Open
Abstract
Emotion-regulation strategies are understood to influence food intake. This study examined the neurophysiological underpinnings of negative emotion processing and emotion regulation in individuals with excess weight compared to normal-weight controls. Fifteen participants with excess-weight (body mass index >25) and sixteen normal-weight controls (body mass index 18–25) performed an emotion-regulation task during functional magnetic resonance imaging. Participants were exposed to 24 negative affective or neutral pictures that they were instructed to Observe (neutral pictures), Maintain (sustain the emotion elicited by negative pictures) or Regulate (down-regulate the emotion provoked by negative pictures through previously trained reappraisal techniques). When instructed to regulate negative emotions by means of cognitive reappraisal, participants with excess weight displayed persistently heightened activation in the right anterior insula. Decreased responsivity was also found in right anterior insula, the orbitofrontal cortex and cerebellum during negative emotion experience in participants with excess weight. Psycho-physiological interaction analyses showed that excess-weight participants had decreased negative functional coupling between the right anterior insula and the right dlPFC, and the bilateral dmPFC during cognitive reappraisal. Our findings support contentions that excess weight is linked to an abnormal pattern of neural activation and connectivity during the experience and regulation of negative emotions, with the insula playing a key role in these alterations. We posit that ineffective regulation of emotional states contributes to the acquisition and preservation of excess weight.
Collapse
Affiliation(s)
- Trevor Steward
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III (ISCIII), Barcelona, Spain
| | - Maria Picó-Pérez
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Fernanda Mata
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| | | | - Marta Cano
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Oren Contreras-Rodríguez
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- CIBER Salud Mental (CIBERsam), Instituto Salud Carlos III (ISCIII), Barcelona, Spain
| | - Fernando Fernández-Aranda
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III (ISCIII), Barcelona, Spain
| | - Murat Yucel
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- CIBER Salud Mental (CIBERsam), Instituto Salud Carlos III (ISCIII), Barcelona, Spain
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| | - Antonio Verdejo-García
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| |
Collapse
|
31
|
Abstract
Attention-deficit/hyperactivity disorder (ADHD) and conditions involving excessive eating (eg, obesity, binge/loss of control eating) are increasingly prevalent within pediatric populations, and correlational and some longitudinal studies have suggested inter-relationships between these disorders. In addition, a number of common neural correlates are emerging across conditions, eg, functional abnormalities within circuits subserving reward processing and executive functioning. To explore this potential cross-condition overlap in neurobehavioral underpinnings, we selectively review relevant functional neuroimaging literature, specifically focusing on studies probing (i) reward processing, (ii) response inhibition, and (iii) emotional processing and regulation, and we outline 3 specific shared neurobehavioral circuits. Based on our review, we also identify gaps within the literature that would benefit from further research.
Collapse
|
32
|
Areias MFC, Prada PO. Mechanisms of insulin resistance in the amygdala: Influences on food intake. Behav Brain Res 2015; 282:209-17. [DOI: 10.1016/j.bbr.2015.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/31/2014] [Accepted: 01/05/2015] [Indexed: 12/17/2022]
|
33
|
Jarcho JM, Tanofsky-Kraff M, Nelson EE, Engel SG, Vannucci A, Field SE, Romer AL, Hannallah L, Brady SM, Demidowich AP, Shomaker LB, Courville AB, Pine DS, Yanovski JA. Neural activation during anticipated peer evaluation and laboratory meal intake in overweight girls with and without loss of control eating. Neuroimage 2015; 108:343-53. [PMID: 25550068 PMCID: PMC4323624 DOI: 10.1016/j.neuroimage.2014.12.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022] Open
Abstract
