1
|
Ontiveros-Ángel P, Vega-Torres JD, Simon TB, Williams V, Inostroza-Nives Y, Alvarado-Crespo N, Gonzalez YV, Pompolius M, Katzka W, Lou J, Sharafeddin F, De la Peña I, Dong T, Gupta A, Viet CT, Febo M, Obenaus A, Nair A, Figueroa JD. Early-life obesogenic environment integrates immunometabolic and epigenetic signatures governing neuroinflammation. Brain Behav Immun Health 2024; 42:100879. [PMID: 39430879 PMCID: PMC11490928 DOI: 10.1016/j.bbih.2024.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024] Open
Abstract
Childhood overweight/obesity is associated with stress-related psychopathology, yet the pathways connecting childhood obesity to stress susceptibility are poorly understood. We employed a systems biology approach with 62 adolescent Lewis rats fed a Western-like high-saturated fat diet (WD, 41% kcal from fat) or a control diet (CD, 13% kcal from fat). A subset of rats underwent a 31-day model of predator exposures and social instability (PSS). Effects were assessed using behavioral tests, DTI (diffusion tensor imaging), NODDI (neurite orientation dispersion and density imaging), 16S rRNA gene sequencing for gut microbiome profiling, hippocampal microglia analysis, and targeted gene methylation. Parallel experiments on human microglia cells (HMC3) examined how palmitic acid influences cortisol-related inflammatory responses. Rats exposed to WD and PSS exhibited deficits in sociability, increased fear/anxiety-like behaviors, food consumption, and body weight. WD/PSS altered hippocampal microstructure (subiculum, CA1, dentate gyrus), and microbiome analysis showed a reduced abundance of members of the phylum Firmicutes. WD/PSS synergistically promoted neuroinflammatory changes in hippocampal microglia, linked with microbiome shifts and altered Fkbp5 expression/methylation. In HMC3, palmitate disrupted cortisol responses, affecting morphology, phagocytic markers, and cytokine release, partially mediated by FKBP5. This study identifies gene-environment interactions that influence microglia biology and may contribute to the connection between childhood obesity and stress-related psychopathology later in life.
Collapse
Affiliation(s)
- Perla Ontiveros-Ángel
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Julio David Vega-Torres
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Timothy B. Simon
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Vivianna Williams
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Yaritza Inostroza-Nives
- Department of Biochemistry and Pharmacology, San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Nashareth Alvarado-Crespo
- Department of Biochemistry and Pharmacology, San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Yarimar Vega Gonzalez
- Department of Biochemistry and Pharmacology, San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Marjory Pompolius
- Translational Research Imaging Laboratory, Department of Psychiatry, Department of Neuroscience, College of Medicine, University of Florida Health, Gainesville, FL, USA
| | - William Katzka
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA Microbiome Center, University of California, Los Angeles, CA, USA
| | - John Lou
- Loma Linda University Health School of Behavioral Health, Loma Linda, CA, USA
| | - Fransua Sharafeddin
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Ike De la Peña
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA, USA
| | - Tien Dong
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA Microbiome Center, University of California, Los Angeles, CA, USA
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA Microbiome Center, University of California, Los Angeles, CA, USA
| | - Chi T. Viet
- Department of Oral & Maxillofacial Surgery, Loma Linda University Health School of Dentistry, Loma Linda, CA, USA
| | - Marcelo Febo
- Translational Research Imaging Laboratory, Department of Psychiatry, Department of Neuroscience, College of Medicine, University of Florida Health, Gainesville, FL, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Aarti Nair
- Department of Psychology, Loma Linda University, Loma Linda, CA, USA
| | - Johnny D. Figueroa
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
2
|
Kim KY, Kim E, Lee JY. Impact of amyloid and cardiometabolic risk factors on prognostic capacity of plasma neurofilament light chain for neurodegeneration. Alzheimers Res Ther 2024; 16:202. [PMID: 39267169 PMCID: PMC11397040 DOI: 10.1186/s13195-024-01564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Plasma neurofilament light chain (NfL) is a blood biomarker of neurodegeneration, including Alzheimer's disease. However, its usefulness may be influenced by common conditions in older adults, including amyloid-β (Aβ) deposition and cardiometabolic risk factors like hypertension, diabetes mellitus (DM), impaired kidney function, and obesity. This longitudinal observational study using the Alzheimer's Disease Neuroimaging Initiative cohort investigated how these conditions influence the prognostic capacity of plasma NfL. METHODS Non-demented participants (cognitively unimpaired or mild cognitive impairment) underwent repeated assessments including the Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog) scores, hippocampal volumes, and white matter hyperintensity (WMH) volumes at 6- or 12-month intervals. Linear mixed-effect models were employed to examine the interaction between plasma NfL and various variables of interest, such as Aβ (evaluated using Florbetapir positron emission tomography), hypertension, DM, impaired kidney function, or obesity. RESULTS Over a mean follow-up period of 62.5 months, participants with a mean age of 72.1 years (n = 720, 48.8% female) at baseline were observed. Higher plasma NfL levels at baseline were associated with steeper increases in ADAS-Cog scores and WMH volumes, and steeper decreases in hippocampal volumes over time (all p-values < 0.001). Notably, Aβ at baseline significantly enhanced the association between plasma NfL and longitudinal changes in ADAS-Cog scores (p-value 0.005) and hippocampal volumes (p-value 0.004). Regarding ADAS-Cog score and WMH volume, the impact of Aβ was more prominent in cognitively unimpaired than in mild cognitive impairment. Hypertension significantly heightened the association between plasma NfL and longitudinal changes in ADAS-Cog scores, hippocampal volumes, and WMH volumes (all p-values < 0.001). DM influenced the association between plasma NfL and changes in ADAS-Cog scores (p-value < 0.001) without affecting hippocampal and WMH volumes. Impaired kidney function did not significantly alter the association between plasma NfL and longitudinal changes in any outcome variables. Obesity heightened the association between plasma NfL and changes in hippocampal volumes only (p-value 0.026). CONCLUSION This study suggests that the prognostic capacity of plasma NfL may be amplified in individuals with Aβ or hypertension. This finding emphasizes the importance of considering these factors in the NfL-based prognostic model for neurodegeneration in non-demented older adults.
Collapse
Affiliation(s)
- Keun You Kim
- Department of Psychiatry, Seoul Metropolitan Government - Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061, Republic of Korea
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul Metropolitan Government - Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061, Republic of Korea.
| |
Collapse
|
3
|
Mirón Jiménez N, García Pallero MÁ, Ortiz Alonso CL, González Moldes C, Ferreras García C, Álvarez Fernández B. Comparison between the use of subdural and subgaleal drainage in treatment of chronic subdural hematoma. NEUROCIRUGIA (ENGLISH EDITION) 2024; 35:241-246. [PMID: 38972390 DOI: 10.1016/j.neucie.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/30/2024] [Accepted: 05/19/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND AND OBJECTIVES Chronic subdural hematoma (CSDH) is one of the most common pathologies in our daily practice. The standard treatment is the evacuation making a burr-hole and placement of a subdural drainage, which has shown to decrease its recurrence. However, this procedure can entail risks such as parenchymal damage, infection, or the onset of seizures, prompting the consideration of subgaleal drainage as an alternative. Our objective is to compare the use of subdural and subgaleal drainage in a cohort of patients undergoing intervention for CSDH, as well as to analyze the differences in complication rates and recurrence between the two groups. METHODOLOGY A retrospective analytical observational study was conducted, analyzing 152 patients diagnosed with CSDH who underwent intervention at our center from January 2020 to April 2022. Patients in whom drainage was not placed were excluded. In all patients, a burr-hole was performed and the type of drainage was chosen by the neurosurgeon. RESULTS Out of the 152 patients, subdural drainage was placed in 80 cases (52.63%), while subgaleal drainage was used in 72 cases (47.37%). There were no significant differences in the recurrence rate (30% in the subdural drainage group vs. 20.83% in the subgaleal drainage group; P = .134) or in the complication rate (7.5% in the subdural drainage group vs. 5.5% in the subgaleal drainage group; P = .749). CONCLUSIONS Subgaleal drainage shows similar clinical outcomes with a recurrence and complication rate comparable to subdural drainage, suggesting it as a safe and effective alternative to subdural drainage in the treatment of CSDH.
Collapse
Affiliation(s)
- Noelia Mirón Jiménez
- Servicio Neurocirugía, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain.
| | | | | | - Celia González Moldes
- Servicio Neurocirugía, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | | | | |
Collapse
|
4
|
Li YX, Guo W, Chen RX, Lv XR, Li Y. The relationships between obesity and epilepsy: A systematic review with meta-analysis. PLoS One 2024; 19:e0306175. [PMID: 39121110 PMCID: PMC11315312 DOI: 10.1371/journal.pone.0306175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/12/2024] [Indexed: 08/11/2024] Open
Abstract
OBJECTIVE There is ongoing debate regarding the association between epilepsy and obesity. Thus, the aim of this study was to examine the correlation between epilepsy and obesity. METHOD This study adhered to the PRISMA guidelines for systematic reviews and meta-analyses. On The Prospero website, this study has been successfully registered (CRD42023439530), searching electronic databases from the Cochr-ane Library, PubMed, Web of Sciences and Embase until February 10, 2024.The search keywords included "Epilepsy", "Obesity", "Case-Control Studies", "cohort studies", "Randomized Controlled Trial" and "Cross-Sectional Studies". The medical subject headings(MeSH) of PubMed was utilized to search for relevant subject words and free words, and a comprehensive search strategy was developed. Two reviewers conducted article screening, data extraction and bias risk assessment in strict accordance with the predefined criteria for including and excluding studies. The predefined inclusion criteria were as follows: 1) Inclusion of case-control, cohort, randomized controlled trial, and cross-sectional studies; 2) Segregation of subjects into epileptic patients and healthy controls; 3)Obesity as the outcome measure; 4) Availability of comprehensive data; 5) Publication in English. The exclusion criteria were as follows: 1) Exclusion of animal experiments, reviews, and other types of studies; 2) Absence of a healthy control group; 3) Incomplete data; 4) Unextractable or unconvertible data; 5) Low quality, indicated by an Agency for Healthcare Research and Quality(AHRQ) score of 5 or lower,or a Newcastle-Ottawa Scale (NOS) score less than 3. The subjects included in the study included adults and children, and the diagnostic criteria for obesity were used at different ages. In this study, obesity was defined as having a body mass index(BMI) of 25 kg/m2 or higher in adults and being above the 85th percentile of BMI for age in children. We used obesity as an outcome measure for meta-analysis using RevMan, version 5.3. RESULTS A meta-analysis was conducted on a total of 17 clinical studies, which involved 5329 patients with epilepsy and 480837 healthy controls. These studies were selected from a pool of 1497 articles obtained from four electronic databases mentioned earlier. Duplicate studies were removed based on the search strategies employed. No significant heterogeneity was observed in the outcome measure of obesity in epileptic patients compared with healthy controls(p = 0.01,I2 = 49%). Therefore, a fixed effects model was utilized in this study. The findings revealed a significant difference in obesity prevalence between patients with epilepsy and healthy controls(OR = 1.28, 95%CI: 1.20-1.38, p<0.01). CONCLUSION The results of this meta-analysis indicate that epilepsy patients are more prone to obesity than healthy people, so we need to pay attention to the problem of post-epilepsy obesity clinically. Currently, there is a scarcity of largescale prospective studies. Additional clinical investigations are warranted to delve deeper into whether obesity is a comorbidity of epilepsy and whether obesity can potentially trigger epilepsy.
