1
|
Awata WMC, Sousa AH, de Mello MMB, Dourado TMH, Pinheiro LC, Elias-Oliveira J, Rodrigues VF, Carlos D, Castro MM, Tirapelli CR. AT 1 receptors modulate ethanol-induced loss of anticontractile effect of perivascular adipose tissue. Biochem Pharmacol 2023; 217:115840. [PMID: 37783376 DOI: 10.1016/j.bcp.2023.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Ethanol consumption activates renin-angiotensin-aldosterone system (RAAS), which plays a major role in the pro-contractile and hypertensive effects linked to ethanol. We hypothesized that ethanol consumption induces loss of the anticontractile effect of perivascular adipose tissue (PVAT)through RAAS-mediated mechanisms. We examined the contribution of angiotensin II type 1 receptors (AT1R) to ethanol-induced PVAT dysfunction. With this purpose, male Wistar Hannover rats were treated with ethanol 20 % (in volume ratio) and/or losartan (antagonist of AT1R; 10 mg/kg/day, gavage) for 9 weeks. Losartan prevented the increase in blood pressure and the loss of the anticontractile effect of PVAT induced by ethanol consumption. PVAT dysfunction occurred after 3 and 9 weeks of treatment with ethanol in an endothelium-dependent manner. Blockade of AT1R prevented ethanol-induced reduction of adiponectin levels in PVAT from ethanol-treated rats. Functional assays revealed that ethanol impaired the anticontractile effect of PVAT-derived angiotensin (1-7) and endothelial nitric oxide (NO). In conclusion, AT1R are implicated in ethanol-induced loss of the anticontractile effect of PVAT. In PVAT, AT1R activation decreases the production of adiponectin, a PVAT-derived factor that promotes vasorelaxation in an endothelium-dependent manner. In the endothelium, AT1R favors the production of superoxide (O2•-) leading to a reduction in NO bioavailability. These responses impair the vasodilator action induced by PVAT-derived angiotensin (1-7), which occurs via Mas receptors located in endothelial cells. Ethanol-induced PVAT dysfunction favors vascular hypercontractility, a response that could contribute to the hypertensive state associated with ethanol consumption.
Collapse
Affiliation(s)
- Wanessa M C Awata
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Arthur H Sousa
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Marcela M B de Mello
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Thales M H Dourado
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Lucas C Pinheiro
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Jefferson Elias-Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa F Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Daniela Carlos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Michele M Castro
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Batista JPT, Faria AOVD, Ribeiro TFS, Simões E Silva AC. The Role of Renin-Angiotensin System in Diabetic Cardiomyopathy: A Narrative Review. Life (Basel) 2023; 13:1598. [PMID: 37511973 PMCID: PMC10381689 DOI: 10.3390/life13071598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic cardiomyopathy refers to myocardial dysfunction in type 2 diabetes, but without the traditional cardiovascular risk factors or overt clinical atherosclerosis and valvular disease. The activation of the renin-angiotensin system (RAS), oxidative stress, lipotoxicity, maladaptive immune responses, imbalanced mitochondrial dynamics, impaired myocyte autophagy, increased myocyte apoptosis, and fibrosis contribute to diabetic cardiomyopathy. This review summarizes the studies that address the link between cardiomyopathy and the RAS in humans and presents proposed pathophysiological mechanisms underlying this association. The RAS plays an important role in the development and progression of diabetic cardiomyopathy. The over-activation of the classical RAS axis in diabetes leads to the increased production of angiotensin (Ang) II, angiotensin type 1 receptor activation, and aldosterone release, contributing to increased oxidative stress, fibrosis, and cardiac remodeling. In contrast, Ang-(1-7) suppresses oxidative stress, inhibits tissue fibrosis, and prevents extensive cardiac remodeling. Angiotensin-converting-enzyme (ACE) inhibitors and angiotensin receptor blockers improve heart functioning and reduce the occurrence of diabetic cardiomyopathy. Experimental studies also show beneficial effects for Ang-(1-7) and angiotensin-converting enzyme 2 infusion in improving heart functioning and tissue injury. Further research is necessary to fully understand the pathophysiology of diabetic cardiomyopathy and to translate experimental findings into clinical practice.
Collapse
Affiliation(s)
- João Pedro Thimotheo Batista
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - André Oliveira Vilela de Faria
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Thomas Felipe Silva Ribeiro
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| |
Collapse
|
3
|
Role of Echocardiography in Diabetic Cardiomyopathy: From Mechanisms to Clinical Practice. J Cardiovasc Dev Dis 2023; 10:jcdd10020046. [PMID: 36826542 PMCID: PMC9959745 DOI: 10.3390/jcdd10020046] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
It has been well established that diabetes mellitus (DM) is considered as a core risk factor for the development of cardiovascular diseases. However, what is less appreciated is the fact that DM may affect cardiac function irrespective of cardiac pathologies to which it contributes, such as coronary artery disease and hypertension. Although echocardiography provides accurate and reproducible diagnostic and prognostic data in patients with DM, its use in these patients is still underappreciated, resulting in progression of DM-related heart failure in many patients. Hence, in the present review, we aimed to discuss the role of echocardiography in the contemporary management of diabetic cardiomyopathy (DCM), as well as the role of emerging echocardiographic techniques, which may contribute to earlier diagnosis and more appropriate management of this complication of DM. In order to improve outcomes, focus must be placed on early diagnosis of this condition using a combination of echocardiography and emerging biomarkers, but perhaps the more important thing is to change perspective when it comes to the clinical importance of DCM.
Collapse
|
4
|
Da Eira D, Jani S, Stefanovic M, Ceddia RB. Obesogenic versus ketogenic diets in the regulation of the renin-angiotensin system in rat white and brown adipose tissues. Nutrition 2023; 105:111862. [PMID: 36356378 DOI: 10.1016/j.nut.2022.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/13/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The ketogenic diet (KD) has been reported to reverse metabolic dysfunction in obesity. However, it remains unknown how the KD affects the balance between the classical and counterregulatory renin-angiotensin system (RAS) arms in adipose tissue, which carries important implications for metabolic function in adipocytes. The aim of this study was to compare the effects of the obesogenic diet and the KD on RAS balance in white and brown fat. METHODS Nine male Wistar rats were fed a standard chow (SC), 11 fed a high-fat sucrose-enriched (HFS) obesogenic diet, and 12 a KD. At the end of the 8-wk feeding period, subcutaneous inguinal (Sc Ing), epididymal (Epid), and interscapular brown adipose tissue (iBAT) fat depots were extracted and subsequently used for the measurement of RAS proteins and MasR gene expression. RESULTS In SC-fed rats, the Sc Ing fat displayed the highest levels of angiotensin-converting enzyme (ACE)1, but very low levels of angiotensin II types 1 and 2 receptors (AT1R and AT2R) and ACE2. Conversely, the highest levels of ACE2, AT1R, and AT2R were found in iBAT. The HFS diet increased AT1R protein in Sc Ing fat and iBAT, whereas the KD maintained low AT1R levels in these fat depots. However, in Sc Ing and Epid fat depots, the KD elevated AT2R levels and significantly reduced Epid ACE1 levels. CONCLUSION Despite fat depot-specific differences in RAS components, the obesogenic diet promoted the classical RAS arm, whereas the KD attenuated it and enhanced the counterregulatory arm.
Collapse
Affiliation(s)
- Daniel Da Eira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, North York, Ontario, Canada
| | - Shailee Jani
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, North York, Ontario, Canada
| | - Mateja Stefanovic
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, North York, Ontario, Canada
| | - Rolando B Ceddia
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, North York, Ontario, Canada.
| |
Collapse
|
5
|
Wu X, Yang M, He Y, Wang F, Kong Y, Ling TJ, Zhang J. EGCG-derived polymeric oxidation products enhance insulin sensitivity in db/db mice. Redox Biol 2022; 51:102259. [PMID: 35168078 PMCID: PMC8850334 DOI: 10.1016/j.redox.2022.102259] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
The present study investigated the influence of epigallocatechin-3-gallate (EGCG) and its autoxidation products on insulin sensitivity in db/db mice. Compared to EGCG, autoxidation products of EGCG alleviated diabetic symptoms by suppressing the deleterious renal axis of the renin-angiotensin system (RAS), activating the beneficial hepatic axis of RAS, and downregulating hepatic and renal SELENOP and TXNIP. A molecular weight fraction study demonstrated that polymeric oxidation products were of essential importance. The mechanism of action involved coating polymeric oxidation products on the cell surface to protect against cholesterol loading, which induces abnormal RAS. Moreover, polymeric oxidation products could regulate RAS and SELENOP at doses that were far below cytotoxicity. The proof-of-principal demonstrations of EGCG-derived polymeric oxidation products open a new avenue for discovering highly active polymeric oxidation products based on the oxidation of naturally occurring polyphenols to manage diabetes and other diseases involving abnormal RAS. EGCG autoxidation forms polymeric oxidation products. The polymeric oxidation products are coated on the surface of cells or tissues. The surface coating regulates RAS, SELENOP, and TXNIP in db/db mice. The surface coating increases insulin sensitivity in db/db mice.
Collapse
|
6
|
Kumric M, Ticinovic Kurir T, Borovac JA, Bozic J. Role of novel biomarkers in diabetic cardiomyopathy. World J Diabetes 2021; 12:685-705. [PMID: 34168722 PMCID: PMC8192249 DOI: 10.4239/wjd.v12.i6.685] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is commonly defined as cardiomyopathy in patients with diabetes mellitus in the absence of coronary artery disease and hypertension. As DCM is now recognized as a cause of substantial morbidity and mortality among patients with diabetes mellitus and clinical diagnosis is still inappropriate, various expert groups struggled to identify a suitable biomarker that will help in the recognition and management of DCM, with little success so far. Hence, we thought it important to address the role of biomarkers that have shown potential in either human or animal studies and which could eventually result in mitigating the poor outcomes of DCM. Among the array of biomarkers we thoroughly analyzed, long noncoding ribonucleic acids, soluble form of suppression of tumorigenicity 2 and galectin-3 seem to be most beneficial for DCM detection, as their plasma/serum levels accurately correlate with the early stages of DCM. The combination of relatively inexpensive and accurate speckle tracking echocardiography with some of the highlighted biomarkers may be a promising screening method for newly diagnosed diabetes mellitus type 2 patients. The purpose of the screening test would be to direct affected patients to more specific confirmation tests. This perspective is in concordance with current guidelines that accentuate the importance of an interdisciplinary team-based approach.
Collapse
Affiliation(s)
- Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Department of Endocrinology, University Hospital of Split, Split 21000, Croatia
| | - Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Emergency Medicine, Institute of Emergency Medicine of Split-Dalmatia County, Split 21000, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| |
Collapse
|
7
|
Naguib YM, Samaka RM, Rizk MS, Ameen O, Motawea SM. Countering adipose tissue dysfunction could underlie the superiority of telmisartan in the treatment of obesity-related hypertension. Cardiovasc Diabetol 2021; 20:70. [PMID: 33761942 PMCID: PMC7988926 DOI: 10.1186/s12933-021-01259-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The prevalence of hypertension and obesity has increased significantly in recent decades. Hypertension and obesity often coexist, and both are associated with increased cardiovascular mortality. Obese hypertensive patients usually require special anti-hypertensive treatment strategy due to the increased risk of treatment resistance. Molecules that can target both obesity and hypertension underlying pathologies should get more attention. Herein, we evaluated the therapeutic effects of telmisartan, with special interest in visceral adipose tissue dysfunction, in obesity-related hypertension rat model. METHODS Thirty male Wistar rats weighing 150-200 g were equally divided into: 1-Control group (fed normal laboratory diet for 24 weeks), 2-Diet-induced obesity group (DIO, fed high fat diet for 24 weeks), and 3-Diet-induced obesity treated with telmisartan group (DIO + Tel, fed high fat diet and received telmisartan for 24 weeks). At the end of the study, anthropometrical parameters were evaluated. Systolic blood pressure and heart rate were measured. Blood samples were collected for the measurement of serum lipids, adipokines, cardiac, renal, inflammatory, and oxidative stress biomarkers. Kidneys were removed and used for histopathological studies, and visceral adipose tissue was utilized for histopathological, immunohistochemical and RT-PCR studies. RESULTS High fat diet resulted in obesity-related changes in anthropometrical parameters, elevation of blood pressure, increase in heart rate, higher serum levels of cardiac, inflammatory and kidney function biomarkers, with altered serum lipids, adipokines and oxidative stress markers. Morphological changes (H&E and PAS-stained sections) were noticed in kidneys and visceral adipose tissue. Immunohistochemistry and RT-PCR studies confirmed adipose tissue dysfunction and over-expression of inflammatory and oxidative stress proteins. Telmisartan countered obesity-induced alterations in cardiovascular, renal, and adipose tissue functions. CONCLUSION Adipose tissue dysfunction could be the core pathophysiology of obesity-related hypertension. Besides its anti-hypertensive effect, telmisartan had profound actions on visceral adipose tissue structure and function. Attention should be given to polymodal molecules targeting adipose tissue-related disorders.