The interpersonal model of loss of control (LOC) eating proposes that socially distressing situations lead to anxious states that trigger excessive food consumption. Self-reports support these links, but the neurobiological underpinnings of these relationships remain unclear. We therefore examined brain regions associated with anxiety in relation to LOC eating and energy intake in the laboratory. Twenty-two overweight and obese (BMIz: 1.9±0.4) adolescent (15.8±1.6y) girls with LOC eating (LOC+, n=10) and without LOC eating (LOC-, n=12) underwent functional magnetic resonance imaging (fMRI) during a simulated peer interaction chatroom paradigm. Immediately after the fMRI scan, girls consumed lunch ad libitum from a 10,934-kcal laboratory buffet meal with the instruction to "let yourself go and eat as much as you want." Pre-specified hypotheses regarding activation of five regions of interest were tested. Analysis of fMRI data revealed a significant group by peer feedback interaction in the ventromedial prefrontal cortex (vmPFC), such that LOC+ had less activity following peer rejection (vs. acceptance), while LOC- had increased activity (p<.005). Moreover, functional coupling between vmPFC and striatum for peer rejection (vs. acceptance) interacted with LOC status: coupling was positive for LOC+, but negative in LOC- (p<.005). Activity of fusiform face area (FFA) during negative peer feedback from high-value peers also interacted with LOC status (p<.005). A positive association between FFA activation and intake during the meal was observed among only those with LOC eating. In conclusion, overweight and obese girls with LOC eating may be distinguished by a failure to engage regions of prefrontal cortex implicated in emotion regulation in response to social distress. The relationship between FFA activation and food intake supports the notion that heightened sensitivity to incoming interpersonal cues and perturbations in socio-emotional neural circuits may lead to overeating in order to cope with negative affect elicited by social discomfort in susceptible youth.
Collapse
Affiliation(s)
- Johanna M Jarcho
- Section on Development and Affective Neuroscience, National Institute of Mental Health, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg 15K, Bethesda, MD 20892, USA
| | - Marian Tanofsky-Kraff
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, 10 Center Dr, Bethesda, MD 20892, USA.
| | - Eric E Nelson
- Section on Development and Affective Neuroscience, National Institute of Mental Health, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg 15K, Bethesda, MD 20892, USA
| | - Scott G Engel
- Neuropsychiatric Research Institute and University of North Dakota School of Medicine and Health Sciences, 700 1st Ave S, Fargo, ND 58103, USA
| | - Anna Vannucci
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, 10 Center Dr, Bethesda, MD 20892, USA
| | - Sara E Field
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, 10 Center Dr, Bethesda, MD 20892, USA
| | - Adrienne L Romer
- Section on Development and Affective Neuroscience, National Institute of Mental Health, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg 15K, Bethesda, MD 20892, USA
| | - Louise Hannallah
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, 10 Center Dr, Bethesda, MD 20892, USA
| | - Sheila M Brady
- Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, 10 Center Dr, Bethesda, MD 20892, USA
| | - Andrew P Demidowich
- Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, 10 Center Dr, Bethesda, MD 20892, USA
| | - Lauren B Shomaker
- Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, 10 Center Dr, Bethesda, MD 20892, USA
| | - Amber B Courville
- Nutrition Department, Clinical Center, NIH, DHHS, 10 Center Dr, Bethesda, MD 20892, USA
| | - Daniel S Pine
- Section on Development and Affective Neuroscience, National Institute of Mental Health, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg 15K, Bethesda, MD 20892, USA
| | - Jack A Yanovski
- Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, 10 Center Dr, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Contoreggi C. Corticotropin releasing hormone and imaging, rethinking the stress axis. Nucl Med Biol 2014; 42:323-39. [PMID: 25573209 DOI: 10.1016/j.nucmedbio.2014.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 11/25/2022]
Abstract
The stress system provides integration of both neurochemical and somatic physiologic functions within organisms as an adaptive mechanism to changing environmental conditions throughout evolution. In mammals and primates the complexity and sophistication of these systems have surpassed other species in triaging neurochemical and physiologic signaling to maximize chances of survival. Corticotropin releasing hormone (CRH) and its related peptides and receptors have been identified over the last three decades and are fundamental molecular initiators of the stress response. They are crucial in the top down regulatory cascade over a myriad of neurochemical, neuroendocrine and sympathetic nervous system events. From neuroscience, we've seen that stress activation impacts behavior, endocrine and somatic physiology and influences neurochemical events that one can capture in real time with current imaging technologies. To delineate these effects one can demonstrate how the CRH