Collapse
Affiliation(s)
- Yu-xuan Li
- Clinical Medical School, Dali University, Dali, China
| | - Wang Guo
- Clinical Medical School, Dali University, Dali, China
| | - Ruo-xia Chen
- Clinical Medical School, Dali University, Dali, China
| | - Xue-rui Lv
- Clinical Medical School, Dali University, Dali, China
| | - Yun Li
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
| |
Collapse
|
5
|
Mattson MP, Leak RK. The hormesis principle of neuroplasticity and neuroprotection. Cell Metab 2024; 36:315-337. [PMID: 38211591 DOI: 10.1016/j.cmet.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Animals live in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems have evolved stress-responsive signaling pathways that enable them to not only withstand environmental challenges but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle, in which single or repeated exposures to low levels of environmental challenges improve cellular and organismal fitness and raise the probability of survival. Hormetic principles have been most intensively studied in physical exercise but apply to numerous other challenges known to improve human health (e.g., intermittent fasting, cognitive stimulation, and dietary phytochemicals). Here we review the physiological mechanisms underlying hormesis-based neuroplasticity and neuroprotection. Approaching natural resilience from the lens of hormesis may reveal novel methods for optimizing brain function and lowering the burden of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Bosmans J, Gommeren H, Zu Eulenburg P, Gilles A, Mertens G, Van Ombergen A, Cras P, Engelborghs S, Van Rompaey V. Is vestibular function related to human hippocampal volume? J Vestib Res 2024; 34:3-13. [PMID: 37927291 DOI: 10.3233/ves-230076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
BACKGROUND Recent studies implicate the effect of vestibular loss on cognitive decline, including hippocampal volume loss. As hippocampal atrophy is an important biomarker of Alzheimer's disease, exploring vestibular dysfunction as a risk factor for dementia and its role in hippocampal atrophy is of interest. OBJECTIVE To replicate previous literature on whole-brain and hippocampal volume in semicircular canal dysfunction (bilateral vestibulopathy; BV) and explore the association between otolith function and hippocampal volume. METHODS Hippocampal and whole-brain MRI volumes were compared in adults aged between 55 and 83 years. Participants with BV (n = 16) were compared to controls individually matched on age, sex, and hearing status (n = 16). Otolith influence on hippocampal volume in preserved semicircular canal function was evaluated (n = 34). RESULTS Whole-brain and targeted hippocampal approaches using volumetric and surface-based measures yielded no significant differences when comparing BV to controls. Binary support vector machines were unable to classify inner ear health status above chance level. Otolith parameters were not associated with hippocampal volume in preserved semicircular canal function. CONCLUSIONS No significant differences in whole-brain or hippocampal volume were found when comparing BV participants with healthy controls. Saccular parameters in subjects with preserved semicircular canal function were not associated with hippocampal volume changes.
Collapse
Affiliation(s)
- Joyce Bosmans
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
| | - Hanne Gommeren
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- University Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Peter Zu Eulenburg
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
- Institute for Neuroradiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Annick Gilles
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- University Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Education, Health and Social Work, University College Ghent, Ghent, Belgium
| | - Griet Mertens
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- University Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Angelique Van Ombergen
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- Discipline Lead for Life Sciences, SciSpacE Team, Directorate for Human Spaceflight and Robotic Exploration Programmes, European Space Agency
| | - Patrick Cras
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital and Born-Bunge Institute, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Department of Neurology, Universitair Ziekenhuis Brussel and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- University Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
7
|
Jensen DE, Ebmeier KP, Akbaraly T, Jansen MG, Singh-Manoux A, Kivimäki M, Zsoldos E, Klein-Flügge MC, Suri S. The association of longitudinal diet and waist-to-hip ratio from midlife to old age with hippocampus connectivity and memory in old age: a cohort study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.570778. [PMID: 38168259 PMCID: PMC10760001 DOI: 10.1101/2023.12.12.570778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Epidemiological studies suggest lifestyle factors may reduce the risk of dementia. However, few studies have examined the association of diet and waist-to-hip ratio with hippocampus connectivity. In the Whitehall II Imaging Sub-study, we examined longitudinal changes in diet quality in 512 participants and waist-to-hip ratio in 665 participants. Diet quality was measured using the Alternative Health Eating Index-2010 assessed three times across 11 years between ages 48 and 60 years, and waist-to-hip ratio five times over 21 years between ages 48 and 68 years. Brain imaging and cognitive tests were performed at age 70±5 years. We measured white matter using diffusion tensor imaging and hippocampal functional connectivity using resting-state functional magnetic resonance imaging. In addition to associations of diet and waist-to-hip ratio with brain imaging measures, we tested whether associations between diet, waist-to-hip ratio and cognitive performance were mediated by brain connectivity. We found better diet quality in midlife and improvements in diet over mid-to-late life were associated with higher hippocampal functional connectivity to the occipital lobe and cerebellum, and better white matter integrity as measured by higher fractional anisotropy and lower diffusivity. Higher waist-to-hip ratio in midlife was associated with higher mean and radial diffusivity and lower fractional anisotropy in several tracts including the inferior longitudinal fasciculus and cingulum. Associations between midlife waist-to-hip ratio, working memory and executive function were partially mediated by radial diffusivity. All associations were independent of age, sex, education, and physical activity. Our findings highlight the importance of maintaining a good diet and a healthy waist-to-hip ratio in midlife to maintain brain health in later life. Future interventional studies for the improvement of dietary and metabolic health should target midlife for the prevention of cognitive decline in old age.
Collapse
|
8
|
Ahvenjärvi H, Niiranen M, Simula S, Hämäläinen P, Surcel HM, Remes AM, Ryytty M, Krüger J. Fatigue and health-related quality of life depend on the disability status and clinical course in RRMS. Mult Scler Relat Disord 2023; 77:104861. [PMID: 37442075 DOI: 10.1016/j.msard.2023.104861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/01/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Fatigue is a prominent and disabling symptom of multiple sclerosis (MS), impairing quality of life. The disease course of relapsing remitting MS (RRMS) is individual. OBJECTIVES We aimed to study the effects of demographic and clinical characteristics, as well as lifestyle risk factors on experienced fatigue and health-related quality of life (HRQoL) among RRMS patients, comparing benign and severe disease types. METHODS Altogether 198 Finnish RRMS patients were recruited for this real-life cross-sectional study. Self-reported questionnaires were used to evaluate fatigue and HRQoL by using Fatigue Scale for Motor and Cognitive Functions and 15D health-related quality of life questionnaires. Patients were categorized into subgroups based on the current disability status measured by the Expanded Disability Status Scale (EDSS) cut-off value of 4.5, and by retrospective clinical course divided into benign and aggressive RRMS. RESULTS All in all, 73% of the RRMS patients suffered from fatigue. Lower HRQoL had a strong correlation with more prominent fatigue (r = -0.719). Higher EDSS was associated with more prominent fatigue and lower HRQoL in the whole RRMS cohort. Older age at the disease onset was associated with more prominent fatigue and decreased HRQoL in the groups of aggressive RRMS and EDSS > 4.5. In the groups of EDSS ≤ 4.5 and benign RRMS, a higher number of used disease-modifying treatments (DMTs) was associated with more pronounced fatigue and reduced HRQoL. In addition, higher BMI was associated with lower HRQoL in patients with benign RRMS. Side effects (45 %) and lack of efficacy (26 %) were the most common reasons for discontinuing a DMT. Cessation due to side effects was the only reason that was significantly associated with more prominent fatigue and lower HRQoL. Use of nicotine products, gender, or disease duration were not associated with fatigue or HRQoL. CONCLUSIONS Individuals with severe RRMS and higher EDSS scores are more prone to experience fatigue and lower HRQoL. In addition, fatigue and lower HRQoL are more commonly observed among RRMS patients with older age at disease onset and in those with multiple DMT switches.
Collapse
Affiliation(s)
- Henrik Ahvenjärvi
- Research Unit of Clinical Medicine, Neurology, University of Oulu, P.O. Box 5000, FI-90014 University of Oulu, Finland
| | - Marja Niiranen
- Neuro Center, Neurology Outpatient Clinic, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland; Institute of Clinical Medicine-Neurology, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Sakari Simula
- Southern Savo Hospital District, Department of Neurology, Porrassalmenkatu 35-37, FI-50100 Mikkeli, Finland
| | - Päivi Hämäläinen
- Masku Neurological Rehabilitation Centre, Vaihemäentie 10, FI-21250 Masku, Finland; Department of Psychology, FI-20014 University of Turku, Finland
| | - Heljä-Marja Surcel
- Faculty of Medicine, University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland; Biobank Borealis of Northern Finland, Northern Ostrobothnia Hospital District, P.O. Box 10, FI-90029 Oulu University Hospital, Finland
| | - Anne M Remes
- Research Unit of Clinical Medicine, Neurology, University of Oulu, P.O. Box 5000, FI-90014 University of Oulu, Finland; Medical Research Center, Oulu University Hospital, P.O. Box 10, FI-90029 OYS, Oulu, Finland; Clinical Neurosciences, P.O. Box 4, Yliopistonkatu 3, FI-00014 University of Helsinki, Finland
| | - Mervi Ryytty
- Research Unit of Clinical Medicine, Neurology, University of Oulu, P.O. Box 5000, FI-90014 University of Oulu, Finland; Medical Research Center, Oulu University Hospital, P.O. Box 10, FI-90029 OYS, Oulu, Finland; Neurocenter, Neurology, Oulu University Hospital, P.O. Box 10, FI-90029 OYS, Oulu, Finland
| | - Johanna Krüger
- Research Unit of Clinical Medicine, Neurology, University of Oulu, P.O. Box 5000, FI-90014 University of Oulu, Finland; Medical Research Center, Oulu University Hospital, P.O. Box 10, FI-90029 OYS, Oulu, Finland; Neurocenter, Neurology, Oulu University Hospital, P.O. Box 10, FI-90029 OYS, Oulu, Finland.
| |
Collapse
|
9
|
Kilpatrick LA, An HM, Pawar S, Sood R, Gupta A. Neuroimaging Investigations of Obesity: a Review of the Treatment of Sex from 2010. Curr Obes Rep 2023; 12:163-174. [PMID: 36933153 PMCID: PMC10250271 DOI: 10.1007/s13679-023-00498-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/19/2023]
Abstract
PURPOSE OF REVIEW To summarize the results of adult obesity neuroimaging studies (structural, resting-state, task-based, diffusion tensor imaging) published from 2010, with a focus on the treatment of sex as an important biological variable in the analysis, and identify gaps in sex difference research. RECENT FINDINGS Neuroimaging studies have shown obesity-related changes in brain structure, function, and connectivity. However, relevant factors such as sex are often not considered. We conducted a systematic review and keyword co-occurrence analysis. Literature searches identified 6281 articles, of which 199 met inclusion criteria. Among these, only 26 (13%) considered sex as an important variable in the analysis, directly comparing the sexes (n = 10; 5%) or providing single-sex/disaggregated data (n = 16, 8%); the remaining studies controlled for sex (n = 120, 60%) or did not consider sex in the analysis (n = 53, 27%). Synthesizing sex-based results, obesity-related parameters (e.g., body mass index, waist circumference, obese status) may be generally associated with more robust morphological alterations in men and more robust structural connectivity alterations in women. Additionally, women with obesity generally expressed increased reactivity in affect-related regions, while men with obesity generally expressed increased reactivity in motor-related regions; this was especially true under a fed state. The keyword co-occurrence analysis indicated that sex difference research was especially lacking in intervention studies. Thus, although sex differences in the brain associated with obesity are known to exist, a large proportion of the literature informing the research and treatment strategies of today has not specifically examined sex effects, which is needed to optimize treatment.
Collapse
Affiliation(s)
- Lisa A Kilpatrick
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- David Geffen School of Medicine, Goodman-Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Hyeon Min An
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- David Geffen School of Medicine, Goodman-Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Shrey Pawar
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Riya Sood
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA.
- David Geffen School of Medicine, Goodman-Luskin Microbiome Center, University of California, Los Angeles, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Chao AM, Zhou Y, Erus G, Davatzikos C, Cardel MI, Foster GD, Wadden TA. A randomized controlled trial examining the effects of behavioral weight loss treatment on hippocampal volume and neurocognition. Physiol Behav 2023; 267:114228. [PMID: 37156318 DOI: 10.1016/j.physbeh.2023.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND/PURPOSE Obesity in midlife is an established risk factor for dementia. In middle-aged adults, elevated body mass index (BMI) is associated with lower neurocognition and smaller hippocampal volumes. It is unclear whether behavioral weight loss (BWL) can improve neurocognition. The purpose of this study was to evaluate whether BWL, compared to wait list control (WLC), improved hippocampal volume and neurocognition. We also examined if baseline hippocampal volume and neurocognition were associated with weight loss. METHODS We randomly assigned women with obesity (N=61; mean±SD age=41.1±9.9 years; BMI=38.6±6.2 kg/m2; and 50.8% Black) to BWL or WLC. Participants completed assessments at baseline and follow-up including T1-weighted structural magnetic resonance imaging scans and the National Institutes of Health (NIH) Toolbox Cognition Battery. RESULTS The BWL group lost 4.7±4.9% of initial body weight at 16 to 25 weeks, which was significantly more than the WLC group which gained 0.2±3.5% (p<0.001). The BWL and WLC groups did not differ significantly in changes in hippocampal volume or neurocognition (ps>0.05). Baseline hippocampal volume and neurocognition scores were not significantly associated with weight loss (ps>0.05). CONCLUSIONS AND IMPLICATIONS Contrary to our hypothesis, we found no overall benefit of BWL relative to WLC on hippocampal volumes or cognition in young- and middle-aged women. Baseline hippocampal volume and neurocognition were not associated with weight loss.