Collapse
Affiliation(s)
- Yahya M Naguib
- Physiology Department, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain.
- Clinical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| | - Rehab M Samaka
- Pathology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mohamed S Rizk
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Omnia Ameen
- Clinical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Shaimaa M Motawea
- Clinical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
8
|
ACE2 and energy metabolism: the connection between COVID-19 and chronic metabolic disorders. Clin Sci (Lond) 2021; 135:535-554. [PMID: 33533405 DOI: 10.1042/cs20200752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The renin-angiotensin system (RAS) has currently attracted increasing attention due to its potential function in regulating energy homeostasis, other than the actions on cellular growth, blood pressure, fluid, and electrolyte balance. The existence of RAS is well established in metabolic organs, including pancreas, liver, skeletal muscle, and adipose tissue, where activation of angiotensin-converting enzyme (ACE) - angiotensin II pathway contributes to the impairment of insulin secretion, glucose transport, fat distribution, and adipokines production. However, the activation of angiotensin-converting enzyme 2 (ACE2) - angiotensin (1-7) pathway, a novel branch of the RAS, plays an opposite role in the ACE pathway, which could reverse these consequences by improving local microcirculation, inflammation, stress state, structure remolding, and insulin signaling pathway. In addition, new studies indicate the protective RAS arm possesses extraordinary ability to enhance brown adipose tissue (BAT) activity and induces browning of white adipose tissue, and consequently, it leads to increased energy expenditure in the form of heat instead of ATP synthesis. Interestingly, ACE2 is the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is threating public health worldwide. The main complications of SARS-CoV-2 infected death patients include many energy metabolism-related chronic diseases, such as diabetes. The specific mechanism leading to this phenomenon is largely unknown. Here, we summarize the latest pharmacological and genetic tools on regulating ACE/ACE2 balance and highlight the beneficial effects of the ACE2 pathway axis hyperactivity on glycolipid metabolism, as well as the thermogenic modulation.
Collapse
|
9
|
Favre G, Legueult K, Pradier C, Raffaelli C, Ichai C, Iannelli A, Redheuil A, Lucidarme O, Esnault V. Visceral fat is associated to the severity of COVID-19. Metabolism 2021; 115:154440. [PMID: 33246009 PMCID: PMC7685947 DOI: 10.1016/j.metabol.2020.154440] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Excess visceral fat (VF) or high body mass index (BMI) is risk factors for severe COVID-19. The receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is expressed at higher levels in the VF than in the subcutaneous fat (SCF) of obese patients. AIM To show that visceral fat accumulation better predicts severity of COVID-19 outcome compared to either SCF amounts or BMI. METHODS We selected patients with symptomatic COVID-19 and a computed tomography (CT) scan. Severe COVID-19 was defined as requirement for mechanical ventilation or death. Fat depots were quantified on abdominal CT scan slices and the measurements were correlated with the clinical outcomes. ACE 2 mRNA levels were quantified in fat depots of a separate group of non-COVID-19 subjects using RT-qPCR. RESULTS Among 165 patients with a mean BMI of 26.1 ± 5.4 kg/m2, VF was associated with severe COVID-19 (p = 0.022) and SCF was not (p = 0.640). Subcutaneous fat was not different in patients with mild or severe COVID-19 and the SCF/VF ratio was lower in patients with severe COVID-19 (p = 0.010). The best predictive value for severe COVID-19 was found for a VF area ≥128.5 cm2 (ROC curve), which was independently associated with COVID-19 severity (p < 0.001). In an exploratory analysis, ACE 2 mRNA positively correlated with BMI in VF but not in SCF of non-COVID-19 patients (r2 = 0.27 vs 0.0008). CONCLUSION Severe forms of COVID-19 are associated with high visceral adiposity in European adults. On the basis of an exploratory analysis ACE 2 in the visceral fat may be a trigger for the cytokine storm, and this needs to be clarified by future studies.
Collapse
Affiliation(s)
- Guillaume Favre
- University of Côte d'Azur, CNRS-UMR 7073 (LP2M), Department of Nephrology-Dialysis-Transplantation, Pasteur University Hospital, F-06002 CD1 Nice, France.
| | - Kevin Legueult
- University of Côte d'Azur, Department of Public Health, Archet University Hospital, F-06202 Nice, France
| | - Christian Pradier
- University of Côte d'Azur, Department of Public Health, Archet University Hospital, F-06202 Nice, France
| | - Charles Raffaelli
- Radiology Department, Pasteur University Hospital, F-06002 Nice, France
| | - Carole Ichai
- University of Côte d'Azur, Intensive Care Unit, Pasteur University Hospital, Nice F-06002, France
| | - Antonio Iannelli
- University of Côte d'Azur, INSERM-U1065, Digestive Surgery and Liver Transplantation Unit, Archet University Hospital, F-06202 Nice, France
| | - Alban Redheuil
- Sorbonne University, Pitié-Salpêtrière Hospital (AP-HP), ICT Cardiothoracic Imaging Unit & Radiology Department, LIB Biomedical Imaging Laboratory INSERM, CNRS, ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - Olivier Lucidarme
- Sorbonne University, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, APHP, Pitié-Salpêtrière Hospital, F-750013 Paris, France
| | - Vincent Esnault
- University of Côte d'Azur, CNRS-UMR 7073 (LP2M), Department of Nephrology-Dialysis-Transplantation, Pasteur University Hospital, F-06002 CD1 Nice, France
| |
Collapse
|
10
|
Santos IB, de Bem GF, da Costa CA, de Carvalho LCRM, de Medeiros AF, Silva DLB, Romão MH, de Andrade Soares R, Ognibene DT, de Moura RS, Resende AC. Açaí seed extract prevents the renin-angiotensin system activation, oxidative stress and inflammation in white adipose tissue of high-fat diet-fed mice. Nutr Res 2020; 79:35-49. [PMID: 32610256 DOI: 10.1016/j.nutres.2020.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 04/15/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022]
Abstract
The role of the renin-angiotensin system (RAS), oxidative stress, and inflammation on the development of obesity and its comorbidities has been extensively addressed. Euterpe oleracea Mart. (açaí) seed extract (ASE), with antioxidant and anti-inflammatory properties and capable to modulate plasma renin levels, has been evidenced as a potential regulator of body mass. We hypothesized that the supplementation with ASE might exert beneficial effects on obesity-related white adipose tissue changes and metabolic disorders by interfering with the local adipose tissue overexpression of RAS, inflammation, and oxidative stress in C57BL/6 mice fed a high-fat (HF) diet. The animals were fed a standard diet (10% fat, control), 60% fat (HF), HF + ASE (300 mg/kg per day) and HF + ENA (enalapril, 30 mg/kg per day) for 12 weeks. ASE and ENA prevented weight gain and adiposity, adipocyte hypertrophy, dyslipidemia, and insulin resistance. In adipose tissue, ASE increased the insulin receptor expression and reduced renin and AT1 receptor expression, which was associated with decreased plasma levels of renin and angiotensin II. Differently, ENA increased the expression of angiotensin-conversing enzyme 2, AT2, B2, and Mas receptors in adipose tissue. Also, ASE but not ENA decreased malondialdehyde and 8-isoprostane levels in adipose tissue. Finally, ASE and ENA reduced the adipose tissue inflammatory markers tumor necrosis factor alpha and interleukin 6. These results demonstrate that ASE prevented the adipocyte hypertrophy, obesity, hyperlipidemia, hyperglycemia, and insulin resistance in HF diet-fed mice. The downregulation of RAS in adipose tissue, reducing oxidative stress and inflammation, may contribute to the prevention of obesity-related disorders.
Collapse
Affiliation(s)
- Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | | | - Amanda Faria de Medeiros
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Dafne Lopes Beserra Silva
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Matheus Henrique Romão
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Ricardo de Andrade Soares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Jahandideh F, Wu J. Perspectives on the Potential Benefits of Antihypertensive Peptides towards Metabolic Syndrome. Int J Mol Sci 2020; 21:E2192. [PMID: 32235782 PMCID: PMC7139547 DOI: 10.3390/ijms21062192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to the regulation of blood pressure, the renin-angiotensin system (RAS) also plays a key role in the onset and development of insulin resistance, which is central to metabolic syndrome (MetS). Due to the interplay between RAS and insulin resistance, antihypertensive compounds may exert beneficial effects in the management of MetS. Food-derived bioactive peptides with RAS blocking properties can potentially improve adipose tissue dysfunction, glucose intolerance, and insulin resistance involved in the pathogenesis of MetS. This review discusses the pathophysiology of hypertension and the association between RAS and pathogenesis of the MetS. The effects of bioactive peptides with RAS modulating effects on other components of the MetS are discussed. While the in vivo reports on the effectiveness of antihypertensive peptides against MetS are encouraging, the exact mechanism by which these peptides infer their effects on glucose and lipid handling is mostly unknown. Therefore, careful design of experiments along with standardized physiological models to study the effect of antihypertensive peptides on insulin resistance and obesity could help to clarify this relationship.
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
12
|
Zhang Y, Somers KR, Becari C, Polonis K, Pfeifer MA, Allen AM, Kellogg TA, Covassin N, Singh P. Comparative Expression of Renin-Angiotensin Pathway Proteins in Visceral Versus Subcutaneous Fat. Front Physiol 2018; 9:1370. [PMID: 30364113 PMCID: PMC6191467 DOI: 10.3389/fphys.2018.01370] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/10/2018] [Indexed: 01/12/2023] Open
Abstract
Body fat distribution contributes to obesity-related metabolic and cardiovascular disorders. Visceral fat is more detrimental than subcutaneous fat. However, the mechanisms underlying visceral fat-mediated cardiometabolic dysregulation are not completely understood. Localized increases in expression of the renin angiotensin system (RAS) in adipose tissue (AT) may be implicated. We therefore investigated mRNA and protein expression of RAS components in visceral versus subcutaneous AT using paired samples from individuals undergoing surgery (N = 20, body mass index: 45.6 ± 6.2 kg/m2, and age: 44.6 ± 9.1 years). We also examined RAS-related proteins in AT obtained from individuals on renin angiotensin aldosterone system (RAAS) targeted drugs (N = 10, body mass index: 47.2 ± 9.3 kg/m2, and age: 53.3 ± 10.1 years). Comparison of protein expression between subcutaneous and visceral AT samples showed an increase in renin (p = 0.004) and no change in angiotensinogen (p = 0.987) expression in visceral AT. Among proteins involved in angiotensin peptide generation, angiotensin converting enzyme (p = 0.02) was increased in subcutaneous AT while chymase (p = 0.001) and angiotensin converting enzyme-2 (p = 0.001) were elevated in visceral fat. Furthermore, visceral fat expression of angiotensin II type-2 receptor (p = 0.007) and angiotensin II type-1 receptor (p = 0.031) was higher, and MAS receptor (p < 0.001) was lower. Phosphorylated-p53 (p = 0.147), AT fibrosis (p = 0.138) and average adipocyte size (p = 0.846) were similar in the two depots. Nonetheless, visceral AT showed increased mRNA expression of inflammatory (TNFα, p < 0.001; IL-6, p = 0.001) and oxidative stress markers (NOX2, p = 0.038; NOX4, p < 0.001). Of note, mRNA and protein expression of RAS components did not differ between subjects taking or not taking RAAS related drugs. In summary, several RAS related proteins are differentially expressed in subcutaneous versus visceral AT. This differential expression may not alter AngII but likely increases Ang1-7 generation in visceral fat. These potential differences in active angiotensin peptides and receptor expression in the two depots suggest that localized RAS may not be involved in differences in visceral vs subcutaneous AT function in obese individuals. Our findings do not support a role for localized RAS differences in visceral fat-mediated development of cardiovascular and metabolic pathology.