neuronal networks infiltrate critical cognitive, emotive and autonomic regions of the central nervous system (CNS) with somatic effects. Abundant preclinical and clinical studies show inter-regulatory actions of CRH with multiple neurotransmitters/peptides. Stress, both acute and chronic has epigenetic effects which magnify genetic susceptibilities to alter neurochemistry; stress system activation can add critical variables in design and interpretation of basic and clinical neuroscience and related research. This review will attempt to provide an overview of the spectrum of known functions and speculative actions of CRH and stress responses in light of imaging technology and its interpretation. Metabolic and neuroreceptor positron emission/single photon tomography (PET/SPECT), functional magnetic resonance imaging (fMRI), anatomic MRI, diffusion tensor imaging (DTI), and proton magnetic resonance spectroscopy (pMRS) are technologies that can delineate basic mechanisms of neurophysiology and pharmacology. Stress modulates the myriad of neurochemical and networks within and controlled through the central and peripheral nervous system and the effects of stress activation on imaging will be highlighted.
Collapse
Affiliation(s)
- Carlo Contoreggi
- Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224.
| |
Collapse
|
35
|
Ulrich-Lai YM, Ryan KK. Neuroendocrine circuits governing energy balance and stress regulation: functional overlap and therapeutic implications. Cell Metab 2014; 19:910-25. [PMID: 24630812 PMCID: PMC4047143 DOI: 10.1016/j.cmet.2014.01.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significant comorbidities between obesity-related metabolic disease and stress-related psychological disorders suggest important functional interactions between energy balance and brain stress integration. Largely overlapping neural circuits control these systems, and this anatomical arrangement optimizes opportunities for mutual influence. Here we first review the current literature identifying effects of metabolic neuroendocrine signals on stress regulation, and vice versa. Next, the contributions of reward-driven food intake to these metabolic and stress interactions are discussed. Lastly, we consider the interrelationships between metabolism, stress, and reward in light of their important implications in the development of therapies for metabolism- or stress-related disease.
Collapse
Affiliation(s)
- Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Karen K Ryan
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA.
| |
Collapse
|
36
|
Lawson EA, Holsen LM, DeSanti R, Santin M, Meenaghan E, Herzog DB, Goldstein JM, Klibanski A. Increased hypothalamic-pituitary-adrenal drive is associated with decreased appetite and hypoactivation of food-motivation neurocircuitry in anorexia nervosa. Eur J Endocrinol 2013; 169:639-47. [PMID: 23946275 PMCID: PMC3807591 DOI: 10.1530/eje-13-0433] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Corticotrophin-releasing hormone (CRH)-mediated hypercortisolemia has been demonstrated in anorexia nervosa (AN), a psychiatric disorder characterized by food restriction despite low body weight. While CRH is anorexigenic, downstream cortisol stimulates hunger. Using a food-related functional magnetic resonance imaging (fMRI) paradigm, we have demonstrated hypoactivation of brain regions involved in food motivation in women with AN, even after weight recovery. The relationship between hypothalamic-pituitary-adrenal (HPA) axis dysregulation and appetite and the association with food-motivation neurocircuitry hypoactivation are unknown in AN. We investigated the relationship between HPA activity, appetite, and food-motivation neurocircuitry hypoactivation in AN. DESIGN Cross-sectional study of 36 women (13 AN, ten weight-recovered AN (ANWR), and 13 healthy controls (HC)). METHODS Peripheral cortisol and ACTH levels were measured in a fasting state and 30, 60, and 120 min after a standardized mixed meal. The visual analog scale was used to assess homeostatic and hedonic appetite. fMRI was performed during visual processing of food and non-food stimuli to measure the brain activation pre- and post-meal. RESULTS In each group, serum cortisol levels decreased following the meal. Mean fasting, 120 min post-meal, and nadir cortisol levels were high in AN vs HC. Mean postprandial ACTH levels were high in ANWR compared with HC and AN subjects. Cortisol levels were associated with lower fasting homeostatic and hedonic appetite, independent of BMI and depressive symptoms. Cortisol levels were also associated with between-group variance in activation in the food-motivation brain regions (e.g. hypothalamus, amygdala, hippocampus, orbitofrontal cortex, and insula). CONCLUSIONS HPA activation may contribute to the maintenance of AN by the suppression of appetitive drive.