Collapse
Affiliation(s)
- Ariana M Chao
- University of Pennsylvania School of Nursing, Department of Biobehavioral Health Sciences, Philadelphia, PA, USA; Perelman School of Medicine at the University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA.
| | - Yingjie Zhou
- University of Pennsylvania School of Nursing, Department of Biobehavioral Health Sciences, Philadelphia, PA, USA
| | - Guray Erus
- Perelman School of Medicine at the University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Center for Biomedical Image Computing and Analytics, Philadelphia, PA, USA
| | - Christos Davatzikos
- University of Pennsylvania, Center for Biomedical Image Computing and Analytics, Philadelphia, PA, USA
| | - Michelle I Cardel
- WW International, Inc., New York, New York, USA; Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Gary D Foster
- Perelman School of Medicine at the University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA; WW International, Inc., New York, New York, USA
| | - Thomas A Wadden
- Perelman School of Medicine at the University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| |
Collapse
|
11
|
Pan Y, Shen J, Cai X, Chen H, Zong G, Zhu W, Jing J, Liu T, Jin A, Wang Y, Meng X, Yuan C, Wang Y. Adherence to a healthy lifestyle and brain structural imaging markers. Eur J Epidemiol 2023:10.1007/s10654-023-00992-8. [PMID: 37060500 DOI: 10.1007/s10654-023-00992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/13/2023] [Indexed: 04/16/2023]
Abstract
Previous research has linked specific modifiable lifestyle factors to age-related cognitive decline in adults. Little is known about the potential role of an overall healthy lifestyle in brain structure. We examined the association of adherence to a healthy lifestyle with a panel of brain structural markers among 2,413 participants in PolyvasculaR Evaluation for Cognitive Impairment and vaScular Events (PRECISE) study in China and 19,822 participants in UK Biobank (UKB). A healthy lifestyle score (0-5) was constructed based on five modifiable lifestyle factors: diet, physical activity, smoking, alcohol consumption, and body mass index. Validated multimodal neuroimaging markers were derived from brain magnetic resonance imaging. In the cross-sectional analysis of PRECISE, participants who adopted four or five low-risk lifestyle factors had larger total brain volume (TBV; β = 0.12, 95% CI: - 0.02, 0.26; p-trend = 0.05) and gray matter volume (GMV; β = 0.16, 95% CI: 0.01, 0.30; p-trend = 0.05), smaller white matter hyperintensity volume (WMHV; β = - 0.35, 95% CI: - 0.50, - 0.20; p-trend < 0.001) and lower odds of lacune (Odds Ratio [OR] = 0.48, 95% CI: 0.22, 1.08; p-trend = 0.03), compared to those with zero or one low-risk factors. Meanwhile, in the prospective analysis in UKB (with a median of 7.7 years' follow-up), similar associations were observed between the number of low-risk lifestyle factors (4-5 vs. 0-1) and TBV (β = 0.22, 95% CI: 0.16, 0.28; p-trend < 0.001), GMV (β = 0.26, 95% CI: 0.21, 0.32; p-trend < 0.001), white matter volume (WMV; β = 0.08, 95% CI: 0.01, 0.15; p-trend = 0.001), hippocampus volume (β = 0.15, 95% CI: 0.08, 0.22; p-trend < 0.001), and WMHV burden (β = - 0.23, 95% CI: - 0.29, - 0.17; p-trend < 0.001). Those with four or five low-risk lifestyle factors showed approximately 2.0-5.8 years of delay in aging of brain structure. Adherence to a healthier lifestyle was associated with a lower degree of neurodegeneration-related brain structural markers in middle-aged and older adults.
Collapse
Affiliation(s)
- Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Shen
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueli Cai
- Department of Neurology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Hui Chen
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Geng Zong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanlin Zhu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
| | - Aoming Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Changzheng Yuan
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, USA.
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
12
|
Kang J, Wang Z, Cremonini E, Le Gall G, Pontifex MG, Muller M, Vauzour D, Oteiza PI. (-)-Epicatechin mitigates anxiety-related behavior in a mouse model of high fat diet-induced obesity. J Nutr Biochem 2022; 110:109158. [PMID: 36150679 DOI: 10.1016/j.jnutbio.2022.109158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 08/09/2022] [Indexed: 01/13/2023]
Abstract
Mounting evidence demonstrates that consumption of high fat diet (HFD) and subsequent development of obesity leads to alterations in cognition and mood. While obesity can affect brain function, consumption of select dietary bioactives may help prevent obesity-related cognitive decline. This study investigated the capacity of the dietary flavonoid (-)-epicatechin (EC) to mitigate HFD-induced obesity-associated alterations in memory and mood. Healthy 8-week old male C57BL/6J mice were maintained on either a control diet (10 kCal% from fat) or a HFD (45 kCal% from fat) and were supplemented with EC at 2 or 20 mg/kg body weight (B.W.) for a 24 week period. Between week 20 and 22, anxiety-related behavior, recognition memory, and spatial memory were measured. Underlying mechanisms were assessed by measuring the expression of selected genes in the hippocampus and by 16S rRNA sequencing and metabolomic analysis of the gut microbiota. 24 weeks of HFD feeding resulted in obesity, which was not affected by EC supplementation. HFD-associated increase in anxiety-related behavior was mitigated by EC in a dose-response manner and was accompanied by increased hippocampal brain-derived neurotrophic factor (BDNF), as well as partial or full restoration of glucocorticoid receptor, mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression. Higher EC dosage (20 mg/kg B.W.) also restored aberrant Lactobacillus and Enterobacter abundance altered by HFD and/or the associated obesity. Together, these results demonstrate how EC mitigates anxiety-related behaviors, revealing a connection between BDNF- and glucocorticoids-mediated signaling. Our findings link changes in the hippocampus and the gut microbiota in a context of HFD-induced obesity and anxiety.
Collapse
Affiliation(s)
- Jiye Kang
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA
| | - Ziwei Wang
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA
| | - Eleonora Cremonini
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA
| | - Gwenaelle Le Gall
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - Michael Muller
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - Patricia I Oteiza
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA.
| |
Collapse
|
13
|
Berbegal M, Tomé M, Sánchez-SanSegundo M, Zaragoza-Martí A, Hurtado-Sánchez JA. Memory function performance in individuals classified as overweight, obese, and normal weight. Front Nutr 2022; 9:932323. [PMID: 36479300 PMCID: PMC9719908 DOI: 10.3389/fnut.2022.932323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/31/2022] [Indexed: 09/06/2023] Open
Abstract
Evidence accumulated to date about the relationship between cognitive impairments and adults who are overweight and obese suggests that excess weight has a great impact on memory function. Nevertheless, most of the literature has focused only on studying the influences on working memory and episodic memory. This study aimed to examine the potential associations of clinical and anthropometric measures [body mass index (BMI), WHR, body fat, visceral fat, muscle mass, and hypertension] with six memory domains, including contextual memory, short-term visual memory, short-term memory, non-verbal memory, short-term phonological memory, and working memory, in a sample of 124 individuals classified as overweight (n = 33), obese (n = 53), and normal weight (n = 38). The results obtained showed that, after controlling for employment situations, people classified as obese had poorer short-term phonological memory and working memory than those with normal weights. Bivariate correlations showed that measures of weight, BMI, waist-hip ratio index, body fat, and visceral fat were inversely associated with memory function. However, muscle mass was not a significant predictor of memory function. Higher systolic blood pressure was also associated with worse memory function. The study provides evidence of the importance of adiposity in health and memory function.
Collapse
Affiliation(s)
- Marina Berbegal
- Department of Health Psychology, Faculty of Health Science, University of Alicante, Alicante, Spain
| | - Mario Tomé
- Department of Health Psychology, Faculty of Health Science, University of Alicante, Alicante, Spain
| | | | - Ana Zaragoza-Martí
- Department of Nursing, Faculty of Health Science University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| | | |
Collapse
|
14
|
Zhou K, Yang H, Chen R, Wang W, Qu Z. Causal relationship among obesity and body fat distribution and epilepsy subtypes. Front Neurol 2022; 13:984824. [DOI: 10.3389/fneur.2022.984824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe observational studies indicate an association between obesity and epilepsy, but it is unclear whether such an association responds to causality. The objective of this study was to determine the causal relationship between obesity and fat distribution and epilepsy subtypes based on waist circumference, hip circumference (HP), waist-hip ratio (WHR), and body mass index (BMI).MethodsA two-sample Mendelian randomization study was conducted separately for the four indicators of obesity and epilepsy and its seven subtypes, with reverse Mendelian randomization and multivariate Mendelian randomization for significant outcomes.ResultsA two-sample Mendelian randomized analysis informed us that waist circumference was a risk factor for juvenile myoclonic epilepsy (beta = 0.0299, P = 4.60 × 10−3). The increase in hip circumference increased the risk of juvenile myoclonic epilepsy and epilepsy, with effect values of 0.0283 (P = 2.01 × 10−3) and 0.0928 (P = 1.40 × 10−2), respectively. Furthermore, children with a higher BMI exhibit a higher risk of epilepsy (beta = 0.0148 P = 1.05 × 10−3). The reverse Mendelian randomization study revealed that childhood absence epilepsy increased its BMI (beta = 0.8980, P = 7.52 × 10−7), and juvenile myoclonic epilepsy increased its waist circumference (beta = 0.7322, P = 3.26 × 10−2). Multivariate Mendelian randomization revealed that an increase in hip circumference and waist-hip ratio increased the risk of juvenile myoclonic epilepsy, with an effect value of 0.1051 (P = 9.75 × 10−4) and 0.1430 (P = 3.99 × 10−3), respectively, while an increase in BMI and waist circumference instead decreased their risk, with effect values of −0.0951 (P = 3.14 × 10−2) and−0.0541 (P = 1.71 × 10−2). In contrast, multivariate Mendelian randomization for childhood absence epilepsy and epilepsy did not identify any independent risk factors.SignificanceOur findings provide novel evidence in favor of obesity as a risk factor for epilepsy and waist circumference as a risk factor for juvenile myoclonic epilepsy. Increased hip circumference confers an elevated risk of juvenile myoclonic epilepsy and epilepsy (all documented cases), and a high BMI increases the risk of childhood absence epilepsy. With this, new insights are provided into the energy metabolism of epilepsy, which supports further nutritional interventions and the search for new therapeutic targets.
Collapse
|
15
|
Zhang X, Hou X, Te L, Zhongsheng Z, Jiang J, Wu X. Mesenchymal stem cells and exosomes improve cognitive function in the aging brain by promoting neurogenesis. Front Aging Neurosci 2022; 14:1010562. [PMID: 36329874 PMCID: PMC9623286 DOI: 10.3389/fnagi.2022.1010562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Biologically speaking, normal aging is a spontaneous and inevitable process of organisms over time. It is a complex natural phenomenon that manifests itself in the form of degenerative changes in structures and the decline of functions, with diminished adaptability and resistance. Brain aging is one of the most critical biological processes that affect the physiological balance between health and disease. Age-related brain dysfunction is a severe health problem that contributes to the current aging society, and so far, there is no good way to slow down aging. Mesenchymal stem cells (MSCs) have inflammation-inhibiting and proliferation-promoting functions. At the same time, their secreted exosomes inherit the regulatory and therapeutic procedures of MSCs with small diameters, allowing high-dose injections and improved therapeutic efficiency. This manuscript describes how MSCs and their derived exosomes promote brain neurogenesis and thereby delay aging by improving brain inflammation.