Collapse
Affiliation(s)
- Yuebo Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Kiran R Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Christiane Becari
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Katarzyna Polonis
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Michaela A Pfeifer
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Alina M Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Todd A Kellogg
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Naima Covassin
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Prachi Singh
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
Quiroga DT, Muñoz MC, Gil C, Pffeifer M, Toblli JE, Steckelings UM, Giani JF, Dominici FP. Chronic administration of the angiotensin type 2 receptor agonist C21 improves insulin sensitivity in C57BL/6 mice. Physiol Rep 2018; 6:e13824. [PMID: 30156060 PMCID: PMC6113135 DOI: 10.14814/phy2.13824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system modulates insulin action. Angiotensin type 1 receptor exerts a deleterious effect, whereas the angiotensin type 2 receptor (AT2R) appears to have beneficial effects providing protection against insulin resistance and type 2 diabetes. To further explore the role of the AT2R on insulin action and glucose homeostasis, in this study we administered C57Bl/6 mice with the synthetic agonist of the AT2R C21 for 12 weeks (1 mg/kg per day; ip). Vehicle-treated animals were used as control. Metabolic parameters, glucose, and insulin tolerance, in vivo insulin signaling in main insulin-target tissues as well as adipose tissue levels of adiponectin, and TNF-α were assessed. C21-treated animals displayed decreased glycemia together with unaltered insulinemia, increased insulin sensitivity, and increased glucose tolerance compared to nontreated controls. This was accompanied by a significant decrease in adipocytes size in epididymal adipose tissue and significant increases in both adiponectin and UCP-1 expression in this tissue. C21-treated mice showed an increase in both basal Akt and ERK1/2 phosphorylation levels in the liver, and increased insulin-stimulated Akt activation in adipose tissue. This positive modulation of insulin action induced by C21 appeared not to involve the insulin receptor. In C21-treated mice, adipose tissue and skeletal muscle became unresponsive to insulin in terms of ERK1/2 phosphorylation levels. Present data show that chronic pharmacological activation of AT2R with C21 increases insulin sensitivity in mice and indicate that the AT2R has a physiological role in the conservation of insulin action.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adiponectin/metabolism
- Adipose Tissue/metabolism
- Animals
- Blood Glucose/metabolism
- Cell Size/drug effects
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Drug Administration Schedule
- Drug Evaluation, Preclinical/methods
- Glucose Tolerance Test
- Insulin Resistance/physiology
- MAP Kinase Signaling System/physiology
- Male
- Mice, Inbred C57BL
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/physiology
- Signal Transduction
- Sulfonamides/administration & dosage
- Sulfonamides/pharmacology
- Thiophenes/administration & dosage
- Thiophenes/pharmacology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Diego Tomás Quiroga
- Departamento de Química Biológica‐Instituto de Química y Fisicoquímica Biológicas (CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Marina C. Muñoz
- Departamento de Química Biológica‐Instituto de Química y Fisicoquímica Biológicas (CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Carolina Gil
- Departamento de Química Biológica‐Instituto de Química y Fisicoquímica Biológicas (CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Marlies Pffeifer
- Departamento de Química Biológica‐Instituto de Química y Fisicoquímica Biológicas (CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Jorge E. Toblli
- Laboratory of Experimental MedicineHospital Alemán de Buenos AiresBuenos AiresArgentina
| | - Ulrike M. Steckelings
- IMM ‐ Deptartment of Cardiovascular & Renal ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Jorge F. Giani
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCalifornia
| | - Fernando P. Dominici
- Departamento de Química Biológica‐Instituto de Química y Fisicoquímica Biológicas (CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
14
|
Modulation of the renin-angiotensin system in white adipose tissue and skeletal muscle: focus on exercise training. Clin Sci (Lond) 2018; 132:1487-1507. [PMID: 30037837 DOI: 10.1042/cs20180276] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
Overactivation of the renin-angiotensin (Ang) system (RAS) increases the classical arm (Ang-converting enzyme (ACE)/Ang II/Ang type 1 receptor (AT1R)) to the detriment of the protective arm (ACE2/Ang 1-7/Mas receptor (MasR)). The components of the RAS are present locally in white adipose tissue (WAT) and skeletal muscle, which act co-operatively, through specific mediators, in response to pathophysiological changes. In WAT, up-regulation of the classical arm promotes lipogenesis and reduces lipolysis and adipogenesis, leading to adipocyte hypertrophy and lipid storage, which are related to insulin resistance and increased inflammation. In skeletal muscle, the classical arm promotes protein degradation and increases the inflammatory status and oxidative stress, leading to muscle wasting. Conversely, the protective arm plays a counter-regulatory role by opposing the effect of Ang II. The accumulation of adipose tissue and muscle mass loss is associated with a higher risk of morbidity and mortality, which could be related, in part, to overactivation of the RAS. On the other hand, exercise training (ExT) shifts the balance of the RAS towards the protective arm, promoting the inhibition of the classical arm in parallel with the stimulation of the protective arm. Thus, fat mobilization and maintenance of muscle mass and function are facilitated. However, the mechanisms underlying exercise-induced changes in the RAS remain unclear. In this review, we present the RAS as a key mechanism of WAT and skeletal muscle metabolic dysfunction. Furthermore, we discuss the interaction between the RAS and exercise and the possible underlying mechanisms of the health-related aspects of ExT.
Collapse
|
15
|
Vos MB, Jin R, Konomi JV, Cleeton R, Cruz J, Karpen S, Rodriguez DS, Frediani JK, McCracken C, Welsh J. A randomized, controlled, crossover pilot study of losartan for pediatric nonalcoholic fatty liver disease. Pilot Feasibility Stud 2018; 4:109. [PMID: 29992039 PMCID: PMC5987658 DOI: 10.1186/s40814-018-0306-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in children, and currently, there are no FDA-approved therapies. Plasminogen activator inhibitor-1 (PAI-1) is elevated in children with NAFLD and associated with increased disease severity. Losartan potassium (losartan) is an angiotensin II receptor blocker (ARB) that reduces PAI-1 production and improves insulin sensitivity that has been proposed as a treatment for pediatric NAFLD but has not previously been tested. Methods This was an 8-week randomized, double-blind, placebo-controlled, phase 2a, crossover study (with a 6-week washout between conditions) for safety and preliminary efficacy of losartan 50 mg a day taken orally in 12 normotensive children with biopsy proven nonalcoholic steatohepatitis (NASH). Results Twelve children enrolled in the study, and nine completed all visits. No changes in blood pressure or serious adverse events occurred during the study. Trends in improvement in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and homeostatic model assessment insulin resistance (HOMA-IR) were seen with losartan treatment compared to the placebo time-period. More participants decreased ALT on losartan as compared to placebo (89% [8 out 9] vs. 56% [5 out of 9], respectively). Conclusions This data provides preliminary evidence that losartan treatment is safe over 8 weeks in children with NAFLD and supports consideration of larger studies to test its efficacy. Trial registration URL and trial identification number: https://clinicaltrials.gov/show/NCT01913470, NCT01913470. Date registered: August 1, 2013.
Collapse
Affiliation(s)
- Miriam B Vos
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, Emory University, Room W-450, 1760 Haygood Dr NE, Atlanta, GA 30322 USA.,2Children's Healthcare of Atlanta, Atlanta, GA USA
| | - Ran Jin
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, Emory University, Room W-450, 1760 Haygood Dr NE, Atlanta, GA 30322 USA
| | - Juna V Konomi
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, Emory University, Room W-450, 1760 Haygood Dr NE, Atlanta, GA 30322 USA
| | - Rebecca Cleeton
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, Emory University, Room W-450, 1760 Haygood Dr NE, Atlanta, GA 30322 USA
| | - Jessica Cruz
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, Emory University, Room W-450, 1760 Haygood Dr NE, Atlanta, GA 30322 USA
| | - Saul Karpen
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, Emory University, Room W-450, 1760 Haygood Dr NE, Atlanta, GA 30322 USA.,2Children's Healthcare of Atlanta, Atlanta, GA USA
| | - Dellys Soler Rodriguez
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, Emory University, Room W-450, 1760 Haygood Dr NE, Atlanta, GA 30322 USA
| | - Jennifer K Frediani
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, Emory University, Room W-450, 1760 Haygood Dr NE, Atlanta, GA 30322 USA
| | - Courtney McCracken
- 3Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA USA
| | - Jean Welsh
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, Emory University, Room W-450, 1760 Haygood Dr NE, Atlanta, GA 30322 USA.,2Children's Healthcare of Atlanta, Atlanta, GA USA
| |
Collapse
|
16
|
Agabiti-Rosei C, Paini A, De Ciuceis C, Withers S, Greenstein A, Heagerty AM, Rizzoni D. Modulation of Vascular Reactivity by Perivascular Adipose Tissue (PVAT). Curr Hypertens Rep 2018; 20:44. [PMID: 29736674 DOI: 10.1007/s11906-018-0835-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW In this review, we discuss the role of perivascular adipose tissue (PVAT) in the modulation of vascular contractility and arterial pressure, focusing on the role of the renin-angiotensin-aldosterone system and oxidative stress/inflammation. RECENT FINDINGS PVAT possesses a relevant endocrine-paracrine activity, which may be altered in several pathophysiological and clinical conditions. During the last two decades, it has been shown that PVAT may modulate vascular reactivity. It has also been previously demonstrated that inflammation in adipose tissue may be implicated in vascular dysfunction. In particular, adipocytes secrete a number of adipokines with various functions, as well as several vasoactive factors, together with components of the renin-angiotensin system which may act at local or at systemic level. It has been shown that the anti-contractile effect of PVAT is lost in obesity, probably as a consequence of the development of adipocyte hypertrophy, inflammation, and oxidative stress. Adipose tissue dysfunction is interrelated with inflammation and oxidative stress, thus contributing to endothelial dysfunction observed in several pathological and clinical conditions such as obesity and hypertension. Decreased local adiponectin level, macrophage recruitment and infiltration, and activation of renin-angiotensin-aldosterone system could play an important role in this regard.
Collapse
Affiliation(s)
- Claudia Agabiti-Rosei
- Department of Medicine, Manchester University, Manchester, UK. .,Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy.
| | - Anna Paini
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| | - Carolina De Ciuceis
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| | - Sarah Withers
- Department of Medicine, Manchester University, Manchester, UK
| | - Adam Greenstein
- Department of Medicine, Manchester University, Manchester, UK
| | | | - Damiano Rizzoni
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| |
Collapse
|
17
|
Tahara A, Takasu T. Effects of the SGLT2 inhibitor ipragliflozin on various diabetic symptoms and progression of overt nephropathy in type 2 diabetic mice. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:395-406. [PMID: 29374293 DOI: 10.1007/s00210-018-1469-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/16/2018] [Indexed: 01/03/2023]
Abstract
Diabetic nephropathy is the leading cause of end-stage renal disease and is associated with high-cardiovascular risk and significant morbidity and mortality. The recent development of sodium-glucose cotransporter (SGLT) 2 inhibitors offers a new antidiabetic therapy via enhanced glucose excretion; however, the beneficial effect of these drugs on the development of type 2 diabetic overt nephropathy is still largely unclear. We examined the therapeutic effects of the SGLT2 inhibitor ipragliflozin on various diabetic symptoms and the progression of nephropathy in uninephrectomized type 2 diabetic mice, which exhibit not only typical diabetic symptoms, such as impaired insulin secretion, glucose intolerance, hyperglycemia, and obesity, but also overt nephropathy with decline in renal function. Diabetes was induced by intraperitoneal administration of nicotinamide (1000 mg/kg) and streptozotocin (150 mg/kg) to uninephrectomized high-fat diet-fed mice. Ipragliflozin (0.1-3 mg/kg) was orally administered to diabetic mice once daily for 4 weeks. Repeated administration of ipragliflozin improved diabetic symptoms, such as hyperglycemia and insulin resistance, via an increase in urinary glucose excretion. In addition, ipragliflozin attenuated albuminuria/proteinuria and the decline in renal function, and improved renal injury, including glomerulosclerosis and interstitial fibrosis. Our results demonstrate that ipragliflozin improves various diabetic symptoms and delays development of diabetic nephropathy. Therefore, SGLT2 inhibitors could constitute a novel therapeutic target for the treatment of type 2 diabetes with overt nephropathy.