Collapse
Affiliation(s)
- Elizabeth A. Lawson
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Laura M. Holsen
- Division of Women’s Health, Department of Medicine, and Department of Psychiatry, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02120
| | - Rebecca DeSanti
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - McKale Santin
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Erinne Meenaghan
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - David B. Herzog
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Jill M. Goldstein
- Division of Women’s Health, Department of Medicine, and Department of Psychiatry, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02120
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
37
|
Horstmann A, Kovacs P, Kabisch S, Boettcher Y, Schloegl H, Tönjes A, Stumvoll M, Pleger B, Villringer A. Common genetic variation near MC4R has a sex-specific impact on human brain structure and eating behavior. PLoS One 2013; 8:e74362. [PMID: 24066140 PMCID: PMC3774636 DOI: 10.1371/journal.pone.0074362] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 08/01/2013] [Indexed: 12/03/2022] Open
Abstract
Obesity is associated with genetic and environmental factors but the underlying mechanisms remain poorly understood. Recent genome-wide association studies (GWAS) identified obesity- and type 2 diabetes-associated genetic variants located within or near genes that modulate brain activity and development. Among the top hits is rs17782313 near MC4R, encoding for the melanocortin-4-receptor, which is expressed in brain regions that regulate eating. Here, we hypothesized rs17782313-associated changes in human brain regions that regulate eating behavior. Therefore, we examined effects of common variants at rs17782313 near MC4R on brain structure and eating behavior. Only in female homozygous carriers of the risk allele we found significant increases of gray matter volume (GMV) in the right amygdala, a region known to influence eating behavior, and the right hippocampus, a structure crucial for memory formation and learning. Further, we found bilateral increases in medial orbitofrontal cortex, a multimodal brain structure encoding the subjective value of reinforcers, and bilateral prefrontal cortex, a higher order regulation area. There was no association between rs17782313 and brain structure in men. Moreover, among female subjects only, we observed a significant increase of ‘disinhibition’, and, more specifically, on ‘emotional eating’ scores of the Three Factor Eating Questionnaire in carriers of the variant rs17782313’s risk allele. These findings suggest that rs17782313’s effect on eating behavior is mediated by central mechanisms and that these effects are sex-specific.
Collapse
Affiliation(s)
- Annette Horstmann
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- IFB Adiposity Diseases, University of Leipzig, Germany
- * E-mail:
| | - Peter Kovacs
- IFB Adiposity Diseases, University of Leipzig, Germany
- Interdisciplinary Center of Clinical Research, University of Leipzig, Leipzig, Germany
| | | | | | | | - Anke Tönjes
- Department of Medicine, University of Leipzig, Germany
| | - Michael Stumvoll
- IFB Adiposity Diseases, University of Leipzig, Germany
- Department of Medicine, University of Leipzig, Germany
| | - Burkhard Pleger
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- IFB Adiposity Diseases, University of Leipzig, Germany
- Day Clinic of Cognitive Neurology, University of Leipzig, Germany
| | - Arno Villringer
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- IFB Adiposity Diseases, University of Leipzig, Germany
- Day Clinic of Cognitive Neurology, University of Leipzig, Germany
- Mind and Brain Institute, Berlin School of Mind and Brain, Humboldt-University, Berlin, Germany
| |
Collapse
|
38
|
Tryon MS, Carter CS, Decant R, Laugero KD. Chronic stress exposure may affect the brain's response to high calorie food cues and predispose to obesogenic eating habits. Physiol Behav 2013; 120:233-42. [PMID: 23954410 DOI: 10.1016/j.physbeh.2013.08.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/09/2013] [Accepted: 08/07/2013] [Indexed: 11/28/2022]
Abstract