Collapse
|
16
|
Glodzik L, Rusinek H, Butler T, Li Y, Storey P, Sweeney E, Osorio RS, Biskaduros A, Tanzi E, Harvey P, Woldstad C, Maloney T, de Leon MJ. Higher body mass index is associated with worse hippocampal vasoreactivity to carbon dioxide. Front Aging Neurosci 2022; 14:948470. [PMID: 36158536 PMCID: PMC9491849 DOI: 10.3389/fnagi.2022.948470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background and objectives Obesity is a risk factor for cognitive decline. Probable mechanisms involve inflammation and cerebrovascular dysfunction, leading to diminished cerebral blood flow (CBF) and cerebrovascular reactivity (CVR). The hippocampus, crucially involved in memory processing and thus relevant to many types of dementia, poses a challenge in studies of perfusion and CVR, due to its location, small size, and complex shape. We examined the relationships between body mass index (BMI) and hippocampal resting CBF and CVR to carbon dioxide (CVRCO2) in a group of cognitively normal middle-aged and older adults. Methods Our study was a retrospective analysis of prospectively collected data. Subjects were enrolled for studies assessing the role of hippocampal hemodynamics as a biomarker for AD among cognitively healthy elderly individuals (age > 50). Participants without cognitive impairment, stroke, and active substance abuse were recruited between January 2008 and November 2017 at the NYU Grossman School of Medicine, former Center for Brain Health. All subjects underwent medical, psychiatric, and neurological assessments, blood tests, and MRI examinations. To estimate CVR, we increased their carbon dioxide levels using a rebreathing protocol. Relationships between BMI and brain measures were tested using linear regression. Results Our group (n = 331) consisted of 60.4% women (age 68.8 ± 7.5 years; education 16.8 ± 2.2 years) and 39.6% men (age 70.4 ± 6.4 years; education 16.9 ± 2.4 years). Approximately 22% of them (n = 73) were obese. BMI was inversely associated with CVRCO2 (β = -0.12, unstandardized B = -0.06, 95% CI -0.11, -0.004). A similar relationship was observed after excluding subjects with diabetes and insulin resistance (β = -0.15, unstandardized B = -0.08, 95% CI -0.16, -0.000). In the entire group, BMI was more strongly related to hippocampal CVRCO2 in women (β = -0.20, unstandardized B = -0.08, 95% CI -0.13, -0.02). Discussion These findings lend support to the notion that obesity is a risk factor for hippocampal hemodynamic impairment and suggest targeting obesity as an important prevention strategy. Prospective studies assessing the effects of weight loss on brain hemodynamic measures and inflammation are warranted.
Collapse
Affiliation(s)
- Lidia Glodzik
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Henry Rusinek
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Tracy Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Pippa Storey
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Elizabeth Sweeney
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ricardo S. Osorio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| | - Adrienne Biskaduros
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Emily Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Patrick Harvey
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Christopher Woldstad
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Thomas Maloney
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Mony J. de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
17
|
Tomiga Y, Higaki Y, Anzai K, Takahashi H. Behavioral defects and downregulation of hippocampal BDNF and nNOS expression in db/db mice did not improved by chronic TGF-β2 treatment. Front Physiol 2022; 13:969480. [PMID: 36091357 PMCID: PMC9452698 DOI: 10.3389/fphys.2022.969480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological evidence suggests that there is a link between diabetes and mood disorders, such as depression and anxiety. Although peripheral or central inflammation may explain this link, the molecular mechanisms are not fully understood and few effective treatments for diabetes or mood disorders are available. In the present study, we aimed to determine whether transforming growth factor (TGF)-β2, an anti-inflammatory substance, might represent a potential therapeutic agent for diabetes-related mood behaviors. TGF-β2 expression in the hippocampus is affected by anxiolytic drugs and stress exposure, it is able to cross the blood-brain barrier, and it is as an exercise-induced physiological adipokine that regulates glucose homeostasis. Therefore, we hypothesized that a chronic TGF-β2 infusion would ameliorate diabetes-related glucose intolerance and mood dysregulation. To determine the effects of the chronic administration of TGF-β2 on diabetes, we implanted osmotic pumps containing TGF-β2 into type 2 diabetic mice (db/db mice), and age-matched non-diabetic control wild type mice and db/db mice were infused with vehicle (PBS), for 12 consecutive days. To assess anxiety-like behaviors and glucose homeostasis, the mice underwent elevated plus maze testing and intraperitoneal glucose tolerance testing. Hippocampal and perigonadal visceral white adipose tissue perigonadal white adipose tissue samples were obtained 12 days later. Contrary to our hypothesis, TGF-β2 infusion had no effect on diabetes-related glucose intolerance or diabetes-related behavioral defects, such as inactivity. In db/db mice, the expression of inflammatory markers was high in pgWAT, but not in the hippocampus, and the former was ameliorated by TGF-β2 infusion. The expression of brain-derived neurotrophic factor and neuronal nitric oxide synthase, important regulators of anxiety-like behaviors, was low in db/db mice, but TGF-β2 infusion did not affect their expression. We conclude that although TGF-β2 reduces the expression of pro-inflammatory markers in the adipose tissue of diabetic mice, it does not ameliorate their obesity or mood dysregulation.
Collapse
Affiliation(s)
- Yuki Tomiga
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- *Correspondence: Yuki Tomiga,
| | - Yasuki Higaki
- Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
- Liver Center, Saga University Hospital, Saga, Japan
| |
Collapse
|
18
|
Chen R, Cai G, Xu S, Sun Q, Luo J, Wang Y, Li M, Lin H, Liu J. Body mass index related to executive function and hippocampal subregion volume in subjective cognitive decline. Front Aging Neurosci 2022; 14:905035. [PMID: 36062154 PMCID: PMC9428252 DOI: 10.3389/fnagi.2022.905035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Objective This study aims to explore whether body mass index (BMI) level affects the executive function and hippocampal subregion volume of subjective cognitive decline (SCD). Materials and methods A total of 111 participants were included in the analysis, including SCD (38 of normal BMI, 27 of overweight and obesity) and normal cognitive control (NC) (29 of normal BMI, 17 of overweight and obesity). All subjects underwent the Chinese version of the Stroop Color-Word Test (SCWT) to measure the executive function and a high-resolution 3D T1 structural image acquisition. Two-way ANOVA was used to examine the differences in executive function and gray matter volume in hippocampal subregions under different BMI levels between the SCD and NC. Result The subdimensions of executive function in which different BMI levels interact with SCD and NC include inhibition control function [SCWT C-B reaction time(s): F (1,104) = 5.732, p = 0.018], and the hippocampal subregion volume of CA1 [F (1,99) = 8.607, p = 0.004], hippocampal tail [F (1,99) = 4.077, p = 0.046], and molecular layer [F (1,99) = 6.309, p = 0.014]. After correction by Bonferroni method, the population × BMI interaction only had a significant effect on the CA1 (p = 0.004). Further analysis found that the SCWT C-B reaction time of SCD was significantly longer than NC no matter whether it is at the normal BMI level [F (1,104) = 4.325, p = 0.040] or the high BMI level [F (1,104) = 21.530, p < 0.001], and the inhibitory control function of SCD was worse than that of NC. In the normal BMI group, gray matter volume in the hippocampal subregion (CA1) of SCD was significantly smaller than that of NC [F (1,99) = 4.938, p = 0.029]. For patients with SCD, the high BMI group had worse inhibitory control function [F (1,104) = 13.499, p < 0.001] and greater CA1 volume compared with the normal BMI group [F (1,99) = 7.619, p = 0.007]. Conclusion The BMI level is related to the inhibition control function and the gray matter volume of CA1 subregion in SCD. Overweight seems to increase the gray matter volume of CA1 in the elderly with SCD, but it is not enough to compensate for the damage to executive function caused by the disease. These data provide new insights into the relationship between BMI level and executive function of SCD from the perspective of imaging.
Collapse
Affiliation(s)
- Ruilin Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guiyan Cai
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shurui Xu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qianqian Sun
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jia Luo
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yajun Wang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ming Li
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Lin
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiao Liu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Orthopedics and Traumatology of Traditional Chinese Medicine and Rehabilitation, Ministry of Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
19
|
Ridderinkhof KR, Krugers HJ. Horizons in Human Aging Neuroscience: From Normal Neural Aging to Mental (Fr)Agility. Front Hum Neurosci 2022; 16:815759. [PMID: 35845248 PMCID: PMC9277589 DOI: 10.3389/fnhum.2022.815759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
While aging is an important risk factor for neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, age-related cognitive decline can also manifest without apparent neurodegenerative changes. In this review, we discuss molecular, cellular, and network changes that occur during normal aging in the absence of neurodegenerative disease. Emerging findings reveal that these changes include metabolic alterations, oxidative stress, DNA damage, inflammation, calcium dyshomeostasis, and several other hallmarks of age-related neural changes that do not act on their own, but are often interconnected and together may underlie age-related alterations in brain plasticity and cognitive function. Importantly, age-related cognitive decline may not be reduced to a single neurobiological cause, but should instead be considered in terms of a densely connected system that underlies age-related cognitive alterations. We speculate that a decline in one hallmark of neural aging may trigger a decline in other, otherwise thus far stable subsystems, thereby triggering a cascade that may at some point also incur a decline of cognitive functions and mental well-being. Beyond studying the effects of these factors in isolation, considerable insight may be gained by studying the larger picture that entails a representative collection of such factors and their interactions, ranging from molecules to neural networks. Finally, we discuss some potential interventions that may help to prevent these alterations, thereby reducing cognitive decline and mental fragility, and enhancing mental well-being, and healthy aging.
Collapse
Affiliation(s)
- K. Richard Ridderinkhof
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Center for Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
| | - Harm J. Krugers
- Amsterdam Center for Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
- SILS-CNS, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Effects of Higher Normal Blood Pressure on Brain Are Detectable before Middle-Age and Differ by Sex. J Clin Med 2022; 11:jcm11113127. [PMID: 35683516 PMCID: PMC9181456 DOI: 10.3390/jcm11113127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
Background: To quantify the association between blood pressure (BP) across its full range, brain volumes and white matter lesions (WMLs) while investigating the effects of age, sex, body mass index (BMI), and antihypertensive medication. Methods: UK Biobank participants (n = 36,260) aged (40−70) years were included and stratified by sex and four age groups (age ≤ 45, 46−55, 56−65 and > 65 years). Multi-level regression analyses were used to assess the association between mean arterial pressure (MAP), systolic BP (SBP), diastolic BP (DBP), and brain volumes segmented using the FreeSufer software (gray matter volume [GMV], white matter volume [WMV], left [LHCV] and right hippocampal volume [RHCV]) and WMLs. Interaction effects between body mass index (BMI), antihypertensive medication and BP in predicting brain volumes and WMLs were also investigated. Results: Every 10 mmHg higher DBP was associated with lower brain volumes (GMV: −0.19%−−0.40%) [SE = 47.7−62.4]; WMV: −0.20−−0.23% [SE = 34.66−53.03]; LHCV: −0.40−−0.59% [SE = 0.44−0.57]; RHCV: −0.17−−0.57% [SE = 0.32−0.95]) across all age groups. A similar pattern was detected in both sexes, although it was weaker in men. Every 10 mmHg higher MAP was associated with larger WMLs across all age groups but peaked >65 years (1.19−1.23% [SE = 0.002]). Both lower BMI and anti-hypertensive medication appeared to afford a protective effect. Conclusion: Higher BP is associated with worse cerebral health across the full BP range from middle adulthood and into old age.
Collapse
|
21
|
Vega-Torres JD, Ontiveros-Angel P, Terrones E, Stuffle EC, Solak S, Tyner E, Oropeza M, dela Peña I, Obenaus A, Ford BD, Figueroa JD. Short-term exposure to an obesogenic diet during adolescence elicits anxiety-related behavior and neuroinflammation: modulatory effects of exogenous neuregulin-1. Transl Psychiatry 2022; 12:83. [PMID: 35220393 PMCID: PMC8882169 DOI: 10.1038/s41398-022-01788-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 11/21/2022] Open
Abstract
Childhood obesity leads to hippocampal atrophy and altered cognition. However, the molecular mechanisms underlying these impairments are poorly understood. The neurotrophic factor neuregulin-1 (NRG1) and its cognate ErbB4 receptor play critical roles in hippocampal maturation and function. This study aimed to determine whether exogenous NRG1 administration reduces hippocampal abnormalities and neuroinflammation in rats exposed to an obesogenic Western-like diet (WD). Lewis rats were randomly divided into four groups (12 rats/group): (1) control diet+vehicle (CDV); (2) CD + NRG1 (CDN) (daily intraperitoneal injections: 5 μg/kg/day; between postnatal day, PND 21-PND 41); (3) WD + VEH (WDV); (4) WD + NRG1 (WDN). Neurobehavioral assessments were performed at PND 43-49. Brains were harvested for MRI and molecular analyses at PND 49. We found that NRG1 administration reduced hippocampal volume (7%) and attenuated hippocampal-dependent cued fear conditioning in CD rats (56%). NRG1 administration reduced PSD-95 protein expression (30%) and selectively reduced hippocampal cytokine levels (IL-33, GM-CSF, CCL-2, IFN-γ) while significantly impacting microglia morphology (increased span ratio and reduced circularity). WD rats exhibited reduced right hippocampal volume (7%), altered microglia morphology (reduced density and increased lacunarity), and increased levels of cytokines implicated in neuroinflammation (IL-1α, TNF-α, IL-6). Notably, NRG1 synergized with the WD to increase hippocampal ErbB4 phosphorylation and the tumor necrosis alpha converting enzyme (TACE/ADAM17) protein levels. Although the results did not provide sufficient evidence to conclude that exogenous NRG1 administration is beneficial to alleviate obesity-related outcomes in adolescent rats, we identified a potential novel interaction between obesogenic diet exposure and TACE/ADAM17-NRG1-ErbB4 signaling during hippocampal maturation. Our results indicate that supraoptimal ErbB4 activities may contribute to the abnormal hippocampal structure and cognitive vulnerabilities observed in obese individuals.