Collapse
Affiliation(s)
- Atsuo Tahara
- Candidate Discovery Science Laboratories, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan.
| | - Toshiyuki Takasu
- Candidate Discovery Science Laboratories, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| |
Collapse
|
18
|
Jahandideh F, Chakrabarti S, Davidge ST, Wu J. Egg white hydrolysate shows insulin mimetic and sensitizing effects in 3T3-F442A pre-adipocytes. PLoS One 2017; 12:e0185653. [PMID: 28972997 PMCID: PMC5626431 DOI: 10.1371/journal.pone.0185653] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/16/2017] [Indexed: 01/19/2023] Open
Abstract
Insulin resistance and inflammation in adipose tissue is a key mechanism underlying metabolic syndrome, a growing health problem characterized by diabetes, obesity and hypertension. Previous work from our research group has demonstrated the potential of egg white ovotransferrin derived bioactive peptides against hypertension, oxidative stress and inflammation in vitro and in vivo. Egg white hydrolysate (EWH) has also shown anti-hypertensive effects in spontaneously hypertensive rats. Given the interplay among hypertension, inflammation, oxidative stress and metabolic syndrome, the objective of the study was to test the EWH on differentiation, insulin signaling and inflammatory responses in 3T3-F442A pre-adipocytes. Our study suggested that EWH could promote adipocyte differentiation as shown by increased lipid accumulation, increased release of adiponectin and upregulation of peroxisome proliferator associated receptor gamma (PPARγ) and CCAAT/ enhancer binding protein alpha (C/EBP-α). In addition to enhanced insulin effects on the upregulation of protein kinase B/Akt phosphorylation, EWH treatment increased extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation to a level similar to that of insulin, indicating insulin sensitizing and mimetic properties of the EWH. EWH further attenuated cytokine induced inflammatory marker; cyclooxygenase -2 (COX-2) by 48.78%, possibly through the AP-1 pathway by down regulating c-Jun phosphorylation in adipocytes. Given the critical role of adipose in the pathogenesis of insulin resistance and metabolic syndrome, EWH may have potential applications in the prevention and management of metabolic syndrome and its complications.
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Subhadeep Chakrabarti
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T. Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
19
|
Souza-Mello V. Hepatic structural enhancement and insulin resistance amelioration due to AT1 receptor blockade. World J Hepatol 2017; 9:74-79. [PMID: 28144388 PMCID: PMC5241531 DOI: 10.4254/wjh.v9.i2.74] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/18/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
Over the last decade, the role of renin-angiotensin system (RAS) on the development of obesity and its comorbidities has been extensively addressed. Both circulating and local RAS components are up-regulated in obesity and involved in non-alcoholic fatty liver disease onset. Pharmacological manipulations of RAS are viable strategies to tackle metabolic impairments caused by the excessive body fat mass. Renin inhibitors rescue insulin resistance, but do not have marked effects on hepatic steatosis. However, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers (ARB) yield beneficial hepatic remodeling. ARBs elicit body mass loss and normalize insulin levels, tackling insulin resistance. Also, this drug class increases adiponectin levels, besides countering interleukin-6, tumoral necrosis factor-alpha, and transforming growth factor-beta 1. The latter is essential to prevent from liver fibrosis. When conjugated with peroxisome proliferator-activated receptor (PPAR)-alpha activation, ARB fully rescues fatty liver. These effects might be orchestrated by an indirect up-regulation of MAS receptor due to angiotensin II receptor type 1 (AT1R) blockade. These associations of ARB with PPAR activation and ACE2-angiotensin (ANG) (1-7)-MAS receptor axis deserve a better understanding. This editorial provides a brief overview of the current knowledge regarding AT1R blockade effects on sensitivity to insulin and hepatic structural alterations as well as the intersections of AT1R blockade with peroxisome proliferator-activated receptor activation and ACE2-ANG (1-7) - MAS receptor axis.
Collapse
|
20
|
Min HS, Cha JJ, Kim K, Kim JE, Ghee JY, Kim H, Lee JE, Han JY, Jeong LS, Cha DR, Kang YS. Renoprotective Effects of a Highly Selective A3 Adenosine Receptor Antagonist in a Mouse Model of Adriamycin-induced Nephropathy. J Korean Med Sci 2016; 31:1403-12. [PMID: 27510383 PMCID: PMC4974181 DOI: 10.3346/jkms.2016.31.9.1403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/13/2016] [Indexed: 12/15/2022] Open
Abstract
The concentration of adenosine in the normal kidney increases markedly during renal hypoxia, ischemia, and inflammation. A recent study reported that an A3 adenosine receptor (A3AR) antagonist attenuated the progression of renal fibrosis. The adriamycin (ADX)-induced nephropathy model induces podocyte injury, which results in severe proteinuria and progressive glomerulosclerosis. In this study, we investigated the preventive effect of a highly selective A3AR antagonist (LJ1888) in ADX-induced nephropathy. Three groups of six-week-old Balb/c mice were treated with ADX (11 mg/kg) for four weeks and LJ1888 (10 mg/kg) for two weeks as following: 1) control; 2) ADX; and 3) ADX + LJ1888. ADX treatment decreased body weight without a change in water and food intake, but this was ameliorated by LJ1888 treatment. Interestingly, LJ1888 lowered plasma creatinine level, proteinuria, and albuminuria, which had increased during ADX treatment. Furthermore, LJ1888 inhibited urinary nephrin excretion as a podocyte injury marker, and urine 8-isoprostane and kidney lipid peroxide concentration, which are markers of oxidative stress, increased after injection of ADX. ADX also induced the activation of proinflammatory and profibrotic molecules such as TGF-β1, MCP-1, PAI-1, type IV collagen, NF-κB, NOX4, TLR4, TNFα, IL-1β, and IFN-γ, but they were remarkably suppressed after LJ1888 treatment. In conclusion, our results suggest that LJ1888 has a renoprotective effect in ADX-induced nephropathy, which might be associated with podocyte injury through oxidative stress. Therefore, LJ1888, a selective A3AR antagonist, could be considered as a potential therapeutic agent in renal glomerular diseases which include podocyte injury and proteinuria.
Collapse
Affiliation(s)
- Hye Sook Min
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Jin Joo Cha
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Kitae Kim
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Jung Eun Kim
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Jung Yeon Ghee
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Hyunwook Kim
- Department of Nephrology, Wonkwang University Sanbon Hospital, Gunpo, Korea
| | - Ji Eun Lee
- Department of Nephrology, Wonkwang University Sanbon Hospital, Gunpo, Korea
| | - Jee Young Han
- Department of Pathology, Inha University Medical College, Incheon, Korea
| | - Lak Shin Jeong
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Dae Ryong Cha
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Young Sun Kang
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea.
| |
Collapse
|
21
|
Dolgacheva LP, Turovskaya MV, Dynnik VV, Zinchenko VP, Goncharov NV, Davletov B, Turovsky EA. Angiotensin II activates different calcium signaling pathways in adipocytes. Arch Biochem Biophys 2016; 593:38-49. [PMID: 26850364 DOI: 10.1016/j.abb.2016.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/11/2016] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
Angiotensin II (Ang II) is an important mammalian neurohormone involved in reninangiotensin system. Ang II is produced both constitutively and locally by RAS systems, including white fat adipocytes. The influence of Ang II on adipocytes is complex, affecting different systems of signal transduction from early Са(2+) responses to cell proliferation and differentiation, triglyceride accumulation, expression of adipokine-encoding genes and adipokine secretion. It is known that white fat adipocytes express all RAS components and Ang II receptors (АТ1 and АТ2). The current work was carried out with the primary white adipocytes culture, and Са(2+) signaling pathways activated by Ang II were investigated using fluorescent microscopy. Са(2+)-oscillations and transient responses of differentiated adipocytes to Ang II were registered in cells with both small and multiple lipid inclusions. Using inhibitory analysis and selective antagonists, we now show that Ang II initiates periodic Са(2+)-oscillations and transient responses by activating АТ1 and АТ2 receptors and involving branched signaling cascades: 1) Ang II → Gq → PLC → IP3 → IP3Rs → Ca(2+) 2) Gβγ → PI3Kγ → PKB 3) PKB → eNOS → NO → PKG 4) CD38 → cADPR → RyRs → Ca(2+) In these cascades, AT1 receptors play the leading role. The results of the present work open a perspective of using Ang II for correction of signal resistance of adipocytes often observed during obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Lyudmila P Dolgacheva
- Laboratory of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Maria V Turovskaya
- Laboratory of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Vladimir V Dynnik
- Laboratory of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia; Laboratory of System Biochemistry, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Valery P Zinchenko
- Laboratory of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Nikolay V Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, England, UK
| | - Egor A Turovsky
- Laboratory of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia.
| |
Collapse
|
22
|
Chin SH, Item F, Wueest S, Zhou Z, Wiedemann MSF, Gai Z, Schoenle EJ, Kullak-Ublick GA, Al-Hasani H, Konrad D. Opposing effects of reduced kidney mass on liver and skeletal muscle insulin sensitivity in obese mice. Diabetes 2015; 64:1131-41. [PMID: 25325737 DOI: 10.2337/db14-0779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reduced kidney mass and/or function may result in multiple metabolic derangements, including insulin resistance. However, underlying mechanisms are poorly understood. Herein, we aimed to determine the impact of reduced kidney mass on glucose metabolism in lean and obese mice. To that end, 7-week-old C57BL/6J mice underwent uninephrectomy (UniNx) or sham operation. After surgery, animals were fed either a chow (standard) diet or a high-fat diet (HFD), and glucose homeostasis was assessed 20 weeks after surgery. Intraperitoneal glucose tolerance was similar in sham-operated and UniNx mice. However, insulin-stimulated glucose disposal in vivo was significantly diminished in UniNx mice, whereas insulin-stimulated glucose uptake into isolated skeletal muscle was similar in sham-operated and UniNx mice. Of note, capillary density was significantly reduced in skeletal muscle of HFD-fed UniNx mice. In contrast, hepatic insulin sensitivity was improved in UniNx mice. Furthermore, adipose tissue hypoxia-inducible factor 1α expression and inflammation were reduced in HFD-fed UniNx mice. Treatment with the angiotensin II receptor blocker telmisartan improved glucose tolerance and hepatic insulin sensitivity in HFD-fed sham-operated but not UniNx mice. In conclusion, UniNx protects from obesity-induced adipose tissue inflammation and hepatic insulin resistance, but it reduces muscle capillary density and, thus, deteriorates HFD-induced skeletal muscle glucose disposal.