Exaggerated reactivity to food cues involving calorically-dense foods may significantly contribute to food consumption beyond caloric need. Chronic stress, which can induce palatable "comfort" food consumption, may trigger or reinforce neural pathways leading to stronger reactions to highly rewarding foods. We implemented functional magnetic resonance imaging (fMRI) to assess whether chronic stress influences activation in reward, motivation and executive brain regions in response to pictures of high calorie and low calorie foods in thirty women. On separate lab visits, we also assessed food intake from a snack food buffet and circulating cortisol. In women reporting higher chronic stress (HCS), pictures of high calorie foods elicited exaggerated activity in regions of the brain involving reward, motivation, and habitual decision-making. In response to pictures of high calorie food, higher chronic stress was also associated with significant deactivation in frontal regions (BA10; BA46) linked to strategic planning and emotional control. In functional connectivity analysis, HCS strengthened connectivity between amygdala and the putamen, while LCS enhanced connectivity between amygdala and the anterior cingulate and anterior prefrontal cortex (BA10). A hypocortisolemic signature and more consumption of high calorie foods from the snack buffet were observed in the HCS group. These results suggest that persistent stress exposure may alter the brain's response to food in ways that predispose individuals to poor eating habits which, if sustained, may increase risk for obesity.
Collapse
Affiliation(s)
- Matthew S Tryon
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
39
|
Schilling TM, Ferreira de Sá DS, Westerhausen R, Strelzyk F, Larra MF, Hallschmid M, Savaskan E, Oitzl MS, Busch HP, Naumann E, Schächinger H. Intranasal insulin increases regional cerebral blood flow in the insular cortex in men independently of cortisol manipulation. Hum Brain Mapp 2013; 35:1944-56. [PMID: 23907764 DOI: 10.1002/hbm.22304] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 02/22/2013] [Accepted: 03/18/2013] [Indexed: 01/09/2023] Open
Abstract
Insulin and cortisol play a key role in the regulation of energy homeostasis, appetite, and satiety. Little is known about the action and interaction of both hormones in brain structures controlling food intake and the processing of neurovisceral signals from the gastrointestinal tract. In this study, we assessed the impact of single and combined application of insulin and cortisol on resting regional cerebral blood flow (rCBF) in the insular cortex. After standardized periods of food restriction, 48 male volunteers were randomly assigned to receive either 40 IU intranasal insulin, 30 mg oral cortisol, both, or neither (placebo). Continuous arterial spin labeling (CASL) sequences were acquired before and after pharmacological treatment. We observed a bilateral, locally distinct rCBF increase after insulin administration in the insular cortex and the putamen. Insulin effects on rCBF were present regardless of whether participants had received cortisol or not. Our results indicate that insulin, but not cortisol, affects blood flow in human brain structures involved in the regulation of eating behavior.
Collapse
Affiliation(s)
- Thomas M Schilling
- Institute of Psychobiology, Division of Clinical Psychophysiology, University of Trier, Trier, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Stress as a common risk factor for obesity and addiction. Biol Psychiatry 2013; 73:827-35. [PMID: 23541000 PMCID: PMC3658316 DOI: 10.1016/j.biopsych.2013.01.032] [Citation(s) in RCA: 354] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/23/2013] [Accepted: 01/26/2013] [Indexed: 11/23/2022]
Abstract
Stress is associated with obesity, and the neurobiology of stress overlaps significantly with that of appetite and energy regulation. This review will discuss stress, allostasis, the neurobiology of stress and its overlap with neural regulation of appetite, and energy homeostasis. Stress is a key risk factor in the development of addiction and in addiction relapse. High levels of stress changes eating patterns and augments consumption of highly palatable (HP) foods, which in turn increases incentive salience of HP foods and allostatic load. The neurobiological mechanisms by which stress affects reward pathways to potentiate motivation and consumption of HP foods as well as addictive drugs is discussed. With enhanced incentive salience of HP foods and overconsumption of these foods, there are adaptations in stress and reward circuits that promote stress-related and HP food-related motivation as well as concomitant metabolic adaptations, including alterations in glucose metabolism, insulin sensitivity, and other hormones related to energy homeostasis. These metabolic changes in turn might also affect dopaminergic activity to influence food motivation and intake of HP foods. An integrative heuristic model is proposed, wherein repeated high levels of stress alter the biology of stress and appetite/energy regulation, with both components directly affecting neural mechanisms contributing to stress-induced and food cue-induced HP food motivation and engagement in overeating of such foods to enhance risk of weight gain and obesity. Future directions in research are identified to increase understanding of the mechanisms by which stress might increase risk of weight gain and obesity.