Collapse
Affiliation(s)
- Julio David Vega-Torres
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Perla Ontiveros-Angel
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Esmeralda Terrones
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Erwin C. Stuffle
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Sara Solak
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Emma Tyner
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Marie Oropeza
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Ike dela Peña
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Andre Obenaus
- grid.266093.80000 0001 0668 7243Department of Pediatrics, University of California-Irvine, Irvine, CA USA
| | - Byron D. Ford
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA USA
| | - Johnny D. Figueroa
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| |
Collapse
|
22
|
Basavaraju P, Balasubramani R, Kathiresan DS, Devaraj I, Babu K, Alagarsamy V, Puthamohan VM. Genetic Regulatory Networks of Apolipoproteins and Associated Medical Risks. Front Cardiovasc Med 2022; 8:788852. [PMID: 35071357 PMCID: PMC8770923 DOI: 10.3389/fcvm.2021.788852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Apolipoproteins (APO proteins) are the lipoprotein family proteins that play key roles in transporting lipoproteins all over the body. There are nearly more than twenty members reported in the APO protein family, among which the A, B, C, E, and L play major roles in contributing genetic risks to several disorders. Among these genetic risks, the single nucleotide polymorphisms (SNPs), involving the variation of single nucleotide base pairs, and their contributing polymorphisms play crucial roles in the apolipoprotein family and its concordant disease heterogeneity that have predominantly recurred through the years. In this review, we have contributed a handful of information on such genetic polymorphisms that include APOE, ApoA1/B ratio, and A1/C3/A4/A5 gene cluster-based population genetic studies carried throughout the world, to elaborately discuss the effects of various genetic polymorphisms in imparting various medical conditions, such as obesity, cardiovascular, stroke, Alzheimer's disease, diabetes, vascular complications, and other associated risks.
Collapse
Affiliation(s)
- Preethi Basavaraju
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Rubadevi Balasubramani
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Divya Sri Kathiresan
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Ilakkiyapavai Devaraj
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Kavipriya Babu
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Vasanthakumar Alagarsamy
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
- *Correspondence: Vinayaga Moorthi Puthamohan
| |
Collapse
|
23
|
Drouin SM, McFall GP, Potvin O, Bellec P, Masellis M, Duchesne S, Dixon RA. Data-Driven Analyses of Longitudinal Hippocampal Imaging Trajectories: Discrimination and Biomarker Prediction of Change Classes. J Alzheimers Dis 2022; 88:97-115. [PMID: 35570482 PMCID: PMC9277685 DOI: 10.3233/jad-215289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hippocampal atrophy is a well-known biomarker of neurodegeneration, such as that observed in Alzheimer's disease (AD). Although distributions of hippocampal volume trajectories for asymptomatic individuals often reveal substantial heterogeneity, it is unclear whether interpretable trajectory classes can be objectively detected and used for prediction analyses. OBJECTIVE To detect and predict hippocampal trajectory classes in a computationally competitive context using established AD-related risk factors/biomarkers. METHODS We used biomarker/risk factor and longitudinal MRI data in asymptomatic adults from the AD Neuroimaging Initiative (n = 351; Mean = 75 years; 48.7% female). First, we applied latent class growth analyses to left (LHC) and right (RHC) hippocampal trajectory distributions to identify distinct classes. Second, using random forest analyses, we tested 38 multi-modal biomarkers/risk factors for their relative importance in discriminating the lower (potentially elevated atrophy risk) from the higher (potentially reduced risk) class. RESULTS For both LHC and RHC trajectory distribution analyses, we observed three distinct trajectory classes. Three biomarkers/risk factors predicted membership in LHC and RHC lower classes: male sex, higher education, and lower plasma Aβ1-42. Four additional factors selectively predicted membership in the lower LHC class: lower plasma tau and Aβ1-40, higher depressive symptomology, and lower body mass index. CONCLUSION Data-driven analyses of LHC and RHC trajectories detected three classes underlying the heterogeneous distributions. Machine learning analyses determined three common and four unique biomarkers/risk factors discriminating the higher and lower LHC/RHC classes. Our sequential analytic approach produced evidence that the dynamics of preclinical hippocampal trajectories can be predicted by AD-related biomarkers/risk factors from multiple modalities.
Collapse
Affiliation(s)
- Shannon M. Drouin
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - G. Peggy McFall
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Pierre Bellec
- Département de Psychologie, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Research Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Simon Duchesne
- CERVO Brain Research Centre, Quebec, QC, Canada
- Radiology and Nuclear Medicine Department, Université Laval, Quebec, QC, Canada
| | - Roger A. Dixon
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
24
|
Takeuchi H, Kawashima R. Effects of Body Mass Index on Brain Structures in the Elderly: Longitudinal Analyses. Front Endocrinol (Lausanne) 2022; 13:824661. [PMID: 35721742 PMCID: PMC9204255 DOI: 10.3389/fendo.2022.824661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The relationship between obesity and neurocognitive consequences is complex. Here we investigated associations between body mass index (BMI) and subsequent changes in brain structures, cognitive changes, and the onset of dementia after adjustment of a wide range of potential confounding variables using a large prospective cohort data of UK Biobank. After correcting for confounding factors, higher BMI was associated with greater retention in visuospatial memory performance (decline in error numbers) [beta = -0.019 (CI:-0.027~-0.016), N = 39191], increase in depression tendency scores [beta = 0.036(0.027~0.045)] as well as decreased risk of incident dementia [increasing BMI by 1 is associated with HR of 0.981 (CI:0.969~0.992), N = 398782], but not changes in fluid intelligence or reaction time. Whole brain multiple regression analyses (volumetric analyses: N = 1253, other analyses: N = 1241) revealed positive associations between BMI and subsequent changes in regional gray matter volume (rGMV) in multiple areas, regional white matter volume changes in widespread white matter (WM) tracts, fractional anisotropy changes in several tracts, and intracellular volume fraction (ICVF) and orientation dispersion (OD) in widespread areas, and isotropic volume fraction (ISOVF) in a few areas, and negative associations between BMI and subsequent changes in rGMV in the bilateral medial temporal lobe areas, mean, axial and radial diffusivity, and ISOVF in widespread areas. These results are mostly consistent with the view that less BMI precedes greater neurocognitive aging or atrophy, with a few exceptions including OD findings and the rGMV finding of the medial temporal lobes as most of significant longitudinal associations of higher BMI were opposite to those seen in higher age and dementia. Future epidemiological studies should consider separating effects of higher BMI itself from potential confounders.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- *Correspondence: Hikaru Takeuchi,
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Smart Aging Research Center, Tohoku University, Sendai, Japan
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
25
|
Relationship between obesity and structural brain abnormality: Accumulated evidence from observational studies. Ageing Res Rev 2021; 71:101445. [PMID: 34391946 DOI: 10.1016/j.arr.2021.101445] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/10/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022]
Abstract
We aimed to evaluate the relationship between obesity and structural brain abnormalities assessed by magnetic resonance imaging using data from 45 observational epidemiological studies, where five articles reported prospective longitudinal results. In cross-sectional studies' analyses, the pooled weighted mean difference for total brain volume (TBV) and gray matter volume (GMV) in obese/overweight participants was -11.59 (95 % CI: -23.17 to -0.02) and -10.98 (95 % CI: -20.78 to -1.18), respectively. TBV was adversely associated with BMI and WC, GMV with BMI, and hippocampal volume with BMI, WC, and WHR. WC/WHR are associated with a risk of lacunar and white matter hyperintensity (WMH). In longitudinal studies' analyses, BMI was not statistically associated with the overall structural brain abnormalities (for continuous BMI: RR = 1.02, 95 % CI: 0.94-1.12; for categorial BMI: RR = 1.18, 95 % CI: 0.75-1.85). Small sample size of prospective longitudinal studies limited the power of its pooled estimates. A higher BMI is associated with lower brain volume while greater WC/WHR, but not BMI, is related to a risk of lacunar infarct and WMH. Future longitudinal research is needed to further elucidate the specific causal relationships and explore preventive measures.
Collapse
|
26
|
Mothers' cafeteria diet induced sex-specific changes in fat content, metabolic profiles, and inflammation outcomes in rat offspring. Sci Rep 2021; 11:18573. [PMID: 34535697 PMCID: PMC8448886 DOI: 10.1038/s41598-021-97487-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
“Western diet” containing high concentrations of sugar and fat consumed during pregnancy contributes to development of obesity and diabetes type 2 in offspring. To mimic effects of this diet in animals, a cafeteria (CAF) diet is used. We hypothesized that CAF diet given to rats before, and during pregnancy and lactation differently influences fat content, metabolic and inflammation profiles in offspring. Females were exposed to CAF or control diets before pregnancy, during pregnancy and lactation. At postnatal day 25 (PND 25), body composition, fat contents were measured, and blood was collected for assessment of metabolic and inflammation profiles. We have found that CAF diet lead to sex-specific alterations in offspring. At PND25, CAF offspring had: (1) higher percentage of fat content, and were lighter; (2) sex-specific differences in levels of glucose; (3) higher levels of interleukin 6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor (TNF-α); (4) sex-specific differences in concentration of IL-6 and TNF-α, with an increase in CAF females; (5) higher level of IL-10 in both sexes, with a more pronounced increase in females. We concluded that maternal CAF diet affects fat content, metabolic profiles, and inflammation parameters in offspring. Above effects are sex-specific, with female offspring being more susceptible to the diet.
Collapse
|
27
|
Ke W, Reed JN, Yang C, Higgason N, Rayyan L, Wählby C, Carpenter AE, Civelek M, O’Rourke EJ. Genes in human obesity loci are causal obesity genes in C. elegans. PLoS Genet 2021; 17:e1009736. [PMID: 34492009 PMCID: PMC8462697 DOI: 10.1371/journal.pgen.1009736] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/24/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and its associated metabolic syndrome are a leading cause of morbidity and mortality. Given the disease's heavy burden on patients and the healthcare system, there has been increased interest in identifying pharmacological targets for the treatment and prevention of obesity. Towards this end, genome-wide association studies (GWAS) have identified hundreds of human genetic variants associated with obesity. The next challenge is to experimentally define which of these variants are causally linked to obesity, and could therefore become targets for the treatment or prevention of obesity. Here we employ high-throughput in vivo RNAi screening to test for causality 293 C. elegans orthologs of human obesity-candidate genes reported in GWAS. We RNAi screened these 293 genes in C. elegans subject to two different feeding regimens: (1) regular diet, and (2) high-fructose diet, which we developed and present here as an invertebrate model of diet-induced obesity (DIO). We report 14 genes that promote obesity and 3 genes that prevent DIO when silenced in C. elegans. Further, we show that knock-down of the 3 DIO genes not only prevents excessive fat accumulation in primary and ectopic fat depots but also improves the health and extends the lifespan of C. elegans overconsuming fructose. Importantly, the direction of the association between expression variants in these loci and obesity in mice and humans matches the phenotypic outcome of the loss-of-function of the C. elegans ortholog genes, supporting the notion that some of these genes would be causally linked to obesity across phylogeny. Therefore, in addition to defining causality for several genes so far merely correlated with obesity, this study demonstrates the value of model systems compatible with in vivo high-throughput genetic screening to causally link GWAS gene candidates to human diseases.