Collapse
Affiliation(s)
- Siew Hung Chin
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Center, University Children's Hospital, Zurich, Switzerland Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Flurin Item
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Zhou Zhou
- German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany
| | - Michael S F Wiedemann
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Center, University Children's Hospital, Zurich, Switzerland Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Eugen J Schoenle
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Hadi Al-Hasani
- German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany German Center for Diabetes Research, Düsseldorf, Germany
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Center, University Children's Hospital, Zurich, Switzerland Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Favre GA, Esnault VLM, Van Obberghen E. Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. Am J Physiol Endocrinol Metab 2015; 308:E435-49. [PMID: 25564475 DOI: 10.1152/ajpendo.00391.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is an enzymatic cascade functioning in a paracrine and autocrine fashion. In animals and humans, RAAS intrinsic to tissues modulates food intake, metabolic rate, adiposity, insulin sensitivity, and insulin secretion. A large array of observations shows that dysregulation of RAAS in the metabolic syndrome favors type 2 diabetes. Remarkably, angiotensin-converting enzyme inhibitors, suppressing the synthesis of angiotensin II (ANG II), and angiotensin receptor blockers, targeting the ANG II type 1 receptor, prevent diabetes in patients with hypertensive or ischemic cardiopathy. These drugs interrupt the negative feedback loop of ANG II on the RAAS cascade, which results in increased production of angiotensins. In addition, they change the tissue expression of RAAS components. Therefore, the concept of a dual axis of RAAS regarding glucose homeostasis has emerged. The RAAS deleterious axis increases the production of inflammatory cytokines and raises oxidative stress, exacerbating the insulin resistance and decreasing insulin secretion. The beneficial axis promotes adipogenesis, blocks the production of inflammatory cytokines, and lowers oxidative stress, thereby improving insulin sensitivity and secretion. Currently, drugs targeting RAAS are not given for the purpose of preventing diabetes in humans. However, we anticipate that in the near future the discovery of novel means to modulate the RAAS beneficial axis will result in a decisive therapeutic breakthrough.
Collapse
Affiliation(s)
- Guillaume A Favre
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Nephrology Department, University Hospital, Nice, France; and
| | - Vincent L M Esnault
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Nephrology Department, University Hospital, Nice, France; and
| | - Emmanuel Van Obberghen
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Clinical Chemistry Laboratory, University Hospital, Nice, France
| |
Collapse
|
24
|
Moreira de Macêdo S, Guimarães TA, Feltenberger JD, Sousa Santos SH. The role of renin-angiotensin system modulation on treatment and prevention of liver diseases. Peptides 2014; 62:189-96. [PMID: 25453980 DOI: 10.1016/j.peptides.2014.10.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS) is now recognized as an important modulator of body metabolic processes. The discovery of angiotensin-converting enzyme 2 (ACE2) has renewed interest in the potential therapeutic role of RAS modulation. Recent studies have pointed out the importance of the local balance between ACE/Ang-II/AT1 and ACE2/Ang-(1-7)/Mas arms to avoid liver metabolic diseases. Furthermore, non-alcoholic fatty liver disease is an increasing health problem that includes a spectrum of hepatic steatosis, steatohepatitis and fibrosis. Some new studies revealed that RAS imbalance appears to promote hepatic fibrogenesis; while the activation of ACE2/Ang-(1-7)/Mas counter-regulatory axis is able to prevent liver injuries. In this context, the aim of the present review is to discuss the importance of RAS in the development and prevention of liver disease. AT1 receptor activation by Ang II induces hepatic stellate cell contraction and proliferation, causes oxidative stress, endothelial dysfunction, cell growth and inflammation. In addition, both AT1 blocker administration and ACE inhibitors lead to a reduction in inflammation and improvement of hepatic fibrosis. Conversely, Ang-(1-7) infusion reduces fibrosis and proliferation mainly by suppression of hepatic stellate cell activation; Mas receptor antagonism aggravates liver fibrosis and severe liver steatosis. In conclusion, the use of ACE/Ang II/AT1 axis inhibitors associated with ACE2/Ang(1-7)/Mas axis activation is a promising new strategy serving as a novel therapeutic regimen to prevent and treat chronic liver diseases as well as acute liver injury.
Collapse
|
25
|
Favre GA, Lebrun P, Lopez P, Butori C, Hofman P, Esnault VL, Van Obberghen E. Constitutive activation of the renin-angiotensin system reduces visceral fat and improves glucose tolerance in mice. J Renin Angiotensin Aldosterone Syst 2014; 15:396-409. [PMID: 25371094 DOI: 10.1177/1470320314537695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION The renin-angiotensin system (RAS), and particularly angiotensin II, is involved in the control of energy balance, glucose homeostasis and kidney functions. The integrated impact of the RAS on glucose homeostasis is still a matter of debate. MATERIALS AND METHODS We used a model of constitutive RAS activation in double transgenic mice (dTGM) carrying both human angiotensinogen and human renin genes. We evaluated energy balance, measured renal functions, performed glucose and insulin tolerance tests, and used ramipril to inhibit the angiotensin-converting enzyme. RESULTS dTGM had a lower physical activity and an increased food intake without change in body weight. Renal impairment was characterized by low-grade albuminuria. High urinary output secondary to polydipsia was associated with proximal tubule dysfunction. Compared to controls, dTGM had a lower hyperglycemia induced by an intraperitoneal glucose administration. This decrease was not due to changes in insulin sensitivity and/or secretion. dTGM had an increased creatinine production and a lower epididymal fat mass. Acute inhibition of angiotensin-converting enzyme with ramipril did not suppress this improved glucose tolerance profile. CONCLUSION Chronic RAS activation is not sufficient to cause insulin resistance in mice. Moreover, adaptation to constitutive RAS activation in mice results in a better glucose tolerance.
Collapse
Affiliation(s)
- Guillaume A Favre
- INSERM, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" team, France Nephrology Department, University Hospital, Nice, France
| | - Patricia Lebrun
- INSERM, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" team, France University of Nice-Sophia Antipolis, Nice, France
| | - Pascal Lopez
- INSERM, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" team, France University of Nice-Sophia Antipolis, Nice, France
| | - Catherine Butori
- Clinical and Experimental Pathology Department, University Hospital, Nice, France
| | - Paul Hofman
- University of Nice-Sophia Antipolis, Nice, France Clinical and Experimental Pathology Department, University Hospital, Nice, France
| | - Vincent Lm Esnault
- INSERM, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" team, France Nephrology Department, University Hospital, Nice, France
| | - Emmanuel Van Obberghen
- INSERM, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" team, France University of Nice-Sophia Antipolis, Nice, France Clinical Chemistry Laboratory, University Hospital, Nice, France
| |
Collapse
|
26
|
Azilsartan Decreases Renal and Cardiovascular Injury in the Spontaneously Hypertensive Obese Rat. Cardiovasc Drugs Ther 2014; 28:313-22. [DOI: 10.1007/s10557-014-6530-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Min HS, Kim JE, Lee MH, Song HK, Lee MJ, Lee JE, Kim HW, Cha JJ, Hyun YY, Han JY, Cha DR, Kang YS. Effects of Toll-like receptor antagonist 4,5-dihydro-3-phenyl-5-isoxasole acetic acid on the progression of kidney disease in mice on a high-fat diet. Kidney Res Clin Pract 2014; 33:33-44. [PMID: 26877948 PMCID: PMC4714156 DOI: 10.1016/j.krcp.2013.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/23/2013] [Accepted: 10/17/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Obesity-related metabolic disorders are closely associated with inflammation induced by innate immunity. Toll-like receptors (TLRs) play a pivotal role in the innate immune system by activating proinflammatory signaling pathways. GIT27 (4,5-dihydro-3-phenyl-5-isoxasole acetic acid) is an active immunomodulatory agent that primarily targets macrophages and inhibits secretion of tumor necrosis factor α [as well as interleukin (IL)-1β, IL-10, and interferon γ]. However, the effect of TLR antagonist on kidney diseases has rarely been reported. We investigated whether the TLR antagonist GIT27 has beneficial effects on the progression of kidney disease in obese mice on a high-fat diet (HFD). METHODS Six-week-old male C57BL/6 mice were divided into three groups: mice fed with normal chow diet (N=4); mice fed with a HFD (60% of total calories from fat, 5.5% from soybean oil, and 54.5% from lard, N=4); and GIT27-treated mice fed with a HFD (N=7). RESULTS Glucose intolerance, oxidative stress, and lipid abnormalities in HFD mice were improved by GIT27 treatment. In addition, GIT27 treatment decreased the urinary excretion of albumin and protein in obesity-related kidney disease, urinary oxidative stress markers, and inflammatory cytokine levels. This treatment inhibited the expression of proinflammatory cytokines in the kidneys and adipose tissue, and improved extracellular matrix expansion and tubulointerstitial fibrosis in obesity-related kidney disease. CONCLUSION TLR inhibition by administering GIT27 improved metabolic parameters. GIT27 ameliorates abnormalities of lipid metabolism and may have renoprotective effects on obesity-related kidney disease through its anti-inflammatory properties.
Collapse
Affiliation(s)
- Hye Sook Min
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| | - Jung Eun Kim
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| | - Mi Hwa Lee
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| | - Hye Kyoung Song
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| | - Mi Jin Lee
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| | - Ji Eun Lee
- Department of Internal Medicine, Wonkwang University College of Medicine, Sanbon, Korea
| | - Hyun Wook Kim
- Department of Internal Medicine, Wonkwang University College of Medicine, Sanbon, Korea
| | - Jin Joo Cha
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| | - Young Youl Hyun
- Department of Internal Medicine, Sungkyunkwan University College of Medicine, Seoul, Korea
| | - Jee Young Han
- Department of Pathology, Inha University College of Medicine, Incheon, Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| | - Young Sun Kang
- Department of Internal Medicine, Korea University College of Medicine, Ansan, Korea
| |
Collapse
|
28
|
Kang YS. Obesity associated hypertension: new insights into mechanism. Electrolyte Blood Press 2013; 11:46-52. [PMID: 24627704 PMCID: PMC3950225 DOI: 10.5049/ebp.2013.11.2.46] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 12/29/2013] [Indexed: 02/06/2023] Open
Abstract
With excess nutrition, the burden of obesity is a growing problem worldwide. The imbalance between energy intake and expenditure leads to variable disorders as all major risk factors for cardiovascular disease. There are many hypothetical mechanisms to explain obesity-associated hypertension. Activation of the RAAS is a key contributing factor in obesity. Particularly, the RAAS in adipose tissue plays a crucial role in adipose tissue dysfunction and obesity-induced inflammation. The phenotypic changes of adipocytes occur into hypertrophy and an inflammatory response in an autocrine and paracrine manner to impair adipocyte function, including insulin signaling pathway. Adipose tissue produce and secretes several molecules such as leptin, resistin, adiponectin, and visfatin, as well as cytokines such as TNF-α, IL-6, MCP-1, and IL-1. These adipokines are stimulated via the intracellular signaling pathways that regulate inflammation of adipose tissue. Inflammation and oxidative stress in adipose tissue are important to interact with the microvascular endothelium in the mechanisms of obesity-associated hypertension. Increased microvascular resistance raises blood pressure. Therefore, a regulatory link between microvascular and perivascular adipose tissue inflammation and adipokine synthesis are provided to explain the mechanism of obesity-associated hypertension.
Collapse
Affiliation(s)
- Young Sun Kang
- Division of Nephrology, Department of Internal Medicine, Medical College of Korea University, Ansan Hospital, Ansan-city, Gyeonggi, Korea
| |
Collapse
|
29
|
Marcus Y, Shefer G, Stern N. Adipose tissue renin-angiotensin-aldosterone system (RAAS) and progression of insulin resistance. Mol Cell Endocrinol 2013; 378:1-14. [PMID: 22750719 DOI: 10.1016/j.mce.2012.06.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/24/2012] [Indexed: 12/31/2022]
Abstract
This review focuses on the expression of the key components of the renin-angiotensin-aldosterone axis in fat tissue. At the center of this report is the role of RAAS in normal and excessive fat mass enlargement, the leading etiology of insulin resistance. Understanding the expression and regulation of RAAS components in various fat depots allows insight not only into the processes by which these complex patterns are modified by the enlargement of adipose tissue, but also into their impact on local and systemic response to insulin.