Collapse
|
41
|
Volkow ND, Wang GJ, Tomasi D, Baler RD. The addictive dimensionality of obesity. Biol Psychiatry 2013; 73:811-8. [PMID: 23374642 PMCID: PMC4827347 DOI: 10.1016/j.biopsych.2012.12.020] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/10/2012] [Accepted: 12/29/2012] [Indexed: 12/18/2022]
Abstract
Our brains are hardwired to respond and seek immediate rewards. Thus, it is not surprising that many people overeat, which in some can result in obesity, whereas others take drugs, which in some can result in addiction. Though food intake and body weight are under homeostatic regulation, when highly palatable food is available, the ability to resist the urge to eat hinges on self-control. There is no homeostatic regulator to check the intake of drugs (including alcohol); thus, regulation of drug consumption is mostly driven by self-control or unwanted effects (i.e., sedation for alcohol). Disruption in both the neurobiological processes that underlie sensitivity to reward and those that underlie inhibitory control can lead to compulsive food intake in some individuals and compulsive drug intake in others. There is increasing evidence that disruption of energy homeostasis can affect the reward circuitry and that overconsumption of rewarding food can lead to changes in the reward circuitry that result in compulsive food intake akin to the phenotype seen with addiction. Addiction research has produced new evidence that hints at significant commonalities between the neural substrates underlying the disease of addiction and at least some forms of obesity. This recognition has spurred a healthy debate to try and ascertain the extent to which these complex and dimensional disorders overlap and whether or not a deeper understanding of the crosstalk between the homeostatic and reward systems will usher in unique opportunities for prevention and treatment of both obesity and drug addiction.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
42
|
Volkow ND, Wang GJ, Tomasi D, Baler RD. Obesity and addiction: neurobiological overlaps. Obes Rev 2013; 14:2-18. [PMID: 23016694 PMCID: PMC4827343 DOI: 10.1111/j.1467-789x.2012.01031.x] [Citation(s) in RCA: 506] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 12/14/2022]
Abstract
Drug addiction and obesity appear to share several properties. Both can be defined as disorders in which the saliency of a specific type of reward (food or drug) becomes exaggerated relative to, and at the expense of others rewards. Both drugs and food have powerful reinforcing effects, which are in part mediated by abrupt dopamine increases in the brain reward centres. The abrupt dopamine increases, in vulnerable individuals, can override the brain's homeostatic control mechanisms. These parallels have generated interest in understanding the shared vulnerabilities between addiction and obesity. Predictably, they also engendered a heated debate. Specifically, brain imaging studies are beginning to uncover common features between these two conditions and delineate some of the overlapping brain circuits whose dysfunctions may underlie the observed deficits. The combined results suggest that both obese and drug-addicted individuals suffer from impairments in dopaminergic pathways that regulate neuronal systems associated not only with reward sensitivity and incentive motivation, but also with conditioning, self-control, stress reactivity and interoceptive awareness. In parallel, studies are also delineating differences between them that centre on the key role that peripheral signals involved with homeostatic control exert on food intake. Here, we focus on the shared neurobiological substrates of obesity and addiction.
Collapse
Affiliation(s)
- N D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|