Collapse
Affiliation(s)
- Wenfan Ke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jordan N. Reed
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
| | - Chenyu Yang
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Noel Higgason
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Leila Rayyan
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carolina Wählby
- Department of Information Technology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Anne E. Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mete Civelek
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Eyleen J. O’Rourke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ziarniak K, Dudek M, Matuszewska J, Bijoch Ł, Skrzypski M, Celichowski J, Sliwowska JH. Two weeks of moderate intensity locomotor training increased corticosterone concentrations but did not alter the number of adropin-immunoreactive cells in the hippocampus of diabetic type 2 and control rats. Acta Histochem 2021; 123:151751. [PMID: 34229193 DOI: 10.1016/j.acthis.2021.151751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Adropin (ADR) plays a role in metabolism regulation and its alterations in obesity and diabetes have been found. Treatment with ADR was beneficial in metabolic diseases, and physical exercise increased ADR concentrations in obese patients. However, data on the distribution of ADR in the brain are sparse. The role of metabolic status and physical exercise on its expression in the brain is undiscovered. We hypothesized that diabetes type 2 (DM2) and/or exercise will alter number of ADR-immunoractive (-ir) cells in the rat brain. Animals were divided into groups: diabetes type 2 (receiving high-fat diet and injections of streptozotocin) and control (fed laboratory chow diet; C). Rats were further divided into: running group (2 weeks of forced exercise on a treadmill) and non-running group. Body mass, metabolic and hormonal profiles were assessed. Immunohistochemistry was run to study ADR-ir cells in the brain. We found that: 1) in DM2 animals, running decreased insulin and increased glucose concentrations; 2) in C rats, running decreased insulin concentrations and had no effect on glucose concentration in blood; 3) running increased corticosterone (CORT) concentrations in DM2 and C rats; 4) ADR-ir cells were detected in the hippocampus and ADR-ir fibers in the arcuate nucleus of the hypothalamus, which is a novel location; 5) metabolic status and running, however, did not change number of these cells. We concluded that 2 weeks of forced moderate intensity locomotor training induced stress response present as increased concentration of CORT and did not influence number of ADR-ir cells in the brain.
Collapse
|
29
|
Sheppard B, Rappoport N, Loh PR, Sanders SJ, Zaitlen N, Dahl A. A model and test for coordinated polygenic epistasis in complex traits. Proc Natl Acad Sci U S A 2021; 118:e1922305118. [PMID: 33833052 PMCID: PMC8053945 DOI: 10.1073/pnas.1922305118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interactions between genetic variants-epistasis-is pervasive in model systems and can profoundly impact evolutionary adaption, population disease dynamics, genetic mapping, and precision medicine efforts. In this work, we develop a model for structured polygenic epistasis, called coordinated epistasis (CE), and prove that several recent theories of genetic architecture fall under the formal umbrella of CE. Unlike standard epistasis models that assume epistasis and main effects are independent, CE captures systematic correlations between epistasis and main effects that result from pathway-level epistasis, on balance skewing the penetrance of genetic effects. To test for the existence of CE, we propose the even-odd (EO) test and prove it is calibrated in a range of realistic biological models. Applying the EO test in the UK Biobank, we find evidence of CE in 18 of 26 traits spanning disease, anthropometric, and blood categories. Finally, we extend the EO test to tissue-specific enrichment and identify several plausible tissue-trait pairs. Overall, CE is a dimension of genetic architecture that can capture structured, systemic forms of epistasis in complex human traits.
Collapse
Affiliation(s)
- Brooke Sheppard
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143
| | - Nadav Rappoport
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA 94143
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Stephan J Sanders
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143
| | - Noah Zaitlen
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143;
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Andy Dahl
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095;
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095
- Section of Genetic Medicine, University of Chicago, Chicago, IL 60637
| |
Collapse
|
30
|
Alkan I, Altunkaynak BZ, Gültekin Gİ, Bayçu C. Hippocampal neural cell loss in high-fat diet-induced obese rats-exploring the protein networks, ultrastructure, biochemical and bioinformatical markers. J Chem Neuroanat 2021; 114:101947. [PMID: 33766576 DOI: 10.1016/j.jchemneu.2021.101947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity, which has become one of the main health problems, results from irregular and unhealthy nutrition. In particular, an increase in the intake of high-fat foods leads to obesity and associated disorders. It is noteworthy to specify that obese individuals have memory problems. This study aims to examine the effects of high-fat diet on hippocampus, with stereological, histopathological methods and STRING bioinformatic tool. METHODS Female Adult Sprague Dawley rats (n = 20) were equally divided into control (CONT) and high-fat diet (HFD) groups. The control group was given standard rat pellet feed, while the high-fat diet group was fed with a 40 % fat content for 2 months. Following the feeding program, rats were sacrificed. The collected blood samples were analyzed biochemically to determine the level of oxidative stress while performing a stereological and histopathological examination of the brain tissues. Functional protein-protein networks for BDNF, C-Fos, CAT, LPO, SOD and MPO by gene ontology (GO) enrichment analysis were evaluated. FINDINGS The number of neurons decreased in the HFD group compared to the CONT group. Damage to the histological structure of the hippocampus region; such as degenerate neurons, damaged mitochondria and extended cisterns of the endoplasmic reticulum was observed. Although C-Fos level and oxidative stress parameters increased in HFD group, BDNF level decreased. While BDNF and C-Fos were observed in pathways related to neuron death, oxidative stress and memory, BDNF was pronounced in the mitochondria, and C-Fos in the endoplasmic reticulum. DISCUSSION This study shows that changes in both BDNF and C-Fos levels in obesity due to high-fat diet increase oxidative stress and cause neuron damage in the hippocampus.
Collapse
Affiliation(s)
- Işınsu Alkan
- Dept of Basic Medical Sciences, Dentistry Faculty, Nevşehir Hacı Bektaş Veli University, Nevşehir Turkey
| | - Berrin Zuhal Altunkaynak
- Depts of Histology and Embryology and Physiology Departments, Medical Faculty, Istanbul Okan University, İstanbul, Turkey.
| | - Güldal İnal Gültekin
- Physiology Department, Medical Faculty, Istanbul Okan University, İstanbul, Turkey
| | - Cengiz Bayçu
- Histology Department, Medical Faculty, Istanbul Okan University, İstanbul, Turkey
| |
Collapse
|
31
|
Bond DJ, Silveira LE, Torres IJ, Lam RW, Yatham LN. Weight gain as a risk factor for progressive neurochemical abnormalities in first episode mania patients: a longitudinal magnetic resonance spectroscopy study. Psychol Med 2021; 52:1-9. [PMID: 33706825 DOI: 10.1017/s0033291721000544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND We previously reported that bipolar disorder (BD) patients with clinically significant weight gain (CSWG; ⩾7% of baseline weight) in the 12 months after their first manic episode experienced greater limbic brain volume loss than patients without CSWG. It is unknown whether CSWG is also a risk factor for progressive neurochemical abnormalities. METHODS We investigated whether 12-month CSWG predicted greater 12-month decreases in hippocampal N-acetylaspartate (NAA) and greater increases in glutamate + glutamine (Glx) following a first manic episode. In BD patients (n = 58) and healthy comparator subjects (HS; n = 34), we measured baseline and 12-month hippocampal NAA and Glx using bilateral 3-Tesla single-voxel proton magnetic resonance spectroscopy. We used general linear models for repeated measures to investigate whether CSWG predicted neurochemical changes. RESULTS Thirty-three percent of patients and 18% of HS experienced CSWG. After correcting for multiple comparisons, CSWG in patients predicted a greater decrease in left hippocampal NAA (effect size = -0.52, p = 0.005). CSWG also predicted a greater decrease in left hippocampal NAA in HS with a similar effect size (-0.53). A model including patients and HS found an effect of CSWG on Δleft NAA (p = 0.007), but no diagnosis effect and no diagnosis × CSWG interaction, confirming that CSWG had similar effects in patients and HS. CONCLUSION CSWG is a risk factor for decreasing hippocampal NAA in BD patients and HS. These results suggest that the well-known finding of reduced NAA in BD may result from higher body mass index in patients rather than BD diagnosis.
Collapse
Affiliation(s)
- David J Bond
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| | - Leonardo E Silveira
- Laboratory of Molecular Psychiatry, Centro de Pesquisas Experimentais, Hospital de Clínicas de Porto Alegre, and INCT for Translational Medicine, Porto Alegre, RS, Brazil
| | - Ivan J Torres
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| | - Raymond W Lam
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| | - Lakshmi N Yatham
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Wilckens KA, Stillman CM, Waiwood AM, Kang C, Leckie RL, Peven JC, Foust JE, Fraundorf SH, Erickson KI. Exercise interventions preserve hippocampal volume: A meta-analysis. Hippocampus 2021; 31:335-347. [PMID: 33315276 PMCID: PMC11497212 DOI: 10.1002/hipo.23292] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/23/2020] [Accepted: 11/15/2020] [Indexed: 12/20/2022]
Abstract
Hippocampal volume is a marker of brain health and is reduced with aging and neurological disease. Exercise may be effective at increasing and preserving hippocampal volume, potentially serving as a treatment for conditions associated with hippocampal atrophy (e.g., dementia). This meta-analysis aimed to identify whether exercise training has a positive effect on hippocampal volume and how population characteristics and exercise parameters moderate this effect. Studies met the following criteria: (a) controlled trials; (b) interventions of physical exercise; (c) included at least one time-point of hippocampal volume data before the intervention and one after; (d) assessed hippocampal volume using either manual or automated segmentation algorithms. Animal studies, voxel-based morphometry analyses, and multi-modal interventions (e.g., cognitive training or meditation) were excluded. The primary analysis in n = 23 interventions from 22 published studies revealed a significant positive effect of exercise on total hippocampal volume. The overall effect was significant in older samples (65 years of age or older) and in interventions that lasted over 24 weeks and had less than 150 min per week of exercise. These findings suggest that moderate amounts of exercise for interventions greater than 6 months have a positive effect on hippocampal volume including in older populations vulnerable to hippocampal atrophy.
Collapse
Affiliation(s)
- Kristine A Wilckens
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chelsea M Stillman
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aashna M Waiwood
- Department of Psychology, University of South Florida, Tampa, Florida, USA
| | - Chaeryon Kang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Regina L Leckie
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jamie C Peven
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jill E Foust
- Health Sciences Library System, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Scott H Fraundorf
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- College of Science, Health, Engineering, and Education, Murdoch University, Perth, Australia
| |
Collapse
|
33
|
Mulugeta A, Lumsden A, Hyppönen E. Unlocking the causal link of metabolically different adiposity subtypes with brain volumes and the risks of dementia and stroke: A Mendelian randomization study. Neurobiol Aging 2021; 102:161-169. [PMID: 33770530 DOI: 10.1016/j.neurobiolaging.2021.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
To establish causal evidence for the association of adiposity-related metabolic abnormalities with brain volumes, and the risks of dementia and stroke, we applied 1- and 2-sample Mendelian randomization (MR) analyses using up to 336,309 UK Biobank participants. We used 3 classes of genetic instruments, which all increase body mass index but are associated with different metabolic profiles (unfavorable, neutral and favorable). We validated the instruments using anthropometric and cardio-metabolic traits. Both metabolically unfavorable and metabolically neutral adiposity associated with lower gray matter volume (GMV, -9.28 cm3, -12.90 to -5.66 and -12.02 cm3, -20.07 to -3.97, respectively). Metabolically favorable adiposity was tentatively associated with a higher GMV (16.21 cm3, -0.21 to 32.68). No causal evidence was seen for white matter and hippocampal volume, and volume of white matter hyperintensities, or with the risks of dementia and stroke (all p > 0.60). These findings suggest that obesity-related metabolic abnormalities may contribute to GMV atrophy, warranting further studies.
Collapse
Affiliation(s)
- Anwar Mulugeta
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Amanda Lumsden
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Elina Hyppönen
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
34
|
From Obesity to Hippocampal Neurodegeneration: Pathogenesis and Non-Pharmacological Interventions. Int J Mol Sci 2020; 22:ijms22010201. [PMID: 33379163 PMCID: PMC7796248 DOI: 10.3390/ijms22010201] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
High-caloric diet and physical inactivity predispose individuals to obesity and diabetes, which are risk factors of hippocampal neurodegeneration and cognitive deficits. Along with the adipose-hippocampus crosstalk, chronically inflamed adipose tissue secretes inflammatory cytokine could trigger neuroinflammatory responses in the hippocampus, and in turn, impairs hippocampal neuroplasticity under obese and diabetic conditions. Hence, caloric restriction and physical exercise are critical non-pharmacological interventions to halt the pathogenesis from obesity to hippocampal neurodegeneration. In response to physical exercise, peripheral organs, including the adipose tissue, skeletal muscles, and liver, can secret numerous exerkines, which bring beneficial effects to metabolic and brain health. In this review, we summarized how chronic inflammation in adipose tissue could trigger neuroinflammation and hippocampal impairment, which potentially contribute to cognitive deficits in obese and diabetic conditions. We also discussed the potential mechanisms underlying the neurotrophic and neuroprotective effects of caloric restriction and physical exercise by counteracting neuroinflammation, plasticity deficits, and cognitive impairments. This review provides timely insights into how chronic metabolic disorders, like obesity, could impair brain health and cognitive functions in later life.