Collapse
Affiliation(s)
- Yonit Marcus
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | | | | |
Collapse
|
30
|
Underwood PC, Adler GK. The renin angiotensin aldosterone system and insulin resistance in humans. Curr Hypertens Rep 2013; 15:59-70. [PMID: 23242734 DOI: 10.1007/s11906-012-0323-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alterations in the renin angiotensin aldosterone system (RAAS) contribute to the underlying pathophysiology of insulin resistance in humans; however, individual differences in the treatment response of insulin resistance to RAAS blockade persist. Thus, understanding inter-individual differences in the relationship between the RAAS and insulin resistance may provide insights into improved personalized treatments and improved outcomes. The effects of the systemic RAAS on blood pressure regulation and glucose metabolism have been studied extensively; however, recent discoveries on the influence of local tissue RAAS in the skeletal muscle, heart, vasculature, adipocytes, and pancreas have led to an improved understanding of how activated tissue RAAS influences the development of insulin resistance and diabetes in humans. Angiotensin II (ANGII) is the predominant RAAS component contributing to insulin resistance; however, other players such as aldosterone, renin, and ACE2 are also involved. This review examines the role of local ANGII activity on insulin resistance development in skeletal muscle, adipocytes, and pancreas, followed by a discussion of the other RAAS components implicated in insulin resistance, including ACE2, Ang1-7, renin, and aldosterone.
Collapse
Affiliation(s)
- Patricia C Underwood
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
31
|
Cha JJ, Hyun YY, Lee MH, Kim JE, Nam DH, Song HK, Kang YS, Lee JE, Kim HW, Han JY, Cha DR. Renal protective effects of toll-like receptor 4 signaling blockade in type 2 diabetic mice. Endocrinology 2013; 154:2144-55. [PMID: 23568555 DOI: 10.1210/en.2012-2080] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic inflammation caused by high glucose and high free fatty acid (FFA) concentrations is a major contributor to the pathogenesis of type 2 diabetes. Recent evidence suggests that activation of Toll-like receptor (TLR) signaling induces peripheral insulin resistance and mediates central insulin and leptin resistance. In this study, we investigated the renal effects of TLR4 signaling blockade in type 2 diabetic mice. Eight-week-old db/db mice were treated for 12 weeks with (S,R)-3-phenyl-4,5-dihydro-5-isoxasole acetic acid (GIT27), which targets macrophages through the inhibition of TLR4- and TLR2/6-mediated signaling pathways. Although GIT27 treatment improved glycemic control and insulin tolerance, which is associated with a lower lipid profile, it did not impact body weight or food consumption. GIT27 treatment also markedly decreased urinary albumin excretion, decreased proinflammatory cytokine synthesis, improved tissue lipid metabolism, induced oxidative stress, and improved glomerulosclerosis compared with the control db/db group. In cultured podocytes and adipocytes, high glucose levels with FFA stimulation increased TLR4 expression and proinflammatory cytokine synthesis, but the effects were abolished by GIT27 treatment. In addition, knockdown of TLR4 expression by stealth small interfering RNA abolished FFA-induced proinflammatory cytokine synthesis in cultured podocytes. In conclusion, our results suggest that GIT27 treatment improves insulin resistance and protects against the renal injury that occurs in type 2 diabetic nephropathy through both metabolic and antiglomerulosclerotic mechanisms. These results suggest that TLR pathway inhibition might play a direct protective role in diabetic kidney disease.
Collapse
Affiliation(s)
- J J Cha
- Department of Internal Medicine, Korea University Ansan-Hospital, 516 Kojan-Dong, Ansan City, Kyungki-Do, 425-020, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kim JE, Lee MH, Nam DH, Song HK, Kang YS, Lee JE, Kim HW, Cha JJ, Hyun YY, Han SY, Han KH, Han JY, Cha DR. Celastrol, an NF-κB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice. PLoS One 2013; 8:e62068. [PMID: 23637966 PMCID: PMC3637455 DOI: 10.1371/journal.pone.0062068] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/18/2013] [Indexed: 12/12/2022] Open
Abstract
The NF-κB pathway plays an important role in chronic inflammatory and autoimmune diseases. Recently, NF-κB has also been suggested as an important mechanism linking obesity, inflammation, and metabolic disorders. However, there is no current evidence regarding the mechanism of action of NF-κB inhibition in insulin resistance and diabetic nephropathy in type 2 diabetic animal models. We investigated the effects of the NF-κB inhibitor celastrol in db/db mice. The treatment with celastrol for 2 months significantly lowered fasting plasma glucose (FPG), HbA1C and homeostasis model assessment index (HOMA-IR) levels. Celastrol also exhibited significant decreases in body weight, kidney/body weight and adiposity. Celastrol reduced insulin resistance and lipid abnormalities and led to higher plasma adiponectin levels. Celastrol treatment also significantly mitigated lipid accumulation and oxidative stress in organs including the kidney, liver and adipose tissue. The treated group also exhibited significantly lower creatinine levels and urinary albumin excretion was markedly reduced. Celastrol treatment significantly lowered mesangial expansion and suppressed type IV collagen, PAI-1 and TGFβ1 expressions in renal tissues. Celastrol also improved abnormal lipid metabolism, oxidative stress and proinflammatory cytokine activity in the kidney. In cultured podocytes, celastrol treatment abolished saturated fatty acid-induced proinflammatory cytokine synthesis. Taken together, celastrol treatment not only improved insulin resistance, glycemic control and oxidative stress, but also improved renal functional and structural changes through both metabolic and anti-inflammatory effects in the kidney. These results suggest that targeted therapy for NF-κB may be a useful new therapeutic approach for the management of type II diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Jung Eun Kim
- Department of Internal Medicine, Division of Nephrology, Korea University, Ansan City, Kyungki-Do, Korea
| | - Mi Hwa Lee
- Department of Internal Medicine, Division of Nephrology, Korea University, Ansan City, Kyungki-Do, Korea
| | - Deok Hwa Nam
- Department of Internal Medicine, Division of Nephrology, Korea University, Ansan City, Kyungki-Do, Korea
| | - Hye Kyoung Song
- Department of Internal Medicine, Division of Nephrology, Korea University, Ansan City, Kyungki-Do, Korea
| | - Young Sun Kang
- Department of Internal Medicine, Division of Nephrology, Korea University, Ansan City, Kyungki-Do, Korea
| | - Ji Eun Lee
- Department of Internal Medicine, Division of Nephrology, Wonkwang University, Gunpo City, Kyungki-Do, Korea
| | - Hyun Wook Kim
- Department of Internal Medicine, Division of Nephrology, Wonkwang University, Gunpo City, Kyungki-Do, Korea
| | - Jin Joo Cha
- Department of Internal Medicine, Division of Nephrology, Korea University, Ansan City, Kyungki-Do, Korea
| | - Young Youl Hyun
- Department of Internal Medicine, Division of Nephrology, Sungkyunkwan University, Seoul, Korea
| | - Sang Youb Han
- Department of Internal Medicine, Division of Nephrology, Inje University, Goyang City, Kyungki-Do, Korea
| | - Kum Hyun Han
- Department of Internal Medicine, Division of Nephrology, Inje University, Goyang City, Kyungki-Do, Korea
| | - Jee Young Han
- Department of Pathology, Inha University, Incheon City, Kyungki-Do, Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Division of Nephrology, Korea University, Ansan City, Kyungki-Do, Korea
| |
Collapse
|
33
|
Shum M, Pinard S, Guimond MO, Labbé SM, Roberge C, Baillargeon JP, Langlois MF, Alterman M, Wallinder C, Hallberg A, Carpentier AC, Gallo-Payet N. Angiotensin II type 2 receptor promotes adipocyte differentiation and restores adipocyte size in high-fat/high-fructose diet-induced insulin resistance in rats. Am J Physiol Endocrinol Metab 2013; 304:E197-210. [PMID: 23149621 PMCID: PMC3543572 DOI: 10.1152/ajpendo.00149.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study was aimed at establishing whether specific activation of angiotensin II (ANG II) type 2 receptor (AT2R) modulates adipocyte differentiation and function. In primary cultures of subcutaneous (SC) and retroperitoneal (RET) preadipocytes, both AT2R and AT1R were expressed at the mRNA and protein level. Cells were stimulated with ANG II or the AT2R agonist C21/M24, alone or in the presence of the AT1R antagonist losartan or the AT2R antagonist PD123,319. During differentiation, C21/M24 increased PPARγ expression in both RET and SC preadipocytes while the number of small lipid droplets and lipid accumulation solely increased in SC preadipocytes. In mature adipocytes, C21/M24 decreased the mean size of large lipid droplets. Upon abolishment of AT2R expression using AT2R-targeted shRNAs, expressions of AT2R, aP2, and PPARγ remained very low, and cells were unable to differentiate. In Wistar rats fed a 6-wk high-fat/high-fructose (HFHF) diet, a significant shift toward larger adipocytes was observed in RET and SC adipose tissue depots. C21/M24 treatments for 6 wk restored normal adipocyte size distribution in both these tissue depots. Moreover, C21/M24 and losartan decreased hyperinsulinemia and improved insulin sensitivity impaired by HFHF diet. A strong correlation between adipocyte size area and glucose infusion rate during euglycemic-hyperinsulinemic clamp was observed. These results indicate that AT2R is involved in early adipocyte differentiation, while in mature adipocytes and in a model of insulin resistance AT2R activation restores normal adipocyte morphology and improves insulin sensitivity.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adipocytes/metabolism
- Adipocytes/pathology
- Adipocytes/physiology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Size/drug effects
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Dietary Carbohydrates/adverse effects
- Dietary Fats/adverse effects
- Fructose/adverse effects
- Insulin Resistance/genetics
- Insulin Resistance/physiology
- Male
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/physiology
Collapse
Affiliation(s)
- Michaël Shum
- Division of Endocrinology, Department of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sipal S, Halici Z, Kiki I, Polat B, Albayrak A, Albayrak F, Karakus E, Aksak S, Ozturk B, Gundogdu C. Comparative study of three angiotensin II type 1 receptor antagonists in preventing liver fibrosis in diabetic rats: stereology, histopathology, and electron microscopy. J Mol Histol 2012; 43:723-35. [PMID: 22922994 DOI: 10.1007/s10735-012-9441-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/11/2012] [Indexed: 01/12/2023]
Abstract
The presence of liver disease in patients with progressively worsening insulin resistance may not be recognized until patients develop manifestations of the metabolic syndrome such as diabetes, hypertension, hyperlipidemia, and vascular disease. It was aimed to investigate whether three angiotensin II type 1 receptor antagonists (ARBs) (olmesartan, losartan, and valsartan) had preventive effect against hepatic fibrosis and this was a common characteristic among ARBs. In current study, 25 adult male rats were used and divided into five groups: the non-diabetic healthy group, alloxan induced diabetic (AID) control group, AID losartan group, AID valsartan group and AID olmesartan group. According to numerical density of hepatocytes, significant difference was found between the non-diabetic healthy group and diabetic control group. All treatments groups were significant when compared to diabetic control group. In diabetic control group it was examined swelling, irregular cristae arrangement in some of mitochondria. It was also determined mitochondria membrane degeneration in some areas of section profiles. In diabetic rats treated with losartan group, there were necrotic hepatocytes. In diabetic rats treated with valsartan group, predominantly, findings were similar to losartan group. In diabetic rats treated with olmesertan group, plates of hepatocytes were quite regular. There were hardly necrotic cells. Not only other organelles such as RER, SER and lysosom but also mitochondrial structures had normal appearance. In the diabetic control group electron microscopy revealed edema in both the cytoplasm and perinuclear area and the nuclear membranes appeared damaged. In conclusion, it was established that the most protective ARB the liver in diabetic rats was olmesartan, followed by losartan.