Collapse
|
35
|
D'Ardenne K, Savage CR, Small D, Vainik U, Stoeckel LE. Core Neuropsychological Measures for Obesity and Diabetes Trials: Initial Report. Front Psychol 2020; 11:554127. [PMID: 33117225 PMCID: PMC7557362 DOI: 10.3389/fpsyg.2020.554127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/27/2020] [Indexed: 01/15/2023] Open
Abstract
Obesity and diabetes are known to be related to cognitive abilities. The Core Neuropsychological Measures for Obesity and Diabetes Trials Project aimed to identify the key cognitive and perceptual domains in which performance can influence treatment outcomes, including predicting, mediating, and moderating treatment outcome and to generate neuropsychological batteries comprised of well-validated, easy-to-administer tests that best measure these key domains. The ultimate goal is to facilitate inclusion of neuropsychological measures in clinical studies and trials so that we can gather more information on potential mediators of obesity and diabetes treatment outcomes. We will present the rationale for the project and three options for the neuropsychological batteries to satisfy varying time and other administration constraints. Future directions are discussed. Preprint version of the document is available at https://osf.io/preprints/nutrixiv/7jygx/.
Collapse
Affiliation(s)
- Kimberlee D'Ardenne
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Cary R Savage
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, United States.,Center for Brain, Biology and Behavior, Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Dana Small
- Modern Diet and Physiology Research Center (MDPRC), Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Psychology, Yale University, New Haven, CT, United States.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Uku Vainik
- Institute of Psychology, Faculty of Social Sciences, University of Tartu, Tartu, Estonia.,Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Luke E Stoeckel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
36
|
Fraser MA, Walsh EI, Shaw ME, Abhayaratna WP, Anstey KJ, Sachdev PS, Cherbuin N. Longitudinal trajectories of hippocampal volume in middle to older age community dwelling individuals. Neurobiol Aging 2020; 97:97-105. [PMID: 33190123 DOI: 10.1016/j.neurobiolaging.2020.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/04/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Understanding heterogeneity in brain aging trajectories is important to estimate the extent to which aging outcomes can be optimized. Although brain changes in late life are well-characterized, brain changes in middle age are not well understood. In this study, we investigated hippocampal change in a generally healthy community-living population of middle (n = 421, mean age 47.2 years) and older age (n = 411, mean age 63.0 years) individuals, over a follow-up of up to 12 years. Manually traced hippocampal volumes were analyzed using multilevel models and latent class analysis to investigate longitudinal aging trajectories and laterality and sex effects, and to identify subgroups that follow different aging trajectories. Hippocampal volumes decreased on average by 0.18%/year in middle age and 0.3%/year in older age. Men tended to experience steeper declines than women in middle age only. Three subgroups of individuals following different trajectories were identified in middle age and 2 in older age. Contrary to expectations, the subgroup containing two-thirds of older age participants maintained stable hippocampal volumes across the follow-up.
Collapse
Affiliation(s)
- Mark A Fraser
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Erin I Walsh
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia; Population Health Exchange, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Marnie E Shaw
- ANU College of Engineering & Computer Science, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Walter P Abhayaratna
- College of Health & Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kaarin J Anstey
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia; Ageing Futures Institute, University of New South Wales, Sydney, New South Wales, Australia; Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
37
|
Caunca MR, Simonetto M, Alperin N, Elkind MSV, Sacco RL, Wright CB, Rundek T. Measures of Adiposity and Alzheimer's Disease-Related MRI Markers: The Northern Manhattan Study. J Alzheimers Dis 2020; 70:995-1004. [PMID: 31306120 DOI: 10.3233/jad-190092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Adiposity may increase risk for dementia and Alzheimer's disease (AD), but mechanisms are unclear. OBJECTIVE To examine associations between measures of adiposity with AD-signature region cortical thickness and hippocampal volume. METHODS We used data from the Northern Manhattan Study, a clinically stroke-free cohort of mostly Hispanic participants. Exposures of interest included body mass index (BMI), waist-hip-ratio (WHR), waist circumference (WC), and adiponectin concentration, measured at study entry. AD-signature region cortical thickness and hippocampal volume were obtained using Freesurfer. We estimated associations using multivariable linear regression, adjusting for sociodemographics and health behaviors. We re-examined estimates after adjustment for APOEɛ4 allele status or carotid intima-media thickness (cIMT), among those cognitively unimpaired, and after weighting for the inverse probability of selection into the MRI sub-study. We also repeated analyses for cortical thickness in non-AD signature regions. RESULTS The sample (N = 947, 63% women, 66% Hispanic/Latino, 26% obese) had a mean (SD) age = 63 (8) years. Greater BMI and WC (both z-scored) were associated with thinner AD-signature region cortex (also z-scored) (BMI: β [95% CI] = -0.09 [-0.18, -0.01], WC: β [95% CI] = -0.11 [-0.20, -0.02]). We did not find evidence that adiposity was related to hippocampal volume. Results were consistent after adjustment for APOEɛ4 allele status or cIMT, after weighting for selection, among those cognitively unimpaired, and for non-AD signature region cortical thickness. CONCLUSION Greater BMI and WC were related to cortical thinning within and outside the AD-signature region, suggesting a global effect not specific to AD.
Collapse
Affiliation(s)
- Michelle R Caunca
- Division of Epidemiology and Population Health Sciences, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.,Evelyn F. McKnight Brain Institute, University of Miami, Miami, FL, USA.,Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marialaura Simonetto
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Noam Alperin
- Evelyn F. McKnight Brain Institute, University of Miami, Miami, FL, USA.,Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mitchell S V Elkind
- Department of Epidemiology, Mailman School of Public Health, and Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ralph L Sacco
- Division of Epidemiology and Population Health Sciences, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.,Evelyn F. McKnight Brain Institute, University of Miami, Miami, FL, USA.,Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Clinton B Wright
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Tatjana Rundek
- Division of Epidemiology and Population Health Sciences, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.,Evelyn F. McKnight Brain Institute, University of Miami, Miami, FL, USA.,Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
38
|
Cremonini E, Iglesias DE, Kang J, Lombardo GE, Mostofinejad Z, Wang Z, Zhu W, Oteiza PI. (-)-Epicatechin and the comorbidities of obesity. Arch Biochem Biophys 2020; 690:108505. [PMID: 32679195 DOI: 10.1016/j.abb.2020.108505] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023]
Abstract
Obesity has major adverse consequences on human health contributing to the development of, among others, insulin resistance and type 2 diabetes, cardiovascular disease, non-alcoholic fatty liver disease, altered behavior and cognition, and cancer. Changes in dietary habits and lifestyle could contribute to mitigate the development and/or progression of these pathologies. This review will discuss current evidence on the beneficial actions of the flavan-3-ol (-)-epicatechin (EC) on obesity-associated comorbidities. These benefits can be in part explained through EC's capacity to mitigate several common events underlying the development of these pathologies, including: i) high circulating levels of glucose, lipids and endotoxins; ii) chronic systemic inflammation; iii) tissue endoplasmic reticulum and oxidative stress; iv) insulin resistance; v) mitochondria dysfunction and vi) dysbiosis. The currently known underlying mechanisms and cellular targets of EC's beneficial effects are discussed. While, there is limited evidence from human studies supplementing with pure EC, other studies involving cocoa supplementation in humans, pure EC in rodents and in vitro studies, support a potential beneficial action of EC on obesity-associated comorbidities. This evidence also stresses the need of further research in the field, which would contribute to the development of human dietary strategies to mitigate the adverse consequences of obesity.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Dario E Iglesias
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Jiye Kang
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Giovanni E Lombardo
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zahra Mostofinejad
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Ziwei Wang
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Wei Zhu
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Patricia I Oteiza
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
39
|
Objectively measured physical activity is associated with dorsolateral prefrontal cortex volume in older adults. Neuroimage 2020; 221:117150. [PMID: 32668298 DOI: 10.1016/j.neuroimage.2020.117150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/12/2020] [Accepted: 07/04/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Epidemiological studies suggest physical activity (PA) can slow or prevent both cognitive decline and age-related atrophy in frontal and hippocampal gray matter volumes. However, much of this evidence is based on self-reported measures of PA. METHODS PA was measured objectively with a SenseWear™ Armband to examine the cross-sectional associations between the duration of light, moderate and vigorous intensity PA with gray matter volume in the dorsolateral prefrontal cortex (DLPFC) and hippocampus in 167 (female: 43%) cognitively healthy older adults aged 73 to 78. RESULTS The duration of objective moderate to vigorous intensity physical activity (MVPA) was associated with a greater volume of the right DLPFC (β = 0.16; p = 0.04). In addition, objective moderate-intensity PA alone was also associated with greater volume of the left (β = 0.17; p = 0.03) and right (β = 0.19; p = 0.01) DLPFC after controlling for covariates and adjustment for multiple comparisons. In contrast, there were no significant associations between light- or vigorous-intensity PA and gray matter volumes (all p > 0.05). No associations between PA and cognitive performance were detected, and self-reported PA was not associated with any of the outcomes investigated. CONCLUSIONS These findings suggest that an intensity-dependent relationship may exist, whereby a greater duration of MVPA, perhaps driven by moderate-intensity PA, is associated with preserved gray matter volume in frontal regions of the brain. Future research should investigate the mechanisms of this dose-effect and determine whether greater brain volumes associated with objective PA convey protective effects against cognitive decline.
Collapse
|
40
|
Ambikairajah A, Tabatabaei-Jafari H, Walsh E, Hornberger M, Cherbuin N. Longitudinal Changes in Fat Mass and the Hippocampus. Obesity (Silver Spring) 2020; 28:1263-1269. [PMID: 32427420 DOI: 10.1002/oby.22819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/05/2020] [Accepted: 03/30/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This study aimed to investigate cross-sectional and longitudinal associations between fat mass (i.e., body mass index [BMI], waist circumference [WC], and waist to hip ratio [WTHR]) and hippocampal volumes. METHODS UK Biobank participants (N = 20,395) aged 40 to 70 years (mean follow-up = 7.66 years), were included and categorized into one of four groups, which represented their baseline fat mass status and trajectory of change by follow-up assessment: normal weight to overweight/obesity, overweight/obesity to normal weight (ON), normal weight stable (NS), or overweight/obesity stable (OS). Regression models used NS (WC < 80 cm in women and < 94 cm in men; WTHR < 0.85 in women and < 0.90 in men; BMI < 25 kg/m2 in women and men) as the reference group. Hippocampal volumes were automatically segmented using the FMRIB Software Library. RESULTS Compared with NS, OS (BMI: B = -62.23 [SE = 16.76]; WC: B = -145.56 [SE = 16.97]; WTHR: B = -101.26 [SE = 19.54]) and ON (BMI: B = -61.1 [SE = 30.3]; WC: B = -93.77 [SE = 24.96]; WTHR: B = -69.92 [SE = 26.22]) had significantly lower hippocampal volumes. CONCLUSIONS The detrimental effects of overweight/obesity may extend beyond the duration of overweight/obesity itself.
Collapse
Affiliation(s)
- Ananthan Ambikairajah
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, The Australian National University, Canberra, Australia
| | - Hossein Tabatabaei-Jafari
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, The Australian National University, Canberra, Australia
| | - Erin Walsh
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, The Australian National University, Canberra, Australia
| | | | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, The Australian National University, Canberra, Australia
| |
Collapse
|
41
|
Luckhoff HK, du Plessis S, Kilian S, Asmal L, Scheffler F, Phahladira L, Olivier RM, Emsley R. Hippocampal subfield volumes and change in body mass over 12 months of treatment in first-episode schizophrenia spectrum disorders. Psychiatry Res Neuroimaging 2020; 300:111084. [PMID: 32388386 DOI: 10.1016/j.pscychresns.2020.111084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
In this study, we explored the relationship between baseline hippocampal subfield volumes and change in body mass over 12 months of treatment in 90 first-episode schizophrenia spectrum disorder patients (66 males, 24 females; mean age= 24.7 ± 6.8 years). Body mass index was assessed in patients at baseline, and at months 3, 6, 9 and 12. Hippocampal subfields of interest were assessed at baseline using a segmentation algorithm included in the FreeSurfer 6.0 software program. Linear regression revealed a significant interactive effect between sex and anterior hippocampus size as predictors of change in body mass over 12 months, adjusting for age, substance use, and treatment duration. In an exploratory post-hoc sub-analysis, partial correlations showed a significant association between weight gain and smaller CA1, CA3 and subiculum volumes in females, but not males, adjusting for age and substance use, with similar trends evident for the CA4 and presubiculum subfields. In conclusion, our findings suggest that smaller anterior hippocampal subfields at baseline are associated with the development of weight gain over the course of treatment in first-episode schizophrenia spectrum disorders in a sex-specific fashion. This may be related to the greater increase in body mass evident for female patients in our study.
Collapse
Affiliation(s)
- H K Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa.
| | - S du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - S Kilian
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - L Asmal
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - F Scheffler
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - L Phahladira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - R M Olivier
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - R Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| |
Collapse
|
42
|
Dysregulation of protein degradation in the hippocampus is associated with impaired spatial memory during the development of obesity. Behav Brain Res 2020; 393:112787. [PMID: 32603798 DOI: 10.1016/j.bbr.2020.112787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/26/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Studies have shown that long-term exposure to high fat and other obesogenic diets results in insulin resistance and altered blood brain barrier permeability, dysregulation of intracellular signaling mechanisms, changes in DNA methylation levels and gene expression, and increased oxidative stress and neuroinflammation in the hippocampus, all of which are associated with impaired spatial memory. The ubiquitin-proteasome system controls the majority of protein degradation in cells and is a critical regulator of synaptic plasticity and memory formation. Yet, whether protein degradation in the hippocampus becomes dysregulated following weight gain and is associated with obesity-induced memory impairments is unknown. Here, we used a high fat diet procedure in combination with behavioral and subcellular fractionation protocols and a variety of biochemical assays to determine if ubiquitin-proteasome activity becomes altered in the hippocampus during obesity development and whether this is associated with impaired spatial memory. We found that only 6 weeks of exposure to a high fat diet was sufficient to impair performance on an object location task in rats and resulted in dynamic dysregulation of ubiquitin-proteasome activity in the nucleus and cytoplasm of cells in the hippocampus. Furthermore, these changes in the protein degradation process extended into cortical regions also involved in spatial memory formation. Collectively, these results indicate that weight gain-induced memory impairments may be due to altered ubiquitin-proteasome signaling that occurs during the early stages of obesity development.
Collapse
|
43
|
Labban RSM, Alfawaz H, Almnaizel AT, Hassan WM, Bhat RS, Moubayed NM, Bjørklund G, El-Ansary A. High-fat diet-induced obesity and impairment of brain neurotransmitter pool. Transl Neurosci 2020; 11:147-160. [PMID: 33312720 PMCID: PMC7705990 DOI: 10.1515/tnsci-2020-0099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/30/2022] Open
Abstract
Obesity and the brain are linked since the brain can control the weight of the body through its neurotransmitters. The aim of the present study was to investigate the effect of high-fat diet (HFD)-induced obesity on brain functioning through the measurement of brain glutamate, dopamine, and serotonin metabolic pools. In the present study, two groups of rats served as subjects. Group 1 was fed a normal diet and named as the lean group. Group 2 was fed an HFD for 4 weeks and named as the obese group. Markers of oxidative stress (malondialdehyde, glutathione, glutathione-s-transferase, and vitamin C), inflammatory cytokines (interleukin [IL]-6 and IL-12), and leptin along with a lipid profile (cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein levels) were measured in the serum. Neurotransmitters dopamine, serotonin, and glutamate were measured in brain tissue. Fecal samples were collected for observing changes in gut flora. In brain tissue, significantly high levels of dopamine and glutamate as well as significantly low levels of serotonin were found in the obese group compared to those in the lean group (P > 0.001) and were discussed in relation to the biochemical profile in the serum. It was also noted that the HFD affected bacterial gut composition in comparison to the control group with gram-positive cocci dominance in the control group compared to obese. The results of the present study confirm that obesity is linked to inflammation, oxidative stress, dyslipidemic processes, and altered brain neurotransmitter levels that can cause obesity-related neuropsychiatric complications.
Collapse
Affiliation(s)
- Ranyah Shaker M Labban
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Ministry of Health, General Administration of Nutrition, Riyadh, Saudi Arabia
| | - Hanan Alfawaz
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed T Almnaizel
- Prince Naif for Health Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Wail M Hassan
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Missouri, USA
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Nadine Ms Moubayed
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
Kim TW, Baek KW, Yu HS, Ko IG, Hwang L, Park JJ. High-intensity exercise improves cognitive function and hippocampal brain-derived neurotrophic factor expression in obese mice maintained on high-fat diet. J Exerc Rehabil 2020; 16:124-131. [PMID: 32509696 PMCID: PMC7248433 DOI: 10.12965/jer.2040050.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
We wanted to find the intensity of exercise that could increase brain- derived neurotrophic factor (BDNF) expression and improve spatial learning and memory without dietary control. C57BL/6 mice were fed a 60% high-fat diet (HFD) for 6 weeks to induce obesity. Obesity-induced mice were exercised on a treadmill for 8 weeks at various exercise in-tensities: HFD-control (n=7), HFD-low-intensity exercise (HFD-LIE, n= 7, 12 m/min for 75 min), HFD-middle intensity exercise (HFD-MIE, n=7, 15 m/min for 60 min) and HFD-high-intensity exercise (HFD-HIE, n=7, 18 m/min for 50 min). One week before sacrificing mice, the Morris wa-ter maze test was performed, and the hippocampus was immediately removed after sacrifice. The expression levels of BDNF (encoded by the gene Bdnf) and tropomyosin receptor kinase B (TrkB) in the hippo-campus were analyzed by quantitative real-time reverse transcription- polymerase chain reaction and western blot. In the last probe test of the Morris water maze test, occupancy in the target quadrant was sig-nificantly higher in the HFD-HIE group (P<0.05) than in the other groups. In addition, mRNA expression from the Bdnf promoter region was found to be significantly higher in the HFD-HIE group than in the other groups (P<0.001). Although there were some differences in the levels of signifi-cance, the expression levels of both BDNF and TrkB were significantly higher in the HFD-HIE group than in the other groups. Therefore, rela-tively high-intensity aerobic exercise can resist the adverse effects of a high-fat diet on the brain without dietary control.
Collapse
Affiliation(s)
- Tae-Won Kim
- Division of Sport Science, Pusan National University, Busan, Korea
| | - Kyung-Wan Baek
- Division of Sport Science, Pusan National University, Busan, Korea
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Lakkyong Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jung-Jun Park
- Division of Sport Science, Pusan National University, Busan, Korea
| |
Collapse
|
45
|
Nota MH, Vreeken D, Wiesmann M, Aarts EO, Hazebroek EJ, Kiliaan AJ. Obesity affects brain structure and function- rescue by bariatric surgery? Neurosci Biobehav Rev 2020; 108:646-657. [DOI: 10.1016/j.neubiorev.2019.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
|
46
|
Kang J, Wang Z, Oteiza PI. (−)-Epicatechin mitigates high fat diet-induced neuroinflammation and altered behavior in mice. Food Funct 2020; 11:5065-5076. [DOI: 10.1039/d0fo00486c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
(−)-Epicatechin improves memory in high fat diet-induced obese mice in association with prevention of endotoxemia and mitigation of neuroinflammation.
Collapse
Affiliation(s)
- Jiye Kang
- Department of Nutrition and Department of Environmental Toxicology
- University of California
- Davis
- USA
| | - Ziwei Wang
- Department of Nutrition and Department of Environmental Toxicology
- University of California
- Davis
- USA
| | - Patricia I. Oteiza
- Department of Nutrition and Department of Environmental Toxicology
- University of California
- Davis
- USA
| |
Collapse
|
47
|
Nyberg CK, Fjell AM, Walhovd KB. Level of body fat relates to memory decline and interacts with age in its association with hippocampal and subcortical atrophy. Neurobiol Aging 2019; 91:112-124. [PMID: 32224068 DOI: 10.1016/j.neurobiolaging.2019.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022]
Abstract
Higher levels of body fat have shown adverse effects on multiple aspects of health, including cognitive and neuroanatomical changes. We tested the relationships of body fat levels and cholesterol to longitudinal age trajectories of subcortical gray matter volume (SCV), hippocampal volume (HCV), and episodic memory. Body fat was indexed by a concerted factor of BMI, visceral adipose tissue, percentage body fat, and total fat mass and was included in the analyses as a cross-sectional measure. We hypothesized that higher level of body fat would be related to steeper age trajectories of SCV, HCV, and memory. The sample consisted of 581 participants (20-83 years) with 942 magnetic resonance imaging and 945 memory examinations. Using generalized additive mixed models, a negative effect of body fat was found on SCV, HCV, and memory. Age and body fat interacted in their association with brain volume change. The results suggest that among cognitively healthy adults, there is a negative effect of higher body fat on SCV, HCV, and memory decline, an effect that increased with age for the neuroanatomical volumes.
Collapse
Affiliation(s)
- Claudia Kim Nyberg
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway; Research Department, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway.
| | - Anders M Fjell
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway; Department of radiology and nuclear medicine, Oslo University Hospital, Oslo, Norway
| | - Kristine B Walhovd
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway; Department of radiology and nuclear medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
48
|
Hedges DW, Erickson LD, Kunzelman J, Brown BL, Gale SD. Association between exposure to air pollution and hippocampal volume in adults in the UK Biobank. Neurotoxicology 2019; 74:108-120. [DOI: 10.1016/j.neuro.2019.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 12/19/2022]
|
49
|
Tomiga Y, Yoshimura S, Ra SG, Takahashi Y, Goto R, Kugimoto I, Uehara Y, Kawanaka K, Higaki Y. Anxiety-like behaviors and hippocampal nNOS in response to diet-induced obesity combined with exercise. J Physiol Sci 2019; 69:711-722. [PMID: 31124076 PMCID: PMC10717450 DOI: 10.1007/s12576-019-00686-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
Abstract
A high-fat diet (HFD) and overweight status can induce hippocampal dysfunction, leading to depression and anxiety. Exercise has beneficial effects on emotional behaviors. We previously reported that exercise training rescues HFD-induced excess hippocampal neuronal nitric oxide synthase (nNOS) expression, which is a key regulator of anxiety. Here, we investigated anxiety-like behaviors and hippocampal nNOS expression in response to HFD combined with exercise. Mice were assigned to standard diet, HFD, or HFD with exercise groups for 12 weeks. We found that exercise during the final 6 weeks of the HFD regime improved 12 weeks of HFD-induced defecation, accompanied by rescue of excess nNOS expression. However, anxiety indicators in the elevated plus maze were unchanged. These effects were not apparent after only 1 week of exercise. In conclusion, 6 weeks of exercise training reduced HFD-related anxiety according to one of our measures (defecation), and reversed changes in the hippocampal nNOS/NO pathway.
Collapse
Affiliation(s)
- Yuki Tomiga
- Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Saki Yoshimura
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Song-Gyu Ra
- Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yuri Takahashi
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Rina Goto
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Ikumi Kugimoto
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Yoshinari Uehara
- Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Kentaro Kawanaka
- Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yasuki Higaki
- Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
50
|
Short-term improvements in cognitive function following vertical sleeve gastrectomy and Roux-en Y gastric bypass: a direct comparison study. Surg Endosc 2019; 34:2248-2257. [PMID: 31367985 DOI: 10.1007/s00464-019-07015-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cognitive deficits are observed in individuals with obesity. While bariatric surgery can reverse these deficits, it remains unclear whether surgery type differentially influences cognitive outcome. We compared the extent to which vertical sleeve gastrectomy (VSG) and Roux-en Y gastric bypass (RYGB) ameliorated cognitive impairments associated with obesity. METHODS Female participants approved for VSG (N = 18) or RYGB (N = 18) were administered cognitive measures spanning the domains of attention [Hopkins Verbal Learning Test (HVLT) Trial 1 and Letter Number Sequencing], processing speed [Stroop Color Trial, Symbol Digit Modalities Test, and Trail Making Part A], memory [HVLT Retained and HVLT Discrimination Index], and executive functioning (Stroop Color Word Trials and Trail Making Part B-A) prior to surgery and at 2 weeks and 3 months following surgery. Scores for each cognitive domain were calculated and compared between surgical cohorts using repeated measures analyses of variance. RESULTS Significant weight loss was observed 2 weeks and 3 months following RYGB and VSG and was accompanied by improvements in processing speed and executive functioning. Patients who received RYGB also experienced improved attention as early as 2 weeks, which persisted at 3 months. This was not observed in individuals who underwent VSG. No changes in memory were observed from baseline measures in either group. CONCLUSIONS This is the first report of cognitive improvements following VSG and the first direct comparison of cognitive improvements following RYGB and VSG. Short-term improvements in specific domains of cognitive function are observed at the beginning of the active weight loss phase following bariatric surgery that persisted to 3 months. The anatomical distinction between the two surgeries and resulting differential metabolic profiles may be responsible for the improvements in attention observed following RYGB but not following VSG.
Collapse
|