Collapse
Affiliation(s)
- Sare Sipal
- Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Direct renin inhibitor prevents and ameliorates insulin resistance, aortic endothelial dysfunction and vascular remodeling in fructose-fed hypertensive rats. Hypertens Res 2012; 36:123-8. [PMID: 22895064 DOI: 10.1038/hr.2012.124] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor blockers can improve insulin resistance and vascular dysfunction in insulin-resistant rats; however, there are few reports on the effects of direct renin inhibitors on these conditions. We investigated the effects of a direct renin inhibitor, aliskiren, on insulin resistance, aortic endothelial dysfunction and vascular remodeling in fructose-fed hypertensive rats. Male Wistar-Kyoto rats were divided into four groups (n=6 per group) and studied for 8 weeks: Group Con: standard chow diet; group Fru: high-fructose diet (60% fructose); Group FruA: high-fructose diet with concurrent aliskiren treatment (100 mg kg(-1) per day); and Group FruB: high-fructose diet with subsequent aliskiren treatment 4 weeks later. Blood was collected for biochemical assays, and isolated rings of the thoracic aorta were obtained for analysis of vascular reactivity, vascular structure and lipid peroxide. Rats fed with high-fructose diets developed significant systolic hypertension, decreased plasma nitrite (NO(2); nitric oxide metabolite) levels and increased plasma glucose, insulin, triglyceride, total cholesterol and aortic lipid peroxide levels, and aortic wall thickness compared with control rats. Aliskiren treatment, either concurrent or subsequent, elevated plasma NO(2) levels and reduced systolic hypertension, insulin resistance, dyslipidemia, aortic lipid peroxide levels and aortic wall hypertrophy in FHR. The peak endothelium-dependent aortic relaxations were significantly higher in rats that received aliskiren treatment than in those that did not. In conclusion, our findings suggest that aliskiren prevents and ameliorates insulin resistance, aortic endothelial dysfunction and oxidative vascular remodeling in fructose-fed hypertensive rats.
Collapse
|
36
|
Zhou MS, Schulman IH, Zeng Q. Link between the renin-angiotensin system and insulin resistance: implications for cardiovascular disease. Vasc Med 2012; 17:330-41. [PMID: 22814999 DOI: 10.1177/1358863x12450094] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The incidence of metabolic syndrome is rapidly increasing in the United States and worldwide. The metabolic syndrome is a complex metabolic and vascular disorder that is associated with inappropriate activation of the renin-angiotensin-aldosterone system (RAAS) in the cardiovascular (CV) system and increased CV morbidity and mortality. Insulin activation of the phosphatidylinositol-3-kinase (PI3K) pathway promotes nitric oxide (NO) production in the endothelium and glucose uptake in insulin-sensitive tissues. Angiotensin (Ang) II inhibits insulin-mediated PI3K pathway activation, thereby impairing endothelial NO production and Glut-4 translocation in insulin-sensitive tissues, which results in vascular and systemic insulin resistance, respectively. On the other hand, Ang II enhances insulin-mediated activation of the mitogen-activated protein kinase (MAPK) pathway, which leads to vasoconstriction and pathologic vascular cellular growth. Therefore, the interaction of Ang II with insulin signaling is fully operative not only in insulin-sensitive tissues but also in CV tissues, thereby linking insulin resistance and CV disease. This notion is further supported by an increasing number of experimental and clinical studies indicating that pharmacological blockade of RAAS improves insulin sensitivity and endothelial function, as well as reduces the incidence of new-onset diabetes in high-risk patients with CV disease. This article reviews experimental and clinical data elucidating the physiological and pathophysiological role of the interaction between insulin and RAAS in the development of insulin resistance as well as CV disease.
Collapse
Affiliation(s)
- Ming-Sheng Zhou
- Nephrology-Hypertension Section, Veterans Affairs Medical Center, University of Miami Miller School of Medicine, Miami, FL 33125, USA.
| | | | | |
Collapse
|
37
|
The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome. Curr Hypertens Rep 2012; 14:160-9. [PMID: 22302531 DOI: 10.1007/s11906-012-0245-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a risk factor for type 2 diabetes mellitus (DM) and is associated with chronic kidney disease. Activation of the renin-angiotensin-aldosterone system (RAAS) is common in obesity. The RAAS is an important mediator of hypertension. Mechanisms involved in activation of the RAAS in obesity include sympathetic stimulation, synthesis of adipokines in the RAAS by visceral fat, and hemodynamic alterations. The RAAS is known for its role in regulating blood pressure and fluid and electrolyte homeostasis. The role of local/tissue RAAS in specific tissues has been a focus of research. Urinary angiotensinogen (UAGT) provides a specific index of the intrarenal RAAS. Investigators have demonstrated that sex steroids can modulate the expression and activity of the different components of the intrarenal RAAS and other tissues. Our data suggest that obese women without DM and hypertension have significantly higher levels of UAGT than their male counterparts. These differences existed without any background difference in the ratio of microalbumin to creatinine in the urine or the estimated glomerular filtration rate, raising a question about the importance of baseline gender differences in the endogenous RAAS in the clinical spectrum of cardiovascular diseases and the potential utility of UAGT as a marker of the intrarenal RAAS. Animal studies have demonstrated that modifying the amount of angiotensin, the biologically active component of the RAAS, directly influences body weight and adiposity. This article reviews the role of the RAAS in renal injury seen in obesity and the metabolic syndrome.
Collapse
|
38
|
Panee J. Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine 2012; 60:1-12. [PMID: 22766373 DOI: 10.1016/j.cyto.2012.06.018] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/30/2012] [Accepted: 06/04/2012] [Indexed: 12/23/2022]
Abstract
Monocyte Chemoattractant Protein-1 (MCP-1) is the first discovered and most extensively studied CC chemokine, and the amount of studies on its role in the etiologies of obesity- and diabetes-related diseases have increased exponentially during the past two decades. This review attempted to provide a panoramic perspective of the history, regulatory mechanisms, functions, and therapeutic strategies of this chemokine. The highlights of this review include the roles of MCP-1 in the development of obesity, diabetes, cardiovascular diseases, insulitis, diabetic nephropathy, and diabetic retinopathy. Therapies that specifically or non-specifically inhibit MCP-1 overproduction have been summarized.
Collapse
Affiliation(s)
- Jun Panee
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA.
| |
Collapse
|
39
|
van der Zijl NJ, Moors CCM, Goossens GH, Blaak EE, Diamant M. Does interference with the renin-angiotensin system protect against diabetes? Evidence and mechanisms. Diabetes Obes Metab 2012; 14:586-95. [PMID: 22226145 DOI: 10.1111/j.1463-1326.2012.01559.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Agents interfering with the renin-angiotensin system (RAS) were consistently shown to lower the incidence of type 2 diabetes mellitus (T2DM), as compared to other antihypertensive drugs, in hypertensive high-risk populations. The mechanisms underlying this protective effect of RAS blockade using angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers on glucose metabolism are not fully understood. In this article, we will review the evidence from randomized controlled trials and discuss the proposed mechanisms as to how RAS interference may delay the onset of T2DM. In particular, as T2DM is characterized by β-cell dysfunction and obesity-related insulin resistance, we address the mechanisms that underlie RAS blockade-induced improvement in β-cell function and insulin sensitivity.
Collapse
Affiliation(s)
- N J van der Zijl
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
40
|
Siriwardhana N, Kalupahana NS, Fletcher S, Xin W, Claycombe KJ, Quignard-Boulange A, Zhao L, Saxton AM, Moustaid-Moussa N. n-3 and n-6 polyunsaturated fatty acids differentially regulate adipose angiotensinogen and other inflammatory adipokines in part via NF-κB-dependent mechanisms. J Nutr Biochem 2012; 23:1661-7. [PMID: 22475809 DOI: 10.1016/j.jnutbio.2011.11.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 10/16/2011] [Accepted: 11/30/2011] [Indexed: 01/22/2023]
Abstract
Excessive secretion of proinflammatory adipokines has been linked to metabolic disorders. We have previously documented anti-inflammatory effects of n-3 polyunsaturated fatty acids (n-3 PUFAs) in adipose tissue; however, the mechanisms by which these fatty acids regulate adipokine secretion remain unclear. Here, we determined differential effects of eicosapentaenoic acid (EPA, n-3 PUFA) vs. arachidonic acid (AA, n-6 PUFA) on expression and secretion of angiotensinogen (Agt), interleukin 6 (IL-6) and monocyte chemotactic protein (MCP-1) in 3T3-L1 adipocytes. While both PUFAs increased intracellular Agt protein and mRNA expression, Agt secretion into culture media was increased only by AA treatment, which in turn was prevented by co-treatment with EPA. At various AA/EPA ratios, increasing AA concentrations significantly increased secretion of the above three adipokines, whereas increasing EPA dose-dependently, while lowering AA, decreased their secretion. Moreover, IL-6 and MCP-1 were more significantly reduced by EPA treatment compared to Agt (IL-6>MCP>Agt). Next, we tested whether nuclear factor-κB (NF-κB), a major proinflammatory transcription factor, was involved in regulation of these adipokines by PUFAs. EPA significantly inhibited NF-κB activation compared to control or AA treatments. Moreover, EPA attenuated tumor necrosis factor-α-induced MCP-1 and further reduced its secretion in the presence of an NF-κB inhibitor. Taken together, we reported here novel beneficial effects of EPA in adipocytes. We demonstrated direct anti-inflammatory effects of EPA, which are at least in part due to the inhibitory effects of this n-3 PUFA on the NF-κB pathway in adipocytes. In conclusion, these studies further support beneficial effects of n-3 PUFAs in adipocyte inflammation and metabolic disorders.
Collapse
Affiliation(s)
- Nalin Siriwardhana
- Department of Animal Science, University of Tennessee (UT), Knoxville, TN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rodriguez R, Viscarra JA, Minas JN, Nakano D, Nishiyama A, Ortiz RM. Angiotensin receptor blockade increases pancreatic insulin secretion and decreases glucose intolerance during glucose supplementation in a model of metabolic syndrome. Endocrinology 2012; 153:1684-95. [PMID: 22355070 PMCID: PMC3320242 DOI: 10.1210/en.2011-1885] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Renin-angiotensin system blockade improves glucose intolerance and insulin resistance, which contribute to the development of metabolic syndrome. However, the contribution of impaired insulin secretion to the pathogenesis of metabolic syndrome is not well defined. To assess the contributions of angiotensin receptor type 1 (AT₁) activation and high glucose intake on pancreatic function and their effects on insulin signaling in skeletal muscle and adipose tissue, an oral glucose tolerance test (oGTT) was performed in five groups (n = 10/group) of rats: 1) lean strain-control 2) obese Otsuka Long-Evans Tokushima Fatty (OLETF), 3) OLETF + angiotensin receptor blocker (ARB; 10 mg/kg · d olmesartan for 6 wk; OLETF ARB), 4) OLETF + 5% glucose water (HG) for 6 wk (OLETF HG), and 5) OLETF + HG + ARB (OLETF HG/ARB). The glucose response to the oGTT increased 58% in OLETF compared with lean-strain control, whereas glucose supplementation increased it an additional 26%. Blockade of angiotensin receptor reduced the oGTT response 19% in the ARB-treated groups and increased pancreatic insulin secretion 64 and 113% in OLETF ARB and OLETF HG/ARB, respectively. ARB treatment in OLETF ARB and OLETF HG/ARB did not have an effect on insulin signaling proteins in skeletal muscle; however, it reduced pancreatic AT₁ protein expression 20 and 27%, increased pancreatic glucagon-like peptide-1 (GLP-1) receptor protein expression 41 and 88%, respectively, and increased fasting plasma GLP-1 approximately 2.5-fold in OLETF ARB. The results suggest that improvement of glucose intolerance is independent of an improvement in muscle insulin signaling, but rather by improved glucose-stimulated insulin secretion associated with decreased pancreatic AT₁ activation and increased GLP-1 signaling.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Blood Pressure/drug effects
- Dietary Supplements
- Disease Models, Animal
- Glucagon-Like Peptide-1 Receptor
- Glucose/administration & dosage
- Glucose/pharmacology
- Glucose Intolerance/metabolism
- Glucose Intolerance/prevention & control
- Insulin/metabolism
- Leptin/blood
- Male
- Metabolic Syndrome/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Pancreas/metabolism
- Rats
- Rats, Inbred OLETF
- Rats, Inbred Strains
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Glucagon/metabolism
- Triglycerides/blood
Collapse
Affiliation(s)
- Ruben Rodriguez
- School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343, USA
| | | | | | | | | | | |
Collapse
|
42
|
Kalupahana NS, Moustaid-Moussa N. The renin-angiotensin system: a link between obesity, inflammation and insulin resistance. Obes Rev 2012; 13:136-49. [PMID: 22034852 DOI: 10.1111/j.1467-789x.2011.00942.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) is classically known for its role in regulation of blood pressure, fluid and electrolyte balance. Recently, several local RASs in organs such as brain, heart, pancreas and adipose tissue have also been identified. Evidence from clinical trials suggests that in addition to anti-hypertensive effects, pharmacological inhibition of RAS also provides protection against the development of type-2 diabetes. Moreover, animal models with targeted inactivation of RAS genes exhibit improved insulin sensitivity and are protected from high-fat diet-induced obesity and insulin resistance. Because there is evidence for RAS overactivation in obesity, it is possible that RAS is a link between obesity and insulin resistance. This review summarizes the evidence and mechanistic insights on the associations between RAS, obesity and insulin resistance, with special emphasis on the role of adipose tissue RAS in the pathogenesis of metabolic derangements in obesity.
Collapse
Affiliation(s)
- N S Kalupahana
- Obesity Research Center, The University of Tennessee, Knoxville, TN 37996-4588, USA
| | | |
Collapse
|
43
|
Valsartan-induced improvement in insulin sensitivity is not paralleled by changes in microvascular function in individuals with impaired glucose metabolism. J Hypertens 2012; 29:1955-62. [PMID: 21844821 DOI: 10.1097/hjh.0b013e32834a7667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Individuals with impaired glucose metabolism (IGM) are at high risk of developing type 2 diabetes (T2DM). The renin-angiotensin system (RAS) is activated in insulin-resistant states and its inhibition resulted in delayed onset of T2DM. The underlying mechanisms may include improvement in microvascular structure and function, which may increase glucose and insulin delivery to insulin-sensitive tissues. We hypothesized that functional and structural capillary density is impaired in insulin-resistant individuals with IGM and that treatment with the angiotensin-receptor blocker valsartan (VAL) will improve insulin sensitivity and microvascular function. METHODS In this randomized controlled trial, individuals with IGM (n = 48) underwent a hyperinsulinaemic-euglycaemic clamp to assess insulin sensitivity (M-value) and capillaroscopy to examine baseline skin capillary density (BCD), capillary density after arterial occlusion (PRH) and capillary density during venous occlusion (VEN) before and after 26 weeks of VAL or placebo (PLB). Sixteen BMI-matched individuals with normal glucose metabolism (NGM) served as controls. RESULTS Individuals with IGM were more insulin resistant (P < 0.001) and had impaired microvascular function compared with those with NGM (all P < 0.01). Univariate associations were found for microvascular function (BCD, PRH, VEN) and M-value (all P < 0.005). The relations were independent of age, sex and BMI. VAL improved insulin sensitivity (P = 0.034) and lowered blood pressure as compared with PLB, whereas microvascular function remained unchanged. CONCLUSION In insulin-resistant individuals with IGM, impaired functional and structural capillary density was inversely associated with insulin sensitivity. VAL improved insulin sensitivity without affecting the functional and structural capillary density, indicating that other mechanisms may be stronger determinants in the VAL-mediated insulin-sensitizing effect.
Collapse
|
44
|
Goossens GH. The renin-angiotensin system in the pathophysiology of type 2 diabetes. Obes Facts 2012; 5:611-24. [PMID: 22986649 DOI: 10.1159/000342776] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 06/22/2012] [Indexed: 12/17/2022] Open
Abstract
Increased activation of the renin-angiotensin system (RAS) has been related to cardiovascular disease and type 2 diabetes mellitus. Most randomized clinical trials have demonstrated that RAS blockade reduces the incidence of type 2 diabetes, which has been explained by improved insulin secretion and insulin sensitivity. In this review, an overview of the mechanisms that may underlie the association between the RAS and type 2 diabetes will be provided, with focus on skeletal muscle and adipose tissue function. This will include discussion of several human studies performed in our laboratory to investigate the metabolic and hemodynamic effects of the RAS, combining in vivo measurements of whole-body and tissue metabolism with molecular and immunohistochemical approaches. Available data suggest that the detrimental effects of the RAS on insulin secretion are mediated by a reduction in pancreatic blood flow and induction of islet fibrosis, oxidative stress as well as inflammation, whereas both impaired skeletal muscle function and adipose tissue dysfunction may underlie RAS-induced insulin resistance. Thus, although future studies in humans are warranted, current evidence supports that targeting the RAS in intervention studies may improve metabolic and cardiovascular function in conditions of insulin resistance like obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Gijs H Goossens
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology & Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
45
|
Fletcher SJ, Kalupahana NS, Soltani-Bejnood M, Kim JH, Saxton AM, Wasserman DH, De Taeye B, Voy BH, Quignard-Boulange A, Moustaid-Moussa N. Transgenic mice overexpressing Renin exhibit glucose intolerance and diet-genotype interactions. Front Endocrinol (Lausanne) 2012; 3:166. [PMID: 23308073 PMCID: PMC3538348 DOI: 10.3389/fendo.2012.00166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/02/2012] [Indexed: 01/21/2023] Open
Abstract
Numerous animal and clinical investigations have pointed to a potential role of the renin-angiotensin system (RAS) in the development of insulin resistance and diabetes in conditions of expanded fat mass. However, the mechanisms underlying this association remain unclear. We used a transgenic mouse model overexpressing renin in the liver (RenTgMK) to examine the effects of chronic activation of RAS on adiposity and insulin sensitivity. Hepatic overexpression of renin resulted in constitutively elevated plasma angiotensin II (four- to six-fold increase vs. wild-type, WT). Surprisingly, RenTgMK mice developed glucose intolerance despite low levels of adiposity and insulinemia. The transgenics also had lower plasma triglyceride levels. Glucose intolerance in transgenic mice fed a low-fat diet was comparable to that observed in high-fat fed WT mice. These studies demonstrate that overexpression of renin and associated hyperangiotensinemia impair glucose tolerance in a diet-dependent manner and further support a consistent role of RAS in the pathogenesis of diabetes and insulin resistance, independent of changes in fat mass.
Collapse
Affiliation(s)
- Sarah J. Fletcher
- Genome Science and Technology Program, University of TennesseeKnoxville, TN, USA
| | - Nishan S. Kalupahana
- Department of Physiology, Faculty of Medicine, University of PeradeniyaPeradeniya, Sri Lanka
| | | | - Jung Han Kim
- Department of Pharmacology, Physiology and Toxicology, School of Medicine, Marshall UniversityHuntington, WV, USA
| | - Arnold M. Saxton
- Department of Animal Science, University of TennesseeKnoxville, TN, USA
| | - David H. Wasserman
- Department of Molecular Physiology and Biophysics, School of Medicine and Mouse Metabolic Phenotyping Center, Vanderbilt UniversityNashville, TN, USA
| | - Bart De Taeye
- Department of Molecular Physiology and Biophysics, School of Medicine and Mouse Metabolic Phenotyping Center, Vanderbilt UniversityNashville, TN, USA
| | - Brynn H. Voy
- Department of Animal Science, University of TennesseeKnoxville, TN, USA
| | | | - Naima Moustaid-Moussa
- Nutritional Sciences, Texas Tech UniversityLubbock, TX, USA
- *Correspondence: Naima Moustaid-Moussa, Nutritional Sciences, Texas Tech University, 1301, Akron Street, Lubbock, TX 79423, USA. e-mail:
| |
Collapse
|
46
|
Perivascular Fat and the Microcirculation: Relevance to Insulin Resistance, Diabetes, and Cardiovascular Disease. CURRENT CARDIOVASCULAR RISK REPORTS 2011; 6:80-90. [PMID: 22247785 PMCID: PMC3251783 DOI: 10.1007/s12170-011-0214-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes and its major risk factor, obesity, are a growing burden for public health. The mechanisms that connect obesity and its related disorders, such as insulin resistance, type 2 diabetes, and hypertension, are still undefined. Microvascular dysfunction may be a pathophysiologic link between insulin resistance and hypertension in obesity. Many studies have shown that adipose tissue-derived substances (adipokines) interact with (micro)vascular function and influence insulin sensitivity. In the past, research focused on adipokines from perivascular adipose tissue (PVAT). In this review, we focus on the interactions between adipokines, predominantly from PVAT, and microvascular function in relation to the development of insulin resistance, diabetes, and cardiovascular disease.
Collapse
|
47
|
Abstract
Adipokines (adipose tissue cytokines) are polypeptide factors secreted by adipose tissue in a highly regulated manner. The 'classical' adipokines (leptin, adiponectin, and resistin) are expressed only by adipocytes, but other adipokines have been shown to be released by resident and infiltrating macrophages, as well as by components of the vascular stroma. Indeed, adipose tissue inflammation is known to be associated with a modification in the pattern of adipokine secretion. Several studies indicate that adipokines can interfere with hepatic injury associated with fatty infiltration, differentially modulating steatosis, inflammation, and fibrosis. Moreover, plasma levels of adipokines have been investigated in patients with nonalcoholic fatty liver disease in order to establish correlations with the underlying state of insulin resistance and with the type and severity of hepatic damage. In this Forum article, we provide a review of recent data that suggest a significant role for oxidative stress, reactive oxygen species, and redox signaling in mediating actions of adipokines that are relevant in the pathogenesis of nonalcoholic fatty liver disease, including hepatic insulin resistance, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Maurizio Parola
- Dipartimento di Medicina e Oncologia Sperimentale and Centro Interuniversitario di Fisiopatologia Epatica Università degli Studi di Torino, Turin, Italy
| | | |
Collapse
|
48
|
Jonk AM, Houben AJ, Schaper NC, de Leeuw PW, Serné EH, Smulders YM, Stehouwer CD. Acute angiotensin II receptor blockade improves insulin-induced microvascular function in hypertensive individuals. Microvasc Res 2011; 82:77-83. [PMID: 21514308 DOI: 10.1016/j.mvr.2011.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
OBJECTIVE An effect of insulin that is crucial for stimulating glucose uptake is its ability to increase the number of perfused capillaries, and thereby enhance its own delivery, and that of glucose, to muscle cells. To unravel possible mechanisms involved in the insulin-sensitizing effects of angiotensin II receptor blockers (ARBs) in hypertensive individuals we investigated the effect of single-dose ARB administration on insulin-mediated microvascular perfusion in hypertensive individuals. METHODS We examined the effects of ARB administration on hyperinsulinemia-associated capillary density by measuring baseline skin capillary density, capillary density during reactive hyperemia (hyperemic capillary recruitment), and capillary density during venous congestion in 17 hypertensive individuals in the basal state, during a hyperinsulinemic euglycemic clamp, and during a hyperinsulinemic clamp with acute ARB administration (600 mg irbesartan), acute calcium channel blockade (CCB; 10mg felodipine ER), as a control for the reduction in blood pressure, or placebo. In addition, insulin sensitivity and blood pressure were measured. RESULTS Compared to the basal state, hyperinsulinemia increased baseline capillary density (57.3 ± 6.8 vs. 60.3 ± 7.9 n/mm(2), P<0.01), but not hyperemic capillary recruitment. ARB and CCB treatment induced similar blood pressure reductions. Compared to placebo, ARB, but not CCB, increased hyperinsulinemia-associated baseline capillary density (+2.3 ± 3.4 (P=0.02) and -0.4 ± 4.4n/mm(2), respectively). Hyperinsulinemia-associated hyperemic capillary recruitment was not altered by either treatment. Compared to placebo, neither ARB nor CCB treatment enhanced insulin sensitivity. CONCLUSIONS Acute ARB administration increases insulin-induced microvascular perfusion in mildly hypertensive individuals; this beneficial effect on microvascular perfusion was however not associated with increased insulin-mediated glucose uptake.
Collapse
Affiliation(s)
- Amy M Jonk
- Department of Internal Medicine, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
49
|
Yvan-Charvet L, Quignard-Boulangé A. Role of adipose tissue renin–angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney Int 2011; 79:162-8. [DOI: 10.1038/ki.2010.391] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Blockade of the Renin-Angiotensin System Ameliorates Apelin Production in 3T3-L1 Adipocytes. Cardiovasc Drugs Ther 2010; 25:3-12. [DOI: 10.1007/s10557-010-6274-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|